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The degree of uncertainty of many geographical objects has long been known to

be in intimate relation with the scale of its observation and representation. Yet,

the explicit consideration of scaling operations when modeling uncertainty is

rarely found. In this study, a neural network-based data model was investigated

for representing geographical objects with scale-induced indeterminate bound-

aries. Two types of neural units, combined with two types of activation function,

comprise the processing core of the model, where the activation function can

model either hard or soft transition zones. The construction of complex fuzzy

regions, as well as lines and points, is discussed and illustrated with examples. It

is shown how the level of detail that is apparent in the boundary at a given scale

can be controlled through the degree of smoothness of each activation function.

Several issues about the practical implementation of the model are discussed and

indications on how to perform complex overlay operations of fuzzy maps

provided. The model was illustrated through an example of representing multi-

resolution, sub-pixel maps that are typically derived from remote sensing

techniques.
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1. Introduction

The representation of geographic phenomena in digital databases is one of the most

fundamental issues in geographic information science (GISc) (Zhan 1998, Egenhofer

et al. 1999, Mennis et al. 2000). The prevalent view of spatial knowledge

representation follows a dyadic object-field conceptualization of geographic space

(Couclelis 1992, Mark and Frank 1996, Peuquet 1988, Cova and Goodchild 2002).

According to this conception, one may reason about the world as being populated of

discrete entities called objects (object view) or as a continuum of named attributes

(field view). Schuurman (1999) has pointed out that this conceptualization of the

space was further articulated to match early computer capacities, which resulted in

the vector and raster data models.
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Another crucial issue of transforming geographic entities into database objects is

uncertainty. Uncertainty may operate at various levels of the cognitive and

operational processes (Couclelis 1996) and along any of the quantified dimensions:

space, time and theme (Usery 1996). It may be, for example, due to a weak match

between concept and reality (vagueness), indiscernibility due to mixture properties

(Ahlqvist et al. 2003), random fluctuations in data capture (Cheung et al. 2004, Shi

1998), neglect of time-induced spatial change (Burrough 1996), and many other

generalization processes (Blakemore 1984, Ahlqvist et al. 2000). In most cases, the

degree of uncertainty of geographical entities is in close relation to the scale of their

observation and representation (Couclelis 1996, Goodchild 2001).

Modeling spatial objects with indeterminate boundaries has received considerable

attention by the GISc community. Most of the available alternatives for modeling

objects with indeterminate boundaries are grounded on either probability theory or

fuzzy set theory (Schneider 1999). Probabilistic models (e.g. Blakemore 1984, Shi 1998,

Cheung et al. 2004) predominantly model positional and measurement uncertainties.

Probability theory can represent uncertainty and defines the membership grade of an

entity in a set by a statistically defined probability distribution function. For example,

neglect of time-induced change of the water level of a lake may lead to the need of a

probabilistic boundary, where each point is assigned the probability that water is

present at the point in any time. For a probabilistic model to achieve a good estimate of

the probability distribution function, the observation of various realizations is

required. This approach generally makes any practical implementation of probabilistic

models for handling the boundary phenomena difficult.

The alternative for handling the boundary phenomena is through fuzzy models (e.g.

Usery 1996, Wang and Hall 1996, Zhan 1998, Schneider 1999, Zhan and Lin 2003),

which are all based on fuzzy set theory. This approach predominantly model

vagueness, as it describes the admission of the possibility, given by a so-called

membership function, that an individual is a member of a set. It can handle the

imprecision of meaning of a concept and can be used to model the boundary of objects

such as mountains, valleys and oceans. Ahlqvist et al. (2000) have pointed out that one

major obstacle of fuzzy set-based uncertainty handling is determining the membership

function for a given feature. Furthermore, the implementation of membership

functions has been generally limited to raster data models for pragmatic reasons. This,

in turn, has made it difficult to create a computational framework for handling fuzzy

spatial objects, with explicit linkages between fuzziness, level of detail and scale.

Given that the traditional computing paradigm poses a significant constraint in

the representation of objects with indeterminate boundaries, we advocate for a

bottom-up approach that assumes a computing paradigm based on neural network

models. Artificial neural networks (ANNs) are trainable structures, originally

inspired on the biological brain, that have been tremendously simplified to facilitate

their implementation with conventional hardware. In spite of their over-simplicity as

models of the biological brain, ANNs emulate some essential behavior of biological

neural networks. Unlike conventional computers, where memory and data are

perfectly separable, neural networks have embedded memory and processing

capabilities in each single processing unit (neuron). This characteristic makes them

highly parallelizable, adaptable and fault-tolerant. These models enjoy high

reputation in solving complex non-linear mapping problems, such as in pattern

recognition and classification tasks (Looney 1997). They are also commonly used as

predictors or decision support systems across several fields, where the geospatial
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sciences are not excluded (Dowla and Rogers 1995, Foody 1996, Openshaw and

Openshaw 1997). In many geographical applications, ANNs are primarily used for

the production of land-use land-cover (LULC) maps from remotely sensed imagery.

It is within the context of LULC classification that ANNs have largely been used to

build fuzzy partitions of geographic space (Foody 1996, Cheng et al. 2001). The

focus of that kind of study is on transforming spectral measurements made by

remote sensors onto a set of membership values that, at the end, are represented in a

raster format. In contrast, our aim here is to upgrade the ANN from ‘processing

tool’ to ‘representation artifact’ in the hope it may help represent geographic objects

with indeterminate boundaries at multiple scales.

