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Timely extraction of reliable land cover change information is increasingly needed

at a wide continuum of scales. Few methods developed from previous studies

have proved to be robust when noise, changes in atmospheric and illumination

conditions, and other scene- and sensor-dependent variables are present in the

multitemporal images. In this study, we developed a new method based on cross-

correlogram spectral matching (CCSM) with the aim of identifying interannual

land cover changes from time-series Normalized Difference Vegetation Index

(NDVI) data. In addition, a new change index is proposed with integration of two

parameters that are measured from the cross-correlogram: the root mean square

(RMS) and (12Rmax), where Rmax is the maximum correlation coefficient in a

correlogram. Subsequently, a method was proposed to derive the optimal threshold

for judging ‘change’ or ‘non-change’ with the acquired change index. A pilot study

was carried out using SPOT VGT-S images acquired in 1998 and 2000 at Xianghai

Park in Jilin Province. The results indicate that CCSM is superior to a traditional

Change Vector Analysis (CVA) when noise is present with the data. Because of an

error associated with the ground truthing data, a more comprehensive assessment of

the developed method is still in process using better ground truthing data and images

at a larger time interval. It is worth noting that this method can be applied not only

to NDVI datasets but also to other index datasets reflecting surface conditions

sampled at different time intervals. In addition, it can be applied to datasets from

different satellites without the need to normalize sensor differences.

1. Introduction

Human and natural alterations of land cover have occurred at an increasing rate in

space and time during the past century. Such alterations could affect multiple aspects of

the environmental system such as energy balance, biogeochemical cycles, hydrological

cycles and the climate system, which are regarded as crucial elements in global change

studies (e.g. Turner et al. 1995). Therefore, timely extraction of reliable land cover
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change information is increasingly needed at a continuum of scales ranging from local

and regional to continental and global. At continental and global scales, NOAA/

AVHRR, SPOT/VEGETATION, TERRA or AQUA/MODIS are valuable data

sources, as they are able to cover a large area with high temporal resolution at low cost

and their availability can be traced back to 1981 (Townshend et al. 1991). With such

data sets, the time trajectories of the Normalized Difference Vegetation Index (NDVI)

are effective for the purpose of land cover classification based on the assumption that

different land cover types are discriminated by their specific time trajectories of the

NDVI (e.g. Tucker et al. 1985, DeFries et al. 1995, Loveland et al. 2000). Following this

assumption, interannual variation of land cover, especially vegetation types, could also

be detected by addressing the changes in NDVI time trajectory during a certain period,

as evidenced in a series of studies such as those by Lambin and Strahler (1994a,b),

Lambin and Ehrlich (1995, 1997), Borak et al. (2000) and Lunetta et al. (2006).

Although a number of approaches for land cover change detection using satellite

imagery have been formulated, applied and evaluated over the past two decades (Singh

1989, Coppin et al. 1996, Jensen 1996), most of these approaches have been developed

based on multispectral data acquired at limited discrete time periods, and are thus not

appropriate for high temporal resolution satellite data. There are only four types of

approaches that have been widely used for land cover change detection based on

NDVI datasets: time-series derived change metrics (e.g. Borak et al. 2000), linear data

transformation (such as Standardized Principal Component Analysis (SPCA) (e.g.

Eastman and Fulk 1993)), Change Vector Analysis (CVA) (e.g. Lambin and Strahler

1994a) or the hybrid approach (Zhan et al. 2000). Despite the success with the above

algorithms, few methods have proved to be robust when noise, changes in atmospheric

and illumination conditions, and other scene- and sensor-dependent variables are

present in the images that are acquired in different years. Therefore, it is necessary to

develop new change detection techniques to consistently achieve a similar or even

better accuracy when such problematic circumstances occur. In this study, we present

a new method that is based on cross-correlogram spectral matching (CCSM) with the

aim of identifying interannual land cover changes from time-series NDVI data. We

tested the new method in the study area of Jilin Province, China, where we have

acquired high spatial resolution satellite data. The 10-day Maximum Value Composite

(MVC) SPOT VGT-S product in 1998 and 2000 with a spatial resolution of

1 km61 km was used in the study (VEGETATION Programme 1998).

