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Development of a Framework for Stereo Image
Retrieval With Both Height and Planar Features

Feifei Peng, Le Wang, Jianya Gong, and Huayi Wu

Abstract—The wide availability and increasing number of
applications for high-resolution optical satellite stereo images
(HrosSIs) have created a surging demand for the development of
effective content-based image retrieval methods. However, this is
a challenge for existing stereo image retrieval methods since they
were designed for stereo images collected from close-range imag-
ing sensors. Thus, successful retrieval of images is not assured
given the mismatch between existing methods and the character-
istics of HrosSIs. Moreover, none of the existing remote sensing
image retrieval methods takes account of the specific characteris-
tics of HrosSIs such as the viewing number and multiview angles.
This paper proposes a generic framework to exploit the unique
characteristics of HrosSIs data so as to allow efficient and accu-
rate content-based HrosSI retrieval. HrosSIs retrieval is executed
by similarity matching between the features obtained from digi-
tal surface models (DSMs) and orthoimages, both extracted from
the HrosSIs. In addition, the significance of height information
for HrosSI retrieval was investigated. A prototype system was
designed and implemented for method validation using the ISPRS
stereo benchmark test dataset. Experimental results show that the
proposed techniques are efficient for HrosSI retrieval. The pro-
posed framework is efficient and suitable for spaceborne stereo
images but might also be suitable for airborne stereo images as
well. Experimental results also show that height information alone
is inefficient and unstable for HrosSI retrieval; however, a com-
bination of height information and planar information is efficient
and stable.

Index Terms—Digital surface model (DSM), fractals, height
features, image retrieval, orthoimage, planar features, stereo
imagery.

LIST OF ABBREVIATIONS

HrosSI high-resolution optical satellite stereo image.
DSM digital surface model.
GSD ground sample distance.
D fractal dimension.
RFD regional fractal dimension.
RFI regional fractal image.
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NRFCM normalized regional fractal cooccurrence matrix.
NDRI normalized dissimilarity ranking index.
CS1 Cartosat-1.
WV1 Worldview-1.

I. INTRODUCTION

M ANY SATELLITES with the capability to pro-
duce high-resolution optical satellite stereo images

(HrosSIs) are currently available, such as IKONOS, QuickBird,
WorldView-1/2, Cartosat-1/2, GeoEye-1, Pleiades-HR, ALOS
(PRISM), and ZY3 [1]. As a result, large quantities of HrosSIs
are now accessible to researchers and the general public.
HrosSIs are widely applied in various fields, such as digital
surface model (DSM) production [2]–[4], building reconstruc-
tion [5], [6], change detection [7]–[9], and hazard assessment
[10]. In some applications, desired HrosSIs must first be located
based on semantic information or content-based similarities
between HrosSIs. HrosSIs covering human settlements [11]
in China, for instance, must first be geographically located to
assess human settlement areas. It is very difficult to infer image
content from image metadata (e.g., rational polynomial coef-
ficients, geographic coverage, and acquisition time), thus the
desired images cannot be found by using image metadata alone.
Content-based image retrieval expedites search and discovery
among large quantities of images based on the content of those
images; and therefore can meet the discovery requirements
when locating these desired HrosSIs.

The unique characteristics of HrosSIs data, however, make
it difficult to extract uniform features from various HrosSIs
for content-based HrosSI retrieval. HrosSIs are acquired by
diverse remote sensors under diverse acquisition conditions and
vary significantly in many ways, such as in stereo acquisi-
tion modes [12], viewing number, viewing angles, convergence
angle, base-to-height ratio, ground sample distance (GSD),
radiometric resolution, and metadata structure. These unique
characteristics of HrosSIs data are not exploited in existing
content-based image retrieval methods; thus, their potential in
feature extraction and retrieval is unknown.

The significance of height information needs to be investi-
gated to obtain efficient and accurate HrosSI retrieval. Height
information can easily be derived from stereo-extracted DSMs,
one type of primary product created from HrosSIs data.
However, height information is not taken into consideration in
existing image retrieval methods. Height information may be
efficient to distinguish between land cover types that are dif-
ficult to distinguish with planar features alone. For instance,
forest land on a plain and forest land in mountains both
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have similar texture characteristics, but have radically different
height characteristics. Thus, height information might be help-
ful for content-based HrosSI retrieval.

Successful HrosSIs retrieval is not assured given the mis-
match between existing stereo image retrieval methods and the
characteristics of HrosSIs. Feng et al. [13] initially proposed
a generic framework for content-based stereo image retrieval
which refined results from conventional content-based image
retrieval by employing depth cues extracted from stereo pairs
in a reranking scheme. These stereo images were obtained by
close-range imaging sensors, whereas HrosSIs are acquired by
spaceborne sensors. These two types of images vary in many
ways, such as in stereo acquisition modes, viewing number, and
viewing angles. Thus, the generic framework proposed by Feng
et al. [13] has limited applicability for HrosSI retrieval.

None of existing remote sensing image retrieval methods
is specifically designed for HrosSIs. A number of prototype
systems have been developed in recent years [14], such as
KIM/KEO [15], I3KR [16], S3IR [17], GeoIRIS [18], and
so on [19]–[23]. These studies mainly target multispectral
images, SAR images, and multitemporal images, which are
obtained at a single look angle. However, HrosSIs are a group
of images with multiview angles [2], such as stereo pairs,
triplets, or multiangular imagery. Therefore, a basic differ-
ence exists between HrosSI retrieval and conventional remote
sensing image retrieval.

This paper proposes a generic framework for content-based
HrosSI retrieval, taking height information into considera-
tion. Specifically, we focus on: 1) what features can be uni-
formly extracted from various HrosSIs, which are obtained by
diverse remote sensors under various acquisition conditions;
and 2) determine if height information is helpful for HrosSI
retrieval.

The rest of this paper is organized as follows. Section II
introduces the technical background. Section III introduces
the proposed retrieval scheme in detail. Section IV shows the
experimental results. A discussion is presented in Section V.
Section VI provides a summary and outlines the prospects for
future research.

