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This is the last of five papers that construct an isomorphism between the Seiberg—
Witten Floer homology and the Heegaard Floer homology of a given compact, oriented
3—manifold. See Theorem 1.4 for a precise statement. As outlined in paper I (Geom.
Topol. 24 (2020) 2829-2854), this isomorphism is given as a composition of three
isomorphisms. In this article, we establish the third isomorphism, which relates the
Seiberg—Witten Floer homology on the auxiliary manifold with the appropriate version
of Seiberg—Witten Floer homology on the original manifold. This constitutes Theo-
rem 4.1 in paper I, restated in a more refined form as Theorem 1.1 below. The tool used
in the proof is a filtered variant of the connected sum formula for Seiberg—Witten Floer
homology, in special cases where one of the summand manifolds is S' x S? (referred
to as “handle-addition” in all five articles in this series). Nevertheless, the arguments
leading to the aforementioned connected sum formula are general enough to establish
a connected sum formula in the wider context of Seiberg—Witten Floer homology with
nonbalanced perturbations. This is stated as Proposition 6.7 here. Although what is
asserted in this proposition has been known to experts for some time, a detailed proof
has not appeared in the literature, and therefore of some independent interest.
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1 Introduction

To summarize what was done in the predecessors to this article [19; 20; 21; 22]: the
first article in this series outlined a program for a proof of Theorem 1.4, based on a
concatenation of three isomorphisms. The first isomorphism [19, Theorem 2.3] relates a
version of embedded contact homology on an auxiliary manifold to the Heegaard Floer
homology on the original, and was accomplished in [20; 21]. The second isomorphism
[19, Theorem 3.4] relates the relevant version of the embedded contact homology on
the auxiliary manifold and a version of the Seiberg—Witten Floer homology on this
same manifold. This was established in [22]. This last installment of the HM = HF
series contains the proof of the third isomorphism, stated as Theorem 4.1 in [19]. Part
of the content of this paper is drawn from unpublished details of the proof of the second
author’s Corollary 8.4 in [23], which describes the behavior of certain Seiberg—Witten
Floer homology under handle addition.

1.1 The main theorem and an outline of proof

Let M be a closed, connected and oriented 3—manifold. Given a Spin® structure s
on M, PB Kronheimer and T S Mrowka defined in [17] three flavors of Seiberg—Witten
Floer homology, P/IM*, HM, and P\H\//I*, modeling on three different versions of
S _equivariant homologies. These homology groups have the structure of modules
over the graded ring

Ax(M) := Z[U) ® X (H\ (M Z)/Tors),

where U has degree —2 and elements in H;(M;Z)/Tors have degree —1. These
modules are graded by an affine space over Z /c,Z, where ¢ € 2Z=° is the divisibility
of ¢1(s), the first Chern class of the Spin® structure s. Moreover, as A +(M )—modules,
these three flavors of Seiberg—Witten Floer homologies fit into a long exact sequence
modeling on the fundamental exact sequence of S!—equivariant Floer homologies (see
equation (3.4) in [17])

(1-1) o> HAM, — HM, — HM, — --- .

This is called the first fundamental exact sequence of HM in this article. In [23], the
second author defined a fourth flavor of Seiberg—Witten Floer homology, HM., with
the same module structure and relative grading. (It was originally denoted by HM'"
in [23], given here as Definition 5.6.) The definition models on the ordinary homology
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of an S!—space. As such, it fits into a second long exact sequence together with
UHM, and HM,. This is referred to as the second fundamental exact sequence of
HM; see Lemma 5.7 below.

In this article, we regard these four flavors of HM as a system, in the order of HK/I*,
HM,., and I-\II\//I*, ﬁM* They are denoted collectively by HM,.

As will be detailed in the upcoming Section 2, the Seiberg—Witten Floer homology
(also referred to as the monopole Floer homology in this article) HOM* depends on the
cohomology class of the perturbation form z in addition to the Spin®—structure s. One
may also define a monopole Floer homology with local coefficients I compatible with
s and [w]. Of particular interest to us is the case when the perturbation is “balanced”,
in this case I" may be taken to be Z. These are denoted by H(i\/[* (M, s, cp); and this
is the variant of monopole Floer homology to be equated with the Heegaard Floer
homology HF;, in Theorem 1.4 below. This is, in a sense, the strongest possible
statement of equivalence between HM and HF, as the monopole Floer homology
HM # 0 and HM #+ HM only in the balanced case. The equivalence between other
versions of HM and HF may be deduced from this case through the use of local
coefficients. It is also worth mentioning that a coarser version of Seiberg—Witten Floer
homology, HM,, defined by taking a completion of the Floer complex with respect
to grading,! frequently appears in [17] and other literature. In this article we work
exclusively with the original version, H(i\/I*

The upcoming Theorem 1.1 relates H(i\/l* (M, s, cp) with two filtered variants of mono-
pole Floer homology. The first was introduced in [23], originally denoted by HMT®
therein. Here, the label o stands, in specific order, for —, oo, +, A. The fact that
they appear in the superscript (instead of the top) of the notation, and the order in
which they appear, reflects the nature of their definition. The latter is done following
the algebraic framework of Ozsvith and Szabé in [29]. The second of these two
variants was introduced in [22] (see also Section 4 of [19] for a brief summary). They
are denoted by H; (Y) in [19], and by ng in [22]. The construction of both these
filtered monopole Floer homologies is based on the same general framework, which
we describe in Section 3 below. This framework always produces four flavors of Floer
homologies, labeled by o = —, 0o, 4+, A; and they are related by two fundamental long
exact sequences parallel to those appearing in the Heegaard Floer theory; see (1-6)
below. (To be more precise, only the first three flavors appeared in [19; 22], but it shall

1 After completion HM often becomes trivial even in the balanced case; see eg [17, page 685].
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become clear in Section 3 that the aforementioned general construction actually gives
rise to a fourth flavor). The basic ingredient of this construction consists of a triple
of data: a certain Spin® 3—manifold Y, a closed 2—form w on Yz used to define
a monotone perturbation to the Seiberg—Witten equations, and a special 1—cycle y
embedded in Yz useful for defining a filtration on the associated monopole Floer
complex. Further constraints on the choice of this triple are given in Section 3.2.

The triple that enters the definition of HMT® is what was denoted by (M, xdf,y)
in [23]. Here, M is constructed from M by adding a 1-handle? along the extrema
of £, the latter being a Morse function giving rise to the Heegaard diagram used to
define HF®. Denote this 1-handle by Ho. What was denoted by # is an S!—valued
harmonic Morse function obtained by a natural extension of f. The 1-circle y is
related to the path y, C M used by Ozsvath and Szabé to define a filtration on the
Heegaard Floer complex. The triple used for the definition of Hgy, in [22] was denoted
by (Y, w,y#0)) in [20; 22]. The 3—manifold Y is obtained from M by attaching
additional 1-handles along pairs of index 1 and index 2 critical points of f. The
2—form w on Y is constructed from a natural extension of *df. The 1—cycle y in M
becomes the 1-cycle )/(ZO) in Y after the handle-attachment. The precise definitions
of HMT® and Hg,, may be found in Section 3.8. By construction, HMT® and Hgy,
are, respectively, A4+(M)—and A+(Y)-modules, and each is equipped with a pair of
fundamental exact sequences parallel to (1-6).

Let G denote the number of 1-handles added to M in order to obtain Y and denote
these handles by H,, for p € A, where the label set A is an ordered set consisting of G
elements. Recall that y, C M is defined so that dy, is the attaching O0—cycle of Hy.
As described in [23], the path y, determines a decomposition of M as a connected
sum M ~ M #(S! x S?) (see [23, equation (15)]), and hence a splitting

(1-2) Hi(M:;Z)~ H{(M;Z)® H\(S' x $2;7),

with the second summand generated by [y] € H1(M; Z). Correspondingly, this deter-
mines a factorization of the algebra

(1-3)  A4(M) = A+(M) @z A+(S' x §?) = A+(M) ® N'H1(S' x S; 7).

The last factor above, A" H; (Sl) = N\"H,; (S 1y 52 7), has a natural action on its
dual algebra A\"(H'(S')). The latter is regarded as a graded Z—algebra generated
by two elements, one of degree 0 and the other of degree 1. This was denoted by 1%

2See item (7) in Section 1.3.
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in [19] and by H«(S 1) in the rest of this article (see item (6) of Section 1.3 below).
For this reason we shall use the shorthand H_(S!) for the factor A" H(S! x §2;7Z)
in (1-3), and the aforementioned dual action is implied whenever we refer to “the
H_.(S!)—action on H.(S')” below.

The auxiliary manifold ¥ may be decomposed as a connected sum of M and G copies
of S1x S2, one for each of the 1-handles Hp, in a similar manner: For each p € A,
we fix an arc A, in M connecting the attaching O—cycle of #,. Let S, denote the
boundary sphere of a small tubular neighborhood of A, and use the same notation for
the corresponding sphere in Y. The precise description of A, and S}, is given in Part 1
of Section 9.5 below. Now split ¥ along these spheres Sy to get the aforementioned
connected sum, and use this to define a splitting

(1-4) H\(Y:Z) ~ Hi(M:Z) & @) Hi((S" x $2),: 2),
peEA

where (S1xS2), denotes the copy of S!xS? coming from #,,. This in turn determines
a factorization

(1-5)  Ap(Y) ~ A3 (M) @z Q) A((S' x %)) = A1(M) ® H-«(S")°
peEA
like (1-3).

The main theorem of this article relates the three versions of monopole Floer homologies:
HM(M, s, cp), HMT® and Hg,, = H°(Y).

Theorem 1.1 (1) Use HMT® K H,(S1)¥S to denote the external tensor product®
of the A+(M)-module HMT® and G copies of the H_4(SY)—-module H«(S1).
With respect to the factorization (1-5), there exists a system of isomorphisms of
A+(Y) = A+(M)®H_(S1)®°—modules

H°(Y) =5 HMT® KH_o(SH®C, o=— 00, +, A,

which preserves the relative gradings and is natural with respect to the funda-
mental long exact sequences on both sides.

3When the coefficient is left unspecified, the tensor product notation ® implicitly refers to ® . Given
two (Z-)algebras A and B, an A-module M and a B—module N, M X N denotes M @ N viewed as
an A® B-module.
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(2) The H—«(S') factor of the factorization A+(M) = A+(M)® H—_(S') in(1-3)
acts trivially on HMT. Regarding HMT as an A+(M)-module in this manner,
there exists a system of isomorphisms of A+(M )-modules from

HMT®, o =—,00,+,A, to Hi\/[(M,s,cb),oz/\,—,\/,M

respectively, that preserves the relative gradings and is natural with respect to the
fundamental long exact sequences on both sides.

The proof of this theorem is given in Section 6.3. The remainder of this section gives a
brief outline of this proof.

Given how Y is constructed from M, and M in turn from M, it is little surprise that
the preceding theorem is a consequence of a certain filtered variant of the connected
sum formula for Seiberg—Witten Floer homologies. See Proposition 6.11 in Section 6.3.
The first steps of the proof of this formula, via understanding the chain maps on Seiberg—
Witten Floer complexes induced by cobordisms associated to the connected sum, lead
to a connected sum formula for Seiberg—Witten Floer homologies sans filtration. This
is stated as Proposition 6.7 below.

The more essential part of the proof, which also constitutes the major technical com-
ponent of this article, consists of an extension of the framework defining HMT® and
H°(Y) to the context of cobordisms and their associated chain maps. The analytical
foundation of such an extension is provided in Sections 7-9 of this article.

The proof of part (2) of Theorem 1.1 also involves some homological algebra computa-
tion that turns out to be a manifestation of so-called “Koszul duality”. An elementary
account of the relevant part of this story is given in Section 4. This algebraic machinery
expresses all four flavors of the balanced monopole Floer homology, HiVI(M ,5,Cp)
in terms of a balanced monopole Floer complex of the first flavor, 61\\/1*(M ,5,Cp)-
Meanwhile, the filtered connected sum formula previously mentioned expresses all
four flavors of HMT® in terms of a monopole Floer complex with “negative monotone”
perturbation, CM. (M, s, c—). See Proposition 5.9 below. These two monopole Floer
complexes are linked via a chain-level variant of the following result of Kronheimer
and Mrowka:

Theorem 1.2 [17, Theorem 31.5.1] Suppose c1(s) is not torsion. Then

Im*(M,s, cp) ~ HM (M, s, c_).
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The right-hand side of the preceding isomorphism refers to the monopole Floer homol-
ogy for negative monotone perturbations. A brief account of this variant of monopole
Floer homology can be found in Section 2.3. The construction of both Hgy, and HMT®
are based on negative monotone monopole Floer complexes.

More on the motivation for various constructions in the article may be found in [23].

Remark 1.3 With the hindsight gained from Juhasz’s [14] and Kronheimer and
Mrowka’s [18] definitions of sutured Floer homologies, we feel that HMT® are best
interpreted as variants of sutured Floer homology. In particular, HM(M (1), s(1)) =
H/M\T(M ,6) in terms of the notation in [14; 18; 23]. From this point of view,
Theorem 1.1(2) may be viewed as a reinterpretation of monopole Floer homology
of closed 3—manifolds as (generalized) sutured Floer homology. In particular, the
o = A variant of this statement is a Seiberg—Witten analog of Proposition 2.2 in [14],
where the hat version of the Heegaard Floer homology is reinterpreted as a sutured
Floer homology. See also Theorem 1.6 announced in [5] for an ECH analog (of the
o = A variant). We hope to discuss this in more detail elsewhere. (See also the end of
Part 4 in Section 9.1.)

1.2 Relating Heegaard and Seiberg—Witten Floer homologies

With all said and done, the main result here combines with those in [19; 20; 21; 22] to
reach our ultimate goal:

Theorem 1.4 Let M be a closed, oriented 3—manifold, and s be a Spin© —structure on
M. Then there exists a system of isomorphisms from HF;, (M, s) for o = —, 00, 4+, A to
H(i\/l* (M, s,cp) for o= A, —,V,~, respectively, as 7 /csZ —graded A+(M)-modules,
which is natural with respect to the fundamental exact sequences of the Heegaard and
monopole Floer homologies.

The result summaries the relation between the Heegaard and monopole Floer homolo-
gies, which has been conjectured since the inception of Heegaard Floer theory. See
for example Conjecture 1.1 in [28], Section 1.3.12 in [17], Conjecture 1 in [16] and
Conjecture 1.1 in [23].

As the Heegaard Floer homology HF° makes no other appearances for the rest of this
article, the reader is referred to [29; 28] for its definition and properties. In particular,
the fundamental exact sequences relating its four flavors take the form

(1-6) ---—>HF - HF® > HFt >..., ...>HF L HF S HF—--- .
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Proof of Theorem 1.4 An outline of the proof is already given in [19]. To summarize,
by combining the two parts of Theorem 1.1, one has (see Theorem 4.1 in [19])

(1-7) H(Y) ~ HM(M, 5, c)) ® H_,(SH)®C,

as modules over the algebra A+(M)® H_.(S1)®°. Here, the A+(M)QH_.(S1)®°-
structure on H°(Y) comes from the latter’s A+ (Y )—module structure via the inclusion

(1-8) A+(M)®1® H-+(S)®% = A4(M)® H-x(S") @ H-+(S)®% =, A+(Y)

—lsum
with respect to the factorization combining (1-3) and (1-5).

It is asserted in Theorem 3.4 of [19] and proven in Theorem 1.5 of [22] that the left-hand
side of (1-7), H°(Y), is isomorphic to what was called “ech®” as A+(Y')—modules.
The ech® chain complex, as well as a (particular choice of) A+(Y)—action on it, is
explicitly described in [20; 21]. A computation based on this explicit description yields:

Proposition 1.5 (see also Theorem 2.4 of [19]) There is a system of isomorphisms
ech® ~ HF° (M, 5) X H,(S1)®¢

as modules over A+(M) ® H_«(S 1Y®G which preserves relative gradings and is
natural with respect to the fundamental exact sequences on both sides. Here, the
A+(M)®H_(S')®C —structure on ech® also refers to the one induced from the latter’s
A+(Y)—module structure via the same inclusion (1-8).

The proof of this proposition involves some details of [21]’s description of the A+(Y)—
actions on ech®, as well as some particular choice of the arcs A, used to define the
factorization (1-5), and will be postponed to Section 9.6.

The assertion of the theorem is a direct consequence of the composition of the three
isomorphisms from the preceding proposition, (1-7) and Theorem 1.5 of [22] (which is
Theorem 3.4 of [19]). O

1.3 Some notation and conventions

Throughout the remainder of this paper, section numbers, equation numbers, and other
references from [19; 20; 21; 22] are distinguished from those in this paper by the use
of the appropriate Roman numeral as a prefix. For example, “Section II.1” refers to
Section 1 in [20]. In addition, the following conventions are used:

Geometry & Topology, Volume 24 (2020)



HF =HM, V 3479

(1) Asin[19; 20; 21; 22], we use ¢q to denote a constant in (1, co) whose value is
independent of all relevant parameters. The value of ¢o can increase between
subsequent appearances.

(2) Asin [19; 20; 21; 22], we denote by y a fixed, nonincreasing function on R
that equals 1 on a neighborhood of (—o0, 0] and equals 0 on a neighborhood
of [1,00).

(3) When left unspecified, the modules, chain complexes and homologies in this
article are over the coefficient ring K, which can be taken to be Z, as was done
in [19; 20; 21; 22]. Using a separate notation serves to distinguish different roles
the abelian group Z plays in this article, eg as the group of deck transformations
versus the coefficient ring of the chain complexes.

(4) The term “module” in this article refers to either a left module or a right module.
Thus, both the monopole Floer homology and monopole Floer cohomology are
said to have a module structure over the ring H*(BS'). Note in contrast that
in [17], a “module” refers specifically to a left module. Moreover, what appears
as Uy in [17] is denoted by U in this article for simplicity, since we focus on
Floer homology as opposed to cohomology.

(5) The definition of Floer complexes in this article often depends on several pa-
rameters, yet there are chain homotopies relating the Floer complexes with the
values of some of the parameters changed. In the interest of simplicity, these
parameters are usually left unspecified in our notation for the Floer complexes
unless necessary.

(6) Due to geometric motivations (see [10]), we view Hy(S') and H*(BS!) both
as free commutative differential graded algebras with zero differential and a
single generator, where the odd generator y for H;(S!) has degree 1, while the
even generator u for H*(BS') has degree —2. In this paper commutativity and
the commutator [-, -] are meant in the graded sense. In particular, what is called
an “antichain map” in [17] is in our terminology an odd chain map. If necessary,
we use notation [-,-Jodq OF [+, Jeven to emphasize the parity of the commutator.
When H,(S!) is written as a polynomial algebra in y, Z[y], H_«(S') is often
written as Z[dy], to reflect the action of H_,(S!) on Hx(S!).

(7) In this article as well as its prequels, a “1-handle” frequently refers to [0, 1]x .52,
and “attaching a 1-handle to a 3—manifold” refers to a 0—dimensional surgery
on the 3—manifold.
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(8) In the context of fiber bundles over a fixed base manifold, F typical stands for a
trivial bundle with fibers F.

Acknowledgements The authors are supported in part by grants from the National
Science Foundation. Kutluhan is supported by a National Science Foundation Post-
doctoral Research Fellowship under Award No. DMS-1103795. Lee was supported by
Hong Kong Research Grants Council grants GRF-401913, 14316516, 143055419 since
2014. She thanks Harvard University for hosting her during multiple visits through
the long course of working on this project, and also T Mrowka and P Ozsvéth for
suggesting the general form of the connected sum formula, Proposition 6.7 below. A
similar statement under different assumptions, via a different and more involved route
of proof, is to appear in [2].

2 Elements of Seiberg—Witten Floer theory

This subsection reviews some background on Seiberg—Witten Floer theory, with the
book [17] as the definitive reference. By way of this, we introduce some notation and
terminology used in the rest of this article, some of which differ from those in [17].
We focus mostly on the special cases involved in the proof of Theorem 1.1, leaving
the general details for the reader to consult [17]. Many notions here have analogs in
eg [22; 25], which work with similar settings.

2.1 Seiberg—Witten equations on 3—manifolds

Let M be a closed, oriented, Riemannian 3-manifold. Fix a Spin®—structure s on M
and let S denote its associated spinor bundle. We call a pair, (A, ¥), consisting of a
Hermitian connection on det S and a section of S a (Seiberg—Witten) configuration. The
gauge group C*° (M ; U(1)) acts on the space of configurations in the following fashion:
Let #: M — U(1). Then i sends a configuration, (A, ¥), to (A—2u~'d,1¥). Two
solutions obtained one from the other in this manner are said to be gauge-equivalent.
Note that this C°°(M; U(1))—action is free except at pairs of the form (A, ¥ = 0);
these are called reducible configurations. Configurations which are not reducible are
irreducible.

In the most general form, the 3—dimensional Seiberg—Witten equations ask that a
configuration (A, ) obey

-1 Ba—¥ 10 4+im—-T=0 and DAV-G=0,
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where B, denotes the Hodge dual of the curvature form of A, DA denotes the Dirac
operator and the quadratic term Wiz W is as in Section 1.2 of [25]; @ is a closed
2—form, and the pair (¥, &) is a small perturbation arising as the formal gradient of a
gauge-invariant function of (A, W). This is called a tame perturbation in [17], and is
in general needed to guarantee the transversality properties necessary for the definition
of Seiberg—Witten Floer homology. See Chapters 10 and 11 in [17]. In the simplest
case, (T, ©) may be taken to be of the form

(2-2) (T,6) = (2i *du,0)

for a smooth 1-form p taken from a Banach space called €2 in [22]. This may be
assumed to be a subspace of the Banach space of tame perturbations in Chapter 11.6
in [17], and hence inherits the so-called “P-norm” from [17]. This norm bounds the
norms of the derivatives of p to any given order.

Irreducible solutions to (2-1) may exist only when the cohomology class is [@] =
2mcy(detS). In this case the Seiberg—Witten equations (2-1) is said to have balanced
perturbation, while it is said to have exact perturbation when [@w] = 0. The cases when
[@] =2rcyi(detS) is said to be monotone: when r> 7 it is said to be negative monotone,
and when r < 7 it is said to be positive monotone. Note that when ¢ (det S) is torsion,
the notions of balanced, exact, and positive or negative monotone perturbations are
equivalent. We work in the negative monotone case with nontorsion cj(detS) for most
of this paper where all Seiberg—Witten solutions are irreducible. Note in contrast that
in the closely related series of articles [35; 36; 37; 38; 39], w is taken to be da for a
contact 1-form a, which is an exact perturbation.

This said, unless otherwise specified, from now on we set
(2-3) w = 2rw

for a closed 2—form w in the cohomology class of cj(detS) and a real number r > 7.
When ¢ (detS) is torsion, we always set w = 0. Otherwise, the particulars of w for
the proof of our main result, Theorem 1.1, are described in Section 3.2.

To make contact with the notation in [22], write
(2-4) detS=E?® K~ !

with K — M being a fixed complex line bundle. Fix a smooth connection, Ag,on K~ 1.
Where w is nowhere-vanishing (such as over the stable Hamiltonian manifold Y in [22]),
K~ is typically given by Ker(xw) C TM and E the i|w|—eigenbundle of the Clifford
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action by w. More constraints on the choice of K and Ag will be specified along the
way through the rest of this article.

With Ak chosen, let A denote the connection on the E—summand corresponding
to A, and write ¥ = «/Zw. In this case, perturbations of the form (2-2) suffice
for our purpose. Since the Riemannian metric and a connection on E determine a
Spin® —connection on S, we often consider the equivalent equations for (A, y) of the
form

Ba—t(Y ey —i xw) + By, —i *dpu =0,

(&9) Day =0,

where Dy = D?, By is the Hodge star of the curvature 2—form of A and B4, denotes
the Hodge star of the curvature 2—form for the connection, Ag .

Given a Hermitian line bundle V' — M, we use Conn(V') to denote the space of
Hermitian connections on V. The equations in (2-1) are the variational equations of
the functional a of (A4, 1) € Conn(E) x C*®(M;S), given by

(2-6) a= %cs—rw—i—eu —i—r/ 1/erDA1//,
M

where the notation is as follows: The functions ¢s and W are defined using a chosen
reference connection on E. Let Ag denote the latter. With A written as

A= Ag +ady,

then W and cs are given by

(2—7)W=i/ aqsAw and c5=—/ ﬁAAdaA—Z/ aA/\(FAE‘f‘%FAK)-
M M Yz

What is denoted by ¢, is the integral over M of i A F4. The functionals a, W and cs in
general are not invariant under the C °° (M ; U(1))—-action on Conn(det S)xC*°(M;S),
however their differentials descend to the orbit space. These differentials are henceforth
denoted by da, d(cs), ..., etc.

To define the Seiberg—Witten Floer homology in general, Kronheimer and Mrowka [17]
take a real blowup of the space Conn(detS) x C*°(M;S) =: C(M) along the set of
reducibles (see Chapter 6 of [17]). This blown-up space is denoted by C? (M, s) therein
and has a free C°°(M, U(1))-action (see [17, page 115]). The vector field dual to
da extends to C?, which is then used to define the Seiberg—Witten equations (see [17,
Section 6.2]).
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A solution ¢ to the Seiberg—Witten equations or its corresponding gauge-equivalence
class [c] € CO(M,s)/C°®(M,U(1)) is said to be nondegenerate when a certain dif-
ferential operator £, has trivial kernel. The explicit form of this operator is given
for irreducible solutions of (2-1) in (7-36) below. In general, this notion of non-
degeneracy arises from the interpretation of [¢] as a zero of the 1-form da on
C°(M,s)/C°®(M,U(1)) =: B°(M). With the metric and @ fixed, a choice of (¥, &)
(or, in the case of (2-5), of ) such that all solutions to (2-1) or (2-5) are nondegenerate
is said in what follows to be suitable. In the negative monotone case with nontorsion
c1(detS), a suitable choice for u can be found with P—norm bounded by any given
positive number (see eg (1.18) in [22]). Otherwise, especially when reducible solutions
exist, a suitable pair (T, &) is typically of more general form than that of (2-2).
Nondegenerate gauge-equivalence classes of reducible Seiberg—Witten solutions are
further classified into the “stable” and “unstable” types in [17].

2.2 Seiberg-Witten equations on 4—-dimensional cobordisms

Let Y_ and Y4 be closed oriented 3—manifolds. In this paper X will denote a simple
cobordism from Y_ to Y4 of the following sort: X is an oriented complete 4—manifold
equipped with the extra structure listed below:

(2-8) e There is a proper function s: X — R with nondegenerate critical points with
at most one single critical value, 0.

e There exists an orientation-preserving diffeomorphism between the s < 0
part of X and (—oo0, 0) x Y_ that identifies s with the Euclidean coordinate
on the (—o0, 0) factor.

e There exists an orientation-preserving diffeomorphism between the s > 0
part of X and (0, co) x Y4 that identifies s with the Euclidean coordinate
on the (0, co) factor.

o There is an even class in H?(X;Z) that restricts to the s <0 and s > 0
parts of X as the respective Y_ and Y4 versions of cj(detS).

The diffeomorphism in the second bullet of (2-8) is used, often implicitly, to identify
the s < 0 part of X with (—o0,0) x Y_; and the diffeomorphism in the third bullet
of (2-8) is likewise used to identify the s > 0 part with (0, 00) x Y. Fix a class
satisfying the last bullet of (2-8) and denote it also by c;(detS).

Assume that the Riemannian metric on X satisfies the following:
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(2-9) e There exists L > 100 such that the metric on the s < —L and s > L parts
of X are identified by the embeddings in the second and third bullets of (2-8)
with the respective product metrics on (—oo, —L] x Y_ and [L, 00) x Y.

e The metric pulls back from the |s| € [L —8, L] part of X via the embeddings
from the second and third bullets of (2-8) as the quadratic form d s+ g with
g being an s—dependent metric on either Y_ or Y, as the case may be.

The chosen metric on X is used to write A2 T*X as AT @ A~ with AT denoting
the bundle of self-dual 2—forms and with A~ denoting the corresponding bundle of
anti-self-dual 2—forms. A given 2—form tv is written with respect to this splitting as
="+,

Use the metric to define the notion of a Spin®—structure on X. It follows from the last
bullet in (2-8) that there is a Spin® structure that restricts to the s < —2 and s > 2 parts
of X as the given Spin® structures from Y_ and Y, and has its first Chern class equal
to cq(detS). Fix such a Spin® structure and use ST and S™ to denote the respective
bundles of self-dual and anti-self-dual spinors.

The Seiberg—Witten equations on X are equations for a pair (A, ¥) with A being a
Hermitian connection on the line bundle det ST and with W being a section of ST . It
takes the general form

(2-10) Ff—@'tV—iwy)-Tt =0 and D{¥-6" =0,

where the notation uses Fa to denote the curvature 2—form of A, and it uses Uizw o
denote the bilinear map from S™ to i A™ that is defined using the Clifford multiplication.
Meanwhile, DX: ['(S*t)—TI'(S™) and Dy T(S7) — I'(ST) are the 4—dimensional
Dirac operators on X defined by the metric and the chosen connection A. What is
denoted by wy is a self-dual 2—form satisfying the following list for some L’ > L:

(2-11) e The pullback of wy from the s < —L’ part of X via the embedding from
the second bullet of (2-8) is twice the self-dual part of a closed 2—form
w_on Y_.

e The pullback of wy from the s > L’ part of X via the embedding from
the third bullet of (2-8) is twice the self-dual part of a closed 2—form @
on Y.

The pair (T+,87) is the 4—dimensional analog of (%, &) in (2-1); see (24.2) in [17].

We denote X, :=s"!([-L'—1, L'+ 1]) C X and call it the “compact piece” of X.
Each connected component of X — X, is called an end of X. The diffeomorphisms in
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(2-8) identify each end with a product (—oo, —L")x M or M x (L', oo) for a connected
oriented manifold M ; in the first case it is said to be a negative end, and in the second
case a positive end. In either case we call this end the M —end of X. “The negative
end of X refers to s~ (=00, =L’ — 1) ~ (—oo, —L’ — 1) x Y_, and “the positive end
of X” refersto s71(L +1,00) ~ (L' +1,00) x Y.

Caveat What is denoted by X in this article was denoted by X in [17]. Correspond-
ingly, the noncompact manifold X in this article was denoted by X™* in [17].

An important special case is when (2-10) is defined on a product cobordism. By
this we mean that X =R x M for a closed oriented Spin® 3-manifold M, with the
function s as the Euclidean coordinate of the R factor; the Riemannian metric on X
is the product of the affine metric on R and the Riemannian metric on M, and both
wy and (T, ST) are invariant under the natural R—action on R x M. Thus, the
conditions in the first bullet of (2-9) and in (2-11) may be paraphrased as saying that
the s7![L’, 00) and s~ (—o00, —L'] part of the Seiberg—Witten equations on X are
those of product cobordisms. As explained in [17], Clifford action by ds over product
cobordisms may be used to identify ST ~ S™. Meanwhile, both are the pullback of
a spinor bundle S over M. In this way, (2-10) may be rewritten as a gradient flow
equation of the action functional a; see (IV.1-20). The gradient vector field here is
—1 times the left-hand side of (2-1), with (2-10)’s wy = 2w, and T and &
induced respectively from the ¥ and & in (2-1).

A solution 0 = (A, W) to (2-10) is said to be an instanton if the constant s < —L pull-
backs converge as s — —oo to a pair that can be written as (A_, W_), with (A_, W_)
being a solution to (2-1) on Y_, and if the constant s > L pullbacks converge as s — 0o
to a pair (A4, V1), with (A4, W) being a solution to (2-1) on Y4 . If 9 is an instanton
then the convention in what follows will be to say that the respective s — —oo and
s — oo limits of 9 are (A_, W_) and (A4, W1). Asin the 3—dimensional case, in [17]
they define a real “blowup” of the space Cjo.(X) := Conn(det ST) x C®(X,S™), this
denoted by C .(X) below. To describe C{ .(X) in more detail, consider the tautological
bundle C*®°(X, ST)—{0} over the sphere U(C*®(X,ST)):=(C>®(X,ST)—{0})/RT,
and let ' (X;S™) denote the R=%—bundle associated to this principal R —bundle.
Then C° (X) := Conn(detS™) x I'? (X, S™). Alternatively,

loc

CLX) = [ €7 0e(X).
leZ+
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where CZIOC(X ) is the L? variant of Cy.(X) defined in [17, page 464]. We write

I,loc

an element in T'? (X, ST) in the form of ¥ = (¥, ¥), where ¥ € U(C*®(X,S1)),
and W is in the fiber of the bundle T'?(X;ST) over W.

The 4—dimensional Seiberg—Witten equations (2-10) may be generalized to elements
in C7_
(generalized) instanton has its s — —oco and s — oo limits in C?(Y_) and C°(Y3),

(X), and hence also the notion of an instanton (see [17, equation (6.5)]). A

respectively, in the sense explained in [17, page 219]. The 4—dimensional Seiberg—
Witten equation is invariant under the actions of the gauge group C*°(X;U(1)). An
instanton (A, W9), or a gauge-equivalence class of instantons, is said to be reducible
when W = 0; otherwise it is irreducible.

The perturbation (T1, &™) is introduced in (2-10) so that a certain operator that is
associated to any given instanton solutions to (2-10) is Fredholm with trivial cokernel.
See Chapter 24.3 of [17] in general and equation (1-21) in [22] for a special case closely
related to this article. Instanton solutions with this property are said to be nondegenerate.
We call perturbation term suitable when all instanton solutions to the corresponding
version of (2-10) are nondegenerate. A suitable perturbation can be found for (2-10)
with norm bounded by any given positive number. The relevant norm is also called
the P—norm. As in the case with elements in €2, the P—norm of a perturbation term
bounds the norms of its derivatives to all orders.

Just as in the 3—dimensional case, the 4—dimensional cobordisms relevant to Theorem
1.1 are equipped with wy and pairs (T+, &™) of the form

wy =2rwy and (TT,67)=(iw}t,0).

Here, 1, is a 2—form of the form d(y(L 4 s)u— + y(L —s)u+) for some 1-forms
pu— and w4 on Y_ and Y, respectively. However, in the case of a product cobordism
X =R x M, we take w,, = du_ = du4. Meanwhile, wy is a self-dual 2—form
constrained by the properties listed in (2-12) below, among others. These constraints
involve another constant, denoted by L, below. The latter is no smaller than L + 4.
The constraints use X, to denote the union of the components of the |s| > 0 part
of X where cj(detS) is torsion.

(2-12) o The pullback of wy to each constant s slice of X is a closed 2—form
whose de Rham cohomology class is that of ¢ (detS).

¢ The embedding from the first bullet of (2-11) pulls back wy from the
s < —L part of X — Xior as twice the self-dual part of the Y_ version of
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the 2—form w. The embedding from the second bullet of (2-11) pulls back
wy from the s > L part of X — X, as twice the self-dual part of the
Y_ version of the 2—form w. The 2—form wy is identically zero on any
component of the |s| > L, part of X .

Similarly to the 3—dimensional case, the 4—dimensional Seiberg—Witten equations
may be rewritten in terms of the pair (4, ¥) € Conn(E) x C®°(S™) that is obtained
from the pair (A, ¥) € Conn(det ST) x C®°(S™) via the same formulas as those in
the previous subsection. This requires an extension of K and Ax from the ends
sTIL',00) U s~ (=00, —L']. Constraints on such choices will be introduced in
subsequent sections as needs arise; typically, where @y is nowhere-vanishing, E
is chosen to be the i |wy |—eigenbundle under the Clifford action of wy on ST.

2.3 The monopole Floer chain complex

Fix a closed, oriented, connected Riemannian 3—manifold M and a Spin€—structure s
on it. We first give in Part 1 below a precise definition of the monopole Floer complexes
involved in the proof of the Theorem 1.4, the main objective of this series of articles.
Sketches of how they generalize to other cases are provided in Parts 2 and 3 of this
subsection.

Part 1: nontorsion cj (s), positive/negative monotone w Suppose for now that s
has nontorsion first Chern class, and z and (¥, &) are as in (2-3) and (2-2), respectively,
with r> 7. Fix also a complex Hermitian line bundle K — M as specified in Section 2.1
above. The spectral flow function on Conn(E) x C%°(M;S) is defined initially on the
complement of a certain codimension 1 subvariety just as in Section 1.5 in [22] using
a chosen Hermitian connection on E and a suitably generic section of S. As such,
it is locally constant and integer-valued. The definition can be extended to the whole
of Conn(E) x C*°(M;S) as explained in Sections 7.6 and 7.8 below. This spectral
flow function is denoted by f,. It suffices for now to know only that this extended
function fs has integer values and that the functions

csl = cs—4n2fs and o :=a+ 27 (r — 7)fs

are invariant under the action of C°°(M; U(1)) on Conn(E) x C*°(M;S) that has a
e C®(M;U(1)) sending (A, V) to (A—ii~'du,1iy). By way of comparison, a, fg
and cs are not invariant under this action. (The notions a’ and c¢s' can be generalized
to be defined over the blown-up configuration space; see eg [17, equation (16.4)]. The
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arguments in the proof of Lemma 16.4.4 therein show that this generalization is also
invariant under gauge actions.)

Denote by Z,, ; the set of gauge-equivalence classes of solutions to the corresponding
system (2-5). (This was denoted by a slightly different notation, Zsw r, in [22].) It is
well known that in this case, for a generic choice of r and pu, this set 2y, ; consists
of finitely many, nondegenerate irreducible elements. (See eg (IV.1-18), ignoring
the “holonomy nondegenerate” condition there for the moment.) Assume this to be
the case. Consider next the 4—dimensional Seiberg—Witten equations on the product
cobordism R x M, with wy = 2w™, and yu_ = puy = . Here, w is used to denote
the pullback of the 2—form w on M under the projection of R x M to its second
factor. Given an instanton 9 on this product cobordism with s — —oo and s — oo
limits given respectively by representatives of ¢— and ¢4 in Z, .. The differential
operator in (IV.1-21) has a Fredholm extension, whose index we denote by 1. By [1],
in this case,

(2-13) Ip = fs(cq) — fs(co).

Let My (c—, c4+) denote the space of gauge-equivalence classes of such instantons
with 15 = k. These spaces are k—dimensional manifolds with a free R—action when
the perturbation term in the Seiberg—Witten equations is suitable and k > 0. In
particular, the monotonicity assumption guarantees that M (c—, ¢4+)/R consists of
finitely many elements. With a coherent orientation chosen (this amounts to choices of
preferred elements of A(c) for all ¢ € Z, ; in the language of [17]), each element in
Mi(c—,c4)/R is assigned a sign.

