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As a first step in developing classification procedures for remotely acquired

hyperspectral mapping of mangrove canopies, we conducted a laboratory study

of mangrove leaf spectral reflectance at a study site on the Caribbean coast of

Panama, where the mangrove forest canopy is dominated by Avicennia

germinans, Laguncularia racemosa, and Rhizophora mangle. Using a high-

resolution spectrometer, we measured the reflectance of leaves collected from

replicate trees of three mangrove species growing in productive and physiolo-

gically stressful habitats. The reflectance data were analysed in the following

ways. First, a one-way ANOVA was performed to identify bands that exhibited

significant differences (P value,0.01) in the mean reflectance across tree species.

The selected bands then formed the basis for a linear discriminant analysis

(LDA) that classified the three types of mangrove leaves. The contribution of

each narrow band to the classification was assessed by the absolute value of

standardised coefficients associated with each discriminant function. Finally, to

investigate the capability of hyperspectral data to diagnose the stress condition

across the three mangrove species, four narrow band ratios (R695/R420, R605/R760,

R695/R760, and R710/R760 where R695 represents reflectance at wavelength of

695nm, and so on) were calculated and compared between stressed and non-

stressed tree leaves using ANOVA.

Results indicate a good discrimination was achieved with an average kappa

value of 0.9. Wavebands at 780, 790, 800, 1480, 1530, and 1550 nm were

identified as the most useful bands for mangrove species classification. At least

one of the four reflectance ratio indices proved useful in detecting stress

associated with any of the three mangrove species. Overall, hyperspectral data

appear to have great potential for discriminating mangrove canopies of differing

species composition and for detecting stress in mangrove vegetation.

1. Introduction

Natural habitats and their biodiversity are increasingly endangered by a plethora of

human-caused environmental perturbations (Vitousek 1994). Coastal environments

are particularly vulnerable as they are often preferred sites for human habitation,

centres of commerce, and exploited for a variety of natural resources (Cracknell

1999). Mangrove forests are among the most threatened of coastal habitats,

succumbing to various forms of non-renewable exploitation (e.g. aquaculture,
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mining) and extensive coastal development that results in the clear-cutting and

filling of thousands of hectares of swampland annually (Ellison and Farnsworth

1996). It is estimated that as much as a third of the world’s mangrove forest has been

lost in the past 50 years (Alongi 2002). In the Caribbean, the region of our research

on mangrove forest dynamics, the rate of mainland mangrove deforestation is

estimated to be 1.4–1.7% annually (Ellison and Farnsworth 1996, FAO 2003). Thus,

we are rapidly losing a unique, productive and economically important ecosystem

(Lugo and Snedaker 1974, Tomlinson 1986, Kathiresan and Bingham 2001, Alongi

2002), that at one time comprised the dominant vegetative cover along most of the

world’s sheltered tropical coastlines. Furthermore, human-induced changes in

global climate are also expected to have important direct and indirect effects on

mangrove ecosystems. Robust model predictions and growing empirical evidence

indicate that rapid sea-level rise, accelerated by global warming, will submerge and

erode away seaward mangrove stands (Ellison and Stoddart 1991, Ellison 1993,

Parkinson et al. 1994, Ellison and Farnsworth 1997).

Given present and growing threats to the persistence of mangrove ecosystems, there

is an urgent need to develop rigorous plans and procedures for their protection and

management. To be effective and timely, these conservation efforts must be able to

access up-to-date information on forest species composition, species distributions,

and canopy condition. Given that these flooded forests are often inaccessible by road

and difficult to traverse on foot, it is essential to develop techniques for remotely

quantifying their structure, distribution, and health. Previous efforts remotely to map

mangrove forests have relied largely on imagery acquired from conventional remote

sensing platforms, such as Landsat Multispectral Scanner (MSS), Landsat Thematic

Mapper (TM), and SPOT (Venkataratnam and Thammappa 1993, Gao 1998, 1999).

As discussed by Wang et al. (2004a), the coarse spatial and poor spectral resolution of

these sensors compromises their usefulness for discriminating mangrove canopies,

particularly at the species level. However, the recent availability of higher spatial and

spectral resolution data from both aircraft and satellite sensors has stimulated

researchers to develop new methods to exploit this added information to produce

more accurate landscape maps.

