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ABSTRACT 

 

Compressed Sensing (CS) is a new paradigm in signal 

processing and reconstruction from sub-nyquist sampled 

data. CS has shown promising results in accelerating dynamic 

Magnetic Resonance Imaging (dMRI). CS based approaches 

hugely rely on sparsifying transforms to reconstruct the 

dynamic MR images from its undersampled k-space data. 

Recent developments in dictionary learning and nonlinear 

kernel based methods have shown to be capable of 

representing dynamic images more sparsely than 

conventional linear transforms. In this paper, we propose a 

novel method (NL-D) to represent the dMRI more sparsely 

using self-learned nonlinear dictionaries based on kernel 

methods. Based on the proposed model, a new iterative 

approach for image reconstruction relying on pre-image 

reconstruction is developed within CS framework. 

Simulation results have shown that the proposed method 

outperforms the conventional CS approaches based on linear 

sparsifying transforms.  

Index Terms — Compressed Sensing, Dictionary 

Learning, Non Linear Methods, Kernel Methods 

 

1. INTRODUCTION 
 

Dynamic Magnetic Resonance Imaging (dMRI) has series of 

images that carry the spatial and temporal information of the 

dynamic subject under consideration. These images not only 

characterize the spatial structures, but also capture the kinetic 

information [1]-[5] of a dynamic subject. However, the long 

data acquisition time in dMRI limits the achievable 

spatiotemporal resolution and thus compromises image 

quality. A recent paradigm on sub-nyquist sampling and 

signal reconstruction, Compressed Sensing (CS) has proven 

to be a powerful tool in accelerating data acquisition process 

in MRI [6]-[8]  by exploiting the a priori information about 

the data sparsity under some sparsifying transforms. These 

sparsifying transforms play a vital role in the feasibility of CS 

reconstruction of MR images from under sampled k space 

data. CS in dMRI exploits the high correlation between inter 

frames along the temporal direction to find appropriate 

sparsifying transforms. Typical sparsifying transforms 

prevailed in dMRI are linear transforms such as Fourier [7- 

 9], wavelet [6], principal component analysis (PCA) [8]. 

Another sparsifying approach, the so-called dictionary         

learning methods have also been explored in various 

literatures [10] [11]. However, all these methods are based on 

linear transforms and hence might not be able to capture 

nonlinear inter frame correlation of dMRI.  

Nonlinear features in dMRI motivate the use of nonlinear 

sparsifying transforms that can effectively capture the 

nonlinear temporal correlation and thus allow sparser 

representations. Kernel Principal Component Analysis 

(KPCA) is a tractable nonlinear generalization of PCA [12] – 

[14] designed to capture such nonlinearities in the data.  The 

key principle in KPCA method is to map the original data 

from the low dimensional input space to a higher dimensional 

space, so called feature space, through some nonlinear map 

and perform linear methods there. Recent works in various 

signal-processing applications such as data classification, 

feature recognition, active shape models and face recognition  

have shown promising results using KPCA to capture the 

underlying nonlinearities of the data [15] - [17].  While 

finding appropriate maps from input space to high 

dimensional feature space is of primary concern in such 

applications, implementation of KPCA methods in MRI 

context is even more challenging in a sense that, in MRI we 

are strictly concerned about the data in the input space rather 

than only on its characteristics in the feature space.  The 

reverse mapping of data from feature space to input space, the 

so-called pre-image problem [14] [18] [19] is of equal 

importance in MRI and CS approaches. Kernel based CS 

reconstruction methods have been proposed in [20]-[22]. 

Recent works [23]-[25] investigate the application of kernel 

based CS in MRI. These approaches have shown superior 

results than conventional linear CS methods.  

In this paper, we integrate the kernel based nonlinear 

dictionary approach within CS framework to sparsely 

represent the nonlinear features of temporal frames in dMRI.  

