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Target audience: Scientists and clinicians interested in new and improved parallel imaging techniques 

Purpose: Parallel imaging (PI) has been used routinely for many clinical MR applications. The conventional calibration-based parallel imaging method (e.g., 
GRAPPA [1] and SPIRiT [2]) assumes a linear relationship between the acquired undersampled k-space data and the unacquired missing k-space data, where the linear 
coefficients are estimated using some auto-calibration signal (ACS). Such a linear model is valid in the ideal case but not in practice because both the ACS data and the 
undersampled data contain measurement noise. As a result, the model error leads to poor reconstruction at high accelerations. NL-GRAPPA [3] has used a truncated 
2nd-order polynomial model to describe the nonlinear relationship between the missing and acquired k-space data and shown improved reconstruction quality. In this 
work, a much more general nonlinear framework is proposed for auto-calibrated 
parallel imaging. In this framework, kernel tricks are employed to represent the general 
nonlinear relationship between acquired and unacquired k-space data without 
increasing the computational complexity. Identification of the nonlinear relationship is 
still performed by solving linear equations. We name the proposed method Kernel-
based NonLinear (KerNL) reconstruction method. Experimental results demonstrate 
that the proposed method can achieve reconstruction quality superior to GRAPPA and 
NL-GRAPPA at high net reduction factors. 

Theory and Methods: In k-space-based parallel imaging methods [1,2], we need to 
find the relationship between each unacquired k-space data point y and its neighboring 
acquired data points x from all coils for reconstruction. The relationship is usually 
estimated using some additionally acquired auto-calibration data (ACS). Conventional 
methods assume a linear relationship between y and x: y=xTb, where b is estimated 
through calibration using the ACS. In this work, we propose a general nonlinear 
relationship ݂ሺ•ሻ between x and y such that ݕ ൌ ݂ሺܠሻ. With all the xi and yi pairs 
obtained from the auto-calibration data, finding the nonlinear relationship can be 
formulated as finding a function ݂ሺ•ሻ  such that ∑ ሺݕ െ ݂ሺܠሻሻଶ  ԡ݂ԡHߣ  (1) is 
minimized, where ԡ•ԡH  defines a norm in the Hilbert space. According to the 
Representer’s theorem [4], the minimizer ݂ሺ•ሻ of (1) always takes the form of ݂ሺܠሻ ൌ∑ ,ܠ݇ሺߙ ሻୀଵܠ  (2), where k(·,·) is a positive definite kernel function. The significance 
of the theorem is that although we are searching for functions in an infinite-
dimensional Hilbert space, it states that the solution lies in the span of m particular 
kernels – those centered on the calibration data points xi. Given the ACS, the 
coefficients ࢻ ൌ ሾߙଵ, ,ଶߙ ڮ , ࢻ ሿ் in (2) can be found analytically byߙ ൌ ሺ۹  λ۷ሻିଵݕ 

(3), where the kernel matrix ۹ is calculated by ۹, ൌ ݇൫ܠ,  ൯ from the calibrationܠ

data (as illustrated in Fig. 1), I is the identity matrix, and λ is the regularization 
parameter. After we obtain the coefficient ࢻ, the missing k-space data is reconstructed 
by ݕ ൌ ∑ ,ܠ݇ሺߙ ሻୀଵܠ , which is a nonlinear function of x. Although many different 
kernel functions (e.g., Gaussian) are applicable, here we use a polynomial kernel ݇൫ܠ, ൯ܠ ൌ ሺܠுܠ  ܽሻଶ (4), where ܽ is a constant, and ሺ•ሻு  denotes the Hermitian 

transpose. Here we choose ܽ to be equal to the maximum of ܠுܠ for all i and j. To 

speed up calculation, random projection [5] is used in solving Eq. (3).  

Results: To evaluate the performance of the proposed method, a set of brain data was 
acquired from a multiple sclerosis patient on a GE 3T scanner (GE Healthcare, 
Waukesha, WI) with an 8-channel head coil. The dataset was an axial brain image 
acquired using a 2D spin echo sequence (TE/TR=11/700 ms, matrix size=256×256, 
FOV=220×220 mm2). The data were fully acquired and then retrospectively under-
sampled to simulate the partial acquisition. The proposed KerNL method, GRAPPA 
and NL-GRAPPA were used to reconstruct the image. All code were written in 
MATLAB and run on a PC with 3.4GHz CPU and 16GB memory. Fig. 2 compares the 
reconstructed images from GRAPPA, NL-GRAPPA, and KerNL. Experimental results demonstrate that, compared with GRAPPA and NL-GRAPPA, KerNL achieves 
lower NMSEs and better image quality for all net reduction factors. The proposed KerNL method is also more efficient computationally.  

Discussion: NL-GRAPPA has shown to significantly improve the SNR over GRAPPA. However, it might fail when too few ACS are acquired to solve for the 
increased number of unknown weights. As a new nonlinear method, the proposed KerNL addresses this issue by introducing kernel functions. As seen in Fig. 2, when 
NL-GRAPPA fails at very few ACS (16 lines), the proposed method is still superior to GRAPPA.   

Conclusion: We have proposed a nonlinear, non-iterative approach to parallel imaging reconstruction, named KerNL. The method is able to improve both image 
quality and computation efficiency at high reduction factors, compared with GRAPPA and NL-GRAPPA.  
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Fig. 1. Illustration of calculation of the kernel matrix 

 
 

 
 

 
 

 
 

 
 

Fig. 2. Comparison of proposed method with GRAPPA and NL-GRAPPA 


