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Abstract

The prevailing concerns on ecological and environmental issues, occurring especially at regional to global scales, have prompted significant
advances on the use of remote sensing data for the estimation of land cover information at sub-pixel level. However, the quality of such
classification products, as well as the performance of the classification protocol employed, are difficult to quantify. This paper had the objectives
of 1) reviewing the existing alternatives, while identifying major drawbacks and desirable properties, for sub-pixel accuracy assessment based on
cross-comparison matrices, and 2) developing theoretical grounds, for a more general accuracy assessment of soft classifications, that account for
the sub-pixel class distribution uncertainty. It was found that, for a sub-pixel confusion matrix to exhibit a diagonalization characteristic that allows
identifying a perfect matching case, the agreement measure must be constrained at pixel level, whereas a disagreement measure can take into
account the sub-pixel distribution uncertainty, leading to an underspecified problem termed the sub-pixel area allocation problem. It was
demonstrated that the sub-pixel area allocation problem admits a unique solution if, and only if, no more than one class is either over- or
underestimated at each pixel. In this case, the sub-pixel confusion can be uniquely determined. When no unique solution exists, the space of
feasible solutions can be represented by confusion intervals. A new cross-comparison matrix that reports the confusion intervals in the form of a
center value plus–minus maximum error was proposed to account for the sub-pixel distribution uncertainty. The new matrix is referred to as sub-
pixel confusion–uncertainty matrix (SCM). Sub-pixel accuracy measures were also derived from this matrix. The practical use of the SCM and
derived indices was demonstrated in assessing an invasive species detection method and a fuzzy classification of urban land use/land cover
through remote sensing procedures.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The significance of land cover as an environmental variable
has made remote sensing one of the most attractive tools for the
production of thematic maps of the earth's surface. However, in
order for remote sensing to succeed as a valuable source of land
cover information, more reliable accuracy measures are needed
(Foody, 2002). In the past few decades, the prevailing concerns
on ecological and environmental issues, occurring especially at
regional to global scales, have prompted significant advances
on the use of remote sensing data for the estimation of land
cover information at sub-pixel level (Carpenter et al., 1999;
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Cross et al., 1991; Fisher & Pathirana, 1990; Gutman & Ignatov,
1998; Roberts et al., 1993). However, the quality of such
classification products, as well as the performance of the
classification protocol employed, are difficult to quantify.
Moreover, there is an increasing need for sub-pixel and super-
pixel assessment of classification products made evident by
recent remote sensing research (Latifovic & Olthof, 2004;
Okeke & Karniele, 2006; Ozdogan & Woodcock, 2006;
Shabanov et al., 2005). The assessment of the conventional
(hard) allocation of image pixels to discrete classes has been
standardized (to some extent) through the confusion matrix and
some derived measures (Congalton, 1991; Congalton & Green,
1999; Stehman & Czaplewski, 1998). However, this method is
appropriate only for hard classifications, where it is assumed
that each pixel is associated with only one class in both the
assessed and the reference datasets. For soft classifications,
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Fig. 1. Hypothetical reference (R) and assessed (S) sub-pixel partitions.

Table 1
Four cross-comparison matrices from sub-pixel partitions of Fig. 1(a) actual,
(b) expected, (c) minimum, and (d) maximum possible sub-pixel overlapping
area among reference (column label) and assessed (row label) class fractions

Class 1 2 3 Sum

(a)
1 37.5 12.5 12.5 62.5
2 12.5 12.5 0.00 25.0
3 0.0 12.5 0.0 12.5
Sum 50.0 37.5 12.5 100.0

(b)
1 31.3 23.4 7.8 62.5
2 12.5 9.4 3.1 25.0
3 6.3 4.7 1.6 12.5
Sum 50.0 37.5 12.5 100.0

(c)
1 12.5 0.0 0.0 12.5
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
Sum 12.5 0.0 0.0 12.5

(d)
1 50.0 37.5 12.5 100.0
2 25.0 25.0 12.5 62.5
3 12.5 12.5 12.5 37.5
Sum 87.5 75 37.5 200.0
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where multiple classes are assigned to a single pixel, a
comparable standardized assessment procedure has not been
established yet.

An argument is made here that a closer examination of the
agreement–disagreement measures at sub-pixel level may allow
new insights into the per-class accuracy and confusion of soft
classifications. For example, consider the hypothetical reference
and assessed sub-pixel partitions depicted in Fig. 1, where
perfect co-registration is assumed. Table 1(a) shows the pair-
wise overlapping proportions that result from the overlay of the
pixel partitions, wherein columns represent reference catego-
ries, and rows represent assessed categories. For instance,
reference class 1 overlaps with assessed class 2 in 12.5%. Of
course, the sub-pixel class boundaries are unknown in practice,
and there is no way to determine the actual overlap among the
classes based solely on the land-cover fractions. This problem is
hereafter referred to as sub-pixel area allocation problem. One
possible sub-pixel comparison approach can be based on the
expected overlap among the classes. The expected overlap is
determined from multiplication of the corresponding fractions
(Table 1(b)). As we shall see below, a value so-computed
provides a measure of overlap by chance between two classes,
provided that the partitions have been independently produced.
For instance, the expected overlap between reference class 1
(50%) and assessed class 2 (25%) is 0.5×0.25=0.125, or
12.5%. This value is shown in row 2 and column 1 of Table 1(b)
and agrees with the actual value of Table 1(a); however, this is
not always the case. A natural question is: What is the largest
possible variation in the sub-pixel overlap? The answer to this
question lies in determining the minimum and maximum
possible overlap proportions. The minimum overlap occurs
when the spatial distributions of the two classes are assumed as
disjoint as possible within the pixel. This proportion is given by
the excess, in respect to 100%, from the sum of the respective
percentages in the reference and assessed pixels. For instance,
the minimum overlap between reference class 1 and assessed
class 2 is max(50+25−100, 0)=0. The minimum overlap
percentages are presented in Table 1(c). On the other hand, the
maximum overlap occurs when the spatial distributions of the
two classes are assumed as coincident as possible within the
pixel. This proportion is given by the minimum between the two
percentages. For instance, the maximum possible overlap be-
tween reference class 1 and assessed class 2 is min(50, 25)=
25%. The maximum overlap percentages are presented in
Table 1(d). At this point, the difficulties for sub-pixel
comparison should be evident. Notice that the cross-comparison
matrices given in Table 1(b)–(d) do not provide meaningful
information at the pixel level. Specifically, the perfect matching
case could not be easily identified, nor would it be easy to tell
which of two classifications has better accuracy based on this
kind of analysis. In practice, the problem is further aggravated
by the spatial misalignment and sampling issues. These issues,
however, will not be addressed here. Instead, a negligible
impact of registration accuracy on the sub-pixel confusion will
be assumed in our analyzes.