We propose a polynomial kernel based method to find a 

sparse representation of dynamic MR images from the under-

sampled k-space data. Based on this model, a novel 

compressed sensing dMRI method with self-learned 

nonlinear dictionary (NL-D) is formulated. It is worth noting 

that although both [25] and our method use kernel PCA, [25] 

formulates the problem with a low-rank constraint in the 



feature space where the rank has to be specified, while our 

method enforces a sparsity constraint in the feature space 

with a learned dictionary. The rest of the paper is structured 

as follows. In section 2, we present our proposed method and 

elaborate various steps involved. Section 3 provides the 

simulation results for muscle arterial spin labeled (ASL) 

perfusion data and comparison with conventional linear CS-

PCA method, and finally section 4 concludes the paper. 

 

2. THEORY AND METHODS 
 

The key idea in the proposed method is based on the argument 

that we can characterize the underlying nonlinear structures 

of dynamic MR images by low dimensional embedding in the 

higher dimensional feature space.  The fundamental induction 

from this argument is that, dynamic images can be 

represented more sparsely using nonlinear dictionary such 

that the sparsity constrained CS reconstruction is more 

accurate. Given the undersampled k-space data 𝐲, the 

reconstruction problem can be formulated as: 

min
𝐱

‖𝐲 − 𝐅u𝐱‖2
2 + 𝜂1‖𝛕‖1 ,  (1) 

where 𝐅𝑢 is undersampling Fourier operator, 𝐱 is the desired 

dynamic image, 𝛕 is the sparse coefficients with nonlinear 

dictionary and 𝜂1 is regularization parameter. The nonlinear 

dictionary is formed using training data and projection into 

the feature space. The optimization problem in Eq. (1) is 

solved using a pre-image formulation and the iterative soft 

thresholding method. The process involved in the proposed 

method can be described in following 3 distinct steps: (I) non-

linear dictionary learning, (II) sparsity enforcement, and (III) 

data consistency enforcement. The schematic of proposed 

method is illustrated in the Fig. 1.  
 

2.1. Non-Linear Dictionary Learning 

The non-linear dictionary is learned from the training data 

obtained from low-resolution dynamic images using kernel 

principal component analysis (KPCA) [13]. Low-resolution 

dynamic images are obtained from a few central k-space 

lines. A set of 𝑇 training signals 𝐩𝑡 , 𝑡 = 1, 2, … 𝑇 are formed 

from the low-resolution dynamic images. Each of the training 

signal 𝐩𝑡 corresponds to the temporal variation of a particular 

spatial location as shown in step 1 of the Fig. 1. To find the 

corresponding nonlinear dictionary from these training 

signals, they are projected from the original input space to the 

high dimensional feature space.  A principal component (PC) 

in a feature space serves as a dictionary element and can be 

represented as, V=∑ 𝛼𝑡𝜙𝑇
𝑡=1  (𝐩𝑡), where 𝜙(𝐩𝑡) = 𝜙(𝐩𝑡) −

∑ 𝜙(𝐩𝑡)𝑇
𝑡=1 /𝑇 represents the mapping of centered training 

data in the feature space, 𝜙: 𝜒 → 𝐻 is the nonlinear map from 

the low dimensional input space 𝜒 to a high dimensional 

feature space 𝐻, and 𝛼𝑡 is the representation coefficient. 

However, since the mapping function 𝜙 is not known 

explicitly, we use KPCA to compute the representation 

dictionary. A 𝑇 × 𝑇 kernel matrix 𝐊𝑝 is formed using the 

training data as:  

𝐊𝑝 = [

𝑘(𝐩1, 𝐩1)   𝑘(𝐩1, 𝐩2) ⋯ 𝑘(𝐩1, 𝐩T)

𝑘(𝐩2, 𝐩1)   𝑘(𝐩2, 𝐩2) … 𝑘(𝐩2, 𝐩T)
⋮ ⋱ ⋮

𝑘(𝐩T, 𝐩1)  𝑘(𝐩T, 𝐩2) ⋯ 𝑘(𝐩T, 𝐩T)

