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Wildfires release large amounts of carbon, smoke and aerosols that strongly

impact the global climatic system. Burn scar is an important parameter when

modelling the impact of wildfires on the ecosystem and the climatic system. We

have developed an automatic burn scar mapping method using daily Moderate

Resolution Imaging Spectroradiometer (MODIS) data, in which the Global

Environment Monitoring Index (GEMI), a vegetation index VI3T and a new

index, GEMI-Burn scar (GEMI-B), were used together to enhance the

differences between burned and unburned pixels related to vegetation photo-

synthesis, surface temperature and vegetation water content, respectively, and an

automatic region growing method based on Support Vector Machines (SVMs)

was used to classify burn scars without any predefined threshold. A case study

was carried out to validate the new method at the border area between Mongolia

and China, where a wildfire took place in May 2003. The results show that the

burn scar area extracted by the new method is consistent with that from Landsat

Thematic Mapper (TM) data with high accuracy. The sound performance of the

new technique is due to the following reasons: (1) multiple features of burn scar

spectra were combined and used, (2) a reasonable assumption was made stating

that the neighbourhoods of active fires (hotspots) are most likely to be burn

scars, (3) an SVM classifier was adopted that works well with a small number of

training samples, and (4) an iterative classification procedure was developed that

is capable of running continuous training for the SVM classifier to deal with the

transitionary features of burn scar pixels. The results suggest that the new index

GEMI-B and automatic mapping method based on SVMs have the potential to

be applied to near real-time burn scar mapping in grassland areas.
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1. Introduction

Wildfire is a natural process that disturbs ecosystem succession. Biomass burning

emits large amounts of trace gasses (CO2, CO, CH4 and NOx) and aerosols that not

only modify the chemical composition in the atmosphere but also directly impact the

radiation budget and global climate system (Crutzen and Andreae 1990). Moreover,

wildfire circumvents the proper functioning of the regional ecosystem, deteriorates

habitat and diminishes biodiversity (Lovejoy 1991), changes continuous patterns of

vegetation (Christensen 1993) and alters nutrient cycling (Menaut et al. 1993). In

recent decades, a higher frequency of wildfire (Weber and Stocks 1998) in mid- and

high latitudes has been observed, partly as a result of climate warming (Hansen et al.

1996). To assess and estimate the impact of wildfire on ecosystems, the area of the

burn scars, as the most vital parameter for running various models, has to be

acquired (Vafeidis and Drake 2005).

At this stage, the task of burn scar detection is undertaken mainly through

analysis of remotely sensed data. Satellite remote sensing provides a unique

opportunity to observe active fire and burn scars at global and regional scales with

high temporal frequency. As of today, various remotely sensed data have been used

in fire detection or burn scar mapping. Among them, the National Oceanic and

Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA/

AVHRR) data are the most widely used coarse-resolution data in active fire

detection (Kaufman et al. 1990, Justice et al. 1996, Li et al. 2000a,b, 2001) and burn

scar mapping (Fernandez et al. 1997, Pereira 1999, Fraser et al. 2000a, Li et al.

2000b). SPOT VEGETATION (VGT; Fraser et al. 2000b, Stroppiana et al. 2002,

2003a,b) and Along-Track Scanning Radiometer (ATSR; Eva and Lambin 1998,

Simon et al. 2004) data have also been used to extract burn scars at a regional scale.

Recently, Moderate Resolution Imaging Spectroradiometer (MODIS) data have

become more popular (Kaufman et al. 1998, Justice et al. 2002, Li et al. 2004, Roy et

al. 2005, 2006) because of their higher spatial resolution and refined band design

compared with NOAA/AVHRR and SPOT VGT. When a local scale is needed,

Landsat Thematic Mapper (TM) and Enhanced TM plus (EMT + ) are the major

data vehicles in burn scar mapping (Key and Benson 1999, Garcı́a-Haro et al. 2001).

