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The objective of this study is to test a per-field approach for classifying detailed

urban land use, such as single-family, multi-family, industrial and commercial.

Tax parcel boundaries are used as the field boundaries for classification. Twelve

attributes of parcels, such as parcel sizes, parcel shape, building counts and

building heights, are used as the discriminant factors between different land use

types. For our study area that consists of 33 025 parcels, we first derived parcel

attributes from geographic information system (GIS) and remote sensing data.

We then converted the parcel vector data to an image of 12 bands with pixel

values from parcel attributes. After that, we performed a standard supervised

classification to classify the image into nine land use types. The best classification

result with a decision tree classifier had an overall accuracy of 93.53% and a

Kappa Coefficient of 0.7023. This study shows the feasibility of applying a per-

field approach based on tax parcel boundaries to classify detailed urban land use.

1. Introduction

Conventional land use classification in remote sensing assigns classes by pixels based

on their spectral, textual, or contextual properties. In contrast to per-pixel

classification, per-field classification classifies land use by pre-determined field

boundaries, with the assumption that each field belongs to a single, homogeneous

class (Pedley and Curran 1991, Aplin et al. 1999, Erol and Akdeniz 2005). Per-field

classification is developed to overcome the weakness of per-pixel classification.

Specifically, per-pixel classification commonly produces pixelly results, which look

noisy and sometimes require post-processing to improve the outlook and

classification accuracies. Furthermore, per-pixel classification has difficulties in

classifying spectrally heterogeneous land use classes and identifying class boundaries

when using window-based texture measures. Using high-spatial-resolution data,

such as IKONOS images and LIDAR (light detection and ranging) data, may

improve classification accuracies of per-pixel classification but is still limited by the

weakness of per-pixel classification.

In addition to overcoming the problems of per-pixel classification, per-field

classification has the advantage of allowing the incorporation of a variety of field

attributes, such as the size, shape and perimeter of the field, as classification criteria.

Past studies have reported improved classification results by using a per-field

approach or by mixing a per-field approach with a per-pixel approach for land use

and/or land cover classification (Pedley and Curran 1991, Lobo et al. 1996, Aplin

et al. 1999, Dean and Smith 2003, De Wit and Clevers 2004, Erol and Akdeniz 2005).
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The objective of the current study is to apply a per-field approach to classify detailed

urban land use, such as single family, multi-family, industrial and commercial.

In per-field classification, field boundaries are pre-determined. Past per-field

studies mostly relied on existing vector polygon data as field boundaries. Examples

include Erol and Akdeniz (1996), Aplin et al. (1999), Zhan et al. (2000), Aplin and

Atkinson (2001), Smith and Fuller (2001), and Erol and Akdeniz (2005). Some

studies used image segmentation techniques to partition images into fields of

homogeneous spectral or spatial characteristics. Examples include Janssen and

Molenaar (1995), Lobo et al. (1996), Fuller et al. (2002), Hill et al. (2002), and

Geneletti and Gorte (2003). Some studies delineated field boundaries by visually

interpreting and manually digitizing homogeneous fields from hard-copy maps or

digital images. Examples include Pedley and Curran (1991), Lobo et al. (1996),

Berberoglu et al. (2000), Dean and Smith (2003), De Wit and Clevers (2004), and

Lloyd et al. (2004). Within the above three approaches for determining field

boundaries, utilizing existing vector data are preferred in that the data are ready

to use. Furthermore, since existing vector data usually come from field surveys and/

or photo interpretation, they provide a satisfactory degree of accuracy and precision,

and more meaningful field boundaries than segmentation techniques in this case.

After field boundaries are determined, researchers can utilize field boundaries for

classification in two ways. The first is to utilize field boundaries to derive field

attributes in a pre-classification stage. Researchers obtain field attributes, such as

image spectral or texture statistics within fields, to use as discriminant criteria for

classification. Examples include Pedley and Curran (1991), Erol and Akdeniz

(1996), Lobo et al. (1996), Smith and Fuller (2001), Dean and Smith (2003), Lloyd

et al. (2004) and Erol and Akdeniz (2005). The second way is to utilize field

boundaries in a post-classification stage. After an initial per-pixel classification, the

majority class of pixels within a field is assigned to all pixels within the field.

Examples include Janssen and Molenaar (1995), Aplin et al. (1999) and Aplin and

Atkinson (2001). Berberoglu et al. (2000) compared the two approaches and argued

that utilizing field boundaries in a post-classification stage provided a better result.