] , (2) 

where 𝑘(. , . ) is a kernel function. In particular, we use 

polynomial kernel function defined by 𝑘(𝐱𝑖, 𝐱𝑗) =

(〈𝐱𝑖 , 𝐱𝑗〉 + 𝑐)
𝑑

, where c is a constant and d is the order of 

polynomial. The centered kernel matrix of Eq. (2) is         

 𝐊𝑝
𝑐 = 𝐊𝑝 − 𝟏𝑇𝐊𝑝 − 𝐊𝑝𝟏𝑇 + 𝟏𝑇𝐊𝑝𝟏𝑇, where 𝟏𝑇 is a 𝑇 × 𝑇  

matrix with all its elements equal to 1/𝑇 . The linear PCA is 

then performed in the feature space by solving the following 

eigenvalue problem 

                                 𝐊𝑃  
𝑐 𝛂 = 𝜆 𝛂 ,                           (3) 

where √𝜆 is the length of PC and 𝜶 = [𝛼1 𝛼2 … 𝛼𝑇]𝑇 are the 

representation coefficients.  

 

2.2. Sparsity Enforcement 

Similarly as in step 1 for training signals, the test signal 

vectors for each spatial location are formed using the images 

obtained from the undersampled  k-space data as shown in 

step 2 of Fig. 1. Each test signal represents the temporal 

variation of the image at a particular spatial location. Letting 

such test signal denoted by 𝐱, for each test signal, a kernel 

vector is calculated using  

        𝐤𝑥𝑝 = [𝑘(𝐩1, 𝐱) 𝑘(𝐩2, 𝐱) … 𝑘(𝐩𝑇 , 𝐱)]𝑇 ,           (4) 

and the elements of the centered kernel vector is calculated 

using 𝐤𝑥𝑝
𝑐 (𝑡) = 𝐤𝑥𝑝(𝑡) −

1

𝑇
∑ 𝐊𝑃(𝑡, 𝑖) −

1

𝑇
∑ 𝐤𝑥𝑝(𝑖) +𝑇

𝑖=1
𝑇
𝑖=1

1

𝑇2
∑ ∑ 𝐊𝑝(𝑘, 𝑖)𝑇

𝑖=1
𝑇
𝑘=1 . For a test signal 𝐱, the projection of 

𝜙 (𝐱) on to the 𝑘𝑡ℎ PC is computed using  𝛽 = (𝐤𝑥𝑝
𝑐 )

𝑇
𝛂𝑘. 

Fig. 1. Schematic of the proposed method 



Similarly as in conventional PCA, we assume that  𝜙 (𝐱) can 

be sparsely represented using only 𝐾 largest PCs in feature 

space as 𝜙 (𝐱) ≈ ∑ 𝛽𝑘𝐕𝑘  ≈ ∑ 𝛾𝑇
𝑡=1

𝐾
𝑘=1 𝑡

𝜙(𝐏𝑡), where 𝛾𝑡 =

∑ 𝛽𝑘𝛼𝑡
𝑘.𝐾

𝑘=1  The feature space map of the test signal x, namely 

𝜙(𝐱) is then computed as,  

𝜙(𝐱) = 𝜙 (𝐱) +
1

𝑇
∑ 𝜙(𝐩𝑡)𝑇

𝑡=1 ≈ ∑ 𝛾𝑡𝜙(𝐩𝑡)𝑇
𝑡=1  , (5) 

where 𝛾𝑡 = 𝛾𝑡 + (1 − ∑ 𝛾𝑡
𝑇
𝑡=1 )/𝑇. The sparse 

approximation of  𝜙(𝐱) from Eq. (5) depends on the numbers 

of PCs used. This process is carried out for each of the test 

signal. Hence, 𝛕  in Eq. (1) is defined as the vectorized 

projection of all test data over K principal components in 

feature space. After obtaining the sparse representation in the 

feature space, 𝜙 (𝐱) needs to be projected back onto the 

original space (known as the pre-image problem). For odd 

order polynomial kernels, the pre-image [14] [18] is obtained 

as:  

𝐳 = ∑ 𝑓𝑘
−1𝑁

𝑖=1 (∑ 𝛾𝑡
𝑇
𝑡=1 𝑘(𝐩𝑡 , 𝛏𝑖))𝛏𝑖

    , (6) 

where  𝑓𝑘
−1  is the inverse polynomial kernel function, 

𝑘(𝒙𝑖 , 𝒙𝑗) = 𝑓(< 𝒙𝑖 , 𝒙𝑗 >) and {𝛏1, 𝛏2, … 𝛏𝑁} are any 

orthonormal basis of the input space. 

