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Abstract: Accurate and reliable information on the spatial distribution of mangrove
species is needed for a wide variety of applications, including sustainable manage-
ment of mangrove forests, conservation and reserve planning, ecological and
biogeographical studies, and invasive species management. Remotely sensed data
have been used for such purposes with mixed results. Our study employed an object-
oriented approach with the use of a lacunarity technique to identify different man-
grove species and their surrounding land use and land cover classes in a tsunami-
affected area of Thailand using Landsat satellite data. Our results showed that the
object-oriented approach with lacunarity-transformed bands is more accurate (over-
all accuracy 94.2%; kappa coefficient = 0.91) than traditional per-pixel classifiers
(overall accuracy 62.8%; and kappa coefficient = 0.57). 
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INTRODUCTION

Mangrove forests, found in intertidal zones in the tropics and subtropics, are
among the most productive ecosystems of the world. The forests often form conspicu-
ous zones or bands of species. The zonation is associated with a number of external
factors, including tidal inundation, land elevation, seedling dispersal, and soil condi-
tion with regard to nutrient availability, oxygen deficiently, and salinity, but the domi-
nating factor may vary in different parts of the world. There are six categories of
hypotheses to explain the zonation: (1) land building and plant succession (Davis,
1940); (2) geomorphological influences (Thom, 1967); (3) physio-chemical gradients
and zonation; (4) propagule dispersal and zonation (Rabinowitz, 1978), (5) propagule
predation and forest structure (Smith, 1987; McKee, 1995), and (6) competition and
forest structure (Ball, 1980). 

The complex nature of mangroves’ root systems recycles nutrients and traps
debris as well as suspends sediments and solids that are brought to the coast by
streams and rivers. The forests and their complex root systems also provide preven-
tion against shoreline erosion. Different kinds of mangrove species function as an
irreplaceable aquatic ecosystem for feeding and serving as nursery grounds for many
ecologically and economically valuable living aquatic resources and organisms,
including oysters, algae, barnacles, sponges, fish, shellfish, prawns, and crabs. Man-
grove forests also function as an important habitat for the health of near-shore ecosys-
tems such as seagrass beds and coral reefs. Wang et al. (2004b) reported that the
spatial arrangements of component species in mangrove forests are often differen-
tially distributed with distance from the water’s edge. They usually form zones of
differing mangrove species compositions vertical to the intertidal rise. 

As stated earlier, there are significant economic and ecological values in man-
grove habitats. The mangrove forests, however, are declining at an alarming rate—
perhaps even more rapidly than inland tropical forests (Aizpuru et. al., 2000). Many
of the remaining mangrove forests are degraded (UNEP, 2004) and under immense
pressure from clearcutting, hydrological alterations, chemical spills, and climate
changes (Aschbacher et al., 1994; Giri and Delsol, 1995, Blasco et al., 2001; Giri et
al., 2007). At the same time, their health and persistence are seriously threatened by
urban growth, infrastructure development, fuel-wood consumption, and development
of aquatic farming systems. Campenhout (1997) reported that the disappearance of a
type of species in a mangrove forest could be the initial process of a chain reaction
that leads to the inability of the ecosystem to fulfill its vital role against coastal
erosion that threatens human settlements and coastal plantations. The disappearance
of a mangrove species may also have an impact on the associated ecosystems such as
seagrass beds and coral reefs that will be affected by the sedimentation process of sus-
pended material displaced from the mangroves. Hence, it has been suggested that the
study of mangrove dynamics, both spatially and temporally in terms of density, crown
closure, species richness, growth, deforestation, and regeneration capacity, are con-
sidered very important (Dahdouh-Guebas et al., 2000). 