In addition to image statistics within fields, various field attributes can be used for

classification. For instance, Weiler and Stow (1991) used field size as a parameter to

characterize different types of urban land use. De Wit and Clevers (2004) used field

areas and shapes as the criteria to reassign land classes in a post-processing stage.

Based on the percentages of build-up area, green space, and water body within fields

that were initially classified from SPOT images, Zhan et al. (2000) classified different

types of land use. Smith and Fuller (2001), Fuller et al. (2002) and Hill et al. (2002)

utilized field attributes in both pre-classification and post-classification stages. They

first obtained the mean spectral reflectance statistics within fields and classified land

use according to the statistics. They then conducted a knowledge-based correction

to modify land use classes based on other field statistics. The field statistics they used

include the class probability, the classes of surrounding fields, the mean elevation,

the modal slope, the modal aspect, the building area percentage, the building height,

the canopy height and the terrestrial/marine cover types. Many of them were derived

from datasets other than remote sensing images, such as elevation data, buildings

data, and terrestrial/marine data.

Geneletti and Gorte (2003) combined per-pixel and per-field classifications to

maximize the classification accuracy. They first performed different levels of image

segmentation to establish different levels of field boundaries. They then performed a
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regular per-pixel land cover classification based on the spectral reflectance of pixels.
After that, in a sequential manner from coarse to fine scales of segmentation, they

reassigned the majority class within fields to pixels based on certain class percentage

thresholds. The final result was that some pixels were not reassigned to the majority

class but remained in their initial classes from per-pixel classification.

2. Methodology

In the previous section, we reviewed three common sources of field boundaries for
per-field classification, from existing vector data, from image segmentation, and

from manually digitizing. In the present study, we also used a per-field approach for

urban land use classification. The Travis County Appraisal District (TCAD) tax

parcel boundaries were used as the field boundaries. The advantage of using tax

parcel boundaries is that individual tax parcels are relatively small and always

contain the same type of land use. In contrast, common image segmentation

techniques are incapable of identifying fields of homogeneous urban land use,

and manually digitizing is too time-consuming to be a practical approach
for delineating homogeneous fields in an urban environment. Nevertheless, a

limitation of using tax parcel boundaries is that they do not cover city street surface

areas. As a result, our land use classification only focused on classifying land use

types from the tax parcel areas, and street surfaces were not considered.

Our per-field classification is different from past per-field studies in a number of

ways. First, the goal of the current study is to classify detailed urban land use

classes. In the past, most per-field studies classified spectrally homogeneous land

cover types, and a few of them classified residential from non-residential urban land
use, yet none of them classified detailed urban land use classes, such as single family,

multi-family, industrial and commercial.

Second, our per-field classification of land use is conceptually different from

standard land use classification in remote sensing. It focuses on the classification of

urban land use from tax parcels instead of remote sensing images. In other words, the

parcel data are the primary data, and the imagery data are the ancillary data used to

calculate parcel attributes. In addition, rather than emphasizing imagery parameters

for classification, our per-field classification emphasizes using geographic information
system (GIS) parameters as discriminant criteria for classification.

Third, in order to classify detailed urban land use, we test a variety of field

attributes derived from GIS and image data, such as building count, building shape

and closeness to major roads, most of which have not been used in past studies of

per-field classification.

3. Study area and data sources

The City of Austin, the capital of Texas, USA, provides a suitable environment for

exploring the proposed land use classification method. The city is not too large in

land area (approximately 250 square miles in 2005), yet with a variety of residential

and non-residential land use, old and new neighbourhoods, and housing patterns.

Its land use and housing patterns have changed considerably during the past 15

years. During the period from 1990 to 2000, the city has grown by 41%, from a

population of 465 622 in 1990 to 656,562 in 2000, with an annual growth rate of

3.5%. During the second period from 2000 to 2005, the annual growth rate slows
down to 1.20%. For the next 30 years, the city plans to maintain a steady annual

growth rate between 1.20% and 2.00% (City of Austin 2005e).

Per-field urban land use classification 2779
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In order to test per-field land use classification, we selected an area of approxi-

mately 6 by 14 km in the north central part of the City of Austin (figure 1). The city’s

three main thoroughfares, IH-35, MoPac, and Highway 183 run through this area.

In general, non-residential land use areas are close to major roads and residential

land use areas are in between (figure 2).

We obtained tax parcel boundaries data, four ancillary datasets that would be used

for deriving parcel attributes, and ground truth land use data from the City of Austin

Neighborhood Planning and Zoning Department (NPZD), either directly downloaded

from their FTP server (City of Austin 2005a) or acquired through personal contact.

The four ancillary datasets, building data, elevation data, street data and image data,

are for the purpose of calculating parcel attributes. The ground truth land use data are

for selecting training samples and for evaluating classification results.