Traditionally, an ANN functions as a ‘black box’ device, as it is not generally

possible to explain how the parameters of the system being represented are encoded in

the network parameters. This characteristic makes data representation in neural

networks sound bizarre to many fields. Although data representation has long been

recognized as one of the two major themes in neural-network research, the

mathematical intractability of a general case has largely shifted the interest to learning

algorithms (Anderson 1990). Within GISc, and to the best of the authors’ knowledge,

the use of ANNs as representation artifacts is void, with a couple of exceptions (Silván

2005, 2006). Silván (2005) developed an algorithm to build a minimal neural network

for representing polygon layers. The method used a constructive solid geometry

representation (CSG, Dovkin et al. 1988, Walker and Snoeyink 1999) to progressively

encode polygon edges and its nested structure into network parameters. Latter on,

Silván (2006) extended this representation to consider fuzzy points and fuzzy lines, and

loosely discussed the link between the degree of fuzziness and the scale of

representation. In the present study, a neural network structure is proposed as a

data representation model of objects with scale-induced indeterminate boundaries. A

new algorithm for building the neural network representation of polygons is

introduced, which produces less distortions under scaling of the activation function

at the expense of increasing the number of units. Although the main focus is on

representing polygonal regions that are traditionally stored in vector format, the

construction of fuzzy points and fuzzy lines is also illustrated.

2. Geographic objects with scale-induced indeterminate boundaries

Every geographical object exists only at a range of scales (operational scale) that is

intrinsic to the nature of the object, at least in an empirical sense (Couclelis 1996,

Bian 1997). This range of scales describes the spatial extents within which a

phenomenon comes to existence; it gives a notion of its size, e.g. a forest operates at

a larger scale than individual trees. A similar statement can be said for the temporal

dimension: a phenomenon’s range of temporal scales gives a notion of its duration

in time. On the other hand, its observation is generally restricted to an independent

range of scales of an observation device or process. This range of scales is generally

specified by the extent of the smallest observable piece of landscape at one end (e.g.

spatial resolution, patch size, grain or cell size, etc.) and by the largest observable

unit at the other end (e.g. geographic scale, extent, domain, field of view, etc.).

Although some common terms, such as resolution and spatial extent, can clearly

imply a range of sizes of observable patterns, they are somewhat tied to the physical

limitations of the observation process and generally linked to a particular

representation. It is noticeable that the observation of geographic features is not

only constrained by physical limitations, but also laden of subjective criteria and
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interests. To more generally reflect the idea of detail filtering by both physical and

cognitive processes at the observation level, the concepts of inner scale and outer

scale1 shall be used to refer to the smallest and largest observable units.

One kind of undetermined boundary arises when the inner scale increases beyond

the finest detail of the spatial phenomenon. A typical example is the delimitation of

a geographic feature through satellite imagery. The lower the sensor resolution

(larger inner scale), the fuzzier or uncertain the boundary is. Figure 1 shows an

example of fraction maps of a lagoon delineated by means of remote sensors of

various spatial resolution. The level of detail exhibited in the boundary is

determined by the resolution of the sensor employed.

Since the optimal observation scale is usually unknown a priori, or simply there is no

single optimal scale, then it is necessary to delineate the object at various scale levels.

Presumably, many complex phenomena do not manifest at a single scale (or a narrow

range of scales), but over a wide range of scales, and thus are observable at any

overlapping range of scales. For instance, Couclelis (1996) noticed that extensive

entities such as ocean, forests, prairies, geological formations, may be subdivided

within very wide limits and still maintain their identity. The cognitive process involved

on the object’s identification and formalization further stresses the need for a

multiscale representation. Consider, for example, the delimitation of a forest. Let us

assume for a moment there is no physical constraint in the observation scale range.

The forest category at each point can be based on the existence of a tree at that location

(assuming each tree has perfectly identifiable boundaries). From this definition, it

turns out that a single tree can be called forest, and clear spaces between trees are

necessarily non-forest. Even though this definition of forest stand may provide high

amount of detail in the boundary, it may not be generally acceptable. A more general

definition can be based on the tree density within a moving window (filter or kernel).

This definition can lead to smoother boundaries (with less details), as it excludes

isolated or sparsely distributed trees, while including small non-vegetated patches that

are contiguous to dense stands. Evidently, there is no apparent reason to restrict the

1 The terms inner scale and outer scale were first coined in the context of the scale-space theory of vision (see e.g.

Florack et al. 1994).

Figure 1. This image shows sub-pixel fraction maps of a lagoon delineated at various spatial
resolution. The gray level denotes the area percentage covered by the lagoon within the cell,
whereas the cell size is shown at the top of each map.
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kernel size to a single value, as tree crown size and tree distribution may vary within the

same forest. Similar arguments can be applied to many other variables, such as slope

and population density, for which there is no single correct definition, but only a

definition for each given inner scale associated to a kernel size (Goodchild 2001).

In sum, the level of uncertainty, as well as the level of detail, in the boundary of
most geographic objects is linked to some scaling operations, mostly related to its

observation and representation. The set of representations at all levels of detail

comprise a family of maps, which, in principle, has an infinite number of members.

Such a family of maps is difficult to represent with conventional data models, as

they tend to introduce redundancy, increase memory usage and lead to

inconsistencies (Oosterom and Schenkelaars 1995). Models that can handle multiple

levels of detail without redundancy are then desirable for handling multiscale

representations. While detail levels are closely related to cartographic generalization
techniques, our aim here is not to advance such techniques, but rather to describe a

neural network-based data model for representing objects with undetermined

boundaries arising from scale changes. In doing this, we adopt a point-set paradigm

and assume objects have a definable crisp (or nearly crisp) boundary at certain (fine)

scale, but may become indeterminate or fuzzy at others (coarser scales).