There is an emerging need to assess mangrove forest structure and dynamics to
gain a better understanding of their ecosystems and make a better management plan
for sound conservation and restoration efforts. Hence, the ability to identify mangrove
species with the use of remote sensing and geospatial information could play an
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important role in implementing this important task. Accurate and reliable information
on the spatial distribution of mangrove species is needed for a wide variety of applica-
tions, including sustainable management of mangrove forests, conservation and
reserve planning, ecological and biogeographical studies, and invasive species man-
agement. Traditional methods for mapping species distribution involve intensive,
time consuming, and costly field works. Remotely sensed data such as Landsat and
SPOT have been used for such purposes with mixed results (Wang et al., 2004a).
Aschbacher et al. (1995) and Ravan and Roy (1997) used NDVI values to separate
vegetative areas from barren areas and to assess mangrove distributions. However, the
coarse resolutions of these data sources do not allow identification at the species level
within a mangrove forest (Holmgren and Thuresson, 1998). 

Wang et al (2004b) reported that remotely sensed images have not been used
widely for mapping mangrove species because of the limited spectral and spatial res-
olution of conventional imageries. It was also pointed out that spatial resolution plays
a more important role than spectral resolution in discriminating different mangrove
species. Green et al. (1998) demonstrated that accurate discrimination among man-
grove species was not possible with conventional satellite data, but was possible
using images from an airborne sensor such as CASI. Jusoff (2006) used airborne
hyperspectral imaging data to map individual mangrove species in Port Klang,
Malaysia and reported that the individual species could only be identified at the near
infrared portion of the electromagnetic spectrum and not in the visible spectrum.
However, the study did not provide the classification accuracy or the possibility of
discriminating different mangrove species. Moreover, from the spectral profiles of
nine mangrove species provided in the manuscript, we cannot make a firm conclusion
that the spectrum of all nine mangrove species were significantly different. Wang et
al. (2004b) tested different combinations of spectral and textural information inher-
ited in IKONOS and QuickBird satellite data for classifying three mangrove species
on the Caribbean Coast of Panama. Results indicated that IKONOS performed
slightly better than QuickBird. Held et al. (2003) achieved a satisfying accuracy when
integrating the high–spatial/spectral–resolution scanner CASI and the airborne
AIRSAR. Wang and Sousa (2007) conducted a laboratory analysis of mangrove leaf
spectral reflectance collected with a spectrometer. Results revealed that mangrove
species can be well discriminated at leaf level in the lab condition. 

From the above discussion, it is apparent that the identification of different man-
grove species using conventional median-resolution remote sensor data (e.g., Landsat
TM, ASTER, SPOT) remains a challenging task. The main goal of the present study
is to map species distribution of mangrove forests using Landsat satellite data and
object-oriented classification approach. The study aims to employ an object-oriented
approach with the use of a lacunarity technique introduced by Myint and Lam (2005a)
to identify different mangrove species and their surrounding coastal land use and land
cover classes in a tsunami-affected area of Thailand using a Landsat TM image data.
We anticipated that lacunarity (Mandelbrot, 1995), which is capable of discriminating
different spatial features that may share the same fractal dimension values, may aug-
ment the object-oriented approach by accurately identifying mangrove species and
other land use and land cover classes in the study area. 
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DATA AND STUDY AREA 

Landsat Thematic Mapper image data (path 37 and row 37) at 28.5 m spatial res-
olution with seven channels ranging from blue to the thermal infrared portion of the
spectrum was used in this study. The image data were acquired over an area with three
different types of mangroves in Trang Province, Thailand on January 9, 1991. The
location of the study area on the Andaman Sea coast is presented in Figure 1. The
original image was subset to extract the study area (upper left longitude 99° 19' 0.54"
and latitude 7° 29' 57.52", lower right longitude 99° 40' 05.92" and latitude 7° 08'
07.97") that covers approximately 1,558 km2 (1359 × 1411 pixels). The study area
contains common land use and land cover classes in a coastal area: mangroves, built-
up, bare soil, woodlands and other vegetation cover, ocean, river, lakes, ponds, sand-
bars, and exposed soil (Fig. 2). 