Fix a ring K, which can be taken to be Z for the rest of this article. The chain module
for the monopole (or, alternatively, Seiberg—Witten) Floer chain group is the free K—
module generated by 2y, ;, denoted by K(Z,, ;) below. The spectral flow function f;
descends to define a relative Z/c;Z—grading on this module, where ¢ € 27 is the
divisibility of the first Chern class of the Spin®—structure s. The differential 0y, of
this monopole Floer complex in this situation is the endomorphism of K(Zy, ;) given

by the rule

(2-14) > Y wier, ),
0EZy,r

where

w(cr, €2) = Z sign(d) = y(Mi(cq,c2)/R).
0eM i (c1,c2)/R
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The aforementioned properties of 2, and M;j(cy,c2)/R for suitable monotone
perturbations guarantee that this homomorphism is well defined, and it is of degree 1
according to (2-13). A typical gluing argument shows that Bzw’r = 0. (See eg [17,
Sections 19 and 22].) The homology of the above monopole Floer complex is the
monopole Floer homology, or, alternatively, the Seiberg—Witten Floer homology of the
negative monotone perturbation (2-3). This is denoted by HM. (M, 5, c—) below. The
monopole Floer homology for positive monotone perturbation forms, still assuming
that ¢ (s) is nontorsion, is defined in the same way.

Part 2: local coefficients One may also associate monopole Floer homologies for
more general Seiberg—Witten equations (2-1). The construction of monopole Floer
complexes in Part 1 may fail to work due mainly to two reasons:

(1) With balanced perturbations, the generating set of the chain group, Z, namely
the set of gauge-equivalence classes of solutions to (2-1), may contain reducible
elements. (Recall that Z = Z;, ; in the previous part, which consists of finitely
many irreducible elements.)

(2) The space Mj(cy,c2)/R might contain infinitely many elements, making the
coefficients appearing in (2-14)’s formula for the Seiberg—Witten differential,
w(cq, ¢2), undefined.

The second issue above can be dealt with by working with monopole Floer complexes
with more general coefficients (as opposed to Part 1’s Z—coefficient monopole Floer
complex). See [17, Section 22.6].

Assume for simplicity that the perturbation @ in (2-1) is nonbalanced, so that the
issue (1) above can be ignored: namely, with a generic perturbation, Z will still
consist of finitely many, nondegenerate, irreducible elements. Fix a local system I" in
the sense described in [17]. This assigns to every ¢ € Z a group I'(c) and for each
relative homotopy class z of paths between ¢, ¢; € Z C B(M), a homomorphism
I'(z): T'(¢1) = I'(c2). The monopole Floer chain complex with local coefficient I,
(C,0), has C := @ .z I'(c) as its chain module. As for its differential d, regard
each 0 € M(cy, cp) as path in B(M) and let M;(cq, ¢ca) C M(cy, ¢2) be the subspace
consisting of elements of relative homotopy class z. Refining (2-14), the following
formula defines the associated differential d € End(C):

(2-15) 0= > >, wlna)l),

€1,02€2 zem B(M ;¢ ,¢2)
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where

2-16)  wle,es2)= Y sign(@) = x(Miz (1, ©2)/R),
0EM1 2 (c1,02)/R

and w1 B(M; 1, c2) denotes the space of relative homotopy classes of instantons with
¢; and ¢p as its s — —oo and s — oo limits, respectively. Typical compactness
results can be used to ensure that each coefficient w(cy, ¢cp; z) is finite. (See eg [17,
Theorem 8.1.1 and Proposition 16.1.4].) Though (2-15) may have infinitely many
nonvanishing terms, the sum may be well defined when I' is chosen to satisfy certain
completeness conditions depending on the choice of s and [w]. See Definition 30.2.2
in [17]. We call a local system I' satisfying this completeness condition (s, [ww])—
complete (as opposed to “c—complete” in [17]). There is also a more stringent notion
of completeness which depends only on the cohomology class [da] € H'(B(M);Z)
due originally to Novikov. This sort of local system is said to be “strongly c—complete”
in [17]; see Definition 30.2.4 therein. We call such ' strongly (s, [w])—complete
instead. We shall not encounter local systems other than Z except in Proposition 6.7(b)
below, which is not directly relevant to the proof of Theorem 1.1. The interested
reader is therefore referred to [17] for more details on the definition of monopole Floer
homology with local coefficients. A brief summary in alternative language may also
be found in the last section of [25]. In the monotone case discussed in Part 1 or the
balanced case in the upcoming Part 3, the (strong) (s, [@r])—completeness condition is
met for all coefficients, and the sum (2-16) has finitely many nonvanishing terms.

Part 3: balanced perturbations We now briefly describe how issue (1) in Part 2 is
dealt with in the balanced case. For details, see Chapters VI and VIII in [17]. As
already mentioned in Section 2.1, [17] considered the extension of (2-1) to C°. The
set of gauge-equivalence classes of solutions to this extended Seiberg—Witten equation
is denoted by €. Suppose that the perturbation to the Seiberg—Witten equation is
suitable. The subsets of irreducible, unstable reducible, and stable reducible elements
are respectively denoted by €%, ¢¥ and €°. (In the nonbalanced situation previously
considered, € = €% = Z; ,,.) The first three flavors of monopole Floer homology as
defined in [17] use different combinations of €2, €% and € to generate the chain
groups: set
C°=K(°%), C*=K(@E%)), C°=K(),
and let
C=C’aC", C=C*'®C% C=C°qC".
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Meanwhile, the operator in (IV.I-21) has a Fredholm generalization for paths d(s) in
Conn(E)xC*(M,S) with s — 0o or s — —oo limits that are nondegenerate elements
in C?. (See Sections 14.4 and 22.3 in [17].) The index of this operator is also denoted
by 1, below, and it may be used to generalize the spectral flow function fs to the set of
nondegenerate elements in C?. This in turn defines a relative Z /c;—grading, gr, on
the modules C°, C* and C*. The chain modules C, C and C are also Z /cs—graded
according to the rule

=@ =@ =D
where ' ' '

Ci=Cclact, Ci=Clact, C=Ca&cC.

Note that the C chain module above is graded by a modified grading gr, related to
gr via equation (22.15) in [17]. To define the differentials, define homomorphisms
Bﬁ C* — " via rules similar to (2-14) or (2-15) by counting irreducible instantons
w1th 1o = 1 whose s — —o0 and s — oo limits are in ¢* and ¢!, respectively; see
[17, equation (22.8)] for the precise formulas. Here, § and ] may stand for one of the
labels u, o and s; however, due to the way €%, €* and €° are defined, only the homo-
morphisms 99, 89, 0% and d% are nontrivial. Meanwhile, there are homomorphisms
55: C* — C"Y, and with f and i denoting either the label u or s, by counting reducible
instantons whose s — —oo and s — oo limits are in €# and €¥, respectively, with gr
differing by —1. If the Spin¢—structure and [w] satisfy monotonlclty condition, then
the differentials for the complexes, 9:C > C, 3: C— C and 3: C — C, are defined
in terms of these homomorphisms via equation (22.7) and Definition 22.1.3 in [17].
To give some examples, 3:C°DC* > C°@C* and 3: C°BCY - C°DCY are
respectively written in block form as

90 _augs 90 —gu
(2-17) [Z—s —} [—fo Tu s }
8s 8s - as 8u _au 8s _au - au 8s

The gluing theorems in [17] show that 92, 92 and 9 are indeed all 0. When the
perturbation is balanced, such as in the statement of Theorem 1.1, the homology of
these chain complexes (Co' s 5*), namely the corresponding monopole Floer homology,
is denoted by HM, (M, 5, cp) for o = A, —, V.

The aforementioned homomorphlsms 3‘i and Bﬂ are also used to define chain maps
(denoted by i: C — C, J: C — C and p C —> C in [17]) that do not define a short
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exact sequence, but their induced maps on homologies do, this being the first of the
fundamental exact sequences referred to in Theorem 1.1. See [17, Proposition 22.2.1].

Part 4: notation and other remarks When specificality is desired, the notation
Co(M, 5, [@]:T) = Cu(M, 5, m:T), o=A,—,V,

is used to denote the monopole Floer complex corresponding to the cylindrical version
of (2-10) with an (s, [zw])—complete local coefficients I', and HCM*(M .8, [w]; 1) is
used to denote the corresponding monopole Floer homology. (The Floer chain complex
Co'* (M, s, w; ") does depend on the choice of @, not just its cohomology class, though
its associated Floer homology only depends on the cohomology class [z]. The notation
Co'* (M, s, [w]; ") is adopted when the specific representative w of [w] is irrelevant.)
In particular, when [@] =2mcq(detS), é* (M,s, [@];T) and H(i\/l*(M, s, [w]; T) are
also respectively denoted by (,O’* (M, s, cp; T") and H<i\4* (M, s, cp; ). The coefficient I"
is dropped from the notation when it is Z, or not important. The following (admittedly
sloppy) convention will be adopted for the rest of this article: Since the Floer complexes
(C, 5) = (6 ,5) = (C?,09) when the perturbation is nonbalanced, we use CM or
(CM, 0) to denote the one complex in this case. When we wish to emphasize the
Spin® —manifold and/or cohomology class of perturbation, etc, used to define the
monopole Floer complex, these data are added to the above expression in parentheses,
such as CMx (M, s, [w]) or (CM«(M,s), 0+(M, s)).

As final remarks to this subsection, note that in [17] there is an equivalent, geometric
version of grading for the monopole Floer complexes in terms of homotopy classes
of oriented 2—plane fields. This is briefly described in Part 1 of Section 6.1 below,
and denoted by J (M) therein. A very brief description of this in the special cases
relevant to this article will appear in Part 1 of Section 6.1. Meanwhile, the signs sign(d)
assigned according to the rules in [17] depend on a choice of homology orientation
of M. See Definition 22.5.2 in [17].

2.4 Cobordism-induced maps between monopole Floer complexes

Instantons on cobordisms X described in Section 2.2 are used to define maps between
the monopole Floer complexes. Details of the construction of these maps are given in
[17, Chapter VII] for cobordisms X between connected 3—manifolds Y_ and Y, even
though properties of moduli spaces of Seiberg—Witten instantons on more general X,
where Y_ may be disconnected, are also established therein. In particular, taking
X to be a product cobordism R x M, this construction is used to define chain maps
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from C back to itself for o = A, —,V, which induce the 4+-module structure on the
corresponding Floer homology. Another application of these cobordism-induced chain
maps is to define chain homotopies between monopole Floer complexes ¢ associated
to different metrics and (¥, &). See eg the proof for Corollary 23.1.6 in [17] and its
variants. According to the conventions set forth in Section 1.3, this justifies our notation
for the monopole Floer complex, ¢ (M, s, [@]; ). In fact, this type of arguments show
that C with positively proportional “period class” [17, page 591] are chain homotopic
to each other. (See Theorem 31.4.1 in [17].) This in turn justifies using the notation
CM(M, s, c—) for any negatively monotone, nonbalanced perturbation, according to
our convention.

The rest of this subsection is divided into four parts. In the first three parts we review
some basic elements in the construction to the aforementioned cobordism-induced
maps. The last part contains a generalization of [17]’s construction to certain simple
cobordisms between possibly disconnected manifolds, in order to accommodate our
needs in Section 6.

Part 1: moduli spaces and their compactifications Fix a Spin®-structure sy on X
which restricts to the s < —2 and the s > 2 part of X respectively as Spin®—structures
s_ on Y_ and s4 on Y. Fix also a self-dual 2—form wy on X satisfying (2-11)
and a suitable pair (T+, &T). Let ¢;, denote the divisibility of ¢q(sx). This number
divides both ¢;_ and ¢s, . Assume that Y1 are both connected in this part.

Consider instantons 0 defined from (2-10) with representatives of ¢— and c4 re-
spectively as its s — —oo and s — oo limits. The index of the Fredholm operator
that entered the definition of nondegeneracy for instantons is denoted by 1,. This
generalizes the notion of index in the case of product cobordisms described in the
previous subsection, and it depends only on the relative homotopy class of 0. See
again Chapter 24 of [17]. Let My (X;c—, c+) denote the space of gauge-equivalence
classes of such instantons with 1, = k. When ¢_ € ¢#(Y_) and ¢y € ¢*(Y4) are
both reducible, let M;fd(X 16—, ¢4) C Mp(X;c_,cq) be the subspace consisting of
reducible instantons. Note that Mfd (X;e—,cq4) = Mp(X;c—, cy) in the cases when
the pair (f,b) is (u,u), (s,s) or (s,u). When (T, &™) is suitable, Mfd(X; c—,C4)
is a smooth manifold with dimension respectively k, k, k + 1 or k — 1 in the cases
when the pair (,b) is (u, u), (s,s), (s,u) or (u,s). The moduli space My (X;c_, cy)
is a k—dimensional manifold consisting purely of irreducible instantons in the case
when at least one of ¢ or ¢4 is irreducible, while it is a k—manifold with boundary
OMp(Xic—,cq) = Mfd(X; ¢_, c4) in the case when (if,b) = (u, s).
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All the spaces My (X;c—, c4+) and M}fd(X ;¢_, ¢4 ) are given orientations according
to the rules specified in [17]. This depends on a choice of what is called a “homo-
logical orientation” of X as a cobordism in [17]. (See Definition 3.4.1 in [17].) Let
M (X c—,cy) and ./\/lred (X;c_, ct) respectively be subspaces of My (X;c_,cy)
and ./\/l“’d(X ;6. C4) cons1st1ng of instantons with relative homotopy class z. (Given
¢—, ¢t and z, the spaces My ,(X;c—,cq) (resp. M;fi(X; ¢—, c4+)) are empty for
all k € Z except one. This is denoted by M, (X;c—,cy) (resp. M (X;c_, 1))
below.) All the moduli spaces introduced above lie in the orbit space of C (X)
under the gauge action by C*°(X, U(1)) =: Gioc(X). This orbit space is denoted
by B .(X). Let My (X) C B .(X) denote the union of all spaces M;(X;c—,c4)
and M™(X;c_, cq) with dimension less than or equal to k for all c— € €(Y_),
cr € &(Yy) and z € (B (X)).
It follows from [17, Section 13.6] that the embeddings M(X) = |J; Mg (X) —
2 (X) and M(X) — Bl 1oc(X) factor respectively through subspaces B7(X) C
B (X) and BU(X) CcB
equivalent to 5

loc

“OC(X ), described below. These subspaces are homotopy

7. (X) but are sometimes more convenient to work with. In particular,

B (X) has the virtue of carrying a Banach manifold structure. Let

BX):= |(J ) B (Xic.cy),
c_€BO(Y_) cy €B°(Yy)
B (X):= U U B (X;c—,cq),
c—€BY(Y_) 4 €BY (Y+)
where B (X;c—, cq) =), B (X;c—,c4) CBY(X), and BY (X;c—,c4) C Bl 1oe(X)
is defined as follows. Let ¢ = (A4, (W1, V1)) € C7 (Y1) be respectively representa-
tives of ¢1 € B} (Y+), and use the same notation (A4, (W4, W4)) to denote the corre-
sponding R —invariant element in CZIOC (R x Y4). Using the diffeomorphisms in (2-8)
to identify connected components of X — X, with subdomains of R x Y4 or R x Y,
let C7 (X;c—,c4) C Cl 1oc(X) be the subspace consisting of (A, (¥, V)) € Cl 1oc (X))
such that A—A4 and W — W, are both L2 on the positive end of X, and A —A_ and
¥ — W_ are both L2 on the negative end of X. Let By (X;¢—,¢c4) C Bl 1oc (X) be the
subspace consisting of elements represented by elements in Cj (X;c—, c4) CC/ (X)),

I,loc

By construction, B?(X) and B} (X) come equipped with maps
M7 = 17 x [I%°: B°(X) — B°(Y) x B°(Y),
M = T7%° x I®: B (X) — B (Y) x BY(Y),

sending (A, (¥, ¥)) to (A_, (V_,V_)) x (Ay, (¥4, Vy)).
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Let M;:(X ;c—,cy) and M;{r ,(X;c—, cy) be respectively the compactification of
M (Xic—,cq) and My (X:c—, cy) by adding (parametrized) “broken trajectories”
as described in [17, Definition 24.6.1 and Theorem 24.6.2]. In Definition 24.6.9
of [17], a surjective map t from M;{r’z (X;c—,cq) to a smaller compactification,
M (X, e—,cq) C By .(X), was introduced. Both compactifications MZ,Z (X;ce—,cq)
and My ,(X;c—, cq) are “spaces stratified by manifolds” in the sense of [17, Defini-
tion 16.5.1]. (See [17, Propositions 24.6.8 and 24.6.10].) For brevity, we refer to such
spaces simply as “stratified manifolds” in this article. By definition, My ,(X;c—, cy)
is the top-dimensional stratum of both M,’:,Z (X;c—,cy) and -/\_/lk,z (X;c—,cq), and
each My (X;c_, cy) embeds in B2 (X) C B (X) through the stratified manifold

loc

MX) = JMp(X) CB°(X), @C--+ C Mp_1(X) C M(X) C--- C M(X).
k

Meanwhile, the map t sends strata of M:(X ;¢ cy) tostrata of My (X;c—,cy) (not
necessarily of the same dimension), and restricts to an isomorphism on the top stratum.
The moduli spaces of reducible instantons Mfd(X ; ¢, ¢4 ) are compactified similarly.

Part 2: integrating cochains on stratified manifolds Generalizing the formula for
the differential of monopole Floer complex, (2-16), the purported maps between mono-
pole Floer complexes have coefficients given in terms of “integrals” of the form (u, M),
where € C(B° (X);K), (C(B°(X);K), §) being a suitable version of cochain complex
for B°(X), H(C(B°(X);K)) = H*(B°(X);K), and M C B?(X) is a compactified
moduli space of the types described in Part 1. Explicit formulas for these maps are
given below; see (2-19) and thereabouts. Before proceeding to explain the possible
choices of (C(B?(X);K), §) and the definition of the integrals (u, M) associated to
them, we make a few motivational remarks.

Ideally, the stratification structure of the relevant M = My, is sufficiently simple, eg it
is a manifold with corners such that

(2-18) IMg = My_y, 0My_; =0.

(See eg [17, Remark, page 291] for an example of pathological stratified manifolds.)
Defined from broken trajectories, the lower-dimensional strata of M typically have
an explicit description in the manner of [17, Propositions 24.6.8 and 24.6.10]. Thus,
when (2-18) holds, Stokes’ theorem of the form

(8. M) = (v, 0M) = (v, My_1)
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can be invoked to derive various essential identities for the associated cobordism maps
between monopole Floer complexes. For example, this type of arguments are used
to show that when u is closed, the associated map m[u] is a chain map, and thus it
induces maps between the corresponding monopole Floer homology groups. Moreover,
the induced maps on Floer homologies depend only on the cohomology class of u,
[u] € H*(B° (X);K), rendering the specific choice of (C(B°(X);K), §) irrelevant on
the homological level.

With suitable (T+, &™), (2-18) indeed holds in the nonbalanced case, when all the
relevant Seiberg—Witten solutions are irreducible. Though the moduli spaces one
encounters may in general have more complicated stratification, it was shown in [17]
(eg Theorem 24.7.2 therein) that in most settings of interest, the stratification is still
simple enough that (2-18) holds in a formal sense (see [17, Lemma 21.3.1] for a precise
statement). Thus, via a suitable variant of Stokes’ theorem (see [17, equation (21.4)]),
the arguments sketched above still apply, leading to the desired identities.

Returning to the issue of choosing C(B°(X);K), a simplest option is the de Rham
complex: taking u to be a differential k—form on B? (X)), its restriction to M C B2 (X)
or any stratum of M is well defined, and the “integral”

. M) = /M ‘o /Mk\Mk_l !

is literally the integral of u over M. This however only works for K = R. To be able
to work with more general K, in particular K = 7Z, Kronheimer and Mrowka [17]
choose to work with particular types of Cech cochain complexes (C*(4; K), §), where
U is an open cover of B?(X) satisfying certain transversality conditions relative to
M C B?(X). It was shown that such a covering U/ exists and any two of them have
a common refinement. See Chapter 21 of [17]. The exposition in [17] focuses on
maps between monopole Floer homology groups instead of their underlying chain maps
between monopole Floer complexes. As mentioned previously, the former depends
only on the cohomology class [u] € H(C*(U;K)) = H*(B° (X); K); thus, in [17] the
specific choice of the covering U/ and the cochain u representing [u] € H*(B° (X); K)
is typically left unspecified. In this article, however, specific maps between monopole
Floer complexes do play a role, and the cochains u used to define these maps need to
be specified. This shall be done without reference to the covering i/, as there is no
natural choice for the latter. Instead, in the upcoming remark we introduce a notion of
equivalence (depending on M (X) C B° (X)) among cochains possibly from different
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choices of underlying chain complexes C*(B° (X); K) for H*(B°(X);K). The maps
m[u] between monopole Floer complexes depend only on the equivalence class of u.
Abusing terminology, what is called a “k —cochain » on B (X)” in this article typically
refers to any representative u € C*(B?(X);K) of a given equivalence class (relative
to a fixed M(X)).

Remark 2.1 Let M be a finite-dimensional compact oriented stratified manifold
embedded in a metric space B. Suppose U is an open covering of B transverse to M
in the sense defined in [17, Chapter 21]. As explained in [17], the transversality
condition on U/ makes it possible to associate to each Cech cochain u € C¥ U;K) a
well-defined cohomology class on the k—dimensional stratum of M,

[u] € H¥ (M, My_ 1K) =~ HF (Mg \ My_ 5 K),

and the value of (u, 9t) for each stratum 9% of M is given in terms of this cohomology
class. See page 408 of [17]. To rephrase the constructions in [17], we introduce a cochain
complex (C},,8x) defined as follows: let C/’f,[ = CﬁK = H* (M, My_;1:K), and
let S0 HE(My, My_1:K) — Hk+1(./\/lk+1, Mp; K) be the connecting map in the
long exact sequence for the triple (M 41, Mg, Mg_1). (The fact that §3, = 0 is
inessential in this article and we leave its verification to the reader.) Use [u]r € C /]\C/t to
denote the cohomology class of u in H¥ (M, My_;:K) in the preceding expression.
Then, by construction,

[§ulpm = Spalu]na-

Let (CM, d) denote the dual chain complex of (C x> 6a4). There is a canonical basis
{ u’; o for C /’\CA, with « indexing all the connected k—dimensional strata 9%, of M,
and ;J,(’; generating H¥ (9y, My_;:K) =K C H*(My, Mj_1;K). The duals of u’oi,
denoted by [M1y] below, then form a corresponding basis for C]é\". This is used to
define a notion of “fundamental class” for stratified manifolds: Given a k—dimensional
stratum 9T of M, let
(] := Y [Mp] € G,
B

where Mg are the connected components of M = (g Mg . We say that M CM
is a k—dimensional stratified submanifold of M if M’ is a k—dimensional stratified
manifold whose strata are strata of M. Given such M/, let

[M]:= M\ Mg_] € CM.
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Then (u, M) (resp. (1, M’)) simply denotes the pairing of [u]rq € C; and [D] € CM
(resp. [M'] € Cf’t ), and [17]’s version of “Stokes’ theorem” states

(87, M) = (S palvlan. [MT) = ([2]a, [ M]).

(See [17, equations (21.3) and (21.4)].) In the case when M’ is a manifold with corners,
[ M'] = [0M'] and the right-hand side of the preceding formula equals (z, M),
reducing the formula to the usual Stokes’ theorem. As noted in [17], the compactness
of M ensures the finiteness of the integrals (u, M’), even though C;*' may have
infinite rank.

Now suppose u is a differential k—form on B. Since u restricts to a closed form
on any k—dimensional submanifold, it also determines an element [u]xs € C/’f/iR =
H*(My., Mg_1:R). With [u] for differential forms so defined, one has

Sl = [dula € CEFPR and ([ulp ) = /m”

for any k—dimensional stratum 9t of M.

Fix M C B and K. Let u be a k—cochains in one of the models for C*(B;K)
described above, namely, it is a Cech cochain u € C¥(2/;K) for an arbitrary open
cover U transverse to M, or when K = R, it can be a differential k—form on B. Let
' be another k—cochain in a possibly different model of C*(B;K). We say that the
two “k—cochains on B”, u and /, are equivalent on M (or simply “equivalent” if
the M being referred to is clear) if [u]y = [¢/]p € CﬁK. (In other words, u and '
evaluate identically on all k—dimensional strata of M.) To keep notation simple, we
usually omit the subscript M from 6, or d below.

Now let B°(X) be as in Part 1, namely the orbit space of C?(X) under gauge group
actions. Let u be a k—cochain on B? (X) in the sense just explained. For each fixed
Spin€ —structure, introduce homomorphisms

mylu)(X.sx): CHY_.s) > CM(¥y.54) forf=o.u. f=o.s.
n_ig[u](X,ﬁx)Z Cf‘(Y_,s_) — C”(Y+,5+) forf=u,s, 1 =u,s,
respectively, by the rules

s> Z (u, Mp(X5e—,cq))eq,
c.|_€€IJ

s> Z (u,Mred’k(X; c—,C4))ey,
c.4_€€IJ

(2-19)
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where MK (X e cp):= /\/l;fd(X; c_,c4) with k:=k,k,k—1,k+1 respectively
in the cases when the pair (f,b) is (u,u), (s.s), (s,u) or (u,s). (In other words,
Mk (X ¢ ¢y ) stands for the moduli space of reducible instantons of dimension & ).
Note that (the interior of) all My (X;c—, cy), MK (X:c_ cy), My (X:c_,cy) and
MS(X;c_, c4) are strata or stratified submanifolds of M(X) C B°(X). By the
preceding remark, the maps mg[u](X ,5x) and n_fzg[u](X ,5x) depend only on the class
[u]M S C;\k/l .

Once in place, the homomorphisms mg[u] (X,sx), n_aﬁ[u](X, 5x), ag (Y+,s+) and
gg (Y1,s1) can be assembled according to the formulas in (25.5) and Definition 25.3.3
of [17] into homomorphisms

)X, sx): Co(Y—,5_) — Cu(Yi,54)

for o = v,—, A. For example, for u € C¥U:K), m[u]: C°(Y_) & C*(Y_) —
C%°(Y4) ® C*(Y4) is given in block form as

molu milu ]

(2-20) [(_l)kﬁu[u]a?_gimg[u] (=D)* s [u] + (= D)7, (] 0 — 9m} [u]

The gluing theorems in Section 24.7 of [17] show that when u is closed, these are
chain maps, with both é*(Y_, s5_) and CO'*(Y+,5+) regarded as chain complexes with
relative Z/cs, —grading. As remarked in Section 2.3, gradings on Co'*(Y_,s_) and
¢ «(Y4,54) are alternatively described in [17] by J(Y-) and J (Y), the geometrically
defined grading sets J(Y_) and J(Y1). A cobordism X determines a relation ~x
between the grading sets J (Y—) and J(Y+) mentioned in Section 2.3.

Remark 2.2 In subsequent discussions, we make use of cobordism maps m[u] as-
sociated to more general cochains than those described above. (See in particular
Part 3 of Section 2.5 below.) Note that the formula (2-20) defining 1[«] assembles
mf[u], m#[u], of and 9} in the particular manner specified in [17], so that desirable
properties for m[u] may be obtained by applying the Stokes’ theorem for integrands
of the form t*u on stratified submanifolds of M™*(X), with u € C(B).(X);K). In
other words, the integrals defining m[u](X) factors through integrals over the small
compactified moduli space M(X). The more general maps m[u](X) that we shall
encounter are constructed by mapping M ™ (X) to a larger space (typically a bundle
over B
space over M (X). To correctly assemble these integrals so as to make the Stokes’

(X)), and considering integrals of pullbacks of cochains on the latter larger

theorem useful, the formula defining such m[u](X) generalizes that given in [17]
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(as exemplified in (2-20)) by replacing terms of the form 5im§[u] or my [u] 85 i
[17]’s formulas with a sum, in which it appears as the first terms. In the notation of
Part 2 of Section 2.5, the terms in this sum take the general form of 75, [u |m*[«/] or
my ', [u+]iwhere u+ are cochains on B° (Y+), and deg(')+deg(uy) =deg(u)—1.
In particular, 05, = 715,[1] in this notation.

In order for the maps between Floer homologies induced by these chain maps to behave
well when composing cobordisms (exemplified by Proposition 23.2.2 in [17]), one
works with the assembled maps

ul(X) = Zm[u (X.5x): @c*(Y_,s ) > @D Ci(Visp), o=v.— A,

54

where the direct sum @5 N is over the set of all Spin®—structures on Y4, and sx runs
through all Spin€—structures on X. As explained in Remark 24.6.6 in [17], there can
be infinitely many sy to sum over for a fixed pair of s_ and s . This necessitates
the replacement of the chain complexes (,o’* (Y—,s-) and Co*(Y +,64) in the preceding
expression by their “grading-completed” variants, Co'.(Y_,ﬁ_) and é.(Y+,5+) (see
Definition 3.1.3 and paragraphs around (30.1) in [17]). The cobordisms relevant to our
proof of Theorem 1.1 however have H?(X,Y_) = 0, and this is why we may use the
precompletion Floer complexes Co‘* as the domain and target of m[u].

Part 3: local coefficients The values (1, My (X;c_, cy)) and (u, MK (X:c_ cy))
in (2-19) are finite only if the moduli spaces My (X;c_, c5) and M=K (X:c_ cy)
have certain compactness properties. The standard compactness arguments can be
adapted to work with nonvanishing @y , when the perturbation form @y can be written
as

(2-21) wy =2w"

for some closed 2—form w on X. We assume that wy satisfies (2-21) throughout this
article. As with the monopole Floer complex in Section 2.3, the coefficients in (2-19)
are finite only when the cohomology classes c1[sx] and [w] are related by certain
constraints. A generalization of [17, Lemma 25.3.1] (making use of the modified energy
bounds from Section 29.1 therein) guarantees that these constraints are met when

(2-22) wy = 2rwy for r # 0 and a wy satisfying (2-12), and when X, #
s~H(R —{0}).
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For more general pairs of ¢1[sy] and [w], cobordism maps m[u] may still be well
defined for suitable local coefficients. Let I'y be an “ X —morphism” between local
systems I on B?(Y_) and Iy on B?(Y4) in the sense of [17, Definition 23.3.1].
To each relative homotopy class z € wo(B°(X;c—,¢c4)), ['x assigns an isomorphism
I'x(2): I_(c=) = 't (c+). One then generalizes the homomorphisms (of Z-modules)
mi[u](X. sx) and 7, [u](X. 5x) given by (2-19) to

mﬁ[u](X,sX; Iy): Cﬁ(Y_,s_; n)— C”(Y+,5+; Iy), g=o,u,=o0,s;
() (X, sx: Tx): CHY_. 5 T0) > MYy 54Ty, fi=w.s. f=u.s:
these are defined respectively by the formulas

miu](X.sx:Tx) = Y. Y. Y (Mo (X )T (),

c—ecl g eel zemp (B (Xic—,c4))

m(X.sx: D)= ). Y > (WMEH X e ) Tx (@),

c—eef e ecl zem (B (X;e—,c4))

(2-23)

where My (X :c—, ¢4) CM(X:c—,c4) and MR (X el ey C MESR(X el ey)
are the subspaces consisting of elements with relative homotopy class z. These mg

and n_ag are assembled in the same manner (eg (2-20) for /) into the cobordism maps

Mu)(X,sx:Tx): C(Yo,5_:T_) = C(Y4,54:T4), o=V,—, A.

Again, for the sums in (2-23) to be well defined, I'y and I'+ need to satisfy certain
completeness conditions depending on sy and wy . Here we limit ourselves to some
general remarks; more details will be provided on a case-by-case basis as occasions
arise. See also Section 25.3 in [17], which contains some discussion on the case with
wy = 0.

Remark 2.3 In the more formal language of [25, Section 6.1], where a “local system”
in Floer theory is described as a functor, an “X —morphism” from I to I} is a
natural transformation that intertwines the fundamental-groupoid structure on both
sides. That is to say, it satisfies the composition law in [17, equation (23.7)]. (In [17],
wo(B°(X;c—,c4)) is denoted by m(c—, X, c+) and an element in B°(X;c_,c4) is
called an “ X —path”.) For each pair ¢_ and ¢, the fundamental groups 715 (Y_) ~
HY(Y_;Z) and mB°(Yy) ~ H'(Yy+;Z) act respectively from the right and from the
left on 7o(B°(X; ¢, ct)) through “concatenation of paths”. Meanwhile,

(2-24) To(B (X c_,cx)) ~ (¥ Yer(sy)) € H*(X,0X;7)
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in the relative long exact sequence
s HYOX:72) S H2(X, 0X:2) 25 H2(X:2) 55 H2(0X:Z) — - .

Note that (j*)™!(cy(sx)) is an affine space under the abelian group Im(§) = Ker(j *).
Under the identification (2-24), the m1B° (Y+) ~ H!(Y1:Z)—-actions on the group
(B (X ; c—, c4)) respectively factor through the aforementioned §H ! (0X ; Z)—action
on (j*)"Y(c1(sx)) under 84 :=§oiy,where ix: H'(Y1;Z)— H'(0X;Z) denotes
the inclusion. The following simple consequences of the above observations will be
useful in this article:

e When §+: H'(Y+;Z) — Im§ are both isomorphisms, any local system I'_
on B?(Y_) determines a local system [} on B°(Y4) and a unique (modulo
automorphisms of I and I} ) X —morphism Iy from I to I'y. Conversely,
any local system Iy on B?(Y4) also determines a local system I on B°(Y_)
and a unique X —morphism I'y from I'_ to I}. In this case o (B° (X, c—,c4))
is an affine space under both the actions of 71(B°(Y-)) and m1(B°(Y4+))
and a choice of an element zy € mo(B° (X, ¢, c4+)) induces isomorphisms
L;EO: w1 (B°(Y1)) = mo(B° (X, c—, c4)) as m1(B? (Y1))—spaces.

o It was explained in [25] that the “(s, []) —completeness” condition for a local
system I in é(M,s, [@]; ') is determined by the class [@]|kerc, (s) 5 in partic-
ular, when [@]|kere, () = 0, any I' (including Z) is (s, [zw])—complete. In the
more general setting of cobordisms, the cobordism map m[u](X;Ty) is well
defined via (2-20) when Iy are respectively (s4+, [w+])—complete, and an ad-
ditional completeness condition depending on the class [@]|kerc, (sy) 18 satisfied.
(Here, c1(sy) and [w)] are both viewed as homomorphisms from HZ(X, dX) to
Z. via the Poincaré-Lefschetz duality.) In particular, this additional completeness
condition is vacuous when [@]|ger¢, (sx) = 0. Thus, the cobordism map m{u](X)
is well defined with coefficient Z via (2-19) when [w] = 2rc;(sy) for r € R,
the setting relevant to the proof of Theorem 1.1.

Part 4: disconnected Y_ or Y4 Suppose X; for i = 1,...,k are respectively
cobordisms from YI.Jr to Yl.+, where all Yii are connected. Then X :=[[; X; may be
viewed as a cobordism from Y_:=][; ¥,” to Y4 :=]]; Yl.Jr . The cobordism map 71[u]
introduced in Parts 2 and 3 above has a straightforward generalization in this setting: Let
C(Yy):= ®f=1 é(Yii). Observe that in this case B°(X) = ]_[5;1 B (X;), and so
given cochains ; € C*(B?(X;)) (in the sense explained in Part 2) and X; —morphisms
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Ty, from I;™ to I}* for each i, one has a cochain u := []; # € [[; C*(B°(X;)) =
C*(B°(X)) and an X -morphism I'y from I'_:=[], I;” to T\ :=[]; Fl.+. Meanwhile,

a set of local systems I~ for each YiJr Define m[u](X; Tx): C(Y_;Ty)—>C(Yq:To)
as

k k k
(2-25) mlu(X; o) == @ mlu](Xi: Tx,): Q C(¥;: 7)) = @ Ct: 0.
i=1 i=1 i=1
The proof of Theorem 1.1 also requires maps associated to more general cobordisms.
For this purpose, it suffices to consider the /7 variant of the chain map for cobordisms X
satisfying the following constraint:

(2-26) At most one of Y_ or Y4 is disconnected, in which case it consists of two
components. Moreover, at most one end of X is associated with a balanced
perturbation.

Assume that one of Y_ or Y4 is of the form Y, = ¥; U Y, for connected Y; and Y,,
while the other is connected. Take Y_ = Y|, for example, since the case where
Y4 =Yy, is entirely parallel. Given the self-dual 2—form wy described in (2-11),
we shall always take Y5 to be the only end of X possibly associated with a balanced
perturbation. Thus, €(Y,) = €(Y1) x€(Y,) = €22 UCo¥ LS, with €99, €% and €°F
denoting €°(Y7) x €°(Y3), €2(Y7) x €¥(Y,) and €°(Y7) x €5(Y>), respectively. Let
C2(Yy) =K(€2) =CM(Y1) @ C°(Y2), C°%(YL) =K(€%) =CM(Y1) ® C*(Y»)
and C%(Yy) = K(€%) =CM(Y1) ® C*(Y2).

In these cases we have the analogs of mg in [17], these being the homomorphisms

my*: CM(Y1) ® CH(Yz) — CH(Yy) (or mbhy: CH(Y_) — CM(Y1) ® C'(Y) in the
case where Y|, = Y4 ), with § standing for o or u; and with the label {] standing for
o or s. Meanwhile, the analogs of %g are all trivial, since by (2-26) there are no

reducible instantons on X.

As the condition (2-26) implies that C (Yy) = CM(Yy) and C (YY) = C° & C°,
the maps m = 0, m[u]: CM(Yy) — C? & C°* and m[u]: C%° & C°% — CM(Yy),
respectively, take the simple form

00 , ou —mgo
(2-27) [ mg? mg* . [—(1®8ﬁ(Y2))om2s]'

Further properties of the Floer complex C (Yy) and the maps m associated to cobor-
disms X satisfying (2-26) will be discussed in Section 6.1.
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Caveat This part assumes implicitly that the X —morphisms and local coefficients
involved satisfy appropriate completeness conditions in the sense of Remark 2.3. While
we forgo general discussions of this issue, it will be addressed for the special cases in
Section 6.

2.5 Ajs;-module actions and geometric cochains

In this subsection we introduce some useful cochains # on B?(X). They are described
in terms of differential forms on B?(X) or By (X). (Note that a differential form on
the latter induces a corresponding differential form on the former via pulling back the
embedding B? (X) < B} (X); since M(X) C B?(X) < By .(X), they are equivalent
on M(X) in the sense of Remark 2.1.) To a connected d —dimensional submanifold
of X, we associate an element of 2274 (B°(X)). There are many possible choices
of this differential form, but its equivalence class in CER will be fixed. To work
with more general K, this class is often replaced by a cohomologous element from
CEZ C CX,;[R. We then describe A —module actions on monopole Floer complexes
and related chain homotopy maps as maps m[u] associated to product cobordisms

X =R x M and cochains u of this type.

