
Introduction

Knowledge of the size and distribution 
of human population is essential for 
understanding and responding to 

many social, political, economical, and envi-
ronmental problems (Liu et al 2006). In the 
United States, the decennial census is the pri-
mary source of demographic data. Although the 
U.S. Census Bureau conducts census surveys at 
the household level, the data are released only 
by aggregated enumeration units because of 
confidentiality issues and administrative pur-
poses. Researchers may encounter two problems 
when using aggregated census data to conduct 
research. 
  The first problem is associated with carto-
graphic visualization of population density. 
Choropleth mapping of population density 
creates the impression that population density 
is uniform within census units. This may be 
acceptable when the mapping area consists of 
a large number of units and the map is gener-
ated to visualize the overall trend of population 
variation. However, when the mapping area only 
consists of a few census units there may be a 
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need to further delineate different population 
density zones within the units for better visual-
ization of population distribution. Specifically, a 
census unit may contain inhabited and uninhab-
ited areas, residential and non-residential land 
use, and areas of different population densities, 
particularly in suburban or rural areas where 
population is sparse. Therefore, for the purpose 
of visualizing within-unit population distribu-
tion, in contrast to visualizing the differences 
between units, population density maps should, 
whenever possible, try to map where people 
actually live. Accordingly, methods are needed 
to delineate different population density zones 
within census units. 

 The second problem for researchers using 
census population data is that they may need to 
estimate population counts for areas not coinciding 
with boundaries of census units. For example, a 
subdivision for a proposed redevelopment project 
does not always have the same boundaries as do the 
census units, yet developers may need to estimate 
how many people live in the subdivision for cost 
and benefit analysis. Watersheds generally do not 
have the same boundaries as the census units, 
yet researchers may need to estimate watershed 
populations for environmental impact assessments. 
City planners may need to estimate populations 
within a half mile buffer of a proposed railroad 
route or a proposed landfill site to estimate how 
many local residents would be affected by the 
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projects. All these examples show that we need 
methods for estimating populations of arbitrary 
boundaries.

This study presents a dasymetric mapping 
method for intra-census-unit population mapping 
and estimation. We disaggregated census block 
populations based on their land-use information and 
image-texture statistics of the semi-variance. 

Review of Past Population 
Estimation Methods in GIS and 

Remote Sensing
According to Wu et al. (2005), past studies 
relevant to population estimation in GIS 
and remote sensing can be grouped into 
areal interpolation and statistical modeling, 
depending on the intended goal and the 
required information. Areal interpolation 
studies use census population data as the input 
and apply certain interpolation techniques 
to obtain refined population data, usually for 
the purpose of transforming population data 
from one set of spatial units to another. In 
contrast, statistical modeling studies infer a 
statistical relationship between population and 
other physical and socio-economic variables, 
often for the purpose of estimating intercensal 
populations for urban areas or populations of 
areas where it is difficult to conduct the census. 
Nevertheless, some researchers also incorporate 
statistical modeling into areal interpolation 
of population (e.g., Harvey 2002b; Yuan et al. 
1997).

Areal interpolation of population may be further 
separated into two categories, depending on 
whether the interpolation is based on mathematical 
functions or ancillary information (Wu et al. 2005). 
For areal interpolation based on mathematical 
functions there are point-based methods and 
areal-based methods, depending on whether 
the population data for computational input are 
in digital form of points or areas. Examples of 
point-based interpolation include Martin (1989), 
Bracken (1991), and Martin (1996). Examples of 
area-based interpolation include Tobler (1979) 
and Rase (2001). Areal-based methods usually 
have the volume-preserving property, i.e., the 
summation of interpolated population data to 
individual census units is the same as the original 
census unit populations. 

Population is related to other information such 
as land use, transportation, and topography. 
Ancillary information relevant to population 

distribution, therefore, can be used to assist areal 
interpolation of population. Areal interpolation 
using ancillary information is referred to as the 
dasymetric mapping method, and this approach 
is generally volume preserving (Wu et al. 2005). 
The most commonly used ancillary information 
for population interpolation is land use/land cover 
(LULC) data (e.g., Yuan et al. 1997; Mennis 2003; 
Holt et al. 2004). Others include topographic data 
(Wright 1936), election districts demographic 
data (e.g., Flowerdew and Green 1989; 1991), 
road network data (e.g., Xie 1995; Reibel and 
Bufalino 2005; Hawley and Moellering 2005), 
and remote sensing image spectral and textural 
statistics (Harvey 2002b). 