The tax parcel boundaries data are in vector polygon format and is up-to-date till

the year 2005. The building data are building footprints in vector polygon format

and contains information of the average altitude for individual building roofs. The

elevation data are 0.61 m (2 ft) contour lines, which measures the elevation for

ground surface. The building data and the elevation data were generated by the

Analytical Surveys Incorporation (ASI) contracted with the City during the year of

2003. ASI first manually digitized building footprints from aerial photographs, then

Figure 1. Study area in Austin, Texas.
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estimated the altitude for individual building roofs by referencing with LIDAR

elevation data. From the LIDAR data, the ground surface elevation data were also

generated

The street data are in vector line format. It is originated from the US Census 2000

Topologically Integrated Geographic Encoding and Referencing (TIGER) street

data, and the City has updated it till the year 2004. The street data contain the

census feature class codes (CFCCs), which represent street categories with different

levels or sizes of streets (U.S. Census Bureau 2000). The highest level of streets has a

CFCC starting with a number of one and includes primary highways. The second

level of streets has a CFCC starting with a number of two and includes primary

roads. The third level of streets has a CFCC starting with a number of three and

includes secondary roads. The fourth level of streets has a CFCC starting with a

number of four and includes local, neighbourhood, and rural roads.

The image data are 0.61 m spatial resolution, three band (green, red and near-

infrared) colour infrared (CIR) digital orthophotos. The source aerial photographs

were taken by ASI during the year of 2003.

The ground truth land use data are in vector polygon format, which is up-to-date

till the year 2003. The City updates land use data based on a variety of sources of

information, including historical land use data, TCAD tax parcel data, city parcels

Figure 2. Land use in the study area.
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database, natural preserves GIS data, aerial photographs, building footprint data

and field check (City of Austin 2005b). NPZD divides the City’s land use into 16

general land use types, which are further divided into 37 detailed subtypes (City of

Austin 2005c). We merged the 16 general land use types to a classification scheme of

nine land use types (table 1). Some land use types merged into larger land use

categories are either rare in the study area (such as land use of mobile homes, large-

lot single family, mining, and utilities) or are not applicable to the tax parcel areas

(such as land use of streets, water, and unknown).

4. Processes

We tested 12 parcel attributes derived from the ancillary datasets as discriminant

factors for land use classification. The 12 parcel attributes are parcel size, parcel

shape compactness, the number of buildings, the maximum building’s area, the

standard deviation of the building’s area, the total building-area percentages, the

maximum building’s height, the standard deviation of the building’s height,

the maximum building shape compactness, the standard deviation of building

shape compactness, the highest category of streets within 50 m and the impervious

cover percentage. The shape compactness measure of buildings or parcels was

calculated by dividing the area with the square of the perimeter (Schalkoff 1989).

The more curved shape thus has a smaller compactness measure.

The 12 parcel attributes were selected for theoretical and/or empirical reasons.

After observing land use parcel maps (figures 3 to 11) and relevant statistics (table 2

and figures 12 and 13), we can see that each parcel attribute is distinctive for one or

more land use types. For example, single-family land use parcels are usually small

and rectangular, and they mostly contain only one building (figure 3). Therefore, the

attributes of parcel size, parcel shape compactness, and the number of buildings may

separate them from others. Compared with buildings in civic land use parcels,

Table 1. Land use classification scheme of nine land use types.

Land use type Descriptions

Single family (Sf) Mobile homes, large-lot single family, single-family detached and
two-family attached, duplex

Multi-family (Mf) Three/fourplex, apartment/condo, group quarters, and retirement
housing

Commercial (Com) Retail and general merchandise, apparel and accessories, furniture
and home furnishings, grocery and food sales, eating and
drinking, auto related, entertainment, personal services,
lodgings, building services

Office (Off) Administrative offices, financial services (banks), medical offices,
research and development

Industrial (Ind) Manufacturing, warehousing, equipment sales and service,
recycling and scrap, animal handling, mining facilities

Civic (Civ) Semi-institutional housing, hospital, government services,
educational facilities, meeting and assembly facilities,
cemeteries, day care facilities

Open space (Open) Parks, recreational facilities, golf courses, preserves and protected
areas, water drainage areas and detention ponds

Transportation (Tran) Railroad facilities, transportation terminal, aviation facilities,
parking facilities, utilities facilities

Undeveloped (Und) Vacant land and land under construction

2782 S. Wu et al.
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buildings in multi-family land use parcels are relatively small and uniform in size

(figures 4 and 5). Moreover, multi-family land use parcels averagely have more

building areas than do civic land use parcels (table 2). Therefore, the attributes of the

maximum building’s area, the standard deviation of the building’s area, and the total

building-area percentage may be used to distinguish one land use from the other.