Multitemporal composite data are often used in burn scar mapping to reduce cloud

contamination (Barbosa et al. 1998, Chuvieco et al. 2005). For example, in the

techniques introduced by Fernandez et al. (1997) and Fraser et al. (2000a) for

hotspot and Normalized Difference Vegetation Index (NDVI) differencing synergy

(HANDS), multitemporal NDVIs are first derived from the maximum value

composite (MVC) in 10 days. The burned area product MCD45A1 of MODIS

adopted change detection methods that are designed based on the Bidirectional

Reflectance Distribution Function (BRDF) model (Roy et al. 2006). To be exempt

from cloud contamination, a minimum of 16-day continuous MODIS data have to

be used (Roy et al. 2005). However, single-day MODIS data have been used for real-

time burn scar mapping; for example, Li et al. (2004) identified burn scars using

daily MODIS data.

Regardless of the quality of the data, the method to be adopted is most important

for the success of burn scar mapping. Among various methods that have been

reported, vegetation indices (VIs) have demonstrated superb advantages for

enhancing the discrepancies between burned and unburned pixels. Specifically,

there are predominantly three types of VIs for the purpose of mapping burn scars.

The first type was applied to search for the cessation of photosynthesis for burned
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green vegetation. These VIs include the NDVI, the Global Environment Monitoring

Index (GEMI; Pinty and Verstraete 1992) and the Soil-Adjusted Vegetation Index

(SAVI; Huete 1988). The latter two indices, in particular, are more suitable for

sparse vegetation areas (Stroppiana et al. 2002, Lasaponara 2006). The second type

of VI indicates the amount of water loss after the vegetation was burned. These

indices include the Normalized Difference Infrared Index (NDII; Garcia and

Chuvieco 2004), the Short Wave Vegetation Index (SWVI; Fraser et al. 2000b), the

Normalized Difference Water Index (NDWI; Gao 1996) and the Normalized Burn

Ratio (NBR; Key and Benson 2006). The third type of VI is aimed at detecting the

higher surface temperature of burned vegetation due to a decrease in evapotran-

spiration (Goward et al. 1985) and an increase in surface absorption (Barbosa et al.

1998). VI3, GEMI3 (Pereira 1999) and also VI3T (Barbosa et al. 1999), in which a

red band is replaced by a thermal band, are three examples of this category. The

underlying problem for most of the burn scar mapping methods is that each of them

can only capture limited aspects of burned vegetation, but very few of the methods

can comprehensively examine as many aspects as possible, through which a more

reliable result should be achieved.

Another problem with the existing burn scar mapping method is the difficulty in

choosing an optimal threshold. A number of studies have used a fixed threshold for

global or regional burn scar mapping. For example, the GLOBSCAR products of

ATSR (Simon et al. 2004) used fixed thresholds in both K1 and E1 algorithms, in

which K1 was calculated at local scale (50630 km) by ATSR near-infrared (NIR)

and thermal infrared (TIR) bands. In addition, Stroppiana et al. (2003b) defined

seven rules for burned pixel judgement, in which each rule was a combination of a

set of fixed thresholds. The MODIS burned area product MCD45A1 (Roy et al.

2006) defined a fixed and wavelength-independent Z-score threshold to distinguish

the difference of burned pixel reflectances between BRDF inversed and observed.

However, it has been noted that fixed threshold methods performed poorly for

varying atmospheric effects and different land covers (Barbosa et al. 1999). To

overcome the limitations of fixed thresholds, automatic and varying threshold

methods were developed by calculating the mean and standard deviation (SD) in a

small neighbourhood. Fernandez et al. (1997) proposed two automatically derived

thresholds, one of which was defined as mean + 26SD from an NDVI differencing

image within a 1006100 window. Roy et al.’s (1999) threshold was defined as mean

+ 46SD on a VI3 change image. The HANDS technique (Fraser et al. 2000a)

produced thresholds by mean + SD at a 2006200 block. Other than the local

window, the Burn Area Algorithm (BAA; Barbosa et al. 1999) came up with an

automatic VI3T threshold as the mean – SD for each pixel with a long temporal

series (52 weeks). However, Vafeidis and Darke (2005) also noted that the automatic

thresholds simply based on the mean and standard deviation would not work well

for different sources of data, vegetation types or VIs. Regardless of these studies, it

remains a challenge to determine an optimal threshold in an automatic fashion in

burn scar mapping.