2. Methods

Land cover change detection using remotely sensed data can be divided into two stages: (1)

detection of where changes occur (‘change/no-change’ detection) and (2) identification of

what type of changes they are (‘from-to’ change identification). The CCSM-based method

proposed in this study was developed for the first phase to serve as a warning system rather

than a comprehensive land cover change monitoring system. As to the second phase,

considering the mixed pixel problem due to low spatial resolution of the adopted datasets,

we recommend a strategy that identifies ‘from-to’ changes by using higher spatial

resolution satellite data after the changed areas are revealed from the first phase.

2.1 Background of CCSM

CCSM is an approach proposed by van der Meer and Bakker for mapping minerals

from imaging spectrometer data (van der Meer and Bakker 1997, van der Meer

3260 L. Wang et al.
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2000). It provides a statistically meaningful tool to compare a target spectrum (i.e. a

remotely sensed spectrum) with a reference spectrum (i.e. a laboratory mineral

spectrum) by constructing a cross-correlogram at different match positions and

calculating the goodness-of-match between them. CCSM has demonstrated its merits

as being insensitive to difference in gain and noise associated with multitemporal

remote sensing data when noise is low enough so as not to perturb the shape of key

absorption features. Although efforts have been made to adapt the CCSM approach

to various applications, such as the assessment of pollution caused by mining

(Ferrier 1999) and the identification of green and dry vegetation components (Datt

2000), to our knowledge CCSM has not yet been adopted to detect land cover

change. As NDVI time-series data (hereafter referred to as an NDVI profile curve)

can be plotted as a spectrum in the manner of NDVI value vs. date, which resembles

the spectral reflectance spectrum that is acquired at different wavelengths, we were

motivated to develop and test the feasibility of CCSM in the context of NDVI

analysis towards the final goal of a robust land cover change detection. The rationale

here is that differences that existed in the NDVI profile curve between the test and

reference year would affect the shape, significance and correlation of the cross-

correlogram values, from which changes of land cover types are expected to be

revealed. A detailed implementation scheme of the CCSM-based change detection

method is provided in figure 1 and explained in the following section.

2.2 Development of the CCSM-based technique

2.2.1 Preprocessing NDVI time-series data. Although atmospheric correction has

been applied to the SPOT VGT product, evidence of noise is still apparent. It is

primarily attributed to two factors: cloud contamination and sensor noise. In this

study, a method based on the Savitzky–Golay filter as reported in Chen et al. (2004)

was taken to construct high-quality NDVI time-series datasets. In brief, the method

was built on two assumptions: (1) an NDVI time-series should follow an annual

cycle of growth and decline as a portrait of vegetation phenology change; (2) due to

clouds and atmospheric variation, NDVI values were degraded, manifested in the

form of sudden falls on the NDVI profile curve, which is in contradiction to the

gradual change that should occur when such noise is not present. This method, by

using an iteration process, can approach the upper envelope of NDVI data and

reveal patterns of change in NDVI. As a result, high-quality NDVI time-series

datasets for both test year and reference year are obtained.

2.2.2 Calculating a new change index. Following van der Meer and Bakker (1997),

in this study we calculated the correlation coefficient (Rm) between an NDVI profile

curve in the test year and its counterpart in the reference year at different match

positions (m). The match position refers to the number of units (1 unit is 10 days in

this study) along the x axis to be shifted with the test year data in order to calculate

correlations. The NDVI profile curve in the reference year will remain unchanged.