Mangrove forests in the Andaman Sea coast of Thailand can be categorized into
five major groups of mangroves depending on the dominant species associated with
the groups: Rhizophora, Nypa, Malaleuca, Avicennia, and peat forest. Rhizophora is
the most commonly found group in the Andaman sea coast and covers about 80 per-
cent of the total mangrove area (IUCN, 2006). The mangrove forest types we
attempted to identify in the study area include Rhyzophora, Malaleuca, and Nypa.
The most commonly found mangrove species in the Rhizophora group include Rhizo-
phora apiculata and Rhizophora mucronata. Nypa fruitican and Malaleuca cajuputi

Fig. 1. Map of study area.



192 MYINT ET AL.
are the dominant species of Nypa and Malaleuca groups, respectively. We consider
oceans, rivers, lakes, and ponds together as a water class. In addition to the classes
described above, we also identified clouds and cloud shadows. 

A mangrove species composition map of tsunami-hit areas in Thailand prepared
by the World Conservation Union (IUCN) in collaboration with Department of
Marine and Coastal Resources (IUCN, 2006) was used to select training samples of
the mangrove forest types and to assess the classification accuracy of output maps
(Fig. 3). The hard-copy map only shows the three mangrove forest types, and was
prepared through the manual delineation of individual species with the help of an
extensive forest inventory. The IUCN research team conducted GPS-guided field
investigations in October and November of 2005 to validate the classification outputs.
The team conducted field work along 40 GPS coded transects totaling 850 km in
length and 189 GPS points in the coastal districts and regions that represent four
major mangrove forest groups. They documented locations of the ground truth
transects and points within the provinces. The existing mangrove classification map
previously prepared by the Royal Forest Department was also used to cross validate
the IUCN’s classification results during the field observations. Even though the
classification accuracy assessment reports for 21 mangrove species distribution maps

Fig. 2. False-color composite of the study area displaying channel 4 (0.76–0.90 µm) in red,
channel 3 (0.63–0.69 µm) in green, and channel 2 (0.52–0.60 µm) in blue.
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were not available in IUCN (2006), the technical report clearly stated that the classifi-
cation accuracy of the outputs was superior. This could have been due to the fact that
the manual digitization was carefully carried out with the help of sound local area
knowledge, a careful comparison with existing mangrove forest maps prepared by the
Royal Forest Department, and a thorough ground survey for interpretation. Hence, the
classification output generated from the manual interpretation is assumed to be highly
accurate with a negligible error. Training sample selection and validation of the clas-
sification accuracy was also supplemented by local-area knowledge of the research
team and field work recently conducted in tsunami-hit mangrove areas of Thailand. 

OBJECT-ORIENTED APPROACH 

The method employed here for identifying different mangrove forest types and
their surrounding land use and land cover classes in Landsat Thematic Mapper data
included five steps that employed five levels of scale: (1) scale level 1—segmentation
of water bodies using a blue ratio band with a rule-based approach; (2) scale level 2—
classification of cloud shadows using a multispectral band combination of channels,
1, 2, 3, 4, 5, 6, and 7 at a scale lower than the scale employed in the first step; (3) scale

Fig. 3. Reference map (IUCN, 2006).
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level 3—identification of clouds using a combination of bands 1, 2, and 7 at a scale
coarser than the second step; (4) scale level 4—classification of general land use and
land cover classes such as built-up, bare soil, sand, mangroves, and other forest types
using a combination of multispectral bands and lacunarity-transformed bands 3, 4,
and 5 at a scale lower than the previous step; and (5) scale level 5—discrimination of
three different mangrove forest types using the same combination as described above
at a coarser scale. This study employed a greyscale lacunarity approach introduced in
Myint and Lam (2005a) for generating lacunarity-transformed bands for effectively
discriminating different mangrove species. It was anticipated that the identification of
mangrove species in 28.5 m resolution Landsat TM with the original spectral bands
alone are practically not viable because they are spectrally similar.

Lacunarity 

Mandelbrot (1983) introduced the term lacunarity (lacunar is Latin for “gap”) to
characterize different texture appearances that may have the same fractal dimension
value. It was reported that fractal dimensions may be far from providing a complete
characterization of a set’s texture. In other words, different fractal sets may share the
same fractal dimension values but show different spatial appearances (Mandelbrot,
1983; Voss, 1986; Dong, 2000; Myint, et al., 2006). Mandelbrot (1995) stated that dif-
ferent fractal sets that share the same dimension value may be constructed, but may
look completely different because they have different lacunarity. Since lacunarity rep-
resents the distribution of gap sizes, low-lacunarity objects are homogeneous because
all gap sizes are the same, whereas high-lacunarity objects are heterogeneous (Dong,
2000). 