For the evaluation of soft classifications in general, various
suggestions have been made (Binaghi et al., 1999; Congalton,
1991; Foody, 1995; Gopal & Woodcock, 1994; Green &
Congalton, 2004; Lewis & Brown, 2001; Pontius & Cheuk,
2006; Townsend, 2000), among which, the fuzzy error matrix
(Binaghi et al., 1999) is one of the most appealing approaches,
as it represents a generalization (grounded on the fuzzy set
theory) of the traditional confusion matrix. In spite of its
sounding theoretical basis, the fuzzy error matrix is not
generally adopted as a standard accuracy report and statement
for soft classifications. Some reasons for this have been
highlighted as counterintuitive characteristics (Pontius &
Cheuk, 2006). Specifically, for a cross-comparison to be
consistent with the traditional confusion matrix, it is desirable
that the cross-comparison results in a diagonal matrix when a
map is compared to itself, and that its marginal totals match the
total of membership grades. More importantly, a cross-
comparison should convey readily interpretable information
on the confusion among the classes. To date, the applicability of
the fuzzy error matrix has been mainly concentrated on
generating accuracy indices such as the overall accuracy, the
user and producer accuracy, the kappa, and the conditional
kappa coefficients (e.g., Binaghi et al., 1999; Okeke & Karnieli,
2006; Shabanov et al., 2005). Indeed, the derived indices do not



Table 2
Traditional error matrix for K classes (a) and common accuracy indices (b)

(a)

Class Reference Row total

Class 1 Class 2 … Class K

Class 1 P11 P12 … P1K P1+

Class 2 P21 P22 … P2K P2+

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Class K PK1 PK2 … PKK PK+

Col. Tot. P+1 P+2 … P+K P++

(b)

Accuracy index Formula a

Overall accuracy, OA
P

k
Pkk

Pþþ

k-th User Accuracy, UA(k) Pkk
Pkþ

k-th Producer Accuracy, PA(k) Pkk
Pþk

Expected proportion of agreement, Pe

P
k
PkþPþk

P2
þþ

Kappa coefficient of agreement, κ ðP0�PeÞ
1�Pe

a Po is the observed proportion of agreement=OA.
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account for the off-diagonal cells of the matrix; rather, they are
based only on the diagonal cells and the total grades from the
reference and assessed datasets (Binaghi et al., 1999). Recently,
a composite operator was proposed for computing a cross-
comparison matrix that exhibits some of the aforementioned
desirable characteristics (Pontius & Cheuk, 2006). Pontius and
Cheuk (2006) showed how the composite operator can be used
for a multi-resolution assessment of raster maps and compared it
with other alternatives, including the traditional hardening of
pixels, the minimum operator (Binaghi et al., 1999), and the
product operator (Lewis & Brown, 2001). This composite
operator was also suggested as a viable tool for the sub-pixel
comparison of maps (Pontius & Connors, 2006). Although
several desirable properties are found in the composite operator,
its utility has been only demonstrated on the use of traditional
accuracy indices (Kuzera & Pontius, 2004; Pontius & Cheuk,
2006; Pontius & Connors, 2006), and neither has the use of the
off-diagonal cells been demonstrated, nor is their interpretation
clear.

In light of the above, the objectives of this research are:

(1) Review the existing alternatives, while identifying major
drawbacks and desirable properties, for sub-pixel accu-
racy assessment based on cross-comparison matrices, and

(2) Develop theoretical grounds, for a more general accuracy
assessment of soft classifications, that account for the sub-
pixel class distribution uncertainty.

The remaining of the paper is organized as follows. In
Section 2, a theoretical framework for generalized cross-
comparison matrices is discussed, and various potential cross-
comparison matrices for sub-pixel accuracy assessment are
compared within this framework. In Section 3, a new cross-
comparison matrix that reports the confusion interval in the
form of a center value plus–minus maximum error is
introduced. The new matrix is referred to as sub-pixel
confusion–uncertainty matrix (SCM). Sub-pixel accuracy
measures are also derived and illustrated in this section. In
Section 4, two application examples are described and the
results presented in Section 5. A thorough discussion with
concluding remarks is presented in Section 6.

2. Theoretical background

2.1. Notation and definitions

The following symbols are used throughout the text:

N number of pixels in the reference and assessed
datasets,

K number of categories or classes,
n pixel index, where n=1,…,N,
k,l class indices, where k,l=1,…,K,
snk grade of membership of pixel n to class k assigned by

the assessed dataset,
rnl grade of membership of pixel n to class l assigned by

the reference dataset,
s+k total grade of class k from the assessed dataset,
s+k=Σnsnk,

r+l total grade of class l from the reference dataset,
r+l=Σnrnl,

s′nk overestimation error of class k at pixel n, s′nk=max
(snk− rnk, 0),

r′nl underestimation error of class l at pixel n, r′nl=max
(rnl− snl),

pnkl agreement–disagreement between membership grades
from assessed class k and reference class l at pixel n; it
is called agreement when k= l and disagreement (or
confusion) when k≠ l,

Pkl overall agreement–disagreement between assessed
class k and reference class l, Pkl=Σnpnkl,

Pk+ marginal row sum of Pkl for class k, Pk+=ΣlPkl,
P+l marginal column sum of Pkl for class l, P+l, =ΣkPkl,
P++ total sum of Pkl, P++=ΣkΣl Pkl,

The grade of membership have various interpretations
throughout the text, including possibility, probability and sub-
pixel fractions of land-cover. In any case, they are constrained
so that 0≤ rnk≤1, 0≤ snk≤1 and Σk rnk=Σksnk=1 hold for all
the pixels. The agreement–disagreement at pixel n, pnkl, is
computed using a comparison operator of the form C(snk,rnl).
The notations pnkl

C and Pkl
C may be used to specify the

comparison operator, C, employed for computing the per-
pixel and overall agreement–disagreement, respectively. A
confusion matrix is a cross-tabulation (see Table 2(a)) formed
by the overall agreement–disagreement, Pkl, where row and
column labels of the matrix represent assessed categories and
reference categories, respectively. Thus, the agreement values
correspond to the diagonal cells, whereas the disagreement
values correspond to the off-diagonal cells.



Table 3
Basic properties for general agreement and disagreement measures. C(s,r)
denotes a comparison (agreement or disagreement) measure between grades s
and r, and a is a positive number

Property Definition Agreement Disagreement

i. Commutativity C(s,r)=C(r,s) Yes Yes
ii. Positivity sN0∨ rN0⇒C(s,r)N0 Yes Yes
iii. Nullity s=0∧ r=0⇒C(s,r)=0 Yes Yes
iv. Upper bound C(s,r)≤C(r,r) Yes No
v. Homogeneity C(as,ar)=aC(s,r) Yes Yes
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2.2. A generalized cross-comparison framework

Hard classifications are commonly assessed through the so-
called confusion matrix (also known as error matrix) and a
series of derived indices (Congalton, 1991; Congalton & Green,
1999; Stehman & Czaplewski, 1998). Once generated, the
confusion matrix can be used for a series of descriptive and
analytical techniques, such as those based on accuracy indices.
Table 2(a) shows the general structure of the confusion matrix
and Table 2(b) lists the most common accuracy indices derived
from the confusion matrix. Details on the definitions and uses of
these accuracy indices for hard classifications can be found in
Congalton (1991), Congalton and Green (1999), Stehman and
Czaplewski (1998), to list just a few. Naturally, many
researchers have tried to generalize the confusion matrix for
soft classifications (Binaghi et al., 1999; Latifovic & Olthof,
2004; Lewis & Brown, 2001; Pontius & Cheuk, 2006;
Townsend, 2000; Woodcock & Gopal, 2000). While all these
efforts have some value for various remote sensing applications,
the theoretical background behind each of them does not
generally consider a set of desirable characteristics inherited
from the confusion matrix, and thus are difficult to interpret (at
least in the sense of a traditional confusion matrix).

In the search for the fundamental characteristics of a generalized
confusion matrix for soft classifications, it is sometimes suggested
that the matrix should fulfill two characteristics:

i. Diagonalization. The matrix should be diagonal if, and only
if, the assessed data match perfectly the reference data.

ii. Marginal sums. Marginal sums should match the total grades
from the reference and assessed data.

The first characteristic is desirable for the matrix to be useful
in identifying a perfect matching case; nevertheless, it does not
constrain the matrix characteristic under slight deviation from
the perfect match. Therefore, many alternatives could be
envisaged that lead to a unique diagonal matrix for the perfect
matching case, but to rather different matrices when non-perfect
match occurs. The second characteristic is desirable (although it
may not be necessary) for the matrix to be useful in deriving
accuracy indices such as those listed in Table 2(b). For hard
classifications, accuracy indices are customarily written in terms
of row and column totals, provided that these marginal sums
correspond to the class proportions in the assessed and reference
datasets, respectively (i.e., P+l= r+l, Pk+= s+k, and P++=N). For
soft classifications, however, marginal sums not matching the
class proportions are often ignored, and class proportions are
used instead for the computation of accuracy indices (e.g.,
Binaghi et al., 1999; Okeke & Karniele, 2006; Shabanov et al.,
2005).

