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The landscape pattern of Daqing City, China, has undergone a significant change

over the past 20 years, as a result of the rapid urbanization process. To

understand how urbanization has influenced the landscape in Daqing City, the

largest base of the petrochemical industry in China, we conducted a series of

spatial analyses with landscape pattern maps obtained from Landsat images in

1979, 1990 and 2000. Results indicate that a substantial urban area has been

extended during the past two decades, along with the shrinking of wetland and

woodland.

Spatio-temporal optimization is not a trivial task in developing landscape

models. In previous studies, the optimization of spatial and temporal factors was

achieved separately, because of the difficulty in formulating them together in a

single model. In this study, we adapted the traditional Markov model by

obtaining model parameters and neighbourhood rules from a modified genetic

algorithm (GA). Model performance was evaluated between the empirical

landscape map from the Landsat image and the simulated landscape map from

the models. Over three simulation runs, the global deviation (GD) for the three

models was 1.37, 1.10 and 1.15, respectively. This result shows that the Markov

model and the GA together are able to effectively capture the spatio-temporal

trend in the landscape pattern associated with urbanization for this region. The

future landscape distribution in 2010, 2030 and 2050 was derived using a spatial

Markov model (SMM) for further urban change and planning research.

1. Introduction

Increasing awareness concerning the importance of sustainable urban development

is stimulating the improvement of current methods to better understand urban

landscape evolution, which is the result of complex interactions between physical,

biological and social forces in time and space (Turner 1987). A fundamental

problem confronted by researchers is the difficulty in finding an effective model that

can incorporate both, spatial and temporal knowledge into predicting future

patterns. Such a spatial dynamics model is crucial for the analysis, understanding,

representation and modelling of city dynamics.

Remote sensing data, in conjunction with geographic information systems (GIS),

have been recognized as an effective tool in quantitatively measuring urban area and

modelling urban growth at a relatively large spatial scale (Yeh and Li 1997, Weng

2001, Herold et al. 2003, Yagoub 2004). Given the advantage of repeatedly
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measuring a large spatial area, satellite remote sensing has been effectively applied to

better understand and monitor landscape development and processes, as well as

estimate biophysical characteristics of land surfaces (Roy and Tomar 2001, Stow

and Chen 2002). GIS technology provides a seamless environment for integrating,

visualizing and analysing digital data to facilitate change detection and database

development (Abed and Kaysi 2003, Stewart et al. 2004). Significant progress in the

acquisition of remotely sensed data in a finer spatio-temporal resolution,

compounded with the development of geographic and environment process models,

has greatly extended research capability to examine the chronology, causes and

impacts of the urbanization process.

Motivation to model urban landscape dynamics arises from the process of

examining what, where and to what extents landscape change has occurred, and

furthermore, to understand how and why the changes can occur (Weng 2002, Yang

and Lo 2002). Basically, landscape process models can be categorized into two

groups: statistical description models (Baker 1989, Griffith et al. 2003, Herold et al.

2003) and spatial transition models (Turner 1987, Muller and Middleton 1994,

Weng 2002). The spatial transition models make better use of spatial information by

including the location or state configuration of the landscape. In terms of their

application, the majority of the statistical description models reveal dynamics of

landscape structure and pattern through a set of statistic variables, for example

landscape configuration (Baker 1989) or spatial metrics (Griffith et al. 2003, Herold

et al. 2003). Early Markovian analysis is used as a descriptive tool to predict land

use change on a local or regional scale (Bell 1974, Bourne 1976). Spatial transition

models, however, attempt to derive transition probabilities from a series of temporal

landscape maps and apply them to the landscape prediction model, such as the

Markov chain model (Muller and Middleton 1994, Weng 2002) or the cellular

automata model (Jenerette and Wu 2001). A spatially explicit result can be expected

from the spatial transition models, although they may be much more difficult to

develop than the descriptive models.