3. Neural network-based data model

The generalities of the neural network-based data model were first introduced by

Silván (2006). These generalities are restated below while emphasizing the

particularities of the model used in this study. The ANN model can be seen as

composed of two major building blocks (figure 2). The first building block represents a

single layer of neural units. Each neural unit produces a membership function that
defines a basic geometrical element of the two-dimensional plane. A set of scaling

parameters allows controlling the degree of fuzziness of basic geometric elements. The

second building block consists of a hierarchical network that combines membership

values from basic elements into more complex geometrical elements. The final output

represents the membership value of a complex geographical entity.

Figure 2. This diagram shows the building blocks of the neural network-based data model
(see the text).
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3.1 Neuron model

The basic constituent elements of the ANN model are computation units, termed

(artificial) neurons. In its most general formulation, a neuron has some number, n, of

inputs, and is capable of taking on a number of states, each described by a vector

w5(w1, w2, …, wn) of n real number called synaptic weights and a real number b called

activation level or bias (Looney 1997). Generally, when in the state described by (w, b),

and on receiving input x5(x1, x2, …, xn), the computation unit produces and activation

f(x; w, b), where f:Rn6Rn + 1RR. Different definitions of f(x; w, b) lead to essentially

different neuron types. Typically, a neuron output takes the form f(x; w, b)5h(gw,b(x)),

where gw,b:RnRR is a parameterized function termed the weight function, and h:RR[0,

1] is termed the activation function. While the weight function determines how the

inputs are integrated in the neuron, the activation function determines how the neuron

responds to the excitation from the input: typically, low or high.

3.1.1 Weight functions. Depending on the form of the weight function, we shall

distinguish two types of neural units. The weight functions used here can be either

dot product and Euclidian distance. For reasons that will become apparent later, the

neurons that have the dot-product weight function are referred to as linear units, and

the neurons that have the Euclidian-distance weight function are referred to as

circular units. Thus, linear units are neurons that perform linear combinations of the

inputs. The output takes the particularly simple form h(x ? w2b), where ? denotes

the dot product of vectors, i.e. x?w5w1x1 + w2x2 + , …, + wnxn. Likewise, circular

units perform quadratic combinations of the inputs. The output of a circular unit

takes the form h(Ix2wI2b), where IxI denotes the Euclidian norm of x, i.e.

Ix2wI25(x12w1)2 + (x22w2)2 + , …, + (x22w2)2. Figure 3 shows the graphic

representation of linear and circular units used in this paper.

Figure 3. Graphic representation of (a) a neural unit with dot-product weight function
(linear unit) and (b) a neural unit with Euclidian-distance weight function (circular unit).
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3.1.2 Activation functions. The activation functions used here include the radial

basis functions (point-spread type) and sigmoid functions (cumulative type).

Figure 4 shows examples of point-spread and cumulative activation functions. In

the standard neural network modeling, cumulative functions are typically combined

with the dot-product weight function (e.g. as in back-propagation networks,

Rumelhart et al. 1986, Looney 1997), whereas point-spread activation functions are

typically combined with the Euclidian-distance weight functions (e.g. as in radial

basis networks, Looney 1997). Here we will not restrict ourselves to these

combinations, nor to the standard definitions for point-spread and cumulative

functions.

Figure 4. Examples of activation function: (a) unitary impulse, (b) bell-shaped, (c) triangle-
shaped, (d) sign, (e) log-sigmoid and (f) ramp. Examples (a), (b) and (c) are of point-spread
type, whereas examples (d), (e) and (f) are of cumulative type.
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In the most general sense, a point-spread activation function, d: RR[0, 1], is defined

as a symmetric and strictly decreasing function in |s|, which fulfils the conditions of

equation (1).

lim
sj j??

d sð Þ~0, lim
s?0

d sð Þ~1 ð1Þ

On the other hand, a cumulative activation function, u: RR[0, 1], is defined by the

cumulative integral in equation (2), where w is a normalized point-spread function,

so that u fulfils the conditions of equation (3).

u sð Þ~
ðs

{?
w tð Þdt, ð2Þ

lim
s?{?

u sð Þ~0, lim
s??

u sð Þ~1 ð3Þ

We shall distinguish between hard and soft activation functions. An activation

function, either cumulative or point-spread, is said to be hard if it is bi-valued and

piece-wise continuous, and it is said to be soft if it is either continuous, or multi-

valued and piece-wise continuous. From these definitions, it follows that there is a

unique hard point-spread function: the so-called unitary impulse defined in

equation (4) (see figure 4(a)).

d0 sð Þ~
1, if s~0

0, if s=0

�
ð4Þ

Examples of soft point-spread function include the standard radial basis function

(figure 4(b)) defined as d1(s)5exp(2s2), and the triangle-shaped function (figure 4(c))

defined in equation (5).

d2 sð Þ~
1{ sj j, if{1ƒsƒ1

0, if{1wsw1

�
ð5Þ

The typical example of hard cumulative activation function is the binary sign

function, as defined in equation (6) (see figure 4(d)).

u0 sð Þ~
1, if s§0

0, if sv0

�
ð6Þ

This function (or any of its variants) is commonly used for several recognition and

classification tasks (Looney 1997), and various soft versions exist. The standard

unipolar sigmoid is perhaps the most widely used soft version of cumulative

activation function (figure 4(e)). This is defined in equation (7).

u1 sð Þ~ 1

1ze{s
ð7Þ

Other examples of cumulative functions include the error function, which is

introduced in statistics and probability theory, and the ramp function of figure 4(f).