Instead of looking at the properties of a generalized
confusion matrix, we seek to establish a number of fundamental
properties on the agreement–disagreement measures that can
lead to meaningful matrix entries. These properties are loosely
described bellow and then formalized in mathematical terms.
First, a meaningful agreement measure does not consider
whether the assessed pixel membership is above or below the
reference pixel membership, i.e., does not depend on the over-
or underestimation errors. In contrast, the sense and amount of
discrepancy are important for defining a disagreement measure.
An overestimation of the reference pixel membership by the
assessed pixel membership leads to errors of commission type.
These commission errors appear in the off-diagonal cells along
the row of the class. Conversely, an underestimation of the
reference value by the assessed value leads to errors of omission
type. These omission errors appear in the off-diagonal cells
along the column of the class. Second, agreement and
disagreement are, in some sense, complimentary yet non-
negative measures. This is also stated by the constrained
marginal sums characteristic. Consequently, when the agree-
ment for a given class achieve its maximum (e.g., in the case of
a perfect match), the overall disagreement (sum of off-diagonal
cells) for that class must be minimum (zero). Conversely, if the
overall disagreement is maximum, then the agreement is
minimum.

In formal grounds, one requires the agreement–disagreement
measure to conform to Eq. (1), where A and D denote
agreement and disagreement operators, respectively, which
satisfy the properties outlined in Table 3, and s′nk and r′nl denote
the over- and underestimation errors at pixel n. Notice that the
expressions given in Eqs. (2) and (3) for the over- and
underestimation errors, respectively, are mathematically equiv-
alent to those given in Section 2.1.

Cðsnk ; rnlÞ ¼ Aðsnk ; rnlÞ if k ¼ l
DðsnkV ; rnlVÞ if kpl

�
ð1Þ

snkV ¼ snk �minðsnk ; rnkÞ ð2Þ

rnlV ¼ rnl �minðsnl; rnlÞ ð3Þ
The Commutativity property expresses a symmetric charac-

teristic of agreement–disagreement measures respect to its
arguments. It ensures that under- and overestimation of a
membership grade are equally considered. The Positivity
ensures closure over the positive space of membership values
and, together with the Nullity property, constrains non-null
comparison values to pixels with non-null membership values.
The Upper bound property implies that the comparison operator
measures essentially the degree of similarity, as contrasted to
dissimilarity or distance measures, between two membership
values. The Homogeneity property states that the agreement–
disagreement values can be denormalized in proportion to
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denormalized grade values. This property is desirable when the
accuracy assessment is inserted in a multi-resolution framework
(see below). In sum, two notable differences between agreement
and disagreement measures are established: 1) an agreement
value depends on the original assessed and reference values,
whereas a disagreement value depends on the over- and under
estimation errors, and 2) an agreement value has an upper bound
at perfect match, whereas disagreement values do not share an
upper bound at null agreement.

For a more complete accuracy assessment, a multi-resolution
approach has been set forth (Pontius, 2002; Pontius & Cheuk,
2006), which consists of the use of derived agreement measures
at many aggregation levels. Coarser pixel membership are
determined through spatial aggregation of membership from the
finest resolution pixels. Because the number of aggregated
finest-resolution pixels may not be always the same (e.g.,
around the image boundary), a weighted average of the
contributions to the agreement–disagreement must be used.
The weight of each coarse-pixel is set to the number of fine-
resolution pixels that constitute it. The normalized matrix entry
at a given resolution is computed as in Eq. (4), where wn

denotes the weight for each pixel.

Pkl ¼
P

n wnpnklP
n wn

ð4Þ

Of course, this multi-resolution approach can be adopted
regardless of the type of operator employed. However, the
method to compute the matrix entries, Pkl, should remain
consistent across the resolutions. This is ensured only if the
operator satisfies the homogeneity property (Table 3). The
homogeneity property ensures that the weighted comparisons in
Eq. (4) results in normalized comparisons of weighted
membership values.
Table 4
Four basic operators

Operator ID Operator of the form a

C(snk,rnl)
Traditional
interpretation

Sub-pixel
interpretation

MIN min(snk,rnl) Fuzzy set
intersection

Maximum
overlap

SI 1� jsnk � rnlj
snk þ rnl

Similarity index Normalized
maximum

PROD snk× rnl Joint probability Expected overlap
LEAST max(snk+rnl−1,0) Minimum overlap Minimum overlap
a snk and rnk denote assessed and reference grades of class K at pixel n.
2.3. Operators for assessing sub-pixel classifications

2.3.1. The sub-pixel ontology
According to Pontius and Cheuk (2006), each cross-

comparison operator is rooted on a specific ontology of the
pixel. More specifically, a cross-comparison depends on how
the pixel–class relationship is defined and quantified. Two
major definitions for the pixel–class relationship that admit
multiple memberships have been broadly used in the land-cover
classification research. The first definition conceives this
relationship as uncertain and formalizes it through the
probability theory. The second definition conceives this
relationship as vague or ambiguous and formalizes it through
the fuzzy set theory. In both cases, the hard classification is
covered as a special case, that is when no uncertainty nor
ambiguity exists. A third pixel–class relationship, that has
received less attention (at least from the accuracy assessment
point of view, with exception of Latifovic and Olthof (2004),
relates pixel to class through a fractional land cover. This pixel–
class relationship definition implies the existence of unknown
crisp boundaries among the classes at sub-pixel level. It should
be noted that the kind of uncertainty a sub-pixel classification
represents can be related only to the positional accuracy
resolved by the sensor (pixel resolution). Soft classifications
emphasizing the thematic uncertainty, which are linked to the
impossibility of uniquely identifying a land cover category
regardless of the sensor resolution, are not being considered
here. If the uncertainty represented by a soft classification
describes vague concepts, which are characteristic of the human
reasoning, then other alternatives may be pursued (see for
instance Gopal & Woodcock, 1994).

For the sub-pixel ontology we consider that:

(1) The pixel–class relationship is defined through the sub-
pixel fraction of class coverage, and

(2) The agreement–disagreement is quantified as the propor-
tion of area overlap among the classes at sub-pixel level.

2.3.2. Basic operators
Various operators have been developed under rather distinct

pixel otologies, some of which are listed in Table 4. Some have
been considered previously within a multi-resolution frame-
work (Kuzera & Pontius, 2004; Pontius & Cheuk, 2006), and
their sub-pixel interpretation has been also discussed (Pontius &
Connors, 2006). However, the major focus has been so far on
the accuracy indices at multiple resolutions. In the present
review, we investigate their suitability for assessing sub-pixel
classifications within the context of the generalized cross-
comparison framework introduced above.

The minimum operator (MIN) is the classic fuzzy set inter-
section operator. This operator has been suggested as the natural
choice for producing cross-comparison matrices for fuzzy
classifications (Binaghi et al., 1999). In the traditional ontology
of fuzzy classifications, the pixel–class relationship describes
the admission of the possibility (given by a so-called
membership function) that the pixel is a member of a class.
This pixel–class relationship definition is useful for handling
the imprecision of meaning of concepts that are characteristic of
much of the human reasoning (Gopal & Woodcock, 1994). The
area estimation by map users is generally difficult under this
ontology (Woodcock & Gopal, 2000). In the sub-pixel fraction
ontology, the MIN operator measures the maximum sub-pixel
overlap among the classes, as demonstrated in the introductory
example. Therefore, if membership values are (linearly) related
to sub-pixel land cover areas (see e.g., Shabanov et al., 2005),
the fuzzy set intersection operator corresponds to the maximum
sub-pixel overlap between the classes. The minimum operator



Table 5
Three composite operators

Operator ID Agreement a Disagreement b (k≠ l) Sub-pixel
confusion

MIN-PROD min(snk,rnk) snkV� rnlV=
P

i rniV Constrained
expected

MIN-MIN min(snk,rnk) minðsnkV ; rnlVÞ Constrained
maximum

MIN-LEAST min(snk,rnk) maxðsnkV þ rnlV �P
i rniV; 0Þ Constrained

minimum

a snk and rnk denote the assessed and reference grades for class K at pixel n.
b sni′ and rni′ denote the over- and underestimation errors of class i at pixel n.
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satisfies all the properties outlined in Table 3. However, the
MIN matrix can overestimate the actual sub-pixel agreement–
disagreement and, consequently, the marginal sums can be
greater than the sub-pixel fractions. Also, even in the case of a
perfect match, non-null degrees of mismatch are obtained for
the off-diagonal cells. These characteristics generally limit the
matrix's utility for drawing a conclusion about the confusion
among the classes.