To model urban land use change at the regional level, the spatial dependency has to

be considered at an enhanced level of detail with respect to the complex spatial

assemblage of land use types in the urban area (Turner 1987, Barnsley and Barr 1996,

Clarke and Hoppen 1997, Ridd and Liu 1998). Turner (1987) incorporated the spatial

neighbourhood relationship in developing the transition models of landscape changes

in Georgia. Clarke and Hoppen (1997) developed a self-modifying cellular automaton

model, based on the circumstances in neighbouring cells for studying the historical

urbanization in the San Francisco Bay area. Pontius and Malanson (2005) quantified

spatial contiguity for the cellular automata Markov model to predict land change in

central Massachusetts. Nevertheless, there is still a lack of methods that can streamline

the process from acquisition of the spatial information from remote sensing data all the

way to application of such information in the spatial transition models.

Stochastic Markov models (Muller and Middleton 1994) provide one way of

simulating and exploring the process of dynamic systems. Adopted from stochastic

mathematical statistics, the Markov chain model has been applied to model the

changes in land use/cover at a variety of spatial scales (Bell 1974, Muller and

Middleton 1994, Weng 2002) with the use of remote sensing or GIS data. One

obstacle to building a robust spatial transition model using Markovian analysis lies

in the difficulty in concurrently achieving the spatial and temporal optimization of a

given model (Turner 1987, Shibasaki and Huang 2001). Interpolation of model
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parameters and neighbourhood rules using a genetic algorithm (GA) has been

previously tested in a few studies (Jenerette and Wu 2001, Shibasaki and Huang

2001). Although these studies demonstrate that incorporation of spatial parameters

will offer improved description and representation of landscape structure and

process, we need a standardized method to properly apply the GA in estimating

transition probability from a set of satellite images.

In this study, we integrate remote sensing images and GIS into landscape changes

analysis for the urban region of Daqing City between 1979 and 2000 and predict its

pattern in the future. To best predict the future urban landscape change, three

different Markov process models were developed, based on different decision rules

for deriving the Markov transition probability. The first model derives its transition

probability solely from the changed area, without giving consideration to the spatial

information around it. Here, we have named it the Markov model (MM). The other

two models do consider the spatial neighbourhood information when coming up

with the transition probability, but with different strategies: one takes account of the

four immediate neighbours for all the pixels, while the other one applies the four-

nearest-neighbour consideration only to the pixels under boundary condition. These

are called the spatial Markov model (SMM) and the boundary Markov model

(BMM), respectively. A modified GA was developed to combine the spatial

information into the formation of the transition matrix. Finally, model performance

was validated by comparing the empirical landscape map classified from a 2001

Landsat image and the simulated landscape map from the model in 2001.

2. Study site and data preparation

2.1 Study site

The study was carried out in the central part of Daqing City. As the energy capital of

China, Daqing City maintains a variety of landscape types due to its unique geology

and climate. Centred at 124u159 E longitude and 46u209 N latitude, the study area

covers four major urban areas, Shaertu district, Ranghulu district, Longfeng district,

and Honggang district, in Daqing City (figure 1). The terrain consists of a relatively flat

plain with a mean elevation of 126–165 m and an elevation difference of 10–39 m.

Daqing City, once a rural area, has become the largest oil production base since

the oil was explored in 1959. Although Daqing City is now diversifying its energy-

oriented economy, the petroleum and petrochemical industries still comprise the

backbone of its economy. The continual construction of oil fields has spoiled the

original landscape pattern over the past 50 years. Reduction of swamp, grassland

and forest resulted in deterioration and desertification of the environment,

potentially affecting the future landscape pattern, regional environment and

climate. Moreover, with rapid economic development, the population in the

Daqing region has grown dramatically over the past 50 years, increased from one

hundred thousand in 1945 to two and a half million in 2000 (Statistics Bureau of

Daqing 2001). As a result, our study area, which contains mostly the urban area in

the Daqing region, is subject to rapid changes in the urban landscape pattern, such

as the addition of human constructions and the loss of natural swamps.

2.2 Data preparation

Four 150061500-pixel Landsat Thematic Mapper (TM) and Multispectral Scanner

(MSS) satellite images were chosen in this study for the change detection and model

The Markov chain model and a modified genetic algorithm 3257
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construction of urban districts in Daqing during a span of 20 years from 1979 to 2000.