Commercial land use and office land use parcels have similar statistics of the average

number of buildings (1.5 and 1.42 respectively), yet buildings in commercial land use

parcels usually have lower and more uniform heights than those in office land use

parcels (table 2, figures 6 and 7). Therefore, the attributes of the maximum building’s

height and the standard deviation of the building’s height may be used to distinguish

one land use from the other. Multi-family land use and industrial land use parcels

have similar parcel sizes (table 2, figures 4 and 8), yet multi-family land use parcels

have higher standard deviation of building shape compactness and higher values of

the maximum building shape compactness. It is partly because they usually have

many buildings within parcels. Commercial land use parcels are usually close to

major roads and have the highest category of street within 50 m (table 2). Open-space

land use, undeveloped land use and transportation land use parcels usually have no

buildings (table 2), yet transportation land use parcels usually have higher impervious

cover percentages than the other two types of land use parcels.

Figure 3. Examples of single-family land use parcels.
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We derived most of the parcel attributes by overlaying parcel boundaries with the

ancillary datasets in a GIS. To calculate the building height parameter, we first
estimated the mean building-floor elevations for individual buildings from the

elevation data, then subtracted building-floor elevations from respective building-

roof altitudes to obtain height statistics for individual buildings.

Based on the CFCCs of street data, we calculated the street-category statistic for

parcels. The statistic has a number ranging from one to four based on the highest

category of streets within 50 m buffers of parcels. The distance was decided

subjectively by considering the relevant distances between parcels and streets as well

as the relevant sizes of parcels.

One of the reasons to consider the parameter of impervious cover percentage is

that the City of Austin has site development regulations regarding the maximum

impervious cover allowed for specific zoning districts (City of Austin 2005d).

Therefore, it is expected that this parameter would help characterize different land

use types. We classified the impervious cover versus pervious cover from aerial

photographs in a two-step procedure. In the first step, we computed the normalized

difference vegetation index (NDVI) for the entire area. A threshold of 0.3 was
chosen to discern between vegetated and non-vegetated areas. We then categorized

the vegetated areas as the pervious cover. In the second stage, the non-vegetated

Figure 4. Examples of civic land use parcels.
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areas were grouped into 32 clusters using the ISODATA unsupervised clustering

algorithm. We then manually classified the 32 clusters into either pervious or

impervious classes. Using a large number of clusters allowed the separation of bare

land, which was spectrally similar to some impervious cover but should be

categorized as pervious cover.

It is hypothesized that the 12 parcel attributes are related to land use types. Our

goal, therefore, is to test how well these parcel attributes collectively characterize

different land use types. We converted the parcel vector data to a parcel image and

used a standard supervised classification approach in remote sensing to classify land

use from the image. This approach was adopted for two reasons. First, image

classification as a major topic in remote sensing has been studied by many

researchers, and a standard and rigorous procedure for image classification and

result assessment has been well established. Second, there have been many advanced

image classification algorithms developed. It would be of advantage to experiment

with these algorithms and compare their performance in the land use classification

based on the GIS attributes of parcels.

The derived parcel image has 12 bands from the 12 parcel attributes. The image

pixel values correspond to parcel attribute values at the same geographic locations.

After considering choosing a fine spatial resolution that can represent small parcels,

Figure 5. Examples of multi-family land use parcels.
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we subjectively decided a spatial resolution of 4.9 m (16 ft) for the parcel image.

Since only the centroids of parcels were used as the sample points for accuracy

assessment, the choices of spatial resolution would not have any effect on the

classification results.

Since we are interested in how many numbers of parcels, instead of how many

parcel areas, are correctly classified from each land use, using parcel attributes as

discriminant criteria, we decided the number of training sample points for different

land use proportional to their respective parcel numbers instead of parcel areas.

Specifically, we first referenced parcels with the ground truth land use so that each

parcel has information regarding its ground truth land use. Then we randomly

selected approximately half of the parcels from each land use as training parcels and

the other half as test parcels for accuracy assessment. In total, 16 506 training parcels

and 16 519 test parcels were determined (table 3). The centroids of training parcels

were used as the training points to classify the parcel image.