A variant of the MIN operator is sometimes used as a simi-
larity index (SI) for comparing soft classifications (see e.g.,
Townsend, 2000). This variant results after normalizing the
MIN operator by the sum of the grade values, and can be
expressed as shown in Table 4. The SI operator is also
meaningful for sub-pixel comparison, as it corresponds to a
normalized maximum sub-pixel overlap. Nevertheless, it does
not satisfy the homogeneity property, as it is invariant under
scaling of the grade values. A cross-comparison matrix based on
the SI operator does not satisfy the diagonalization and marginal
sums characteristics outlined above.

The product operator (PROD) arises from a pure probabi-
listic view of the pixel–class relationship. In the traditional
probabilistic ontology, the pixel–class relationship represents
the probability that a pixel (entirely) belongs to a class, and the
PROD operator gives the joint probability that the reference and
assessed pixels belong to two given classes, provided that the
pixels have been independently classified. In the sub-pixel
fraction ontology, the PROD operator measures the expected
class overlap by chance between the reference and assessed sub-
pixels partitions. More specifically, consider a randomly drawn
point from the space spanned by pixel n. Since all the points
within the pixel have the same probability to come out, then the
joint probability that the point belongs to class k in the assessed
partition and to class l in the reference partition is given by the
product snk× rnl, provided that the land-cover fractions snk and
rnl have been generated by independent processes. A cross-
comparison matrix based on the PROD operator has marginal
sums that agree with the per-class areas. However, non-null
disagreement values can result from the perfect matching case.
In fact, it does not satisfy the upper-bound and homogeneity
properties of Table 3. The latter, however, could be fulfilled if
the operator is properly normalized (see the MIN-PROD
composite operator below). The use of this operator for the
assessment of soft classifications has been demonstrated in
(Lewis & Brown, 2001), and its counterintuitive characteristics
have been illustrated in Pontius and Cheuk (2006).

A LEAST operator was recently incorporated in the
discussion of sub-pixel comparison of maps (Pontius &
Connors, 2006). The expression for the LEAST operator is
given in Table 4. As demonstrated in the introductory example,
this operator measures the minimum possible sub-pixel overlap
between two classes. Even though this operator is meaningful
for sub-pixel accuracy assessment, it may be of little use for
other contexts, as it has even more counterintuitive character-
istics than the PROD operator. Specifically, this operator fails to
fulfill all but the commutativity and nullity properties from
Table 3. As with the PROD operator, the homogeneity property
could be met by a modified LEAST operator that relaxes the
sum-to-unit constraint (see the MIN-LEASTcomposite operator
below).

2.3.3. Composite operators
None of the basic operators above satisfy the diagonalization

characteristic discussed in Section 2.2. Indeed, in order for an
operator to exhibit the diagonalization characteristic, it must
conform to Eq. (1). This type of operator is referred to as
composite. The formalism in Table 3 is then useful for guiding
the selection of potential composite operators for general soft
classifications. For example, the only operator from Table 4 that
satisfies all the basic properties in Table 3 for an agreement
measure is the MIN operator. The uniqueness of the MIN
operator as an agreement measure is also evidenced in Eqs. (2)
and (3), where over- and underestimation errors are given in
terms of the MIN operator. Here, we consider only three
composite operators that use the MIN operator as agreement
measure. They are referred to as MIN-PROD, MIN-MIN and
MIN-LEAST, respectively. These are defined in Table 5.

The MIN-PROD composite operator was recently proposed
by Pontius and Cheuk (2006). It uses the minimum operator for
the diagonal cells and a normalized product operator for the off-
diagonal cells, thus combining the fuzzy set view with the
probabilistic view. Expressions for the agreement and disagree-
ment from this composite operator are presented in Table 5. This
operator satisfies the basic properties of Table 3. In addition, the
MIN-PROD matrix satisfies the diagonalization and marginal
sums characteristics. The interpretation of the composite
operator in the context of sub-pixel agreement–disagreement
is aligned with an assumption of maximum overlap between
corresponding categories (diagonal cells), followed by the
allocation of the residual sub-pixel fractions onto the other
categories (off-diagonal cells). The disagreement measure
corresponds to the expected overlap by chance constrained to
the unmatched sub-pixel fraction. Specifically, the disagreement
between two membership values, snk and rnl, corresponds to the
joint probability that a randomly drawn point within the space
spanned by the unmatched fraction, 1−Σi min(sni,rni), of pixel
n, belongs to classes k and l in the residual class fractions snk−
min(snk,rnk) and rnl−min(snl,rnl) of the assessed and reference
pixels, respectively.

The MIN-MIN composite operator uses the minimum
operator for both agreement and disagreement. However, it
differs from the MIN operator in that it assigns agreement in a



Table 6
Sub-pixel confusion interval matrices for three cases: perfect matching (a),
underestimation with unique solution (b), and underestimation without unique
solution (c)

Class Reference CPA

1 2 3 4

a)
1 [0.4,0.4] [0,0] [0,0] [0,0] 0.4
2 [0,0] [0.3,0.3] [0,0] [0,0] 0.3
3 [0,0] [0,0] [0.2,0.2] [0,0] 0.2
4 [0,0] [0,0] [0,0] [0.1,0.1] 0.1
CPR 0.4 0.3 0.2 0.1 1.0

(b)
1 [0.3,0.3] [0,0] [0,0] [0,0] 0.3
2 [0,0] [0.2,0.2] [0,0] [0,0] 0.2
3 [0.1,0.1] [0.1,0.1] [0.2,0.2] [0,0] 0.4
4 [0,0] [0,0] [0,0] [0.1,0.1] 0.1
CPR 0.4 0.3 0.2 0.1 1.0

(c)
1 [0.3,0.3] [0,0] [0,0] [0,0] 0.3
2 [0,0] [0.1,0.1] [0,0] [0,0] 0.1
3 [0,0.1] [0.1,0.2] [0.2,0.2] [0,0] 0.4
4 [0,0.1] [0,0.1] [0,0] [0.1,0.1] 0.2
CPR 0.4 0.3 0.2 0.1 1.0

CPR and CPA are class proportion from reference and assessed pixels,
respectively.
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first step and then, in a second step, it computes the
disagreement based on the over- and underestimation errors.
Table 5 shows the expressions for agreement and disagreement
from this composite operator. The MIN-MIN composite
operator satisfies all the properties outlined in Table 3. In
addition, it leads to a cross-comparison matrix that satisfies the
diagonalization property. However, it does not warrant the
marginal sum characteristic. Marginal totals of a MIN-MIN
matrix will, generally, overestimate the class proportions from
the reference and assessed datasets because the MIN operator,
used for computing the off-diagonals cells, accounts for the
maximum possible overlapping area among the residual
fractions at sub-pixel level. In this sense, the disagreement
measure from the MIN-MIN operator provides an upper bound
for the possible sub-pixel overlap constrained to the unmatched
sub-pixel fraction.