One scene of a Landsat Enhanced Thematic Mapper (ETM) image acquired in 2001

was used as empirical data for the model validation. All the images were acquired

between late June to September, which falls in the growing season of vegetation. One

scene of Landsat MSS was acquired in 23 August 1979 and three scenes of Landsat

TMs were obtained on 20 July 1990, 22 June 2000 and 11 August 2001. All images

were radiometrically and geometrically corrected on a SUN workstation using

ERDAS2 software. The MSS was resampled to 30 m spatial resolution, as was the

TM image. The conventional supervised classification, Maximum Likelihood

Classification (MLC), was conducted to obtain four classification maps in our study

area (table 1). Seven classes were mapped: agriculture, urban or built-up, grass, saline

or barren land, water, wetland, and woodland. Figure 2 presents the original images

and sequential maps classified from the images.

Considering the requirement of traditional MLC and the size of our study area,

we chose a set of training samples of 300 pixels for the imagery in each year. The

accuracy of the resultant landscape maps was assessed with an independent set of

test samples on the study area. Initially, an error matrix was generated. The

producer accuracy, user accuracy and overall accuracy, as well as the kappa

coefficient, were derived and are reported in table 2. Given the nature of the broad

land-use classes defined, the classification results were thus able to provide input

data for the spatio-temporal model.

3. Method

3.1 Markov chain models in Landscape changes

Markov chain models have been used to model landscape changes in understanding

and predicting the behaviour of complex systems (Baker 1989, Weng 2002, Fortin

et al. 2003) using discrete state spaces. All landscape spatial transition models can be

Figure 1. Study area, urban area of Daqing City, Heilongjiang Province, China.
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Table 1. Accuracy assessment of 1979, 1990, 2000 and 2001 landscape maps from Landsat images by Maximum Likelihood Classification.

Training sample Test sample User accuracy (%) Producer accuracy (%)

1979 1990 2000 2001 1979 1990 2000 2001 1979 1990 2000 2001 1979 1990 2000 2001

Agriculture 324 332 335 334 316 324 329 312 80.66 76.38 66.94 75.44 64.92 83.97 91.04 75.44
Urban or built-up 313 324 322 314 312 308 313 311 94.08 98.78 87.92 96.97 92.64 78.90 92.09 96.97
Grass 315 314 307 317 300 315 314 306 94.86 80.86 76.69 76.68 89.64 83.17 61.78 76.68
Saline or barren land 317 305 302 321 300 309 322 313 89.40 79.73 83.24 75.54 99.99 95.41 92.60 75.54
Water 312 305 306 312 317 303 333 331 96.98 99.44 99.53 98.78 96.98 99.15 99.05 98.78
Wetland 311 310 312 301 314 310 309 303 80.73 98.18 80.31 95.54 96.27 84.33 97.84 95.54
Woodland 303 327 308 312 303 320 308 307 69.58 81.56 96.77 71.23 84.03 83.28 67.80 71.23

Overall accuracy (%): 86.23 (1979); 87.05 (1990); 83.86 (2000); 83.16 (2001)
Kappa (%): 83.93 (1979); 84.89 (1990); 81.12 (2000); 80.35 (2001)
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expressed in a simple matrix equation as follows:

Ntz1~Nt|P ð1Þ

where Nt + 1 and Nt are vectors composed of the fractions of each landscape type at

time t + 1 and time t, respectively; P is a square matrix, whose cell Pij is the transition

probability from landscape i to j during times t and t + 1.

The transition probabilities P are derived from the landscape transitions

occurring during some time interval. In this study, we chose maximum likelihood

Table 2. Transition matrix of land use area (km2) between 1979 and 1990.

Agriculture
Urban or
built-up Grass

Saline or
barren land Water Wetland Woodland

Agriculture 315.84 19.78 240.26 32.31 9.95 12.36 54.33
Urban or built-up 5.23 29.23 12.98 2.28 1.09 0.59 0.80
Grass 126.95 16.38 236.75 49.23 20.15 31.02 64.08
Saline or barren

land
31.40 10.69 70.20 41.18 12.43 4.57 11.91

Water 1.55 2.54 10.64 8.92 79.07 13.66 1.81
Wetland 40.33 4.08 41.52 6.44 17.31 90.84 29.66
Woodland 32.92 3.99 37.86 4.52 2.62 12.83 109.84

Figure 2. The original images and land use maps of the Daqing region from 1979 to 2000.
Note: the classified map of 2001 was used as an empirical map to validate the model result.
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(Anderson and Goodman 1957) to estimate the transition probabilities in k steps, as:

Pm i, jð Þ~N i, jð Þ
,Xn

i~1

nij

P i, jð Þ~
Xk

k~1

Pm i, jð Þ
knm

ð2Þ

Where N(i, j) are the observed data during the transition from state i to j, and nij is the

number of years between time step i and step j, and the total number of years is m; P(i, j) is

the yearly transition probability after normalizing the transition probability in multiyears.