The significance of such geometrically constructed cochains is that the Seiberg—Witten
cobordism maps 72[u] have natural counterparts in invariants (some yet to be rigorously
defined) constructed from counting pseudoholomorphic curves; in the latter case, the
cobordism maps are constructed from submanifolds in X.

Let X be a Spin® 4-manifold described by (2-8) and (2-9), and let £ = {M;}; be the
set of connected oriented Spin®—manifolds indexing the ends of X.

Fix a self-dual 2—form wy on X satisfying (2-11) and a suitable pair of (T+,&T).
Let M(X) be the stratified manifold of instanton solutions to (2-10) introduced in Part 1
of the last subsection, with stratification @ C Mo(X) C - C Mp(X) C Mg41(X) C
M(X) as before.

Fix a Hermitian line bundle K on X and a smooth connection Ax on K~!, and write
(2-28) detStT = E2@ K1;

namely, a 4—dimensional version of (2-4). Let A € Conn(E) denote the unitary
connection induced from A € Conn(detS™). As mentioned previously in the end of
Section 2.2, both (A, W) € Conn(det S*) x C*°(S™) and its corresponding (A, V) €
Conn(E) x C®(S™) are used to denote an element in C(X). At this point K is not

Geometry & Topology, Volume 24 (2020)



HF =HM, V 3505

assumed to be related to wy . In the case when the factorization (2-4) or (2-28) arises
from a splitting S or ST = E@® E ® K~!, we write ¥ = («, ), where « and f are
respectively the E and the E ® K~! component of v under the decomposition.

Part 1: cocycles on B (X) from closed d —submanifolds in X The cocycles in

this part are constructed from differential forms on B (X). As mentioned previously,

loc
they induce differential forms on B (X) and we shall use the same notation for forms

(0}
on B

(X) and their corresponding forms on 59 (X'). Alternatively, one may define the

forms on B? (X)) by carrying out parallel arguments using C°(X) in place of CJ (X).

loc

(a) (when d =0) Toapoint x € X we associate an integral 2—cocycle [e]r((x) €

CZ;Z

M(x) 3 follows. Consider the subgroup

Gx,loc C CZ (X, U(1)) 1= Gioe(X)
consisting of maps u: X — U(1) with u(x) = 1. Then
BY 1o (X) 1= CRe(X) /G toc

admits a free U(1) = Gjoc(X)/Gx,loc—action, and BY

Xx,loc

(X) is the orbit space of this
action. Let

Tx-

(X) = B (X)

x loc

denote the quotient map of this action We use 9 € QI(B" (X)) to denote a Thom
form of the U(1)-fibration y: (X) — B (X), so that

xloc
%
dv =m_e,

e e Q2( B (X)) being an Euler form. Choose # so that it defines a principal U(1)-
connection on B" Jloc(X), now regarded as a principal U(1)-bundle. In this setting
(mx)s 1= (})~ r is well defined at d¥, and we formally write e = (75 )«(d?). Let
&x be the Hermitian line bundle associated to the principal U(1)—bundle Bg 1oe (X))
The latter is identified with the (U(1)) fiber product

Ex(X) = Bx toc(X) Xy Ex = (B .loc(X) X Ex)/diagonal U(1)-action,

where Eyx >~ C is the fiber of the bundle E over x € X, equipped with the U(1) =
Gloc(X)/Gx,10c(X)—action. Then e has an alternative interpretation as 21_7'[ times the

curvature form of the unitary connection associated to ¥ on &y.

The following alternative interpretation of £x(X) will come in handy later: let the map
x: E(X) — X x B2 (X) be the “universal family” (described below) for the bundle

loc
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ng: E — X; then
gx(X) = 5(X)|{x}xBlooc(X)'

The bundle £(X) is constructed in the following manner. Consider the Hermitian line
bundle 7g xId: ExCJ (X)— X xCJ (X). This bundle is equipped with a tautological
unitary connection A characterized by the following property: A Lx x{(A,w,w)); = A4
for all (A, (¥,W¥)) €C (X), and Z|{x}xcgc(X) is trivial for each x € X. In the case
when E C ST is a summand of a splitting of ST, the bundle wg xId: E x P (X)) —
X xCJ (X) also carries a tautological section &, characterized by the property that
&|Xx{(A,(w,qJ=Jﬂ(a,ﬂ))} =a. Let £(X) be the quotient of ExC (X) by the diagonal
Gloc(X)—action. The map wg xId: E xCJ (X)— X xC (X) then descends to define
a Hermitian line bundle

n: E(X)— X x B .(X),

and & (when defined) and A descend respectively to define a tautological section and a
tautological unitary connection on £(X), also denoted by & and A below. Let X D X
denote the compactification of X over which the diffeomorphisms in (2-8) extend to
define a diffeomorphism between ([—oo, —L') x Y_) U ((L',00] x Y_) and X — X_.
When restricted to X x B (X) C X x B (X), the bundle £(X)|xxpo(x) extends to

loc

define a bundle over X x B8%(X), denoted by
w: E(X) = X xB°(X)
below. The tautological section and connection, & (when defined) and A , extend over

£(X) and will be denoted by the same notation.

Restricting the tautological connection Ato & (X)) lgxyx BO.(X) = Ex (X), one has a uni-
tary connection on £ (X). Let ¥ denote the corresponding principal U(1)—connection
on Ex,loc(X ), ie the principal U(1)—bundle associated to £x(X), and let

(2-29) 0 := ()« (¥ —9) € QLB (X)).

The form ¥ (and consequently its associated ¢) is far from unique. However, as
mentioned in Remark 2.1, we are only interested in e’s equivalence class rel M(X)
or ¥’s equivalence class rel 73! M(X), where 7! M(X) C E’g’loc (X) is viewed a
stratified manifold with stratification @ C --- C wy 1./\/lk+1 (X)Cmy, IMe(X)C---C
7 LM(X). For this purpose it suffices to describe z9|n;1 My (X)-

We say that the connection @ is integral over M1 (X) if it is induced from a trivialization
ps: C = Ex|m,(x), where C denotes the trivial C—bundle M;(X) x C. Note that
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conversely py is uniquely determined by ¥ modulo constant U(1)—actions. We also
use py to denote the associated trivialization U(1) = BC
that

(X)|m, (x)- We require

Xx,loc

(2-30) ¥ be integral over M1(X).

Such ¥ exists since there is no obstruction to trivializing U(1)—bundles over 1—
complexes. Since the boundary of each 2—dimensional stratum 9% of M(X) lies in
M 1(X), achoice of such ¥ determines a well-defined relative Euler class for the U(1)—
bundle Bx toe X Mo (0\ M, (x) (or equivalently, for Ex|a,(x)\aMm; (x))- This class in

HZ(MZ(X) M 1(X); Z) is by definition the equivalence class [e]\q(x) € CM(X)

Two connections 1 and ¥, that are both integral over M (X) differ by #, — 9, =
mydf on Mj(X), where f isamap f: Mj(X)— U(l) =R/Z (such f is unique
modulo constant maps). Thus, [(7x)« (P2 —P1)]m(x) € C&]EX) is a closed element. We
say that ©¥; and 9, are 8—c0h0molog0us if [df]=0e H 1(/\/ll(X ); Z). In this case
f factors through a map f M1(X)— R, and the restriction f | mo(x) defines a class
[f]M e COR . We have [(x) (P2 — D) mx) = S[f]M(X) for §—cohomologous

M(X)*
1 and 1, and hence [¢] v((x) depends only on the §—cohomology class of .

Convention When we wish to emphasize the choice of x, we add a subscript x to
the forms ¢, ¥, 6 and e introduced above. For example, ¥ denotes the ¥} associated
to x.

(b) (when d =1) Let y C X be an embedded oriented circle in the interior of X.
To such a y, we associate a real 1—cocycle [0y ]r(x) € CE?X). Modifying [0y ] r(x)»
y is also associated an integral 1-cocycle [uy]rq(x) cohomologous to [0 ]v(x)- Let

hol,: BZ.(X) — U(1) =R/Z

be the map sending an element 0 € C”
to 0. Let

(X) to the holonomy of A € Conn(E) associated

loc

0, :=d hol, € Q1 (BZ.(X)).

This is an integral closed 1-form on B (X) and defines a class [0)]y(x) € CM(X)
For the purpose of defining cobordism maps, it is often desirable to replace [0y ]r(x) €

CI,R

MX) with a cohomologous element

wy = [Oylamex) — dey,
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CE]FX) , so that u, € C/L’l%x) C C/{/’l]?X)' We call », an “integral correction” of

[0y]rm(x)- A choice of integral correction u, is equivalent to a choice of lifting,

hy: Mo(X) =R

for holy | vy (x): Mo(X) —R/Z, as §e, = 8[hy] rm(x) - Different choices of h,, differ

by elements in C/(\)j[( X)-

Part 2: product cobordisms and A+(M)-actions In this part we apply the con-
struction in Part 1 to the case of product cobordisms. Let X = R x M, M being a
closed connected Spin® 3-manifold. The cocycles ¢ and 6, on B (X) described
below, loosely speaking, will take the form of pullbacks from corresponding cocycles
on B?(M). The latter cocycles are chosen to represent generators of the cohomological
algebra

2-31)  H*(B°(M);Z) = H*(B.(M); Z)
~ H*(CP>®;Z)® H*(H'(M;R)/H" (M Z); Z)
= A+(M).

(See eg Proposition 9.7.1 of [17].) Let U € H?(CP™;Z) be the generator of the
polynomial algebra H*(CP®°;Z), and let {t;}; be a basis of H{(M;Z)/Tors =~
HY(HY(M;R)/HY(M;7);7Z). We use the same notation U and ¢; to denote the
corresponding generating elements of the algebra (2-31). We shall introduce 2—cocycles
pny representing U and 1—cocycles uy; representing t;, and the cobordism maps
associated to pullbacks of these cocycles are referred to respectively as U —actions or
t; —actions on the monopole Floer complex ¢ (M). Together they generate the A +(M)-
actions on € (M). The choice of uy depends on a choice of a point p € M, while the
choice of w¢; depends on the choice of an embedded circle y; C M representing t; .

Before proceeding, we make some preparatory remarks on B (X) and its variants
in the case X = R x M. As explained in [17], by a unique continuation theorem
M(R x M) falls in a smaller blown-up configuration space

BE.(R x M) = Conn(detST) x T*(R x M,S1) C BY.(R x M),

which is often more convenient to work with. (See Section 6.3 of [17] for more details
on the “r-model” B?.) Here, I'*(R x M,ST) C ' (R x M, S™) consists of elements
(A, (¥, W)) such that W pr # 0 for all s € R. By construction, there exists for
each s € R a map

IT°: BL.(Rx M) — B°, (M)
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which is defined by restricting A and W to {s} x M C X. When restricted to
B*(RxM):=Bf .(RxM)NB?(X), I1° has well-defined limits as s — o0,

I+ B*(R x M) — B°(M).

An element in 0 € Bf (R x M) defines a path 0(s) in B (M): s e R~ I1°0€ B (M).
Conversely, a path 0(-): R — B9 (M) together with a Vy, the latter being the a%
component of an A € Conn(E), determines a 0 € B (R x M). Denote the Vj

associated to d by V. This corresponds to the second term in [17, (4.10)], and is a lift
of the vector field % on the base R x M to the total space of the bundle E.

As M(R x M) C B*(R x M), the cocycles introduced in Part 1 may be defined using
BT (R x M) in place of B (R x M).

loc

Translations on R x M induce an R—action on B} (R x M) or B*(R x M) in the
following manner: For each a € R, let

g RxM—->RxM

denote the map sending (s, p) € R x M to (s +a, p). For each d € B (R x M), its
associated V? defines a lift of 7, to a bundle automorphism of E (or equivalently
of ST), denoted by 70 below. Let

w8 BZ (R x M) — BZ.(R x M)

a - *loc

send 0 to the pullback of D (as a gauge-equivalence class of Conn(det S*) x I'? (ST))
via 7°,. Use the same notation, t2, to denote the similarly defined map from

B*(R x M) to itself. In particular, 72 sends d(s) to d(s +a). Let
1:B°(M)— B"(Rx M)

be the embedding that sends a ¢ € B° (M) to R—invariant element 9. with 9.(s) = ¢
for all s € R. The fixed-point set of the R—action on B (R x M) is the image of 7,

and the action is free on the rest of B (R x M).

loc

The R—actions 5 preserve the subspace M(R x M) C B*(R x M), together with all
of its strata. The fixed-point set of the aforementioned R-action on M(R x M) is

MoR x M) ~ (M) C B*(M),

and the action is free on all higher-dimensional strata of M(R x M). Thus, the orbit
space N (M) := (Mp+1(Rx M)\ M (RxM))/R is a k—dimensional manifold. As
explained in Section 16.1 of [17], the spaces N (M) are compactified into a stratified
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manifold W, lj (M) by adding “(unparametrized) broken trajectories”, and the quotient
map

gr: My (R x M)\ Mg (R x M) 25 g (M)

extends to a map between the stratified manifolds (Mg (R x M)/ M (R x M))*
and N,:' (M), also denoted by ggr . Recalling that each My 1 (RXM)/ Mp(RxM) is
a disjoint union of moduli spaces of the form M (c—, c+) or M (c_, ¢4 ), the space
(M1 (Rx M)/ My (R x M))T above denotes the disjoint union of their respective
compactifications, M} (c—, c4) or M (¢c_, c1). Correspondingly, N, lj (M) is a
disjoint union of compactified spaces of the form N (c_, c4) := (Mz(c—, cy)/R)T
or N2t (e, eq) = (MFU e, c4)/R)T.

(a) (the U-map) Fix pe M andlet x = (0,p) e Rx M = X. Let
mx: BER X M) =7 B"(Rx M) — B*(R x M)

be the principal U(1)-bundle obtained by pulling back

7x: BY e RX M) — Bl (Rx M)

x,loc

via the embedding B (R x M) < BZ (R x M ). Define 7rx: BL(Rx M) — B*(Rx M)
similarly. Let Eg (M) be the 3—dimensional analog of Eg (X); namely, Eg (M) =
Co(M)/Gp(M), with G,(M) C C*°(M,U(1)) being the subgroup that consists of
maps with value 1 at p € M. Then, by construction, the map I1° lifts to a map o,
that fits into the commutative diagram

~ o ~
BL(R x M) —— BY(M)

BY(R x M) - B (M)

Regard 7p: EI‘,’ (M) — B°(M) as a principal U(1)-bundle and let 191’, € Ql(l?g (M))
denote a principal U(1)—connection on this bundle. We will choose the principal
U(1)—connection ¢ from Part 1(a) to be of the form

_ (170
9 = (1%,

By the unique continuation theorem (see [17, Proposition 7.2.1]), T1°| M(@RxM) 1s an
isomorphism, and we choose 19; to be integral over TT° M (R x M), so that ¢ meets
the integrability requirement (2-30). Given p € M, the 2—cocycle py on B° (M) used
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to define the U —action is the Euler form ¢, = (7p)«d ¥, of the bundle E’g (M). Ttis

straightforward to verify that indeed [efp] =UeH*(B°(M);Z). Let

Uy :=mlelR x M): C(M)— C(M),

where ¢ = (71y)«(d?) = H*e’ as before. We call this degree —2 cobordism chain
map the U —map associated to p on the monopole Floer complex ¢ (M).

It is desirable to express U, in terms of integrals over the unparametrized moduli
spaces, Ny (M), in a way similar to the formulas (2-15)—(2-16) for the differential d
of the monopole Floer complex. For this purpose we digress to make some preparatory
observations.

Let (a,b) eRxR > 1, x rf be the product R xR -action on (R x M) x B8P (Rx M),
ie the base space of the bundle £(R x M), and use the same notation to denote the
lift via A of this RxR—action to the total space, £(R x M). By construction, the
tautological A and & (when defined) on E(R x M) are invariant under pullback of the
antidiagonal R—action; namely,

(Id x t8)*& = (1o x 1d)*@, and similarly for A.

Let Ro C Bf) (R x M) denote the R—orbit through a 0 € B (R x M) and let
D =R x{p} C Rx M denote the R—orbit through x = (0, p). Then the afore-
mentioned antidiagonal R—action on £(R x M) defines a bundle isomorphism ¢
between E(R x M)|5xpy = E|5 and E(R x M)|xyxro > Ex(X)|Rro, and parallel
transports via A along the two paths p x {0} and {x} xR0 in (R x M) x B (R x M)
are identified under ¢ . Note that the connection A| pxfoy On ER X M) |54y = Elp
is precisely the restriction of V to E| 5- This is identified via (o with the connec-
tion g|{x}><]RD on E(R x M)|xyxRo = Sx(X)hRD, which corresponds to 5|Ra on

x 1oc (R X M)|Ry. (Recall the definition of 9 from Part 1(a).) Observe, by the way,
that £x(X) ~ ER x M)|{X}XBIOL(RXM) admits an R—action @ € R > Id x t2, and
the associated R—action on Bx 1oc (R x M) is precisely the lift of the R—action on
Bl (R x M) via 9.N amely, denoting the lift of 75 by the same notation, we have the
commutative diagram

xloc(]RX]‘/I)—> xloc(RXM)

ml ml

(RXM)—>B Rx M)

loc loc
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Let R := [-00,00] D R, and so in the present setting X = R x M. Suppose 0 €
BY(R x M). Then, by definition, t5(0) converges as @ — 400 (in the subspace
topology of B*(R x M) C B .(R x M)) respectively to

loc

8 () = 1(IT£%).

Let Rd C BY(R x M) denote {TsB(a)}seR' Thus, the paths p x {0} and {x} x R0 in
(Rx M) x B*(R x M) extend respectively to arcs (R x {p}) x {0} and {x} x Rd. The
previously introduced bundle isomorphism tA extends to define a bundle isomorphism

LA: E(RXMN(RX{I)})X{M ~ E|Rx{p} R A XM)|{x}xRa ~ Ex(ﬁxM)ﬁD.

The assumption that 9 € B%(R x M) also ensures that parallel transport via V® along
R x {p} gives a well-defined unitary holonomy map

hol (0) € Hom(E|(—o0,p): El(00.p)) = HOM(E|(—c0, p)x 2} €] (c0,p)x12}):

As 1’ preserves A, the holonomy of A along {x} x R0 also gives a well-defined
unitary element agreeing with ta o holg ®)o LZI in

Hom(Ex (R X M) |z(c_y3, Ex (R X M), )1)
where ¢ := I1%%°(d). The space of unitary elements in

Hom(&Ex (R x M)|g ()}, Ex (R X M) |g(c1)y)

is precisely
BY(R x M) yy Xua) BER x M)lgaeyyy = By (M)e_y xua) By (M) e y-
This is the fiber over (¢, ¢4) of the U(1)-bundle
Eg (M) xy() l?g (M) = (Zig (M) x E’g (M))/diagonal U(1)-actions
Ir=r, BO(M) x B (M),
where 7, is the quotient map by the residual U(1)—action. Let
hols: B*(R x M) — E’g(M) Xy(1) E’g(M)

be the map that sends ? to the element in Eg (M) xyq) Z@g (M) corresponding to
(A oholg (9) oux!. This map is a lift of the map IT? = IT~%° x IT%°: B*(R x M) —
B (M) x B°(M) in the sense that 7y, o hols = 1%, Meanwhile, letting e =
%o 1,, the map 17 := 17 x T1°°: fS;(R x M) — Z?g(M) X Z?g(M) is in turn a
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lift of holz under the quotient map
ma: BS(M) x BS(M) — BS(M) xy(1) BS (M).
A choice of 19; determines a principal U(1)—connection on the bundle
Tp—p: BY(M) xyy BS (M) — B (M) x B* (M),

which we denote by ©,_,. Since ¥, is integral over ITo.M; (Rx M), it also determines
a trivialization pp—p: U(1) = Eg(M) Xy(1) Eg(MNHOMl(RxM)xHoMl(RxM) of
the bundle 7,_, over ITIgM (R x M) x ITgoM (R x M). As 7p—p (MR x M)) C
CM)xE(M) C oM (RxM)xTTgM;1(RxM), combining the trivialization pp—p
with 112, we get a map

hs: M(R x M) — U(l) =R/Z.

Observe that the maps ﬁa, 9, 1mee, ﬁoo, I1—°°, [T~ and hz are all invariant
under the respective R—actions on their domains, and therefore descend to define
maps from the orbit spaces under the R—actions. Our convention is to denote the
corresponding maps from BY(R x M)/R, B*(Rx M)/R or M(R x M)/R by adding
underlines to the notation. For example, h; =hg o gr. By construction, we have

(hol3)*¥,_, = —dhs and (hol3)*0,_, =—dhs over Ni(M).

Let py;: C— B’p (M)| 1190, (Rx ) be a trivialization inducing ©, and use the notation
to denote the associated trivialization of £,(M )|, ®RxM)» Ep (M) being the Her-
mitian line bundle associated to Ep (M). Using (A toidentify E|(4+o0,p) respectively
with & (M)|¢,y, we have

2115 ®) = (py ) o hol£ (2) 0 pgy € C*.

Meanwhile, given d € B¥(R x M) and an arbitrary d € 7;1(2),

/ﬁ =| 0=1-hz@) €eR,
Ro Ro

where 6 is as in Part 1(a)’s (2-29), with x setto be p := (0, p) € R x M. In particular,
when 0 e M1 (Rx M),
h5(0) =hz(0) mod Z.

Like hp, the function /1 5(0): M(R x M) — R is invariant under the R—action on M,
and hence induces a function h5: N (M) := J; Ng(M) — R, with

hﬁ:bﬁ mod Z over No(M)
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This function can be used to write

(2-32) [Oslmmeany =— D hp@mu,,

EN (M)
where {ué }oeAp (M) 18 the canonical basis for C}/((RX M) One may extend by con-
tinuity both h and A5 to the spaces of broken trajectories N, k+ (M) as respectively
R/Z— and R-valued functions. With this extension we have % 5(0) = Zai hp(0;) for
0={0i}i € Nk+ (M), and h5 = h 5 mod Z over the O—dimensional strata (Nk+ (M))o.
Consequently,

_ ) B R 1,Z 1;R .
Uy = (bl ary =0l ) € Curt ary © Cnctaany’

namely, [up], + M) is an integral correction of [—(hol 1;)*19;_ Pt )= [dhp],\+ M)
1 1 1

We next express lc}p in terms of integrals of u, over N 1+ (M). According to (2-19)
and (2-23), the coefficients of U, take the form of

(e, MZ,Z(X; c—, CJ,-)) = (e’ MZ,Z (X’ C—, C+))
or
(e MEP2(X e, cy)) = (e MPP2(X e, ch)),

where X =R x M. Let M be one of the compactified moduli spaces Mo ;(X;c—, c4)
or /Wrzed’z (X;c—, cq) named above. This is a 2—dimensional stratified submanifold
of M(X). Let M = M\ M;(X) denote the top-dimensional stratum of M, and let
M be the larger compactification of 9t by adding (parametrized) broken trajectories.
The latter carries a stratification of the form

FgC My M) c M), =m".

Meanwhile, 90U consists of R—orbits; let 9t := M/R C N1(M), and use N C
N, 1+ (M) to denote the compactification of 91 by adding unparametrized broken tra-
jectories. It is stratified as @ C (N1)o C (V)1 = N+, The strata of M} (c—, cy),
M (e ), My(e—,eq), M (e, cq), N (c—,cq) or NI4T (c_, cy) are de-
scribed in [17, (24.27)—(24.28) and Proposition 24.6.10]. Applied to the case under
discussion, this entails:

(2-33) o (M)o=1(fc—,cq}) CI(E(M)).

e (N1)o consists of finitely many once- or twice-broken trajectories. We
denote such a broken trajectory in the form 0 = (9;);, where each 0; €
No(M) and i € {1,2} or {1, 2, 3}.
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e The I-dimensional strata of M consists of R—orbits in B(X). More
precisely, (M)1\ (Mo = Up=(,); e(v+)o Ui Ri -
e (M™); is a union of two parts,

(M) =t H (M) Ut H(M)1 \ (M)o).

In the first part, v~!c ~ (A1) for each T € (M)o C €(M), while on the
second part, t restricts to an isomorphism from t: t=!1((M); \ (M)g) to
(M)1\ (M)o.

Our strategy to compute (e, M) is to introduce a map ¢: MT — B’g loc

(X) so that the
following diagram commutes:

3

Mt — Eg’IOC(X)
(2-34) l nxl

M—=— B2 (X)

where ¢: M3(X)— B (X) denotes the embedding. This means that <oy is then a lift
of the embedding ¢ |on under 7. We choose this lifting so that £(90) C BY(R x M) C
Eg,loc (X) is tangent to the R—action. Such a choice is specified in turn by a lift ¢y
of M C N1(M) to N1(M). As an extension of &|oy, &’s image is also tangent to the

R-action on B (R x M). With & chosen, we then write
(2-35) (e. M) = (e,M) = (T, M) = (T"e, MT)
= ("0, MT]) = €9, [(M)]),

using [17, Theorem 24.7.2 and Lemma 21.3.1]. By (2-33), the last term above is written
as a sum

(S0, [(MD1]) = E*0 v (M)o) + (E*0, 71 (M1 \ Mo))
= (E @), N ) — X9, NT) + (0, My \ Mo)
= —((holp)*D,_, NT) = D sign(@)h(2).
deW )

Note that the first term in the last line above is independent of the choice of ¢ ; it
is also independent of the choice of ¥/, since, by (2-34), T\ lies in a fiber of
B (M) Xy(1) B° (M), over which 15‘1/, is the standard U(1)—invariant volume form
generating H1(U(1); Z). To summarize, we have

(2-36) (e, ./W) = (UP,N+), (df_lﬁ,N+) = (6—5[913]M(RxM),./\_/l).
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(b) (the t;—maps) Given an embedded oriented circle y C M, one may define a
3—dimensional counterpart of the 1-form 6,, in Part 1(b) above: let

h,: B°(M) —> U(1) =R/Z

be the map sending a d € 57 (M) to the holonomy along y of A € Conn(E) associated
to 0, and set

1
0 = dh), € Q' (B°(M)).

By construction 9)’, is closed and its cohomology class [9)’,] e HY(B°(M);Z) equals
[yl € Hi(M; 7)/Tors under the isomorphism -

H{(M:Z)/Tors ~ HY(HY(M;R)/H (M ;Z);Z) ~ H (B°(M); Z).

Let y :={0} x y CR x M. Then 0, = HSQ{, and [0;]rm(x) € Cﬁ?x). Let

1;Z
1y = [0y 1mex) — Slhylman € Cuicxy

be an integral correction of [0;] v(x) € C/t;t]?X)’ as described in Part 1(b). In the present

case, Mo(X) ~m, €(M) C B°(M), and the function /;: Mo(X) — R in Part 1(b)
takes the form of T1§A),, where

’.

hZ' e(M) >R
is a lift of h;, le(ary: €(M) — R/Z. Noting that the strata of M(X) are R—spaces in
this product cobordism case, we have
hy = Ha‘h’z = H;‘hi, = Nsyxys
(051 mcx) = Mo0y vy = M50, L) = Bgsyxylmex

for all s € [—00, 00]. Thus, for our purpose, y may be taken to be {s} xy CRx M
for arbitrary s.

Let t:=[y] € Hi(M;Z)/Tors and let

P B (M) — B (M)

be the Z—covering of B? (M) with g (f)’f ) C w1 (B°(M)) being the kernel of the map
t 1 (B°(M)) ~ HY(M;Z) — 7. The function h;,: B°(M)— U(l) =R/Z lifts to
an R-valued function

hy: B (M) — R.
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This lift ﬁy is unique modulo addition by constant, Z—valued functions, and it can be
fixed by choosmg a basepoint ¢g € B" (M) with h/ (co) 0 mod Z, where ¢g := P¢(¢).
Namely, let h be such that

hy () =0€R.

Given an arc b: [O 1] — B° (M) the difference hy(b(l)) hy(b(O)) takes the same
value for any lift b: [0,1] — Bt (M) of b; we denote this value by A[,h eR. It
depends only on h and not on the choice of the lift h . In part1cular any 2 0eN(M)
defines an arc b, in B (M), and we adopt the shorthand Aahy = Abbh This value
only depends on the relative homotopy class of 9. Observing that fRa = Aahy, we
have
Olmumsan = Y (Aohy)pd € C/{A]?RXM)

VENH (M)
An integral correction wy of [0;]pm(®xnm) can be written in a similar fashion by
replacing the function h Bt (M) — R in the preceding discussion by a modified
function

xy: BS(M) - R,

where x, = h Pt s for a function s : B(M) — R satisfying &’ |¢(M) h

Returning to the subject of A4-actions, take y =y; C M to be one that represents
ti € Hi(M; Z)/Tors. The t; —map associated to y; is defined to be

=y, = m{uy, (R x M): C(M)— C(M).

1

This corresponds to the 1-cocycle g, = (Py;)«(dxy) on B7(M).

It will also be handy to introduce an analog of Part 2(a)’s u, (see (2-36)): Given
0 e N(M), let Ayx,, be defined in the same way as Agﬁyi above. Let uy, denote
the function on A(M) that sends each ? € N (M) to Apxy,. Note that u,, is Z—
valued, and hence defines a class in C/?,;(ZM), denoted by the same notation. The
coefficients appearing in the formula for my, then may be reexpressed as integrals
of uy, over N'(M):

(uy; . M) = (uy; N,
where M is a 1-dimensional stratum in M(R x M) and /' = M/R is the correspond-
ing stratum in A'(M). In general, we use the notation 7[u] := m[u] when X =R x M

is a product cobordism and the coefficients in the formula for /72[x] may be expressed
as integrals of u € C N () Over N (M) in the way described above. For example, we
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write

(2-37) my, =nfuy,], U, =ilu,].

Part 3: cochains on B? (X) from noncompact d —submanifolds of X 1In this part
we consider d —submanifolds in X that are “asymptotically cylindrical” in the sense
described below, and use them to define cochains on B? (X)) (or, more generally, on
various bundles over 59 (X)) in a manner similar to Part 1. These cochains are often
useful for defining chain homotopy equivalences between Floer complexes, as will be
demonstrated by examples.

(@) (whend =1) Let My, M, € E label two ends of X, allowing M1 = M,. We say
that an oriented connected 1—submanifold A C X is a path from py € My to p» € M»
if AN (X — X,) consists of two connected components of the following form: the first
component is (—oo, L) X {p1} C (—o0, L) x M7 or (L,00) x{—p1} C (L, 00) X M
under the diffeomorphisms in (2-8), depending on whether M is a negative end or
a positive end, and the second component is (—oo, L) X {—ps} C (—o0, L) x M, or
(L, 00)x{pa} C (L, 00)x M, under the diffeomorphisms in (2-8). We shall define a 1—
cochain [0 ]v(x) € C/t/;t]?)() and its integral correction [k3]rq(x) € C/t;t%X)’ beginning
by introducing generalizations of notions such as hols, ¥—p, 7p—p, etc, previously
encountered in Part 2(a).

Fix choices of ¥, € Ql(ggl (My)) and ¥, € Ql(l;’gl (M>)) as described in Part 2(a)
and note that Egl(M DXua )EZZ(Mz) is a principal U(1)-bundle over B%(M1)xB°(M>)
and 19; , and 19;2 together define a principal U(1)—connection on this bundle, which
we denote by 191/)2_ p, - Consider the commutative diagram

B, (My) x BY, (M>)

TA

(2-38) BS. (M) ~ B, (My) xyqy B, (M) ) ™r1 ¥
lﬂpi / lﬂpz_pl
B°(M;) B?(M1) x B° (M>)

prj

for i =1 or 2, where pr; denotes projecting to the i factor and A denotes quotienting
by the diagonal U(1)-action. Then

(2-39) Vo = @aN(PI1D,, ADE3D,,) = (pr3) D, = —(pr)) ™,
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where (175)1: Q2(Bg, (My) x B3, (Ma) — Q1 (B, (My) xyq1y BY, (M>)) is integration
over the fibers of wa. Let B’i‘ (X) and E’i‘ (X) be pullback bundles defined by the
commutative diagram

~ o ~ ~
BY(X) —————— BY (My) x BY, (M>)

T TA
) Ej{(X) —)%Zl(Ml) Xy(1) gg2(M2) Tp X py

(2-40)

A Tpy—r]

B?(X) B (M1) x B (M>)

M(X) C(M1) X E(M>)

where TT9 := ITM1 x TIM2 and TTMi := TI*%°|yy,cy, . For i = 1,2, let

poy, - U = BT (Mi) |, Rx M)

be a trivialization of the U(1)—bundle B° (M;) over TToM (R x M;) C B° (M;). Over
C(M1) x E(M3) C TToM1 (R x M1) x TTg M1 C (R x Mp) C B° (M1) x B° (M>), the
U(1)xU(1)-bundle 7y, x71p,: BY, (M1)x B3, (M2) — B° (M1)xB° (M>) is equipped
with a trivialization Py X P, - Thii trivialization {actors through a trivialization,
Pps—p - of the U(1)-bundle, 1, p,: Bgl (M1) xyq) Bgz (M3) — B° (M1) xB° (M>)
over €(M1)xE(M») C B° (M1)xB° (M>) and a trivialization, pa , of the U(1)-bundle
ma: BY (My) x BS, (M) — BS, (M1) xy(1) B, (M2) over
=1, (€M) x €(Ma)) C By (M) xyq) By, (M>).

The trivializations pp,—p, and pa above are compatible respectively with 19;2_ » and
pri 01/71 + pr, 191/,2, which are in turn integral respectively over €(M7) x €(M3) and ¢
as the ¥, satisfy (2-30). All the trivializations above are determined by , and @,
modulo constant U(1)—maps.

Identify the Hermitian line bundle associated to the principal U(1)-bundle
ma: BY (My) x B, (M) — B3 (My) xy(1) BS, (Ma)

with the bundle Hom(pri&p, (M1), pry&p, (M2)), and use Ep, to denote the fiber of the
bundle E — M; at p; € M;. Given 2 € C°(X), let hol¥ (2) € Hom(Ep, , E,,) denote
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the holonomy along A of the A € Conn(FE) associated to 9. Observing that given a
de EK (X), the value holf (0) is identical for all representatives @ € C°(X) of 9, this
then defines a map, also denoted by hol; , from BY (X) to By (M1) x By, (M>) that
fits into the commutative diagram

hol,

B (X) B, (My) x B, (M)

(2-41) lﬁ ol lnA
ﬁB

BY(X) ————— B3 (M1) xy) B3, (M>)

Since T (M(X)) C €(My) x €(M3) C B’ (My) x B° (M) and T3 (M(X)) CTC
ggl (My) x%l)ggz (A{z), we may compose hol, | (x) With the trivialization pa to get
amap hy: M(X) CBJ(X) > U(l) =R/Z. Let

19)1 = dh)L,

a closed 1-form on M(X). Note that 9, depends only on 19;, , and 191’)2, not the

choices of P}, and P}, - Let ﬁi‘/[’ = pr; oﬁ?L and observe that both 9, and

(2-42) () 95,y = (32705, = —(F3")" 9,

define principal U(1)—connections on the bundle rj: /\71(X ) = M(X). Thus,

(2-43) —{1)*9),_, =756,

for a 1-form 6, on M(X), and, correspondingly, a [0;]r(x) € CAIQ]FX). Note that 6
does not depend on the choice of either 191/) , or ¥/ _, since varying the choice of either

~ p2’
changes ¥, and (Hg)*ﬁl’) by the same amount.

2—D1

As observed in Remark 2.2, with 6, constructed from forms on the bundle E’/‘{ (X),
the cobordism map m1[6,] is defined by a generalization of the formula in [17]. Let
mﬁ[@x] and %ﬁ[@l] be defined as a sum of integrals in the usual way, ie by (2-23), the
explicit formula for 7[0,](X), generalizing (2-20), is

me[0;] m[6;]
@49 [mz 6] (5] ]

where B
1y (03] := =iy, [0,]05 — 9ym3[0,] + 7y, [dhp, Im{ (1],

(2-45) . _ . _ _
(03] := —imy (03] — my, (0,105 — 9ymig [02] + 1y [dhp, Im [1]
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when py € Y_ and p; € Y4 ; when py and p, are both in Y4, then the 13 [dhp,]’s in
the formulas above are replaced by 73, [dhp,]—7},[dhp, ]. When py and p> both belong
to Y_, m[6,] is given by (2-20). (In this case it is 2[00 ] that gains additional terms.)

Example Let M be connected, and take X = R x M to be a product cobordism. Let
A CR x M be the graph of a path A(-): R — M that sends the (—oo, —L’) C R to
p1€M and (L', 00) CR to pr € M. Let M be as in Part 2(a). We choose a lifting <
of the embedding ¢: M — B (X) in a way parallel to (2-34), namely such that the
following diagram commutes:

H
M 22 BJ(X) - BS (M) xy(1) BS,(M)

(2-46) l . l l
Ha

M —2 3 BO(X) —2 5 BO(M) x B° (M)

As observed previously, over (¢ o Hg)/ﬁ C C(My) x €(M3y) C B°(M) x B°(M),
the bundle 7p,—p,: By (M) xy(1) By, (M) is trivialized by pp,— p1 This induces a
trivialization of its pullback bundle n;L B" (X) = B°(X) (via (H )*) over M <=
B (X). Choose ¢, to be constant with respect to this trivialization. Then (H )*o! o= D1
vanishes over 53 (M™1)\(M1)o) =7 LM\ Mp). As 9y, € Q1(B (X)) is closed
by construction, arguing as in (2-35) and the subsequent discussions, again using
[17, Theorem 24.7.2 and Lemma 21.3.1] and (2-33), we have

(2-47) 0= (S5(dV;), MT)

= (S3 02, [MT]) = (S5 0a, [(M)1])

= (S50, v (M)o) + (S50, v 1My \ Mo))
= (S5 (@D*D),_p, fic_.Ter ) x NF) + (0, My \ Mo)
(S ficp} x N )

+ ([0l mcx)- AM])

Ty x NT) — (€3 ([132)*»

Pl’ 172’

= (epy M) — {epys M)

+ ([0 @) — [0, m@xar) + [0p miwxary IIM]).
(To see the last two lines in the preceding expression, recall (2-36) and (2-42).) Sum-

marizing, we have

(2-48) ep, — 5, =0uy € CZ

M(RXM)’
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where
;R
. := [0l m@xan) = (05, I m@xan) + 0p, ] m@xan) € Clirncany-

Note that u in fact has integral coefficients, ie u) € C/L;I%RX m) C CLIERRX My To see
this, recall (2-32) and write

w= ¥ ([ ot rn@-p@)ul
VENH(M)
Meanwhile, for a 0 in M(c—, c4+)/R,

6y mod Z = / $r(dhy) mod Z =y (S2(1(c+))) —hy (G2 (i(c-))) € R/Z.
Ro Ro

Let 9 € C*(R x M) represent an element in ﬁ;lqﬂgl (@) and let y C R x M be the loop
formed by the union of four arcs (Rx{p1})U(Rx{—p2})U({oo}xA)U({—o0}x(=1))
in R x M, where A C M is the closure of the image of the path A(-): R — M. Then

~ - - [
h (S (c4))) —ha (52 (T (c-))) +hp (@) —hp, Q) = —— 1n(h015 (0) =0€R/Z,
and hence the coefficients in u; are f]Ra 0r—hp @) +hp,(0) €Z.