II. TECHNICAL BACKGROUND

Four interrelated technical domains form the background for
HrosSI retrieval and are discussed in detail in the following sec-
tions. These topics relate to remote sensing image retrieval in
general, the characteristics of HrosSIs and stereo products as
well as a methodological concern, fractal analysis for remotely
sensed images. General issues in remote sensing image retrieval
must be considered since HrosSIs are remotely sensed images.
The characteristics of HrosSIs and stereo products (orthoim-
ages and DSMs) are analyzed to develop an effective HrosSI
retrieval method. Fractal techniques for feature extraction from
stereo products are suitable and widely used, and are applied
in this study. Consequently, fractal analysis for remotely sensed
images must be discussed in detail.

A. Remote Sensing Image Retrieval

Remote sensing image retrieval helps expedite the discovery
of desired images. Users can conveniently find desired images

from a large image database when employing an image retrieval
system. As a result, they no longer need to manually browse the
whole image database. Since users want to obtain the desired
images quickly, a rapid, efficient, and accurate image retrieval
system is desirable.

There are some common techniques found in image retrieval
regardless of the type of images collected from different remote
sensors [14], [24]. These common techniques include data
preprocessing, feature extraction, similarity matching, results
ranking, retrieval evaluation, and relevance feedback. Features
obtained from images through feature extraction processing are
a significant asset for image retrieval.

Features used in image retrieval can be divided into two cat-
egories according to their source: planar features and height
features. Planar features (such as texture, shape, and spec-
tral signatures) are extracted from remotely sensed images,
while height features are extracted from DSMs or digital ele-
vation models. Planar features are frequently used in remote
sensing image retrieval [14], while height features are rarely
used except for similarity assessment between digital elevation
models [25].

B. Characteristics of HrosSIs

The characteristics of HrosSIs vary with remote sensors
and acquisition conditions. The viewing direction angles, con-
vergence angle, and base-to-height ratio are constant for the
standard simultaneous along-track systems, such as Cartosat-1,
ALOS (PRISM), and ZY3. But these are inconsistent with the
standard across-track or the agile single-lens systems [12], such
as WorldView-1/2, IKONOS, QuickBird, and GeoEye-1. Some
sensors only deliver mono-band panchromatic images [26],
such as Cartosat-1 and WorldView-1, while other sensors
deliver panchromatic images and multispectral images, such as
IKONOS and WorldView-2. Regarding the radiometric resolu-
tion, most HrosSIs are stored at 8 or 10 or 11 bits/pixel [12]. The
nominal GSD varies for HrosSIs obtained with different remote
sensors or the same remote sensor with different viewing direc-
tion angles. Furthermore, the ground observed azimuth and
elevation of the sun for each image observation varies during
its acquisition, resulting in different shadows in the HrosSIs.

C. Characteristics of Stereo Products

Two primary stereo products can be generated from vari-
ous HrosSIs. Regardless of how HrosSIs are acquired, by what
sensors, and under what acquisition conditions—DSMs and
orthoimages, the two primary stereo products, can be generated
from the HrosSIs. Nevertheless, stereo products generated from
various HrosSIs still vary in three important ways.

The two primary stereo products vary in GSD, geometric
accuracy, and radiometric resolution. The GSD of stereo prod-
ucts varies according to that of the HrosSIs from which they
are generated. The geometric accuracy of stereo products is
related to some characteristics of the HrosSIs [4], [27]–[33],
such as sensor type, off-nadir viewing angle, and sensor model
used. Their geometric accuracy is also related to other factors,
such as number and distribution of ground control points, mor-
phology of the study area, and the matching algorithms used in
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Fig. 1. Flowchart of HrosSI retrieval. HrosSI blocks for HrosSI retrieval are created from the raw complete HrosSIs through preprocessing. Features of the HrosSI
blocks are obtained in Step I HrosSI retrieval preparation, and used in Step II HrosSI retrieval and results evaluation.

processing [4], [27]–[33]. The geometric accuracy of orthoim-
ages is also influenced by the accuracy of DSMs employed in
the orthorectification process [34]. Orthoimages vary according
to radiometric resolution.

D. Fractal Analysis of Remotely Sensed Images

The fractal dimension (D) is widely used for characterizing
the overall spatial complexity of remotely sensed images [35]
or digital elevation models [36]. The fractal technique is suit-
able for orthoimages and DSMs and can be utilized for satellite
image retrieval [23]. The D is a measurement of the roughness
or textural complexity of land surface features [37]. The D val-
ues for an image range from 2.0 to 3.0. Irregular patterns always
present higher D values but in any case, similar patterns present
comparable D values. The fractal technique has limitations
since it only yields a single D value for the entire image.

A local fractal dimension is an improved fractal dimension.
The local D is widely used for image segmentation, image
classification, and measurement of digital elevation models
roughness [36], [38]. The local fractal technique yields many
local D values with moving window techniques [39], [40]. If a
kernel is moved over the image, a D value is calculated within
the kernel, producing a local D value for the center pixel of the
kernel. In this way, a local D is calculated for each pixel in the
entire image except for the edges.

III. METHODOLOGY

A new generic framework is proposed for retrieval of vari-
ous HrosSIs, obtained by diverse remote sensors under various
acquisition conditions. HrosSI retrieval is executed by simi-
larity matching between features extracted from DSMs and
orthoimages, the two primary stereo products generated from
HrosSIs. The proposed retrieval scheme involves two steps:

Step I) HrosSI retrieval preparation and Step II) HrosSI retrieval
and results evaluation, as shown in Fig. 1. Step I consists of
preprocessing, regional fractal dimension (RFD) calculation,
and normalized regional fractal cooccurrence matrix (NRFCM)
calculation. Step II consists of similarity matching, a query pro-
cess, and results evaluation. HrosSI blocks and their features are
created in Step I, and brought into play in Step II.

A. Preprocessing

It takes several steps to distinguish between different HrosSIs
with varied characteristics. Since similarity matching between
HrosSIs is executed by similarity matching between stereo-
extracted DSMs and orthoimages, the first step is to generate
these two primary stereo products for various HrosSIs. Second,
the rich and complex visual content of images at a large
size make it difficult to make similar judgments about the
image; therefore, these huge HrosSIs and stereo products must
be decomposed into several blocks suitable for retrieval. A
query template is advantageous when matching these smaller
blocks [20].