There are several assumptions (Baker 1989, Stewart 1994, Weng 2002) in the first-

order homogeneous Markov chains. Basically, we assume that the landscape change is

stochastic, as opposed to deterministic; and the landscape distribution at a given time is

the independent state of the Markov chain. Thus, in the Markov chain model, the next

landscape distribution Nt + 1, at time t + 1, only depends on the current distribution Nt

at time t without considering the other historical values, N1, N2, N3…. Moreover, as

the cells in the transition matrix are probabilities, it follows that:

Xm

j~1

P i, jð Þ~1 ð3Þ

In this first-order homogeneous Markov chains model, the behaviour of any selection

time can be completely predicted if we know the transition probability matrix [Pij] and

the initial distribution vector N (Chakraborty et al. 1995). The s-step transition

probabilities Ps
ij are obtained as the elements of Ps.

Theoretically, the Markov chain model assumes that the transition probability is

spatially independent (Brown et al. 2000). However, the future trend of a pixel to

change is not a simple function of its current state, but is often affected by its

neighbouring cells. As a result, a large amount of spatial information is ignored in

the stand-alone Markov chain model. Therefore, additional steps are needed to

incorporate both spatial and temporal information.

3.2 The genetic algorithm (GA) and its simplification in estimating Markov
transition probability

The original GA was designed to search and optimize solutions based on natural

selection and natural genetics (Hood 1975, Goldberg 1989). In general, GA operates

on a set of coded individuals and each one receives a fitness value using the coding

of their genes (Mertens et al. 2003) to produce the new population through a set of

genetic operators: reproduction, crossover and mutation. Reproduction is a process,

in which individual values are copied to the new population, according to their

objective function values or the fitness values, crossover mates and swaps the

individual within the neighbours, while mutation alters the value in an individual

position. The individuals with a higher fitness are more likely to be selected over

others in the evolution process and the new population is most likely to have a

higher average fitness than the old one (Bornholdt 1998).

In this study, we defined a simple version of this algorithm. The GA was modelled

as a stochastic system with an optimization scheme. The algorithm starts from the

initial landscape pattern in our study area. The code of their genes is the landscape

The Markov chain model and a modified genetic algorithm 3261
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class assigned to each pixel. In each step, the landscape class will be transformed

according to probabilities defined on the basis of their fitness values, which create a

new generation. That is, the generations with a higher fitness are more likely to

‘survive’ than those with lower fitness. Therefore, the new population comes with a

higher average fitness than the old one (Bornholdt 1998). The fitness function f(s) to

be optimized depends on three control parameters, reproduction probability

(denoted as Pr), crossover probability (denoted as Pc) and mutation probability

(denoted as Pm). To incorporate this algorithm into the Markov chain, we combined

Pr and Pc into calculating a spatial probability Prc. Let x be an element from an X

population within the class space S5{s1, s2, s3,…,sN}, so that the initial probability

distribution is given as

D
0ð Þ

i ~S
X

Pr x 0ð Þ~si

n o
, i~1, 2, 3, . . . , N

XN

i~1

D
0ð Þ

i ~1

ð4Þ

The class value of the target pixel at centre xc (0) is compared to that of its four

neighbours xd (1, 2, 3, 4), respectively, to produce the spatial probabilities for the

whole map (equation (5)). Through this equation, we can build a square matrix to

denote the spatial relationship between the two land use classes.

While x[Xð Þ;

i~s xð Þ; j~s xð Þ; d~1, 2, 3, 4;

Matrix i, jð Þz1;

End

ð5Þ

As the ecotone between two classes usually demonstrates a greater spatial heterogeneity

and exhibits a greater extent of landscape changes, the class located in the ecotone

usually has a higher spatial influence on its neighbours. Applying the same spatial

transition probability for the entire landscape will ignore this difference between the

pixels inside the landscape patch and the pixels under the boundary condition (figure 3).