As an initial step toward quantifying texture or spatial arrangements of objects
and features effectively, Voss (1986) proposed a probability approach to estimate the
fractal dimension and lacunarity of image intensity surface. Myint and Lam (2005a)
reported the development of a lacunarity algorithm introduced in mathematical terms
by Voss (1986) and provided an initial exploration of the lacunarity approach in com-
parison to fractal and spatial autocorrelation approaches. It was found that lacunarity
was the most accurate, and lacunarity-transformed images improved the classification
accuracy dramatically (Myint and Lam, 2005b). Hence, this study employs a lacunar-
ity approach reported in Myint and Lam (2005a) to effectively map different man-
grove species and their surrounding land use and land cover. 

I provide a brief description of the approach below (see Myint and Lam, 2005a
for details). The spatial arrangement of the points determines P(m,L). P(m,L) is the
probability that there are m intensity points within a box size of L centered about an
arbitrary point in an image. Intensity points are referred to as the number of points
that fill in a cube box. Hence, we have 

(1) P m L,( )
m 1=

N

∑ 1=
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where N is the number of possible points in the box of L. Suppose that the total num-
ber of points in the image is M. If one overlays the image with boxes of side L, then
the number of boxes with m points inside the box is (M/m)P(m,L). Hence 

(2) 

and 

. (3) 

Lacunarity can be computed from the same probability distribution P(m,L).
Hence, lacunarity is defined as

(4) 

A worked example for computing a lacunarity value is also presented in Myint and
Lam (2005a). 

Lacunarity represents the distribution of gap sizes: low lacunarity features are
homogeneous because all gap sizes are the same, whereas high lacunarity features are
heterogeneous (Myint et al., 2006). Texture-transformed images of band 3, band 4,
and band 5 derived from the lacunarity approach were employed in identifying gen-
eral land use and land cover classes and the three mangrove species. We used 5 × 5
local window to compute lacunarity values. The computed lacunarity value is
assigned to the center of a local window and the window moves throughout the
image. Since computed lacunarity values are floating point numbers, we converted
lacunarity-transformed bands to unsigned 8 bit data using a standard deviation
stretch. The lacunarity bands will be hereafter called V5, V4, and V3. An example
texture-transformed image of Landsat TM data (i.e., band 5) is shown in Figure 4. 

Image Segmentation 

Regarding the object-oriented approach in image classification, a group of pixels
having similar spectral and spatial properties is considered an object. Hence, an
object-based classification approach employs segmented objects at different scale
levels as fundamental units for image analysis instead of utilizing a per-pixel
approach at a single scale for classification (Navulur, 2007; Desclée et al., 2006). 

Image segmentation is a principal function that splits an image into separate
regions or objects depending on parameters specified. We used eCognition profes-
sional 4.0 to perform an object-based classification. The segmentation function in
eCognition software (Baatz and Shape, 1999, 2000) is based on three parameters,
namely shape (Ssh), compactness (Scm), and scale (Ssc) parameters. Users can apply

M L( ) mP m L,( )
m 1=

N

∑=

M 2 L( ) m2P m L,( )
m 1=

N

∑=

Λ L( ) M 2 L( ) M L( )( )2–

M L( )( )2
-------------------------------------------=
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weights ranging from 0 to 1 for the shape and compactness factors to determine
objects at different level of scales. These two parameters control the homogeneity of
different objects. The shape factor adjusts spectral homogeneity vs. shape of objects,
whereas the compactness factor, balancing compactness and smoothness, determines
the object shape between smooth boundaries and compact edges. The scale parameter
that controls the object size that matches the user’s required level of detail can be con-
sidered the most crucial parameter of image segmentation. Different levels of object
size can be determined by applying different numbers in the scale function. The
higher scale number (e.g., 100) generates larger homogeneous objects (smaller
scale—lower level of detail), whereas a smaller scale number (e.g., 10) will lead to
smaller objects (larger scale). A smaller number used in the scale parameter corre-
sponds with a higher level in the segmentation procedure. The decision on the scale
level depends on the size of the object required to achieve the goal. The software also
allows users to assign different levels of weighting to different bands in the selected
image during image segmentation. 