Stereo products are generated to do similarity matching
between HrosSIs. Since characteristics of stereo products may
affect similarity matching between HrosSIs, some measures
must be taken to minimize the impact of these character-
istics. DSMs at the same GSD are generated from various
HrosSIs using an identical matching algorithm. DSMs gen-
erated from various HrosSIs still vary in GSD and image
details; therefore, DSMs are subsequently subjected to resam-
pling and low-pass filtering. Moreover, with the aid of stereo-
extracted DSMs, orthoimages are generated during orthorecti-
fication of the near-nadir image among the group of HrosSIs.
Orthoimages generated from various HrosSIs still vary in
the GSD, radiometric resolution, image intensity, and image
details; therefore, orthoimages must be subjected to resampling,
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Fig. 2. Decomposition of HrosSIs and stereo products. Using the same setting,
each image in the HrosSIs, DSM, and orthoimage is decomposed into equal
sized nonoverlapping blocks, respectively. Although HrosSIs may have two,
three, or more images, just two images in HrosSIs are shown for clarity in this
figure. Through decomposition, a one-to-one correspondence between a HrosSI
block group and its corresponding stereo product block group is built.

radiometric resolution normalization, histogram equalization,
and low-pass filtering.

HrosSIs and stereo products at a huge size are decom-
posed into several blocks suitable for retrieval, as shown in
Fig. 2. HrosSIs are decomposed into equal sized nonoverlap-
ping HrosSI block groups by using the block-oriented image
decomposition method [41]. These HrosSI block groups, which
can be seen as HrosSIs at a smaller size, are used for HrosSI
retrieval. The same decomposition setting for HrosSIs is used
for their stereo products, thus producing several stereo prod-
uct block groups. In this way, a one-to-one correspondence
between a HrosSI block group and its corresponding stereo
product block group is built, so that the features extracted from
a stereo product block group can be seen as features of the
corresponding HrosSI block group.

B. RFD Calculation

Fractal techniques cannot be directly used for HrosSI
retrieval. Two images with the same single fractal dimension
(D) value may vary significantly, due to the fact that ranges of
D values derived from different land cover types may overlap
each other [42]. Furthermore, since different numbers of local D
values are created for different sizes of HrosSIs, local D values
are not suitable for similarity matching between them. Thus, the
RFD is proposed for HrosSI retrieval with an improved D and
local D.

RFD values are calculated in stereo product blocks, as
shown in Fig. 3. The process involves two substeps: regional
window decomposition and fractal dimension calculation. In
the regional window decomposition substep, the image—the
DSM block or orthoimage block obtained through previous
preprocessing—is divided into several nonoverlapping regional

windows at a low level. In the fractal dimension calculation sub-
step, a D value for each regional window (the RFD value) is
calculated. In this way, a regional fractal image (RFI) is gener-
ated from the raw image; the RFI is a point-by-point image of
the estimated RFD values of all regional windows. For instance,
a DSM block RFI with M/rw ×M/rw pixels size is gener-
ated from a DSM block with M ×M pixels size by using the
RFD calculation method with a regional window rw × rw pix-
els size. Stereo product block RFIs (the DSM block RFI and
the orthoimage block RFI) are generated from stereo product
blocks during RFD calculation.

In the regional window decomposition substep, nonoverlap-
ping regional windows at a low level are obtained through
the decomposition of the DSM or orthoimage block using
the block-oriented image decomposition method [41]. During
decomposition, the regional window size needs to be deter-
mined based on certain conditions. Minimization of regional
window size is required to capture local variations effectively.
However, a larger regional window size is required to reduce
the impact of geometric accuracy differences in stereo products,
generated from different remote sensors, on HrosSI retrieval.
Moreover, the image size must be divisible by the regional win-
dow size. Several regional window sizes may be available for
the same DSM or orthoimage block, producing differently sized
RFIs. The same size of RFIs can be generated from different
sizes of DSM or orthoimage blocks, by using corresponding
regional window sizes.

In the fractal dimension calculation substep, the RFD value
for each regional window is calculated by the blanket method
[43], [44]. Each regional window is seen as an image at a small
size in the fractal dimension calculation. An image surface
f(i, j) is covered by a blanket of thickness 2ε. The covering
blanket is defined by its upper surface uε and its lower surface
bε [37]. Initially, u0(i, j) = b0(i, j) = f(i, j) and the blanket
surfaces are defined as follows:

uε(i, j) = max

{
uε−1(i, j) + 1, max

|(m,n)−(i,j)�1|
uε−1(m,n)

}

bε(i, j) = min

{
bε−1(i, j)− 1, min

|(m,n)−(i,j)�1|
bε−1(m,n)

}
.

(1)

The image points (m,n) with distance less than one from
the point (i, j) are taken to be the four immediate neighbors
of the point (i, j). Then, the area of blanket A(ε) is calcu-
lated by

A(ε) =

∑
i,j (uε(i, j)− bε(i, j))

2ε
. (2)

The behavior of a fractal surface is defined [45] as follows:

A(ε) = Fε2−D (3)

where F is a constant and D is the fractal dimension of the sur-
face. When plotting A(ε) versus ε on a log–log scale, a straight
line of slope 2−D is achieved.

Stereo product block RFIs are generated for stereo product
blocks through the RFD calculation. However, it is still difficult
to directly distinguish between RFIs. On the other hand, their
extracted features can distinguish them.
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Fig. 3. RFD calculation. The process involves two substeps: regional window decomposition and fractal dimension calculation. A RFD value is calculated for
each regional window obtained in the regional window decomposition substep.

C. NRFCM Calculation

The gray-level cooccurrence matrix measures the distribu-
tion of cooccurring gray values with the displacement vector in
an image. Since the gray-level cooccurrence matrix is a good
discriminator between images, the NRFCM modeled after the
gray-level cooccurrence matrix is proposed as a feature to dis-
tinguish between RFIs. The NRFCM measures the occurrence
frequency of the combination of two neighboring pixels (the
RFD values) in the RFI. The RFD values in the RFI are dec-
imals, and thus are inconvenient when calculating occurrence
frequency.