The MIN-LEAST composite operator uses the MIN operator
for the diagonal cells and a re-normalized LEAST operator for
the off-diagonal cells. Table 5 shows the expressions for
agreement and disagreement from this composite operator.
While the agreement measure satisfies all the properties of
Table 3, the disagreement measure does not satisfy the required
positivity property. The MIN-LEAST operator produces a
diagonal matrix for a perfect matching case. However, sub-pixel
areas from the reference and assessed datasets are generally
underestimated by marginal totals. This is because the
disagreement measure corresponds to the minimum possible
sub-pixel overlap constrained to the unmatched sub-pixel
fraction. Specifically, the re-normalized LEAST operator
determines the excess of the sum of two residual class fractions,
snk−min(snk,rnk) and rnl−min(snl,rnl), respect to the unmatched
pixel fraction, 1−Σi min(sni,rni).

3. The sub-pixel confusion–uncertainty matrix

3.1. Sub-pixel confusion intervals

The preceding review of potential cross-comparison matrices
for assessing sub-pixel classifications has shown that: 1) a
composite operator is necessary to warrant the diagonalization
characteristic, and 2) the MIN operator is the most appropriate
candidate for agreement measure. It is worth noting that the use
of a MIN operator for allocating sub-pixel proportions along the
diagonal cells accounts only for the agreement at pixel level,
i.e., the possible spatial distribution of classes within the pixel is
not taken into account, but only the sub-pixel area proportions
are matched. In contrast, the sub-pixel disagreement can take
into account the possible spatial distribution of classes within
the pixel. Nevertheless, there is no unique way to exactly
allocate the remaining sub-pixel proportion into the off-
diagonal cells. Specifically, the sub-pixel area allocation
problem remains underspecified, as there are more unknowns
(K2−K off-diagonals elements) than equations (2K constraints
from column and row totals). Some exceptions occur, for
example, if K=2 or K=3. One possibility is to use the statistical
center of possible confusions, as given by the MIN-PROD
composite operator. However, the sub-pixel distribution
uncertainty could not be accounted in this way. An alternate
solution is proposed here that uses the confusion intervals,
[Pkl

MIN-LEAST,Pkl
MIN-MIN], formed by the MIN-LEAST and MIN-

MIN operators. These intervals express the possible confusions
among the classes. As demonstrated below, if there is a unique
solution to the area allocation problem, then these intervals are
tight (i.e., the lower and upper bounds of each confusion
interval have the same value). In this case, the three composite
operators of Table 5 lead essentially to the same confusion
matrix.

3.1.1. A simple example
In order to illustrate the use of the confusion intervals,

consider a reference pixel belonging to classes 1, 2, 3, and 4 with
membership values r1=0.4, r2=0.3, r3=0.2 and r4=0.1, respec-
tively. Consider also the following three cases of assessed pixels:

(a) Perfect matching: s1=0.4, s2=0.3, s3=0.2, s4=0.1
(b) Non-perfect matching 1: s1 =0.3, s2 =0.2, s3 =0.4,

s4=0.1
(c) Non-perfect matching 2: s1 =0.3, s2 =0.1, s3=0.1,

s4=0.2

The fundamental difference between the cases (b) and (c) is
in the number of overestimated classes (one and two over-
estimated classes, respectively). The sub-pixel confusion
intervals for cases (a)–(c) are shown in Table 6(a)–(c),
respectively. Notice that the sub-pixel area allocation problem
is uniquely determined for cases (a) and (b), as the maximum
and minimum confusions are the same. However, it cannot be



Table 7
MIN-PROD matrix for case (c) of Table 6

Class Reference Row total

1 2 3 4

1 0.30 0.00 0.00 0.00 0.30
2 0.00 0.10 0.00 0.00 0.10
3 0.07 0.13 0.20 0.00 0.40
4 0.03 0.07 0.00 0.10 0.20
Col. tot. 0.40 0.3 0.2 0.10 1.00

Values are rounded to two decimals.

Table 9
Sub-pixel confusion–uncertainty matrix, where marginal totals have been
replaced by the class proportions from the reference (CPR) and assessed (CPA)
datasets

Class Reference CPA

Class 1 Class 2 … Class K

Class 1 P11 P12±U12 … P1K±U1K s+1
Class 2 P21±U21 P22 … P2K±U2K s+2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Class K PK1±UK1 PK2±UK2 … PKK s+K
CPR r+1 r+2 … r+K N
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uniquely resolved for case (c), where the minimum and
maximum confusions of class 1 and class 2 with class 3 are
not the same. What this matrix says is, for instance, that class 2
is confounded with class 3 in at least 0.1 ([0.1,0.2]), whereas
class 1 might not be confounded at all with class 3 ([0,0.1]).
Table 7 shows the MIN-PROD matrix for case (c). As pointed
out before, the confusion values provided by the MIN-PROD
operator must be considered as the expected confusion by
chance, i.e., it represents a statistical center for all possible
confusions; whereas the confusion interval defines the uncer-
tainty associated to the sub-pixel confusion.

3.1.2. Tight confusion intervals
Since a confusion interval involves the notion of uncertainty

on the confusion, it is natural to inquire under which
circumstances the confusion intervals would be tight for an
arbitrary number of classes. Here it is shown that if no more
than one class is either over- or underestimated at each single
pixel, then the sub-pixel area allocation problem can be
uniquely resolved. Not surprisingly, this unique-solution
scenario includes any of the following cases: 1) there is a
perfect match, 2) there are no more than three classes, 3) at least
one of the datasets is crisp.

Consider the n-th reference and assessed pixels with
membership values rnk and snk, respectively, of belonging to
class k, for k=1,…,K, where KN1. If no class is underestimated
nor overestimated, then there is a perfect match, and the proof
for tight intervals is straightforward. The analysis when only
one class is underestimated follows. Assume underestimation
for class i at pixel n, so that snib rni and snk≥ rnk for k≠ i. The
contributions to the diagonal elements, from both the MIN-
LEAST and MIN-MIN operators, will be rnk, at row k≠ i, and
sni, at row i. Then, the contribution to the confusion intervals for
Table 8
Contribution of the n-th pixel to the upper and lower bounds of the confusion
intervals for K classes, when only class i is underestimated

Class 1 2 … i … K−1 K Row total

1 rn1 0 … sn1− rn1 … 0 0 sn1
2 0 rn2 … sn2− rn2 … 0 0 sn2
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮
i 0 0 … sni … 0 0 sni
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ 0 ⋮
K−1 0 0 … snK−1−rnK−1 … rnk−1 0 snK−1
K 0 0 … snK−rnK … 0 rnK snK
Col. tot. rn1 rn2 … rni … rnK−1 rnK 1
columns l≠ i becomes zero. Whereas the contributions to the
lower and upper bounds of the confusion interval, at column i row
k≠ i, becomemax(snk−rnk,0)=snk−rnk andmin(snk−rnk,rni−sni)=
snk−rnk, respectively. The latter equality can be concluded from
the sum-to-unity constraint. Table 8 shows the form of the
contribution by the n-th pixel to both the upper and lower bounds
of the matrix. A similar matrix can be obtained when only one
class is overestimated, wherein only one row has non-null
elements in the off-diagonal positions. Therefore, the confusion
intervals are tight if at most one class is either overestimated or
underestimated on a per-pixel basis.

3.2. Sub-pixel confusion–uncertainty matrix

In practice, it is convenient to express each confusion
interval in the form Pkl±Ukl, where Pkl and Ukl are the interval
center and the interval half-width, respectively. These are
computed as indicated by Eqs. (5) and (6), respectively.

Pkl ¼ PMIN�MIN
kl þ PMIN�LEAST

kl

2
ð5Þ

Ukl ¼ PMIN�MIN
kl � PMIN�LEAST

kl

2
ð6Þ

This notation is preferred, as it provides a center value and
allows documenting explicitly its associated uncertainty,1

which in turn is necessary for further error propagation analysis.
By extension to our definitions, row marginal sum, column
marginal sum, and total sum from uncertainty values are defined
as Uk+=ΣlUkl, U+l=ΣkUkl, U++=ΣkΣl Ukl, respectively.