The objectives of our study were: (a) to investigate the capability of hyperspectral

data to distinguish mangrove species at the leaf level; (b) to develop an optimal band

selection method to achieve the first objective; and (c) to investigate the capability of

hyperspectral data to distinguish the leaves of healthy versus physiologically stressed

trees.

2. Background

We have recently examined whether analysis of very high-resolution IKONOS

(Space Imaging) and QuickBird (DigitalGlobe) images can yield more accurate

maps of mangrove canopy species composition than analyses of conventional

imagery. Applying an integrated pixel- and object-based method, Wang et al.

(2004a) achieved good results when classifying three mangrove canopies of differing

species composition and four other land cover types in an IKONOS image (average

classification accuracy of 91.4%). Further, Wang et al. (2004b, 2008) validated the

effectiveness of IKONOS and QuickBird images for discriminating mangrove

species based on four different comparisons of the spectral and textural content of

the two types of images. While mangrove canopy classification was clearly improved

by adding the within-class textural information afforded by the enhanced spatial
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resolution of these images, we found it difficult spectrally to discriminate certain

canopy types (e.g. Rhizophora versus Avicennia) owing to the limited range of

wavelengths (e.g. no short-wave infrared signal, hereafter SWIR) and relatively

broad bandwidths characteristic of this type of image. This spectral confusion

remains a challenge to accurate species-level classification of mangrove canopies

from multispectral imagery. It is important to determine if this problem can be

surmounted with hyperspectral reflectance data, which are typically characterised by

tens or hundreds of narrow, contiguous wavebands.

Hyperspectral data have been successfully used to quantify the canopy

characteristics of numerous forest types. However, few such studies have been

conducted on mangrove forest. Green et al. (1998) compared three types of data

(SPOT XS, Landsat TM, and Compact Airborne Spectrographic Imager (CASI))

for mapping mangrove species of the Caicos Bank, Turk and Caicos Islands,

British West Indies. They found that only CASI data provided an accurate

discrimination among mangrove species. Demuro and Chisholm (2003) success-

fully distinguished the canopies of two different mangrove species in their analysis

of a high spectral resolution, EO-1 Hyperion image of the Minnamurra River

estuary, New South Wales, Australia. These studies clearly demonstrate that

hyperspectral reflectance data can enhance our ability to remotely classify

mangrove canopies; however, the generality of this result remains to be

determined. Two significant questions that we would like to address in this study

include: (a) Will hyperspectral reflectance data be useful in distinguishing the

canopies of mangrove species at our study site on the Caribbean coast of

Panama?; (b) To what degree would inclusion of such information improve our

earlier classifications of mangrove species canopies based on high resolution,

multispectral imagery?

As a first step in answering these questions, we quantified, under laboratory

conditions, the green leaf spectra of the three mangrove species that dominate the

canopy of our study forests: Avicennia germinans, Laguncularia racemosa, and

Rhizophora mangle (the black, white, and red mangrove, respectively). These same

species are the dominant members of Atlantic coast mangrove forests from Florida

to Brazil, and are important components of forests in other geographic regions

(Tomlinson 1986). Our aim was to determine whether the three species can be

discriminated on the basis of reflectance measured over a wider spectral range (350–

2500 nm) and at narrower bandwidths than are available in commercial multi-

spectral imagery (e.g. IKONOS or QuickBird). Our approach was similar to that

used in previous laboratory studies of foliar spectral reflectance in various upland

tree species (Daughtry et al. 1989; Miller et al. 1991) and in 16 species of Thai

mangroves (Vaiphasa and Ongsomwang 2004). If the species’ spectral properties

cannot be distinguished under such controlled conditions, there would be little

reason to pursue classification based on remotely acquired hyperspectral reflectance

data, which can be costly to collect.