These functions are mathematically defined in equations (8) and (9), respectively.

u2 sð Þ~0:5z0:5erf sð Þ ð8Þ
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u3 sð Þ~
1, if sw1

0:5z0:5s, if{1ƒsƒ1

0, if sv{1

8><
>: ð9Þ

The above examples are meant for illustration purposes only and should not be

taken as complete or meant to cover the whole spectrum of types of activation

functions one may use to characterize different types of fuzzy geographic objects.

3.2 First hidden layer: basic geometric elements

When the inputs of a neuron correspond to points in the plane, its output may be

regarded as a membership function defining a spatial entity (Silván 2005, 2006).

Several spatial entities can be generated depending on the neuron type and

activation function used. The set of all combinations of neuron types and activation

functions defines the processing core of the proposed model. More complex shapes

are built in terms of these basic elements. The membership values, as produced by

single neural units, are displayed as gray level images in table 1. These neural units

are the constituent elements of the first layer of the model (figure 2). The kernel so-

defined can produce the three basic geometric elements: point, line and region; both

fuzzy and crisp. Points are produced as instances of circular neurons with activation

level set to 0. Basic lines are created with point-spread type activation functions and

can be either linear or circular. Basic regions are produced by cumulative activation

functions and can be either infinite-infinite half-spaces produced by linear neurons,

or finite-infinite half-spaces produced by circular neurons.

3.2.1 Geometrical interpretation of neural units. Let (x, y) denote any point in the

plane and consider a linear neuron with weights (a, b) and bias c. In this case, the

weight function becomes s5ax + by2c. The equation ax + by5c defines a straight

line on the plane. For any given point (x, y) (not necessarily lying on the line), s gives

Table 1. Membership functions simulated from single units. The darker the tone the closer to
1 the membership value is, and the lighter the tone the closer to 0 the membership value is.
The shape of the activation function is indicated at the top of each column, whereas the unit
denoted by a single circle uses a dot-product weight function, and the unit denoted with a

double circle uses an Euclidian-distance weight function.

Activation fun.
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the oriented distance from the input point to the line, provided that a2 + b251. The

orientation of the line is such that s.0 for a point laying in the right half-plane, and

s,0 for a point laying in the left half-plane. If the line is horizontal, the half-plane

above the line is taken as the right-hand side. Similarly, for a circular neuron with

weights (a, b) and bias c, the weight function s5[(x2a)2 + (y2b)2]1/22c gives the

oriented distance from the input point to the circumference defined by the equation

(x2a)2 + (y2b)25c2. In this case, if s.0, the point lies outside the circumference, and

if s,0, it lies inside the circumference.

It is worth noting that each activation function at the first layer corresponds to a

distance function, provided that its argument, the weight function, defines the

oriented distance from the input point to the feature. As we shall see below, this

characteristic is useful for linking the concepts of fuzziness, level of detail, and scale.

3.2.2 Scaling parameters. In the proposed model, the original soft cumulative (u)

and point-spread (d) functions are replaced by their scaled versions ul(s)5u(s/l) and

dl (s)5d(s/l), respectively. The scaling parameter l controls the smoothness of the

transition between 0 and 1, while preserving the shape of the activation function: the

greater the value of the scaling parameter the smoother the activation is.

Furthermore, in a multiscale framework, each scaling parameter needs to be

specified as a function of a common scale index, say t. This functional variation can

be denoted by li(t) for the i-th unit in the first hidden layer. A feature is said to be

uniformly scaled if all its neural units at the first layer share a unique functional

variation of the scaling parameter; otherwise, it is non-uniformly scaled.

Since each single unit in the first layer can carry its own scaling parameter, it is

convenient to consistently normalize the activation functions, so that all the units

share a unique scale reference, even if they have different activations. Here we used

the ramp (figure 4(f)) and triangle-shaped (figure 4(c)) activation functions as

reference for the normalization of any given cumulative and point-spread function,

respectively. Each activation function can be normalized so that it reaches the same

value as the reference function at a predefined cut distance scut,1. For example, for

scut50.75 the normalized log-sigmoid function can be written as ul (s)50.5 + 0.5

tanh(s/0.77l), so that it equals 0.5 + 0.5s at s5scut. Once normalized, the activation

function can be scaled by l. The family of scaled functions contains, by matter of

definition, a hard activation function that results in the limit when the scaling factor

tends to zero. This is expressed in equation (10).

u0 sð Þ~ lim
l?0

ul sð Þ, d0 sð Þ~ lim
l?0

dl sð Þ ð10Þ

Strictly speaking, the above definition for the hard cumulative function is slightly

different from that in equation (6). Specifically, the limiting process leads to a tri-

valued sign function, as given by equation (11).

u0 sð Þ~
1, if sw0

0:5, if s~0

0, if sv0

8><
>: ð11Þ

However, we still consider this function of hard type by extension of the original

definition. The tri-valued function so-defined is useful when considering regions as

partitions of the space in three disjoint parts: one part inside the object, another on

the border of the object, and the remaining part outside the object.
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3.3 Hierarchical feed-forward network: basic operations

In order for the model to be able to build upon basic geometric elements, a set of

basic operations need to be defined on the membership space. For this matter,

neural networks offer a vast number of possibilities. One obvious approach consists

in the implementation of traditional fuzzy algebra operators through neural units.

Figure 5(a) shows the diagram of a network capable of implementing any of the

basic fuzzy set operations (i.e. union, intersection, and difference), where the inputs

mA and mB denote membership values for two given sets A and B, respectively.