To optimize the spatial parameter set in this landscape process model, we developed a

contrasting algorithm using the four adjacent neighbours only if they are lying on the

boundary. This is called the boundary Markov predict. The comparison between the

spatial Markov predict result and the boundary Markov predict result could provide an

additional method for considering spatial change in the spatial model.

The spatial probability Prc(i,j) is then defined as

Prc i, jð Þ~
Pr X 0ð Þ~si

� �
Pr X 0ð Þ~sj

� �
~

Matrix i, jð ÞPS
j

Matrix i, jð Þ

ð6Þ

where Prc(i,j) is the conditional probability calculated from the probability

Pr{X(0)5sj} and Pr{X(0)5sj} when class i was found next to class j randomly. The

matrix (i,j) will be acquired from equation (5).

3262 J. Tang et al.
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The mutation probability Pm(i,j) is the probability of class j being replaced by

class i between two successive states, t and t + 1, whose (i,j) element is:

P
t, tz1ð Þ

m i, jð Þ ~P x tz1ð Þ~sj

��x tð Þ~si

n o
ð7Þ

As shown in figure 4, we consider the Prc as spatial continuity and Pm as temporal

continuity. For example, if one agriculture pixel is surrounded by several grassland

pixels, it will have a greater potential to change into grassland. In other words, the

agriculture pixel has a higher crossover probability from grassland to agriculture. If

the agriculture pixel is situated among other agriculture pixels, it will have a higher

reproduction probability to itself. The mutation probability only depends on the

exchange among the classes, which can be derived from multitemporal data.

Obviously, the spatial probability Prc(i,j) and temporal probability Pm(i,j) are

independent. Then the transition probability P(i,j) is calculated in the form of the

Figure 3. Pixels under boundary condition: codes denote land use class.

Figure 4. Spatio-temporal relationship of variable data. M, mutation; R, reproduction; C,
crossover.

The Markov chain model and a modified genetic algorithm 3263
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fitness value, which is further calculated as a multinomial distribution during n

processes:

P i, jð Þ~Pk
1

Pk1

1 PT i, jð ÞPS i, jð Þ
2k1

z
Pk2

1 PT i, jð ÞPS i, jð Þ
2k2

z . . . z
Pkn

1 PT i, jð ÞPS i, jð Þ
2kn

( )

~Pk
1

Pk1

1 Pm i, jð ÞPrc i, jð Þ
2k1

z
Pk2

1 Pm i, jð ÞPrc i, jð Þ
2k2

z . . . z
Pkn

1 Pm i, jð ÞPrc i, jð Þ
2kn

( )ð8Þ

where ki is the temporal step number between the state, and k5k1 + k2 + … + kn. PT is

the probability derived from multitemporal data, which corresponds to the mutation

probability Pm; PS is the spatial probability, which corresponds to the reproduction

and crossover probability Prc.

3.3 Model validation

Validation of a landscape dynamics model is usually carried out by comparing the

predicted result to the empirical map, pixel by pixel, to determine the prediction

ability of the model. With regard to landscape processes, the absolute location of

landscape elements is likely to be less important than the overall pattern in the

landscape (Jenerette and Wu 2001). As the algorithm used in this study to simulate

the spatial dynamics of landscape elements is patch-based instead of pixel-based, the

per-pixel comparison is not suitable for this study.

For validation, the model’s simulated output was compared to the empirical map

from the same year (Pontius et al. 2001). The validation process runs across two

steps. First, the land-use maps classified from 1979, 1990 and 2000 remote sensing

images were used to build a prediction model, from which a simulated land-use map

in a different year was derived. Then the simulated map in 2001 was compared to the

empirical map from the same year (figure 2) to validate the model result. Two

indexes, the class-specific individual deviation (ID) and the overall global deviation

(GD), were adopted to assess the discrepancy between the simulated and empirical

map (Pontius et al. 2001):

ID~
Po{Pe

Pe

GD~
Xn

i~1

ID

ð9Þ

where Po is the percentage of each class of the model’s simulated output, Pe is the

percentage of each class of empirical map, and n is the number of classes. A

‘successful’ simulation occurs when the model’s simulated output best matches the

empirical land-use map with the lowest ID and GD.