For classifications of remotely acquired, hyperspectral reflectance data to

generate accurate maps of forest canopy species composition, they must account

for more than just the spectral variation attributable to species-specific differences

in foliar reflectance. Variation in the spectral properties of background substrates

such as water or soil can alter hyperspectral signatures, as can changes in the

physiological condition of the trees themselves. A number of studies have

demonstrated sensitivity of leaf spectral reflectance, transmittance, or absorptance
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to plant stress caused by various agents (Carter 1993, 1994, Carter and Knapp

2001, Gamon, et al., 1997, Gausman, 1984, Horler and Barber 1983). Such

intraspecific variation in spectral properties has the potential to both complicate

and inform efforts to map plant species using hyperspectral reflectance data.

Therefore, in addition to measuring the spectral properties of leaves collected from

trees living in areas with good growing conditions, we also measured leaves from

slow-growing trees living under stressful conditions of low nutrients and drought.

The ability to detect physiological stress from spectral reflectance would be a

particularly valuable tool for mangrove forest monitoring and management. As

noted earlier, mangrove forests are being subjected to a wide variety of

anthropogenic disturbances. Many of these disturbances, including those

associated with climate change, alter edaphic conditions in ways that are

physiologically stressful to mangrove trees. Examples include changes in local

hydrology, sedimentation and erosion rates, patterns of tidal inundation, and levels

of precipitation and soil salinity. While such physiological stress may ultimately

result in the deaths of many trees, a variety of more subtle symptoms may provide

early evidence of stress. Such symptoms may include changes in mangrove

physiology (e.g. lower photosynthetic rates), foliar chemistry (e.g. lower C:N

ratio), or reductions in growth and reproduction, as demonstrated in Ellison and

Farnsworth’s (1997) greenhouse study of the effects of simulated sea-level rise on

the red mangrove, Rhizophora mangle.

To our knowledge, no previous study has evaluated whether physiological stress

in mangroves produces a distinct spectral signature in their leaves. As the magnitude

of change in spectral reflectance in response to stress will vary at different

wavelengths, and such patterns of response are also likely to vary among different

tree species, it is still in question whether and how hyperspectral data can be used to

unambiguously detect physiological stress in mangroves.

3. Methods

3.1 Study site

The study was conducted using leaves collected from mainland mangrove forests

near the Smithsonian Tropical Research Institute’s Galeta Marine Laboratory

(9u249189 N, 79u51948.59 W) at Punta Galeta on the Caribbean coast of Panama,

approximately 8 km northeast of the city of Colón.

Leaves of each species were sampled, as described in detail below, from trees

growing in two different environmental settings: (a) areas supporting closed-

canopy stands of large trees, some growing to more than 25 m, and (b) areas with a

sparser cover of mostly short-stature (up to 3 m) trees that exhibited a wizened,

shrub-like growth form. The former stands grow on organically rich soils of

moderate salinity and relatively high nutrient availability, while the latter grow on

sandy, coral reef-derived, soil that has lower nutrient concentrations, dries more

rapidly between flood tides and rain storms, and is often higher in salinity (W.

Sousa, unpublished data). A nutrient manipulation experiment conducted with

Rhizophora mangle seedlings in this sandy site demonstrated that their growth was

nutrient-limited (L. Robinson, unpublished data). Leaves collected from the two

sites differed in appearance and thickness: those from productive sites that support

good growth tended to be larger, thinner, and more pliant than those collected

from trees in the sandy site.
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3.2 Leaf collection, spectral measurements, and preprocessing

To determine whether the reflectance patterns of leaves from healthy individuals of

the three mangrove species could be successfully discriminated, we selected 30 trees

of each species for sampling from an array of productive stands across the study

area. These ranged from fringe red mangrove stands growing at the water’s edge to

more inland stands dominated by white or black mangroves. Where possible, several

trees of each species were sampled in each stand, so as to minimise the confounding

influence of location on spectral measurements. Since leaves at different positions in

the canopy might exhibit distinct spectral characteristics (owing to differences in

photosynthetic properties or water content), we stratified the leaf samples collected

from each tree by height. From each tree, we collected one sample of 10 leaves from

upper parts of the canopy surface and a second sample of 10 leaves from lower parts

of the canopy surface. We were not able to sample leaves from the tops of taller trees

at these productive sites, but the trees we sampled were growing in open areas, either

at the water’s edge or along a roadside, and therefore probably experienced similar

levels of incident sunlight as the upper canopy of taller trees. Subsequent statistical

analyses found that the reflectance patterns of leaves collected from upper versus

lower heights in the canopy did not differ significantly for any of the three species

(ANOVA, P.0.05). Therefore, we used the pooled sample of 20 leaves to calculate

each tree’s mean reflectance curve.