Table 2 gives appropriate weight/bias parameters for each fuzzy set operation.

Likewise, figure 5(b) represents the neural implementation of Boolean operations,

and table 2 also gives the corresponding weight/bias parameters for each Boolean

operation. Notably, ANNs offer a flexible way for implementing traditional

operations, even to the point where one may question the uniqueness of parameters

and activation functions used. Indeed, one may build slightly different fuzzy

operations by relaxing the activation functions in these implementations. A more

elaborate approach was previously proposed (Silván 2006) in which a single unit can

perform more complex n-ary Boolean functions, which can lead to minimal-sized

neural networks. Furthermore, the encoding of operations is spread across several

weight parameters in a way that makes it difficult, if not impossible, to interpret the

representation.

Here we use the implementations of Boolean operators of figure 5(b), but with the

ramp activation function (figure 4(f)). This implementation allows for an easy

generalization of binary operations to n-ary operations (with n greater than 2). The

general rule for selecting the weight and bias parameters for the n-ary AND

(intersection) and OR (union) operations is as follows: let q and p denote the number

Figure 5. Neural network implementation of (a) fuzzy and (b) Boolean binary operators.
Appropriate parameter values are given in table 2, respectively.

Table 2. Weight and bias parameters for the network implementation of fuzzy set operators,
as shown in figure 5(a), and Boolean operations, as shown in figure 5(b).

Fuzzy Op. w1 w2 b1 w3 w4 w5 b2 Boolean Op. w1 w2 b

min(mA, mB) 1 21 0 1 1 1 2 mA‘mB 2 2 3
max(mA, mB) 1 21 0 1 1 21 0 mA~mB 2 2 1
min(mA, 12mB) 1 1 1 1 21 1 1 mA‘HmB 2 22 1
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of complimented and non-complimented variables, then the bias parameter is set to

2p21 for an AND operator and to 122q for an OR operator, whereas the weight

values are set to 22 and 2 for complimented and non-complimented variables,

respectively, for both AND and OR operators.

4. Representation of basic geometric shapes

4.1 Fuzzy points and fuzzy lines

Points and lines are non-natural entities of the two-dimensional space, as they can be

regarded as degenerated regions. In many cases, their use for representing geographic

concepts is tied to scale issues. For example, cities and rivers that are represented by

polygons at small geographic scales can be represented by points and lines,

respectively, at larger scales. The scales at which regions should be changed into

points or lines certainly depend on the purpose and the implementation constraints.

To maintain consistency of the limiting process of fuzzy entities approaching the

crisp entities, we may define fuzzy points and fuzzy lines as any relaxed

representation coming from a consistent definition of crisp points and lines,

respectively. For example, a crisp point can be defined as ‘a circle with radius zero’,

or as ‘the intersection of two non-parallel nor coincident lines’ (Silván 2006).

Figure 6 shows the neural network implementation when using these two definitions.

Figure 6. Neural network representation of fuzzy points. In (a), the point is defined as a
circumference with radius zero, whereas in (b) the point is defined as the intersection of two
straight lines.
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The first definition leads to a single circular unit with point-spread activation. This

representation provides a general template for membership functions of fuzzy

points, of which instances can be found in the data modelling literature (Leung 1997,

Schneider 1999). This is the simplest way to define fuzzy points, yet the most

restrictive when it comes to representing varying uncertainties along various

orientations (anisotropy). The second definition is more amenable for modeling

anisotropic uncertainty. Evidently, there is an infinite number of ways for defining a

point (e.g. any number of lines meeting at the same point defines a point). Studying

all the possible combinations is beyond the scope of this paper. We would rather

introduce only the most straightforward definitions.

Likewise, a line segment in the plane can be seen as ‘the intersection between a

straight line containing the segment and a circular region centered at the mid point

of the segment’. This definition for linear segments can be readily represented with

the neural model. The representation has the property that, when the scaling value

tends to zero, the membership function takes the value of 0.5 at boundary points, 1

for points interior to the segment, and 0 elsewhere. Moreover, it allows defining

fuzzy polygonal lines through the union operation of consecutive segments. Figure 7

shows the general structure of the network for a polygonal line (polyline) with n

segments. The network parameters ak, …, fk, for k51, …, n, are determined by the

vertex points (xk, yk) and (xk + 1, yk + 1). It should be noted that directed segments

cannot be represented with this approach. A more elaborate definition for polylines

could be built using a similar approach to that used for polygons below. The

construction and use of such data structures are beyond the scope of the present

research. We rather turn our attention to the representation of fuzzy polygons. In

fact, the network structure for fuzzy polygons might be used to build more complex

Figure 7. Neural network representation of fuzzy polygonal lines. The parameters (ai, bi, ci),
for i51, …, n, define the straight lines containing the segments, whereas (di, ei, fi), for i51, …,
n, define circumferences centered at the mid point of each segment. The second layer defines
the membership function for each segment, which are then combined into a polyline at the
output unit.
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fuzzy points and lines as degenerated regions, an approach that has shown to be

more fruitful (Cohn and Gotts 1996).