4. Results and discussion

4.1 Pattern change

A tremendous change in the urbanized area within Daqing City is evident over the

past 20 years. The total change areas between 1979 and 1990 and between 1990 and

2000 are 1191.06 km2 and 887.42 km2 and the percentage changes are 59.05% and

44.00%, respectively. As indicated in figure 5, the most significant changes are the

3264 J. Tang et al.
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spread of urban or built-up landscape, which increased from 2.59% in 1979 to 6.23%

in 2000 and the loss of wetland from 11.41% in 1979 to 3.51% in 2000. The dominant

landscape, agriculture, decreased from 33.95% in 1979 to 31.29% in 1990 and

increased back to 39.13% in 2000.

The number of patches in each landscape class was calculated through the

STATISTIC function in ARCINFO. The pattern of changes in the number of

patches is class-specific (figure 6). Over the 20 years studied, the number of urban

patches increased initially and then decreased. This is primarily due to the ‘nibble’ of

other land use by human disturbance. With the increased urbanization, smaller

urban patches merged into a larger and continuous patch when human disturbances

increased in this region. Figure 2 shows that the spatial expansion of urban area is

along the major transportation routes, such as the Bingzhou and Rangtong

railways. Wetland and woodland have decreased in both, the patch area and number

of patches during the 20-year period, because of its conversion to grass or cultivated

lands. Shrinkage of small wetlands and fragmentation at the edge of the large ones

are mostly found in the northeast of the study area. On the contrary, the total area

kept decreasing during 1979–1990 and increasing during 1990–2000, while the

number of patches in agriculture kept increasing during 1979–1990 and decreasing

Figure 5. The total area of each land use class between August 1979 and June 2000.

Figure 6. The number of patches for each land use class between August 1979 and June
2000.
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during 1990–2000. This result indicates a strengthened fragmentation and spread
process of agriculture during this period. By examining the detailed landscape

change data (tables 2 and 3), it is clear that the exchange between agriculture and

grassland was the most frequent transition. During the first decade, a considerable

cultivated area was converted to grass because of construction of an oil field in the

1980s. As this construction spoiled the original fertile soil, the regional government

endeavoured to protect the cultivated area, which resumed agriculture in the 1990s

(Statistics Bureau of Daqing 2001).

4.2 Modelling results and validation

Before we apply the modified Markov model to time series data, we use a simple

363 contingency table with the x2 statistic to test that the landscape change in the

study region was not random, which is required for further Markovian analysis. The

test statistic (P,,0.01 with degree of freedom57) was significant for each

comparison, 1979 with 1990, and 1990 with 2000.

Our algorithm was implemented in Matlab for the landscape maps from 1979,

1990 and 2000, respectively. The computation is based on the actual observations

and time span during the landscape change, regardless of the way that the change

process occurred. The temporal transitional probability matrix is calculated using

equation (2), by accumulating the periods 1979–1990 and 1990–2000, and the spatial

probability matrix is calculated using equation (6), based on the initial landscape
map in 1979. Table 4(a) is the yearly transitional probability matrix without spatial

simulation, which is based solely on Markov transition probabilities. To further test

our modified GA, we applied a contrasting approach to examine the spatial factors.

Table 4(b) is the yearly transitional probability matrix, based on the four nearest

neighbours of all pixels, while table 4(c) is based only on the pixels under boundary

conditions (figure 4).

Using three different transition probability matrices in table 4, we predicted and

compared the simulated landscape maps to the empirical landscape map from the

2001 satellite image (table 5). From table 5, we can see that the GA is valid for

incorporating the complex spatio-temporal information into the landscape

dynamical model, but easily reaches its limit due to its inherent inability to consider

spatial arrangement of pixels depending upon different classes. For the landscape

type with large patch areas, such as agriculture and grass, the spatial Markov predict

(38.53% and 31.51%) is better than both the boundary Markov predict (37.02% and
32.56%) and the Markov predict (36.67% and 31.97%). For the small-area landscape

or landscape with small patches, such as urban and wetland, the boundary Markov

Table 3. Transition matrix of land use area (km2) between 1990 and 2000.