The northeastern and central Asian grassland is an area that is under heavy threat

of wildfire because of abundant litter, severe drought in spring and autumn, strong

winds and a flat elevation (Liu et al. 1999). In addition, as arid and semi-arid

grassland presents a landscape with a low fraction of vegetation and a strong soil

background, previous burn scar mapping methods may not operate well in this

region. This study therefore aimed to develop an automatic burn scar mapping
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method that would be applicable to the region. Since grassland fires occurred most

often in spring or autumn as a result of low NDVI and low moisture within the

grassland, we focused on solving two major problems in this research. First, we

concentrated on ways to select and combine VIs that can take into account

photosynthesis, water content and surface temperature features so that the

discrepancy between burned and unburned pixels in lower vegetated areas could

be maximized. Second, we determined how to automatically detect burn scars using

daily MODIS data without predefined thresholds.

2. Study area and data

We selected the grassland located in the boundary between Mongolia and China as

the study area (figure 1) because a wildfire took place in this area on 21 May 2003.

The wildfire began in Mongolia and then spread to China. It was extinguished in

China on 23 May but continued to burn in Mongolia until 26 May.

MODIS bands 1–7 (with a spatial resolution of 500 m) and bands 21, 22 and 31

(with a spatial resolution of 1 km) from 21 to 30 May 2003 from the Terra satellite

were collected and used in the study (figure 2). The properties of these bands are

listed in table 1. The original MODIS Level 1B data were geometrically rectified and

radiometrically calibrated to produce apparent reflectance data (bands 1–7) and

brightness temperature data (bands 21, 22 and 31). Two Landsat TM images

covering the study area (path/row codes 123/27 and 123/28) were used as validation

data with a spatial resolution of 30 m. The acquisition date of the TM images was 2

June 2003. The International Geosphere Biosphere Programme (IGBP) global land

cover map was also used to mask grassland from forests, urban areas, bare land and

water (Loveland et al. 2000).

Figure 1. Study area on the border of China and Mongolia.
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3. Methodology

Near real-time and dynamic burn scar mapping requires daily MODIS data. It is

difficult to define fixed thresholds or automatic thresholds on all the single daily

data, given the daily variation of atmosphere conditions, aerosols, clouds, and the

solar zenith angle. Even on the same scene, the sensor zenith angle varies from 0u to

approximately 60u because of the 703 km orbit height of Terra/Aqua with a 2330 km

swath. Therefore, there is a crucial need to have an alternative classification method

other than the fixed thresholds methods. The new technique proposed by this study

Figure 2. MODIS data for grassland fire and burn scar expansion (bands 7, 6, 5 as RGB),
21–30 May 2003 (brown coloured regions are burn scars).

Table 1. Properties of the MODIS bands used.

Band Wavelength*
Spatial

resolution (m)
Signal to
noise ratio Main use

1 620–670 250{ 128 Land/cloud
boundary2 841–876 250{ 201

3 459–479 500 243 Land/cloud
properties4 545–565 500 228

5 1230–1250 500 74
6 1628–1652 500 275
7 2105–2155 500 110

21 3.929–3.989 1000{ 2.00{ Land surface/
cloud temperature22 3.929–3.989 1000{ 0.07{

31 10.780–11.280 1000{ 0.05{

*Bands 1–7 in nm; bands 21, 22 and 31 in mm.
{The 500 m resolution was used in this study.
{NEDT: noise-equivalent temperature difference.
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is based on the region-growing method using Support Vector Machines (SVMs). It

can be divided into three steps, as shown in the flowchart in figure 3: (1) selection of
burn scar indices to enhance the difference between burned and unburned pixels; (2)

detection of active fire (hotspots) for automatically choosing training samples; and

(3) classification using SVMs. A detailed description of the method is given in the

following sections.