Let K;L = m{w]: C(M) — C(M), a degree —1 map defined in the same manner
as m[0;], namely as in (2-44)—(2-45) with 775, [dh 5; ] there replaced by 723, [up, | = (Up, )5
It follows from (2-48) and [17, Proposition 25.3.4] that

(2-49) Up, —Up, =[K,. 0]

Namely, I%A defines a chain homotopy equivalence between the two U —maps l(}pz
and Uy, .

The arguments in the preceding example generalizes readily to cobordisms X of
the types considered in Section 2.4. Note that the diagram (2-46) and the first three
lines of (2-47) hold in general. When X is not a product cobordism, the fourth line
of (2-47) has a simple modification by replacing its first term by the more general
3 (H )0 172 Lo =1 (M)g), where v~ 1 (M), fibers over (M)o, with fibers consist-
ing of 1-dimensional strata of N'* (M) or Nt (M>).

The map K , in the example has an analog in this setting, which we denote by the same
notation,

(2-50) K (X) 1= [03)(X) + Bp, #A1](X) — Bp, +A[1](X).
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In the above,
Op; =m0, 1R x M;) = —iilh5](M;)

1

is used to denote both an endomorphism on € (M;) and its associated endomorphism,
®p ®1, on C(Yi) Meanwhlle ®p * m[1](X) denotes either the composition

m[1](X) or m[l](X)@l,l depending on whether p; € Y_ or p; € Y4. Note that
wh11e m[0,](X) is defined for coefficient ring K = R, arguments similar to those in
the preceding example show that K » is in fact defined for coefficient ring K = Z. The
arguments also give rise to an analog of the identity (2-49),

(2-51) Uy, # MI(X) — Up, *M[1](X) = [Ky, 3].

Remark 2.4 Instead of the formula given in (2-50), it is possible to express K 2 as
Ky = m[m](X),

with uy € c! ’( M(X) in a way parallel to (2-48). This often yields cleaner formulas in
later discussions but is less practical, being not as concrete as (2-50). In what follows
we alternate between these two equivalent description of K » depending on which is
more convenient in the context.

(b) (when d = 2) For each M; € E, let y; C M; be an embedded (oriented)
circle or the empty set. Let ¥ C X be an embedded oriented surface asymptotic to
{yi}iex in the following sense: X N (X — X) is the union of connected components
of the following form: under the diffeomorphisms in (2-8), for each M; there is a
component (—oo, L’) x (—y;) C (—oo, L") x M; if M; is a negative end, and it is
(L', 00) x yi C (L', 00) x M; if M; is a positive end. Let Fy: B°(X) — R be the
function sending a 9 € B°(X) to
iFy

5 21’

where A € Conn(E) is the connection associated to an arbitrary representative of 0.
The function Fy depends only on the relative homology class of %: for another

Fx(0) :=

embedded surface X’ asymptotic to the end {y; }icz,
FE/ — FE = %(Cl(ﬁ) —Cl(K_l), [E/ — Z])

Let 0, € Q'(B°(M;)) and h/, : B°(M;) — R/Z be as defined in Part 2(b) if y; # @,
and let 6 :=0 and h}, =0 if y; = @. Then

(2-52) dFy =Y (IT"i)*6, .

I€EE
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Thus, an integral correction of [dFx]ymx) = S[Flmx) € CER  takes the form

- = M(X)
of 85, where Fx € C}y(yy C Cyiy) is given by

(2-53) Fg = [Felma) — Y TR, Tvx).
i€E

where h;,i: ¢(M;) — R is as in Part 2(b).

Example Take X = R x M again to be the product cobordism, and let ¥ be such
that s — X N ({s} x M) forms a homotopy between the circles y—, y4 C M, both
representing the element t; € Hy(M; Z)/Tors. Applying equations (2-53) and (2-52)
to this setting, and recalling from Part 2(b) the definition and properties of u;, we have

(2-54) §Fy = wy, —uy_.
By Proposition 25.3.4 of [17], this implies that

o

(2-55) Ry — 1y, = [0, A[Fg](R x M))].

Namely, m[Fx] defines a chain homotopy equivalence between the two t; —maps

ﬁ’lyf = n°1[u,-,_] and ﬁ’ly+ = r%[u}-ur].

The preceding example also generalizes readily. When X is not a product cobordism,
the identities (2-54) and (2-55) have respectively the analogs

(2-56)  Sps =) [(MM)*uy,], => m[1)(X) xthy, = [9,m[Fs](X)],
i€ i

where m[1](X) *m,, denotes the composition map m[1](X)m,, when y; C Y4, and

it denotes —m_,, m[1](X) when y; C Y_.

Remark 2.5 In view of (2-25), the actions (}p and my, defined in Part 2 above
extend to the case when M is not necessarily connected, and together they define a
A+(M):=K[U]® N* H1(M;Z)/Tors—action associated to each choice of p and {t; };
for possibly disconnected M. These more general lc}p and ‘l‘%ti are chain maps as in
the connected case; in fact it follows as a straightforward consequence of the case
for connected 3—manifolds, already verified in [17] in the process of defining the
Ay—actions on the monopole Floer homology HM. The arguments in Part 3(a) show
that in this more general setting, ﬁpl and l(}pz are chain homotopy equivalent when
p1 and p, belong to the same connected component of M, but not if p; and p>
lie on different components of M. In fact, the cohomology classes [up,], [4p,] €
H*(B°(M);Z)= H*(B°(My);Z)® H*(B° (M>); Z) are independent. Generalizing
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the definition of l}p , given a O—cycle p consisting of finitely many signed points p;
in M, let
Up = Z sign(p;)Up; .
i

Suppose M = M|, := M U M, consists of two connected components M; and M>,
and so B?(My) = B°(M;) x B°(M3). Suppose p; € M; for i = 1,2. Then the
spaces Z%l‘,’l (My) x Egz (M>) and Egl (M1) xy() 173’1‘,’2 (M>) in the second column of the
diagram (2-38) are respectively U ()xU (1)-and U (1)—bundles over B9(M), and
we abbreviate them respectively as By, (Mu) and By,_, (My). It is worth noting
that Bgz py (My) is of the same homotopy type as B? (M1 # M2) and M #M%\ being
the connected sum of M; of M» along p; and p,. While the Floer complex C (M)
in Part 2 above (heuristically) reflects the topology of B° (M), the connected sum
theorem in Section 6 relates the Floer complex C (My) (associated with B° (M)) not
By, _p, (My)”. Using
By, _p (My) asan S 1 _bundle over B? (M), the latter complex
is constructed using what was called the “algebraic S!—bundle” operation in [23],

directly to c (M|_|) but to a “Floer complex associated with B
the description of B

described in more detail in Section 4 below. The ingredients of this construction
consist of a chain-complex for the orbit space of the S!-action, endowed with a
“U-map” associated to its Euler class. The Euler class of the bundle BI‘,’2 —p, (My) is
pr; €pr — prT ep, 5 80, in the setting under discussion, these are C (My)), endowed with

U —map
(2-57) U,:=10 Uy, — Uy, @1 =Up,—p,.

The precise definition of (the hat flavor of ) “the Floer complex for E’gz_ o (M0)”
is then what is called Sﬁu C«(My) in Part 3 of Section 6.1. There, for any given
p € M, = M we also introduce an associated U —map on this Floer complex. Two
such U —maps associated to different points p, p’ € M are chain homotopy equivalent
even if p and p’ belong to different connected components of M. (See Lemma 6.4
below.)

Part 4: A;-actions under large r perturbations Let M be connected and let Q
denote one of the generating elements of U or t; of A4(M), U and t; being as
defined in the beginning of Part 2. In the nonbalanced setting discussed in [22], a
particular choice of p and the y; was made for the case when M is the auxiliary
manifold Y in Theorem 1.1 (see Part 7 of Section IV.1.3), and the associated U —maps
and t; —maps were defined concretely. In this part we relate the description therein with
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the more general and abstract construction given in Part 2 above. The same arguments
can be used to reinterpret the type of cobordism maps in Parts 1 and 3 under large r
perturbations in a manner similar to [22]. Details will be provided for some particular
3—manifolds and cobordisms (including Y and the product cobordism R x Y from [22]
as special cases) in Section 3 below.

In the context of [22] as well those to be discussed in Section 3, the spinor bundle S
on M splitsas E @ E ® K~!, and hence also a splitting of ST on R x M, which we
denote by the same notation. As pointed out in Part 2(a), in this case the tautological
section @ on E(R x M) or ER x M) is well defined.

The nonbalanced assumption implies that there are no reducible Seiberg—Witten solu-
tions, leading to significant simplifications. To name a few: this allows one to replace
the blowup space B® occurring in last part by the space B before blowing up. It also
implies that U — and ; —maps are trivial, and U = U =: U and m, = my, = my.
Moreover, the relevant moduli spaces are manifolds with corners in this setting; namely
(2-18) holds and [dM] = d[M].

The generating set of the relevant Floer complex, €(M), in [22] is denoted by Z =
Zsw,r. For large r, this is a finite set, and its elements are all represented by elements
of the form (A, (a, B)) € Conn(E) x I'(E @ E ® K~ 1) with «~1(0) consisting of
finitely many points in M. This makes it possible to choose the point p € M used
to define the U —map and the embedded circles y; used to define the t; —maps to be
mutually disjoint and to all lie in the complement of o~!(0) C M. Write the map, mo,
associated to each Q in a form similar to (2-14) and (2-15) (with my :(=U):

mp = Z Z wol(cr, e2:2)(2);
€1,02€2Z zem B(M ;c1,¢2)

and, in the monotone case, let wg (c1,¢2) = D, Wo(c1, ¢2; z). The discussion in the
rest of this part works for both wg (¢1, ¢2;2) and wg(c1, ¢2), but for simplicity only
the latter will be mentioned.

(a) (the U-map associated to p € M) In the formulation of Part 2(a), the coefficients
of the U,—map are given by

wy (c1, ©2) = (e, Ma(c1, ©2)).

This is the Euler number of the bundle E(R x M)|gz,(,..,) Telative to the trivi-
alization Py |yii, (c; )M, (Rxm)- 10 comparison, Section IV.1.3’s wy (cq, c2) is
taken to be the signed count of elements in M3 ,(c1,c2), where My ,(c1,¢2) C
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M (c1, c2) consists of elements 0 € My (¢, ¢2) represented by some (4, («, B)) €
Conn(E) x I'(ST) with « vanishing at x = (0, p) € X = R x M. Suitable genericity
assumptions on (T, &) and p were imposed so that forall ¢1, ¢c2 € Z, My ,(c1.¢2) =2
for k < 2 and M p(c1, ¢2) consists of finitely many regular points. Let &y €
I'(£x(R x M)) be the section obtained by restricting the tautological section & to
5|{x}xB(RxM)chB(RxM) = Ex(R x M). Then the space My ,(c1,c2) is precisely
the zero locus of the section @, on

./\/lk(tl, Cz) C BlOC(R X M)

The fact that My ,(c1,¢2) = @ for all ¢; and ¢ for kK < 2 implies that @y is
nowhere-vanishing on M{(R x M), and hence @y /|| defines a trivialization of
Ex(R x M) |35, (c1 )My (Rx ) » and the Euler number of the complex line bundle
Ex(RXM)| 54, (¢, .cp) Telative to this trivialization is precisely the Euler characteristic of
M p(er, ) = Ma(cq,e2) N &;1 (0), namely the value of wr (¢, ¢2) defined in [22].
This agrees with the expression from Part 2(a) if ¥ therein is chosen so that Gy /|0x| is
constant with respect to the trivialization py on M (R x M). As observed in Part 1(a),
the cocycle e € c*

M(R xM)
depends on the class [0p] v®rxM) € C (]Rx M) The aforementioned choice in the

depends on the d—cohomology class of ¢}, which in turn

large-perturbation setting is natural in the sense that under proper setup, one expects
(2-58) [Op]l mrxMm) — 0 and mﬁ]Nﬁ(M) —0 asr— oo,

which in turn is based on the expectation that, roughly speaking,

(2-59) |[V4a| = 0 pointwise away from «~!(0) as r — oo;

or, put in another way, a variant of [30, Proposition 4.1] holds. A weak version of the
latter in the setting of Section 3 is provided in Lemma 7.6.

To see how (2-58) would follow from (2-59), recall (2-32) and note that, as
MIRxM)Na 1) =

|oz||A is nowhere-vanishing for all 9 € M (R x M) Let (A, (x,B)) e C(Rx M) bea
representative of the aforementioned 0, and use Ag to denote the connection defined
on (R x M)\ a1 (0) satisfying P (a/|oe|) = 0. Thus, for 0 e M (R x M),

/9 = /(I,A)9 [(A Aa)—>0 ast— 0

if (2-59) holds, and (2-58) follows as a consequence.

Geometry € Topology, Volume 24 (2020)



3528 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

(b) (the t; —map associated to y; C M) According to Part 2(b),
(2-60) w, (c1, ©2) = (uy,, My (c1, ¢2))

= Y sim@Aaxy)

0ENo(c1,¢2)
= (0y,. M1 (c1, ¢2)) — (TIgh), . OM (c1. c2)).

If y; lies on the complement of o~1(0) for all (4, («, B)) representing elements ¢
in €(M), there is a natural choice of h;,i : €(M)— R among the Z%M) _many possible
lifts of h’, |¢(ar), leading to a natural choice of uy, . Namely, one sets

(2-61) R, (c) = 2l_n f

(A - I‘i\a)
Vi

in this case. With this choice of %, , the corresponding x,, satisfies
Xy, (¢) = holy, (;l\a) mod Z forall ce &(M),

where hol,, (/Ta) € U(1) = R/Z denotes the holonomy of Ag along y;. Such y; can
be found in large r—perturbation settings when a suitable variant of (2-59) holds; in
fact, with such y;,

(2-62) B, —0 asr—oo.

This may indeed be arranged in the setting of this series of articles. In various parts
of [22] as well as in latter parts of this article (eg (3-10)), choices of x,, were made via
explicit formulas, and (2-62) in this context is given a precise reformulation in terms
of xy, in Lemma 3.2.

In Part 7 of Section IV.1.3, the integer A, Xy, in (2-60) is given an alternative description
as the algebraic intersection number between o1 (0) and the cylinder R x y; C R x M.
To relate this with the definition in Part 2(b), note that by the choice of y;, the section
“lﬁxyi cRxp Of the bundle E |Exy,- is nowhere-vanishing over the boundary of the
cylinder d(R x y;) C {—o00, 00} x M, and the aforementioned intersection number
agrees with the relative Chern number of E|g, Vi relative to the trivialization over
d(R x y;) defined by «/|«|. This relative Chern number in turn can be expressed as

I
LF. =Ayxy, .
__ 902y
/l;xyi 2” Aa '
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3 Filtered monopole Floer homologies

The algebraic recipe for Ozsvith and Szabd’s definition of the four flavors of Heegaard
Floer homologies, labeled by the superscripts —, oo, + and A, was summarized
abstractly in Section 4 of [23]. In this section, we explain how the same recipe may be
applied in the Seiberg—Witten context to define analogs of Ozsvéth and Szabd’s Floer
homologies. These intermediate Floer homologies play a pivotal role in the proof of
Theorem 1.1.

3.1 Motivation and sketches of construction

The aforementioned recipe hinges on the existence of certain filtration on a Floer
chain complex with local coefficients in the group ring K[Z] = K[U, U], with
U corresponding to the generator 1 € Z. This Floer complex with local coefficients
constitutes the oo flavor of the Ozsvath—Szabé construction, while the “filtration” refers
to the filtration of the coefficient ring K[U, U] by submodules

.- CUK[U]cK[U]cU'K[U] c---cK[U, U]

If the differential of the co flavor of the Floer complex preserves this filtration, then
it induces a filtration on the oo flavor Floer complex by K[U |]-subcomplexes, which
are all isomorphic via multiplication by powers of U. This defines the — flavor Floer
complex. With these two basic flavors in place, the + and the A flavors are defined so
that they fit into short exact sequences (see (3-18) below) inducing what are called the
Sfundamental exact sequences of corresponding Floer homologies. In [23], the existence
of such a filtration is attributed to the existence of what was termed a “semipositive
1—cocycle”. The 1—cocycle used here refers to the cocycle that defines the local system
on the oo flavor Floer complex. The “semipositivity” condition serves to guarantee
that the differential is filtration-preserving. Note that the co flavor of Floer homology
depends only on the cohomology class of this cocycle. The other three flavors of
Ozsvéth and Szabd’s construction depend on the choice the cocycle that defines the
semipositivity condition.

Section 4.2 of [23] provides some examples where this recipe may be applied. Section 6
of the same article sketched how such semipositive 1—cocycles might arise in certain
versions of Seiberg—Witten Floer theory associated to equations of the form of (2-5).
In particular, choosing the metric and 2—form w in (2-5) to reflect the data that go into
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the definition of Heegaard Floer homology provides a bridge to relate the Heegaard
and Seiberg—Witten Floer homologies.

To elaborate, the local system underlying the Seiberg—Witten analog of the Ozsvath—
Szabd construction is closely related to what was denoted by I}, in [17] (see the
example in the end of their Section 22.6), where 7 is a singular 1—cycle in a certain
3-manifold M. Use [(A, ¥)] € B to denote the gauge-equivalence of (A, V). In [17],
this local system associates to each point on B¢ the “fiber” R, and, to each path
{[(A(7), ¥(7))]}¢ from [(A_, ¥_)] to [(A4, ¥41)], an isomorphism R* C End(R)
between the fibers over the endpoints. The latter isomorphism is given by multiplication
by the real number

(3-1) oi/27) [ [, &A@

Note that the exponent is the difference of the holonomy of A_ along the cycle n C M
from that of A, and it defines a real 1—cocycle in B°. Meanwhile, as only points
in € C B° and paths constituting the sets Mj(c—, c4+) with ¢c_,cy € € enter the
definition of a monopole Floer complex, it suffices to consider the holonomy difference
of paths corresponding to elements in M (c—, c4). The observation leading to [23]’s
construction of filtered monopole Floer homologies (in the sense of Ozsvath and Szabd)
is the following:

(3-2) For monopole Floer complexes associated to certain @ in the form of (2-3)
with large r and a certain choice of 7, the value of the aforementioned holonomy
difference is very close to a nonnegative integer.

(See also (2-62).)

Associating to each element in M (c—, c4) its corresponding integer, one has a (par-
tially defined) integer 1—cocycle on B with which one may define a Floer complex
with more refined local coefficients than I},. We denote the latter local system by A.
It replaces the fibers R over € of I}, by the group ring K[Z] = K[U, U ~11; and it
replaces the isomorphism induced by an element 0 in Mj(c—, c;) between these
fibers, namely (3-1), by U” where n denotes the aforementioned nonnegative integer
associated to 9. The fact that n» > O in all cases has the following consequence:
Use the corresponding monopole Floer complex with local coefficients, A;, as the
oo flavor Floer complex. There is filtration on this chain complex, CMx«(M; A;), by
subcomplexes of K[U]-modules. This can be used to define the other three flavors of
Floer complexes.
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The program described in [23] assumes various plausible conjectures and assertions that
come from an extension of the geometric picture in the last author’s work relating the
Seiberg—Witten and Gromov invariant for closed 4—manifolds (see [31; 30]). A proof
of these conjectures constitute a major part of the technical hurdle for implementing the
program in [23]. The difficulties arise because the 2—form z in [23] must have zeros.

In this series of articles [19; 20; 21; 22], the roadblock to the approach in [23] is
circumvented by a modification of [23]’s outline. Very roughly, the manifold M in [23]
is replaced by the manifold denoted by Y in [20]. This is obtained from M by adding
further 1-handles along the zeros of w on M. The 2—form w extends into Y as a
nowhere-vanishing closed 2—form, which we also denote by w. Over the middle of the
added 1-handle, this w approximates da for a certain contact form a, and as the special
1—cycle n (denoted by y therein) lies away from the zeros of w on M, this 1—cycle also
embeds in Y. This was_denoted by y(ZO) in [19; 20; 21; 22]. The technical challenge in
this new approach involves, among other things, the analog of (3-2) for the monopole
Floer complex associated to ¥, w and n = y(ZO). Some of these technical issues are
dealt with in [22]. Those that remain are dealt with in Sections 7-9 of this article.

In Section 3.2 below, we specify the class of 3—manifolds, denoted by Yz therein,
together with the 2—form w on it and the 1—-cycle n for which positively results
of the kind (3-2) hold. Section 3.3 describes the sort of cobordisms X for which
the companion statements hold. See Propositions 3.4, 3.5, 3.10, 3.12 and 3.15. The
remaining subsections give precise statements of the desired positivity results. The
formulation here involves a “cut-off”” version of the connection A (called A ), so that in
place of (3-2), its associated holonomy difference is integer-valued. (See Lemma 3.2.)
The conditions on Yz and X are introduced more for technical convenience rather
than essential reasons, and the statements in Sections 3.4-3.7 may conceivably hold
for more general 3—manifolds and 4—dimensional cobordisms.

3.2 The 3-manifold Y,

Let Z denote a given connected, oriented closed 3—manifold; and let Yz denote
the manifold that is obtained from Z by attaching a 1-handle at a chosen pair of
points, denoted by (po, p3) below. In the proof of the main Theorem 1.1, Z is taken
to be either S3, the manifold M in the statement of Theorem 1.1, or a manifold
that is obtained from M by attaching some number of 1-handles. Although Y7 is
diffeomorphic to the connected sum of Z and S! x §2, it is viewed for the most part as
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Zs UHo with Ho the attached 1-handle and with Zs being the complement of a pair
of coordinate balls about the chosen points pg and p3 in Z. The manifold Yz has a
distinguished embedded loop that crosses the handle #¢ once. This loop is denoted
by y. The three parts of this subsection say more about the geometry of Yz near Ho,
near Y, and in general.

Part1 The geometry of Yz near Ho is just like that given in Section II.1A. By way
of a reminder, the description of the geometry requires the a priori specification of
constants 8x € (0,1) and R > —1001In§«. Also needed are coordinate charts centered
on pg and p3. The latter are used to identify respective neighborhoods of these points
with balls of radius 1084 in R3. The pullback of the standard spherical coordinates
on R3 gives spherical coordinate functions on the neighborhood of pg, these denoted
by (r+, (04, ¢+)). There are corresponding coordinate functions for the neighborhood
of p3; these are denoted in what follows by (r—, (6—, ¢—)).

The handle #, is diffeomorphic to the product of an interval with S?. The interval
factor is written as [—R — 71ndx, R 4+ 71n 8] and u is used to denote the Euclidean
coordinate for this interval. The spherical coordinates for the S2 factor are written
as (0, ¢). The handle H, is attached to the coordinate balls centered on po and p3 as
follows: Delete the r < e 2R(784)™! part of the coordinate ball centered on pgo and
the corresponding part of the coordinate ball centered on ps3. Having done so, identify
Ho with the respective 1y € [e2R(78,)71, 784] and r_ € [e 2R (784)7", 764] parts
of these coordinate balls with H¢ by writing

(3-3) (ry=e RY (01 =60.¢1=¢)) and (—=e F" (_=71—-0.¢_=¢)).

The handle #Ho has a distinguished closed 2—form, this being % sinf df d¢. This
2—form is nowhere zero on the constant u cross-sectional spheres and thus orients these
spheres. Granted this orientation, then % sin 6 d6 d¢ has integral 2 over constant u
spheres.

Part 2 The loop y intersects Ho as the & = 0 arc. Thus it has geometric intersection
number 1 with each u = constant sphere. This loop is oriented so that the corresponding
algebraic intersection number is 41. A tubular neighborhood of y is specified with
a diffeomorphism to the product of S! and a disk about the origin in C. The latter
is denoted by D, and its complex coordinate is denoted by z. The diffeomorphism
identifies the z = 0 circle in S'xD with y. The circle S! is written in what follows
as R/(£yZ) with £, > 0 being a chosen constant. The affine coordinate for R/({, Z)
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is denoted by 7. The product structure on such a neighborhood is constrained where it
intersects Hq by the requirement that the o coordinate u on the intersection depend
only on 7. A neighborhood with these coordinates is fixed once and for all; it is denoted
by U, .

Part 3 Use the Mayer—Vietoris principle to write the second homology of Yz as
(3-4) Hy(Yz:Z) = Hy(Z:Z) ® Hx(Ho: Z).

The convention in what follows is to take the generator of H(Ho; Z) to be the class
of any cross-sectional sphere with the orientation given by the 2—form sin d6 d¢.
Fix a class in H2(Yz;Z) which has even pairing with the classes in H,(Yz;Z) and
pairing 2 with the generator of the H,(Ho; Z) summand in (3-4). This class is denoted
in what follows by c¢1(detS), and it is necessarily nontorsion by the above assumption.

There is a corresponding closed 2—form on Yz whose de Rham cohomology class is
that of c1(detS). In particular, there are forms w of this sort satisfying the following
additional constraints:

(3-5) e The form restricts to Hg as % sinf df dg.

e The form restricts to U, as L z|)dz A dZ with denoting a strictl
Y 2T g g g y
pOSitiVC function.

e There is a closed 1-form on Yz, typically denoted by v below, with the
following properties:
(a) It has nonnegative wedge product with w.

(b) It restricts to Uy, as dt, and restricts to Ho as H(u) du with H(u) > 0
for all u.

Fix such a 2—form as the perturbation form w in (2-5).

The metric on Yz is chosen to satisfy the following constraints:

(3-6) o The metric appears on g as the product metric of an S?—independent
metric on the interval [—R —In(78«), R + In(75,)] and the round metric
d6? +sin? 0 d¢p? on the S? factor. Meanwhile, the curvature 2—form of Ax
on Ho is 2’—71 sinf df d¢.

e The metric appears on U, as dt?+g(|z|) dz®dZ with g being the function
in the second bullet of (3-5). Meanwhile, Ax has holonomy 1 on y and its
curvature 2—form on U is iw.
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Many of the lemmas and propositions in the rest of this section depend implicitly on
the radius of D, and on the injectivity radius of the Riemannian metric. They also
depend implicitly on the norms of w, the curvature of Ak, the Riemannian curvature,
and the norms of their derivatives up to some order less than 10.

There are suitable choices for p with positive but small as desired P—norm that vanish
on Ho U U, . This last property is not a direct consequence of an explicit assertion
in [17] but it follows nonetheless from their constructions.

The reference connection Ag is chosen constrained only to the extent that it is flat
on Ho and is flat with holonomy 1 on U, .

The function on Conn(E) x C*°(Yz;S) of central concern in what follows is the
analog here of the function that is defined in (IV.1-16). This function is denoted by X.
The definition requires the a priori choice of a smooth function g: [0, o0) — [0, 00)
which is nondecreasing, obeys gp(x) = 0 for x < % and p(x) =1 for x > 19—6. As
in [22], it proves convenient to choose g so that its derivative, g’, is bounded by
210(1 — 5@)3/ 4. The definition of X uses the fact that w is nowhere zero on Uy. In
particular, Clifford multiplication by *w on U, splits S over U, as the direct sum of

eigenbundles. This splitting is
(3-7) S=E®EQK™'

with the convention being that xw acts as +i|w| on E. A given section ¥ of S is
written with respect to this splitting over U,, as a pair denoted by |w| 12(q, B).

Granted this notation, use g with a given pair ¢ = (A4, ) € Conn(E) x C*®°(Yz;S)
to define the connection

(3-8) A=A-Lp(aP)|a|?@Vaa —aV4a)

on E|y,. The salient point is that the connection A is flat on the part of U, where
|o|? > % (this is where g = 1) and the A—derivative of /|| is zero on this same
part of U, . This can be seen from the formulas

(3-9) o Fp=(1—gp(a|*)F1+ e (|a|*)Vaa A Vaa;

o Via=(1-p(a?)Vie +p(ja?)d(n|a|)a.

Meanwhile, the connections A and A are equal where |a|? < % (this is where g = 0).
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With A understood, then the value of the function X = X, on the given configuration
c=(A,¥) € Conn(E) x C*®(Yz;S) is defined by rule whereby

(3-10) X(¢) = ﬁ/(Z—AE).
Y

Remark 3.1 To relate with the general discussion in Part 2(b) of Section 2.5, note that
A from (3-8) agrees with the connection Ay over y; and so setting 8;, ©=/ v (/T —A)
for ¢ € B7(M) would meet the requirement that &, |¢ar) = hj, when h), is given
by (2-61). Meanwhile, the reference connection Ag plays the role of the basepoint
% € B°(M) in Section 2.5 in the following sense: Let (Ao, (g, Bo)) be an arbitrary
representative of ¢o and for any ¢ € lAif (M), et (A, (o, B)) be an arbitrary representative
of ¢. Then x,(¢), as defined in Section 2.5’s Part 2(a), equals

8@ =y @-N3® = o ([ =0 - [(4=D) = 5 [ A0

The last term above equals (3-8) when A9 = Ag . Note that ¢y and Ag are required
to satisfy certain constraints, namely both holy, (49) = 0 mod Z and hol, (Ag) =0
mod Z.

The following lemma supplies a fundamental observation about X:

Lemma 3.2 If the conditions in (3-5)—(3-6) hold, then there exists k > w with the
following significance: Fix r > k and a 1 -form p € 2 with P—norm less than 1. The
function X has only integer values on the solutions to the corresponding (r, (t) version
of (2-5).

This lemma is proved in Section 7.3.

3.3 4-dimensional cobordisms

This subsection describes in general terms the sorts of cobordisms that are considered.

To start, let Z_ and Z4 denote two versions of the manifold Z and let Y_ and Y4
denote the respective Z = Z_ and Z = Z versions of Yz. There is no need to
assume that either Y_ or Y4 is connected, but if not, then the handle ¢ is attached
to the same connected component. Use y_ to denote the Y_ version of the curve y
and use y+ to denote the Y4 version. The corresponding versions of U, are denoted
in what follows by U_ and U .
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Of interest here is a smooth, oriented, 4—dimensional manifold X with the properties
listed below, in addition to those in (2-8):

(3-11) o There exists an embedding of R x [-R —1n(78+), R +1n(78x)] x S into X
that pulls back s as the Euclidean coordinate on the R factor. Moreover,
the composition of this embedding with the diffeomorphism in the second
bullet identifies the s < 0 part with (—oo, 0) X Hg in (—o0,0) x Y_; and
the composition with the diffeomorphism from the third bullet identifies
the s > 0 part with (0, 00) x Hg in (0,00) X Y.

e There exists an embedding of R x S! into X that pulls back s as the
Euclidean coordinate on the R factor. Moreover, the composition of this
embedding with the diffeomorphism in the second bullet identifies the
s < 0 part of R x S! with (—o0,0) x y_; and the composition with the
diffeomorphism from the third bullet identifies the s > 0 part of R x S
with (0, 00) X y+.

The image in X of the embedding of R x [—R —In(78+), R + In(784)] x S? from the
first bullet above is denoted by Up.

The notation used in the next constraint has C denoting the image in X of R x S! as
described by the second bullet of (3-11). This constraint requires that the y_ and y4+
versions of £, are equal:

(3-12) o There exists £, > 0 and a diffeomorphism of a neighborhood of C to the
product of R xR/(¢,,Z) with a disk about the origin in C. This disk is
denoted by D.

¢ The diffeomorphism identifies the Euclidean coordinate on RxR /(£, Z)x D
with 5.

e The s <0 and s > 0 parts of the neighborhood are in (—o0,0) x U— and
in (0, co) x U4, respectively. Moreover, the diffeomorphism on these parts
of the neighborhood respects the respective splittings of U_ and U4 as
(—00,0) xR/(£yZ)x D and (0,00) xR /(£ Z) x D.

By way of an explanation, a diffeomorphism of this sort exists if the conormal bundle
to C in X has a nowhere-zero section that restricts to the s < 0 part of X as the real
part of the C—valued 1-form dz along y_ and restricts to the s > 0 part of X as the
real part of the C—valued 1-form dz along y4 . The tubular neighborhood in (3-12) is
denoted in what follows by Uc . The diffeomorphism in (3-12) is used, often implicitly,
to identify Uc with R xR /({,Z) x D.

Geometry & Topology, Volume 24 (2020)



HF =HM, V 3537

In addition to those listed in (2-12), the 2—form wy to use in the Seiberg—Witten
equations is required to satisfy the following additional constraint:

(3-13) The pullback of wy to Uy via the embedding from the fourth bullet of (3-11)
is twice the self-dual part of %sin 0 dO d¢ and its pullback to Uc via the
embedding in (3-12) is twice the self-dual part of 2’—]1 g(|z])dz Andz.

Meanwhile, the metric on X is required to satisfy the following constraints in addition

to those in (2-9):

(3-14) o The metric pulls back from Uy via the embedding of the first bullet of (3-11)
as the product metric defined by the Euclidean metric on the R factor and
an R—independent product metric on the [—R —1n(784), R + In(78x)] x S
factor.

¢ The metric pulls back from U¢ via the embedding in (3-12) as the product
metric given by the quadratic form ds? + dt? + g(|z|) dz ® dZ.

Extensions to Uc and Uy of the Y_ and Y versions of the line bundles K and E and
their connections Ax and Ag are needed for what follows. There is no obstruction
to making these extensions. Even so, it is necessary to constrain Axg and Ag on Y_
and Y4 so that extended versions of Ag and Ag on Uc U Uy exist with the curvature
of the extended version of Ag pulling back via the embeddings from the first bullet
of (3-11) and (3-12) as sin8 d6 d¢ and g(|z|) dz A dz. Meanwhile, the pullbacks of
the curvature of Ag via these embeddings is zero. Extensions with this property are
assumed implicitly.

The definitions in [17] are sufficiently flexible so as to allow for the following: for
any given r > 7, there are suitable perturbation terms for (2-10) with positive but
as-small-as desired P—norm that vanish on Uc and on the image of R x H via the
embedding map from the first bullet of (3-11).

With regards to notation and conventions, the propositions and lemmas that follow
refer only to (2-10). Even so, all assertions still hold for the versions with an extra
perturbation term if the perturbation term has P—norm bounded by e~ or has small,
r—independent P-norm and vanishes on Uc and on the image of R x Hg via the
embedding from the first bullet of (3-11). Proofs of the propositions and lemmas will
likewise refer only to (2-10). The modifications that are needed to deal with the extra
perturbation terms are straightforward and so left to the reader.

The second set of constraints require the choice of constants ¢ > 1 and r > 1. By way of
notation, one of the upcoming constraints uses the embeddings from the second and third
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bullets of (2-8) to write wy on the |s| € [L —4, L] part of X as wy = ds A *Wx + W
with ws denoting a closed, s—dependent 2—form on Y_ or Y4, and with * here
denoting the Hodge star for the metric g in the second bullet of (2-9).
(3-15) (1) The constant L in (2-9) is less than ¢. The constant L, in (2-12) is equal
to clnr.
(2) The norm of the Riemannian curvature tensor and those of its covariant
derivatives up to order 10 are less than r/¢ onthe s € [-L, L] part of X.
(a) The injectivity radius is larger than r~1¢ onthe s € [-L, L] part of X.
(b) The metric volume of the s—inverse image in X of any unit interval is
bounded by c.
(3) The metric g from (2-9)’s second bullet obeys |3%g| <rl/e,
(4) The norm of wy is bounded by ¢. The norms of its covariant derivatives
to order 10 are bounded by /¢ on the s € [-L, L] part of X.
(a) The 2—form wy is closed on the |s| < L —4 part of X.
(b) Use the embeddings from the second and third bullets of (2-8) to write
wy onthe |s| € [L —4, L] parts of X — Xior as wy = ds A %W + Wi
Then %w* =db, where b is a smooth, s—dependent 1—form on the rele-
vant components of Y_ or Y4 with [(x . -1 qz—4.1]) |62 <r=Ve,
(c) The 2—form wy is closed on the components of the L. —4 <|s| < Lo, —4
part of Xior.
(d) Use the embeddings from the second and third bullets of (2-8) to write
wy on the |s| € [Liyor —4, Lior] parts of Xior a8 Wy = ds A %Wy + Wi
Then %w* = db where b is a smooth, s—dependent 1-form on the rele-
vant components of Y_ or Yy with [y ~ciqp 47 5167 < e,
(5) There is a smooth, closed 1-form on X, denoted by vy below, with norm
bounded by ¢ and such that:
(a) The pullback of vy to (—oo, —L]x Y_ and to [L, 00) x Y via the em-
beddings from the second and third bullets of (2-8) is an s—independent
1-formon Y_ and Y.
(b) The pullback of vy to Uc via the embedding from (3-12) is dt and
its pullback to Uy via the embedding from the first bullet of (3-11) is
H(u) du with H(-) > ¢ L.
(c) *(ds Auxy Awy) > —r—1/¢ on the |s| € [L — 4, c0) part of X.

Note that item (4) of the preceding constraints ensures that the condition (2-21) holds.
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Definition 3.3 The metric and wy on X are said to be (¢, r)—compatible when one
of the following conditions are met:

(3-16) e The space X = R x Y, the metric has the form ds? + g with g being an
s—independent metric on Yz, and the 2—form wy is the s—independent
form ds A xw +w. Moreover, there exists a closed 1—form on Y, denoted
by v below, that restricts to U, as dt, and restricts to Ho as H(u) du with
H(-) > ¢!, and is such that v Aw > —r Ve,

¢ The metric and wy obey the constraints in (2-9), (2-12), (3-13), (3-14)
and (3-15).

By way of a look ahead, the notion of (¢, r)—compatibility is invoked below with r
given by the constant r in (2-10).