RFD values must first be normalized to produce a normal-
ized RFI prior to occurrence frequency calculation. RFD values
in the RFI are decimals that range from 2.0 to 3.0. They are con-
verted into integers ranging from 1 to N using a linear extension
method thus obtaining normalized RFD values and the nor-
malized RFI. The size of the normalized RFI is the same as
the RFI.

The NRFCM is a matrix that measures the distribution
of cooccurring normalized RFD values with a displacement
vector in a normalized RFI. Mathematically, an NRFCM is
defined using a normalized RFI I at m× n pixels size, and
parameterized by the displacement vector (Δx,Δy) as

NRFCM(Δx,Δy)(i, j)

=

m∑
p=1

n∑
q=1

⎧⎪⎨
⎪⎩
1, if I(p, q) = i and

I(p+Δx, q +Δy) = j

0, otherwise

(4)

where i and j are the row number and column number in the
NRFCM, respectively, i and j are also the normalized RFD val-
ues in the normalized RFI I , p, and q are the spatial positions
in I . The size of the NRFCM is N ×N , where N is the upper
limit of normalized RFD values.

The displacement vector measures the relative relationship
of the two neighboring pixels in the normalized RFI. Different
NRFCMs are generated from the same normalized RFI by
using different displacements vectors. There are four differ-
ent displacement vectors in this study, as shown in Fig. 4. If a
displacement vector is rotated by 180◦, the two NRFCMs gen-
erated with the raw and new displacement vector are transposed
each other, and are equivalent in similarity matching. These
four displacement vectors represent all different types of the
combination of two neighboring pixels in the normalized RFI.

Fig. 4. Displacement vectors in the normalized RFI for calculating an NRFCM.
The displacement vector (Δx,Δy) is displayed with an arrow. The reference
is the gray pixel in the center. The displacement vector indicates the relative
relationship between the reference pixel and the specific neighboring pixel.

In this way, a group of NRFCMs, composed of four NRFCMs
created with the four displacement vectors, is created from the
normalized RFI.

Features are extracted from stereo product block RFIs
through NRFCM calculation. A group of DSM NRFCMs is
created from the DSM block normalized RFI. A group of
orthoimage NRFCMs is created from the orthoimage block nor-
malized RFI. According to the source of the NRFCMs, the
DSM NRFCMs belong to height features, while the orthoim-
age NRFCMs belong to planar features. In this way, both height
features and planar features are obtained from stereo product
blocks.

D. Similarity Matching

Similarity matching between HrosSI blocks is executed by
similarity matching between features extracted from their cor-
responding stereo product blocks. Since the features are com-
posed of NRFCMs, similarity matching between NRFCMs
must be determined first. Similarity matching between HrosSI
blocks is done with height features, planar features, or a
combination of both.

Similarity matching between NRFCMs is also done based on
certain conditions. Two NRFCMs are comparable only if they
belong to the same category (DSM NRFCMs or orthoimage
NRFCMs), and created from the same size normalized RFIs
with the same displacement vector. The generated normalized
RFIs for HrosSI blocks must be at the same size in order to do
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similarity matching between them. The similarity between two
NRFCMs, M1 and M2 is calculated by (5).

Similarity matching between HrosSI blocks can be done with
height features or planar features. Considering that the height
features or the planar features are composed of NRFCMs,
similarity matching between HrosSI blocks is done with a com-
bination of similarities between NRFCMs as (6). The vn is the
total number of NRFCMs with different displacement vectors.
The vn is four for orthoimage NRFCMs or DSM NRFCMs.

Similarity matching between HrosSI blocks can also be
done by the integration of height features and planar features.
The similarity is measured with a combination of orthoimage
NRFCMs or DSM NRFCMs as in (7). The parameter d indi-
cates the weight values of the height features and the planar
features.

SmMatrix =

N∑
i=1

N∑
j=1

min(M1i,j ,M2i,j)

N∑
i=1

N∑
j=1

M1i,j

(5)

SmUnion =
vn∑
v=1

SmMatrixv
vn

(6)

SmIntegrated = d× SmUnionDSM + (1− d)

× SmUnionOrtho, 0 ≤ d ≤ 1. (7)

E. Query Process

A retrieval system deals with user query requests with a spe-
cific retrieval method. Three HrosSI retrieval methods reflect
the three ways of similarity matching between HrosSI blocks.
Classified according to the category of features used in similar-
ity matching, the three retrieval methods are identified as the
DSM-NRFCMs-based retrieval method, the ortho-NRFCMs-
based retrieval method, and the integrated-NRFCMs-based
retrieval method, respectively. In one query process, a retrieval
system deploys only one specific retrieval method.

A query process refers to the interaction between users and
the retrieval system, as shown in Fig. 5. At first, users submit
a query by selecting an interesting HrosSI block group, and a
specific retrieval method to be deployed in the retrieval system.
Then, the similarity between the query HrosSI block group and
each HrosSI block group in the dataset is calculated in turn. At
last, a ranking list sorted in a descending order is returned to
the users.

F. Retrieval Result Evaluation

1) Retrieval Accuracy: The accuracy of the retrieval
method is calculated based on the ranking list that responds
to a query with the retrieval system. The recall, precision, and
F-measure [21] are calculated as follows:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F−measure =
2× Recall× Precision

Recall + Precision
(8)

where TP is the number of true positives, FN is the number of
false negatives, FP is the number of false positives, F-measure
is a harmonic mean of recall and precision. In other words, TP
is the number of returned HrosSI block groups that are relevant
to the query HrosSI block group. FN is the number of relevant
HrosSI block groups that are not returned. FP is the number of
returned HrosSI block groups that are not relevant.

The retrieval accuracy can be calculated for the entire dataset
as well as a subdataset of the entire dataset. With the same
entire ranking list, the accuracy for the subdataset can be mea-
sured according to the number of corresponding HrosSI block
groups in (8). For instance, the entire dataset is divided into the
Worldview-1 and the Cartosat-1 subdatasets according to the
sensor type of HrosSI blocks. If a Worldview-1 HrosSI block
group is queried with the prototype system, it returns a rank-
ing list for the entire dataset. With the same entire ranking list,
retrieval accuracy can be calculated for the entire dataset, the
Worldview-1 and the Cartosat-1 subdatasets, respectively. In
this way, three retrieval accuracy modes are calculated.