Land use/land cover-based dasymetric mapping 
assumes the same population densities for the same 
LULC classes and redistributes census populations 
to land use areas. The population densities for 
different land-use classes can be determined from 
sampling (e.g., Mennis 2003), from regression 
analysis (e.g.,  Yuan et al. 1997; Langford et al. 1991), 
or based on the domain knowledge of researchers 
(e.g., Eicher and Brewer 2001). Regression analysis 
seems to provide a more objective approach since 
population density measures are derived based on 
the entire land-use and population dataset.

Land use/land cover data are usually derived 
from remote sensing images through digital image 
classification. Due to the difficulty of classifying 
detailed categories of urban land use from 
remote sensing images (Wu et al. 2006), remote 
sensing-derived LULC data only provide general 
categories of urban land use (e.g., residential vs. 
non-residential) as the ancillary information for 
population interpolation. Compounded with the 
errors associated with digital image classification, 
LULC-based dasymetric mapping for urban areas 
always has a degree of error. Nevertheless, if detailed 
and accurate urban land-use data are available, 
e.g., data of single family, multi-family, industrial, 
and commercial land uses, then population 
interpolation based on the data should be more 
reliable. Such land-use data are most likely to be 
obtained through image interpretation and manual 
digitizing. They are usually in vector format with 
a high degree of precision.

Another category of literatures relevant to popula-
tion estimation is statistical modeling. Depending 
on the scale of analysis, researchers have used five 
types of predictor variables in regression analyses 
of population (Wu et al. 2005), including urban 
areas (e.g., Tobler 1969; Lo and Welch 1977; 
Prosperie and Eyton 2000), land-use areas (e.g., 
Kraus et al. 1974; Weber 1994; Lo 2003), classi-
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fied dwelling units count (e.g., Hsu 1971; Lo and 
Chan 1980; Lo 1989), image pixel statistics (e.g., 
Webster 1996; Harvey 2002a; Liu et al. 2006), and 
other physical or socioeconomic characteristics 
(e.g., Green and Monier 1959; Dobson et al. 2000; 
Liu and Clarke 2002). 

We separated population estimation research 
in GIS and remote sensing into two categories: 
areal interpolation and statistical modeling. This 
notwithstanding, statistical modeling approaches 
have been used for areal interpolation of population 
(specifically the dasymetric mapping method) in 
some studies, in the context of estimating popu-
lation densities for land-use classes (e.g., Yuan et 
al. 1997; Langford et al. 1991; Flowerdew and 
Green 1989) or estimating population by image 
pixels (e.g., Harvey 2002b). 

Although LULC-based dasymetric mapping is an 
improvement over traditional choropleth mapping, 
important variations of population distribution 
within individual land-use classes may still be ignored. 
In contrast, Harvey (2002b) disaggregated census 
populations by pixels using a variety of spectral 
and textural statistics of remote sensing images. 
This pixel-based dasymetric mapping allows the 
mapping of detailed variations of population 
distribution. Its limitation is that the relationship 
between population and combinations of image 
pixel statistics cannot be interpreted. In addition 
there is the possibility that non-residential land areas 
have the same image pixel statistics as residential 
land areas. As a result, assuming people only live 
on residential land, this complexity would make 
modeling of population by image pixel statistics 
less reliable. This study combines the strength of 
LULC-based and pixel-based dasymetric mapping 
by modeling population from image pixel statistics 
for different land uses. In this approach, we can 
separate residential versus non-residential areas 
as well as areas of different residential land use 
classes. Then we can model detailed variations of 
population distribution from image pixel statistics. 
The volume-preserving strength of dasymetric 
mapping method is maintained.

Past studies have indicated a strong relationship 
between population density and image spectral 
and texture statistics (Lo 1995; Webster 1996; 
Harvey 2002a). Texture statistics from remotely 
sensed images measure the degree of spectral 
variation between pixels and, therefore, indicate 
the degree of landscape heterogeneity for a given 
area. For example, residential areas with small 
houses and small distances between houses rep-
resent more heterogeneous landscape and usually 
have higher values of image texture statistics, such 

as variance, standard deviation, and entropy. In 
contrast, residential areas with large houses and 
long distances between houses represent more 
homogeneous landscape and usually have lower 
values of image texture statistics (Bian and Xie 
2004; Liu et al 2006; Wu et al. 2006). 