Eq. (5) defines an operator that satisfies all the basic
properties in Table 3. This operator leads to a matrix that
exhibits the diagonalization characteristic. However, it does not
warrant the marginal sum characteristic. A typical way to
circumvent this inconvenience has been the use of the total
membership grades from the reference and assessed datasets in
place marginal totals (Binaghi et al., 1999). Examples of this
kind of cross-tabulations are shown in Table 6(a)–(c) and, more
formally, in Table 9. In this way, the accuracy indices of Table 2
(b) are readily generalized, where row and column totals are
simply replaced by the corresponding total membership grade.
1 The half-width of the confusion interval is termed the uncertainty, as it
reflects the uncertain nature of the sub-pixel distribution of classes.



Table 10
General structure of the SCM (a) and derived sub-pixel accuracy–uncertainty
indices (b)

(a)

Class Reference Row total

Class 1 Class 2 … Class K

Class 1 P11 P12±U12 … P1K±U1K P1+±U1+

Class 2 P21±U21 P22 … P2K±U2K P2+±U2+

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Class K PK1±UK1 PK2±UK2 … PKK PK+±UK+

Col. tot. P+1±U+1 P+2±U+2 … P+K±U+K P++±U++

(b)

Sub-pixel accuracy index Center Uncertainty

Overall accuracy, OAs Pþþ
P

k
Pkk

P2
þþ�U2

þþ

Uþþ
P

k
Pkk

P2
þþ�U2

þþ

k-th User Accuracy,
UAs(k)

PkkPkþ
P2
kþ�U2

kþ

PkkPkþ
P2
kþ�U2

kþ

k-th Producer Accuracy,
PAs(k)

PkkPþk

P2
þk�U2

þk

PkkUþk

P2
þk�U2

þk

Kappa coefficient, κs
ðP0�PeÞð1�PeÞ�ð⁎U0þUeÞUe

ð1�PeÞ2�U2
e

⁎ð1�PoÞUeþð1�PeÞU0

ð1�PeÞ2�U2
e

Row and column totals of the SCM are determined as sum of center values (Pkl)
plus–minus sum of uncertainty values (Ukl). The observed proportions of
agreement (Po±Uo) correspond to the overall accuracy (OAs), whereas the
expected proportion of agreement (Pe±Ue) is given by Eqs. (7) and (8).
⁎=sign of (1−Po−Uo)(1−Pe−Ue).

2 This expression can be derived by applying the identity min(a,b)=(a+b− |a−
b|) /2.
3 The same result is obtained if the assessment is based on Table 9.
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Unfortunately, the accuracy indices so-derived cannot reflect
the uncertainty of the confusion as they do not depend on the
off-diagonal cells. Notice that diagonal cells in Table 9 does not
provide U-values. Since the U-values reflect the sub-pixel
distribution uncertainty, which is not considered for the
agreement, these are zeros for the diagonal cells.

Another possibility, which is pursued here, is to consider
column and row totals as intervals (Table 10(a)). These intervals
can be used to derive intervals of accuracy indices that reflect the
uncertain nature of classes sub-pixel distribution. Table 10(a)
shows the general structure of the proposed sub-pixel confu-
sion–uncertainty matrix (SCM).

3.3. Derived accuracy–uncertainty indices

Table 10(b) shows the expressions of derived accuracy–
uncertainty indices based exclusively on values from Table 10
(a). These expressions represent generalizations from traditional
single-valued accuracy indices to intervals, which are expressed
in the form of a center value plus–minus maximum deviation
(or uncertainty). For instance, the definition of the kappa
coefficient interval (κs) is based on the definition of the
traditional kappa coefficient of agreement (Cohen, 1960, see
Table 2(b)), where the overall accuracy interval (OAs) was
considered as the observed proportion of agreement; this is
specified in the form Po±Uo. Likewise, the expected proportion
of agreement was determined in terms of marginal totals and
overall total from the SCM and specified in the form Pe±Ue.
The explicit expressions for the expected proportion's center
value and uncertainty are given in Eqs. (7) and (8), respectively.
The uncertainties from both the observed and expected
proportions of agreement are propagated onto the kappa
coefficient, which results in an interval of kappa coefficients
specified through a center value and its associated uncertainty,
as given in Table 10(b).

Pe ¼
X
k

ðP2
þþ þ U2

þþÞðPþkPkþ þ UþkUkþÞ � 2PþþUþþðUþkPkþ þ PþkUkþÞ
ðP2þþ � U 2þþÞ2

ð7Þ

Ue ¼
X
k

2PþþUþþðPþkPkþ þ UþkUkþÞ � ðP2
þþ þ U2

þþÞðUþkPkþ þ PþkUkþÞ
ðP2þþ � U2þþÞ2

ð8Þ

The new accuracy–uncertainty indices must be interpreted as
approximations to the traditional ones. Such approximations are
in the order of the associated uncertainties. As a matter of fact,
in the absence of uncertainty, the expressions for their center
values are similar to those of Table 2(b). Interestingly, in the
limit when uncertainty tends to zero, the overall accuracy (OAs)
can be interpreted as a complimented distance between
membership values, as stated by Eq. (9).2

OAs ¼ 1� 1
2N

X
k

X
n

jrnk � snk j ð9Þ

3.3.1. A simple example
The following example illustrates the utility of the accuracy–

uncertainty indices. As before, consider a reference pixel be-
longing to classes 1, 2, 3, and 4 with membership values r1=0.4,
r2=0.3, r3=0.2 and r4=0.1, respectively. This time, we want to
compare the accuracy of the following two classified pixels:

(a) No uncertainty: s1=0.2, s2=0.3, s3=0.4, s4=0.1
(b) Uncertainty: s1=0.3, s2=0.4, s3=0.1, s4=0.2

Notice that the maximum classification error committed in
case (b) is lower than in case (a). Therefore, one should expect
higher accuracy for case (b) than for case (a). Furthermore, in
case (a) the errors are concentrated in two classes (class 1 and
class 3), whereas in case (b) the errors are evenly distributed
among the four classes. Since the source of errors can be
attributed to a larger number of sub-pixel confusions, one
should expect the error uncertainty (and thus the accuracy
uncertainty) to be higher for case (b) than for case (a). However,
these observations could not be revealed through the traditional
indices. Specifically, if the assessment is based on the MIN-
PROD operator3, an overall accuracy of 80% is obtained for
both case (a) and case (b). Indeed, the kappa values obtained for
case (a) (0.7297) and case (b) (0.7222) are even counter-
intuitive. In contrast, if the SCM is applied, an overall fuzzy
accuracy of 80%±0% (κs=0.7297±0) results for case (a) and
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83.33%±16.67% (κs =0.7778±0.2222) for case (b), thus
agreeing with the reasoning above. In sum, the accuracy–
uncertainty indices from the SCM are able to differentiate
between sub-pixel classifications having distinct error distribu-
tions, even in the case they have the same overall accuracy.
Evidently, the larger the uncertainty of an index is, the less
useful the center value will be.

4. Application of the SCM to real datasets

The SCM was used for assessing two datasets derived from
remote sensing techniques. The first example involves the
multi-resolution assessment of an invasive species detection
method by hyper-spectral remote sensing. The second example
illustrates the use of the SCM and derived indices for assessing
sub-pixel proportions of urban land use/land cover from fuzzy
Fig. 2. Study site along the middle Rio Grande River (left), classification m
classifications of landsat imagery. In both cases, we have used
the MIN-PROD operator as a benchmark of the proposed SCM.

4.1. Invasive species detection data

The first study site is located in the central transect of the Rio
Grande River near Presidio, Texas (Fig. 2-left). The Rio Grande
River is the second longest river system in the United States and
southern Texas’ major source of water. One of the region's
critical problems has been the invasion of water ways by the
noxious species Tamarix chinensis Laur and Tamarix Ramo-
sissima Ledeb, commonly referred to as tamarisk or saltcedar
(Baum, 1967; Everitt & DeLoach, 1990; Hart et al., 2005).
Saltcedar is a deciduous shrub (up to 9 m in height when
mature) that has invaded riparian sites of the southwestern
United States and northern Mexico. This invasive shrub brings
ap (center) and reference plots used for the accuracy assessment (right).