2) Retrieval Efficiency: The retrieval efficiency is measured
with the time from the query to the retrieval results return to
users. The retrieval efficiency may be affected by some factors,
such as the total number of HrosSI block groups in the entire
dataset, the query HrosSI block group, and the experimental
environments. Thus, these factors must be the same in order to
objectively compare the retrieval efficiency of different retrieval
methods.

3) Normalized Dissimilarity Ranking Index: The sequence
order in the ranking list is crucial. Some indices, such as the
tau index [46], are used for measuring the sequence order with
the help of a desirable ranking list. However, because of the
rich and complex visual contents of remotely sensed images
and user experiences, it is very difficult for users to generate
a unified ranking list. Nevertheless, two HrosSI block groups
covering the same scene from different sensors should have a
comparable ranking, regardless of their contents and a users’
subjective judgment. The Normalized Dissimilarity Ranking
Index (NDRI) is proposed to objectively measure the ranking
difference between these two HrosSI block groups with no need
for a desirable ranking list.

The NDRI for two HrosSI block groups covering the same
scene from different sensors is calculated based on the ranking
list. The NDRI is measured as follows:

NDRI =
|R1− R2| − 1

TR
, 0 ≤ NDRI ≤ 1 (9)

where R1 is the ranking of a HrosSI block group in the ranking
list, R2 is the ranking of the other HrosSI block group in the
ranking list, and TR is the total number of HrosSI block groups
in the ranking list. The NDRI value ranges from 0 to 1, and indi-
cates the stability of the retrieval method for the two HrosSI
block groups. The NDRI value close to 0 indicates that the
retrieval method is stable for the two groups, while the NDRI
value close to 1 indicates that the retrieval method is unstable
for the two groups. Further, with the same ranking list, an NDRI
value can be calculated for each scene that is covered by two
sensors in the entire dataset. The total number of NDRI values
for the entire dataset is derived from the total number of scenes
in the dataset.
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Fig. 5. Query process. Through the user interface, users interact with the retrieval system, deploying a retrieval method based on the corresponding features of
HrosSI blocks. The number of the arrows indicates the order of each specific task in the entire query process. The number “1” indicates how users initialize the
query process. The number “2” indicates similarity matching between HrosSI blocks with their features. The number “3” indicates results ranking and return to
users.

TABLE I
PROPERTIES OF THE TEST AREAS AND THEIR STEREO PAIRS

The distribution of NDRI values for the entire dataset indi-
cates the stability of the retrieval method. In order to objectively
analyze the distribution without the impact of the selected query
scene, all scenes covered by one remote sensor are queried
with the retrieval system in turn, producing large quantities of
NDRI values. Then, the distribution of all these NDRIs can
be visualized graphically as a boxplot. The stability of the
retrieval method decreases with the increase in the median and
the quartiles of the boxplot.

IV. EXPERIMENTAL RESULTS

A. Study Data

The ISPRS stereo benchmark test dataset [47], [48] was used
in this paper. The test dataset involved three test areas with dis-
tinct properties in Catalonia, Spain [49]. The three test areas
were Vacarisses, Lamola, and Terrassa, respectively. Each test
area was covered by two stereo pairs with rational polyno-
mial coefficients: one Cartosat-1 (CS1) stereo pair and one

Worldview-1 (WV1) stereo pair. Tables I shows the properties
of the test areas and stereo pairs that covered the test areas. The
ground control points, and the azimuth and elevation of the sun
during acquisition of stereo pairs were not provided.

B. Experimental Setting

The prototype system was implemented using MATLAB
R2012b. The testing platform had two Intel(R) Core (TM)
i3-2310M 2.10 GHz CPUs with 2-GB memory.

DSMs and orthoimages were generated from the six stereo
pairs in the ISPRS stereo benchmark test dataset. Stereo prod-
ucts were generated with ENVI 4.8 software [50]. At first,
stereo products at 2.5-m GSD were produced from CS1 stereo
pairs, while stereo products at 0.5-m GSD were produced from
WV1 stereo pairs. Then, stereo products generated from WV1
stereo pairs were resampled to 1, 2, and 2.5 m. All orthoimages
generated from WV1 stereo pairs at 11 bits were normalized to
10 bits. All orthoimages generated from all stereo pairs were
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TABLE II
TYPES OF STEREO PRODUCTS AND DECOMPOSITION SETTINGS

subjected to histogram equalization. All stereo products gener-
ated from all stereo pairs were subjected to low-pass filtering
with the 3× 3 pixels kernel size. In this way, different types
of stereo products were generated from HrosSIs. The type of
stereo products can be labeled with the number of bits per pixel
and GSD of stereo products. Tables II shows the types of stereo
products. Different types of stereo products were created for
different types of stereo pairs. One type of stereo product was
created for CS1 stereo pairs, while eight types were created for
WV1 stereo pairs. Since the types of DSMs were only related
to the GSD, there were only four different types of DSMs for
WV1 stereo pairs.

Stereo pairs and their stereo products were decomposed into
several blocks, as shown in Tables II. For each test area in
the ISPRS stereo benchmark test dataset, the complete scene
(stereo pair or stereo products) was divided into 36 scenes. The
GSD of stereo pairs from different remote sensors varied; thus,
the complete stereo pairs or the decomposed stereo pair blocks
that covered the same scene by different remote sensors varied
in the size. This also happened to stereo products and stereo
product blocks. Moreover, the decomposition setting for CS1
stereo products was the same as that for CS1 stereo pairs. The
decomposition setting for eight types of WV1 stereo products
was different from that for WV1 stereo pairs, and varied with
the GSD. Eight types of WV1 stereo products were split into
different decomposition sizes according to their GSD, respec-
tively, as shown in Tables II. Considering that stereo products
have different types, stereo product blocks also have types. The
types of stereo product blocks were determined by types of
stereo products.