3.4 Positivity on cobordisms

An analog of the connection that is defined in (3-8) plays a role in what follows. This
connection is denoted in what follows by A. To define it, keep in mind that wy # 0
on Uc and so Clifford multiplication by w; on ST over Uc or (—oo, —2] x Hg or
[2,00) x Ho splits ST as a direct sum of eigenbundles, this written as

(3-17) StT=E®(E®K™")

with it understood that wy acts as multiplication by i |wy| on the leftmost summand
(namely, E). (This splitting is the analog of the splitting in (3-7)). A section, ¥, of S
is written with respect to this splitting over Uc as

¥ = |wx|?(a, B).

Meanwhile, A is written as Ag + 24 with A being a connection on E. Granted
this notation, write A using the formula in (3-8) with it understood that the covariant
derivatives of « that appear have nonzero pairing with the vector field % This
connection is flat where |a|? > % and «/|o| is /T—covariantly constant. Meanwhile,
Ais equal to A where |a|? < 116. The formulas for the curvature of A and the A—
covariant derivative of « is given in (3-9) with it understood that F4 and V4o now
have components that have nonzero pairing with 3%.

With a look ahead at the upcoming propositions, note that the integral of i F ; over C is
proved to be well defined when (A, ¥) is an instanton solution to (2-10). This is proved
using integration by parts to express the integral of i F; as the difference between
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integrals of the i R—valued 1-form A— Ag over respective s 3> 1 and s < —1 slices
of C.

The first proposition below concerns the integral of iF';z on C when X, its metric, and
the 2—forms wy and tv, define the product cobordism.

Proposition 3.4 Assume that X, the metric and wy can be used to define a product
cobordism once p is chosen. Assume in addition that Yz has a closed 1-form, v,
such that ve A w > 0, whose restriction to U, is dt and whose restriction to Ho is
Hdu with H being a strictly positive function of u. Given ¢ > 1, there exists k > 7
with the following significance: Fix r > k and p € 2 with either P—norm bounded
by e~ or with P—norm bounded by 1 but vanishing on R x (Ho U U,). Let ¢_ and
¢4 denote solutions to the (r, j1) version of (2-5) on Yz with a(c_) —a(c4) <r2~1/¢,
Suppose that 0 = (A, ¥) is an instanton solution to the corresponding version of (2-10)
on X with s — —oo limit ¢_ and s — oo limit ¢4 . Then i fc F;>0.

Proposition 3.4 is a special case of the next proposition, which concerns the integral
of iFz on C when the relevant data does not necessarily define the product cobordism.

Proposition 3.5 Assume that X and wy obey the conditions in Section 3.3, and that
the metric on X obeys (2-9) and (3-14). Then there exists k > m such that given any
¢ > k, there exists «, with the following property: Fix r > k. and assume that the
metric and wy are (¢, r = r)—compatible data. Fix p— and 4 from the respective

2 .
™ or with P—-norm less

Y_ and Y4 versions of Q with either P—norm less than e~
than 1 but vanishing on the respective Y_ and Y, versions of Ho U U, . Let ¢— and
¢+ denote solutions to the (r, u—) version of (2-5) on Y_ and (r, ) version of (2-5)
on Y4 with a(c—) —a(cy) < 2=Ve If o= (A, Y¥) is an instanton solution to (2-10)

with s — —oo limit ¢ and s — oo limit ¢4, theni [ F7>0.
Proposition 3.5 is proved in Section 8.2.

3.5 The bound for a(c-) — a(c4) in Proposition 3.5

Proposition 3.5 concerns only those instanton solutions to (2-10) that obey the added
constraint a(c_) —a(cy) < r2~1/¢. The two propositions that are stated in a moment
are used to guarantee that this constraint is met in the cases that are relevant to the
body of this paper. What follows sets the stage for the first proposition.
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Definition 3.6 Fix ¢ > 1. The metric on Yz and the 2—form w are said to define
c—tight data when there exists a positive, c—dependent constant with the following
significance: Use the metric, the 2—form w, a choice of r greater than this constant and
a chosen 1-form from 2 with P-norm less than 1 to define (2-5). If ¢ is a solution,
then |af(c)| < 21/,

Proposition 3.7 Let Yz denote a compact, oriented Riemannian 3—manifold with
a chosen Riemannian metric and a Spin® —structure with nontorsion first Chern class.
Let w denote a harmonic 2—form on Yz whose de Rham class is this first Chern class.
Assume that w has nondegenerate zeros on any component of Yz where it is not
identically zero. Then the metric and w define a c—tight data set if ¢ is sufficiently
large.

This proposition is proved in Section 7.8.

This notion of being c—tight is used in the second of the promised propositions. To
set the stage for this one, suppose that X is a cobordism of the sort that is described
in Section 3.3. Fix a metric on X and the auxiliary data as described in (2-9), (2-12)
and (3-13), and let 0 = (A, ¥) denote an instanton solution to a given r > 7 version
of (2-10). Use ¢— and ¢4 to denote the respective s — —oo and s — oo limits of 0.
Associated to 0 is a certain first-order, elliptic differential operator, this being the
operator that is depicted in (IV.1-21) when X is the product cobordism. The operator
in the general case is written using slightly different notation in (2.61) of [37]. This
operator has a natural Fredholm incarnation when the respective Y_ version of f; is
constant on a neighborhood of ¢_ and the Y version is constant on a neighborhood
of c¢. Use 1, to denote the corresponding Fredholm index. By way of a relevant
example, 1, is equal to fs(c4) — fs(c—) when X and the associated data define the
product cobordism. Section 8.7 associates an integer, 1+, to 0, which is defined
without preconditions on ¢_ and ¢4 . The latter is equal to the maximum of i, and 0
in the case when 1; can be defined.

Proposition 3.8 Assume that X obeys the conditions in Sections 2.2 and 3.3, that
the metric on X obeys (2-9) and (3-14) for a given L > 100, and that wy obeys the
conditions in (2-11) and (2-12) for a given Ly > L + 4. Then there exists k > 7 such
that for any given ¢ > «, there exists k., with the following significance: Suppose that
the respective pairs of metric and version of w on Y_ and Y, define c—tight data.
Fix r > k. and fix t— and w4 from the respective Y_ and Yy versions of 2 with
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P —norm less than 1 so as to define (2-10) on X. Let 0 denote an instanton solution to
these equations with 1,4 < ¢. Use c_ and ¢4 to denote the respective s — —oo and

s — oo limits of d. Then a(c_) —a(cy) <r2~1/e,

This proposition is proved in Section 8.7.

3.6 The cases when Y is from {M U (S!x §2),Y}, {Yi}r=o....c OF
Y u (S x $H)}k=o,....c-1

In what follows, the notation Yz stands, in addition to the manifold itself, also implicitly
for its associated metric and 2—form w from Part 3 of Section 3.2.

The body of this article is concerned with 2G 4 3 specific versions of Yz, these being
as follows: The first manifold of interest is M and S' x S? and the second is the
manifold Y from Section II.1. The next G + 1 manifolds are labeled as {Y }x—o....c
with a given k € {0, ..., G} version being the manifold that is obtained from M by
attaching the handle #( as directed in Part 2 of Section II.1A and attaching k of the
handles from the set {#;}pea as directed in Part 1 of Section II.1A. Note in this regard
that Y and Y are the same manifold, endowed with different metric and 2—form w.
Their main difference is the behavior of w over the attached handles H,: for Y it
approximates certain standard contact form (see (9-51) below), while for Y it is
harmonic (see Proposition 3.9). The last G manifolds of interest are the disjoint unions
of the various k € {0,...,G— 1} versions of Y} and S! x S2.

Part 1 Let Y denote the disjoint union of M and S' x S2. To see about the
constraints in Section 3.2, take Z to be the disjoint union of M and S3. The handle g
is attached to S3 so as to obtain S x S2. Write S! as R/(277Z) and let ¢ denote
the corresponding affine coordinate. Use the spherical coordinates (6, ¢) for S2. The
loop y is the § = 0 circle in S! x S2.

To see about w and the metric, consider first their appearance on S x S2. Take the
2—form w on S xS? to be sin @ df d¢ and the metric to be H dt? +d6? +sin? 0 d>
with H denoting a positive constant. If the first Chern class of det(S|ps) is torsion, take
w =0 on M and take any smooth metric. If the first Chern class of det(S|as) is not
torsion, take a metric on M such that the associated harmonic 2—form with de Rham
cohomology class that of ¢1(det(S|ar)) has nondegenerate zeros. Take w in this case
to be this same harmonic 2—form. By way of a parenthetical remark, a sufficiently
generic metric on M will have this property. See for example [11] for a proof that
such is the case.
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The data just described obeys the conditions in Section 3.2. Use Proposition 3.7 to see
that this data is also c—tight for a suitably large version of c.

Part 2 Let Yz denote the manifold Y that is described in Section II.1. Suffice it
to say for now that Y is obtained from Yy via a surgery that attaches some positive
number of 1-handles to the My part of Y. This number is denoted by G.

The 2—form w is described in Section II.1E. See also Part 3 of Section IV.1.1. Let b;
denote the first Betti number of M. Part 2 of Section II.1D describes a set of by + 1
closed integral curves of the kernel of w that have geometric intersection number 1
with each u = constant 2—sphere in Hg. One of these curves intersects Hg as the
6 = 0 arc. This is the curve y0) in the notation from Part 2 of Section IIL.1A. Use
the latter for y. It follows from what is said in (II.1-5) and Part 2 of Section II.1D that
the y has a tubular neighborhood with coordinates as described in Section 3.2 such
that the 2—form w has the desired appearance. Section II.1E and (IV.1-5) describe a
closed 1-form on Y that can be used to satisfy the requirements in the third bullet
in (3-5). This 1-form is denoted by v.,.

A set of Riemannian metrics on Y that have the desired form on #( are described
in Part 5 of Section IV.1.1. Although not stated explicitly, a metric of the sort that is
described in Part 5 of Section IV.1.1 can be chosen so that it has the desired behavior
on some small radius tubular neighborhood of y. Note that the set of metrics under
consideration are obtained from the choice of an almost complex structure on the kernel
of a 1-form & given in (IV.1-6). These almost complex structures are taken from the
set Jecn that is described in Theorem II.A.1 and Section III.1C. None of the conclusions
in [20; 21; 22] are compromised if the almost complex structure from Jech is chosen
near y so that the metric obeys the constraints in (3-6). To be sure, the chosen almost
complex structure must have certain genericity properties to invoke the propositions and
theorems in these papers. These genericity results are used to preclude the existence of
certain pseudoholomorphic subvarieties in R x Y. An almost complex structure giving
a metric near y that obeys (3-6) is not generic. Even so, the subvarieties that must be
excluded can be excluded using a suitably almost generic almost complex structure
from the subset described in Jech that give a metric that is described by (3-6) near y.
What follows is the key observation that is used to prove this: the curves to be excluded
have image via the projection from R x Y that intersects the complement of small
radius neighborhoods of y. A detailed argument for the existence of the desired almost
complex structures from Jec, amounts to a relatively straightforward application of
the Sard—Smale theorem along the lines used in the proof of Theorem 4.1 in [12].
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It follows from Lemma IV.2.5 and Proposition IV.2.7 that the metric just described
together with w define a c—tight data set on Y for a suitably large choice for c.

Part 3 This part of the subsection considers the case when Yz is some k € {0,..., G}
version of Yy . As noted previously, the manifold Yj is obtained from M by attaching
the handle Ho in the manner that is described in Part 2 of Section II.1A and attaching
k of the handles from the set {#p},ea as described in Part 1 of Section II.1A. Part 3
in Section II.1A defines a subset Mg C M and the constructions of both Y and Y}
identify My as a subset of both. The curve y?0) that was introduced above in Part 2
sits in the latter part of Y and so it can be viewed using this identification as a curve
in Y. Use this Y incarnation of y(?0) for the curve y.

The proposition that follows says what is needed with regards to the 2—form w and
the metric to use on Y.

Proposition 3.9 Fix k € {0,...,G}. There exists a nonempty set of Riemannian
metrics on Y with the following two properties: Let w denote the metric’s associated
harmonic 2—form with de Rham cohomology class that of cj(detS). Then w has
nondegenerate zeros. Moreover, the metric and w obey the conditions in Section 3.2.

This proposition is proved in Section 9.2.

The set of metrics in Proposition 3.9 is denoted by Met in what follows. Take the
metric on Y from this set and take w to be the associated harmonic 2—form with de
Rham cohomology class that of c;(detS). Proposition 3.7 asserts that the resulting
data set is c—tight for a suitably large choice of c.

Part 4 This part of the subsection discusses the case when Y7z is the disjoint union
of some k €0,...,G—1 version of Y} and S' x S%. The metric on Yy comes from
Proposition 3.9’s set Met, and the 2—form w on Y} is the corresponding harmonic
2—form with de Rham cohomology class that of ¢q(detS). Any smooth metric can be
chosen for a given S! x §2 component. The class c1(detS) is taken equal to zero on
each S! x S? component and this understood, the 2—form w is identically zero on
each such component.

What is said in Proposition 3.7 implies that the resulting data set is c—tight for a suitably
large choice of c.
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3.7 Cobordisms with Y, and Y_ either Y, M u (S! x S?), from {Y; ),
or from {Y; U (S1x S?))x

The first proposition concerns the product cobordisms when Yz is one of the manifolds
from the set ¥, M U (S! x S2), {Yi k=0 g—1- The
subsequent propositions concern certain cobordisms of the sort described in Section 3.3

..........

with Y4 and Y_ as follows:

e Oneis Y and the otheris Y.
e Oneis Yy and the other is Y;_; U (S! x S?) for some k € {1,...,G}.
e Oneis Yy and the otheris M LI (S! x §?).

These propositions assume implicitly that the metric and version of w on these mani-
folds are those supplied by the relevant part of Section 3.5. In particular, the metric
and w on M U (S! x $?) is described by Part 1 of Section 3.5, and this data on Y is
described in Part 2 of Section 3.5. Meanwhile, the metric on the relevant k € {0, ..., G}
version of Y} is from the set Met and w is the associated harmonic 2—form with de
Rham cohomology class that of ¢q(detS).

Proposition 3.10 Let Yz denote either M U (S! x S?) or Y orsome k € {0, ...,G}
version of Y with the 2—form w and metric as described in the preceding paragraph.
Given 1 > 0, there exists k > m with the following significance: Fix any r > k and a

™ or P—norm less than 1 but vanishing

1-form p € Q with either P—norm less than e~
on Ho U U, . Use this data with the metric and w to define the product cobordism
X = R x Yz as prescribed in Section 2.1. Suppose that ¢_ and ¢y are solutions to
the (r, ;t) version of (2-5) on Yz with |fs(c4+) — fs(c—)| <1, and suppose that 0 is an
instanton solution to (2-10) on X with s — —oo limit equal to ¢ and s — oo limit

equal to ¢4+ . Then X(c4) > X(c).

Proof This follows directly from Propositions 3.4 and 3.7 given what is said in
Section 3.5 about w and the metric. a

The next proposition describes cobordisms between Yy and M LI (S x S?) of the sort
that obey the conditions in Section 3.3.

Proposition 3.11 Take the metric on M LI (S! x §?) and harmonic 2—form w to be
as described in Part 1 of Section 3.5. The metric on M LI (S x S?) determines a
corresponding set of metrics in the Yy version of Met. Choose a metric from this set
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and take w on Yy to be the associated harmonic 2—form with de Rham class ¢ (detS).
Denote one of Yy or M U (S! x $?) by Y_ and the other by Y. . There exists a
cobordism that obeys the conditions in Section 3.3 and the conditions in the list below.
This list uses X to denote the cobordism manifold:

e The function s on X has exactly one critical point. This critical point has index
3 when Y_ =Y, and index 1 when Y_ = M L (S! x §?).

o There is a metric on X with an associated self-dual 2-form that are (c,r)—
compatible if L and c are sufficiently large and if r > 7.

This proposition is proved in Section 9.4.

The next proposition uses C to denote the cylinder in Proposition 3.11’s cobordism
that is described by the first bullet of (3-11). The proposition also reintroduces the
notation in (3-9).

Proposition 3.12 Take w and the metric on Yo and on M L (S! x S?) to be as
described in Proposition 3.11. Denote one of Yo or M LI(S! x S?) by Y_ and the other
by Y. Take the cobordism space X, the metric on X, and the associated self-dual
2—form wy to be as described by Proposition 3.11. Given k > 0, there exists k > 7
with the following significance: Fix r > « and 1-forms p— and py from the Y_
and Yy versions of 2 with either P—norm less than e~ or with P—norm less than 1
but vanishing on the Y_ and Yy versions of Ho U U,. Let 0 = (A, {) denote an

instanton solution to the resulting version of (2-10) with 154+ < k. Then i fc F;>0.

Proof The proposition follows directly from Propositions 3.5, 3.8 and 3.11 given what
is said in Section 3.5 about the respective Yo and M LI (S x S?) metrics and versions
of w. |

The next set of propositions are analogs of Propositions 3.11 and 3.12 in the case
when one of Y_ and Y4 is some k € {1,...,G} version of Y; and the other is
Yi—1 U (S' x S2), or when one is Y and the other is Y5. The propositions that
follow assume that c¢q(detS) on each k € {0, ..., G} version of Y; vanishes on the
cross-sectional spheres in any p € A version of H, and that it has pairing 2 with the
cross-sectional spheres in Hg. This class is also assumed to be zero on the S! x 2
component of any k € {0,...,G} version of Y;_; U (S! x S?). Meanwhile, its
restriction to the H (M ; Z)—summand from the associated Mayer—Vietoris sequence
for the various k € {0, ..., G} versions of H»(Yy;Z) is assumed to be independent
of k.
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Proposition 3.13 There exists, for each k € {0, ..., G}, a subset to be denoted by
Met(Yy) in the Y} version of Met with the following significance: Let Met(Yy)
denote the subset from Proposition 3.11. For each k € {1,...,G}, take a metric
from an open subset of Met(Y;_;) and a metric on S! x S? to define a metric on
Y1 U(S'xS?). Take w on Yy U(S! x S?) to be the associated harmonic 2—form
with de Rham class c1(detS). The chosen metric determines a corresponding subset
of metrics Met(Yy) C Met. Take a metric from the latter subset and take w to be the
associated harmonic 2—form with de Rham class c1(detS). Take Y_ to be one of Y}
and Yi_, U (S! x §?), and take Y4 to be the other. There exists a cobordism that
obeys the conditions in Section 3.3 and the conditions listed below. This list uses X to
denote the cobordism manifold:

e The function s on X has precisely one critical point. This critical point has
index 3 when Y has the S' x S? component and it has index 1 when Y_ has
the S! x S? component.

e There is a metric on X with an associated self-dual 2—form that are (c,r)—
compatible if L, ¢ and r > 7.

This proposition is proved in Section 9.5.

The next proposition considers the case when one of Y_ and Y4 is Y and the other
is Yg.

Proposition 3.14 Take w and the metric on Y to be as described in the opening
paragraphs of this subsection. Take the metric on Y from a certain nonempty subset of
Met(Y;) and take w on Y to be the associated harmonic 2—form with de Rham class
that of ¢1(detS). Take Y_ to be one of Y and Y and take Y4 to be the other. There
exists a cobordism that obeys the conditions in Section 3.2 and the conditions listed
below. This list uses X to denote the cobordism manifold:

e The function s on X has no critical points.

e There is a metric on X with an associated self-dual 2—form that are (c,r)—
compatibleif L, ¢ and r > 7.
The proof of Proposition 3.14 is in Section 9.7.

The upcoming proposition uses C to denote the cylinder in Propositions 3.13 and 3.14’s
cobordism that is described by the first bullet of (3-11). Notation from (3-9) is also
used.
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Proposition 3.15 Let X denote one of the cobordism manifolds that are described
in Propositions 3.13 and 3.14 with c1(detS) and the 2—form and metrics on Y_, Y4
and X as described therein. Given 1 > 0, there exists k > m with the following
property: Fix r > k and 1—forms p— and w4 tfrom the Y_ and Y4 versions of 2

with either P—norm less than e™ "

? or with P—norm less than 1 but vanishing on the
Y_ and Yy versions of Ho U U, . Let 9 = (A, ) denote an instanton solution to the

resulting version of (2-10) with 1,4 <1. Then i fc Fg >0.

Proof The proposition follows directly from Propositions 3.5, 3.8, 3.13 and 3.14 given
what is said in Section 3.5. |

3.8 Filtered Floer homologies and filtration-preserving chain maps

This subsection is divided into two parts. In the first part, we associate to each
triple (Yz,w,y) described in Section 3.2 a system of filtered monopole Floer ho-
mologies HM®(Yz,rw; A, ) for o = —, 00, +, A and r > 7, in the manner described
in Section 3.1. Recall the constraint on the cohomology class [w] from Part 3 of
Section 3.2. Together with the first bullet of (3-5), this implies that CM«(Yz, rw; Ay)
is associated with a negative-monotone, nonbalanced perturbation. For reasons that will
become clear in a moment, we use CM°(Yz, (w); Ay) to denote CM4(Yz, rw; Ay)
for r > 7 and similarly for its homology. (The notation (w) stands for the ray
R*[w] ¢ H?(Yz;R).) This includes, as special cases, the triple (M, w, y) in [23]
(M is denoted by Y in this article), and the triple (¥, w, y?9)) in Section IL1A.

In the second part, a filtration-preserving chain map from CM™(Y_, (w—); A,_) to
CM™ (Y4, (w4); Ay, ) is associated to each triple (X, @y, C) described in Section 3.3.
To explain the notation, X is a cobordism from the 3—manifold Y_ to Y4, while wy
is a self-dual 2—form on X related to w— and w4 as prescribed by (2-11). What is
denoted by C signifies an embedded surface in X, with ends y— C Y_ and y+ C Y4
see the second bullet of (3-11).

Part 1 To accomplish this task, begin by introducing the (partially defined) integral
1—cocycle on B?(Yz) defining A, . This local system associates each ¢ € Zy, ; the
group algebra K[Z] = K[U,U™!]. To each d € M;(c_, ¢y ) it associates U"® ¢
End(K[U, U1]), where n(d) = X(c4) — X(c—). Here, X is the “modified holonomy
function” given in (3-10). Lemma 3.2 asserts that n(9) € Z for ¢_, ¢4 € Zy, ;. Following
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the recipe in Section 3.1, we then set (CM™, 9°°) to be the monopole Floer complex
with twisted coefficients:

CM™® =K[U, U™ (Zy.,).

0%c_ = Z Z sign@) U™ ¢y for ¢ € Zy .
€2y r0eMy(c—,c4)/R

The monotonicity condition guarantees that the sum here is finite. The sign(d) € {£1}
in the preceding expression is assigned according to the orientation convention laid out
in [17].

One may regard CM® as a chain complex over K, generated by éw,r = Zyr X 71.
The generating set éw,r lies in B® = C°/ Gy, a Z—covering of B?. Here, G, C G
consists of smooth maps u: Yz — S!, with deg(u|,) = 0. Multiplication by U"
then corresponds to a deck transformation on this Z—covering, and the condition on
c1(detS) set forth in Part 3 of Section 3.2 then implies that deg U = —2. The grading
set of E’w,r is an affine space over Z/czZ, where cz € 27 is the gcd of the values of
c1(detS) on H,(Z;7Z) according to the splitting (3-4).

Remark 3.16 (a) Here, we use the same notation U for the map on monopole Floer
complexes described in Part 2 of Section 2.4 and deck transformation here. This is
because for the kind of Yz considered in this article, they turn out identical by the
arguments for the last bullet of Proposition IV.7.6.

(b) The way the monopole Floer chain complex with local coefficients is graded follows
some definitions in the literature, eg what is called a Floer—Novikov complex [24].
The book [17] does not seem to contain an explicit discussion on the grading of Floer
complex with local coefficients.

Suppose that (Yz, w) define c—tight data for ¢ > 1 (see Definition 3.6). Take X to
be the product cobordism R x Yz, wy = w+ds A*w and C =R xy C X. Let
0 € M(c—, cy) be as in Proposition 3.5. In this case, i fC F;=2n(X(cy) —X(c-))
and Proposition 3.5 asserts that one has n(0) > 0. Thus,

CM™ =K(Z x ZZ% c CM™®
is a subcomplex of K[ZZ%] = K[U]-modules. One may then introduce

CMt =CM*®/CM~, CM=CM /UCM™.
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The resulting short exact sequences
(3-18) 0 >CM~ - CM® - CM" -0 and 0—UCM —CM~ —CM — 0

induce the fundamental exact sequences on the homologies. As the A" Hy(Yz)/Tors—
action on the monopole Floer complexes commute with U, the exact sequences above
preserve the A—module structure.

In Section 3.5, the assumption that (Yz, w) is c—tight is verified for the particular
manifolds listed therein. In particular:

(3-19) ¢ When Yz =Y and its associated s, w, Yy and metric are as in Part 2 of
Section 3.5,

HM®(Y, (w); A,y) =H°(Y) = HYy

in the notation of [19; 22].

e When Yz =Y, k €{0,...,G} and its associated s, w, y and metric
are in Part 3 of Section 3.5, the corresponding HM®(Yz, (w); A,) are
instrumental in the proof for Theorem 1.1. Recalling that Yy and its
associated s, w, y and metric are respectively what was denoted by M,
§, w and y in [23], we observe that

HM® (Yo, (w); Ay) = HMT®,
introduced in [23].

Note that CM°(Yz, (w); A,) and HM°(Yz, (w); A,) introduced above implicitly
depend on r and (T, &). According to the convention set forth in Section 1.3, this
is permissible if there are chain homotopies between the monopole Floer complexes
associated with different parameters preserving the A¢-module structure. This is
justified by combining the arguments proving Proposition IV.1.4 with what is said in
the upcoming Part 2.

Part2 We now consider chain maps induced by (nonproduct) cobordisms X described
in Section 3.3. To begin, we introduce an X —morphism from A,_ to A, . (See
Definition 23.3.1 in [17] for “X —morphism”.) This is done in a way similar to the
definition of I'c in equation (23.8) in [17]. In [17], a “cobordism” from Y_ to Y4
refers to a compact 4—manifold with boundary Y4 U (—Y_). This corresponds to the
compact part of our X, denoted by X, = s71 ([=Ltors Ltor]) - The surface C N X, plays
the role of the singular 2—chain v in (23.8) of [17]. It has boundary y4+ — y—, with
Y+ >y >~ y—. Given c— € Zy_ (Y-) and ¢4 € 2y, (Y4), let 0 denote an element
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in B9 (X) with s - —oo limit ¢c_ and s — oo limit ¢4 . Then ['¢ is an isomorphism
from T,_(c-) ~ R to I}, (¢4+) =~ R given by multiplication by e(/27) [c Fa | The
analog of I'c in our setting, denoted by Ac below, is given by an homomorphism
from Ay_(c—) ~K[U, U] to Ay, (c4) = KIU, U] for each pair ¢_ and ¢ . This
is given by multiplication with U nQ) where

(3-20) 10) = 5 [ Fp=x (=% (e

the rightmost equality being a consequence of Stokes’ theorem. This is again an integer
according to Lemma 3.2. With A¢ in place, given a k—cochain u € ck (B°(X);K) in
the notation of Section 2.4, we define the map

m®u](X, (wx): Ac): CM®(Y_) =K[U, U™ |(Zw_)
— CM®(Y3) =K[U, U™ (Zw, )
by the rule
Zy_Y )3~ Z Z(u’ M (X, e, C+))U"(ai)c+,
C+€ZW+J_(Y+) i

where i runs through each connected component of My (X, c—, ¢4+) and, for every i,
0; is an element in the corresponding connected component. In order for the sum
on the right-hand side to be well defined, we assume that H2(X,Y_) = 0 and wy
satisfies (2-22).

To proceed, suppose (Y—, w—) and (Y4, w4 ) are c—tight and consider
C(X, (wx): Ac)lem—(v_)-

Suppose furthermore that (X, wy) satisfies the conditions in Propositions 3.5 and 3.8.
By these propositions, the integers 7(9;) in (3-20) are nonnegative, implying that the
image of C(X, (wx): Ac)lcm—(y_) under m™ lies in CM™ (Y4). Use

m~[u](X, (wx): Ac): CM™(Y-) - CM™(Y+)

to denote this map. It is straightforward to see that both m°® and m™ are chain maps,
given that CM® is a variant of monopole Floer complexes, and the nonnegativity
of the integers n(?) appearing in the formulas for 0> and m®°. These then induce
homomorphisms between the respective homologies,

HM. (X, (wx); Ac): HM®(Y_, (w—-); A,_) = HM° (Y4, (wy): Ay, )

for o = —, co. Like those in Part 1, these maps preserve the A;—module structure.
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4 Some homological algebra

As mentioned in Section 1, the purpose of this section is to review the algebraic
background for the upcoming Proposition 5.9. The latter is used to relate the formula
for monopole Floer homology of a connected sum, given in Proposition 6.11 below,
in terms of the monopole Floer homology with balanced perturbation that appears in
Theorems 1.1 and 1.4. This computation turns out to be a simplest manifestation of the
so-called “Koszul duality”, well known in certain circles. For a sampling of literature
on this subject, see eg [4; 15; 10]. The variant most relevant to this article is discussed
in [10], which relates the ordinary chain complex of an S!—space, equipped with an
H,(S')—module structure capturing the S!-action, with the S!—equivariant chain
complexes of the same space, which are naturally endowed with H*(BS!)-module
structures. We need however only a small portion of the full machinery in [10]. Thus,
in this section we give a self-contained though elementary exposition of the relevant
part of this story, tailored to our needs.

4.1 Terminology and conventions

By a modules over H*(BS') we mean a chain complex with a module structure
over K[u], where u acts as a chain map of degree —2. The prime examples of
such modules in this article are the monopole Floer complexes. In parallel, a module
over H,(S) stands for a chain complex with a module structure over K[y], where
y acts as a degree 1 chain map. An example that appears later is the chain com-
plex to compute the monopole Floer homology of a connected sum; see (6-13) in
Proposition 6.7. Meanwhile, a graded homology module H, will be viewed as a chain
complex with zero differentials. We use capital letters U and Y to denote the chain
maps corresponding to the action of u and y.

Definition 4.1 A morphism from one module over H*(BS!) to another is a K—chain
map which commutes with U —actions. Morphisms between H,(S')—modules are
defined similarly, with Y replacing U. We shall also often encounter a weaker notion:
a p-morphism between two H*(BS!)-modules is a K—chain map which commutes
with U —actions up to K —chain homotopy.

4.2 From H*(BS!')-modules to H,(S')-modules

Given amodule (C, d¢) over H*(BS!), we define the module Sy (C) over Hy(S')=
K[y] as follows:
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(4-1) (Su(€).Su(dc)) = (C®K[yl.dc ® j +U ® y),
where the homomorphism ;: K[y] — K[y] is defined by
Jjla+by)y=a—-by fora,bek,

and the y-action is simply the multiplication 1 ® y (; was denoted by o in [23];
compare equation (5.1) therein).

To see that Sy (C) is indeed a chain complex, note that the condition Sy (d¢)? =0 is
equivalent to the pair of identities 8%. =0, and [dc,U] =0.

Lemma 4.2 A p-morphism ® between two H*(BS')—modules (Cay.9(1)) and
(C(2), 0(2)) induces an Hx (S1)—module morphism Sy (®) between Svu, (Cry) and
SU@) (C(2)), where U(yy and U,y denote the u-action on C(yy and C(y), respectively.
Furthermore:

e Sy () isinjective if O is injective, and it is surjective if ® is surjective.

e Let ® be another p—morphism of H*(BS')—-modules from (Cay.9q1)) to
(C2),92)). Then ® 4 @ is a p—morphism as well, and

Sy (®+ @) = Sy(P) + Sy ().

o Let W bea p—morphism of H*(BS')—modules from (C2).0(2)) to (C(3),0(3))-
Then ¥ o ® is a p—morphism as well, and

4-2) Sy(Wo @) = Sy (V) o Sy (P).

Proof Asa p-morphism, ® satisfies both

4-3) @d(1)—(~1)* Y =0, @U;)—Ux®=Kadq)+(—1)* P, Ko
for a K—-linear homomorphism Kg. This is equivalent to the identity

(4-4) Su(®)Su () — (D)™ ¥ Sy (32)) Su (@) =0,

where Sy (®): C(1) ® K[y] — C2) ® K[y] is defined as

(4-5) Su(@) =2® ;" + Ko ®y.

This verifies that Sy (®) is a chain map. Moreover, since the y—action on Sy (C(1))
and Sy (C(z)) is multiplication by 1 ® y, it is immediate that Sy (®) commutes with
the y—actions on both sides. The claim that Sy preserves injectivity and surjectivity
can be checked directly from the definition of Sy (®).
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Since the construction of Sy (®) is linear, the second item in the statement of the
lemma is obvious.

To verify the third bullet about the composition of p—morphisms, let
Su(¥) =¥ Y + Ky ®y.
Then (4-2) is straightforward to verify, given that
Kgoo = Ky o @ + (—1)%tWwo Kg.
The fact that W o @ is a p—morphism follows directly from (4-4) and its analog for W.
The first bullet may be directly verified after writing out the definition of Sy (®)

explicitly. More is said in the proof of Lemma 4.7 below. |

Remark 4.3 Given a p-morphism ®, the H,(S!)-morphism Sy (®) given in (4-5)
apparently depends on the choice of the degree (deg ® + 1) map K¢ . By (4-3), two
different choices of K¢, say K¢ and K/, differ by a chain map:

[0c, Ko — Kj] := (Ko — K)d(1) + (—1)* P95 (Ko — K}) = 0.

We say that K¢ and Kj, are homotopic if there exists a degree deg ® linear map
Zg: C1y — C() such that

Ko — Ky =[dc. Zo] := d2) Za — Za(=1)** P ).

Let Sy (®) and Sy (®)’, respectively, denote the versions of Sy (®) defined using Ko
and Kj. They are chain homotopic when K¢ and Ky, are homotopic:

(4-6) Sy (®)—Sy(®) = ([0c. Zo])) ® y = [Su(dc). —Za Q y].

(Keep in mind that in our notation, |-, -] stands for a commutator in a graded sense.)
Thus, for a given @, the homology H.(Sy (®); K) depends only on the (relative)
homotopy class of K¢ .

Definition 4.4 Two H*(BS!)-modules (C1), 91)) and (C(2), d(2)) are said to be
p—homotopic if there exist p—morphisms ®: C(;) — C() and W¥: C() — C(y), and
Hy: Cy — Cq1y and Hj: Co) — C(2), such that

Vod—1Idg) =[d), H1], PoW—Idp) = [d2). H2].

They are said to be homotopic if ®, V, H; and H, are morphisms. The notion of
two H,(S')-modules being homotopic is defined similarly.
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Lemma 4.5 Suppose two H*(BS')-modules (C1),91)) and (C(), d(2)) are p—
homotopic via p—morphisms ®: C(;) — C(z) and V: C(3) — C(y) as above. Then
the H«(S')—modules Sy (C1y) and Sy(C(y)) are homotopic via the maps Sy (®)
and Sy (V).

Proof By assumption, there exist Hy and H» such that ® and W satisfy
Vod—Idg) =[d), H1], PoW—Idp) = [d(2), H2].

We need to verify the identities

Sy (W) oSy (@) —1dy = [Su(@)). Su(HD], [Su(®),Y]=0,
Su(®) o Sy (V) —1dy = [Su(d2), Su(H2)], [Su(¥),Y]=0.

It suffices to verify the first and the third identities, since the second and the fourth are
entirely parallel.

To verify the first identity, use (4-2) and the fact that W o ® —1Id(;) = [d(1), H1] to
reduce it to

Sy (Id¢py) =1d.
This holds by taking W = Id(;) and Ky = 0 in (4-5).

To verity the third identity, simply plug in the definition of Sy (®) and Y =1 ® y. O

4.3 From H.(S')-modules to H*(BS!)-modules

First, introduce the K|[u]-modules
@ V™= uK[u], Vo i=K[u,u™],
V=K, u N uKu], V" i=Ku]/uKu.

These modules by definition fit into the short exact sequences
(4-8) 0 V- sy Lyt o,
(4-9) 0>V 2 V- > V"N—0.

We shall frequently view these four modules as a system, and write them collectively
as V°. The same convention applies to the various systems of modules we construct
out of these four below.
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Definition 4.6 [13; 23] Given a module (C, d¢c) over H«(S!), we define the fol-
lowing system of modules over H*(BS') = K[u]:

(4-10) (Ey(C),Ey(dc)):=(C®V° dc®1+Y ®u) foro=—,00,+,A,
where the u—action is the multiplication 1 ® u.
The fact that Ey (d¢c)? = 0 again follows directly from the definition of H.(S')—

modules: 82C =0, [Y,dc] =0 and Y? = 0. By taking tensor product of (4-8)—(4-9)
with C, one has the corresponding short exact sequences of K [u]-modules

4-11) 0— E5(C) M8, £2(C) - E (C) -0,
(4-12) 0— Ey(C) &% E5(C) — E§(C) — 0.

It is also straightforward to verify that the maps in the above exact sequences commute
with Ey (d¢), and therefore they induce long exact sequences of H*(BS!)-modules
associated to (C, d¢),
— [V s Sy« —

(4-13) -+ Ho(Ey (C)) ™5 Ho(EP(C))— Ha(EF (C)) =5 Hu 1 (E (C)) >+,
(4-14) > H(Ey(C))"5> Hx(Ey (C))— Hx(Ef(C))— Ha1 (Ey (C))—>- -
We call (4-13)—(4-14) the (first and second) fundamental exact sequences for the
H,(S')-module C. For convenience of later reference, we denote the short exact se-
quences of H*(BS')-modules (4-11) and (4-12) by Ey (C) and Ey (C), respectively.
Correspondingly, the long exact sequences (4-13) and (4-14) are denoted by H(Ey (C))

and H(Ey (C)). It is straightforward to verify the assertion in the following lemma
and so we leave it to the reader to check that:

Lemma 4.7 A morphism ¢ between H,(S')-modules (Cq1y» 1)) and (C(2y. 0(2))
induces a system of H*(BS')-module morphisms

E°(¢): E;’(l)(C(l)) — E;(z) (C(Z))» p—>¢ol,

for o = —, 00,4+, A, where Y(1y and Y(3) denote the y—actions on (C(yy, d(1)) and
(C(2). 0(2)), respectively. Moreover:

o E°(¢) isinjective if ¢ is injective; it is surjective if ¢ is surjective.

e Let ¢/ be another morphism of H,(S')—modules between (Cq1y,9(1)) and
(C2),92)). Then ¢ + ¢’ is an H,(S')—morphism as well, and

E°(p+9¢')=E°(9p) + E°().
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e Let ¥ be another morphism of H.(S')-modules between (C(2). 9(2)) and
(C3),9(3)). Then yr o ¢ is an Hy (S1)—morphism as well, and
(4-15) E°(Yog)=E°(Y)o E°(@).

e The system of morphisms E°(¢) combine to define morphisms of short exact
sequences of H*(BS')-modules

E(¢): Ey(Ca)) = Ey(Cp)) and E(¢): Ey(C(1)) — Ey(C(z)).