Image Classification 

Regarding selection of objects to assign classes, there are two options to control.
The membership function defines rules and constraints to control the classification

Fig. 4. A lacunarity-transformed image of Landsat TM band 5.
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procedure based on the user’s expert knowledge. The nearest neighbor option is a
non-parametric classifier and is therefore independent of the assumption that data val-
ues follow a normal distribution. This technique allows unlimited applicability of the
classification system to other areas, requiring only the additional selection or modifi-
cation of new objects (training samples) until a satisfactory result is obtained (Ivits
and Koch, 2002). Application of the nearest neighbor method is also advantageous
when classes are spectrally similar and not well separated using a few features or just
one feature (Definiens, 2004). The nearest neighbor approach in eCognition can be
applied to any class at any level using any original, composite, transformed, or cus-
tomized bands. There are two options available with the nearest neighbor function,
namely (1) Standard Nearest Neighbor, and (2) Nearest Neighbor. The Standard Nearest
Neighbor option automatically selects the mean values of objects for all the original
bands in the selected image, whereas the second option requires users to identify vari-
ables (e.g., shape, texture, hierarchy) under object features, class-related features, or
global features. The steps employed in this study to map different mangrove forest
types and their associated land use and land cover classes at each scale level are
described below. 

Level 1. We identified water pixels using a rule-based classification approach at
the highest level of scale. The shape parameter (Ssh) was set at 0.1 to give less weight
to shape and give more attention to spectrally more homogeneous pixels for image
segmentation. The compactness parameter (Scm) was set at 0.5 to balance compact-
ness and smoothness of objects equally. We used the above shape and compactness
parameters for all steps and levels. To obtain the finest objects possible, including
small tributaries and ponds, the scale parameter (Ssc) was set to 1. This is basically a
pixel-level scale. We attempted several original, composite, ratio, and customized
bands and found that blue-ratio band was the most effective band in accurately identi-
fying water bodies. The blue-ratio band in eCognition is defined as the blue band
divided by the summation of all other bands, and contains digital numbers (DN)
between 0 and 1. For this image, water values range from 0.31 to 1. To create a rule-
based approach, we selected a function that encompasses all the DN values between
0.31 and 1, including either value. We classified water bodies using the above expert-
system rule and saved them as a water layer. 

Level 2. We attempted to identify cloud shadows using all Landsat TM bands,
including the thermal band. The scale parameter (Ssc) was set to 5 for the segmenta-
tion of cloud shadows. We identified five to seven training samples of cloud shadows,
and several samples of other classes including clouds, water, and other. We included a
thermal band to separate shadow pixels and dark water pixels. The nearest neighbor
classifier was used to identify the classes. We identified different samples iteratively
and classified cloud shadows until we received satisfactory results. Even though we
identified cloud, water, and other classes, we discarded these classes and used only
cloud shadows. 

Level 3. The scale parameter (Ssc) was set to 10 for segmenting objects at this
level. We identified about five objects of clouds as training samples for clouds after
segmenting the selected image. We used only bands 1, 2, and 7 of a Landsat TM
image for cloud identification. We tried several band combinations and found that the
above three bands were the best combination to achieve a satisfactory result for
clouds. We also selected some object samples for other classes such as water and
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cloud shadows. Cloud pixels identified at this scale level were the only pixels retained
for the final map. 

Level 4. We used a combination of Landsat TM bands 1, 2, 3, 4, 5, 7 and lacunar-
ity-transformed bands of Landsat TM bands 3, 4, and 5 for land use and land cover
classification at this level. We used the scale parameter of 25 to segment objects. We
selected training objects for bare soil, built-up, mangroves, other forest, sand, and
water. We also employed the nearest neighbor classifier. We did not keep mangroves
and water for the final map preparation since the accurate water bodies were identi-
fied at level 1 and detailed mangrove forest types were identified at level 5 (lowest
level). 