1091J.L. Silván-Cárdenas, L. Wang / Remote Sensing of Environment 112 (2008) 1081–1095
several critical problems to invaded ecosystems. It grows faster
than many native plants and can quickly form near monocul-
ture, out-competing native plants, such as cottonwood (Populus
spp.) and willow (Salix spp.) communities for sunlight,
moisture, and nutrients.

An image of the study site was acquired by means of the
airborne hyperspectral imaging system AISA in December,
2005. The acquisition date corresponds to the season when
saltcedar's foliage turns a yellow-orange to orange-brown color
before leaf drop, and thus, can be more easily distinguished
from native species such as honey mesquite and false willow
(Everitt & DeLoach, 1990). The AISA data used here consists
of 61 bands with spectral bandwidth of around 10 nm,
wavelength centers evenly distributed from 401 to 981 nm,
and spatial resolution of 1 m. A feature selection strategy, based
on linear discriminant analysis, was applied to reduce the total
number of bands to seven. The reduced dataset was then
classified through a supervised maximum likelihood classifica-
tion that was trained with GPS points collected on the field for
Fig. 3. Study site in Houston, Texas and Landsat
up to 16 land cover types. The classified image was finally
aggregated to 6 categories (Fig. 2-center), where the label of the
most representative category was kept.

A reference dataset for the multiresolution assessment was
generated through manual delineation of up to 16 land cover
types over nine plots of 128-by-128 m (Fig. 2-right). The
delineation of plot 4 was supported with intensive field work,
whereas the delineation of other plots was based mainly on
visual interpretation of true-color and visible-infrared compos-
ite displays. Nevertheless, the uncertainty introduced by the
visual interpretation was assumed negligible given the high
spatial and spectral quality of the image employed. Class
merging was also carried out in order to match the reference
data to the classification system of the assessed image.

4.2. Urban land use-land cover data

A second study site was selected in the eastern metropolitan
area of Houston, Texas (Fig. 3), covering an area of 1200 km2.
ETM+ imagery acquired on January 2, 2003.
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The typical land use/land cover classes in this study site include:
residential area, commercial/industrial area, transportation,
woodland, grassland, and barren/soil. A subset image from
Landsat 7 ETM+ (path 25, row 39) acquired on January 2, 2003
was employed in this study. A bundled IKONOS image,
comprising a 1-meter panchromatic and a 4-meter multispectral
image, that were acquired on January 2, 2002, were adopted as
references for choosing the training samples for the different
classes as well as the test samples of known fractions from
Landsat ETM+. In order to reduce errors due to spatial
Fig. 4. Multi-resolution agreement (a) and disagreement (b) plots for Saltcedar class
dashed line represents the MIN-PROD confusion.
misalignment, the original Landsat imagery was geo-referenced
using the IKONOS geometry, which had better spatial accuracy.
A registration accuracy under half pixel (as given by the RMSE)
was attained for the Landsat dataset.

The fuzzy supervised classification was derived from the
traditional supervised classification by softening the output of
conventional hard classifiers (Richards & Jia, 1999). The
training and test samples for the six classes were selected from
the Landsat ETM+ image by referring to the IKONOS image
with the help of field checks. Each class has thirty training plots
. Shaded area represents uncertainty, the solid line represents interval center and



Table 11
Urban LULC classification assessment: SCM (a), MIN-PROD matrix (b), and
per-class accuracy measures based on each matrix (c)

Class Residential Commercial/
Industrial

Transport Other Row total

(a)
Res 13.78±0.00 0.63±0.63 4.83±0.63 1.73±0.00 20.98±1.27
C/I 0.03±0.03 5.54±0.00 1.87±0.03 0.22±0.00 7.66±0.06
Tra 0.04±0.04 0.74±0.04 2.20±0.00 0.00±0.00 2.98±0.08
Oth 13.70±0.07 11.91±0.67 37.24±0.66 61.05±0.00 123.90±1.41
CT 27.55±0.14 18.83±1.35 46.14±1.33 63.00±0.00 155.52±2.82

(b)
Res 13.78 0.52 4.94 1.73 20.98
Com 0.02 5.54 1.88 0.22 7.66
C/I 0.02 0.77 2.20 0.00 2.98
Oth 13.73 12.00 37.12 61.05 123.90
CT 27.55 18.83 46.14 63.00 155.52

(c)
SCM MIN-PROD %RMSE

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Res 50.0±0.3 65.9±4.0 50.0 65.7 16.5
Com 29.6±2.1 72.3±0.6 29.4 72.3 15.6
Tra 4.8±0.1 73.8±2.0 4.8 73.7 28.4
Oth 96.9±0.0 49.3±0.6 96.9 49.3 40.3

OAs=53.11±0.96% OA=53.09%
κs=26.89±2.29% κ=26.90%

Matrix entries represent areas in hectares.
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and every training plot covers 90×90 m2. This sampling unit is
comprised by a 3-by-3 pixel window of the Landsat image, and
was chosen in place of individual pixels to reduce the influence
of the positional accuracy of the pixel boundaries. Considering
the statistical requirement and the size of our study area, around
200 random sample plots in 90×90 m2 were selected from the
IKONOS image using ERDAS Imagine accuracy assessment
module. For each sample unit, the corresponding actual land
use classification was acquired through digitizing the IKONOS
image. The actual fractions of each landscape class in the
sample units were obtained through dividing the class area by
the total area of one sample plot.

5. Results

5.1. Multi-resolution assessment of an invasive species
detection method

The SCM was built from land-cover fractions within pixels
of increasing size, where pixel sizes of 1, 2, 4, 8, 16, 32, 64,
and 128 m were considered. We extracted the row and column
that correspond to the Saltcedar category from each cross-
comparison matrix. Plots of the agreement and disagreement
values for Saltcedar class are shown in Fig. 4(a), and (b),
where the pixel size is in logarithmic scale. The agreement
oscillates from 65.2% at the finest resolution to 73.4% at the
coarsest resolution. The disagreement is presented as per-
class confusion of two types (Fig. 4(b)): Omission errors (off-
diagonals on the column) and Commission errors (off-
diagonals on the row). The omission curves correspond to
the area percentage of Saltcedar that was classified as other
categories, whereas the commission curves correspond to the
area percentage of other categories that were classified as
Saltcedar. The possible confusions defined by the confusion
intervals across the resolutions are represented by the shaded
areas, and the expected disagreement as given by the com-
posite operator is also represented for comparison purposes.

Not surprisingly, the disagreement curves reveal that the
most problematic categories for saltcedar detection are of
vegetation type. The confusions of Saltcedar class with Water
and Soil classes, as well as the confusions of Water and Soil
classes with Saltcedar class, remain low across all the
resolutions (below 2% in most cases). The most problematic
category for saltcedar detection seems to be the labeled as
Mesquite. This category includes honey mesquite, poverty
weed, false willow and some other bushes and weeds. Both
omission and commission errors are high (with highest values
around 14% and 19%, respectively), yet with low relative
uncertainty across the resolutions (under 1.4% and 3.3%,
respectively). A drop in the confusion (especially of omission
type) with the Mesquite category toward coarser resolutions
implies that misclassifications are more related to location errors
than to quantity errors (Pontius, 2002). These location errors
could be due to mixed pixels of Saltcedar and Mesquite
categories, perhaps due to the influence of under story vege-
tation. The confusion with Creosote Bush and Herbaceous
categories is mostly of commission type, indicating a substantial
contribution to quantity errors. The reason for this commission
error is that the spread of saltcedar reflectance during the
dormant phenological stage tends to be higher than that of
mesquite and false willow (Everitt & DeLoach, 1990), thus
causing certain dry vegetation, such as johnson grass, creosote
bush and marsh weed, to be mistaken as saltcedar. The
increasing uncertainty toward coarser resolutions indicates
that the overestimation of saltcedar's fractions become equally
explained by the underestimation of that category (i.e., Creosote
Bush or Herbaceous) and the underestimation from remaining
categories.