To examine the effect of physiological stress and/or nutrient limitation on foliar

spectral properties, we collected leaves from stunted individuals of each species that

were growing in an area of sandy soils located approximately 100 m behind fringe

red mangrove stands that border the back reef adjacent to the Galeta Marine

Laboratory. We sampled leaves from 20 trees of each species, randomly selected

from across an approximately 1 ha area of this vegetation type; a sample of 10 leaves

was collected from each tree. As the crowns of these small trees were easily reached

and contained relatively few leaves, we collected from the entire canopy of each tree;

no effort was made to stratify these samples by height.

All leaves were collected on 16 July 2004. They were immediately sealed in plastic

bags, kept in a dark cooler, and transported back to the nearby laboratory for

analysis. Leaf reflectance was measured with a Field Spec Pro FR (Analytical Spectral

Devices, Boulder, CO, USA). The measurement procedure followed that employed by

Pu et al. (2003). The light source consisted of two 500 W halogen tungsten filament

lamps. All spectra were measured in reflectance mode at the nadir direction of the

radiometer with a 25u FOV. A white Spectralon panel was employed as the white

reference and measured every five minutes to convert leaf radiance to percent

reflectance. The spectrometer was configured to yield a spectra with 25 spectral

averaging. Each sample of ten leaves was stacked in an overlapping pile on top of a

calibrated black cloth and care was taken to make sure the field of view was fully

occupied by leaf stacks. The adaxial surfaces of a sample were measured five times,

from which an average spectral reflectance curve was generated. Spectral reflectance

was originally measured over the ranges of 350–1000 nm at 1.4 nm intervals and 1000–

2500 nm at 2.2 nm intervals. The entire spectral range (350–2500 nm) was

automatically resampled to 1 nm when exported to the computer. To reduce system

noise and redundancy between adjacent bands, we computed an average reflectance

for each 10 nm interval, providing a total of 215 wavebands for analysis.

For band selection and classification of leaves from healthy trees, we had a sample

size of 30 spectra for each tree species. We randomly split these 30 samples into a

Mangrove classification with hyperspectral measurements 1271
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training group comprised of 20 samples and a test group of 10 samples; the latter

were used to assess our classification accuracy. This procedure was repeated 10

times on randomly drawn sets of training and test samples.

3.3 Band selection and tree species classification

Owing to the high correlation inherent to adjacent wavebands, it was neither efficient

nor reliable to include all 215 measured bands in the classification at one time. Instead,

one must first choose a subset of bands that will maximise the likelihood of

discrimination before proceeding with a conventional classification. A number of

band or feature selection methods have been developed and documented in the remote

sensing literature, including Principal Component Analysis (PCA), Fisher’s Linear

Discriminant Analysis (LDA), Penalised Discriminant Analysis (PDA), and wavelet-

based feature selection (Yu et al. 1999, Pu and Gong 2004). Among them, LDA is the

procedure that has been most widely adopted. However, a critical problem associated

with LDA is that it will not provide a reliable solution when reflectance values for

many highly correlated wavebands are included in the analysis and the number of

available training samples is small. In this circumstance, estimates of within-class

covariance matrices from the training samples are poor and unstable. Recall that we

had 215 bands of reflectance values while only 20 samples for each species as training

samples. The results of an LDA on such data would be highly questionable; the

projection axis is likely to be misoriented, giving rise to over-fitting: i.e. a perfect

performance on the training data, but a poor performance on the test data. Yu et al.

(1999) provide a good graphical illustration of the problem.

To circumvent this problem, we applied a series of one-way ANOVAs to filter out

wavebands that did not differ significantly in mean reflectance among leaves of the

three tree species. A one-way ANOVA, with species as the independent factor, was

carried out for each of the 215 wavebands. The resultant probability provided an

index of the importance of the tested band to the discrimination of the tree species.