5. Classification results and assessment

We experimented with a variety of classification algorithms, including minimum

distance, parallelepiped, spectral angular mapper, mahalanobis distance, maximum

Figure 6. Examples of commercial land use parcels.
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likelihood, binary encoding, neural network and decision tree. We used the 16 519

test parcel centroids to perform accuracy assessment. The best classification result

was obtained when using a decision tree classifier with an overall accuracy of 93.53%

and a Kappa coefficient of 0.7023 (tables 4 and 5 and figure 14). After observing the

histograms of each parcel attribute for different land use (figures 12 and 13), we

understand that some of the parcel attributes are not normally distributed. Since a

decision tree classifier does not require assumptions regarding the statistical

properties of the input data and is capable of handling both numeric and categorical

inputs (McCauley and Goetz 2004), it is reasonable that the classifier produced the

best result. Similarly, other non-statistical algorithms, such as parallelepiped and

neural network, generated better results (with Kappa coefficients of 0.23 and 0.48

respectively) than algorithms that require statistical assumptions, such as

Mahalanobis distance and maximum likelihood (with Kappa coefficients of 0.21

and 0.16 respectively).

A decision tree classifier groups data into hierarchical structures through a process

of recursive partitioning of predictor variables into smaller, more homogeneous

groups. The partitioning process is based on predetermined decision tree rules. We

used the QUEST algorithm (Loh 2005) to automatically generate decision tree rules.

QUEST stands for quick, unbiased and efficient statistical tree. It produces binary

Figure 7. Examples of office land use parcels.
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decision rules by examining all possible binary splits of the data along each predictor

variable to select the split that most reduces node impurities (Loh and Shih 1997).

The overall accuracy is high, showing that approximately 93% of test parcels are

correctly classified. On the other hand, the Kappa coefficient is relatively low

compared with the overall accuracy. The considerable difference indicates that

classification accuracies for different land use types are very uneven. Specifically,

single family land use, which has high producer’s and user’s accuracies (both above

98%), has a large number of parcels (approximately 88% of the total), while other

land use types, which have relatively low producer’s and user’s accuracies (mostly

between 60% and 80%), only have small percentages of parcels. The large number

and the high classification accuracies of single-family parcels have a great influence

on the overall accuracy. In contrast, the Kappa coefficient is balanced by the low

accuracies of other land use types and is, therefore, relatively low.

The reason that single family land use has good classification results is probably

because of its relatively uniform parcels with distinctive characteristics (small,

rectangular and with a single low-rise building). Next to single family land use,

undeveloped land use has the best classification results with both producer’s and

user’s accuracies above 75%. The land use of undeveloped, open space and

transportation are similar in that most of their parcels do not have buildings.

Figure 8. Examples of industrial land use parcels.
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Nevertheless, undeveloped land use has a relatively high producer’s accuracy (87.63)

compared with those of open space (53.89) and transportation (30.16). Undeveloped
land use also has more parcels (372 in total) than open space (167) and

transportation (63). In nature, undeveloped land use is heterogeneous in parcel

attributes. Therefore, open space land use and transportation land use have high

percentages (38.32% and 57.14% respectively) of parcels misclassified into

undeveloped land use. Nevertheless, undeveloped land use has a large number of

unique parcels that are small in size and contain land under construction, which

explains its high classification accuracies.

Transportation land use has the lowest classification accuracies (30.16% and

50.00% for producer’s and user’s accuracies respectively) among the three non-

building types of land use, which is probably owing to its heterogeneous nature of

parcel attributes combined with its small number of test parcels (63, which is the

fewest). For example, the impervious cover percentage of transportation land use

parcels is usually low for the railroad facilities while high for the parking facilities,

and the parcel sizes are usually small for a parking lot and large for a bus transfer

centre.

There are six land use types that generally have one or more buildings within

parcels, including single-family, multi-family, commercial, office, industrial and

Figure 9. Examples of commercial land use parcels and their relationships to major roads.
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civic. Among them, the types of office, industrial, and civic have the lowest

producer’s accuracies (8.3%, 20% and 5.13% respectively). Most of the errors come

from misclassification into commercial land use, which is probably owing to the

heterogeneous nature of commercial land use parcels that have attributes similar to

the three. Specifically, commercial land use parcels have a wide range of parcel sizes

and building numbers, from a small retail store parcel with a single low-rise building

to a large shopping centre parcel with a number of high-rise buildings.

Besides single-family land use, multi-family land use is the only one that has both

producer’s and user’s accuracies above 50% (66.20% and 56.63% respectively)

among the six building types of land use. Compared with other building types of

land use (except single-family land use), multi-family land use is relatively

homogeneous. Apartments and condos consist of approximately 79% of multi-

family land use parcels, which usually have numerous buildings within parcels and

are thus distinctive from other land use types.