In this study, we used the texture statistic 
of semi-variance to correlate with population 
densities. Semi-variance statistics for an area 
are calculated as half the average of the squared 
difference between paired pixel values separated at 
a certain distance, called the lag. The mathemati-
cal function of semi-variance, γ(h), separated by a 
lag, h, can be expressed as:

  
  
 

where:
       Nh = the number of paired pixels separated 
                by lag h; and
 zi, zi+h = values of a pair of pixels separated by
                lag h. 

A graph of semi-variance against the lag is 
called the variogram. The variogram is usually 
fitted with a mathematical model to indicate the 
extent of spatial autocorrelation across space, or 
the degree of landscape heterogeneity at certain 
lag-scales. As the lag increases, the semi-variance 
generally becomes larger. At a certain distance, 
called the range, the semi-variance reaches its 
limit, called the sill. The range represents the limit 
of spatial dependence and indicates the distance 
over which the values would be similar (Burrough 
and McDonnell 1998). 

In this study, semi-variance is used to indicate the 
degree of landscape heterogeneity, in a way to that 
of other image texture statisitcs. The advantage of 
the semi-variance is its ability to indicate landscape 
heterogeneity at different scales. Common texture 
statistics, such as variance and standard deviation, 
only give us an average measure across scales. We 
expect population density would better correlate 
to image texture statistics at certain scales. 

A Case Study of Austin, Texas
The City of Austin, the capital of Texas, provides 
a suitable environment to explore the proposed 
census population interpolation method. With 
a land area of approximately 650 square 
kilometers in 2005, Austin is not too large and 
has a variety of land use types. Between 1990 
and 2000, the city’s population has grown from 
465,622 to 656,562, or 41 percent, with an 

(1)
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annual growth rate of 3.5 percent. The annual 
growth rate between years 2000 and 2005 was 
approximately 1.2 percent (COA 2005). The 
city plans to maintain an annual growth rate 
between 1.20 percent and 2.00 percent for the 
next thirty years.

There are two stages in our population 
disaggregation. In the first stage, we selected sample 
census blocks of the same residential land-use 
classes around the city to build regression models 
between block population density and semi-variance 
statistics calculated within blocks. Non-residential 
land-use areas were not considered because it is 
assumed that people only live in residential areas. 
Using block-level census data is more appropriate 
than using other higher-level census data, e.g., 
block groups and tracts data, because a census 
block is the smallest census enumeration unit and 
block-level statistics are suitable for inferring sub-
block-level populations. 

In the second stage of our analysis, we applied 
the derived regression model to a study site and 
estimated population densities for individual 
land-use areas within blocks. We then calculated 
and rescaled their populations to maintain the 
summed populations to blocks. 

The Census 2000 block-level population data 
for the Austin area were obtained from the U.S. 
Census Bureau’s American FactFinder website 
(U.S. Census Bureau 2000). Digital aerial photo-
graphs and land-use data of the year 2000 were 
obtained from the City of Austin Neighborhood 
Planning and Zoning Department (NPZD). The 
digital orthophotos have a spatial resolution of 
about 0.61 meters (two feet) and green, red, and 
near-infrared spectral bands. These high-spatial-
resolution images allowed us to identify structures 
on the ground and have an understanding of how 
population density related to housing and land-use 
patterns. When calculating image semi-variance 
statistics, we resampled the digital orthophotos 
to approximately five meters (16 feet) of spatial 
resolution so as to achieve computational efficiency. 
Compared to Système Probatoire d’Observation de 
la Terre (SPOT) or Landsat Enhanced Thematic 
Mapper Plus (ETM+) data used in other dasy-
metric studies, the fine resolution images we used 
allowed us to detect detailed spectral variation 
between human structures and vegetation through 
image texture statistics in a complicated urban 
landscape, and proved to better model popula-
tion densities. 