Correspondingly, their induced maps on homologies H«(Ey (¢))) combine to
define morphisms of long exact sequences of H*(BS')-modules

H(Ey (9)): H(Ey(Cqy)) > H(Ey (C(z))).

H(Ey(¢)): H(Ey(C(1y)) > H(Ey (C(z))).
Proof The proofs are straightforward; thus we shall say no more than making the
following remarks: Both Ey and Sy preserve injectivity and surjectivity due to the
same reason, namely they can be written in polynomial form (in » and y, respectively,
which defines a filtration), where their 0" order term takes the form of a tensor product

of the original morphism and an automorphism. This in turn implies that both of them
takes short exact sequences to short exact sequences. O

Lemma4.8 Let C(y) and C(;) denote homotopic Hx (S1)—modules. Then E3 (C)y)
and Ey (C(2)) are homotopic H*(BS')-modules.

Proof By assumption, there exist morphisms ®: C(1) — C(2) and W: C() — C(y),
and Hy: Cq) — C(q) and Hj: C(3) — C(2), such that
(4-16) Wod—Idgy = [0y, H1], ®oW—Id) = [3(2), Hal.
Lemma 4.7 claims that E°(®): E}(C(1)) — Eyp(C(z)) and E°(V): Ey(Cz)) —
E3(C(1)) are systems of morphisms. Meanwhile, the desired identities are

E°(W)o E°(®) —1dy) = [Ey (d1)). E°(HY)],

E°(®) 0 E°(¥) —1ld(a) = [Ey (3(2)). E°(H2)].

We shall only verify the first identity, since the second is similar. For this purpose,

(4-17)

apply E° to the first identity in (4-16), then apply Lemma 4.7 and subtract the first
line of (4-17) to the resulting identity. This leads to

Eo(Id(l)) —Id = [Y, Hl] Xu.

This is true because of the definition of E° and the fact that Ay is a morphism. 0O
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4.4 Koszul duality

The functors Sy and £~ may be viewed as inverses of each other in the following
sense:

Proposition 4.9 (a) Let (C,dc) be an H*(BS')—module. Then there is a system
of isomorphisms of H*(BS')-modules

(4-18) H.(Ey Sy (C)) ~ Hi(C ®Kkp V°).

Moreover, these isomorphisms have the following naturality properties:
(i) They are natural with respect to p—morphisms of H*(BS')—modules.

(i) They combine to define isomorphisms of long exact sequences of H*(BS1)—
modules

HEySy(C)) ~ H(C ®kpq V), H(EySy(C)) ~ H(C ®kpy V).

Here, H(C QK[ V) and H(C ®k[y) V) respectively denote the long exact
sequence induced by the short exact sequences of H*(BS')—modules,

0—>CRkV — C QK Ve - C QK [u] vt o,
0—C®kp V™~ LNV QK V"~ — C ®K[u VN —=0.

(b) Let (C,dc) be an Hy(S')—module. Then there is an isomorphism of H(S!)-
modules
Hy«(SyEy(C)) >~ H«(C).

Proof (a) Written out explicitly,
EySy(C)=C®K[y]®V°, EySy(dc)=0dc®j®1+UQy®1+1Qy®u.

View this as a filtered complex by the total degree in the C ® V° factor. Then the
E1—term of the associated spectral sequence is simply

(4-19) CROK{}I®V/(U®y®1+1®y®u)(C ®K{1}®V°)) ~ C ®kp V°.

with differential d; given by —d¢ . This spectral sequence degenerates at E5, and we
have H«(Ey Sy (C)) >~ Hx(C ®k[u) V°), as claimed. As the u—action on Ey Sy (C)
is 1 ® 1 ® u and the u—action on C is U, the quotient in (4-19) shows that the isomor-
phism preserves the K[u]-module structure. Property (ii) also follows immediately
from this computation.
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On the other hand, given a p—morphism ® between H*(BS')—modules (Cry- 91))
and (C(2), d(2)), by Lemmas 4.2 and 4.7 there is a corresponding system of morphisms
of H*(BS!)-modules E ySu (®). The naturality property (i) follows from the fact
that these morphisms preserve the filtration.

(b) Written out explicitly,
SuEy (C)=CouK[u]®K[y], SuEy(0c)=0c®1®0+Y®uc+1Qu®y.

Filtrate by the total degree of the factor C ® uK][u] as in the previous part. Then the
E{—term is

C ®uKu]® R{y}/(1®u® y)(C ®uK[u]® R{1})) ~C,

on which d; acts as —d¢ . The spectral sequence again degenerates at E;, yielding
the claimed isomorphism Hyx(Sy Ey (C)) = H«(C). To see that the module structures
agree, note that a cycle in the E|—term given by an element —z; € C with dcz; =0
corresponds to a cycle in Sy Ey (C) of the form Zo® 1 + 21 ® u ® y, where Zg €
C ® uK|u] satisfies

—~(Y®uZo)®1+(189u)Z))®y—(Yz1)) ®u> ® y = 0.
In other words, Zo = —(Yz1) ® u, and the cycle in Sy E (C) has the form
—Yz)Qul+z21Qu®y.

The y-action 1 ® 1 ® y takes this element to —(Yz1) ® u ® y, while the element
corresponding to —Yz; € C inthe Ej—termis —(Yz1)®@u®y as well, since Y2 =0. O

Remark 4.10  (a) Spelled out explicitly, (4-18) says that Hx(Ey Sy (C)) =~ Hx(C),
and Hx(E}°Sy(C)) is the localization of Hi«(C) as a K[u]-module. On
the other hand, note that since V" = K[u]/uK[u], E"Sy(dc) reduces to
Sy (dc) ® 1, and therefore H«(E} Sy (C)) >~ H«(Sy(C)).

(b) The constructions Ey, E3° and E;," above are directly copied from J Jones’s
formulation of the “co-Borel”, “Tate” and Borel (the usual) versions of equivariant
homologies [13]. It is proved in [10] that Sy and Ey induce isomorphisms of
derived categories.

Remark 4.11 As stated, the general H*(BS!)—-module (C, d¢) in the present section
is assumed to be Z—graded. For our application however, results in this section are
typically applied to monopole chain complexes C. These are only relatively graded,
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and the grading group is Z only when ¢ (s) is torsion, in other cases it is Z/cs, where
¢s € 27.. These chain complexes C are also equipped with a canonical absolute Z/2—
grading. (See [17].) Nevertheless, we observe that such a monopole chain complex ¢
can be alternatively interpreted as a Z—graded chain complex (C, d) with periodicity
¢s € 27, namely (Cg, 0x) = (Cxc,, Ok +¢,) forall k € Z. (For prior appearance of
such interpretation, see eg [24].)

To do this, let C be a certain monopole chain complex associated to the Spin®—
manifold (M, s), and let Z C B:=C°(M,s)/C*>°(M,U(1)) denote the generating
set of C . Denote the coefficient ring of € by K. Recall that H'(B;Z) ~ H2(M:Z),
and therefore the class ¢1(s) € H2(M;Z) defines a Z—covering 7: B — B. Let
Z:=n"'Z, and consider the chain complex (C, d¢c) with

C:=K(Z) and (51,9¢c%): ngn(b)

for any pair ¢;,%, € Z. Regarding elements in M (¢, ¢2)/R as paths in B from ¢;
to ¢, 0 in the sum above stands for any lift of some d € M1(c1,¢2)/R to B ending
in T, and T, where cx := 7T« and sign(d) := sign(?). Since the spectral flow on
B is controlled by ci(s), the relative grading of this complex (C, d¢), defined by
spectral flow along 0, is Z—valued. Fix a o € Z. Then co = 7y is either even or odd
according to the canonical absolute Z /2—grading. Set gr(cp) = 0 if ¢q is even, and set
ar(cp) = 1 if ¢o is odd. Together with the relative Z—grading gr(-,-) on (C,d¢), we
have an absolute Z—grading by setting

gr(¢) := gr(co) + gr(co. )

for any ¢ € Z. (UM Z=0, C is trivial.) With this definition, we then have Cj = Cok/
for any pair k € Z and k' € Z /¢, with k = k' mod ¢,. Moreover, given ¢; € Z with
gr(t1) =k anda d € M (c1, c2)/R, there is a unique lift 9 of d starting from ¢, whose
endpoint is a lift T € Z of ¢a. We have gr(¢2) = k — 1. Thus, d¢c|c,: Cx — Cr—1 is
identical to 5|6k’: ék/ — ék’—l for the same pair k and k' as before.

S Balanced Floer homologies from monotone Floer chain
complexes

This section reintroduces the fourth flavor of monopole Floer homology, denoted by
HM™" in [23], now renamed HAM in deference to Donaldson’s notation. (See page 187
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of [7].) This definition is a natural byproduct of a reinterpretation of H(i\/l,.< (M, s, cp)
in terms purely of the K[U]|-module Cs (M, s, cp) (Corollary 5.3 in [23], restated as
Proposition 5.9 below). This result enables us to appeal to the third author’s “SW = Gr”
program, which in our context was carried out in part IV of this series [22]. The latter
constructed an isomorphism from an appropriate variant of ech to a negative monotone
version of monopole Floer homology, which is in turn related to the balanced version
via the following theorem of Kronheimer and Mrowka:

Theorem 5.1 [17, Theorem 31.5.1] Suppose c1(s) is nontorsion. Let Cs (M, s,cp)
and Cx(M,s,c-) = Cs (M, s, c—) respectively denote the Seiberg—Witten Floer chain
complexes with balanced and negative monotone perturbations. Then there is a chain
homotopy equivalence from the former to the latter. In particular, P/Il\\/[*(M ,5,Cp)
HM. (M, s,c-).

To be more precise, the statement of Theorem 31.5.1 in [17] concerns only the Floer ho-
mologies. However, the chain homotopy equivalence referred to above was constructed
in its proof.

Remark 5.2 The variant of ech relevant in this series of papers is related to the
negative monotone version of monopole Floer homology, and therefore to HM.,, by
the preceding theorem of [17]. This is because the stable Hamiltonian structure used to
define the relevant ech is associated to an nonexact closed 2—form. Note in contrast
that the ordinary embedded contact homology associated to a contact structure is related
to I-\Il\//[,.< instead, since the relevant 2—form in this case is exact. As such, it belongs to
the positive monotone situation, and the companion theorem to the one just cited states
that HM (M, 5, cp) ~ HMx(M, 5, c4).

5.1 Some properties of the maps i, j and p

In this section, unless otherwise specified, Co‘* = Co'* (M, cp) denotes the monopole
Floer chain complex associated to an oriented Riemannian, Spin® 3-manifold with a
balanced perturbation. Similarly, let HM, = HM. (M, ¢p).

Recall from Proposition 22.2.1 in [17] that ﬁl\\/l*, ﬁ-l\//l* and HM, are related by a
long exact sequence

(5-1) oo HM, 5 AMa 25 BM, 25 AMa_q 25 .-
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which we shall call the fundamental exact sequence of monopole Floer homologies.
The maps ix, j« and ps in the sequence above are respectively induced by maps

i:C—>C, j:C—>C, pC—C,
which, written in block form with respect to the decomposition
(5-2) C=CqC% C=C’qC* C=C’qCY

are given by

o [o-a4] . _[1 0 99 o
S h A PR N

It is shown in [17] that they are respectively chain maps of degree 0, degree 0 and
degree —1.

Lemma 5.3 Themapsi, j and p are p—morphisms of H*(BS')—modules.

Proof Itis verified in [17] (for K = Z) that [5, U ] = 0 for the to, from and bar versions
of monopole Floer chain complexes. A straightforward though tedious computation
using (5-3) shows that B
iU-Ui+K;d+0K; =0,

(5-4) jU-Uj+K;d+0K; =0,

pU —Up—K,d+ 03K, =0,
where K;, K; and K, written in block form with respect to the same decompositions
(5-2), are

[0 -ux o o [ue v
K’_[O—U“}’ Kf_[o-t?;]’ Kl’_[o 0 | =

As was explained in the proof of Lemma 4.2, the identities (5-4) can be rewritten as
Su(i)Sy (3) — Sy (d)Sy (1) = 0.
Su(j)Su (@) = Su @Sy (j) =0,
Su(p)Su ) + Su(®)Su(p) =0.

where Sy (i), Sy(j) and Sy (p), when written in block form with respect to the same
decomposition (5-2), as matrices with coefficients in K[y], are given as follows:

so = ] sun={g o | seo=| 5]

ns u
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where
my =05 +Usy, ni=0i+Uly, Niy=05,+Usy, NI=05+U}y,

these being homomorphisms of K[y]-modules for any pair of super- and subscripts
among u, s and o.

Lemma 5.4 The induced maps from i, j and p fit into the long exact sequences

(5-5) -+ — Hi(Sy(0)) 2405 H,(Sy(C)) 222 H,(Sy(C))

SU(p)* H*—I(SU(é)) SU(Z)* cee

Ey Sy (i)« EySu(j)«
e S

(5-6) ---— Hy(EySy(C))
E;SU (P)«

H.(E5 Sy (C))

Hao1(Ey Sy (€) 2200

H.(Ey Sy(C))
Hu 1 (EySy(C))--- .

The first sequence is a sequence of H(S')—modules, and the second one is a sequence
of H*(BS')—modules.

Proof (a) The proof is based on a modification of the proof of Proposition 22.2.1
in [17]. Recall from [17] the definition of a “mapping cone of —p” (E, é):
E:é@é,é:[ag}
p o
The short exact sequence associated with (E ,8),0—C — E — C — 0, induces
a long exact sequence connecting the triple HM, H (E ) and HM, with connecting

map p«. Kronheimer and Mrowka [17] show that E is chain homotopic to C. The
following diagram summarizes the construction:

C
N
k
0 cC—'LE_'.¢C 0
|
C

where

:[és], I=[m, ]
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with 5 _
N: C=C°®dC* > C=C*®CY,
N, C=C°®C*—>C=C°qC",
N,:C=C®C*—>C=C°qpC"

denoting projections to the s, 0 and ¥ components, respectively.

In terms of these, the proof in [17] reduces to the verification of the identities

(5-7) Ik =1d,
(5-8) kl =1d+¢K + K¢,
(5-9) Jj=Jk,
(5-10) ki —7 = &(KT) + (K1),
where 01
_ — 1y
k=[0m)

We now want to apply the preceding constructions and identities to the Sy versions.
To do so, first observe that the identities (5-4) imply that Eisan H *(BS1)—module,

with the U —map given by R
U o
Us = — .
=Lk, 0]

With this defined, it is straightforward to check that 7 and j are H*(BS')—morphisms.
We can then use what was said in the previous subsection to form the H(S!)-modules
Sy (E), Sy (¢)), and morphisms Sy (7) and Sy (j). Lemma 4.2 ensures that

0= Sy (C) 3U9D, sy (E) 59, §1,(C) - 0

is a short exact sequence of Hy(S!)-modules. Meanwhile, the identities (5-4) can be
used again to verify that

k(}—UEk-i-kjé-i-ékj:O and ZUE—(yl-i-kié-l-éki:O,
where
—K; .
Ki=| and K;=[0 K; |
This means that / and k are both p—morphisms of H*(BS')-modules. By Lemma 4.2

we can then form the Hy(S')—module morphisms Sy (/) and Sy (k). The analogs of
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(5-71—(5-9),
(5-1D) Su()Sy(k) =1d,  Sy(j)=Sv(JSu(k),
now follow readily from the naturality property of Sy described in Lemma 4.2. Mean-
while, the analogs of (5-8) and (5-10),

Sy(k)Sy () =1d+ Sy (e)(K ® j) + (K ® j)Su (@),
Su(k)Sy (i) = Su (1) = Sy (K + KSy (@), K:= (K ® )Su (@),

reduce to the identities

(5-12)

K;il,-IyK, =0, II;K; +K,II, =0, Um, — ,U — Kji + jK; =0,
and these can be directly verified. This proves (5-5).

To verify (5-6), we simply apply Ey to the Sy version of [17]’s constructions and identi-
ties obtained above. Since we have shown that (Sy (E ), Sy (€)), Su @), Su(j), Su(l)
and Sy (k) are H.(S')—morphisms, Lemma 4.7 implies that (Ey Sy (E), E3 Sy (é)),
EySy (i), EySu(J), EySu(l) and E5 Sy (k) are H*(BS')-morphisms, and the
analogs of the identities (5-11) and (5-12) follow without much ado by applying Ey
to them and the naturality properties of Ey described in Lemma 4.7. |

5.2 The C, complex and localization

Lemma 5.5 H«(Sy(C)) =0.

Proof To compute H,(Sy(C)), write
Sy(C)=C®K[y]., Sy =00;+UQy.

Filtrate this complex by the degree in the factor C ; this is done just as in the proof of
Proposition 4.9. The Ej-term is HM.., and d; is the u—map on HM.,.. We claim that
this map is invertible, and therefore H,(Sy (C)) vanishes.

To see that this is indeed the case, write
(5-13) C=Cre®K[x,x7'],

where Ct is the Morse complex of a Morse function on the torus of flat connections,
which is finitely generated. (See Section 25.6 of [17] for a more thorough discussion of
computations of HM, as well as the relevant moduli spaces.) Recall that a generator
a ® x™ for Ct ® K[x,x™!] corresponds to the m™ eigenvalue of D, the Dirac
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operator with the flat connection, where the eigenvalues are ordered by their value

0

in R, and 1 = x"” corresponds to the minimal positive eigenvalue.

The index of the CT factor defines a finite-length filtration on C, with respect to which
U can be written as ZIZ<V=0 Uk for some N € ZZ°. However, Uy = x (understood as
multiplication), because the only possible contribution to Uy comes from the moduli
space of instantons from a ® x™ to a ® x™~1, and this consists of the space of
gradient flows of the quadratic function }_,,cz Am|ém|? on P(Spanc{nm}m). Here,
Nm denotes a chosen unit-norm eigenvector of A, . This moduli space is CP!. The
fact that Uy = x is an invertible operator on C1 ® K[x, x~!] then means that U is

invertible as well. O

It follows from the preceding lemma and Lemma 5.4 that Sy (/) induces an Hy(S1)—
module isomorphism from H(Sy (C)) to Hy(Sy (6)) .

Definition 5.6 (see [23, equation (5.6)]) We call the following group the “total”
version of monopole Floer homology:
HM, := H.(Sy(C)) ~ H.(Sy (C)).

The motivation for this definition comes from the theory of S!-equivariant theory;
it is related to the equivariant versions of Floer homologies HM, HM and HM by
properties expected of the homology of their corresponding S!—space. (The choice of
the accent ~ in the notation reflects the fact that this is supposed to come from the space
of framed configurations, in accordance with the notation (5.1.1) in [8].) In particular,
the following lemma is a consequence of Proposition 4.9(a)(ii) and Remark 4.10:

Lemma 5.7 HM, is related to HM, by the long exact sequence

(5-14) o> BM, L HM,_, — AMy — BMy_q — -+ .
The following lemma is invoked in the next subsection:

Lemma 5.8 (localization) Let C , C, AM and HM denote the monopole Floer
complexes or homologies for a balanced perturbation. Then:
(@) The map iy,: H«(Ey Sy (C)) - H, (Ey°Su (C)) is an isomorphism.

(b) The map ps induces an isomorphism of K[u,u~']-modules,

ps: HM, Ok K[, u™"] — HMu Qg K, u ™).
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Proof (a) By Proposition 4.9, it is equivalent to consider the localization map
H.(C) — Hy(C QK Klu, u~1]). However, we saw in the proof of Lemma 5.5 that
the u—action is invertible on Hy(C).

(b) Tor(K[u], K[u,u~']) = 0, so we can work at the chain level:
Hi (€ @kp Klu, u™")) = Ho (U C) @k K, u™])

for any N € ZZ=°. There are finitely many irreducible Seiberg—Witten solutions; and,
with a balanced perturbation, the Seiberg—Witten action functional is real-valued. We
can therefore order these finitely many irreducibles by their values of action functional.
A nonconstant Seiberg—Witten instanton always decreases the actions unless it is
reducible, so, for sufficiently large N, UNC ccv.

Meanwhile, we saw in (5-13) that C* = C ® (xK[x]) and C* = Ct ® K[x7!].
We also saw in the proof of Lemma 5.5 that Uy = x. Therefore, C¥ generates
C QK] Klu, u~1]. This understood, the assertion follows because we can restrict our
attention to C* and the u —u component of p is the identity. a

5.3 Monopole Floer homologies from twisted tensor products

The modules Sy (C) and Ey(C) are “twisted tensor products” (in the sense of
eg [40; 26]), on which H*(BS!) and H.«(S!) respectively act by simple multiplica-
tions. On the other hand, the duality theorem, Proposition 4.9, tells us the following:
On the homological level, we can replace any H*(BS!)— or H4(S')—modules by
such twisted tensor products by applying E3, SU or S Su Ey , respectively. We shall
reformulate the monopole Floer homologies HM*, HM* and HM, defined in [17]
accordingly. In addition to these three flavors of monopole Floer homologies, we
will introduce a fourth flavor, }’1‘1\71*, from this point of view. These four flavors of
monopole Floer homologies will be regarded as a system and denoted collectively
by Hci\d* below. We call ﬁM*, Im*, HM, and }m* the from, to, bar and total
versions of monopole Floer homology, respectively. Just as HAM,, HM,, and HM, are
to be viewed as versions of equivariant homologies of the equivariant Seiberg—Witten
Floer stable homotopy type (represented by a pointed S!—space) SWF(Y, ¢) that is
introduced in [27], what we denoted by Im* can be viewed as the (nonequivariant)
homology of SWE(Y, ¢) itself.

We now state the main result of this subsection:
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Proposition 5.9 [23, Corollary 5.3] Let C denote C (M, s, cp) and HM denote
HM(M s, cb) There is a system of isomorphisms (as H*(BS')-modules) from
H.(Ey Sy (C )) to HM*, taking the fundamental exact sequence of equivariant ho-
mologies for Sy (C ) to the fundamental exact sequence of monopole Floer homologies.
In particular, we have the following commutative diagram of H*(BS')—modules:

CHo(EySu(C) % HU(EPSy(C)) —— Hu(E Sy (€))L Hy_y (E5 S (C))---

o9 | T T

...HM*#W*_II—*)HM*_l;)I—/H\\/I*_l...

where the vertical arrows are H* (B S')—module-isomorphisms.

Proof of Proposition 5.9 Regard C as Z—graded complexes as prescribed in Remark
4.11 and consider the following diagram, denoted by © below:

EySu () EySu () EySu () EySu ()

"H*+2(E+SU(C))—>H*+1(E;TSU(C))—>H*+1(E§°SU(C))—>H*+1(E+SU(C))"'
Ey Sy (p) EYSU(P) N ~ | EySy(p) Ey Sy (p)
---H*H(E;SU(ED—>H*(EYSU(C))T>H*(E§°SU(5))—>H*(E;SU(5)>---
Ey Sy (i) Ey Sy (i) Ey Sy (i) Ey Sy (i)
++Hosn (Ey Su(©) "2 Hu(Ey Sy (€~ HUEF Sy (€)) —— Hu(Ef Su(C))-+
=~ EySu_(_Jl).--*",;”'fﬁ Ey Sy ()) Ey Sy () ~ | EySu(j)
o Hap 1 (Ef Su(€)— Hu(Ey S (€)—L5 Ho(EP S (€)) —— Hu(Ef Sy (C))-
Ey Sy (p) Ey Sy (p) ~ | EySy(p) Ey Sy (p)

--H*H(E;SU(ED—>H*(E;Su(E))%H*(Ewu(6))—>H*(E;SU(€))---

Ey Sy () Ey Sy (@) Ey Sy (@) Ey Sy @)

All rows and columns above are exact sequences of H*(BS!)—modules: the rows are
fundamental exact sequences of equivariant homologies of St (6 ), Sy (C) and Sy (C‘ ),
and the columns are the exact sequences from (5-6).

By Proposition 4.9, the exact sequence in the second column is isomorphic to the
first fundamental exact sequence of the monopole Floer homologies (5-1), namely the
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second row in (5-15). Therefore we shall henceforth replace the second column by
"j—*)Ii-l\\/‘[* p—*>m*l—*>lm* j_*)I_/I'l\\/I*_l p_*>"‘ .

Our goal is therefore to construct an isomorphism from the exact sequence in the first
or fourth row to the exact sequence in the second column:

o Hyp1(Ey Su(C)) — 2 Huit (EPSy(€)) —— Hus1 (Ef Sy (C))---
| d dl
- Har (Ey Sy (€) 222 1, (7 5u(©) =222 o, (E7 5u(C))---
To see this, note that in the third column of ®, the map
Ey Su(p): Ho(ESy(C)) — Hu(E Sy(C))

is an isomorphism by the preceding lemma and Proposition 4.9. Thus, H«(EJ° Sy (é )
is trivial. This in turn implies that the map

Sy Hytr1(Ey Su(C)) — Hy(Ey Sy (C))
in the third row of ® is an isomorphism. For the same reasons, the map
iv,: Hx(Ey Su(C)) > H«(E7*Sy(C))

on the first and fifth rows of ® is an isomorphism as well, and thus H (E;,' Sy(C))
is trivial too. This in turn implies that the map

Ey Sy (j): He(E§ Su(C)) — Hx(Ef Sy (C))
on the first and fourth columns is an isomorphism. We now take
h=1d, h=iyioEySu(p). h=3v,o(EySu(i)",
and the proposition follows. |
Remark 5.10 The chain complex C in the statement of the preceding proposition
may be replaced by CM(M, s, c—) (yet HM still stands for HM(M, s, c3)). When c¢(s)
is nontorsion, this follows from Lemmas 4.5 and 4.8 and Theorem 5.1. When ¢ (s)
is torsion, this is simply because CM(M, s,c—) = CM(M, s, cp). As we remarked

previously in Section 2.1, in this case, monotone, balanced and exact perturbations are
identical notions.
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6 Monopole Floer homology under connected sum

We follow the (by now) traditional approach to connected sum formula for Floer
homologies that appeared in the instanton Floer homology setting in [9; 7]. To proceed,
some setting-up is required.

6.1 Preparations

Let M7 and M, be closed, oriented, connected 3—manifolds, and s; and s, be Spin®—
structures on M and M>, respectively. Denote by M, = M U M> the disjoint union
of My and M,. Let s, = (81, 52) denote the Spin®—structure on M|, given by s;
and s,.

Part 1: Spin€ -structures and gradings Recall from [17] the interpretation of Spin€—
structures and grading via oriented 2—plane fields on the 3—manifold M. Denote by
J (M) the set of homotopy classes of oriented 2—plane fields on the 3—manifold M.
According to Proposition 23.1.8 of [17], this may be identified with the set of gradings
of the manifold M, as defined in [17, page 424]. There is a Z—action on J(M),
defined by modifying a representing plane field in a ball in M [17, Definition 3.1.2].
Its quotient is the set of Spin®—structures over M, Spin(M) = J(M)/Z. The orbit
over s € Spin(M) is the set of gradings for the Spin®—structure s, which we denote
by J(M,s). Let ¢; be the divisibility of c¢1(s). The stabilizer of the orbit J (M, s)
is ¢;Z; therefore J (M, s) is a torsor under Z/cs7Z.

Let B(p1) and B(p2) be respectively open balls centered at py € My and p, € M5,
and ¢: B(p1) \ {p1} — B(p2) \ {p2} be an orientation-reversing map such that

(6-1) My = My # My := (M1 \{p1}U M2\ {p2})/~.

As described in [17], the Z—action on J(M;) is induced from the C%(Y;,SO(3))-
action on the space of plane fields on M;. Each element in the group Z is represented
by an even-degree element in C°(M;, SO(3)) sending M; \ B(p;) to 1 € SO(3). Since
this map has even degree, we may choose it to send p; € B(p;) to 1 as well. The
orientation-reversing map ¢ then defines an isomorphism

3t (J(M1) x J(M2))/ A — J (My),

where A C Z xZ denotes the antidiagonal. This isomorphism is equivariant with respect
to the residual Z—action on t3: (J(M1) x J(M>))/A and the Z-action of J(My).
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Thus, by taking the quotient on both sides above, one has an induced isomorphism
ts: Spin(M7) x Spin(M») — Spin(My).
Let s = t5(s1,52).

Note that restrictions of ¢j to orbits of the Z —actions give rise to isomorphisms (also
denoted by ty)

ty: (J(My,51) x J(M3,52))/ A — J(My, s4)
as affine spaces under Z /cy4Z, where cy is the gcd of ¢5, and c, .

Recall from Part 4 of Section 2.4 the definition of (6 (M), é\Mu) as a product complex
of C (M;) and C (M3). Through out this section, we adopt the same assumption
that the Floer complex ¢ (My) comes from a nonbalanced perturbation; in particular,
C (My) = CM(M;) in our notation. As observed there, this assumption implies that
¢ (M) is also associated with a nonbalanced perturbation, and C (My) = CM(My) as
well. Given an s, = (51, $2) € Spin(M\,) ~ Spin(M1) x Spin(M>), we use J (M, s1)
to denote the Z,—grading (J(My) x J(M3))/A on ((Af (My, s0), gMu) induced from
the natural bigrading of the latter as a product complex.

Remark 6.1 The canonical Z/27Z—grading [17, Section 22.4] of 13(&1, &) differs
from the sum of the canonical Z /27 —grading of &; and &, by 1.

Part 2: A;-actions on C (M) and CM(My) Use the connected sum decomposi-
tion of My, (6-1), to define a splitting

Hy(My;Z) ~ Hi(My; Z) ® H1(M2; Z),
and, correspondingly, a factorization of the algebra
(6-2) As(My) ~ A4(M1) @k At(M2)
~K[U]® N (H{(My;Z)/Tors) ® /N (Hy(M3; Z)/Tors).
This factorization is used to identify A+(My) with
A+(My) :==K[U]® N (H\(My: Z) /Tors)
=K[U]® N (H{(My;Z)/Tors) @ /N (Hy(My; Z)/Tors).

(Note that A+(My) # H*(B°(Myu):Z) = A+(My) ®z A+(M>) with A+(My) so
defined.)
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Recall the description of A} (M )—actions on monopole Floer complex from Section 2.5’s
Part 2 and Remark 2.5. These depend on the choice of a point p € M for the U—
map, and a circle y C M representing t for each element t € {t;};, the latter being
a basis of H, (M Z) /Tors. We denote the associated maps on the Floer complex by
my = Up =U or my = m, depending on emphasis and context. The choices for the
manifolds discussed in this section, My = My, M>, My or M|,, are given as follows.

For the Hy(My; Z)/Tors—actions, choose b; (M) mutually disjoint embedded circles
yl.[l] in M sothat py ¢ J; )/l[l] and {t[l] [v; 1]]} forms a basis of Hy(My;Z)/Tors.
Choose similarly b1(M>) mutually disjoint embedded circles y[ Vin M, so that p, ¢
U [2] and {t[z] [y[z]]}] forms a basis of H (MZ,Z)/Tors Use {yl[l]}l, {y [2]}
and {yl }, U {y } to define the Hy(Myx; Z)/Tors—actions on C (M) respectively
for My = My, M», M\,. For My = My, regard all the y[ ]’s and y[ ]’s as embedded
circles in My through (6-1), and use them to define the H(Mgy; Z) /Tors—action on
CM(Msy).

The U € A+(My)-actions for My = My, My, or My are given as follows. Choose a
point p € M disjoint from {p;} U {yi[l]}i. This p can also be viewed as a point in
My = M; or My, or a point in My = My via (6-1). We use ﬁp = ﬁp(M*) to denote
the associated U —action on the monopole chain complex C (M) for such M, . Note
that ﬁp (My) = Up(M1) ® 1 on the product complex (A?(Mu) =CM(M;)® é(Mz).

Remark 6.2 As already noted, ﬁp and U, » induce different U —actions on Im(Mu).
This is however irrelevant for our purposes, namely deriving and applying the connected
sum formulas, Propositions 6.7 and 6.11. See Lemma 6.4 below. We choose p to be
on M; because CM (M) is assumed to be associated with a nonbalanced perturbation,
and for our application this perturbation is of the type discussed in Part 4 of Section 2.5,
where U, has a nice geometric interpretation.

Part 3: A;(My)-actions on Sy, C. (My) Let U, = ljpz_pl be as in (2-57). (To
simplify notation, we shall frequently drop the hat from Uu; that is, U}, := ﬁu in what
follows.) The statement of the upcoming connected sum theorem relates C My (My)
with Sy, (C«(My)); the Floer complex is obtained by applying Section 4.2°s Sy
operation to Cx (M), with the latter regarded as an H*(BS!)-module generated by
the U = ﬁu —action above.

Abstractly, an A+(My)—action on C (M\)) can be used to define a corresponding
A+(M)—action on Sy, Cx (M), due to the following observations: Given any gen-
erator Q = U or t; of A+(My) and any map mgo on é(Mu,su) underlying the
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Q —action on the Floer homology, Mo is a p—morphism from C (M, s.) to itself in
the language of Section 4. This in turn is because Mg and Uy, induce commutative maps
on Floer homology. Thus, by Lemma 4.2, Sy, ,(m) is defined (albeit nonuniquely),
and is an H(S')—morphism from Sy, (6* (M, sp)) to itself.

With the A+(My)—action on Cx (M) fixed in the previous part, we define the Q-
action on Sy, C (My, sy) to be the map Sy, (mg). In the notation of (4-5), these take
the form

where I/(\mQ are chain homotopy maps satisfying (4-3). In other words, they satisfy

[0, Ou] = d(My) Ky, + Ky, d(My),

(6-3) A A . SN
[m,,, UL]] = B(Mu)Kmy — Kmya(Mu).

As previously noted, the choice of the chain homotopy maps I?mQ is not unique. In
fact, it was observed in Remark 4.3 that even the homology H«(Sy, mg) depends on
the choice of I?mQ (modulo homotopy). In this article we adopt a particular choice of
these KmQ that suits our purposes best and has certain nice properties. In particular,
the homotopy class of K U, or Kmy varies in a consistent manner with p or y, leading
to the desired invariance result, Corollary 6.5 below.

To describe these particular choices of I?m first recall the notions 7[u], hs, uy,
and (:)p from Section 2.5. Fixing a set of choices for p and the y; from Part 2, we set

64 Ky, :=ildhyAdhp] + [Aldhu], 5] + [Ou, Uu] = ilus Aup),
where u :=up, —up, . Foreach y € {yl.[l]},' U {yl.[z]}j , set
(6-5) KAmy :=itfuydhy] + [my, Ou] = nfuyuy].

We now verify that:

Lemma 6.3 The maps I?Up and fmy given in (6-4) and (6-5) above satisfy the
identities (6-3).

Proof (i) To verify that (6-4) satisfies the first identity in (6-3), let N7 = (N'1)3

be a 3—dimensional stratified submanifold of N3+ (My). (Recall the notation Ny (M)
and W, k+ (M) from Section 2.5. Recall also that (N 7); stands for the k™ step in the
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stratification, @ C -+- C (NT)g C--- CN™T, of N.) Since both dh, and dh, are
closed forms, by [17, Lemma 21.3.1, equation (21.4) and Theorem 19.5.4],

0= (d(dhuy Adhp), [NT]) = (dhu Adhp, OINT]) = (dhy Adhp, (W T)2).

By construction, (A1), is a union of two types of product spaces, the first being of the
form N0+ (c—,0) ><./\/2Jr (c,c4) or /\/';L (c—,0) xNJ(c, ¢+), and the second of the form
N1+ (c—,c) X N1+ (¢, c4). Integrals of dhs A dhyy over these two subspaces of N2
give respectively the first and the second term of the right-hand side of the identity

(6-6) 0 = [3, Aldhu A dhp]] - [Aldhp]. Aldhy]].

By (2-36), ii[dh5] = U, — [0, ], and similarly for /i[dhy]. Together with the fact
that ﬁp, Uy, are both chain maps, this implies

[ildhs], ildhul] = [0p, Ou] (19, O], Aldhy]] + [Up., [Bu, Ou]]
= [Up. U] - [0.[6,. Aldhull] - [0u. [Ou. Tp]l.
Inserting this back into (6-6), the first line of (6-3) follows readily.

(ii) The second identity in (6-3) is verified using similar arguments. Take now Nt =
(N'T)5 to be a 2—dimensional stratified submanifold of N2+ (My). The coefficients in
[0, 7[uy, dhy]] are given by terms of the form

(u)’dl;lU’ a[N+]> = (u)/tha (N+)1),
where (V1) is a union of product spaces of either the form
N0+(c_, 0) x./\/1+(c, ¢+) or N;r(c_,c) xNoJr(c, C+).

Since uy, is locally constant, integrals of u,dh; over these spaces take the form of
products

(uy Ngf (e O dhu N (e ) or {dhu, AfF (e, )y, Ngf (e cp).
By (2-37) and (2-36), this shows that
[9. Au, dhy]] = [my,, Oy — [0, ©0]] = [my,. U] — [0, [my. O]
leading directly to the second identity of (6-3). O

This understood, we may now justify the claim in Remark 2.5 that the U —action on
H.(Sy, (6* (M, s.))) is independent of p.

Lemma 6.4 For any given p, p' € My, Sy, (ﬁp/) and Sy, ((71,) are chain homotopic.
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Proof We wish to show that there is a map Zx: Sy, (6 ) — Su, (6 ) such that
S, (Up) = Su,(Up) = (Uy = Up) ® 1 + (Ky; — Ku,) ® y = [Zx, Duil.

We choose Z, to be of the form Zx =Zy® j+ Z1 ® y, with Zo and Z; being maps
from C (M) to itself, respectively of degree —1 and —2. The preceding identity now
reads

(6-7) Uy —Up =1[20.9]. Ky, — Ku, =1[21.9]+ [Uw. Zo).

(i) In the case when p and p’ belong to the same connected component of M|, there
isapath A in M, from p to p’ and an associated map IA()L, defined in (2-49). Since,
by (2-49), U, — U, = K}, 0], setting Z to be

Zé = 12,1

suffices to validate the first line of (6-7). We claim that with Z¢ so chosen, and with
Ky, given by (6-4), the second line of (6-7) also holds if Z; is set to be

7} = mfuyu ] (R x My),
where w, = up, — up,, and pi denotes R x {p;} C R x M. In other words,
nlupruy] —ifupuy] = [Mugu J(R x My), 0] + [Au]. Al ] (R x My)].