Level 5. We also used the same band combinations above, including lacunarity-
transformed bands 3, 4, and 5. The scale parameter (Ssc) was set to 50 for the segmen-
tation of the three mangrove species (i.e., Nypa, Malaleuca, and Rhyzophora). We
selected four to five training objects per species to perform the nearest neighbor clas-
sification approach. 

We overlaid layers at different levels to produce a final output map of mangrove
types and their surrounding land use and land cover. The first GIS overlay function
started with the last two layers and extracted the three mangrove species, bare soil,
built-up, mangroves, other forests, and sand. This output map was overlaid on the
map produced at level 4 to add cloud pixels. We later obtained cloud shadows and
water bodies from the last two layers generated at scale levels 2 and 1. A small subset
of the study area shows segmented objects at all levels except level 1 (pixel level) in
Figure 5. A flow chart that demonstrates a step-by-step procedure to conduct this
research study is presented in Figure 6. The output map of the object-oriented
approach using lacunarity-transformed bands is shown in Figure 7. 

PER-PIXEL CLASSIFIER 

To evaluate the effectiveness of the object-oriented approach using lacunarity-
transformed bands, we also employed the most commonly used supervised decision
rule, namely the maximum likelihood classifier. The maximum likelihood decision
rule is based on the probability that a pixel belongs to a particular class. The basic
equation of the decision rule assumes that these probabilities are equal for all classes
(Jensen, 2004; Lillesand et al., 2004). Traditional per-pixel classifiers use a combined
spectral response from all training-set pixels for a given class. Hence, the resulting
signature comprises responses from a group of different land covers in the training
samples, and the classification system simply ignores the impact of mixed pixels (Lu
and Weng, 2007). 

The parametric decision rules are based on the assumption that data values follow
a normal distribution, and that the statistical parameters (e.g. mean, variance, covari-
ance matrix) generated from the training samples are representative. However, the
assumption of a normal spectral distribution could potentially lead to some errors if
the data is not normally distributed. We selected three to six training samples per class
that are spectrally different for the classification. We also attempted several different
sets of training samples and qualitatively evaluated the outputs. We merged those
classes generated by different training samples under the same land use and land
cover category. The resulting land use and land cover categories were the same as
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those identified with an object-oriented approach. We produced several outputs and
selected the best output as the final map of the maximum likelihood classifier. The
output map produced by the traditional classifier is presented in Figure 8. 

ACCURACY ASSESSMENT 

For the classification accuracy assessment, error matrices were produced and
analyzed for each method. These error matrices show the contingency of the class to
which each pixel truly belongs (columns) on the map unit to which it is allocated
by the selected analysis (rows). From the error matrix, overall accuracy, producer’s

Fig. 5. Segmented objects at all levels except level 1. Scale level 1 is not included because it is
similar to the original image (pixel level). A. Scale 5. B. Scale 10. C. Scale 25. D. Scale 50.
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accuracy, user’s accuracy, and the kappa coefficient were generated. Congalton
(1991) suggested that a minimum of 50 sample points for each land use/land cover
category in the error matrix be collected for the accuracy assessment of any image
classification. We selected 500 sample points that led to approximately 50 points per
class (10 total classes) for the accuracy assessment. A minimum of 20 points per class
was set for generating 500 points using a stratified random sampling approach. To be
consistent and for precise comparison purposes, we used the same sample points for
the outputs generated by the object-oriented classifier and the traditional classifica-
tion technique (i.e., maximum likelihood). For a better evaluation, we performed the
classification accuracy assessment on the original output maps. We did not edit, man-
ually correct, or filter any of the two output maps. 

