
Sparse BLIP: Compressed Sensing with Blind Iterative Parallel Imaging 
Huajun She1, Rong-Rong Chen1, Dong Liang2,3, Edward DiBella4, and Leslie Ying3 

1Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States, 2Shenzhen Institutes of Advanced Technology, Shenzhen, 
China, People's Republic of, 3Department of Electrical Engineering and Computer Science, University of Wisconsin, Milwaukee, WI, United States, 4Department of 

Radiology, University of Utah, Salt Lake City, Utah, United States 
 

INTRODUCTION: In SENSE-based compressed sensing (CS) methods for parallel imaging such as SparseSENSE (1) and CS-SENSE (2), coil 
sensitivities are usually obtained from low resolution images or through a separate scan, where accuracy cannot be guaranteed. Inaccuracy in coil 
sensitivities may lead to serious image artifacts at high acceleration factors. GRAPPA-based CS methods such as L1-SPIRiT (3) avoid explicit use of 
coil sensitivities, but the channel-by-channel reconstruction is computationally intensive and may also cause non-uniform intensity. Motivated by the 
success of JSENSE (4,5) in improving coil sensitivities estimation, we propose a new approach to blind compressed sensing in the context of parallel 
imaging where the sensing matrix is not known exactly and needs to be reconstructed. We name the method Sparse BLIP (compressed sensing with 
Blind Iterative Parallel imaging). The proposed method effectively incorporates the sparseness of both the desired image and coil sensitivities in 
reconstruction. The proposed method is compared with SparseSENSE and L1-SPIRiT and demonstrates a significant improvement in image quality 
at high reduction factors. 
THEORY AND METHOD: The proposed blind CS approach enforces the prior knowledge on both the sensing matrix and signal subject to the 
data consistent constraint. The data consistent term of the proposed method comes from the JSENSE framework (4), where the unknown coil 

sensitivities a and the desired image f are found by solving a least-squares solution 2
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in (6), a general pixel-based model is used for the sensitivities a here. To incorporate the concept of CS, the k-space data is acquired with incoherent 
sampling and the reconstruction enforces sparseness constraints on functionals of both image and sensitivities. For incoherence sampling, we use a 1-
D random undersampling pattern with variable density in Cartesian grid as in (6). For the sparseness constraints, the total-variation (TV) of both 

image and coil sensitivities in spatial domain is minimized. The objective function is: ∑∑
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is the pixel-based sensitivity function, FD is the Fourier transform with decimation, and · denotes pixel-wise product. The positive constants α and β 
are adjusted to control the tradeoff between data consistency and the two sparseness priors. When the sensitivity functions are given, Eq. [2] is 
equivalent to SparseSENSE. When both f and sl are unknowns, the joint optimization problem in Eq. [2] is beyond the conventional CS framework 
and is no longer convex. We regarded such a problem as blind CS where the sensing matrix is not given. Under Eq. [2], the energy function E is still 
convex with respect to f if sl is given, and similarly, E is also convex with respect to sl if f is given. We therefore minimize the energy function by 
alternating between minimizing over f and minimizing over sl as done in (4) until the objective 
function stops decreasing. Nonlinear conjugate gradient (NLCG) algorithm with line search is 
used to solve each alternating optimization problem. Because convergence to a global minimum 
is not guaranteed in such a greedy approach, an accurate initial estimate for the unknown coil 
sensitivities is important for high quality reconstructions and is obtained using either a pre-scan 
or the calibration data at central k-space. Compared with the channel-by-channel reconstruction 
methods such as GRAPPA (7) and SPIRiT (3), the method is advantageous in that no root Sum 
of Squares (SOS) is needed. It not only saves computation when a large number of channels are 
involved, but also avoids the assumption that SOS of all sensitivities is spatially uniform. 
Because minimizing TV favors images with uniform intensity, the use of TV constraint on 
image potentially generate a final reconstruction that is more uniform in intensity than that 
given by the SOS.   
RESULTS AND DISCUSSION: The proposed Sparse BLIP method was evaluated on both 
phantom and in vivo brain datasets. A T1-weighted scan was performed on a phantom using a 2-
D spin echo sequence on a 3T commercial scanner (GE Healthcare, Waukesha, WI) with an 
eight-channel torso coil (TE/TR = 11/300 ms, FOV = 18 × 18 cm, matrix = 256 × 256, slice 
thickness = 1.7 mm). A 3-D MPRAGE dataset acquired with an eight-channel head coil (TE/TR 
= 3.45/2530 ms, TI= 1100 ms, FOV = 25.6 cm, matrix = 256 × 256, slice thickness = 1.33 mm) 
was obtained from http://www.nmr.mgh.harvard.edu/~fhlin/codes/mprage_8ch_slice1.mat. The 
reconstructions of the proposed Sparse BLIP method are compared with those of the state-of-
the-art methods, SparseSENSE (1) and L1-SPIRiT (3) in Figure 1, with a reduction factor of 
5.95 (1-D undersample) for the phantom data and 16 (2-D undersample) for the brain data. It is 
seen that the proposed method is able to significantly suppress the aliasing artifacts in L1-
SPIRiT and SparseSENSE reconstructions without loss of resolution. In addition, Sparse BLIP 
reconstruction is also seen to be more uniform in intensity than the SOS reference. 
CONCLUSION: We propose a novel blind CS method to reconstruct the image and coil 
sensitivities simultaneously from undersampled multichannel phased-array data. Phantom and in 
vivo experimental results demonstrate that the proposed Sparse BLIP method is able to 
accelerate parallel imaging more than the state-of-the-art CS-based methods. 
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Figure 1 Reconstruction results with 2-D (left) and  

3-D (right) undersampling. 
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