In summary, the classification results show that the six building types of land use

can be differentiated from the three non-building types of land use. Among the six

building types of land use, office, industrial, and civic have lower classification

accuracies, mainly owing to their heterogeneous nature. On the other hand, single

family land use can be separated well from others because of its distinctive parcel

Figure 10. Examples of open space and undeveloped land use parcels.
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attributes. Among the three non-building types of land use, the classification

accuracy for undeveloped land use is satisfactory because it has a large number of

unique parcels that belong to land under construction.

To investigate further which parcel attributes help land use classification better, we

calculated signature separabilities for training samples based on individual, as well as

combinations of, parcel attributes (table 6). Signature separability measure was based

on Bhattacharrya Distance, also called Jeffries-Matusita Distance. The measure is a

real value between ‘0’ and ‘2’, where ‘0’ indicates complete overlap between the

signatures of two classes and ‘2’ indicates a complete separation between the two
classes. As we can see from table 6, the average separability based on all 12 parcel

attributes has a satisfactory measure of 1.88. The eight building-relevant attributes

(Nos 3 to 10) contribute to the overall separability with a combined separability

measure of 1.72, while the parcel’s two geometric attributes (Nos 1 and 2) contribute

with a combined measure of 0.28. Within those eight building-relevant attributes, the

three related to building areas (Nos 4 to 6) are most important (with a combined

measure of 1.13), next the two related to building heights (Nos 7 and 8) (with

a combined measure of 0.52), then the two related to building shape compactness
(Nos 9 and 10) (with a combined measure of 0.36), and lastly the one related to the

number of buildings (No. 3) (with a measure of 0.29). Furthermore, within the three

Figure 11. Examples of transportation land use parcels.
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Table 2. General statistics of 12 parcel attributes (see table 6) by nine land use types (see table 1 for abbreviations).

No. Sf Mf Com Off Ind Civ Open Tran Und

1 M598 M51976 M5743 M51181 M52176 M53574 M52052 M5313 M5276
S581 S52411 S51561 S52672 S58309 S58663 S54205 S5428 S5991

2 M51203 M51303 M51236 M51242 M51266 M51233 M51568 M51293 M51233
S565 S5293 S5148 S5148 S5182 S5151 S5503 S5190 S579

3 M51.03 M59.79 M51.5 M51.42 M51.97 M53.69 M50.06 M50.02 M50.01
S50.21 S511.53 S51.55 S51.04 S52.48 S57.18 S50.30 S50.12 S50.07

4 M523 M5106 M5144 M5180 M5401 M5331 M51.0 M51.3 M50.2
S57 S5101 S5302 S5339 S5775 S5436 S55.2 S512.1 S50.6

5 M522 M583 M5125 M5165 M5342 M5200 M50.9 M51.3 M50.2
S57 S589 S5227 S5312 S5384 S5241 S54.6 S512.1 S50.6

6 M525.81 M530.01 M525.41 M523.43 M531.11 M518.33 M50.11 M50.15 M50.03
S58.04 S58.84 S513.16 S510.63 S513.94 S510.94 S51.37 S51.60 S50.43

7 M516.41 M528.48 M519.86 M526.49 M522.09 M529.38 M50.87 M50.32 M50.07
S54.17 S510.03 S510.58 S516.99 S56.32 S517.87 S53.87 S52.60 S50.90

8 M516.38 M524.59 M518.96 M525.09 M521.00 M524.28 M50.84 M50.32 M50.07
S54.14 S57.58 S59.20 S514.72 S55.99 S512.82 S53.75 S52.60 S50.90

9 M51256 M51801 M51398 M51387 M51426 M51777 M564 M519 M59
S593 S5510 S5297 S5278 S5329 S5596 S5278 S5150 S5131

10 M51254 M51609 M51360 M51358 M51361 M51490 M564 M519 M59
S592 S5420 S5244 S5253 S5217 S5288 S5276 S5150 S5131

11 M545 M537 M531 M533 M538 M534 M538 M536 M543
S56 S59 S511 S511 S59 S58 S510 S512 S59

12 M542 M554 M563 M559 M568 M552 M536 M556 M534
S510 S59 S512 S513 S514 S512 S515 S515 S514

Note: M5mean, S5standard deviation.
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building-area-related attributes (Nos 4 to 6), the standard deviation of the building’s

area (No. 5) and the maximum building’s area (No. 4) are more important, with

separability measures of 0.67 and 0.61 respectively.

The parcel attribute of the highest category of street within 50 m (No.11) does not

provide much separability (only 0.04) between land use types as we expected. From

figure 2, it is observed that although most commercial land use and some multi-

family land use parcels are related to this attribute, there is still great variability of

this attribute for other land use types, such as office and industrial.