By convention, we define a negative match position when shifting the test year curve

to an earlier date and a positive match position when shifting it to a later date. For

example, the match position 0 means a direct calculation of correlation between test

and reference data while the match position 21 means the whole NDVI curve in the

test year will be shifted by one unit of time towards the lower end direction to derive

a correlation, which is based on the overlapped portions of the two curves. The

cross-correlation, Rm, at each match position m is equivalent to the ordinary linear

Cross-correlogram spectral matching algorithm 3261

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
n
g
,
 
L
e
]
 
A
t
:
 
1
0
:
1
0
 
2
3
 
J
u
n
e
 
2
0
0
9



correlation coefficient and can be computed as follows (van der Meer and Bakker

1997):

Rm~
n
P

lrlt{
P

lr

P
lt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

l2
r {

P
lrð Þ2

h i
n
P

l2
t {

P
ltð Þ2

h ir ð1Þ

where lt and lr are NDVI profile curve values for the test year and reference year,

respectively, and n is the number of overlapping positions. In this study, the

Figure 1. Flowchart of the CCSM-based land cover change detection method.
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matching position m is set in the range from 25 to 5 because vegetation phenology

changes are usually limited to 50 days (five date units in the 10-day MVC dataset)

even in an extreme case.

A cross-correlogram is then constructed by plotting the correlation coefficient

(Rm) vs. respective match positions (figure 2). In theory, should there be no changes,

the cross-correlogram would exhibit a symmetrical parabolic shape such that the

correlation value peaked at the match position 0 and declined at the same pace as the

match position goes towards the two ends, that is the skewness is zero. Conversely, if

the shape of the cross-correlogram and the position where the maximum correlation

occurs deviate from an ideal profile curve, as described above, evidence of changes

between the two NDVI profile curves can be concluded. Arising from this idea, two

parameters were adopted to assess the degree of difference between the two NDVI

profile curves, the root mean square (RMS) and (12Rmax).

As defined in equation (2), the RMS is used to measure the discrepancy between

the empirical cross-correlogram and the ideal cross-correlogram. Specifically, the

empirical cross-correlogram comprises correlation coefficients (Rm) that are derived

from the NDVI test profile curve and the NDVI reference profile curve, while the

ideal cross-correlogram consists of correlation coefficients (R9m) that are derived

from the NDVI reference profile curve and itself (figure 1).

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

{m

Rm{R’mð Þ2

k

v
u
u
u
t

ð2Þ

where Rm is the cross-correlation at match position m, R9m is the reference cross-

correlation at match position m, and k is the number of match positions. The

magnitude of the RMS is a reflection of the deviation between the NDVI test profile

Figure 2. The concept of the CCSM-based land cover change detection method. The thick
black is the NDVI profile curve (left) in the test year and its cross-correlogram (right),
respectively; the thin black line is the NDVI profile curve (left) in the reference year and the
perfectly matching cross-correlogram (right), respectively.
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curve and the NDVI reference profile curve. The higher the RMS value, the more

likely it will be that changes have occurred. As atmospheric variability, sensor
differences and sensor noise in most cases do not affect the shape of the NDVI

profile curves and thus influence the correlation coefficients equally at different

match positions, the shape of the resulted correlogram will be kept authentic. As a

result, the RMS is only sensitive to land cover change and vegetation phenology

change. Therefore, the RMS is capable of capturing land cover changes regardless of

the presence of such noise in the data. In addition, the RMS is calculated from

correlation coefficients that depend to a greater extent on the shape of the NDVI

profile curve than on the absolute values of NDVI; thus, the RMS is similarly
sensitive to all kinds of changes. However, the RMS has one shortcoming in that it is

difficult to differentiate long-term land cover change with vegetation phenology

changes caused by climatic events. Therefore, another index was designed.

In the index (12Rmax), Rmax stands for the maximum correlation coefficient in a

correlogram. Rmax can be obtained by comparing the correlation coefficients (Rm) at

different match positions (2m to m) as follows:

Rmax~arg max R{m, . . . R{1,R0,R1, . . . Rmf g ð3Þ

Changes occurring between the NDVI test profile curve and the reference profile

curve will affect not only the shape of the cross-correlogram but also the match

position at which maximum correlation is achieved. Although the index (12Rmax)

functions similarly to the RMS index to some extent, it is particularly effective in

differentiating long-term land cover changes from vegetation phenology changes

because most vegetation phenology changes, which are not related to land cover

change, only affect the shape of the cross-correlogram and do not alter Rmax values.