3.1 Selection of VIs for burn scar mapping

Three VIs (GEMI, VI3T and a new index GEMI-B) were selected based on a

discrimination analysis of the difference in the cessation of photosynthesis, the

increase in surface temperature, and the water content loss between burned pixels

and non-burned pixels. In the following, detailed definitions of the three VIs are

provided, and then an evaluation of the discrimination capability of the three VIs in

comparison to other VIs is addressed.

3.1.1 GEMI. The GEMI proposed by Pinty and Verstraete (1992) reflects the

photosynthesis capability of green vegetation. It is insensitive to soil background and

is suitable for monitoring vegetation activity and detecting burn scars in sparsely

vegetated areas (Stroppiana et al. 2002, Lasaponara 2006). The index is defined as:

GEMI~g 1{0:25gð Þ{ rRED{0:125ð Þ= 1{rREDð Þ ð1Þ

where g~ 2 r2
NIR{r2

RED

� �
z1:5rNIRz0:5rRED

� ��
rNIRzrREDz0:5ð Þ, and rNIR and

rRED are reflectances in the red and near-infrared (NIR) bands, respectively.

Figure 3. Flowchart of the automatic burn scar mapping method based on SVMs.
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3.1.2 VI3T. The VI3T proposed by Barbosa et al. (1999) was used to reveal the

high surface temperature of burned vegetation due to a decrease in evapotranspira-

tion and an increase in surface absorption. It is defined as:

VI3T~ rNIR{BT3=1000ð Þ= rNIRzBT3=1000ð Þ ð2Þ

where BT3 is the brightness temperature of the mid-infrared (MIR) band.

3.1.3 GEMI-B. As the overall water content of vegetation is low in arid and semi-

arid grassland areas, the frequently used VIs built upon vegetation water content,

such as the NDII, are not capable of discerning the difference between burned and

unburned pixels. Therefore, a new water content-related index was developed based

on the spectral characteristics of the burn scars in this study.

According to the IGBP land cover map, we separated pixels from daily MODIS

images by land cover types, including burn scars, non-burnt forest and steppes,

bodies of water, clouds, and burn scars covered by thin clouds. Figure 4 shows the

mean reflectance of each selected class. The spectral characteristics of the burn scar

pixels compared with the other types of pixels were concluded to be as follows: (1)

reflectances of both burn scars and water are low and flat, and that of the burn scar

is slightly higher than that of water in the near-infrared (NIR) and shortwave

infrared (SWIR) bands; (2) reflectances of vegetation and clouds are much higher

than the burn scar and vary in magnitude; (3) the burn scar, non-burnt forest and

steppe are very similar in the visible region but are distinctively different in the NIR

and SWIR regions because combustion absorbs the reflected energy in these

wavelength regions; and (4) burn scars covered with thin clouds have a similar

spectral pattern but higher reflectance than burn scars that are not covered with thin

cloud.

Based on the spectral characteristics of burn scars, Pereira (1999) suggested using

the NIR-MIR region to identify burn scars because this region overlaps with the water

absorption band and is less affected by atmospheric conditions and aerosols. Li et al.

Figure 4. Mean reflectance for different land cover types on MODIS bands 1–7.
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(2004) measured the spectra of burned areas by airborne visible/infrared imaging

spectrometer (AVIRIS) and empirically distinguished burned pixels from unburned

using MODIS bands 5 (centred at 1.24 mm) and 7 (centred at 2.13mm) because these

two longer wavelength bands are not only sensitive to the water content of vegetation

but are also less affected by smoke, aerosols and thin clouds compared with visible

and NIR bands. According to the spectral characteristics of the burn scars on

northeastern Asian grassland and the works of Li, Pereira and co-workers, a new

index, known as the Global Environment Monitoring Index-Burn scar (GEMI-B),

was developed with MODIS bands 5 and 7 as surrogates of the red and NIR bands in

the original GEMI equation:

GEMI-B~g 1{0:25gð Þ{ r5{0:125ð Þ= 1{r5ð Þ ð3Þ

where g~ 2 r2
7{r2

5

� �
z1:5r7z0:5r5

� ��
r7zr5z0:5ð Þ, r5 and r7 are reflectances of

MODIS bands 5 and 7, respectively. Figure 5 shows a scatter plot in the MODIS band

5 and band 7 space using a total of 800 pixels with different classes from the MODIS

data acquired on 24 May 2003. The isolines of GEMI-B are also plotted in figure 5. It is

clear that the pixels of the burn scars, forest, grassland, water and clouds are clustered,

with large distances between these classes. Burn scars have the highest GEMI-B values

and can be identified by a threshold around 0.25 (solid black line in figure 5). Water

pixels have GEMI-B values between 0.1 and 0.2. Grassland pixels have a higher

reflectance than forest in band 7, and their GEMI-B values are between 20.2 and 0.2.

Cloud pixels have the lowest GEMI-B values, below 20.3. Figure 5 suggests that

GEMI-B is an effective index for distinguishing burn scars from other land cover types.

Table 2 lists the GEMI-B values (scaled by 100) of burn scars, water, grassland,

forest and clouds from 21 to 30 May, in which pixels belonging to different classes

Figure 5. GEMI-B isolines and scatter plot.
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were acquired through visual interpretation. The GEMI-B values for the burn scars

are higher than those of the other classes, as indicated by their mean GEMI-B

values: 34.61, 16.26, 12.19, 0.64 and 239.13 for burn scars, water, grassland, forest

and clouds, respectively. We also noted that the daily mean and standard deviation
values for all classes varied considerably, implying that they are affected by different

atmospheric and sun-sensor geometric conditions. Therefore, a fixed threshold

hardly existed for the daily remotely sensed data.

3.2 Evaluation of VIs

A simple normalized distance (Kaufman et al. 1994, Garcia and Chuvieco 2004) was

used to evaluate the discrimination power of the VIs, including the NDVI, GEMI,

NDII, VI3T, Burn Area Index (BAI) and GEMI-B. The definitions of NDII and

BAI are:

NDII~ rNIR{rSWIRð Þ= rNIRzrSWIRð Þ ð4Þ

where rSWIR is reflectance at the SWIR band (1.0–3.0 mm), and

BAI~1
.

PcRED{rREDð Þ2z PcNIR{rNIRð Þ2
� �

ð5Þ

where PcRED and PcNIR are the convergence points of the red and NIR bands

(defined as 0.1 and 0.06 (Chuvieco et al. 2002).

Based on Landsat TM images and land cover maps, the values of the above
indices for burned and unburned pixels were extracted from each index image that

was calculated from the MODIS data. Then the normalized distances (D) were

calculated from the mean and standard deviation of burned and unburned pixels

with the following equation:

D~ mB{mUj j= sBzsUð Þ ð6Þ

where mB and mU are the mean values of burned and unburned pixels, and sB and sU

are the standard deviation of burned and unburned pixels, respectively. A larger

normalized distance indicates better discriminability.

The normalized distances calculated from the BAI, NDII, VI3T, NDVI, GEMI and

GEMI-B index images of 22, 24, 26, 28 and 30 May are shown in table 3. GEMI-B

achieved the best discriminability (mean normalized distance of 2.234, in bold) among

all the indices according to the daily and mean normalized distance values, implying

that GEMI-B is the optimal index to identify burn scars in a grassland environment.
VI3T and GEMI also performed well in discriminating the burned area from the

unburned area with mean normalized distances of 2.053 and 1.932 (in bold),

Table 2. GEMI-B values for all classes from 21 to 30 May.