The year 2000 land-use data are in a vector poly-
gon format and have 13 categories (Table 1). The 
NPZD generated the data based on the geography 

of Travis Central Appraisal District (TCAD) tax 
parcel polygons and land-use information from 
different sources. Digital infrared and panchromatic 
aerial photos were the primary sources used to 
determine land use through visual interpretation 
(COA 2000). Other sources of land-use informa-
tion include historical land-use data, the TCAD 
appraisal record, and the land development record. 
The NPZD also performed quality control mea-
sure by field checks. The land-use data are used 
to select residential land-use blocks for building 
population density models by different residential 
land-use types. As the land-use data are at the tax 
parcel level, generally much smaller than census 
blocks, the data were considered accurate for the 
purposes of this study.

There are not many large lot single-family and 
mobile homes land-use areas in Austin; these two 
categories were thus combined with the single-family 
land-use category. We only created a single-family 
land-use model and a multi-family land-use model 
for inferring block-level population densities. 

To build regression models between block popula-
tion density and image statistics, we first selected 
120 and 100 sample census blocks that are entirely 
within, respectively, single- and multi-family land 
use. The sample blocks represent various housing 
patterns for the same land use in the Austin area. 
The population densities for individual sample 
blocks were then calculated by dividing block 
populations with block areas. We calculated the 
image texture statistics of semi-variance for sample 
blocks. A visual basic program was written in the 
ArcGIS® ArcObjects (Burke 2003) programming 
environment to calculate the semi-variance of 
paired image pixel values that were separated at 
lag distance, based on pixel size within individual 
sample block areas. We used the near-infrared 
band of the digital orthophotos to calculate semi-
variance statistics because a preliminary analysis 
indicates that population density is more related 
to the semi-variance statistics from the infrared 
band than from other bands. The infrared band 
shows more contrast between vegetation and 
human structures, which is relevant to variations 
of population densities.

We calculated the semi-variance at lag 2 pixels 
to lag 50 pixels for sample blocks and generated 
corresponding variograms to investigate which scales 
of semi-variance to use for population modeling. 
Figure 1 shows the variograms for 120 single-family 
sample blocks, and Figure 2 shows the variograms 
for 100 multi-family sample blocks. One can see 
that, at the same lag, single-family blocks generally 
have greater semi-variances (note the difference 
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in vertical scales in the figures) than multi-family 
blocks. This means that single-family land-use areas 
have more heterogeneous landscape patterns than 

multi-family land-use areas and, thus, 
have greater semi-variance texture 
statistics. Notice that each block 
has a different variogram pattern. 
As no single lag is particularly 
significant for differentiating 
blocks, we tested semi-variance at 
all lags in statistical modeling of 
block population densities.  

Our response variable is block 
population density, and predictor 
variables are semi-variances at 
different lags. We first conducted 
an exploratory analysis examining 
histograms of all variables one at a 
time for both the single-family land 
use model and the multi-family land 
use model. If it was highly skewed, 
a logarithmic transformation 
was applied. The logarithmic 
transformation had the effect of 
reducing asymmetry (Chatterjee 

et al. 2000). The histograms of block population 
densities (Figure 3) and all semi-variance variables 

Table 1. Year 2000 land-use data of the City of Austin.

Code Major Group Included Uses

50 Large Lot Single-family Single-family homes on lots greater than 10 acres 

100 Single-family Single-family detached, Two-Family Attached

113 Mobile homes Mobile homes

200 Multi-family Three/Fourplex, apartment/condo, group quarters, retirement

300 Commercial
Retail and general merchandise, apparel and accessories, furniture and home furnishings, 

grocery and food sales, eating and drinking, auto related, entertainment, personal services, 
lodgings, building services

400 Office Administrative offices, financial services (banks), medical offices, research and development

500 Industrial Manufacturing, warehousing, equipment sales and service, recycling and scrap, animal handling

560 Mining Resource extraction, quarries

600 Civic
Semi-institutional housing, hospital, government services, educational facilities, meeting and 

assembly facilities, cemeteries, day care facilities

700 Open Space
Parks, recreational facilities, golf courses, rreserves and protected areas, water drainage areas 

and detention ponds

800 Transportation
Railroad facilities, transportation terminal, aviation facilities, parking facilities, right-of-way and 

traffic islands 

860 Right-of-way Right-of-way and traffic islands 

870 Utilities Utility services, radio towers, communication service facilities, water/wastewater facilities

900
Undeveloped/

Rural
Rural uses, vacant land, land under construction

940 Water Inundated areas such as lakes and rivers where delineated

999 Unknown a lot requiring further information to determine how it is used

Figure 1. Variograms for single-family census blocks.
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in both land use models are 
not highly skewed and were 
not transformed.