 

2.3. Data Consistency Enforcement 

In order to make the reconstruction consistent with measured 

k-space data at the sampled k-space locations, the k-space 

data is updated using the weighted combination of measured 

k-space data and k-space data obtained from the pre-image as  

𝐲̂ =
𝐲+𝜂2𝐰

𝟏+𝜂2
 , (7) 

where w is the Fourier transform of the pre-image z, and 𝜂2 

is the weight. The updated dynamic images are then obtained 

by inverse Fourier transform of the updated k-space data. The 

sparsity enforcement and data consistency enforcement steps 

are iterated until convergence.   

 

 

3. SIMULATIONS AND RESULTS 
 

We used muscle ASL perfusion data on a calf muscle to 

evaluate the proposed method. Data acquisition parameters: 

TR/TE = 2.8/1.2 ms, flip angle = 5𝑜, FOV= 160 × 112 mm2 

and matrix size = 112 × 100 × 20 (#FE × # PE × # frames). 

1-D random under-sampling pattern along PE was used frame 

by frame. The net reduction factor was 3.  

Simulation Parameters:  Low-resolution images are obtained 

using 5 central k-space lines to create a training data set. 

Number of training signals T = 1000. Polynomial kernel with 

c=1 and 𝑑 = 3 was used and number of PCs (K) = 80. Soft 

thresholding values, 𝜂1 and 𝜂2 were tuned appropriately. 

Fig. 2 shows the comparison of the proposed method with 

conventional linear PCA based CS reconstruction method. 

We show the reconstruction of frames 3 and frame 10. All 

computations were carried out on a DELL workstation with 

(a) 

(b) 

Fig. 3 Average Intensity curve of ROI. (a) Frames 3-10. 

(b) Frames: 15-20. 

Fig.2. Comparison of different reconstructions. 

Reference: a & d, zero filling g & j, error maps h, i, k, l. 



Intel(R) i7 3.40GHz CPU and 16GB RAM running 

MATLAB 2014. The reconstruction time is about 210s for 

the proposed method and 90s for CS-PCA. The 

reconstruction of lower frames are comparatively challenging 

than higher frames because of low signal to noise ratio 

(SNR). However, the higher frames are also of equal 

importance to capture the kinetic information. The proposed 

method outperforms the conventional linear CS-PCA 

method. The error maps strongly suggest that the proposed 

method is superior to the CS-PCA.  Moreover, we can see the 

aliasing artifacts in the CS-PCA method. 

In Fig. 3 (a) and (b), we present the average temporal 

curve of the selected region of interest (ROI) shown in Fig.2 

(a).  For better visualization, we depict the temporal curves of 

particular frames in two different figures, Fig. 3 (a) and (b). 

We can clearly observe that the temporal curves from the 

proposed method follows the reference temporal curve more 

closely and precisely. These results demonstrate that the 

proposed method is superior to conventional CS-PCA not 

only in image quality but also in preserving the rapid kinetic 

information. 

 

4. CONCLUSION 
 

In this paper, we developed a novel compressed sensing 

reconstruction method based on the kernel method and self-

learned nonlinear dictionary. The proposed method integrates 

the principles of nonlinear kernel method into compressed 

sensing framework. We showed that the nonlinear features of 

temporal frames can be more efficiently and sparsely 

represented with self-learned nonlinear dictionary using 

kernel PCA. Simulation results have verified that the 

proposed method outperforms the conventional linear 

transform based CS methods. Proposed method preserves not 

only the spatial information but also the temporal kinetic 

information of dMRI images. It would be interesting to 

investigate the performance of updating the nonlinear 

dictionary iteratively, and to explore other optimization 

algorithms for improved convergence in future studies.  
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