After obtaining Rmax, its significance is assessed using the following t-test (equation
(4)). Here the null hypothesis of the test is that the correlation between the two

profile curves at a specific match position is zero:

t~Rmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n{2

1{R2
max

s

ð4Þ

where n is the number of overlapping positions. If Rmax cannot pass the significance

test, it is set as 0; otherwise the value will be kept.

As the RMS and (12Rmax) complement each other, they can be combined

together to assess land cover changes from NDVI profile curves. To this end, we

developed a synthetic change index (DD) defined as follows:

DD~RMS| 1{Rmaxð Þ ð5Þ

Given the above definition, it is evident that the value of DD will increase along
the increase in magnitude of land cover changes. For example, a low value of DD

may indicate a low-intensity land cover modification while a large value of DD may

suggest a land cover conversion. Meanwhile, the changes caused by atmospheric

variability, vegetation phenology changes, sensor differences and sensor noise cannot

significantly raise the value of DD.

2.2.3 Determining the optimal threshold for the change index. At this point, it is still
necessary to set up a threshold value for DD in discerning whether a land cover

change has occurred with the corresponding pixel. To this end, we used an iterative

3264 L. Wang et al.
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trial-and-error procedure that was introduced by Fung and LeDrew (1988) to decide

the optimal threshold for DD. First, we selected a set of training images in which

each pixel’s status of change has been known. Once DD for all the pixels in the

training images are derived, a histogram of DD is constructed and the mean and

standard deviation of DD are computed. The two parameters are then used to

formulate a potential threshold in the form of (mean + N6standard deviation) in the

iterative trial-and-error procedure. An initial value 0.1 is set for N. In the subsequent

iterations, N is increased in steps of 0.1 until it reaches 3.0. At each step, the

threshold value calculated is used to generate a binary image representing changed

and unchanged pixels, respectively. Given the training dataset, the binary image is

compared with the reference to build an error matrix by which a kappa value can be

obtained. Ultimately, the optimal threshold for DD is assigned to the value at which

the maximum kappa value is achieved. Given the optimal threshold for DD from the

training data, the task to identify land cover change is easily carried out in the study

site.

2.2.4 Accuracy assessment. To assess the reliability of the extracted land cover

change information with our CCSM methods, an accuracy assessment was

performed similar to a traditional classification. Two classes were to be examined:

change and non-change. An error matrix was formed and the kappa value derived

based on ground reference data that were acquired from a field survey and visual

interpretation of finer spatial resolution remotely sensed data. In light of the fact

that in most practical cases changed pixels occupy only a small proportion in an

image, an equalized random sampling technique was first applied in the process of

test sample selection so that changed and unchanged classes were equally represented

in the total population of randomly sampled pixels.

3. Results and discussion

3.1 Sensitivity analysis of the CCSM-based method

To test the performance of the CCSM-based method as a tool for revealing the land

cover changes and excluding ‘false’ changes caused by atmospheric variability,

changes in vegetation phenology, sensor differences and sensor noise, we applied the

method to a number of simulated experiments that represent typical cases affected by

the above noise.