4.2 Fuzzy polygons

The neural network representation of fuzzy regions is based on the exact model for

crisp polygons. Each bounding edge of a polygon defines the boundary of two half-

planes. Thus, the first hidden layer of the network consists of a set of linear

threshold units, each of which computes the half-planes defined by an edge of the

polygon. The intersection and union of such half-planes, performed in the correct
order, defines the interior of the polygon. The sequence of such operations can be

specified as a Boolean formula on the half-plane that supports (contains) the

polygon. This representation is termed the constructive solid geometry (CSG,

Dovkin et al. 1988, Walker and Snoeyink 1999), and can be further expressed as a

direct n-ary tree, where the nodes represent Boolean operators. Figure 8(a) shows an

Figure 8. (a) The constructive solid geometry (CSG) representation of a crisp polygon. The
arrows on the polygon (left top) indicate the right half-planes, i.e. the region where literals take
the value 1 (true). The Boolean equation (bottom) defines the interior of the polygon and is also
expressed as a n-ary tree (top right). (b) The neural network representation (left), where the input
to the first layer has been obviated. Several simulated outputs for increasing scaling parameter
values are also displayed (right). The simulation was performed on a 100-by-100 grid of points.
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example of the CSG for a simple polygon, where half-planes to the right-hand side

of each polygon edge is indicated with arrows. The translation from the CSG into

the network representation is straightforward. In the neural network representation,

the Boolean operations are simply implemented using neural units (figure 5(b)), but

with soft activation functions. Figure 8(b) illustrates the network representation of a

simple fuzzy polygon, and its simulation for various degrees of fuzziness.

An efficient algorithm for constructing the CSG representation for simple

polygons has been provided by Dovkin et al. (1988). The algorithm builds the

Boolean formula in time n log2(n) for a polygon with n vertices. A variant of Dovkin

et al.’s method was implemented to build the network structure with similar time

complexity. The algorithm relies on the efficient computation of the convex hull of

polygonal chains. The procedure first determines the output neuron and then

follows a recursive approach, progressively adding more neurons until the first

hidden layer is reached. As an example, consider the polygon of figure 8(a). Table 3

shows the gradual construction of the network using a coded structure. In the coded

structure, each pair of square brackets enclose an unprocessed chain, and each pair

of curly brackets represents a neural unit implementing a n-ary operation of the

form {operator, operand1, operand2, …, operandn}. In the initial step (i50), the

convex hull of the entire polygon is computed and used to decompose the polygon in

chains, each of which has extreme vertices corresponding to consecutive vertices of

the convex hull, e.g. the polygon represented by [h1
Hh2

Hh3
Hh4h5

Hh6] is decomposed

in the three chains represented by [h1], [Hh2
Hh3

Hh4h5] and [Hh6]. Each chain splits

the plane in two half-planes when extending the extreme edges toward infinity. The

interior of the polygon is defined by the intersection of such half-planes. Then, the

output neuron corresponds to an intersection operation (‘) on the half-spaces

defined by the chains. The networks for each chain are built recursively. In the next

recursion level (i51), each chain composed of more than one edge is decomposed in

sub-chains, e.g. the chain [Hh2
Hh3

Hh4h5] results in the sub-chains [Hh2
Hh3

Hh4] and

[h5]. This time, the network for the original chain has an output neuron that

performs the union (~) of the half-spaces from the sub-chains. As the process

continues the operation alternates between union and intersection, until only chains

of single edges are left. For single-edge chains, a linear unit is used to represent the

half-spaces defined by the edge. This linear unit lies in the first hidden layer.

Once the network has been built, the activation functions and smoothing

parameters for the first hidden layer are incorporated in the network data structure.

In practice, the selection of the activation function and scaling parameters will

mainly depend on the purpose and knowledge about the object being represented.

Functions like those of equations (7) and (8) can be used for continuous smooth

Table 3. Progressive construction of the network structure for the polygon of figure 8(a).
Each pair of square brackets represents an unprocessed chain, and each pair of curly brackets
represents a neural unit implementing a n-ary operation of the form {operator, operand1,

operand2, …, operandn} (see the text).

i Coded network structure

0 [h1
Hh2

Hh3
Hh4h5

Hh6]
1 {‘, h1, [Hh2

Hh3
Hh4h5], Hh6}

2 {‘, h1, {~, [Hh2
Hh3

Hh4], h5}, Hh6}
3 {‘, h1, {~, {‘, Hh2, [Hh3

Hh4]}, h5}, Hh6}
4 {‘, h1, {~, {‘, Hh2, {~, Hh3, Hh4}}, h5}, Hh6}
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fuzzy regions, while functions like that of equation (9) can be used for core-

boundary fuzzy regions (see Schneider 1999, for a thorough discussion on types of

fuzzy regions).

4.2.1 Complex polygons. Complex polygons can be built as overlay operations on

simple polygons. Figure 9 illustrates the construction of the network for a multi-part

polygon with holes and islands. The hierarchical structure of the network reflects

the nested form of the Boolean operations required for defining the interior of the

complex region. Notice that it is possible to infer some relationships among the

constituents parts, provided that the region is well defined (i.e. it is non-empty and

perfectly bounded, and all the constituent parts are essential for the definition of the

region). While the connectivity indicates the precedence of operations, the relation

weights-bias determines the type of operation performed among the parts (i.e. if the

bias equals the sum of positive weights minus one, then the neurons perform a union

of the input, or if the bias equals the sum of negative weights plus one, then the

neurons perform an intersection of the input). The sign of the weight encodes the

orientation of the input polygons (e.g. a negative weight indicates the input polygon

represents a hole). Therefore, relationships among constituents parts can be

retrieved by inverting some encoding rules from the network structure. Formalizing

such a decoding process falls beyond the scope of the present work.