Burn scar Water Grassland Forest Cloud

Mean SD Mean SD Mean SD Mean SD Mean SD

21 May 38.31 11.62 18.00 0.65 16.02 3.52 6.88 3.76 248.29 12.13
22 May 27.97 4.32 14.77 0.53 9.99 3.78 0.22 3.01 221.78 9.73
24 May 35.15 2.40 13.95 0.34 10.01 3.53 0.57 2.81 212.41 7.17
26 May 35.57 9.35 18.26 1.16 8.33 3.26 24.58 3.78 247.75 10.41
28 May 35.53 3.50 14.61 2.87 13.52 4.61 1.32 6.36 295.21 36.75
30 May 35.12 6.90 17.99 1.00 15.24 4.26 20.60 3.12 29.34 21.00

Burn scar mapping using SVMs 585
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respectively. Based on the above evaluation, GEMI-B, VI3T and GEMI were selected

as the inputs for automatic detection methods for burn scar mapping in northeastern

Asian grassland. As mentioned earlier, GEMI-B describes the water loss character-

istics of the burned areas, VI3T is related to the higher temperature of the burned

vegetation due to a decrease in evapotranspiration and an increase in surface

absorption and GEMI enhances the reflectance feature of green vegetation and is

insensitive to atmospheric noise and soil background. Figure 6 shows the three-

dimensional (3D) scattered GEMI-B, VI3T and GEMI plots of selected burn scars,

water, forest and grassland pixels on 26 May (all the values have been scaled by 100.0).

The 3D scatter plot indicates that the burn scars, water and clouds are easily separable

while only the forest and grassland overlap to a great extent.

3.3 Detection of MODIS active fires

Neighbourhoods of active fires (hotspots) are likely to be burned as well. This

motivated us to use hotspots as starting points for choosing the training samples of

burn scars automatically. The method used for generating the MODIS fire product

(Justice et al. 2002) was adopted in this study. The MODIS fire product provides an

integrated method of multiband fixed (absolute) thresholds and a contexture

Figure 6. 3D scatter plot for GEMI-B, VI3T and GEMI.

Table 3. Normalized distances of the six vegetation indices.

BAI NDII VI3T NDVI GEMI GEMI-B

22 May 0.142 0.745 1.644 1.598 2.121 1.845
24 May 0.16 1.951 2.646 1.369 2.901 2.639
26 May 0.035 1.718 2.21 1.296 1.757 2.522
28 May 0.625 1.579 2.046 1.034 1.876 2.413
30 May 0.534 1.633 1.718 1.127 1.007 1.751
Mean 0.299 1.525 2.053 1.285 1.932 2.234

Mean values for indices that performed well in discriminating burned from unburned areas
are shown in bold.
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(relative) threshold method. In the method, the brightness temperatures at the 4 mm

and 11 mm wavelengths, denoted as T4 and T11, were used to detect hotspots. There

are two MODIS bands (bands 21 and 22) at the 4 mm wavelength: band 21 saturates

at 500 K and band 22 saturates at 331 K. As a lower saturation band has less noise

(see table 1) and a smaller quantization error, T4 is derived from band 22 whenever

possible. Otherwise, it is replaced by band 21 to compute T4. T11 is derived from

band 31, which saturates at 400 K. For daytime MODIS data, the fire pixels were

identified by satisfying one of the following criteria:

að Þ T4w360 K or

bð Þ T4wmT4z3sT4 or T4w330 Kf g and

T4{T11whT4{T11z3sT4{T11 or T4{T11w25 Kf g

ð7Þ

where m, s and h represent mean, standard deviation and median, respectively.

In our study, all daily fire maps were derived by this method, and then the

accumulated fire maps for the days between 21 and 30 May were produced by

overlaying daily fire maps that were extended from 21 May to the study day. For

example, the accumulated fire map for 26 May was produced by overlaying the daily

fire maps from 21 to 26 May. Therefore, the accumulated fire map for 26 May

encompassed all hotspots occurring during the period from 21 to 26 May. These

composed hotspots were used as seeds in the following computation.

3.4 SVM training, classification and region growing

SVM is a learning system based on statistical learning theory (Vapnik 1995). Unlike the

maximum likelihood classification, the SVM-based classifier is a non-parametric

method that does not need to hold the normal distribution assumption in the input

data. The advantage of the SVM-based classifier over traditional classifiers is that it

solves learning problems better when only a small number of training samples are

available. It has been used successfully in remotely sensed image classification (Keuchel

et al. 2003, Mantero et al. 2005), computer-aided diagnosis (El-Naqa et al. 2002), real-

time image segmentation (Mitréan et al. 2003) and region growing (Hu et al. 2005).