We further examined 
pairwise scatter plots to 
explore the relationships 
between block population 
densities and semi-variance 
variables, as well as between 
the semi-variance variables. 
Figure 4 shows that semi-
variances at different lags 
are highly correlated, which 
suggested a multi-collinear-
ity problem. Nevertheless, 
we tested all semi-variances 
in regression analysis in 
order to investigate how 
population densities are 
related to semi-variances 
at different scales and to 
build a model with the best 
predictive power.

Figure 4 also shows that 
population densities do not have linear relation-
ships with individual semi-variance variables. 
However, we cannot conclude that there is no 
statistical relationship between population densities 
and combinations of semi-variance variables. In 
addition, due to the simplicity of linear regres-
sion models and the ease with which they can be 
interpreted, we hypothesized a linear relationship 
between population densities and combinations 
of semi-variance variables. We then conducted a 
standard statistical regression analysis. 

We used the backward elimination procedure 
to find appropriate combinations of variables. In 
the procedure, the regression with the full variable 
set is calculated first, and insignificant variables 
are removed in turn. In this way, the multi-col-
linearity problem can be handled better than with 
the forward selection procedure and the stepwise 
method. The final models from backward elimina-
tion retained seven semi-variances as the predictor 
variables for the single-family model and eight 
semi-variances for the multi-family model:

Figure 2. Variograms for multi-family census blocks.

Figure 3. Histograms of block population densities for (a) single-family and (b) multi-family census blocks.
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PDS = 1185 + 2.1*S1 – 2.4*S2 + 1.9*S3 
                  – 0.6*S4 + 1.0*S5 – 1.1*S6 +0.1*S7    (2)

where:
 PDS = block population densities for the single-
            family land use model; and
 M1 to M8 =semi-variances at lag 2, lag 6, lag 8
              lag 14, lag 26, lag 28, and lag 46,
                    respectively.
   PDM = 0.5 – 3.6*M1 + 6.0*M2 – 4.0*M3 + 2.7*M4 
            – 2.7*M5 +2.3*M6 – 4.7*M7 +2.8*M8      (3)
where:
 PDM = block population densities for the multi-
              family land use model; and
 M1 to M8 = semi-variances at lag 2, lag 6, lag 8,
                 lag 26, lag 28, lag 44, lag 48, and
                     lag 50, respectively. 

The fit indices, R2, were 0.72 and 0.67 for 
single-family and multi-family land use models, 
respectively, indicating that approximately 72 
percent and 67 percent of the variability in block 
population densities can be explained by combina-
tions of semi-variance variables. The significance 
values of the F statistic in the ANOVA analysis of 
variance test were both less than 0.05, indicating 
that the variation explained by the models was 
not due to chance.  

These results confirm that using a range of 
scales of semi-variance to model population 
densities is preferable to using semi-variances at 
similar scales. In other words, because population 
densities are related to landscape heterogeneity 
at different scales, they are better modeled by 

different scales of semi-variance. The single-family 
land-use model predicted population densities 
better at smaller lags than did the multi-family 
land-use model. This is probably because single-
family land use has smaller building sizes and is 
more sensitive to spatial statistics at smaller scales. 
The single-family land-use model also had a higher 
R2, which indicates that there is a more regular 
and predictable relationship between landscape 
heterogeneity and population densities in single-
family land use than in multi-family land use.

We further verified the standard regression 
assumptions of linearity, normality of errors, 
zero mean of errors, constant variance of errors, 
and independence of errors. Graphical methods 
were used for the tests because of their simplicity 
and ease of interpretation. The histogram of the 
standardized residual (Figure 5), the normal prob-
ability plot of the standardized residual (Figure 6), 
and the scatter plot of the standardized residual 
versus the standardized predicted value (Figure 7) 
all show that the assumptions were satisfied. 