Figure 12. Histograms of parcel attributes Nos 1 to 6 (see table 6) by land use types (see
table 1 for land use abbreviations).
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The parcel attribute of the impervious cover percentage (No. 12) also has

relatively low separability measure (0.09). The reason is probably that the

impervious cover is classified based on the spectral reflectance of remote sensing

images, and many impervious cover surfaces covered under tree canopies are

erroneously classified into the pervious cover class. Hence, we can conclude that this

vegetation-relevant parameter does not provide good separability between parcels of

different land use types. In order to test how well the real impervious cover

percentage parameter relates to land use types, we need more accurate methods for

the delineation of the impervious cover surface.

Figure 13. Histograms of parcel attributes Nos 7 to 12 (see table 6) by land use types (see
table 1 for land use abbreviations).
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6. Discussions

One limitation of per-field land use classification is the need for pre-determined

field boundaries. This study relies on existing vector data of tax parcel

boundaries. The advantage is that tax parcels always contain homogeneous

land use and are usually up-to-date. The disadvantage is that tax parcels do not

cover the entire land surface, specifically, the street surface. Also, some rural

Table 3. Number of training and test parcels for each land use type.

Land use type No. of training parcels No. of test parcels Total No. of parcels

Single family 14 636 14 616 29 252
Multi-family 192 213 405
Commercial 647 639 1286
Office 232 241 473
Industrial 142 130 272
Civic 72 78 150
Open space 145 167 312
Transportation 69 63 132
Undeveloped 371 372 743
All land use types 16 506 16 519 33 025

Table 4. Confusion matrix (see table 1 for class abbreviations).

Class

Ground truth (pixels)

Sf Mf Com Off Ind Civ Open Tran Und Total

Sf 14 340 16 89 69 13 12 9 0 2 14 550
Mf 34 141 27 14 12 20 1 0 0 249
Com 240 50 484 126 53 36 1 0 0 990
Off 0 1 23 20 24 4 0 0 0 72
Ind 2 5 15 12 26 1 0 0 0 61
Civ 0 0 1 0 1 4 0 0 0 6
Open 0 0 0 0 0 0 90 8 29 127
Tran 0 0 0 0 1 1 2 19 15 38
Und 0 0 0 0 0 0 64 36 326 426
Total 14 616 213 639 241 130 78 167 63 372 16 519

Table 5. Error and accuracy assessment (see table 1 for class abbreviations).

Class
CE
(%)

OE
(%)

CE
(pixels)

OE
(pixels)

PA
(%)

UA
(%)

PA
(pixels)

UA
(pixels)

Sf 1.44 1.89 210/14550 276/14616 98.11 98.56 14340/14616 14340/14550
Mf 43.37 33.80 108/249 72/213 66.20 56.63 141/213 141/249
Com 51.11 24.26 506/990 155/639 75.74 48.89 484/639 484/990
Off 72.22 91.70 52/72 221/241 8.30 27.78 20/241 20/72
Ind 57.38 80.00 35/61 104/130 20.00 42.62 26/130 26/61
Civ 33.33 94.87 2/6 74/78 5.13 66.67 4/78 4/6
Open 29.13 46.11 37/127 77/167 53.89 70.87 90/167 90/127
Tran 50.00 69.84 19/38 44/63 30.16 50.00 19/63 19/38
Und 23.47 12.37 100/426 46/372 87.63 76.53 326/372 326/426

Note: CE5commission error, OE5omission error, PA5producer’s accuracy, US5user’s
accuracy.
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areas in the US and other countries may not have complete tax parcel database.

Therefore, the major application areas of parcel-based per-field urban land use
classification are the US cities, where tax parcel databases are usually available

and up-to-date.

The current study relies on ancillary data to obtain parcel attributes, which can

be used for land use classification. Within the four ancillary datasets used,

building footprints vector polygon data are the most important but most likely to

be unavailable for many urban areas. In the past, no effective ways for automatic

extraction of residential buildings exist. Researchers generally had to visually

identify and manually digitize dwelling units from high-spatial-resolution aerial

photographs. With the advance of very high spatial resolution satellite images,

such as IKONOS and QuickBird, and the improvement of feature extraction

techniques, automatic extraction of dwelling units from satellite images has

become possible (Haverkamp 2004). Another prospect for automatic building

extraction is the advancement of three-dimensional (3D) object extraction

Figure 14. Graph of producer’s accuracy and user’s accuracy for different land use.

Table 6. Signature separabilities based on individual and combinations of parcel attributes.