The basic idea of SVM is to classify the input vectors into two classes using a

hyperplane with the maximal margin, which is derived by solving the following

constrained quadratic programming problem:

Maximize W að Þ,

where W að Þ~
Xn

i~1

ai{
1

2

Xn

i~1

Xn

j~1

aiajyiyjK xi,xj

� � ð8Þ

with the constraints:

Xn

i~1

aiyi~0 and 0ƒaiƒT for i~1,2, . . . n ð9Þ

where xigR are the training sample vectors, yig{21, + 1} are the corresponding

class labels, ai is the Lagrange multiplier, T is a constant needed for non-separable

classes, and K(u, v) is the kernel function. Vapnik (1995) described three types of

SVMs (more detailed information can be found in Vapnik 1995). In this study, the

radial basis function (RBF) was selected as the kernel function, and the only
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parameter, the width s in equation (10), was set as 1.0.

K x,yð Þ~e { x{yj j2=2s2ð Þ ð10Þ

Based on the SVM classifier, pixels were classified into two classes: burned and

unburned pixels. As shown in figure 3, the IGBP land cover map, hotspot composite

map, and daily MODIS GEMI, VI3T and GEMI-B images were gathered as input,

and then two training sets were extracted automatically. Here the training pixels for

the burn scars were selected by the neighbourhood of the active fires from the

hotspot map because these neighbourhoods are most likely to be burned. The

neighbourhood is defined as the region of a 363 window for every hotspot pixel. To

eliminate false active fires and non-burned pixels near hotspots, only the pixels

within the highest 70% GEMI-B values were assigned to burn scars. Meanwhile, two

clusters of unburned areas were also selected as an SVM training set. One cluster

was the water body from the land cover map because the water will not be burned,

and the other consisted of unburned green vegetation pixels with a GEMI value

.0.55. A careful validation showed that the GEMI value of the burned area would

never go beyond 0.3. Based on the aforementioned training data for burned and

unburned classes, the SVM-based classifier was applied to classify the unknown

pixels. It should be noted that we did not classify all unknown pixels at one time, but

instead used the classifier in an iterative procedure to classify the pixels near the seed

pixels step by step. As the first step of the loop procedure, the input active fire

(hotspot) pixels were assigned as seeds, and then the pixels within a 363 window of

each seed were classified by the SVM-based classifier at one time. After the

classification was completed, the pixels classified as burn scars in the previous step

were assigned as new seed pixels and used to train the classifier again. The iterative

procedure was carried out many times until the number of newly identified burn scar

pixels equalled 0. In this way, a burn scar map was eventually produced. When

running the iterative procedure, the burn scar pixels were identified step by step.

This is similar to a region-growing process, and is shown in figure 7.

4. Results

Burn scar maps of daily images were extracted automatically based on the GEMI-B,

VI3T and GEMI images and hotspot maps (figure 8), using the SVM-based region-

growing technique. Table 4 shows the numbers of pixels in the training sets at the

beginning of the iterative procedure, when there were far less burned pixels than

unburned pixels. In the burn scars results, the number of burn scar pixels in figure 8,

from 21 to 30 May, were 257, 11 048, 18 481, 32 167, 10 232 and 32 426, respectively.

All burn scars were extracted accurately except for 28 May, because clouds covered

the burned area and the expansion of seeds could not go through the clouds. The

daily burn scar mapping indicates the rapid expansion of wildfire in grassland areas.

When the fire spread from Mongolia to China, it was stopped by fireproofing

ditches along the border between Mongolia and China, which was confirmed by our

field survey.

The validation of our proposed technique was carried out using two cloud-free

Landsat TM images, and the accuracy of the extracted burn scars was assessed.