Stereo product block RFIs were created from stereo product
blocks through RFD calculation. RFD values were estimated
with the blanket’s scale range from 1 to 100. Determining the
regional window size for all stereo product blocks was signif-
icant for the RFD value calculation. The regional window size
for each stereo product block itself was determined under the
conditions as previously described. The RFIs generated from
various sizes of stereo product blocks must be at the same size
in order to do similarity matching between HrosSI blocks. For
these reasons, four sizes of RFIs were chosen to be generated
from all stereo product blocks, as shown in Tables III. In this
way, various types of RFIs were created for different sensor

TABLE III
REGIONAL WINDOW SIZE IN RFD CALCULATION: REGARDLESS OF

STEREO PRODUCT BLOCK SIZE, FOUR SIZES OF RFIS ARE CREATED

FROM EACH STEREO PRODUCT BLOCK: 64× 64, 32× 32, 16× 16

AND 8× 8 PIXELS

types of stereo pair blocks. The number of types of RFIs was
equal to four times of the number of types of stereo product
blocks.

Fig. 6 shows stereo products and their corresponding RFIs of
the three complete test areas in the ISPRS stereo benchmark test
dataset. The orthoimages and the DSMs, which were at 10 bits
and at 2.5-m GSD, were generated from CS1 stereo pairs cover-
ing the three complete test areas. The orthoimage RFIs and the
DSM RFIs were created with the 8× 8 pixels regional window
size in the RFD calculation.

Features of stereo pair blocks were created from stereo prod-
uct block normalized RFIs. Normalized RFIs ranging from
1 to 100 were produced by normalizing RFIs with the lin-
ear extension method. Then, DSM NRFCMs and orthoimage
NRFCMs were created from DSM and orthoimage block nor-
malized RFIs, respectively. Since various types of RFIs were
created for the stereo pair blocks of different sensor types, dif-
ferent groups of height features or planar features were created
for them. The number of groups of height features or planar
features was determined by the number of types of RFIs.

The dataset of stereo pair blocks and their features were
prepared for HrosSI retrieval, as shown in Tables IV. Since
36 scenes were created from one complete test area through
decomposition, 36× 3 scenes were created from the three com-
plete test areas. Each scene were covered by a CS1 stereo pair
block group as well as a WV1 stereo pair block group, there-
fore the entire dataset for HrosSI retrieval composed of 216
stereo pair block groups. The entire dataset can be divided into
the WV1 and the CS1 subdatasets according to the sensor type
of stereo pair blocks. Both the WV1 subdataset and the CS1
subdataset composed of 108 stereo pair block groups of the
corresponding sensor type. Furthermore, since different types
of stereo product blocks and RFIs were produced for different
sensor types of stereo pair blocks, various groups of features
were created for them.

The integrated-NRFCMs-based retrieval method is based
on a combination of planar features and height features. The
weight values for planar features and height features were deter-
mined by the parameter d in (7). In this study, three different
weight values were assigned to the parameter: 0.25, 0.5, and
0.75. Moreover, planar features and height features combined
in the retrieval method were created from the same size of
normalized RFIs.
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Fig. 6. Stereo products and corresponding RFIs for the three test areas. (a) Vacarisses. (b) Lamola. (c) Terrassa. The orthoimage, orthoimage RFI, DSM, and DSM
RFI are arranged from left to right for each test area. All the images were produced from CS1 stereo pairs for the three complete test areas in the ISPRS stereo
benchmark test dataset. All the images are stretched for visual clarity. Light pixels indicate high RFD values in orthoimage RFIs and DSM RFIs, while light pixels
indicate high elevation values in DSMs.

TABLE IV
NUMBER OF STEREO PAIR BLOCKS AND FEATURE TYPES

C. NDRI Analysis

In this experiment, the influence of key parameters in the
feature extraction processing on HrosSI retrieval was inves-
tigated with NDRI analysis; the GSD of stereo products, the
radiometric resolution of orthoimages, and the RFI size.

Fig. 7. Boxplots for NDRI values using the DSM-NRFCMs-based retrieval
method. A boxplot represents the distribution of NDRI values for the entire
dataset, using a retrieval method and a group of features. Specifically, features
of HrosSI blocks used in the retrieval method are created from the DSM block
RFIs in four sizes. CS1 DSM block RFIs are generated from DSMs at 2.5-m
GSD, while WV1 DSM block RFIs are generated from DSMs at four different
GSD.

Boxplots for NDRI values using the three retrieval meth-
ods were created as follows. The prototype system deployed
a retrieval method. Then, 108 CS1 stereo pair block groups in
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Fig. 8. Boxplots for NDRI values using the ortho-NRFCMs-based retrieval method. The features of CS1 HrosSI blocks are created from DSMs and orthoimages
at 2.5-m GSD and at 10 bits. The features of WV1 HrosSI blocks are created from DSMs and orthoimages with eight types of GSD and radiometric resolutions.
Other settings are the same as those in Fig. 7.

Fig. 9. Boxplots for NDRI values using integrated-NRFCMs-based retrieval method. (a) d = 0.25. (b) d = 0.5. (c) d = 0.75. The other settings are the same as
those in Fig. 7.

the entire dataset were queried with the prototype system in
turn. Since 108 NDRI values can be created with one query,
108 × 108 NDRI values were obtained and displayed as a box-
plot for the retrieval method. The number of boxplots for a
retrieval method was determined by the number of groups of
features used in this retrieval method. Therefore, there are 16
boxplots by using the DSM-NRFCMs-based retrieval method,
as shown in Fig. 7. There are 32 boxplots by using the other two
retrieval methods, as shown in Figs. 8 and 9.

The influence of the GSD and radiometric resolution of
stereo products on HrosSI retrieval can be investigated with
Figs. 7–9. Considering that the GSD of CS1 stereo products
was constant at 2.5-m GSD, Figs. 7–9 show that the stabil-
ity increases with the GSD of WV1 stereo products toward
2.5 m for the three retrieval methods at the four RFI sizes.
Considering that the radiometric resolution of CS1 orthoim-
ages was constant at 10 bits, Figs. 8 and 9 show that 10 bits is
more stable than 11 bits for the three retrieval methods at four
RFI sizes. Therefore, stereo products generated from various
HrosSIs must be at the same GSD and radiometric resolution in
order to obtain the most stable HrosSI retrieval.

Fig. 10. Boxplots for NDRI values using the three retrieval methods. The fea-
tures of both CS1 HrosSI blocks and WV1 HrosSI blocks are created from
DSMs and orthoimages at 2.5-m GSD and at 10 bits. Other settings are the
same as those in Fig. 7.