5.2. Assessment of an urban land use soft classification

Table 11(a) and Table 11(b) show the SCM and the MIN-
PROD operator, respectively, where categories Woodland,
Grassland and Barren/Soil have been grouped in a single
(Other) category to save space. Proportions were multiplied by
the total area of one sample plot (in hectares) and rounded to
two decimals to reflect the actual area while facilitating
readability. Table 11(c) presents the summary accuracy
measures based on both the SCM and the MIN-PROD operator.
For comparison purposes, the root mean square error (RMSE)
was also computed on a per-class basis (Eq. (10)) and multiplied
by 100%. These are also shown in Table 11(c).

RMSEk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
n

ðrnk � snkÞ2
s

ð10Þ
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There is great similitude in the confusion values conveyed by
both matrices. The SCM shows the associated sub-pixel
confusion uncertainties, which are relatively low (the overall
uncertainty of 2.82 ha represents just around 3.5 sample plots).
The information conveyed by each uncertainty must be
interpreted as sub-pixel land cover proportions. For example, of
the total area observed for Commercial/Industrial land use type
through IKONOS, around 0.63, 0.74 and 11.91 ha were
misclassified as Residential, Transportation and Other land
uses, respectively, when the fuzzy classification of Landsat was
adopted. However, the maximum errors that can be committed
with these estimations are 0.63, 0.04 and 0.67 ha, respectively. It
is also noticeable the great similarity of user and producer
accuracies determined frombothmatrices. The producer accuracy
for category Other is both the highest and the least uncertain. This
result seems to contradict the fact that this class also exhibits the
highest RMSE. The issue is resolved if the user accuracy is also
taken into account. Notice that the overall classification
performance, as given by the SCM-based kappa (26.89%), is
similar to that determined from the MIN-PROD operator
(26.90%), yet the uncertainty associated with the former (2.29)
reveals the relatively low uncertainty on the sources of error.

6. Discussion and conclusions

Determining land cover information accurately from remote
sensing is crucial to understand several ecological and environ-
mental processes occurring at a range of scales. Since the spatial
pattern of land cover information can be smaller than the sensor
footprint, soft classifications offer a flexible way to infer sub-
pixel land cover information. However, the accuracy assessment
of these representations has been recognized to be far more
difficult than traditional crisp classifications (Foody, 2002). A
great variety ofmeasures derived from the traditional error matrix
exists for describing the accuracy of crisp classifications
(Congalton, 1991; Congalton & Green, 1999; Stehman &
Czaplewski, 1998). These measures in turn have been adapted
and used to assess soft classification (Binaghi et al., 1999;
Latifovic & Olthof, 2004; Okeke & Karniele, 2006; Pontius &
Cheuk, 2006). In the crisp case, most of these measures have a
statistical interpretation, but the implications of their generaliza-
tion to fuzzy domains is rarely discussed. Moreover, in spite of
the substantial number of suggestions for assessing soft
classifications reported in the literature (Binaghi et al., 1999;
Foody, 1995; Gopal & Woodcock, 1994; Latifovic & Olthof,
2004; Lewis & Brown, 2001; Pontius & Cheuk, 2006; Pontius &
Connors, 2006; Townsend, 2000), the utility and interpretation of
the interclass confusion in the context of sub-pixel land cover
information extraction had not been addressed explicitly.

In this paper, we have shown that the fuzzy confusion thicket
can be unravelled when membership values correspond to land
cover fractions, and the agreement and disagreement are defined
in terms of the amount of sub-pixel overlap among the reference
and assessed pixels. For the cross-comparison report to be useful
for identifying a perfect match between the reference and
assessed data, it was necessary to constrain the agreement
measure at the pixel level. In the most general case, it was shown
that there is no analytical way to determine uniquely the actual
confusion based solely on the information of land cover fractions.
This problem was termed the sub-pixel area allocation problem.
A recently introduced MIN-PROD composite operator (Pontius
& Cheuk, 2006) seemed meaningful for assessing sub-pixel
classifications, however, it provides one of (possibly) infinite
number of solutions to the sub-pixel area allocation problem.
That solution corresponds to the expected sub-pixel class overlap
constrained to the unmatched sub-pixel fraction. Two new
composite operators (MIN-LEAST and MIN-MIN) were intro-
duced to provide the minimum and maximum possible sub-pixel
class overlap constrained to the unmatched sub-pixel fraction.
The intervals defined by these operators are arranged within a
matrix, in the form of a center value plus–minus its uncertainty,
termed the sub-pixel confusion–uncertainty matrix (SCM). We
showed that all the confusion intervals are tight (i.e., no confusion
uncertainty exists) when at most one class is either under- or
overestimated at each pixel. Only in these circumstances, the
SCM results in the MIN-PROD composite operator-based cross-
comparison matrix. This is certainly the case when at least one of
the compared sets is crisp, or when the number of classes is less
than four. Therefore, uncertainty-free matrices can result often
provided that there are many remote sensing methods for
producing soft classifications in which only three classes may
suffice for describing a wide variety of land cover characteristics
(Carpenter et al., 1999; Milton, 1999; Roberts et al., 1993; Small,
2004). This result is also convenient for the common practice of
assessing continental and global products through moderated
resolution images. In this case, crisp classification from coarse
resolution images are assessed using fractions derived from
moderate resolution images (Latifovic & Olthof, 2004). It is also
relevant for applicationswhere reference data cannot be acquired,
as in the case of historical data. In such cases, the hardened
version of a fuzzy classification can be assessed using the fuzzy
values (Okeke & Karniele, 2006). Indeed, the SCM results in the
traditional confusion matrix if both datasets are crisp.

Traditional accuracy indices were also generalized to
account for the sub-pixel distribution uncertainty. The practical
use of the new cross-comparison matrix and the derived indices
was demonstrated in assessing the invasive species detection
through remote sensing procedures and the fuzzy classification
of urban land use/land cover. In the former case, a multi-
resolution approach was used to infer the error distribution
within pixels of increasing sizes. The multi-resolution approach
matches naturally the interpretation of membership values as
sub-pixel land cover fractions, and is useful to describe how
well the classes are clustered spatially (Pontius & Cheuk, 2006).
Thus, it incorporates a spatial component to the traditional
single-scale analysis made through the confusion matrix, and
enables the potential to discern among distinct error distribu-
tions, an issue that has been risen as a major research challenge
in the remote sensing field (Foody, 2002).

We believe that the SCM could be potentially useful in
assessing soft classifications of a more general nature, but the
analyst must be cautious when membership values cannot be
interpreted as land cover fractions. Evidently, when applied to a
more general case, the interpretation of the SCM entries in the
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context of sub-pixel comparison are irrelevant. One should
notice that the result for tight confusion intervals (Section 3.1.2)
does not presuppose interpreting membership values as sub-
pixel fractions, and its validity holds as long as membership
grades satisfy the sum-to-one constraint. The user of the SCM
should be also aware of the implications of co-registration
inaccuracies. In the examples shown here, we have strived for
reducing the effects of misalignment between the reference and
assessed datasets; however, the impact of the positional
accuracy on the confusion intervals remains an issue.

Given the remarkably higher interest on classification
agreement, as compared to classification disagreement, we
make a call for considering the confusion information, as well
as the uncertainty information, provided by the SCM for
improving soft classification products. While map accuracy is
a central issue from a user perspective, map errors are the key
for improving production methods. For instance, Carpenter
et al. (1999) adopted the well-known root mean square error
(RMSE), between predicted and actual cover proportions of
vegetation types, as a measure of performance for three pre-
diction methods tested. Based on the RMSE values alone, they
conclude that the ARTMAP neural network was superior to
maximum likelihood classifier and linear mixture models.
Studies like this might benefit from the SCM by providing
detailed information on the sub-pixel confusion and uncertainty.
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