We investigated whether spatial autocorrelation 
exists in block-level population density, because 
serious spatial autocorrelation would violate the 
independence assumptions underlying regression 
analysis (O’Sullivan and Unwin 2003; Longley et 
al. 2005). Moran’s I statistic for 7077 blocks in the 
Austin area was calculated using ArcGIS (Mitchell 
2005) in order to determine whether the pattern 
of block population density is clustered, dispersed, 
or random. A Moran’s I value near +1.0 indicates 

Figure 4. Pairwise scatter plots for (a) single-family and (b) multi-family land use models (Var0 is block population 
densities, Var1 to Var8 are semi-variances at lag 4 to lag 46 for every 6 lags).
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clustering, a value near –1.0 indicates dispersion, 
and a value close to zero indicates a random pat-
tern. The corresponding z score indicates whether 
the clustering or dispersion could be the result of 
random chance or is statistically significant. For 
example, at a significance level of 0.05, a z score 
would have to be less than –1.96 or greater than 
1.96 to be statistically significant. 

We obtained a Moran’s I of 0.01 and a z score of 
110. Consequently, we concluded that such a low 
spatial autocorrelation of population density at the 
block-level would not have important effect on the 
regression analysis. The low spatial autocorrela-
tion of population density may be caused by the 
fact that, in the Austin area, current residential 

land-use areas are confined to small tracts of land 
and scattered among other land use. 

A test area of 251 blocks was selected to apply 
the population density models for population 
disaggregation (Figure 8). This area has a variety 
of land use types, and many blocks contain both 
residential and non-residential land use. To 
redistribute block populations to single-family 
and multi-family land-use areas, we first overlaid 
land-use data with census block data to derive 
individual land-use areas within blocks. Then 
digital orthophotos were overlaid to calculate 
semi-variance statistics for the within-block land-
use areas. After that, regression models were 
applied to estimate population densities for 

Figure 5. Histograms of standardized residual for (a) single-family and (b) multi-family land-use models.

Figure 6. Normal probability plots of the standardized residual for (a) single-family and (b) multi-family land-use 
models. 
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those areas. If the estimated population density 
was negative, it was adjusted to zero, given that 
population density cannot be negative (e.g., Lo 
1995; Harvey 2002a). 

We calculated estimated populations for the 
within-block land-use areas by multiplying their 
respective areas with their estimated population 
densities. We then summed the areal populations 
to census blocks and compared the summed totals 
with original census block populations to derive 
their ratios. Finally, population estimates for within-
block land-use areas were rescaled to maintain 
original census block populations.

To visualize the population 
disaggregation results, a 
graduated color thematic 
map of population densities 
by small land-use areas within 
blocks was generated (Figure 
9). The map revealed detailed 
variation of population densities 
within blocks, in contrast to the 
traditional population density 
map by census blocks (Figure 
10). A single-family land-use area 
of the map (Figure 11) shows 
that the map distinguishes 
three population density zones 
related to the spatial patterns 
of houses. 

To quantitatively assess 
the proposed disaggregation 
approach and compare it with 
the traditional LULC-based 
population disaggregation, 
we performed a population 
disaggregation test that 
maintains census block-group 

populations instead of block populations. The 
sum of the block populations thus obtained can be 
further compared with census block populations 
for the purpose of accuracy assessment. 

The mean absolute relative error (MARE) may 
be used to compare estimated block populations 
with original census block populations. The MARE 
for the 251 blocks in our study was calculated as 
follows:

    

Figure 7. Scatter plot of standardized residual versus standardized predicted value for (a) single-family and (b) multi-
family land-use models.

Figure 8. The test area in Austin, Texas, for population disaggregation.

(4) 
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where:
   Pi = the estimated population 
           for the ith census block;
   Yi = the census reported 
           population for the ith 
           census block; and
    m= the number of census
           blocks under investigation. 

The MARE gives an overall 
estimate of the percentage of 
original block populations that 
were under- or over-estimated. This 
measure was adopted because it is 
easy to interpret. The MARE for the 
proposed population disaggregation 
approach is approximately 11.8 
percent, indicating that on average, 
approximately 12 percent of the 
original block populations are either 
over- or under-estimated. 