RESULTS AND DISCUSSION 

As mentioned earlier, we anticipated that the identification of mangrove species
in 28.5 m resolution Landsat TM with the original spectral bands alone with the

Fig. 6. Flow chart of the approach employed in the study.
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traditional classifiers (i.e., maximum likelihood) may not be very effective because
they are spectrally similar. By qualitative evaluation (visual examination on screen)
of the output maps, we noticed that the output map generated by the traditional per-
pixel approach contains many mistakenly identified pixels of classes (Fig. 8), whereas
the output map generated by the object-oriented classifier with the lacunarity
approach is more accurate and satisfactory (Fig. 7). 

The traditional classification approach produced an overall accuracy of 62.8%,
which is far below the minimum mapping accuracy of 85% required for most
resource management applications (Anderson et al., 1976; Townshend, 1981). The
kappa coefficient for this approach is 0.57. This can be thought of as an indication
that an observed classification is only 57% better than one resulting from chance.
From Table 1, it can be observed that the maximum likelihood rule gave the highest
producer’s accuracies for water and cloud shadows (100%). Even though water and
cloud shadow pixels have been correctly identified, only 92% (water) and 59% (cloud
shadow) of the areas identified as water and cloud shadow within the classification
are truly of the respective categories. The water category also gave the highest user’s
accuracy (92%). The lowest user’s accuracy was given by bare soil. As expected

Fig. 7. Output map generated by the object-oriented approach using lacunarity-transformed
bands. The output image was not manually edited or filtered.
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earlier, user’s and producer’s accuracies for the mangrove species Rhyzophora, Nypa,
and Malaleuka were very low. 

In contrast to the traditional approach, the object-oriented approach yielded an
overall accuracy far above the minimum overall accuracy (85%) required for most
applications (94.2%). It can be observed from Table 2 that an observed classification
for this approach is 93% (kappa) better than one resulting from chance. The lowest
producer’s accuracy was given by built-up (81%) and the lowest user’s accuracy was
given by other forests (82%). There is some signature confusion between built-up vs.
other forest and sand vs. other forests categories. Some pixels identified as other
forests were found to be bare soil, built-up, and sand categories on the ground. The
three mangrove species (i.e., Rhyzophora, Malaleuca, Nypa) produced very high
producer’s and user’s accuracies. The lowest producer’s and user’s accuracies for the
three mangrove species produced by the object-oriented approach were 91% and
96%, respectively, whereas the same accuracies for the same species generated by the
per-pixel approach were 51% and 29%. This confirms that the object-oriented
approach with lacunarity-transformed bands outperforms the traditional classification
approach. This was partly because there are many features and variables as well as

Fig. 8. Output map generated by the traditional per-pixel classification approach (i.e.,
maximum likelihood). The output image was not manually edited or filtered.
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many functions available with eCognition software that provided tremendous oppor-
tunities to improve classification accuracy. 

CONCLUSION 

We employed an object-oriented approach using lacunarity-transformed bands in
comparison with a commonly used classifier (i.e., maximum likelihood) to identify
the three mangrove species and their surrounding land use and land cover classes in a
coastal area. Traditional per-pixel approaches (e.g., maximum likelihood classifier)
were not effective in extracting coastal land use and land cover classes, especially
species-level information of different mangrove forest types. It can be concluded that
the object-oriented approach with lacunarity-transformed bands is more accurate than
the traditional per-pixel classifiers. We believe the spatial information obtained from
a lacunarity approach plays an important role in extracting mangrove species using
the object-oriented approach. One of the main advantages of the object-oriented
approach is that it allows additional rapid selection or modification of new objects
(training samples) each time after performing a nearest neighbor classification until
the satisfactory result is obtained. There are many possible combinations of different
functions, parameters, features, and variables available with the software. However, it
should be noted that the exact computation and operation of many of the parameters
and functions available with eCognition software are not explicit. The successful use
of eCognition largely relies on repeatedly modifying training objects, performing the
classification, observing the output, and testing different combinations of functions as
a trial-and-error approach. The availability of many different combinations of param-
eters, functions, features, and variables helped us identify land use and land cover
classes and the three mangrove species effectively. Nonetheless, we would like to
conclude that the object-oriented approach is effective and reliable in identifying
detailed land use and land cover classes. 
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