This identity is essentially a higher-degree variant of (2-49), and is proved by arguments
similar to (2-47). For more details the reader is referred to the proof of (6-75) in the
next subsection, which differs by cosmetic changes from the proof for the preceding
identity.

Let Z i‘ = Z('} ®j+72 f ® y denote the version of Z, constructed using A.

(ii) Now suppose that p and p’ belong to different connected components of M|;.
Let p € My and p’ € M5, A C My be a path from p; to p and A, C M; be a path
from p, to p’. Then, by the discussion in case (i) above,

Sv.(Up) = Su, (Up) = Sy, (Uu) + 125> = Z&'. Dul.
Meanwhile, according our construction of Ky, , we have Ky, =0 and
Sy, (U) =U,®1=[1®3dy, Dy].

So we have
Su, Up) = Su,(Up) = [Z32 — Z} +1® 3y, D]

and we take Z, = Ziz — Zi” + 1 ® dy in this case. O
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Corollary 6.5 The A+(My)-action on Sy, (6 (M\)), as defined above, induces an
A4(My)-action on Hy(Sy,,(C(My))) that is independent of choices of p, {yl.[l]},-
and {yj[z]}j.

Proof The assertion regarding the U —action follows directly from the previous lemma.
To verify the assertion for Hy(My; Z)/Tors—actions, take two embedded circles y
and y’ in M|, representing the same [y] € Hy(My; Z)/Tors. Note that they must lie
in the same connected components of M|, and therefore there exists an embedded
surface in R x M\, from y to y’. We wish to show that there exists a map Ty from
Su, (6 (M) back to itself, satisfying

Su,,(My) — Sy, (Wy) = [T« Du.

Assume this time that T is of the form Tx = To ® 1 + T1 ® y, where Ty and T are
maps from C (M) to itself, respectively of degree 0 and —1. Then the preceding
identity now reads

(6-8) (fy —fy) =[To.0]. (Km,, — Km,) = [T1.9] + [Ou. To).
By (2-55), m,, —m, = [m[Fx], 3u]; so we set
To = m[Fs](R x My),
so that the first line of (6-8) holds for this 7y. To verify the second line, we choose
Th = m[ugFx](R x My).
With this choice and our construction of I?my , the second line of (6-8) says
Aluyruy] —Aluyuy] = [AluFe](R x My), du] + [ilug], AFs](R x My)].
The proof of this identity is virtually identical to that for the second line of (6-75), and

the reader is referred to the next subsection for details. O

Part 4: the cobordisms V and V, and the cobordism maps V, and V,,,Jf LetV:=
(X, s) denote a cobordism as described in (2-8) and (2-9), with Y_ = My and Y4 = M|,.
Assume that s has a unique critical point of index 3 with critical value 0.

There is a unique Spin®—structure sy on such X with ¢q(sx)|s—1(_¢) = c1(s4) and
Cl(ﬁX)|s—1(c) = c1(sy) for ¢ > 0. Meanwhile, given [w;] € H?(M;), there is a
unique [wy] € H?>(My) and a [w] € H?(X) that restricts to [wy], [w2] and [w]
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respectively on the M;—, M>— and Mz—ends of X. Suppose as before that [w]
is nonbalanced with respect to ¢1(s1) (and therefore [w4] is also nonbalanced with
respect to c1(sy)). Let  be a closed 2—form on X representing [w] above, so that
wy = 2w™ satisfies (2-11). In particular, @ restricts respectively to (pullbacks) of
closed 2—forms w;, w, and wy on the M{—, M>— and My—ends of X. Let wy
denote the 2—form on Y = M|, that restricts respectively to @ and w5 on the M,
and M» component of M\,.

Let V := (X, —s) denote the “time reversal” of V. Given local systems I} on B°(Y;)
fori =1,2,let I, = I ® % denote the local system on 57 (M) xB° (M>) ~B° (My).
Note that X satisfies the condition that §1 are both isomorphisms in the first bullet
of Remark 2.3, and thus there is a unique V-morphism I3,, which together with
its inverse I3;, gives an 1-1 correspondence between local systems on B (M)
and B° (My). Let Tk denote the local system on B° (M) corresponding to I},. Mean-
while, by the second bullet of Remark 2.3, I}, is (strongly) (s, @ )—complete if and
only if T} is (strongly) (s, ws)—complete, and in this case m[u](X,sx, wx; x) is
well defined through (2-23).

In what follows, take
Ci(My) = Co(Mu, 50, mus TL),  CMa(My) = CMu(My, 54, w33 Ty).
The statement of the upcoming connected sum theorem involves certain maps
Vi: «(My) = Sy, Co(My) and  Vy: Sy, Cu(My) — CM(My).

These are constructed using the moduli spaces My (V, cx, ) = My (V, cu, cx) of
solutions to (2-10) associated to the Spin® 4-manifold (X, sx) and the perturbation
form wy described above.

Here is how they are defined. Use the shorthand (@u,ﬁu) = (6 (Mu),g(Mu)),
(Cy, 04) = (CM(My), dp1,)) etc below. Write the chain module of Sy, (éu), Cu RZ[y],
as the direct sum

(6-9) Sy, (Cu) = Cu @ yCu.

With respect to this decomposition, its differential takes the block form

9, 0
6-10 D= % 2 |
(10 N [Uu —3u}

Geometry € Topology, Volume 24 (2020)



3578 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Correspondingly, write the maps Vi and V*Jr in block form with respect to the decom-
position (6-9) as

(6-11) V*:[II;” vi=[vi vl

where V;: éu — @# and Vl.T: 6# — éu for i =0, 1 are defined through cobordism
maps of the form 7i[u](X, sy, wx:x) for X =V or V. These cobordism maps are
defined as in Part 4 of Section 2.4, noting that V and V satisfy the condition (2-26),
and assuming for the rest of this subsection the same completeness condition for I'y
alluded to in the end of Section 2.4. Meanwhile, cochains u involved in the definition
of these maps are of the type introduced in Section 2.5’s Part 3(a), with the relevant
arc A chosen as follows. In the present section, let A denote the ascending manifold
of the unique critical point of s; it is a path in X asymptotic to (py, p2) € M, =Y.
We orient it so that it begins from p; € M; and ends at p, € M,. Meanwhile, the
descending manifold of this critical point will be denoted by B; it is an embedded
3-ballin X that intersects each s~!(c) >~ My in a 2—sphere for all ¢ < 0. We orient it
so that it intersects with A positively. Let A and B, respectively, denote the descending
and ascending manifold from the unique critical point of —s. These are the same
submanifolds in X as A and B, but equipped with the opposite orientation.

With the above said, we are ready to write down the formulas for V; and Vl.T for
i=0,1:

Vo = m[1](V, sx, wx: V),

V1 =KV, sx, wx: Ty) = i) (V, sy, wx; Ty)

=m[0,](V, sx, wx; V) + OuVo,
(6-12) b
Vo =m[l](V,sx, ox; 1),

VIJr = Kz(l_f,ﬁx, (eI ES fn\[uz](l_f,ﬁx, (25'¢8%y))
= M[B71(V, sx, mx: Ty) — Vg O,

where ©(; denotes the map from Cu= 6(M1) ® @(Mz) toitself, | ® ©p, —Op, 1.
See (2-50) for the definition of K; .

Remark 6.6 With [17]’s notion of canonical Z /2-gradings suitably generalized, the
maps Vi and VJ are of degree 0 with respect to this canonical 7 /2-grading. Recall
the characteristic number ¢(X) for a cobordism X from Y_ and Y4, with Y1 both
connected, from Definition 25.4.1 in [17]. When Y4 are allowed to be disconnected,
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we generalize the formula in [17] as
U(X) = 3(x(X) +0(X) + b1 (Y4) —b1(Y=) — bo(Y1) + bo(Y-)).

With this generalized (X)), the statements of [17, Lemma 25.4.2 and Proposition 25.4.3]
remain valid: ¢((X) € Z and is additive under composition of cobordisms, and a map
(if well defined) of the form m[u](X) is of even or odd degree with respect to this
canonical Z /2—grading depending on the parity of

deg(u) —1(X).

For X =V, V, 1(V) =0 and (V) = 1; hence Vj and VIJr are of even degree, while
V1 and VOT are of odd degree. Hence Vi = Vo + yVi: Cy — Cu® K[y] and V*Jr =
V;r + VJ dy: Cu® K[y] — Cs are both of even degree with respect to the canonical
grading. (In fact, they are both of degree 0 when the canonical Z /2-grading lifts to an
absolute grading; see Section 28.3 in [17].) This is not to be confused with the notion
of an even or odd map in the sense of signs when it appears in commutators. In the
latter sense Vi is even, while V*T 1s odd, since V and VOT are even and V; and V;r
are odd. The parity of a map m[u](X) (in the sense of commutators) is determined
purely by deg(u), independent of X. This is because only deg(x) contributes to the
signs in gluing formulas.

6.2 A connected sum formula for nonbalanced perturbations
Adopt the notation and assumptions from the previous subsection.

Proposition 6.7 Under the above assumptions:

(a) Suppose that [wy] is negative monotone, nonbalanced with respect to sy. Let
T be arbitrary, and I, be determined by Ty via I'y . Then the maps V. and V,:
given in the previous subsection are well-defined chain maps, and V, defines a
chain homotopy equivalence

(6-13) Vi Coe(My, sy, [m4], Ty) — Sy, (Cx(My, 50, [w0]: TL))

respecting the (relative) 7 /cs—grading on both sides. Moreover, the map Vi
intertwines with the

(62) 4 "
A(My) =~ N (H1(My)/Tors) ® N (H1(M2)/Tors) ® K[u] = A+(My)
actions on the two sides, defined in the previous subsection’s Parts 2 and 3 using

pand "y Uy
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(b) Suppose that [w] is nonbalanced with respect to s, and that I} is strongly
(s, [wi])—complete for i = 1,2. Then the maps Vi and VJ are well-defined
chain maps, and V, defines a chain homotopy equivalence

Vi: Co(My, sy, [wy], Ty) — Sy, (Co(My, 500, [m0]: TL))

respecting the (relative) 7 /cs—grading on both sides. Moreover, the map Vi
above intertwines with the

(6-2) , 4 *
As(My) =~ N (Hy(My)/Tors) ® N (Hy (Ms)/Tors) @ K[u] = A+(My)

actions on the two sides defined using p and {)/l.[l]}i U{y }2] b

Proof (a) The proof has six steps.

Step 1 In this part we show that the assumption on ['y of part (a) ensures that I'y
satisfies the completeness conditions alluded to in Remark 2.3, so that the maps V;
and VI.Jr for i =0, 1 are well defined. More precisely, we show that the sum

6-14) Y >, > (1, My 2 (e, (c1, ¢2)))

cw€C(My) (c1,62)€C(M)XE(M2) z€mo (B (V;cex,(c1,c2)))

has finitely many nonvanishing terms, and therefore Vi is a well-defined map between
the (precompleted) chain complexes CM«(My) and Sy, (é* (My)) for any coefficients
T and its twin I},. To see this, observe that by the well-known compactness property
of spaces of 3—dimensional Seiberg—Witten solutions, CM(M1) = C°(My), C°(M>)
and CM(My) = C°(My) are all finitely generated over K, while C¥*(M>) is finitely
generated over K[u], with ¥ having degree —2. Write the generating sets of these
free K—modules respectively as €(M7) = {a;};, €°(M2) = {b;-]}j, E(My) = {ci bk
and €*(Mz) = {bju" }4,n, where there are finitely many indices i, j, kK and ¢, and n
runs through all nonnegative integers. Let 77: B° — B denote the projection of the
blown-up space. The index 1, and the topological energy (see [17, Definition 4.5.4 and
page 593] in the case of nonexact perturbations) of an element 9 € M (V) depends only
its relative homotopy class under ¢, and the former is controlled via ¢ (sx), the latter
through [@] —27[c1(sx)]. The monotonicity condition and the compactness property
of M (V) under bounds on the topological energy then ensures that only finitely a;,
bj.’, by and z appear in the sum on the right-hand side of (6-14). Meanwhile, since
gr(byu™) — gr(byu™) = —2(n —m), the index bound 1, = k on the right-hand side
of (6-14) implies that for each ¢, only finitely many bju" appear on the right-hand
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side of (6-14). (The aforementioned compactness result follows from a straightforward
generalization of Theorem 24.5.2 in [17] to include nonexact perturbations.)

The 77 ()V) analog of (6-14) involves sum over ¢(My) instead, which consists of finitely
many elements. The finiteness of the relevant sum then follows from the monotonicity
assumption alone.

Step 2 In this step, we show that V. and V,:r are (respectively even and odd) chain

maps. This amounts to verifying the identities

Vo —Vods =0, uVi+Vids—UuVo =0,
(6-15) RAR) 5 R AR/
0Vy —Vyou=0, V{iou+ V] +VyUy=0.

In view of (2-51), these would have followed directly from [17, Proposition 25.3.4] if
the latter’s assumption on the connectedness of Y4 could be removed. In the specific
setting under discussion, such generalization requires only simple modifications of
what was in [17]. To do so, write the identities in full in terms of mgn, mgﬁ, 09(My),
09(My), d(M>) and 5; (M3) as given by (2-17), (2-27) and (6-11). These can be
reduced to the identities in Lemma 25.3.6 in [17] (with many vanishing terms), with
these substitutions:

¢ Drop the o’s from the double superscript or subscripts o* of m.

¢ Replace the entries of 5(M|_|) =(1® 8§(M2) +0995(M;)®1)) by 8§.
Theorem 24.7.2 in [17] conveniently supplies us with the general gluing theorem
required for verifying these formulas. (We have at worst rank 1 boundary-obstruction.)

Step 3 In the upcoming three steps, we show that the two chain complexes in (6-13)
are chain homotopy equivalent via Vi and V*T. More precisely, we shall show that
their compositions satisfy the identities

(6-16) Vi o Vi = [Hj, O8]even = Vi 0 Vo + Vg 0 Vi = 1dg — [Z#, 8]oaa,
(6-17) Vio Vi —[H/\. Dileven =1du ® 1 — [21 ® J + X ® . DiJJodd:

or, in block form,

[voovj VooVOTi|_[|:A/ B’] [5u 0 H
VIOV1T VIOVOT ¢’ D u —u even
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for certain maps Hj, and zy from CM(My) back to itself, and maps A’, B/, C’, D’
and 7, X from C (M) back to itself. Here Idy and Idy, respectively, denote the
identity maps from CM (M) and C (M) back to themselves.

The verification of the first identity (6-16) involves the cobordism Wy obtained from
composing V with V. This cobordism goes from My to My, and contains the circle
A# = AU in its interior. A surgery along As replacing a tubular neighborhood
S1x B3 of Ay with D? x S? yields R x M. On the other hand, to verify the second
identity (6-17), one composes in the opposite order to get the cobordism W, from
M\, to M,. There is an embedded 3—sphere S, C W, obtained by joining the 3—
balls B and B from Part 4 of the previous subsection. Doing a surgery along S, —
namely, replace a tubular neighborhood of it, 7 x S|;, by a disjoint union of two 3—balls
Bj U B, —turns W, into the product cobordism R x M|,. One may find arcs y; C B;
and y, C B, so that under this surgery they join with (A UA) — I x Sy to yield
R x{—p1, p2} CRxM,,. The cobordisms Wy and W, are equipped with metrics and
Spin®—structures sy, and sy, determined by the metric and Spin®—structure, sy, on
X =V. The closed 2—form w on X likewise defines, via concatenation, closed 2—forms
wy and wy, respectively, on Wy and Wy,. Let wwy, := 2a);' and ww,, = 2w, .

Note that like V and V, the composite cobordisms Wy and W, also satisfy the as-
sumption in the first bullet of Remark 2.3. Therefore, given any Iy, there is a unique
I'w, —morphism which is an isomorphism from Iy to itself. In fact, I'y, = I5; 0 I,.
Similarly, given any Ij,, there is a unique I'wy,,—morphism from I}, which is an
isomorphism from I, to itself, and Iy, = [}, o I5;.

The proofs of (6-16) and (6-17) make use of cobordism maps of the form
mul(Wy, sy, wy: Tw,),  m[u](Wu, su, mw,: Twy,),

as well as their parametrized variants. (We often abbreviate these maps as 71 [u](Wa)
and m[u](W,) below.) The manifold W, does not satisfy the condition (2-26), but
the formula for m in (2-27) has a straightforward adaptation in this context: simply
replace terms of the form mﬁ in (2-20) by mgﬁ, and drop all the terms n_flf. Replace B?f
and 5?:, respectively, by 03(M1) ® 1 +1® 8§(M2) and 1 ® 5§(M2).

We next describe the relevant cochains u. Let uy, € C/{;%W#) be the 1—cocycle associated
to the circle Ay C Wy, as defined in Section 2.5’s Part 1(b). Let A, denote the union
AUAC W, and use A, and AL+ to denote respectively the arcs X and A in W,.
Let uy,,, and uy ,_ € C;%Wu) be respectively the 1—cochains defined in Section 2.5’s
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Part 3(a). (The notation u; and uj is usually reserved for the 1—cochains on B7 (V)
and B (V) associated to the arcs A and A in V', which appeared previously in (6-12).)
Define the 2—cochain uy 1=y _uwy € C/%/;t%Wu)‘ Concretely,

iy, )W) = Ka,- (W) = il J(Wo) = m[1](Wo)®u.

mlua, JOM) = Ky, (Wo) = m[6a,, 1(W0) + Oum([1](W),
(6-18) il J(WL) =Kz, (W)

= [0, A0, JOW0) =K, (W) Ou + Ouin[6z,,_](Wo)

03, A3 Wo) +OuR;, (Wo) —i[6;,,, (W) ®u.
where Oy =1 0p, — 1 ® ©p,. It will prove useful to denote the 0—cocycle

A
le cﬁA(Wu) on B (W) by ug.

The proof of (6-16)—(6-17) involves two ingredients. The first is a set of gluing identities:
(6-19) Vi Vo + Vi Vi = mlu )W) + [Hy, dleven-
(6-20) (1) The map VoV, = [uy, 1(W0) + [A. dleven + BOL.

(2) The map VoV = i[uz] (W) = [0, Bloaa-

(3) The map V1 V{ = i[u; J(W0) + [0u, Cloaa — UuA + DUL,.

() The map V1 Vg = lu,,, 1(W0) + [9u, Dleven — UusB.

The definition of the maps Hy, A, B, C and D and the verification of these identities
occupy the remainder of this step and Step 4 below. In short, they all follow from an
adaption of [17, Lemma 26.2.2], together with a parametrized variant of the identity
(2-51). Rephrased in our language, the composition identity in [17], which was stated
for the check version of monopole Floer homology, has the following companion
version in for the hat version: Let W be a connected cobordism from Y_ to Yy, and
W, a connected cobordism from Yy to Y. Let W = W, o W) denote the composite
cobordism of Wy and W,. For w3 € C(B°((W1).);:K) and uy € C(B° ((W2).): K),
Kronheimer and Mrowka [17] defined an “inner product” of #; and u;, denoted by
u:=c(uy ® up) € C(B°(W,);K) (see [17, equation (26.9)]). We have

(6-21) ) (Wo)m[u ) (Wh) = m[u] (W) + [R[u] (W), 3] + R[5u] (W),

where the maps K are defined via integrations on a certain parametrized moduli space,
and u is a parametrized version of u. (Though cobordism maps m[u](W) were
previously defined for cochains on Bf (W) instead of those on B (W;), there is a
restriction map, s, from an open dense subset of the former to the latter.) As explained

Geometry € Topology, Volume 24 (2020)



3584 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

in [17], because of unique continuation, it makes no practical difference to work with
either B (W,) or By (W), or the aforementioned open dense subset of B .(W). The
identity (6-21) is the consequence of applying a Stokes’ theorem to the compactification
of the aforementioned parametrized moduli space. See [17, (26.2)—(26.3)] for the
definition of the aforementioned parametrized moduli space, equations (26.11)-(26.12)
therein for the definition of the associated maps K (denoted by K in [17]), and

Lemma 26.2.2 and its siblings in [17] for proofs of the key gluing identities.

Roughly speaking, the proofs of (6-19) and (6-20) follow from applying variants of
(6-21)to W =VoV and W = Vo), respectively, with u taken to be uy, in (6-19),
and u settobe uy _, ug, uy  and uy  , respectively, in items (1)—(4) of (6-20). The
maps Hy, A, B, C and D are then given by

Hy = K[uy, ] (W),
A =K[uy,_ (W),
(6-22) —B = K[ug](Wy) = K[1](W0).
C = K[uy, J(W0),
—D = K[uy,, J(W0).

A couple of issues need to be addressed to be able to apply (6-21) in our setting. Firstly,
in [17], Y+ and Yy are assumed to be connected. As previously explained, there is
no problem adapting to the case when Y4 is the disconnected manifold M\,. In the
case of (6-19), Wy = VoV is glued along Yo = M,,. This creates no new troubles:
The assumption that only the M> component of M|, can be associated with balanced
perturbations implies that the straightforward sort of gluing argument applies with
gluing along M, leaving the more delicate analysis described in [17] required for M5
alone. The second issue is related to the fact that, recalling the discussion in Section 2.5,
the cochains u, and their associated maps 7i[u,] and K[u,] relevant to our discussion
are of a more general sort. In particular, when y is noncompact, unlike those cochains
on B (W) considered in [17], our u, € C(Bf .(W);K) are sensitive to the behavior
of the Seiberg—Witten configurations over the ends W \ W,. To explain this issue in
more detail, as well as to describe the modification to generalize (6-21) to this context,
some preliminary discussions are required.

Here are some key ingredients of [17]’s derivation of (6-21). Let W(S),. denote the
variants of [17]’s W(S) (see [17, (26.2)] and thereabouts). We write it as

(6-23) W(S)e = (W1)e U ([—5S, 35] x Yo) U (Wa)..
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Let W(S) be the (complete) manifold with cylindrical ends containing W(S). as its
“compact piece”. (Recall the notation from Section 2.2; they were denoted by W (S)*
in [17].) For example, the cobordisms Wx(S) and W, (S) are illustrated respectively
in (6-43) and (6-44) below, where the shaded regions represent the “necks” of length S.
The parametrized moduli spaces involved in the proof of (6-21) are of the following
sort:

Mip:(Woeoep) = [ ASIx My (W(S). e cq),
S€[0,00)

M1 (W, cq) = U Miy1,:(Woeo cp),

M Woemen) = | ASYxME(W(S), e eq),
Se[o, oo]

p Woemeq) = U d(Woem ey,

with the “fiber at co”, M;{L’Z(W(oo), —,c4) = Mg (W(00),¢c—,cy), as given in
[17, (26.4)]. Their reducible variants are defined similarly. The compactified moduli

space Mk+1 ,(W,¢c—,cq) maps to a smaller compactification, ]Wk+1,z(W, €—,C4+)
embedded in
(6-24) [0, 00] X B (W1)¢) x BT (W2)c),

in a way similar to the map v in Section 2.4. See [17, (26.7)]. This map preserves the
fibration (over [0, oo]) structure on both spaces, and over the fiber

{S}XM;Z(W(S) c_.cl)CM (W,c_,cq), Sel0,00),

k+lz

this map factors through
(6-25) ML, (W(S), -, cy) = B (W(S))° = B ((W(S))e)°
525 BE(Wh)e) x BT (Wa)e),

where t is as in Section 2.4, and, for each i = 1,2, s;: B (W(S))¢)° — B° (W1)¢)
denotes the map of restricting to (W;). C W(S). Here, BY .(W(S))° denotes a certain
open dense subset of B (W(S)), and similarly for B°(W;)°. The cochains u; €
C(B"((W,')c)) from (6-21) thus defines a cochain

u=c(uy @ u):= (51 Xx5) (11 X 1)

in C(B° (W,)), and u in (6-21) refers to the cochain on (6-24) induced from u; and u;.
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Use t to denote the aforementioned map from M Ij 41 (W, ¢, c4) to (6-24), and ¢ for
the embedding of M 1(W,c—, c4) into (6-24). Use t|s and ¢|gs, respectively, to
denote the restriction of v and ¢ from the fiber over S of M Ij 11 (W,c_,c4) = [0, 00]
or Myi1(W,c_,c4) = [0,00] to BT ((W1)e) x BT (Wa)e).

The map K[u] is constructed from K[u]f)‘E and K[u]‘g, where K[u]ﬁE is a sum of terms
with coefficients taking the form

(6-26) (Cu M (Woee e)) = (g"u, M,z (W.eoc4)),

where k is the degree of u, and similarly for K[u]ﬁ. Proposition 26.1.6 of [17]

+
shows that for any k and z, Mk+1,z

theorem (in the sense of [17, Lemma 21.3.1]) is applicable. Equation (6-21) is then the

(W, ¢c_, c4) is a stratified manifold where Stokes’

consequence of applying this Stokes’ theorem to integrals of the form
(6-27) (¢ Gu). M, (Woe e)) = (Cu d[M,T (Woeecp)]),

together with an analysis of the structure of (M Ij 1o (Woe— ey ). That is, the
codimension one stratified submanifold, (M]:_-i-l,z (W,e—,c4)) C Mlj_+1,z (W, e—,c4),
is described as a union of the form

(6-28) (M7,  (W.eo, ek
= ({oo} x M,tZ(W(oo), c—,c4)) U ({0} x M;;Z(W(O), c— c4))
U U {S}x(M;Z(W#(S),c_,q))k_l.
Se(0,00)

The first two terms on the right-hand side of (6-28) contribute respectively

<(t|00)*(u1 Xu2)’ MZ:Z(W(OO), C—, C+)>,

(6-29)
—((¥l0)* (mxu2), MyT (W (0). e—, ) = —{"c(m1 ®uz), M (W, e, c4))

to the right-hand side of (6-27), resulting respectively in the left-hand side of (6-21) and
the first term on the right-hand side of (6-21). The last term in (6-21) arises from the
left-hand side of (6-27). The contribution from the last term of (6-28) to the right-hand
side of (6-27) leads to the penultimate term in (6-21), based on the straightforward
adaptation of [17, Proposition 25.3.4] to the parametrized context.

A simple reformulation of [17]’s work suffices to make (6-21) applicable to general
u € C(BY . (W;):K). Let Wi(S) D (W1)c and W2(S) D (W2). be (the closure of)

the two halves of W(S) when divided in the middle of “the neck”, namely, at the
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3—manifold {0} x Yy in (6-23). For i = 1,2, define W;(oc0) to be the previously
introduced complete manifold, W;. Instead of (6-24), consider another space fibering
over [0, oo], whose fiber over S € [0, o0] is

B (W1(S)) x B (Wa(S)) =: B (W 05 W),

where B? (W;(S)) for i = 1,2 are both equipped with the topology inherited from
its embedding to BY (W;). For all S € [0,00], B (W1(S)) admits a well-defined
(—o0)-limit map by construction, [T~ := H;V°1°: BC(W1(S)) — B°(Y-); like-
wise, B (W>(S)) has a well-defined (400)-limit map, 1% := Hovﬁz: B (W1 (S)) —
B (Y4). (Recall that these maps played important roles in the construction of the
cochains in Section 2.5. These are not available with the spaces B° ((W;).) used

in [17].) Denote the fibered space by

B (Wao W) := U (S} x B (W5 05 WY).
S €[0,00]

(This space is homeomorphic to (6-24) if endowed with the stronger Banach topology.)
When S is finite, let HII;‘,’*: B (Wx(S))° — B°(Yy) denote the map of restricting to
the 3—manifold {0} x Yo C Wi (S) for W, = W, Wy, W,. (Again, the superscript o
is used to denote an appropriate open dense subspace. It is sometimes dropped to
make the notation less cumbersome. As previously mentioned, this makes no practical
difference.) As was done in Section 2, when S = oo, let Hﬁ?f: B°(W;)° — B (Yy)
denote the map of taking (+o00)—limits for i = 1, and that of taking the (—oo)-limits for
i = 2. Slightly abusing notation, we now let s;: B (W(S))° — B (W;(S)) fori =1,2
denote the map of restricting to W; (S) C W(S). Equation (6-25) has straightforward
analog here: For finite S, the map s; X s, factors as

(6-30) BT (W(8))° =2 BT (W1(S)) X7 (1) BT (Wa(S))

— B (W1(S)) x BT (W2(S)),
In the above, the fiber product B? (W1 (S)) xgo (v,) B (W2(S)) is regarded as a subspace
of the product B (W1 (S)) x B (W»(S)), where the maps HII;(/J,-: B°(W;) — B(Yy) for
i = 1,2 take the same value. The previously introduced maps ¢, ¢, t|s and ¢|s, as
well as the inner products ¢(u ® 1), also admit straightforward adaptions, which we
denote by the same notation. For finite S, the restriction of the maps t|s and ¢|s to
My z(W(S), c—, c4) are respectively the composition of v and ¢ with (6-30). The
arguments of [17] still apply with this modification to establish (6-21) in the context of
more general u; € C(BZ (W;);K).

loc
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Even in this (slightly) generalized form, specific applications of (6-21) in our context
are often complicated by the fact that the cochains « constructed in Section 2.5 do not
necessarily take the form of, or have no obvious interpretation as, an inner product
c(u1 ® wp). In view of the roles played by bundles over B° (W) (such as BS (W)
or B7(W)) in the construction of the cochains from Section 2.5, we typically deal
with this problem by going through various bundles over B (W, o Wy). They are
constructed in a manner similar to what was done in Section 2.5. For example, what
will be called %Z(Wz o W) is defined as follows.

Take a point x € W, that lies in the 3—manifold Yy C W, that separates (W7),
and (W3).. (The point x € W is denoted by x when regarded as a point in the 3—
manifold Yp.) Recall the U(1)-bundles ry: l?g(Yo) — B%(Yy) and my: l?g(W) —
ZEU(W) from Section 2.5. For finite S, the map H}‘;? lifts to a map ﬁ}‘;ﬁ’: Eg(W(S)) —
By (Yp)? by construction. Meanwhile, for i = 1,2 and any S € [0, oo], one may define

ﬁl"% , JT)IC/Vi and Eg(Wi) through the commutative diagram

fi?
BI(W;(S)) —5 B (Yo)
(6-31) ”W'l e l
X HYO -

B (Wi (S)) — B (Yo)

Now let
BI(Wp 05 W) := BL(W1(S)) x BL(Wa(S)),

Bi(WaoWwy)i= | ) {S}xBI(Waos Wy).
S€[0,00]

By construction, these are U(1)xU(1)-bundles respectively over B (W, og W) and
B9 (W, 0 W1). The fibered product Eg(Wl (8)) X5, (v E‘g(Wz(S)), as a subspace of
Eg(Wl (8)) x E’g (W(S)), is preserved under the diagonal U(1)-action. The quotient-
ing by this action is
(BLWA(S)) X5, (o) BE(Wa(S))/ U(1) & = B (Wi (S)) X0 (1 B (Wa(S))

— B (W1i(S)) x B (W2(S)) =: B° (W2 05 W1),
where U(1)ao C U(1) x U(1) denotes the diagonal.
The previously introduced restriction maps s;: B (W(S))° — B (W;(S)) lift to define
maps §;: BZ(W(S))° — BZ(W;(S)) for i = 1,2. With them we have the following
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variant of (6-30) for finite S':
(6-32)  BI(W(S)) <2 BI (WA (5)) X5, () B (Wa(S))
<> BI(W1(S)) x BL(Wa(8)) := BL(Wa 05 W)

and together they form a commutative diagram

BI(W(S)) "2 BI(W1(S)) x5, (1) BIWa(8)) 2% B (W5 05 W)
(6-33) ,,;Vl e Xnyzl WaosW Wi Xnyzl
B (W(S)) =25 B (W1(S)) X0 (o) B (Wa(S)) <% B (W, 05 W)

The pair of horizontal maps §1 x s and s; X s in the left square above define a map
between U (1)—bundles (but not the right square), and the map (ﬁY HYO) between
the U(1)-bundles 7} B"(W(S)) — B(W(S)) and my: B" (Yo) — B9(Yy) factors
through the bundle map

w
X

Bo(W(S)) i BT (W(S))

5~1 X5~2 51 X2

~ n;/Vl xn}c/Vz
(6-34) B (o) B2 (Wa(8)) =5 B (Wi (8)) X0 (v B (Wa(5)

=Y Y Y Y
My, =Ty, My, =Ty,
~ TTx -
?(Yo) B?(Yo)

As a general rule, in what follows we adopt the convention of adding subscripts
or superscripts W in notation previously introduced in Section 2 to emphasize the
cobordism referred to. For example, H%:,oo denote the version of the (fo00)—limit map
1% for the cobordism W, and H;’V is the W version of the projection map m, in
Section 2.

We shall also use other variants of the bundle n;}V 2oW1. g7 L (WaoWy) — B (WpoW).
These are constructed in a similar fashion, with the role of Bj‘c (Yo) replaced by other
bundles over B¢ (Yy), say l~5’1‘,’(YO), v being a O—chain in Y. The composition formula
(6-21) is verified for a cochain wu,, from Section 2.5 by applying the trick already used
repeatedly in Section 2; see eg the diagrams (2-34) and (2-46). That is, we choose an
appropriate lift of the embedding ¢: M — B° (WooWj) to &: M+ — fBU(Wz oWy)
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that fit in a commutative diagram of the form

M+ 2B (Wyowy)

(6-35) tl nl

M —=— B (W, 0 W)

and apply Stokes’ theorem over the top row of the preceding diagram. The cochain
u e C(B°(W);K) is typically interpreted in terms of inner products by considering a
variant of the diagram (6-33) for finite S. Once in the inner product form, the cochain u
extends to be defined on the fiber at infinity, M (W(o0)), and consequently also a
cochain u suitable for applying the arguments of (6-21). As outlined previously, the
term on the left-hand side of (6-21), m[uz](W>)m[u1](W1), arises from integrals over
strata in M ™ (W (00)). To put the integrals in a suitable product form, we must factor
the strata of M+ (W(o0), c_, c+) as products of two spaces, provisionally written as
M;{,} (c—, ) x M;{,z (c,c4), with ¢ € B°(Y). Here, M;{,} (c—, ¢) consists of “broken
W1 —paths” from c¢_ to ¢, and M;{,Z (c,c4+) consists of “broken W)—paths” from ¢
to ¢y . Recall from [17, (26.4)] that a general element of M ™ (W(c0)) is defined to be
an element in a product space

(6-36) NF(Y_,c—, ) x M(Wi. ¢, co—) x N'T (Yo, co—, co4)
X M(Wa, coq. ¢y ) X NT (Yo, ¢ eq).

There are different ways of organizing this space in the form MJI;,I (c—,0) ><./\/l?,{,2 (c,c4).
When deriving the hat version of composition formula, we take M;{,I (¢—,¢) and
M% (¢, c+), respectively, to be the first and the second line of the preceding expres-
sion. (For the check version, one takes M% (c—, ¢) to be the product of the first two
factors in (6-36), and M;;,z (¢, c4+) the product of the remaining factors.) Applying
[17, Proposition 26.1.6] to write out each entry of the identity from Stokes’ theorem
as a sum in the manner of [17, (26.13)] leads to a variant of the composition formula
(6-21) (but with our generalized definition of the cobordism maps)

(6-37) m[u](W(o0)) = M[u](W) + [R[u) (W), 3] + R[Su](W).

Depending on how u is expressed in terms of inner products, the left-hand side,
m[u](W(o0)), will expressed in terms of products of the form m[up](W2)m[u](W7).
Note though that, compared with the long sum in the expression following [17, (26.13)],
in our case there will be additional terms involving boundary-obstructed maps of the
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form 73, [u](Yp) (including the boundary-obstructed difterential 5§ (Yo) that appears in
[17]’s formula). These additional terms are absorbed in our generalized definition of
m[u] and K[u],

(6-38) [u](W(o0)) = M[u](W) + [R[u) (W), 3] + R[Su](W).

Step 4 We now apply the general discussion above to derive the identities (6-19)
and (6-20). What follows describes the formulas in (6-22) in a more explicit manner.
The degree —1 map Hy: Cy — Cy is given by

B Y Y S MiaOha o)he)
c1,02€C zemp (B (My,c1,¢2))

For practical purposes, it is often more convenient to work with the more concrete
variant of Hy; this is denoted by Hy = K[ 1,)(Wa) below and is defined by replacing
2, 1n the preceding formula by 6,,. The two maps Hy and Hy are related by

Hy = Hy + [05. R[e,]].

where €, is the parametrized variant of the O—cochain ¢,, defined in Section 2.5’s
Part 1(b).

Likewise, the maps 4, B, C, D: Cu — Cu, are assembled respectively from the con-
stituents A%, B°F o Doﬁ ct > o

ob’ Tob’ “ob>

A= » > (6% Uz, My (Wy.c1. ) TL(2),

cree?f e zemo (B (Musc1,c2))

ob_ Z Z Z (¢ ug, Mo,z (W, c1. ¢2))TLi(2),

‘1 ecu cee? zemo (B2 (Mu,c1,c2))

=y S (e tun, Mo (W1, e2) (),

cree?? et zemo (B (Musc1,c2))

ob_ Z Z Z (c¥up, ., My (Wy, c1, 02))TL(2).

cree?f ey z€mo (B (Musc1,c2))

(6-39)

The reducible variants of the above, K[u](W,), do not appear in the formulas for
A, B, C and D, as by assumption W, is equipped with nonbalanced perturbations.
However, keep in mind that while B, the simplest map among the four, is assembled
from the above according to the rule (2-20) (substituting mg[u] therein by Bsf ), the
more general rule of Remark 2.2 must be applied to construct the more complicated
maps A, C and D from their constituents above. Being a hat version of a cobordism
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map, the formula for A remains the same as that given in (2-20) since both endpoints
of A fall in Y_. The formulas for C and D contain additional terms from the endpoints
of A in Y4, similar to those in (2-44) and (2-45): for K = C or D, the explicit formula
for the cobordism map C or D is

00 ou
(6-40) K= [ggg o5 ]

ou ou

where (as the K—terms vanish)

’\00 0= _(au)os Koo 4 (UI_I)OS Bg;)’
ﬁou = _Kou _ (au)os Kou + (Uu)os Bou‘

ou ou-os ou--os

(6-41)

The maps A, C and D above also each has a companion version, denoted respectively
by A, C and D. They are defined from constituents given by the same formulas
as in (6-39), with the cochains uy _, uy , and u;  therein replaced by their more

concrete variants, that is, respectively by 0 _, 6, _ A0, . and 6, . The maps A,

L
C and D are built from these constituents in manners parallel to their sister versions

above, but in the case of C and D, all appearances of the boundary-obstructed map
(Uw)?%, in (6-41) are replaced by its companion version,

ou
nyldhg,|(M2) —ngldhp [(M1) ® 1 =: g, [dha](Mu).