We considered P(0.01 as an indication that the mean reflectances of at least two of

the three species differed in the tested band; all bands meeting this criterion were

included in the LDA. One potential criticism of this band selection procedure is that

the results of tests on adjacent bands are not statistically independent. However, our

objective in applying ANOVA was not to test hypotheses about differences within

specific bands; rather, we were seeking to eliminate bands from the analysis that

provided no useful information for discriminating species’ reflectance patterns, and

thereby reduce the number of analysed bands to a level that would be operational

for LDA. This band selection procedure was performed on all the training samples.

An LDA was then performed using the wavebands that ANOVA identified as

exhibiting evidence of interspecific variation. The rationale of LDA is to project the

original redundant data to a new orthogonal space oriented along the axis that can

maximise the ratio of between-class to within-class variance matrices of the training

samples. The axis of the new space is aligned in the order of discrimination power

among groups such that the first axis provides the greatest overall discrimination,

the second provides second greatest, and so on. If we denote the total number of

groups to be classified as NG and the total number of original bands as NB, then the

number of dimensions for the new space is equal to either NG -1 or NB, whichever is

smaller. Because, in practice, NB is usually larger than NG, LDA will typically yield a

new data set with NG -1 dimensions. In this way, the data dimensions are

significantly reduced.
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The significance of a specific wavelength to a discrimination function can be

determined by examining the standardised coefficients for that band. The

interpretation of the standardised coefficients resembles the logic of multiple

regression. The larger the absolute value of standardised coefficient, the larger is the

respective variable’s unique contribution to the discrimination as specified by the

respective discriminant function. As such, by ordering the standardised coefficients

the optimal wavebands were determined.

Given the fact that we have three species to classify, LDA generated two

discriminant functions, with which the test samples were transformed. Then a

Mahanolobis distance classifier was performed. A kappa value was calculated to

assess the classification accuracy (Cohen 1960).

3.4 Discrimination between leaves from healthy versus stressed trees

Previous studies have found that leaf spectral reflectance increases in portions of the

visible and very-near infrared range (but not in the infrared) as a plant experiences

physiological stress (Carter 1993, 1994, Carter and Knapp 2001). This response has

been documented for numerous plant species when subjected to various agents of

stress. We therefore focused on the 400–800 nm wavelength in our comparison of

healthy and stressed leaves. The sensitivity of reflectance to stress (i.e. relative

change in reflectance) varies considerably within this spectral range. Sensitivity is

greatest for wavelengths (e.g. 605, 695, and 710 nm) at which absorption by

chlorophylls a and b is relatively weak. At these wavelengths, even a slight drop in

leaf chlorophyll-a and chlorophyll-b content caused by stress results in a large

increase in leaf reflectance (Carter 1993).

As demonstrated by Carter (1994), reflectance sensitivity can be best expressed as

a ratio of reflectance in a stress-sensitive band to reflectance in a stress insensitive

band. For our study, we calculated four narrow band leaf reflectance ratios as

indices of stress: R695/R420, R605/R760, R695/R760, and R710/R760. Carter (1994) found

these ratios to be particularly sensitive indicators of stresses that affect chlorophyll-a

and chlorophyll-b content. We used ANOVA to compare the means of these ratios

between leaf samples from trees growing in productive and stressful sites.

4. Results

4.1 Band selection and classification

Figure 1 presents the mean reflectance spectra of leaves from the three mangrove

species; values for healthy and stressed trees are plotted separately (figures 1(a) and

1(b). Figure 1(c) plots the difference between the average spectra of leaves from

healthy and stressed trees of each species. We will first examine patterns of

reflectance for leaves from healthy trees growing in productive sites. As expected,

the general shapes of the species’ curves are very similar, with considerable overlap;

however, one-way ANOVA tests revealed significant heterogeneity among the

species in particular wavebands (figure 2).

Of the 215 10 nm-wide wavebands tested, 116 bands exhibited significant

(P(0.01) interspecific variation in mean reflectance (figure 2). These bands were

clustered in five areas of the spectrum, i.e. 350–510 nm, 610–690 nm, 760–810 nm,

1370–1550 nm, and 1850–2500 nm. Bands within each of these areas are highly

correlated and cannot be treated as independent estimates of species-level response.