Fig. 10 shows boxplots for NDRI values using the three
retrieval methods. Since features extracted from stereo product
blocks at 2.5 m and at 10 bits were the most stable for HrosSI
retrieval, they were used in the analysis. The stability of height
information and the RFI size can be derived from boxplots of
the three retrieval methods with Fig. 10.
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Fig. 11. Retrieval accuracy of the three retrieval methods. (a) Recall. (b) Precision. (c) F-measure. By using one retrieval method, a ranking list responds to one
sensor type query. The retrieval accuracy for the sensor type query is calculated on the entire dataset, the CS1 and the WV1 subdatasets, respectively. In the
accuracy mode labels, the part to the left before the colon represents the sensor type query: “C” indicating the CS1 query HrosSI blocks, and “W” indicating the
WV1 query HrosSI blocks. The part to the right after the colon represents the evaluated dataset: “C” indicating the CS1 subdataset, “W” indicating the WV1
subdataset, and “E” indicating the entire dataset.

Fig. 12. Results by the DSM-NRFCMs-based retrieval method. The first column represents the query stereo pair block group. The second to eighth columns show
the seven most similar stereo pair block groups with descending similarity to the query stereo pair block group, arranged from left to right. Each stereo pair block
group is labeled with the scene name above it and sensor type under it.

Fig. 13. Results by the ortho-NRFCMs-based retrieval method. Other settings are the same as those in Fig. 12.

The stability of height information for HrosSI retrieval can be
investigated with Fig. 10. On the four RFI sizes, the integrated-
NRFCMs-based retrieval method with three different weight
values for planar features and height features was more sta-
ble than the DSM-NRFCMs-based retrieval method using only
height features. Thus, height information alone is unstable for

HrosSI retrieval, while a combination of height information and
planar information is stable.

The stability of the RFI size is illustrated in Fig. 10. The
32× 32 pixels size was slightly more stable than other three
RFI sizes for all the three retrieval methods. Thus, features
at the 32× 32 pixels size, which were created from stereo
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Fig. 14. Results by the integrated-NRFCMs-based retrieval method. (a) d = 0.25. (b) d = 0.5. (c) d = 0.75. Other settings are the same as those in Fig. 12.

products at 10 bits and at 2.5-m GSD, were chosen for retrieval
accuracy analysis and retrieval efficiency analysis.

D. Retrieval Accuracy Analysis

The retrieval accuracy of three retrieval methods was calcu-
lated as follows. A CS1 or WV1 stereo pair block group named
T2-3 was queried with the prototype system that deployed a
retrieval method. The recall, precision, and F-measure were cal-
culated based on the first 20 stereo pair block groups in the
ranking list. The retrieval accuracy was calculated on the entire
dataset, the CS1 and the WV1 subdatasets, respectively. Three

retrieval accuracy modes for the retrieval method were obtained
with a sensor type query. In this way, six retrieval accuracy
modes for each retrieval method were obtained with two sen-
sor type queries. Fig. 11 shows the six accuracy modes for the
three retrieval methods.

Fig. 11 indicates that accuracy varies with different retrieval
methods. The integrated-NRFCMs-based retrieval method had
similar accuracy in each accuracy mode when three differ-
ent weight values were used. The order of accuracy of the
three retrieval methods remained constant with the same sen-
sor type of query stereo pair block group and evaluated dataset.
The order of accuracy of the three retrieval methods from
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Fig. 15. Retrieval efficiency of the three retrieval methods. The retrieval
efficiency of each retrieval method is calculated with two sensor type queries.

high to low was consistently: the integrated-NRFCMs-based
retrieval method, the ortho-NRFCMs-based retrieval method,
the DSM-NRFCMs-based retrieval method.

Figs. 12–14 show results of the three retrieval methods. Since
similarity values between stereo pair block groups calculated
by different retrieval methods were not comparable, similar-
ity values between stereo pair block groups in the dataset and
the query stereo pair block group are not given. The three
retrieval methods can be compared with the visual results, espe-
cially with the most similar stereo pair block groups. For the
three retrieval methods, the correlated degree of the first seven
stereo pair block groups and the query group was in line with
the retrieval efficiency. The first seven groups did not look
so similar to the query group using the DSM-NRFCMs-based
method, while they looked more similar using the ortho-
NRFCMs-based method and the integrated-NRFCMs-based
method. The WV1 stereo pair block group covering the same
scene with the query CS1 stereo pair block group was not in
the first seven similar groups using the DSM-NRFCMs-based
method.

The significance of height information for HrosSI retrieval is
evident in an efficiency comparison of the three retrieval meth-
ods. The integrated-NRFCMs-based retrieval method using
planar features and height features was efficient. The accu-
racy of the DSM-NRFCMs-based retrieval method using
only height features was inefficient. Thus, height informa-
tion alone is inefficient for HrosSI retrieval, while a com-
bination of height information and planar information is
efficient.

E. Retrieval Efficiency Analysis

The retrieval efficiency of three retrieval methods was mea-
sured as follows. The CS1 or WV1 stereo pair block group
named T2-3 was queried 10 times with the prototype system
that deployed one retrieval method. The average time for the
retrieval method with the sensor type query was then deter-
mined. In this way, the average time for the three retrieval

methods with the two sensor types was calculated. Fig. 15
presents the average time for the three methods.

Fig. 15 shows that the time consumed by each retrieval
method is independent of the sensor type query. With the same
sensor type query, the ortho-NRFCMs-based method and the
DSM-NRFCMs-based method consumed almost the same time,
while the time consumed by the integrated-NRFCMs-based
retrieval method was almost the sum of the time consumed
by the other two methods. The integrated-NRFCMs-based
retrieval method consumed almost the same time when three
different weight values were used.

V. DISCUSSION

The generic framework for content-based HrosSI retrieval is
suitable for diverse HrosSIs with various characteristics. The
proposed framework could be efficient for airborne as well for
spaceborne stereo images used in this study. This is because
retrieval is executed by similarity matching between the fea-
tures extracted from the two primary stereo products, DSMs
and orthoimages. Regardless of how stereo images are acquired,
by what sensors, and under what acquisition conditions—
the DSMs and orthoimages can be generated from the stereo
images. In this study, features are NRFCMs created from the
DSMs and orthoimages.