The first experiment was designed to examine how vegetation phenology change

affects the detection results from the CCSM-based method (figure 3(a)). An NDVI

profile curve representing deciduous forest was taken as the reference and a new

NDVI profile curve, generated by shifting the reference curve to the earlier date by 1

unit of 10 days, was treated as the test curve for representing vegetation phenology

change. The second experiment was designed to examine how the noise caused by

atmospheric variability (e.g. volcano ash) or climatic events such as drought affect

the detection results from the CCSM-based method (figure 3(b)). As noise of this

type often depresses the absolute NDVI values but does not influence the shape

characteristics of the NDVI profile curve, an NDVI profile curve from deciduous

forest was taken as reference and a new NDVI profile curve, generated by decreasing

the reference curve values by 10%, was treated as the test curve to represent this

noise. In the third experiment, we aimed to examine how the noise occurring in local

NDVI value points affected the detection results from the CCSM-based method

(figure 3(c)). The selection of a reference curve was the same as in the above

Cross-correlogram spectral matching algorithm 3265
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experiments, and the test curve was produced from the reference curve by

significantly changing one NDVI value. Clearly, such noisy values can be found

to correspond to cloud contamination and poor atmospheric conditions in local

NDVI value points. The fourth experiment was designed to examine how the

random noise generated by sensors and atmospheric variability affects the detection

results from the CCSM-based method (figure 3(d)). The reference profile curve was

Figure 3. Simulation experiments to test the CCSM-based method in special cases: (a)
phenology change, (b) noise due to atmospheric variability or extreme climatic events, (c) noise
in local NDVI, (d) sensor noise. The thick black line is the NDVI profile curve (left) in the test
year and its cross-correlogram (right), respectively; the thin black line is the NDVI profile curve
(left) in the reference year and the perfect-matching cross-correlogram (right), respectively.

3266 L. Wang et al.
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also from a deciduous forest, and the test profile curve was generated by adding a

component of 10% random noise to the reference curve. Figure 3 shows the NDVI

profile curves in the simulation experiments and the corresponding cross-

correlograms with the combined change index DD. The results of the experiments

show that the DD in every experiment was obtained as a much smaller value,

indicating that the CCSM-based method is insensitive to these types of noise.

3.2 A case study: land cover change detection in Xianghai Park, Jilin Province, China

A pilot study was carried out in Xianghai Park, Jilin Province, China. Xianghai Park

is a national nature reserve park located in northeast China (121u249–124u109 E,

43u399–45u469 N), covering an area of 60 368 km2. The main land cover types of the

area are grassland, wetland, cropland, water and shrub land. To evaluate the

performance of our proposed CCSM method, a 10-day 1 km61 km SPOT VGT-S

product (MVC Product) from the years 1998 and 2000 were used in this study

(figures 4(a)) and 4(b)). The 1998 dataset includes 36 bands acquired during the

period from April 1998 to March 1999 and the dataset in 2000 during the period

Figure 4. The study area and satellite data used. SPOT VGT NDVI image in (a) September
1998 and (b) September 2000. RGB composition image of TM bands 5, 4 and 3 in (c) October
1998 and (d) September 2002.

Cross-correlogram spectral matching algorithm 3267
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from April 2000 to March 2001. For the purpose of ground truthing, two scenes of

Landsat Thematic Mapper (TM) image data (path/row: 120/29, 5 October 1998 and

24 September 1999) with good image quality were used (figures 4(c) and 4(d)). The

boundaries of the TM images were used to clip the study area from the SPOT VGT

dataset so that all the satellite data covered the same area.

As validation data, land cover change information at high spatial resolution was

obtained by using the post-classification comparison method, in which land cover

information in 1998 and 2000 was extracted with a maximum likelihood classifier

respectively based on Landsat TM images in 1998 and 2000. Figure 5(a) shows the

resultant changed pixels in red after the post-classification comparison and

aggregation to 1 km61 km spatial resolution. By using SPOT VGT-S datasets, we

then detected land cover changes in the study area based on the CCSM-based

method and on the CVA method proposed by Lambin and Strahler (1994a,b)

(figures 5(b) and 5(c)). To avoid possible sampling bias, the whole ‘change/no-

change’ image obtained from TM data (figure 5(a)) was used for accuracy assessment

instead of random sampling. Tables 1 and 2 present the error matrix of ‘changed/

unchanged’ detection from the CCSM-based method and CVA, respectively. It is

Figure 5. The results of land cover change detection by the CCSM-based method and the CVA
method. (a) The detected changed pixels (in red) from TM images. (b) The detected changed
pixels by the CVA method. (c) The detected changed pixels by the CCSM-based method. The
locations of the sub-images in figures 6 and 7 are given as yellow rectangles 1 and 2, respectively.