To reduce this correlation, we first regrouped the 116 significant bands into three

Mangrove classification with hyperspectral measurements 1273
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Figure 1. (a) mean and (mean + /2 1 stdev) reflectance spectra for leaves from healthy
leaves of the three mangrove species (WM: White Mangrove; RM: Red Mangrove; BM: Black
Mangrove); (b) mean and (mean + /2 1 stdev) reflectance spectra for leaves from
physiologically stressed leaves of the three mangrove species; c) mean difference spectra by
subtracting non-stressed from stressed reflectance for each species.

1274 L. Wang and W. P. Sousa
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regions as follows: region 1: VNIR (350–510 nm, 610–690 nm, and 760–810 nm);

region 2: SWIR I (1370–1550 nm); and region 3: SWIR II (1850–2500 nm). An LDA

was executed separately within each region and the standardised coefficients for two

discrimination functions were respectively calculated and ranked. We concluded

that a band was influential for its particular region if the absolute value of its LDA

standardised coefficients were ranked among the top ten for both discrimination

functions. Table 1 lists such influential bands for each region of wavelengths

considered in the analysis.

The final classification of mangrove species was generated by LDA after pooling

the influential bands from each region. Figures 3(a) and (b) present the distribution

of training and test samples in the discriminant space, respectively. In both the

training and test samples, leaves of the three mangrove species were well separated

in discriminant space. The average kappa value for the ten sets of test samples was

0.9, with a range of 0.85 to 1.00. This indicates that our method for extracting

influential wavebands from the hyperspectral data, in combination with an LDA-

based classification procedure, was very successful in discriminating the leaves of

different mangrove species. Our results concur with several other researches that

achieved good discrimination through use of the LDA method (Gong et al. 1997,

Van Aardt and Wynne 2001, Clark et al. 2005).

Figure 3(a) shows that the first discriminant function alone is sufficient to

distinguish red from either black or white mangrove leaves. Examination of the

standardised coefficients associated with the first discriminant function (figure 4(a)),

reveals that reflectance at the 780, 790, 800, 1480, 1530 and 1550 nm wavebands

contribute most strongly to the first discriminant function. In other words, these

bands are critical to the discrimination of red from the other two types of mangrove.

The second discriminant function best distinguishes white from black mangrove

leaves; this function was most strongly influenced by wavebands at 770, 780, 790,

800, 1430, and 1480 nm (figure 4(b)).

Figure 2. Distribution of wavebands whose p-values are less than 0.01 (in red) derived from
one-way ANOVA.

Table 1. Results of one-way ANOVA showing the potentially important wavelengths for
discriminating leaf samples from healthy trees of the three mangrove species (all wavelengths

in nm).

Spectral region

Region 1: VNIR
[350–510, 610–690,

760–810]
Region 2: SWIR I

[1370–1550]
Region 3: SWIR II

[1850–2500]

Influential
wavelengths in
each region

490, 500, 630, 770,
780, 790, 800

1400, 1430, 1480, 1530,
1550

1940, 1970, 1990

Mangrove classification with hyperspectral measurements 1275
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4.2 Discrimination between leaves from healthy versus stressed trees

One or more of the four reflectance ratio indices proved useful in detecting stress in

each of the mangrove species (Table 2). R605/R760, R695/R760 and R710/R760 were

effective in distinguishing stressed from non-stressed red mangrove leaves. In the

case of white mangrove, R695/R420 was the only ratio that successfully detected the

presence of stress. All four ratios were capable of detecting stress in black

mangroves.

5. Discussion

The high classification accuracy we obtained in this analysis confirms the great

potential of using hyperspectral data to distinguish mangrove species. We are

confident that the use of narrow band hyperspectral data can effectively overcome

Figure 3. Distribution of leaf samples from healthy trees of the three mangrove species in
discriminant space: (a) training samples; (b) test samples.
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the problem of overlap in spectral characteristics among species observed in our

previous analyses of wide band multispectral imagery (Wang et al. 2004 a, b).