5. Results

5.1 Scaling up and spatial filtering

The effect of the scaling parameter on the geometry of crisp regions was investigated

using fractal polygons. Several studies have demonstrated the fractal nature of

Figure 9. Network representation of complex polygons. Polygons A to E (top-left) are
clock-wise oriented so that interior points are to the righthand side when walking around the
edge in the direction indicated. The tree structure (top-right) represents the Boolean formula
that defines the interior of the region (shaded area). The network representation (bottom)
takes the network representation for each polygon and links them through a network that
implements the Boolean formula.
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various geographic phenomena. For example, lakes and islands distribution in

Finland has been found to exhibit a fractal structure (Sarjakoski 1996). Figure 10

shows images of the network simulations for the snowflake and arrowhead fractals,

respectively, for increasing values of the scaling parameter. The construction of

these fractal polygons can be seen as the union (snowflake fractal) or difference

(arrowhead fractal) of scaled triangles with constant scaling factors. Because we

wanted to focus on the geometry rather than on the fuzziness, only the first hidden

layer used a soft activation function (figure 4(e)), whereas the subsequent layers used

a binary hard activation function (figure 4(d)). This setting is equivalent to

representing the 0.5-cut of the membership function (i.e. the set of points that

have membership values greater or equal to 0.5, Zhan 1998). A uniform scaling was

adopted by setting all the scaling parameters to the same value (l). The simulations

reveal that only those details that are in the order of, or larger than, the scaling

parameter value can be apparent. Not surprisingly, the maximum achievable level of

detail encoded in the network is always reached at l50.

One potential use of the above behavior could be in querying scale-dependent

properties of geographical features. For instance, consider the question of

Sarjakoski (1996): how many lakes are there in Finland? Figure 10(b) resembles

the way lakes (white) versus land (black) looks at various scales. As noted by

Sarjakoski (1996) and many others (see also, Goodchild 2001), the above question

does not have a unique answer, but an answer that depends on the observation/

representation scale. Assuming a proper construction of the network structure, the

answer to the above question is found by simulating the network on a grid for a

small number of meaningful scaling parameters and then counting the number of

lakes for each case. Since the network representation is based on the accurate

delineation of the feature at the finest detail level, the problem shifts to determining

appropriate scaling parameters. Choosing the appropriate scaling parameters might

Figure 10. Spatial filtering effect of the scaling parameter (l) from the neural representation
of (a) Koch’s snowflake fractal and (b) Sierpinski’s arrowhead fractal. The point spacing of
the simulation grid is the same in all cases. It was set to a small value with respect to the
shortest polygon edge to avoid appearance of spurious details. The output was forced to be
crisp by using hard activation functions (see the text).
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be challenging in practice. It involves a profound knowledge of the mechanisms by

which details are filtered out from (or incorporated onto) the apparent shape due to

scaling operations, which amounts to determining the scales at which observation

processes or abstractions mechanisms produce the patterns being represented. For

instance, while an observation device (e.g. remote sensor) can lead to a uniform

filtering of detail of observed lake boundaries (uniform scaling), the lake definition

itself might not be uniform across the space and scales of observation, as many

factors, besides its apparent size, need to be accounted for in its definition

(Sarjakoski 1996). In this case, a non-uniform scaling of the activation functions is

necessary, making the modeling far more complex.

The spatial filtering effect was also tested on various real datasets. An interactive

zooming tool was developed to render multi-resolution maps using the neural

network representation. Some examples are shown in figure 11. Figure 11(a)

Figure 11. Spatial filtering effect of the scaling parameter for (a) an urban feature and (b) a
forest feature. All the scaling parameters were set to the point spacing of the simulation grid.
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represents the metropolitan area of Mexico City. This area includes satellite cities

located mostly north of Mexico City. Figure 11(b) represents a temperate forest

stand located just two hours south east from Mexico City. Because increasing the

resolution beyond the critical resolution, as given by the scaling parameter, does not

provide more details of the membership function, the cell size of each simulation

grid was determined from the scaling parameter itself—whereas the scaling

parameter is automatically computed by dividing the selected area by a fixed

number of cells. To this end, it is important to stress the fact that the network

representation, like a vector representation, is free of resolution and extent. Yet the

selection of a cell size and domain is required for displaying purposes and, more

generally, for querying the data model through simulation of the neural network, in

which case the scaling parameter can be used for selecting an optimal cell size.

5.2 Representation of multi-resolution data

An example that demonstrates the representation of multi-resolution raster data

used the data from figure 1. Specifically, the lagoon map at the highest resolution

(1 m) was vectorized and converted to its neural network representation. The

network representation was then used to simulate the maps at coarser resolutions by

letting the scaling parameter of the first hidden layer equal the pixel resolution.

Figure 12 shows the simulations and the absolute error images. Although the root

Figure 12. Model-based simulations of sub-pixel fraction maps (top) and absolute error images
(bottom) from example of figure 1. The network construction was based on the finest-detail map,
and then all the scaling parameters were set to the point spacing of the simulation grid.
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mean square error (RMSE) is reasonably low, it tends to increase as the scaling

parameter increases. A closer look at this effect revealed that the distortions start to

appear when the transition region width (specified by twice the value of the scaling

parameter) goes beyond the length of the segment. It should be noted that network

parameters were not optimized to fit the multi-resolution data, yet the approxima-

tions are fairly good. An iterative optimization method, such as the well known

back-propagation algorithm (Rumelhart et al. 1986), could be further developed for

a better estimation of the scaling parameters.

5.3 Storage requirements

There is an apparent overhead introduced by the neural network with respect to

vector representations, which results in an increase in storage requirements.