Before classification, the Landsat TM images were radiometrically calibrated, and

atmospherically corrected using the 6S code (Vermote et al. 1997). Burn scars were

extracted using supervised classification by manually selected training pixels of burn
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Figure 7. Steps of the region-growing approach based on SVMs (an example from 26 May
2003).

Figure 8. The results of daily burn scars extracted from MODIS data by the SVM-based
region-growing technique (21–30 May).
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scars and those of other classes such as water, grassland, forest and bare land.

Finally, the burn scar map that resulted from the TM data was resampled to 500 m.

The single daily result of the latest date of 30 May was selected for assessment

purposes. The temporal difference between the results from the MODIS and

Landsat TM data was so marginal that it could be neglected. Table 5 shows the error

matrix. If the TM classification is deemed to be ‘ground truth’, then the overall

accuracy of MODIS is 96.8%, while the kappa coefficient is 0.933, indicating that

the daily MODIS burn scars extraction by the SVM-based region-growing

technique are consistent with the results from the TM data.

5. Discussion and conclusion

In this study a new index, the GEMI-B, was constructed based on the spectral

features of burned pixels on grassland with MODIS bands 5 and 7. The evaluation

of VIs GEMI-B, BAI, NDII, VI3T, GEMI and NDVI showed that GEMI-B, VI3T

and GEMI presented the largest discrimination in grassland areas. Different

features of the burn scars were enhanced by these three indices. GEMI-B described

the water loss characteristics of the burned area by using MODIS bands 5 and 7,

VI3T was related to the high temperature of the burned vegetation, and GEMI

improved the spectral features of green vegetation and was less sensitive to

atmospheric noise and soil background, which is important in grassland areas with

low vegetation coverage. Although the NDII and BAI were described as the best VIs

for burn scar mapping by Lasaponara (2006) and Garcia and Chuvieco (2004),

respectively, their performance in grassland was not comparable with the GEMI-B,

VI3T and GEMI.

For near real-time burn scar mapping, a new automatic burn scar mapping

technique, region growing based on SVMs, was developed by using daily MODIS

data. Daily burn scar maps from 21 to 30 May 2003 were produced with the new

technique without any predefined threshold. The results proved to be accurate by

using Landsat TM data as the ground truth, indicating that the new technique has

the potential to be applied to burn scar mapping on grasslands. The sound

performance of the new technique was due to the following reasons: (1) multiple

Table 4. Numbers of pixels in training sets at the beginning of the iterative procedure.

21 May 22 May 24 May 26 May 28 May 30 May

Burned 32 177 266 308 308 308
Unburned water 3250 3250 3250 3250 3250 3250
Unburned green vegetation 6591 7922 8465 7715 8409 7658

Table 5. Error matrix of burn scar detected by MODIS daily data and Landsat TM data (30
May 2003).

TM

MODIS

Burned Unburned Total

Burned 31 636 1869 33 505
Unburned 790 48 827 49 617
Total 32 426 50 696 83 122
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features of burn scars spectra were combined and used, and (2) a reasonable

assumption was made stating that the neighbourhoods of active fires (hotspots) are

most likely to be burn scars. Based on this assumption, automatic selection of

training data was facilitated. (3) An SVM classifier was adopted that works well

with a small number of training samples, and (4) an iterative classification procedure

was developed that is capable of running continuous training for the SVM classifier

to deal with the transitionary features of burn scar pixels.

It is worth noting that our proposed technique is to a large extent dependent on

hotspot detection. The technique not only uses the hotspots to select training sets

but also assigns them as initial seeds of burn scars. Improvement of hotspot

detection will largely benefit the proposed technique. However, the proposed

technique was shown to be ineffective for data acquired on cloudy days. To

overcome this problem, an alternative solution is to use multitemporal composite

data to remove most of the cloud effects, although this was not investigated in the

current study. Another problem was that there was a limited amount of

experimental data, and limited data on the types of vegetation present in the

grassland. For mapping burn scars at a global or regional scale, the proposed

technique needs to be tested on other types of vegetation besides grassland in a semi-

arid region, such as shrub, forest and savanna.
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