This study reveals the significance of height information for
HrosSI retrieval. On one hand, height information alone is inef-
ficient and unstable for HrosSI retrieval. The details of different
land cover types vary in DSMs generated from stereo images of
different remote sensors [48]. Some small land cover areas can
only be extracted in some sensor types of stereo images. For
instance, the residential area in Terrassa can be extracted from
DSMs generated from Worldview-1 stereo pairs, but not from
the Cartosat-1 stereo pairs [48]. For the same land cover area,
height features extracted from different sensor types of stereo
images may vary slightly. Moreover, different land cover types
that vary significantly in a planar remotely sensed image may
be very similar in the DSMs. For instance, both farmland and
playgrounds have different texture characteristics but are very
flat in the DSMs. Therefore, some land cover types are difficult
to distinguish from DSMs alone. Height information is much
less visual and intuitive than planar information when users
distinguish between stereo images. On the other hand, a combi-
nation of height information and planar information is efficient
and stable for HrosSI retrieval. Height features and planar fea-
tures are complementary for each other in HrosSI retrieval. It
may be efficient to use height features to distinguish between
some land cover types, but inefficient to use planar features for
discrimination, or the reverse.

This study has some disadvantages which can be divided
into three categories according to the related issue: stereo
products, features, and the prototype system. The stereo prod-
ucts are missing multispectral bands, and have no accuracy
or filtering influence evaluation. In addition, HrosSI or stereo
product characteristics have not been thoroughly evaluated.
Considering that sensors with stereo capability often deliver
panchromatic images, only the panchromatic images are used
in the framework to support all HrosSIs. Multispectral bands
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with multiview angles will be used in the future for refining the
HrosSI retrieval accuracy. The accuracy of stereo products was
not evaluated; however, our study clearly indicates that simi-
larity matching between stereo products is efficient for HrosSI
retrieval. The accuracy of stereo products and its influence on
HrosSI retrieval will be investigated in future research. Stereo
products were subjected to low-pass filtering with just one ker-
nel size during preprocessing. We did not inspect the influence
of the filtering method for stereo products or its parameters
on HrosSI retrieval, which will be investigated further using
other filtering methods with different parameters. We did not
inspect the influence of HrosSI or stereo product characteristics
on HrosSI retrieval, except issues related to GSD and radiomet-
ric resolution of stereo products. The influence of other HrosSI
or stereo product characteristics, such as viewing angles and
shadows, will be investigated later.

The feature types, and feature extraction opportunities in
this study also have some limitations. Considering that RFD
calculation and similarity matching are done based on certain
conditions, HrosSIs are comparable only if HrosSIs and their
stereo products are at the same size or at integer multiples of
image size. Therefore, HrosSIs and their stereo products must
be subjected to resampling. Other features that need not the
resampling will be investigated. Both height features and pla-
nar features are NRFCMs in this study; that does not imply
that they must be the same type of feature. They just need to
be derived from DSMs and orthoimages, respectively. Since
ranges of fractal dimension values derived from different land
cover types may overlap each other, it may be difficult to dis-
tinguish between some HrosSIs using NRFCMs alone. This
problem can be solved if other features are obtained from stereo
products or from the HrosSIs themselves, and used in combina-
tion with the fractal dimension for HrosSI retrieval. Features
were extracted offline and therefore feature extraction must be
done in advance. This problem can be solved if features are
extracted in real time.

There are also some limitations in the prototype system
concerning the user interaction experience and test data. The
prototype system is currently based on blocks, and requires
users to search for query HrosSI block group. These prob-
lems and limitations can be solved if the system allows for
user interaction, such as region-based HrosSI retrieval, query
HrosSIs uploading, and relevance feedback. We examined only
216 stereo pairs from two sensors; more stereo images from
more remote sensors will be involved to test whether or not the
proposed techniques are robust.

The framework is specifically designed for HrosSIs retrieval.
Existing remote sensing image retrieval methods concentrate
on remotely sensed images with a single look angle, while
this study concentrates on HrosSIs composed of a group of
images with multiview angles. The characteristics of HrosSIs
vary in tandem with diverse remote sensors and with acquisi-
tion conditions, such as viewing number and multiview angles.
None of the existing remote sensing image retrieval meth-
ods is specifically designed for HrosSIs due to the fact that
they do not take account or harness the special characteristics
of HrosSIs. Our research exploits the unique characteristics of
HrosSIs data so as to allow efficient and accurate content-based

HrosSI retrieval. Our research takes height information into
consideration, and reveals that height information is helpful for
HrosSI retrieval. Height features must be involved to achieve
high accuracy of HrosSI retrieval. Our research will provide
important support for future work on HrosSI retrieval using
height information.

VI. CONCLUSION

This paper proposes a new generic framework for content-
based HrosSI retrieval, and investigates the significance of
height information for HrosSI retrieval. HrosSI retrieval is exe-
cuted by similarity matching between the features extracted
from stereo products that are stereo-extracted DSMs and
orthoimages. Experimental results show that the proposed
techniques are efficient for HrosSI retrieval. Stereo products
generated from various HrosSIs must be at the same GSD
and radiometric resolution to obtain the most stable HrosSI
retrieval. Height information alone is inefficient and unstable
for HrosSI retrieval; however, a combination of height informa-
tion and planar information is efficient and stable for HrosSI
retrieval.

Our research is significant in that it extends the work on
HrosSI retrieval. The proposed framework is efficient and suit-
able for spaceborne stereo images but might also be suitable for
airborne stereo images as well. This new framework is specifi-
cally designed for HrosSIs retrieval because it takes advantage
of the special characteristics of HrosSIs. More importantly, our
research also reveals the significance of height information for
HrosSI retrieval.

Some drawbacks of the proposed framework need to be
addressed. The issues related to the influence of stereo prod-
ucts on HrosSI retrieval need to be investigated including:
the accuracy of stereo products; HrosSI and stereo product
characteristics; and stereo product preprocessing (such as fil-
tering and resampling). Fractal dimension values and other
features obtained from stereo products or HrosSIs with mul-
tispectral bands are extracted in real time and combined for
HrosSI retrieval. The HrosSI retrieval system should include
more stereo images from more remote sensors and involve user
participation.
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