Memory requirements by the network model can be roughly estimated in terms of

the number of neural units. A simple polygon with n vertices requires one unit per

edge plus one unit per operator. The worst-case scenario, which occurs when there

are only binary operators (with exception of the output unit, which must have at

least three operands), yields a number of 2n22 units. On the other hand, the best-

case scenario, which occurs when the polygon is convex, yields a number of n + 1

units. A conservative estimate of the expected number of neural units would be the

mid point between these two extremes, i.e. 3n/2 units. Table 4 compares the

characteristics of the vector and neural network representations for each feature

used above. The conservative estimates of neural units for the urban, forest and

lagoon features are 11,892, 3,165, 1,275, respectively, which are very close to the

actual values (table 4). In general, the storage requirement for a network structure is

much higher than that of its vector counterpart, yet it grows linearly with the

number of vertices. This apparent overhead is worthy if we consider the ability of

the network to reproduce the same feature at various levels of detail without

introducing much redundant information. It is also worth noting that there is one

fundamental difference with respect to vector data models: while a vector model

encodes the boundary by carrying implicitly some semantic information in the order

of vertex appearance, the network model encodes such semantic information more

explicitly in a tree-like structure of constructive operations.

6. Discussion and conclusions

The uncertainty of several geographical entities is generally related to the scale of

their representation and observation (Couclelis 1996, Bian 1997). A typical example

is the sub-pixel mapping of geographic features through remote sensors of varied

Table 4. Comparison between vector and neural network representations of three geographic
features. The number of layers of a neural network is defined as the largest number of units an

input point undergoes until it is transformed onto a membership value.

Feature

Vector Network

Vertices Edges Rings Layers Units Weights

Urban 7,928 7,888 40 13 11,086 37,947
Forest 2,110 2,103 7 10 3,203 10,411
Lagoon 850 848 2 9 1,270 4,235
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spatial resolutions: the coarser the spatial resolution, the more uncertain the feature

boundary results. Several fuzzy models have been developed for handling the

boundary phenomena (e.g. Usery 1996, Wang and Hall 1996, Schneider 1999).

Nevertheless, any practical implementation of them has generally confronted the

limitations from traditional data structures, which are currently implemented in

most GIS: vector and raster. The issue is further aggravated when handling multi-

resolution or multiscale data.

In this study, a previously introduced neural network-based data model (Silván

2006) was adapted for representing geographical entities with scale-induced

indeterminate boundaries. The model has been mainly developed at an intermediate

level of conceptual computer model, as it is both hardware and application

independent (Worboys 1995). The general structure of the model consists of a feed-

forward neural network of up to eight types of neural units. Each type of neural unit

is built using one of two kinds of weight functions, namely dot product or Euclidian

distance, with one of two types of activation functions, namely point-spread or

cumulative, which, in turn, can be hard or soft. The model builds upon traditional

spatial databases (with crisp boundaries), while allowing hierarchical construction

of complex objects from basic ones. A claim is made that the interconnection of

several computational units allows representing the membership function of

virtually any geometrical entity, provided that enough processing units are used,

wherein the connectivity of the network is dictated by the geometric structure of the

object being represented.

The neural representation of points and lines was illustrated, and a method for

building the neural representation of simple polygons was developed. The latter is

based on the CSG representation, which consists of a Boolean formula (or n-ary

tree) on the half-spaces defined by the polygon edges. The neural network efficiently

implements the Boolean formula, while allowing soft activation functions to define

soft boundary transitions. A scaling parameter is used to control the smoothness of

each activation function. In the conventional treatment of the neural network

paradigm, the scaling parameter corresponds to the inverse norm of each weight

vector at the first hidden layer. In the present model, the scaling parameter posses

physical units of distance and, thus, can be linked to the inner scale and spatial

uncertainty. A few examples were presented where all scaling parameters were set to

a unique value. This value was linked to the level of (spatial) detail or to the spatial

resolution of a simulation grid. These representations yielded boundaries of

constant degree of fuzziness or detail, similar to those produced by shift-invariant

linear filters. In practice, there is no apparent reason for the whole boundary of a

region to be sharp or to have a constant degree of fuzziness (Schneider 1999). There

are a lot of geographical application examples illustrating that the boundaries of

spatial objects can be determinate at one place, but indeterminate at another place.

For example, boundaries of geological, soil, and vegetation units are often sharp in

some places and vague in others. The neural representation is potentially useful for

representing geographical entities of this kind. Potential applications envisaged

include multiple point-in-polygon tests (Leung 1997, Walker and Snoeyink 1999), as

well as the evaluation of complex overlay functions that can be expressed as set

operations. In principle, any set operation expressed in the form of Boolean or fuzzy

logic operations can be implemented with a neural network. As a matter of fact,

non-simple polygons (e.g. polygons with holes) are constructed using this principle

(Silván 2005).
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Overall, the proposed model encodes a geographic feature through a set of

network parameters, while providing a computational structure for complex set-

based operations. It shares with the vector model the idea that boundaries are the

only spatial elements that need to be coded for object’s spatial embedding definition

(Worboys 1995). It also shares the idea with the field view of a mapping between

the locational reference frame and the attribute domain (Worboys 1995), wherein

the attribute is a membership value. In this sense, ANN provides a means for linking

the field and object views for geographical phenomena, a direction that is recognized

as an important research need (Cova and Goodchild 2002). As with all new models,

the real importance of the proposed data model for many practical applications is

still to be seen. Before that can happen, a number of issues need to be addressed. For

example, proving equivalence of two given networks is hard, if not impossible (a

limitation that is inherited from the CSG representation). This issue could be better

tackled if a formal link with the fuzzy set theory is established. In addition, the

decoding of relationships and the complexity analysis of scale-dependent queries

from neural representations are also important topics that deserve a more formal

treatment in future research.
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