To compare the proposed 
disaggregation approach with the 
traditional LULC-based population 
disaggregation, we first calculated 
the average population densities 
for single-family land use at 2.94 
persons per 1000 square meters and 
for multi-family land use at 10.40 
persons per 1000 square meters. 
Then we estimated populations for 
within-block land-use areas based 
on population density. The areal 
populations were further rescaled 
to maintain census block-group 
populations. Lastly, The MARE 
was calculated to assess the extent 
to which the aggregated block 
populations deviate from census 
block populations. 

The MARE was approximately 
19.2 percent, which is much higher 
than the MARE obtained with our 
disaggregation method. We therefore 
concluded that initial land-use 
stratification and further texture 
statistical modeling has a higher 
overall accuracy than the traditional 
LULC-based population disaggregation. Modeling 
population densities by image semi-variance statistics 
without land-use stratification had a MARE of 
approximately 14.6 percent, further indicating 
the advantage of our method.

We investigated the distribution of estimation 
errors and whether the errors are spatially correlated 

by calculating the relative error for an ith census 
block (REi):

where:
    Yi = the census population for the ith census
           block;

Figure 9. Remodeled population density map by small land-use areas within 
blocks.

Figure 10. Traditional map of population density by census blocks. 

(5)
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   Pi = the estimated population for the ith 
           census block;
   m = the number of census blocks under
           investigation; and
REi = the relative error for the ith census block.  

The relative errors for the 251 blocks ranged 
from -9.8 percent to 98.2 percent. They are 
skewed to the right (Figure 12), indicating that 
most block populations were over-estimated. The 
cause of this is not clear. The relative errors of block 
population estimates mapped in Figure 13 do not 
show whether the errors are spatially correlated. 
The 0.03 Moran’s I statistic we calculated, and the 
corresponding z score of 6, both indicate that the 
errors were not spatially autocorrelated.

Discussion
We only built a single-family and a multi-family 
land-use model for the Austin area. More levels 
of model stratification may be needed for other 
urban areas in order to model subtypes of 

residential land use that are significant to those 
area, e.g., mobile home land use and large-lot 
single-family land use.

Regression models derived in this study may 
not be directly applicable to other urban areas, 
because housing geography and the corresponding 
image texture statistics vary considerably among 
U.S. cities. A more appropriate strategy would 
thus be to develop a new population density 
model for the area of interest, using the multi-lag 
semi-variance statistics and land-use stratification 
approach we proposed.

A limitation is that this method requires detailed 
urban land-use data for model stratification. The 
data quality/accuracy issues that may affect popula-
tion density estimation using our method include 
miscounting of the census data on houses under 
construction or otherwise unoccupied, time dif-
ference between census and image acquisition, 
and outdated land- use data. However, since our 
final population disaggregation by small within-
block land-use areas is constrained by census 

Figure 11. Inset of Figure 9, remodeled population density map by small land-use areas.
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block population totals, all errors are also 
constrained and would not have a significant 
impact on population estimation for large 
areas that cover numerous blocks (Fisher and 
Langford 1996).

Conclusion
In this paper we present an improved dasy-
metric mapping method for remodeling 
census populations. The method models 
areal population densities from texture statis-
tics of remote sensing images within the same 
land-use stratification, while maintaining 
census block population totals, as is the case 
in common dasymetric mapping approaches. 
The proposed approach combines the strength 
of LULC- and pixel-based dasymetric map-
ping. The results show improved accuracies 
compared to either LULC- or pixel-based 

approaches using the same parameters. The 
proposed population estimation method may 
be applied to estimate intercensal populations 
in conjunction with the analysis of remote sens-
ing data taken during the current year.

Land use/land cover stratification combined with 
pixel-based dasymetric mapping allows reliable 
population estimation at large scales, particularly 
for urban areas. The refined population maps 
provide a more accurate representation of 
population distribution than conventional maps 

Figure 13. Spatial distribution of relative errors.

of population density by census 
blocks or land-use types. The 
disaggregated populations may 
allow for population estimation within 
arbitrary boundaries, particularly 
when integrating with other spatial 
data of different spatial units, such as 
watersheds or ecological zones. 

Future research may incorporate 
other population-relevant variables 
into the regression models, such as 
building heights and other socio-
economic statistics. However, for 
the models to be practical, their 
parameters should be readily 
available or easily extractable 
from remote sensing images. The 
presented method utilizes image 
texture statistics and existing 
land-use data to remodel census 
population, which suggests that it 
is feasible for fine-scale population 
estimation.
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