Agriculture
Urban or
built-up Grass

Saline or
barren land Water Wetland Woodland

Agriculture 505.57 12.58 81.58 5.30 0.66 0.96 24.50
Urban or built-up 4.30 49.56 29.53 1.59 1.27 0.09 0.36
Grass 180.08 40.42 339.11 51.75 3.68 4.46 30.93
Saline or barren

land
16.65 13.62 60.05 49.25 2.29 0.23 2.79

Water 3.17 6.94 28.39 4.79 89.85 3.33 6.15
Wetland 10.96 0.72 61.95 0.60 8.50 50.03 33.11
Woodland 46.12 2.10 64.29 1.25 1.45 11.63 68.65

3266 J. Tang et al.
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predict (5.81% and 4.94%) is better than the spatial Markov predict (5.57% and

4.98%) and Markov predict (5.58% and 5.45%). It can also be seen that a majority of

boundary Markov predict values based on the boundary condition pixels fall

between the Markov predict and the spatial predict. Using the modified GA, the

outcome can be attributed to the dominance of the spatial probabilities Prc over the

temporal probability Pm for the large-patch landscape types, while changes will be

more prevalent on the boundary area for the small-patch landscape types.

Therefore, the spatial factor for the small patches has a larger influence than that

for the large patches. Standardizing the weight factor of patch size and balancing it

between the spatial factor and temporal factor will be difficult.

Table 6 shows the ID and GD calculated from the simulated map and empirical

map in 2001 using equation (9). The results from the spatial-based models are

superior to those from the Markov prediction. Both, the smallest ID (0.002) and the

smallest GD (1.103) were found in the spatial Markov predict. These results indicate

that inclusion of spatial pattern information in a transition probability matrix by

means of GA can effectively improve the performance of the Markov prediction

model. Specifically, among the seven classes, saline or barren land and water, which

Table 4. Yearly transition probability (%) matrix for (a) the Markov model (MM), (b) the
spatial Markov model (SMM) and (c) the boundary Markov model (BMM) from 1979 to

2000.

Agriculture
Urban or
built-up Grass

Saline or
barren land Water Wetland Woodland

(a) MM
Agriculture 96.56 0.23 2.24 0.26 0.07 0.09 0.55
Urban or built-

up
0.70 95.86 2.83 0.29 0.17 0.06 0.09

Grass 2.44 0.45 95.04 0.81 0.20 0.29 0.77
Saline or barren

land
1.36 0.74 3.82 93.18 0.39 0.12 0.39

Water 0.17 0.34 1.40 0.51 96.65 0.64 0.29
Wetland 1.13 0.10 2.69 0.15 0.60 93.76 1.58
Woodland 4.20 0.14 2.49 0.13 0.10 0.58 92.37
(b) SMM
Agriculture 96.37 0.27 2.33 0.29 0.07 0.09 0.58
Urban or built-

up
0.89 95.21 3.33 0.36 0.16 0.01 0.03

Grass 2.82 0.47 94.52 0.89 0.21 0.30 0.80
Saline or barren

land
1.71 0.77 4.24 92.41 0.44 0.09 0.34

Water 0.11 0.37 1.71 0.53 96.34 0.60 0.34
Wetland 1.19 0.13 2.95 0.12 0.63 93.28 1.68
Woodland 4.96 0.16 2.49 0.08 0.06 0.59 91.66
(c) BMM
Agriculture 96.39 0.27 2.35 0.28 0.06 0.08 0.57
Urban or built-

up
0.75 95.82 3.00 0.26 0.14 0.00 0.02

Grass 2.59 0.44 95.00 0.79 0.19 0.26 0.73
Saline or barren

land
1.53 0.73 3.88 93.08 0.39 0.07 0.32

Water 0.08 0.36 1.63 0.46 96.60 0.53 0.33
Wetland 1.05 0.13 2.88 0.09 0.59 93.64 1.62
Woodland 4.59 0.16 2.37 0.07 0.06 0.51 92.25
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belong to natural landscape cover types, present a similar order of individual

deviation between the spatially-based prediction and the Markov prediction, while

for the most common human-disturbed landscape, agriculture, the spatially-based

prediction results performed better than the sole Markov prediction. It seems that

the spatially-based prediction using GA has a better capability to capture the spatial

characterization of human-disturbed landscape than the natural landscape as the

human-disturbed landscape is less likely to change randomly.