3268 L. Wang et al.
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clear that two methods achieved high overall accuracy but a relatively low kappa

index: for the CCSM-based method the kappa coefficient is 0.39 and the overall

accuracy is 90.64%; for CVA the kappa coefficient is 0.09 and the overall accuracy is

80.14%. The high overall accuracy is attributed to the fact that all pixels in the study

area were included in the assessment and unchanged pixels covered a much larger

proportion of the study area. Moreover, a better result was obtained when our

proposed CCSM-based method was compared with the CVA. However, results from

the CCSM-based method were not as promising as we had expected.

To explain why the CCSM-based method cannot achieve a good result with a

higher kappa index, detailed visual interpretation was carried out on TM images and

NDVI profile curves from the SPOT VGT dataset, focusing on incorrectly labelled

change areas (commission errors) and undetected change areas (omission errors).

Several reasons for commission and omission errors were found.

(1) The TM images did not detect several change areas from grassland to cropland

(an example is shown in figure 6). It is clear that land cover changes have occurred

from grassland to crop land from the TM data; however, because the spectrum of

the grassland is similar to that of the crop land, these changed areas were

classified as the same land cover by the maximum likelihood classifier. However,

because of the major differences in the NDVI profiles of the two land cover types,

the CCSM-based method successfully detected these areas. It should be noted

that some incorrectly labelled change areas (commission errors) were produced

by the errors existing in ground truth data acquired from the TM images.

(2) There was also a problem with undetected change areas (omission errors).

Figure 7 shows an example of such areas. From the TM images, it can be seen

that a change from water to grassland took place in the area, while the

corresponding NDVI profiles in 1998 and 2000 did not show evidence of this

change. An investigation of the precipitation record in 1998 and 2000 showed

that the precipitation in September and August in 1998 was more than twice

Table 1. Error matrix for ‘change/non-change’ detection using the CCSM-based method.

Detected change

Reference change

No-change pixels Change pixels Sum Commission error

No-change pixels 24 750 1567 26 317 5.95
Change pixels 1101 1088 2189 50.30
Sum 25 851 2655 28 506
Omission error 4.26 59.02

Overall accuracy590.64%; kappa coefficient50.3986

Table 2. Error matrix for ‘change/non-change’ detection using the CVA method.

Detected change

Reference change

No-change pixels Change pixels Sum Commission error

No-change pixels 23 496 2166 25 662 8.44
Change pixels 2354 490 2844 82.77
Sum 25 850 2656 28 506
Omission error 9.11 81.55

Overall accuracy584.14%; kappa coefficient50.0905

Cross-correlogram spectral matching algorithm 3269
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that of 2000. It can be inferred that the change shown in figure 7 was a

temporary phenomenon caused by a climatic event. Although the TM images

provided correct land cover classification results, considering that the TM

Figure 7. TM images of an example area in 1998 and 2000 and their corresponding NDVI
profile curves.

Figure 6. TM images of an example area in 1998 and 2000 and their corresponding NDVI
profile curves.

3270 L. Wang et al.
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image acquired on a particular date only reflects the land surface condition at

that time, the ground truth data from TM images clearly included ‘false’ changes

caused by temporary events and thus affected the change accuracy assessment.

(3) Besides the above problems existing in the validation data, we also found

that the CCSM-based method tends to ignore the type of land cover change

in which two land cover types have almost the same NDVI profile pattern

but show an apparent difference in absolute NDVI values. Although it is

rare to find such land cover changes in our case study area, it is necessary to

take into account this kind of land cover change if the CCSM-based method

is used on a global or continental scale. Our proposed solution is the

following. After applying the CCSM-based method, pixels that have

significantly smaller RMS but larger differences in absolute NDVI values

should be extracted again and further analysed to identify this kind of land

cover change. The extreme case reveals the imperfections of the new method,

and hence caution should be taken when the new method is applied.