No. Parcel attribute Signature separability

1 Parcel size 0.24 0.24 0.28 1.88
2 Parcel shape compactness 0.04 0.04
3 Number of buildings 0.29 0.29 1.72
4 Maximum building’s area 0.61 1.13
5 Standard deviation of the building’s area 0.67
6 Total building-area percentage 0.11
7 Maximum building’s height 0.23 0.52
8 Standard deviation of the building’s height 0.16
9 Maximum building shape compactness 0.12 0.36
10 Standard deviation of building shape compactness 0.11
11 The highest category of street within 50 m 0.04 0.04 0.04
12 Impervious cover percentage 0.09 0.09 0.09
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techniques from LIDAR data (Rottensteiner 2003; Rottensteiner et al. 2004). With

these new remote sensing data and building extraction techniques, population

estimation by dwelling unit counts is likely to become a viable approach.

Another potential problem of using ancillary data is the mismatch of timeframes

between datasets. For example, the four ancillary datasets and the ground truth land

use data used in this study are all one or two years older than the parcel boundaries

data and, therefore, might be mismatching to them. Furthermore, even for datasets

of the same year, they still may not match well with each other, as some may not be

updated in a timely manner.

The present study relies on GIS vector data while making use of existing remote

sensing algorithms for land use classification. Although GIS systems are generally

more capable of processing vector data, current GIS provide limited capabilities for

land use classification. In contrast, land use classification has a long history in

remote sensing and many classification algorithms have been developed.

Furthermore, the use of GIS data in land use classification has not been explored

extensively. There is a need for more integrated systems that allow making use of

both remote sensing and GIS data for land use classification.

A relatively new approach for urban land use classification is to utilize contexture

information regarding the spatial arrangement between land cover classes or

landscape objects for land use classification (e.g. Barnsley et al. 2003, Herold et al.

2003, Bian and Xie 2004). Future researches may incorporate contextual parameters

into per-field urban land use classification, such as a contextual statistics related to

the spatial arrangement of buildings, and a contextual statistics related to the

similarity between studied parcels and neighbouring parcels. In addition, further

researches may compare the GIS parameters used in this study with some common

image spectral and texture parameters for urban land use classification, or

incorporate the image parameters as classification criteria.

7. Conclusions

The current study presents a per-field approach for classifying urban land use. We

classified nine types of urban land use based on 12 tax parcel attributes. The nine

types of urban land use include single family, multi-family, commercial, office,

industrial, civic, open space, transportation and undeveloped. The 12 tax parcel

attributes include parcel size, parcel shape compactness, the number of buildings,

the maximum building’s area, the standard deviation of the building’s area, the total

building-area percentage, the maximum building’s height, the standard deviation of

the building’s height, the maximum building shape compactness, the standard

deviation of building shape compactness, the highest category of streets within 50 m,

and the impervious cover percentage. The signature separability analysis based on

different combinations of parcel attributes indicates that the eight building-relevant

attributes are the major discriminant factors between land use types, and the two

parcel-relevant attributes are secondary. Within those eight building-relevant

attributes, the three related to building areas are most important, next the two

related to building heights, the two related to building shape compactness and,

lastly, the one related to the number of buildings.

The classification results have an overall accuracy of 93.53% and a Kappa

coefficient of 0.7023. The results show that the six building types of land use can be

separated from other three non-building types of land use. Within the six building
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types of land use, single-family and multi-family land use can be separated from

other non-residential land use types, as well as from each other. Within the three
non-building types of land use, undeveloped can be separated from the other two.

Overall, this study shows that a per-field approach based on tax parcel boundaries

and GIS attributes of parcels can be used to classify detailed urban land use. This

classification methodology can also be applied to other areas, provided that the

parcel boundaries data are available, although different geographic regions may

have different parcel attributes that are important for land use classification.

Although the current study shows that GIS data and GIS attributes are important

for urban land use classification, it is worth noting that many of the GIS data and

attributes are originated from remote sensing data. For example, the building heights

are derived from remote sensing LIDAR data; building shapes and building areas are

manually delineated from high-resolution aerial photographs. Therefore, remote

sensing data are still the fundamental source of data for urban land use classification.

Urban land use classification in remote sensing has its fundamental limitation in

that some land use types have similar physical characteristics or they are

heterogeneous in nature and cannot be separated from each other. Compared with
manual digitizing, digital classification of urban land use still has great uncertainties

and is, therefore, not adopted by urban planners. Nevertheless, with the advancement

of new remote sensing data and techniques in urban analysis, it is expected that the

advantages of digital image processing, e.g., efficiency and objectivity, will one day

justify it for real-world use in detailed urban land use classification.
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