As a demonstration of the utility of our approach, we have generated future

landscapes in 2010, 2030 and 2050 by the SMM (table 7). A notable trend is

discerned; the sprawl of city and oil field will increase cultivation of the grass and

lead to further loss of the natural landscape. An increasing amount of wetland and

woodland will be fragmented into grass, resulting in a more fragmented landscape.

Agriculture will be degraded to grass or even barren land because of damage to the

soil structure after the construction of the oil field.

Table 5. Comparison of simulated results (%) using the Markov model (MM), the spatial
Markov model (SMM) and the boundary Markov model (BMM) with the empirical

classification map in 2001.

Agriculture
Urban or
built-up Grass

Saline or
barren land Water Wetland Woodland

Empirical
landscape

39.60 6.51 31.59 6.35 6.22 3.11 6.63

MM 36.67 5.58 31.97 6.59 5.52 5.45 8.23
SMM 38.53 5.57 31.51 6.36 5.27 4.98 7.78
BMM 37.02 5.81 32.56 6.41 5.30 4.94 7.96

Table 6. The class-specific individual deviation (ID) and the overall global deviation (GD)
between the empirical map and simulated map in 2001.

Model Agriculture
Urban or
built-up Grass

Saline or
barren land Water Wetland Woodland GD

MM 0.07 0.14 0.01 0.04 0.11 0.75 0.24 1.37
SMM 0.03 0.14 0.00 0.00 0.15 0.60 0.17 1.10
BMM 0.07 0.11 0.03 0.01 0.15 0.59 0.20 1.15

MM, the Markov model; SMM, the spatial Markov model; BMM, the boundary Markov
model.

Table 7. The predicted results (%) from the spatial Markov model (SMM) in 2010, 2030 and
2050.

Agriculture
Urban or
built-up Grass

Saline or
barren land Water Wetland Woodland

2010 37.53 6.47 33.11 6.20 5.06 4.04 7.59
2030 38.03 7.27 33.54 6.08 4.68 3.19 7.21
2050 38.18 7.60 33.66 6.07 4.46 2.95 7.08

3268 J. Tang et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
a
t
 
B
u
f
f
a
l
o
 
(
S
U
N
Y
)
]
 
A
t
:
 
2
0
:
4
3
 
2
6
 
A
u
g
u
s
t
 
2
0
0
8



5. Conclusions

The spatio-temporal model of landscape patterns using multitemporal Landsat TM

and MSS imagery enabled us to identify the patch distribution in our study area and

monitor the landscape dynamics for Daqing City. This study explored the potential

of satellite remote sensing images and Markov chain models to predict future

landscape change. Moreover, utilization of the GA for representing spatial

information in the spatio-temporal model has proved to be a practical and effective

method.

The Markov chain model, coupled with the GA, has indicated the descriptive

capability of trend projection. This spatio-temporal model provides not only a

quantitative description of change in the past but also the direction and magnitude

of change in the future. However, based on the experimental results and exploratory

analysis, several limitations are present in the current study:

N As the modelling process involves the use of data from multiple sources, the

accuracy of prediction results will be closely related to the individual accuracy

of each type of data. Developing a solid method for incorporating data from

different sources, different data structures, as well as different spatial

resolutions, is still a challenge.

N The transition probability in the Markov chain model is assumed to be

uniform. Therefore, it is still difficult to accommodate the unpredictable

influence of variables, such as the climate, governmental policy or human

disturbance. In addition, the pace of landscape change is not usually steady

over a whole period.

N Although the modified GA in this study achieved a considerable improvement

over the Markov chain model, the exact location of classes still cannot be

simulated. An examination of the relationship between landscape change and

its location remains an interesting research topic.

At this time, it is not fully conclusive that the transition probability based only on

boundary pixels is inferior to that based on all pixels. It is necessary to apply the

developed methods to a series of varied landscapes that may present different spatial

arrangements. However, it can be concluded that by incorporating more spatial

algorithms into the prediction of landscape change, more accurate long-term

forecasts can be made in the future.
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