(4) Another imperfection of the CCSM-based method is that it may sometimes

overestimate land cover changes that occurred in areas with very low NDVI

values such as water. As is well known, water is considered as a Pseudo Invariant

Feature (PIF) and is widely used for radiometric correction with the assumption

that spectral values do not change appreciably over time. Although small

changes in spectral reflectance from water can occur throughout a year due to

sparse vegetation or low chlorophyll content, such changes cannot be captured

by the NDVI as it is insensitive to very high/very low chlorophyll content, as

claimed by Dash and Curran (2004) while developing the Meris Terrestrial

Chlorophyll Index (MTCI) for MERIS data. However, in extreme cases, the

NDVI profile of water is not maintained constantly throughout the year because

of the relatively higher coverage of sparse vegetation or higher content of

chlorophyll. Moreover, these interannual fluctuations are always different

between any 2 years. In such a case, the CCSM-based method may overestimate

this phenomenon and misidentify it as changes in land cover because it is

designed to identify the curve shape difference rather than compare absolute

NDVI values. To solve this problem, we suggest using a preprocessing procedure

to smooth out these interannual fluctuations, before applying the CCSM-based

method, such as the Savitzky-Golay filter as reported in Chen et al. (2004).

As described above, the low accuracy of land cover change detection by the new

method may be attributed to the unreliable validation data as well as the imperfections

of the new method. Further validation of the proposed CCSM-based method is still in

process using another pair of images acquired at an interval of more than 10 years,

with which it is thought that small changes in landscape can be revealed despite the

coarse spatial resolution of SPOT VGT-S (161 km2). Correspondingly, we will collect

high-quality ground truth data from higher spatial resolution satellite data (such as

TM) and detailed field surveys. Until then, an objective evaluation of the CCSM-based

change detection method cannot be established.

4. Conclusion

The time-series dataset of the NDVI derived from high temporal resolution satellites

is a valuable data source for extracting information on land cover and its changes on
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global, continental and largely regional scales. However, existing approaches, such

as SPCA and CVA, are not sufficiently flexible or effective in discriminating between

long-term land cover change and other changes caused by atmospheric variability,

vegetation phenology changes, climate events, sensor differences and sensor noise.

Based on the assumptions that different land cover types have different NDVI

temporal profiles and the NDVI profile curve can be regarded as a spectrum in

which an NDVI value for a certain date corresponds to one band value of the

spectrum, we developed a new land cover change detection method based on CCSM.

Our method was developed to detect land cover changes, particularly for land cover

conversion, by reducing the effects of ‘false’ changes. The CCSM-based method was

also designed to be similarly sensitive to all kinds of land cover changes no matter

where the changes occurred and thus to be able to avoid the painstaking process of

normalization of the change index for each biome. With current ground truth data,

the CCSM-based change detection method presents a better performance than CVA.

However, a reliable value of the absolute accuracy of the CCSM-based method will

not be known until further work is completed that uses images acquired at longer

time intervals and ground truthing data with higher accuracy. In general, from the

pilot study, we can conclude that the new method is effective and has the potential

for land cover change detection compared with the CVA method. Furthermore, it is

worth noting that the method can be applied not only to NDVI datasets but also to

other index datasets such as surface temperature reflecting surface conditions

sampled at different time intervals. It can also be applied to datasets from different

satellites without the need to normalize sensor differences.

Acknowledgements

This study was supported by grants to Le Wang from the National Science

Foundation (BCS-0822489, DEB-0810933), and from National Key Basic Research

and Development Program, China (2006CB701304).

References
BORAK, J.S., LAMBIN, E.F. and STRAHLER, A.H., 2000, The use of temporal metrics for land

cover change detection at coarse spatial scales. International Journal of Remote

Sensing, 21, pp. 1415–1432.
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