The large number of highly correlated bands and relatively small numbers of

training and test samples are typical challenges to analysing hyperspectral data. The

ANOVA procedure we employed is an efficient method of limiting the number of

bands included in the classification to those that are most likely to distinguish leaves

of the different species. Focusing on this smaller set of bands, LDA proved an

effective procedure for building the best discrimination function, and provided a

means to assess the contribution of each wavelength to the discrimination via

the analysis of standardised coefficients. However, it is worth mentioning that the

classification accuracy of LDA, as reported by Clark (2005), can be very high at the

leaf level, but may decay markedly at coarser spatial scales.

The LDA of the selected ‘optimal’ bands confirmed our impressions from an initial

visual inspection of the spectral curves. The near infrared plateau from 780–810 nm is

Figure 4. (a) Standard coefficients associated with the first discriminant function;
(b) standard coefficients associated with the second discriminant function.
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the most important waveband for discriminating the three mangrove species. This

same region was found to be critical for distinguishing different types of saltmarsh
vegetation (Schmidt and Skidmore 2003). We also found that differential reflectance

at 1490, 1560, and 1580 nm, three SWIR bands, enhanced spectral discrimination of

the three mangrove species. When the lab measured hyperspectral data are replaced

by the remotely sensed data, care has to be taken to avoid including any water vapour

absorption bands, among which the two most prominent one occurs in 1450 nm and

1940 nm. In addition, it is interesting to observe that our analysis did not pick up any

influential bands in the range 2000–2500 nm, which exhibits some visual difference in

figure 1. The reason needs to be further investigated.

Four narrow band ratios that have been demonstrated to discriminate stressed
from unstressed foliage in a variety of vegetation types also proved useful for

discriminating leaves of the same species of mangrove growing in productive

versus unproductive and apparently stressful habitats. We believe this to be the

first demonstration of stress sensitive, spectral ratios in mangroves. This

promising observation needs additional investigation; the stressed state of the

trees must be confirmed with direct measurements of their physiological status

and the effectiveness of the narrow band ratios for detecting stress should be

tested for different agents of stress. As the narrow band ratios as proposed in
Carter (1993, 1994) only employed VNIR bands, the effectiveness of SWIR band,

particularly around 1500 nm in this study, has to be investigated by adopting or

developing other stress detection methods. Besides the four narrow band ratios

employed in this study, stress detection methods such as the photochemical

reflectance index (Gamon 1997), the red edge method (Horler 1983), that were

established from tree species other than mangrove, will be explored in the future

study.

Although the spectral discrimination of mangroves was successfully achieved at
the level of individual leaves in this study, this result was obtained in the laboratory

under controlled illumination. It is only the first step towards our ultimate goal of

Table 2. Results of ANOVA. Entries are P values by comparing the comparing the mean
values of the four narrow band ratios between stressed and healthy leaves; bolded values are

considered statistically significant (P value,0.01).

Two Tail

Narrow Band Ratios

Mangrove species

Red White Black

R695/R420 0.371 ,0.001 ,0.001
R605/R760 0.009 0.799 ,0.001
R695/R760 0.008 0.888 ,0.001
R710/R760 0.013 0.613 ,0.001

One Tail

Narrow Band Ratios

Mangrove species

Red White Black

R695/R420 0.81 ,0.001 ,0.001
R605/R760 0.005 0.399 ,0.001
R695/R760 0.004 0.444 ,0.001
R710/R760 0.007 0.306 ,0.001

1278 L. Wang and W. P. Sousa

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
a
t
 
B
u
f
f
a
l
o
 
(
S
U
N
Y
)
]
 
A
t
:
 
1
4
:
2
8
 
5
 
M
a
y
 
2
0
0
9



discriminating and mapping mangrove canopies of differing species composition at

the landscape scale. Remotely acquired hyperspectral data collected by airborne or

satellite-based sensors will be required for this purpose. Whether and how leaf-level

methods of spectral discrimination can be scaled up to the canopy level remain

important, unanswered questions. The influences of atmospheric conditions and

forest structural complexity on remotely acquired reflectance spectra may require

reassessment of the wavebands that are most effective for distinguishing canopies of

differing species composition. For example, longer NIR wavelengths might be used

in ratio denominators to avoid the strong O2 absorption that occurs at 760 nm.

Clearly, this issue begs further investigation; it is central to future efforts to remotely

map and monitor the health of endangered mangrove ecosystems.
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