The aforementioned pairs of maps are related by the formulas

(6-42) A=A-BO,, C=C+O,A-DO,=C+O A-DO,, D=D+O_ B

where

®u:1®®p2_®P1®1:ﬁ[hﬁ1]®l 1®n[_p2] —i[hy].

We shall make use of the following figure, which illustrates the construction of Hy
schematically:

(6-43) —oo—end at My +oo0-end at My ~> the map Hjy.

W#(S) D A

The construction of the maps A4, B, C, D: éu — 6._, (or their companions A, B .= B,
C and D) are illustrated in a similar fashion in the next set of pictures:
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AU .
—oo—end at M| ) (8 ( +oo—end at M, ~> the map A or A,

(6-44)

—oo—end at M,

Wu(S) DA =Aut

The dotted 1-submanifold y (possibly empty or disconnected) in each of the cobordisms
W in (6-43) and (6-44) is there to indicate that the map on the right of the picture is
constructed via coefficients given by evaluating the cochain u, (or 6, ) associated to
u, € C*(B°(W);K) (or 6)) on relevant parametrized moduli spaces M associated to
W (y =As in(6-43)and y = A\, &, Ay, A+ respectively in the four lines in (6-44)).

We now proceed with:

(i) (verifying (6-19)) Reexpressed using the more concrete companion, ¢,,, of u,,
this identity is equivalent to

(6-45)  m[031(V) om[1](V) + m[1](V) 0 m[02]1(V) = m[03,1(Wy) + [R[02,]1(Wy). 94]
= m[0,](Wy) + [Hy, 04].

To verify (6-45), we shall apply (6-38) to W = Wy, Wy =V, W, = Y and u = Oy,
Note that §6,, = 0, and thus the last term of (6-38) vanishes. The right-hand side
of (6-45) then coincides term by term with the first two terms of the right-hand side
of (6-38). To compute the left-hand side of (6-38), namely 71[0,,](W(00)), we claim
that

(6-46) Ory =c(0r®1) +c(1®07).
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This would then imply that
m[03,1(W(o0)) = m[f51(V) o m[1](V) +m[1](V) o m[f;],
thus establishing (6-45).

To verify (6-46), recall the definitions ¢, = d holy, and hol,,: B (Wy) — R/Z from
Section 2.5’s Part 1(b). Recall also the bundles and maps in (2-40) and (2-41). Use

By, »,(Mu), By, _, (My), B°(My) and QZ(ML.) to denote the terms, top to bottom, in
the right column of (2-40). (BS o—py (Mu) and B p1 —p>
our convention is to use the notation l’)’l‘,’2 p (My) when it is equipped with the U(1)—
action associated to the Thom form 191/,2_ p, given in (2-39). Thus, p 1—p, (Mu) is
endowed with the dual U(1)-action.) Recall the maps holy: B7 (V) — Bpl ,p»(My) and
holy: B"(V) — Bp,.p, (M) from (2-41) and fix U 19’2, P9y, and Py, as was
done there using them to define both h): B‘T (V) > R/Z and hy: B" V) — R/Z as
prescribed in Section 2.5’s Part 3(a).

(M) denote the same space, but

To interpret uy, in terms of inner products, consider now the analog of (6-34): Let
HMLI Be (We(S)) > B (Mu) denote the pullback of HM#H: B (Wu(S)) —

P2—p1 o p1
BU(MU) under the map 7p,—p,: (My) - B°(My). Let

P2 D1

81 (W#(S))—>BA(V(S)) and $: B

By, —pi (Wa(8)) — BS (V(S))

P2 D1

be the direct analogs of their counterparts in (6-34). The analog of (6-33) in the present
context reads

51XS;, mbed
pz pl(W#(S)) 1 2 BZ(V)XBOZ 1 (Mu)BU (V)i)BK(V)XBJ (V)
(6-47) ﬂ{‘; n}"xnvl n}fxn}jl
SI X852 embeds

BI(Wy(S) ——— BV ()Xo (a1, ) B7(V(S)) —— BT (V(S)) x B(V(S))

Now observe that:
¢ On the top row, the pullback of the U(1) = R/Z—valued function
(6-48) hy x1+1xhy

on B"(V) X B“(V) to B" V) XBpypy (ML) B W) c B" V) x B" (V) does not

depend on the ch01ces of B Oy P, and P}, -

e The preceding function is also invariant under the diagonal U(1)—action on
E‘j{(V) XBpop (ML) Ei—f (V), and hence descends to define an R/Z—valued
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function on the space in the middle of the bottom row of the diagram, that
is, BZ(V(S)) Xpo(my,) BT (V(S)).

e The R/Z-valued function holy, on B (Wy) agrees with the pullback of the
preceding function under the left arrow in the bottom row of the diagram, and
we have

(7"*)* hol,, = (&1 x §2)*(hy x1 + 1 x hy).
Taking the differential on both sides, we have
@) 03, = (51 x 2)" (92 x 1 +1x97) = (51)* 05 + (52)* V3
on BY,_, (Wa(S)).
¢ Recalling (2-43), we then have

Or, = (s1 X 52)" (O x 1 4+ 1 x 67),

since (51)* (112)*9,_p, =—(2)*(F7)*9;,_p, on B{WV)x5g, , a)BI V).
Meanwhile, the 1-form 63 x 1 + 1 x 65 on B?(V) x B°(V) is nothing but
c(0,®1) +c(1®67).

(ii) (verifying (6-20)) These identities follow directly from applying (6-21) to
W =Wy, Wi =V and W, =V, with u taken to be respectively tobe uy ,_, uy =1,
uy,, and uy . These cochains have natural interpretations as inner products:

m,_=clz®1), u=c(1®1l), wm, =clyz®w), wm,  =c(leuy).

In the case of item (2) of (6-20), §uz = 0 and therefore the last term of (6-21) vanishes.
Meanwhile, a straightforward adaptation of (2-51) to the parametrized setting identifies
K[u] inthe cases of u=1u,  , uy,, and uy | . respectively with the last terms of (6-20)’s
items (1), (2) and (4).

The figures below illustrate the identities in (6-19) and (6-20), as well as hint on their

origins.

e For (6-19):
T ~—_

(6-49)
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e The identity (6-20)(1):

e The identity (6-20)(2):
_\_/_ _\_/_

(6-51) O C=ED D -2 s -
o — v o
e The identity (6-20)(3):
S

652 ¥ <:>

T~

e The identity (6-20)(4):

T _—

In each cobordism in the pictures, s increases from left to right. They are read as
follows: The dashed lines (if present) in the cobordisms stand for 3—manifolds that split
the cobordisms into a composition of what we call “factor cobordisms”. Each factor
cobordism (or the cobordism itself, if it is not split) in the pictures is associated with
a pair (W, y), where W is a cobordism and y is a 1—submanifold (possibly empty)
of W, the latter being represented by dotted arcs or circles. This pair is associated with
a cobordism map of the form

(i) m[w,] (resp. m[6y]) when (W,y) is not cylindrical;

(i) 7nuy] (resp. m[dh,]) when (W,y) is cylindrical, namely, it is of the form
R x (Y, p), p being a (possibly empty) O—submanifold in Y;

(iti) K[uy] (resp. K[#y]) when there is a shaded region in the cobordism.

Composition of cobordisms along the dashed lines correspond to compositions of maps
associated to the factor cobordisms. For example, the dashed line in the first term
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of (6-49) splits the composite cobordism Wy into V D A on the left and V D & on
the right. The left part V D A corresponds to the map Vi = m[uy](V), and the right
part corresponds to the map VOT = M[ug](V); therefore this term stands for VOT Vi.
The dashed line in the last term splits Wu(S) into Wx(S) D A4 on the left and the
product cobordism R x My D & on the right. The former corresponds to the map Hy
according to (6-43), and the latter corresponds to di. Thus this term corresponds to
the term 0z Hy in (6-19). With y again standing respectively for Az, A —, @, A
and A4 in (6-49), (6-50), (6-51), (6-52) and (6-53), the pictures suggest how each
term of the identity arises from Stokes’ theorem, that is, as the integral u, over a
constituent stratum of the “boundary” (to be more precise, see (6-28)) of the relevant
compactified parametrized moduli space. Each such constituent stratum corresponds
to the moduli space of a particular type of “broken W —paths” (in keeping with [17]’s
terminology; see Definition 23.3.2 therein). The type for each term is specified by the
corresponding picture, with dashed lines signifying “breaking points” of the broken
W —path. The integrands in the identities, being defined from differentials of holonomy
maps along y, take the simple form of an inner product under the decomposition when
the dotted arc/circle y does not intersect the dashed line. When they do intersect, the
dashed line splits y into two arcs y; and y», each lying in a factor cobordism under the
decomposition. The holonomy along y being the product of the holonomy along y;
and that along y, (see eg (6-48)), the integral of 6, over the spaces of such broken
W —paths is thus a sum of two terms, each involving integrating over one of the 6, .
For example, this accounts for the two terms on the left-hand side of (6-19), as well as
the last two terms of (6-53).

Step 5 The identities (6-19) and (6-20) reduce the proof of (6-16) and (6-17) to the
next lemma, with the maps H', A/, B/, C’ and D’ from (6-16) and (6-17) taken to be

H =H-H, A =A—-A, B =B-B, C'=C-c, D' =D-b,
H, A, B, C and D being the maps from (6-19) and (6-20), and H, A, B, C and D

being as in the lemma below.

Lemma 6.8 There exist maps H, A, B, C and D, and Zy and Z,, such that

(6-54) Idy — [Z#, 04loda = M[uy,](Wy) + [H, 04]even.
(6-55)(1) Idy — 2w, dulodd = M[uy, _](WL) + [A, duleven + BUL.
(6-55)(2) 0 = A1) (W) — [B. du]oda.
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(6'55)(3) [5LI» X]even - [0IJ, Zu]even = m\[u)tu](Wu) + [C, 5u]odd - 0I_IA + Dﬁu,
(6-55)(4) 1y, — 20, 8uloaa = A[us, ., J(W) + [00. Dleven — UuB.

Proof These are also consequences of (6-38), taking W = Wy, W, for (6-54) and
(6-55), respectively, and with the same choices of « as in the previous step. The splitting
3-manifolds Yo C W however are chosen differently from those in the previous step.

In the case of W = Wi, we take (W1), to be a tubular neighborhood of Ax, U(A#),
and so in this case Yo = d0(W})e >~ S x 82, and (Wa). = Wi\ U(A4). There is a
diffeomorphism taking the pair ((W})¢, A) = (U(A#), A#) to (S x B3, S1 x {0}),
{0} € B3 denoting the center of the 3-ball B>. We denote the embedded circle
S1x {0} C S' x B3 by yp. In the case when W = W,,, we take Y to be the 3—sphere
S C Wy described in Step 3. This 3—sphere decomposes W, as a connected sum
of R x M7 and R x M>, and for both i = 1,2, (W;), C (W,). is a manifold with
boundary diffeomorphic to a product [—1, 1] x M; with an interior 4—ball removed.
The rest of the proof is divided into several parts, (i)—(viii) below.

(i) (alternative metrics and perturbations) A preliminary issue needs to be addressed
before we are ready to apply (6-38). Recall that in the statement of the lemma, the cobor-
dism maps m[u](Wy) and m[u](W,) refer respectively to m[u](Wy, sw,, @w,; T'w,)
and m[u](Wy, sw,, ww,;w,), where the metrics and the closed 2—forms wy,
and ww,, are defined via the decompositions of Wy and W, along My and M,,.
To apply the composition formula (6-21) or (6-38) to the alternative decomposition
described in the preceding paragraph, we need to work with cobordism maps associated
to different choices of metrics and perturbation forms, which are compatible with
the aforementioned alternative decomposition of Wi and W,,. However, we claim
that the identities (6-54) and (6-55) are equivalent to identities of the same form
for m[u](W,sw,20"; Tw), W = Wa or W, with the latter endowed with different
metrics and perturbation forms w, as long as:

(6-56) The differences are supported on compact regions in W, and in the case of the
perturbation form w, the difference is exact.

(The maps H, A, B C and D will be altered, but that is inconsequential.) This claim
follows from [17, Proposition 25.3.8] (extended in the manner previously described,
and with changes in perturbation forms incorporated).

Slightly reformulated, the hat version of the identity in [17, Proposition 25.3.8] takes the
following form: Suppose there is a path of pairs consisting of a metric and a perturbation
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form on W such that (6-56) holds for the entire path. Denote by ™ [u](W) and
m[u](W), respectively, the version of m~[u](W') associated to the pair at the end and
at the beginning of the path. Then

(6-57) it W) (W) —m~ [u)(W) = [2[u], 3] + Z[Su],

where the Z—maps are defined using parametrized moduli spaces associated to this
path of metrics and perturbations parallel to the definition of the previously introduced
K—maps, and u is the parametrized variant of « as before. (The Z —maps are analogs
of the K —maps in [17, Proposition 25.3.8].)

Remark Our signs differ from those in [17, Proposition 25.3.8] because we adopt
the “fiber last” convention of orienting the parametrized moduli spaces, as opposed
to [17]’s “fiber first” convention. This is preferred as it is more consistent with the
orientation convention used for (6-38).

The preceding identity in hand, suppose identities of the form (6-54) and (6-55) are
established for a particular pair of metric and perturbation form. Use m ™ [u](W) for
the version of cobordism maps associated to this pair, and use H~, A~, B~ C~ and
D™ to denote the version of maps H, A, B C and D in this version of (6-54) and (6-55).
On the other hand, use 7 [u](W) to denote the version of cobordism maps associated
to the pair of metric and perturbation appearing in the statement of the lemma. Then
combining the — versions of the identities (6-54) and (6-55) with (6-57), one would
have a 4 version of the identities (6-54) and (6-55) with respect to a new set of maps
H, A, B C and D, if the latter is set to be

HT =H™ —Z[1](Wy),
At = AT = Z[uy, (W),
BT =BT +2[1](Ww).
ct =c™ =2y J(Wy),
pt =p" + Zluy, J(W).
To reach the preceding conclusion, we made use of the identities
Z[Suz, 1MW) = OL2[1 (W),
(6-58) 2Sus,,, J(W0) = —2[11(Wo) O,
2[5, J(W0) = 2l )W) Uu — UnZlus,_J(WL).
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In complete parallel to the K—analogs mentioned in the paragraph preceding (6-49),
these identities are also straightforward adaptations of (2-51).

Now permitted to work with alternative metrics and perturbation forms by the preceding
arguments, we endow Wy and W, with the following sort of metrics and perturbations
for the rest of this proof. For W = W, or Wy, we require the metric:

¢ To agree with a product metric on a tubular neighborhood U(Yp) =~ [—1, 1] x Yy
of Yo C W, where Yy is S! x S2 in the case of Wy and S? in the case of W,,.
These are endowed with the standard metrics. (In particular, these metrics on Y
have positive scalar curvature.)

¢ To agree with the original metric on the complements of (Wx). and (W), .

¢ In the case of Wg, have restriction to (W1), >~ S 1 % B3 that has nonnegative
scalar curvature and is invariant under rotation along the S' factor.

The abbreviated notation 7 [u](Ws) and m[u](W]) also take on different meanings for
the rest of this proof: they will stand respectively for m[u](W, sw,, 2a');r ; I'w,) and
mlul(Wu, sw,,, 2a')|jr ; I'w,), where the metrics are as previously mentioned, and @y
and ws are closed 2—forms that

e vanish over U(Yy);
¢ are cohomologous respectively to wg and wy;
e agree respectively with wy and @, on the complements of (Wy). and (W)¢;

e are such that @y vanishes over (W), >~ S! x B3 C W.

Such wy and wy exist as ww, and ww,, both restrict to exact forms on Yy, and wy
restricts to an exact form on (W) >~ S! x B3 C Wa.

Now write W = W, o W and define W(S') according to the recipe (6-23). In the case
W = W, Wy is regarded as a cobordism from the empty set to S x S2; the —oco—end
of W, consists of two connected components, S 1'% 82 and My, but only the S 1y §2
component is “glued to” Wj to form W(S). See Figure 1, top left, for an illustration.
In the case W = W, the +-0co—end of W consists of two connected components, M1
and S3, and the —oco—end of W, consists of two connected components as well, S 3
and M, , but only the S>-ends from both sides are “glued” to form W(S). See Figure 1,
top right. To indicate the 3—manifold where gluing take place in the composition, we
write W = W, O0glx§2 Wi and W, = W, 0g3 wi.
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(ii) (surgered cobordisms) Recall also from Step 3 above that surgery along Ay C Wy
and S, C W, gives respectively the cobordisms W, >~ R x My and W/, ~ R x M.
We decompose these surgered cobordisms in a way compatible with the decomposition
of Wy and W, above. In the case when W = W4, the corresponding surgered manifold
is decomposed as W = Ws ogi,g2 W], with (W])¢ =~ D? x S? and W, being as
in the decomposition of Wy, Wy = W5 ogi1g2 Wi. Like (W1)e C (Wg)., we also
equip (W), with a metric with nonnegative scalar curvature. See Figure 1, bottom
left, for an illustration. In the case when W = W, the surgered manifold has two
connected components, Wl_/I = 17[71 L Wz. Each connected component 171\/, ~ R x M;
for i = 1,2 is obtained from W; C W, by filling in a 4-ball at the boundary 3—sphere
of W;. Let B, denote a closed 4-ball equipped with a metric which has nonnegative
scalar curvature, and that is cylindrical on a collar of the boundary. Let B be the
corresponding manifold with one cylindrical end, regarded as a cobordism from the
empty set to S3, and let B denote the reverse cobordism. We decompose Wl and Wz,
respectively, as Wl =Bo s3 W1 and Wz = W5 043 B, where Wi and W, are as in
the decomposition of W|,. See Figure 1, bottom right, for an illustration.

We now apply the decomposition theorem (6-21) and (6-38) to the composite cobordisms
W = Wy, W#/ , W, and Wl_’I described above, and illustrated schematically in Figure 1.
In each of the pictures, the dashed line represents Yy, the 3—manifold where composition
takes place. The shaded regions in each picture, W> C Wy and W, C W#/ ,and Wy C W,
and Wy C W/, are associated with nonbalanced perturbation forms in the relevant
Seiberg—Witten equation, implying that the corresponding moduli spaces of Seiberg—
Witten solutions contain no reducible elements.

(iii) (some useful facts about é (Yo)) In all four pictures, the Spin®—structure sy
on W restricts to the trivial Spin®—structure on Yy, denoted by s¢ below (s¢ is
characterized by the condition ¢ (sg) = 0). The 3—-manifolds Yy also all carry positive
scalar curvatures, so that €°(Yy) is trivial and the Floer complex is C (Yo, 50) =
C*(Yy,s0). In fact, Yo = S x §2, S3 respectively in the cases of Wy and W, and
in both cases C (Yo, s0) are explicitly described in [17] (see eg Chapter 36 therein).
We write

(6-59) (C(S' x §2,50),9) = (K[u, y]iz,0),

where K[u, y] is the (graded) polynomial algebra with variables u and y, deg(u) = -2
and deg(y) =1, and 17 denotes an element with degree —1. Similarly,

(C(83,50),9) = (K[u]1,0), (C(S>,50),0) = (K[u"']1,0),
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0=S1 XSZ
W
2 M#
My

Figure 1: Top left: Wy = W o Wy (W, As) (S'x B3, Yo); § increases
from left to right. Top right: W, = Woo Wp; A = A Ux Az A =211 Ug Aa.
Bottom left: W#’ =WooW/ >~ R x My; W/ ~ D? x S?. Bottom right:
W), = Wll_IWz,Wl WUS3B4~R><M fori =1,2; (1) p; =
AUy UL R x{(=1)piy CRx M;.

leC (83,50) and 1 € C(S3,50) being respectively the elements of degree —1 and 0
explicitly described in [17]. (In our convention, the plane field on S3 denoted by [£_]
and the plane field on S! x SZ denoted by [£o] in [17] both have degree 0.) We also use
the notation u”1 and u™"1 for n € Z=° to denote respectively the element in €% (S3)
with gr—grading [§9] — 1 —2n (equivalently, gr—grading [§9] —2—2n), and the element
in €%(S3) with gr—grading [£9] + 21 (equivalently, gr—grading [£o] 4+ 21). The U -
action on C(S§3) is also well known: (¢/, U(S3)c) = 1 for any pair ¢, ¢’ € €(S3) with
gr(c) —gr(c) = 2.

We are now ready to proceed with:

(iv) (verifying (6-54)) To compute [uy,](Ws), first note that the 1—cochain u;, has
the simple form of an inner product, uy, = ¢ (1, ® 1) with respect to the decomposition
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of Wy shown in Figure 1, top left. Thus, (6-21) is directly applicable. Noting that
duy, =0, this gives us

(6-60) AL W2)uy (ST x B?) = iifu, ) (Wa) + [Rlu, ) (W), 34,
This is compared to the formula obtained by applying (6-21) to W/, decomposed as

shown in Figure 1, bottom left, and with the 1—cochain takentobe u=1=c(1®1).
Here we have

(6-61) M1 (Wa)m[1](D? x §%) = m[1](Wy) + [R[11(W}), 34].

If the manifolds W; ~ S! x B® and W/ >~ D? x §? above are regarded cobordisms
from the empty set to (S! x S2, 5¢), then 7i[u](W;) and i [u](W/) are both elements
of C (S! x S2,50). Alternatively (in line with the definition of closed 4—manifold
invariants in [17]), for a cobordism W from the empty set to Y, m[u](W) € C(Y) can
be defined as

mlu)(W) = mlu](W)]1,

where W is a cobordism from S3 to Y obtained by removing a 3-ball from the
interior of W, and u € C(B° (W);K) is used to denote the cochain induced from that
in C(B°(W);K). With Wi ~ S! x B3 and W[ ~ D? x S? endowed with the metrics
prescribed above, the values 77i[uy,](S! x B3) and mi[1](D? x $2) are also well known
(and follow from simple computations): in the notation of (6-59),

(ST x B3 =1z € C(S! x §2),
m[1](S' x B3 = ylz € C(S' x §?),
m[1](D?x §?) =17 € C(S' x §?).
Inserting these into (6-60) and (6-61), we have:
(6-62) mluy, J(Wy) = m[1](Wy) + [R[1(Wy) — K[up,](We), 04].

As observed before, W, >~ R x My. When the latter is endowed with cylindrical metric
and perturbation, 7[1](R x My) = Id. Thus, since §(1) = 0, by (6-57) again,

m[1](Wy) = 1dy — [Z[1] (W), 4],

where Z[1](W,) is defined using a path of metrics/perturbations from the original
version to the cylindrical one. Combining this with (6-62), we arrive at (6-54).

(v) (verifying (6-55): preparations) Consider Figure 1, top right, and write m[u](W;)
as a map from C(Ml) to 6(M1)®6(S3); m[u](W>) as a map from 6(S3) ®6(M2)
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to C (M>). To simplify notation, we denote A4, Au_ C Wy respectively as A and A
below. Recall that the point x = A N Yy (which is in W) separates A into A; U A5,
with A; C W; for each i = 1,2. We denote the point of intersection of A with Yy as X,
and A = L U Xz. Recall also the arcs y; C %c and y, C B, from Step 3. (In Step 3,
Q_Sc and B, were respectively denoted by B; and B;.) In the surgered manifold
Wl_’I = W, UWa, foreach i = 1,2, Vi J01n with A; UA; at {x, x} C S? to form paths
in W~ ~ R x M;. We denote the path in W1 by —p1 and that in W2 by p2, as they are
diffeomorphic respectively to the paths R x {—p1} CRx M7 and R x{p>} CR x M,
under suitable diffeomorphisms taking W; to R x M;. See Figure 1, bottom right.

We begin with some computations of 7[u](W;). Express m[u](W7) in block form as
in (2-44). First, note the following facts: €(M) = €°(M;) and €°(S?) = @; mf!(W1)
vanishes for all # and b while mﬁ(Wl) vanishes except when # = 0 and b = os. This
means that, when 71[u](W7) is given by the simpler formula (2-20) (for example when
u = 1), only one term, —(39(M1) ® 5i (S3))m2,[u](W1) on the lower left, can be
nonvanishing. However, 5§ (S3) = 0. Thus, m[u](W;) = 0 for such u.

More generally, the lower row of (2-44) contains additional terms as explained in
Remark 2.2. These correspond to the last terms in both lines of (2-45). According to
the discussion following (2-45), in the cases of 7[6;,](W1) and m[03 [(W1), these
terms are of the same form as those in (2-45), but with the map 73 [dhp,] therein
replaced respectively by

1 ® 7 [dhs](S%) —m[dh

hs, (M) ® 1 =i [dhz](S?)  for m[0;,]1(Wh).

1@, [dhs](S%)  for m[fy 1(Wh).
In the present context, the additional term in the lower right corner of (2-44), being a
product of one of the expressions above with mY [1](W7), vanishes because the latter

does. Thus, for both 1[0, ,](W;) and m [611 ](W1), all entries in (2-45) vanish except
possibly for the lower left entry, which is respectively

Mg [02,1(Wh) =, [dhg] (S%)m [11(Wh),
Moy 05, 1(W1) = 73, [dhz] (S )m [11(Wh).

Now, for any p € S3,

1 ifc=1€¢5(S3) and ¢ =1e¢¥(S3),

(C',ﬁi[dhﬁ](s3)c> = (¢, (Up)i(SS)c) - 0 otherwise.
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Thus, (c4,1 ® ¢, m[0y,[(W1),c—1) = (c41 ® c.m[03 [(W1),c—1) vanishes for all
c€€(S3) and ¢4 1 € €(My) = €°(M;) except when ¢ = 1, in which case

(1 ® 1[0, J(W1), e 1) = (e4,1 ® 1[0, J(Wh), 1)
= (c1 ® Lm[1](Wy), c_1).

Note that 72[u](S3) vanishes for all u of odd degrees, since all pairs of ¢, ¢’ € €(S3),
the difference gr(c¢’) — gr(c) is even. Together with the preceding arguments, this
implies that in the block form (2-44), all entries of m [9;1 A 03,1(W1) also vanish
except possibly for the lower left entry, which is

gy (07, A0, J(Wh) = iy [dhe](Sm [0, 1W1) + 3, [dhg) (S )mg 67, 1 (W)
= mog[62,1(W1) +mo 165 1(W),

and (c4,1 ® C”%[QL A0, 1(W1),c—,1) vanish for all ¢ € €(S3) and ¢4 ; € €(M;) =
¢%(M,) except when ¢ = 1, in which case

(e ®Lm[0; A6 )W 1) = (e, ® L6, + 65 1(W)e—1).

Imitating physicists’ notation, we use i[u](W1)|c) for ¢ € €%(S3) to denote the map
from C (My) = C (M) to itself defined by

(1. mu](W)le)(e—1)) = (e 1 @ ¢, m[u](Wr)(c—1)).

Similarly, 7i2[u](W1)]c) for ¢ € €¥(S3) will denote the map from é(Ml) =C(My) to
itself defined by

(e 1MW) e} (e 1)) = (c4,1 ® ¢, m[u](Wr)(c—1)).
Also, (c|m[u](W>) will denote a map from C (M>) to itself given by
(e 2. (clm[u](Wa) (e 2)) = (cx 2. M[u](W2) (c Q@ ¢ 2)).

(vi) (verifying (6-55)(2)) In this case, the cochain u =1 € C(B{ .(Wu);K) can be
written as an inner product, 1 = ¢(1 ® 1), and (6-21) applies. Noting that §(1) =0, in
this context (6-21) gives, with respect to the factorization C My) = c (M) ® C (M»),

> (@)e) ® ((clam[11(Wa)) = m[11(W) + [RII(W), du].
ceCu(S3)

The left-hand side of the preceding formula vanishes, since we saw that m[1](W;) = 0.
This directly leads to (6-55)(2), with B set to be

B = —K[1](W0).
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(vii) (verifying (6-55)(1),(4)) As with in the proof of (6-20), in cases (1), (4) and (3),
the relevant cochains do not take the simple form as an inner product under the
decomposition, and instead of (6-21), the more delicate formula (6-38) is required.
To begin, We again reexpress the formulas (6-55)(1), (3), (4) of in terms of the more
concrete ¢, and 63, making use of the identities (6-18) as well as the previously
established (6-55)(2):
(6-63)(1") Ty — [Zus, Juloaa = A[B7](Wo) + [A, duleven + BA[dhL],
(6-63)(3") [0u, Xleven — [AldhL], Zuleven

= ml05 A 0;1(Wu) + [C, 5U]0dd —n[dhy]A + Drfdhy],
(6-63)(4") Tduy — [Zu1, duloaa = M[03](Wis) + [0, Dleven — A[dh]B,
where

Aldhu)(My) = 1 ® Aldhp,)(Ma) —ildhz, (M) ® 1,

and A, C and D are related to A, B, C and D via formulas parallel to those in (6-42)
relating A4, C and D to 4, B, C and D.

We omit the proof of (1’) above as its proof is entirely parallel to that for (4’). To
proceed with the proof of the latter, we first express 6, as a sum of inner products in
parallel to (6-46). Namely, we claim that, in this context,

(6-64) 0y =c(l, ® ) +c(1®6y,).
Once this is established, applying (6-38) in this case would yield
6-65) Y (M6, ](W1)le) ® (c|m[1](Wa) + m[1](W1)]c) ® (c|m[03,](W2))

ety — A6 (W0) + [RI0,] (W) Duleven + AldhUIRT (ML)
= O] (WL) + [R[02](W0), duleven — BRI1](WL).

According to the computation of 7[u](W7) in part (v) above, the second term on the
left-hand side of the above vanishes, while the first term is given by

M0, JWn)I1) @ (1m[11(Wa) = m[1](W1)|1) & (1]m[1](Wa).

Filling 3-balls at the S 3_end of W; and W, to get Wl and Wz as shown in Figure 1,
bottom right, we see that:
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m[1)(W)[T) = M1 (Wh) + [K[(W1). 0(M1)]oaa
A1(W) + [RI(W1). d(M1)]oda.

(LA (W2) = A[1](Wa) + [R[1](W2), d(M2)]oda-
Combining these with (6-65), we have

(6-66)

6-67) M[1](W)
= (W) @ m[1](Wa)
= I’I/’\l[ek](WI_l) + [ﬁ[ok](Wu), 5Ll]even - Bﬁ[l](WLI) - [ﬁ[l](W[j)a ’a\u]odd-

Since for both i = 1,2 171\/, ~ R x M;, and when equipped with cylindrical metric and
perturbation, m[1](R x M;) =1d, by (6-57) we then have that

(W) = 1dy — Z[(W,,), dulodds

where Z[1](W})) is defined via a path of metrics/perturbations from the original version
on W/, >~ R x M, to the cylindrical version. Combining this with (6-67), modulo the
proof of (6-64), we have verified (6-63)(4"), with D and 7, therein set respectively to be

(6-68) b= —K[0,](W0).  zu = Z[1J(W)) —R{L(W)).
Item (6-63)(1") is derived using the same arguments, with A set to be
A =R[O5](W0).

We now return to the task of verifying (6-64). This is again done following the strategy
outlined in the end of Step 3 above. Recall the definitions of the bundles

7 BS(W) —> B(W) and  my: BS(W) — B (W)

from the diagram (2-41). Let 7, : Egl (W1) — B°(Wy) and 7, : Z’S’gz(Wz) — B (W)
be U(1)xU(1)-bundles defined in a similar manner, namely by the commutative
diagrams

= ﬁi ~ ~ o~ oo ~
Bg (W1(S) —5 B, (M)xBI(SY) B, (Wa(8) 2287 ,(5%)xBS, (My)

lﬁ/‘n lﬂm XTx fff\z lnxxnpz
m? 1)

BT (W, (S)) My B® (M;)xB° (S3) B (Wa(S)) —22 B9 (S3)xB% (M)

where Hg for i = 1,2 are defined similarly to their cousins in Section 2: Ha =
H+M1 X HS and Ha = HS3 X H+M2 with HS now as defined in (6-31). In the
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above, the sign =+ in HW Mi was introduced to distinguish between the two M; —ends
of W;, that is, HiM respectively denote the maps of taking limits to the M; —end
at s — Foo. Factor Hi{ and l'[a respectively as l'[8 = H+M‘ X HS and
nf’ = 5] x 3.

Let E’g 5 (WL(S)) be the U(1) *3_bundle over B (W(S)) defined by the commutative
diagram

~

B, (Wu(S)) — L BIWL(S)

~ ﬁx,)\ -
Ty TTx

BY (WL(S)) —2—— B (Wu(S))

~ A
7

B{(Wu(S))

We have the following variant of (6-33) in the present context:

xk(Wu(S)) B" (WI(S))XBX(S?)BU (Wz(S))—>B° (W1(S))><B" (W2(S))

(6-69) 7:_[ N ffA X’?/\z 7?/\ x;f)lz
B (W (S) =B (W1 (S)) X o (53)B% (Wa (S)) —B% (W1.(S))x B (Wa(S))
Fix now f}pl , 19’ and 19& , together with compatible trivializations P} s P, and py/ ,

and use them to define R/Z-valued functions hy, h,, and hy, respectively on
B3 (Wu(S)), BY (W1(S)) and B (W2(S)). Let hy, hy, and hy, respectively denote
their pullbacks to

~

B2, (Wu(S)). B, (Wi(S)) and BY (Wa(S)).

Then, arguing as in the paragraph following (6-48), we see that EA agrees with the
pullback of the function (h;L1 x14+1x h/lz) lS’)L W1(S)) x B" (W2(S)) > R/Z
via 51 X 55, and we have

TEA*0, = dhy = (51 x52)*(dhy, x 14+ 1 xdhy,)
= (51 x 52)*(Fyy, 02, x 1+ 1x 75, 05,).
Note that both sides of the preceding equation depends only on the choices of 15‘1/)1

and ¥/

. » independent of all other choices made to (simultaneously) define hy, hy,
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and hy,. Meanwhile, note that
%;,Aexzﬁ;ﬁ*m—:*(ﬁjvf‘b)* + A,
~ ~ M
75 00, = Ty, 00, — (A0 + ()70,
~ M
7,00 = Ty 020 + ()04 = (32",

2

and, over %i’l (W1(S8)) X5, (s3) E’/‘{z(Wz(S)) — [3)0“ (W1(S)) x E’EZ(WZ(S)),
(—(TT5 ) 8 + (AHM) %07 ) x 1+ 1x (T)* 0 — (T42)*0) )

M S+ M
(n+ D, x 1= 1x (T 2M2)*9,,

Thus,

;HU

AGA = (51 x5)* (7 9;“ ><1+1an 05,
and hence, through (6-69),
03 = (51 2)* (62, X 1+ 1 x 63,

which means (6-64).
(viii) (verifying (6-55)(3)) The composition formula (6-38) in this case gives
(6-70) 65 A 0,](Wu(00)) = [65 A 0,1(Wa) + [RI83 A 021(W). duloas

—K[0,](W)i[dhy](My)—i[dhy](Mu)KR[07](WL)
= i[5 A 21(W) + [R[03 A 02](W0), duloaa

— Anl[dhy](My) + aldhy](My)D.

To compute the left-hand side of the preceding formula, first use (6-64) and its sister
version for 65 to write

O3 A Oy = s (07, AOx)) + 5761, A3 07 4 5707 A5 0h, + 55 (07, A Oay).
Combining this with the computation of m[u](W;) in part (v), we get
(6-71) M6 A 6;](Wa(00))
= [0y, A 62, 1(WD)1) ® (1|1 (W2)
+m6y JW)I1) ® (117[62,](Wa) + m[62,1(W)1) @ (1]7[65, 1 (Wa)
+ A (W)|1) & (1[7[65 A 62,](W2)
=m[6y +6,1(W) 1)@ (1|M[1](Wa)+m[1) (W) 1)@ (1|65 +62,](Wa).
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In comparison to the identities from decomposing W\, we have the following identity,
obtained by applying (6-38) (and its check version) to the decomposition of W,
described in Figure 1, bottom right. Recall that for the underlying decomposition
of W/}, the paths (—1)' p; split as (—1)'p; = (A UA) Ux,x (vi). The arguments
leading to (6-46) imply that in the present setting,
O—1yip, =c(0x, ®1) —|—c(9;i ®1D)+c(1®0y,).
Then
85, (W1 (00)) = ml6_p,]1 (W1 (c0))
= m[6, + 6z JOVD)I1) + D w6y, 1(B)(m[1](W)e),
ceCs(S3)
[05,](Wa(00)) = (1[0, + 67, 1(Wa) + ([0, )(B) [ [1](Wa).

Remember that m[u](B) is a map from é(S3) to K, while m[u](B) € 6(53).
However, when deg(«) is odd, both 77[1](B) and 7i[«](®8) must vanish, because all
generators of C(S?) (resp. C (S3)) are of even (resp. odd) degree. Thus, the last terms
of both lines in the preceding expression vanish. Combining these with (6-71), we have
(6-72)  m[65,1(Wi(c0))

= (6, (W1(00)) ® [1](W2(00)) + M[1](Wi(00)) ® i[65,](Wa(00))

=m0, 465 | (W) 1)1 A1) (Wa)+ri[11(W) 1)@ (1]/[62,+65_ 1 (Wa)
m[6,J(Wu(00)),

where py; denotes the 1—chain py — py in W/, = Wy U W, and 05, := 05, — 05,
Now appy (6-38) and (6-57) to W/, with u therein set to be 65 ; we get
m[05,,1(W(00))

= (05, )W) + [R[0 5, 1(W). Oleven + [RIL(WY,). Ald D] leven

= f5,)(R x My) + [R[0 5,1 (W) — 2[6 5, )W), Dueven

+ [RIW) — R[W). iildhyJleven

= 05, ](R x M) + [R[05, )W) = 210 5,1(W)), duleven — [20, Ald Builleven
where 7, is as in (6-68), and 7[05 (R x M) = m[05,](R x M1) @ m[05,](R x M)
denotes the version of the cobordism map when the metric and perturbation form

on R x My, as well as p; C R x M, are invariant under the R-action. However,
m[05 ](R x M;) = 0 by construction. (Recall (2-43) and (2-30).) Thus, the first term

Geometry & Topology, Volume 24 (2020)



HF =HM, V 3611

in the last line of the preceding formula vanishes. Putting all these together with (6-70)
and (6-72), we have

[R10 5., 1(W) — 210 5, 1(W}1). O]even — 201, AldBuleven
= m[63 A 0,](Wu) + [ﬁ[ﬂ; A0, ] (W), gu]odd — An[dhy](My) + Aldhy](My)D.
This implies (6-63)(3’), and hence also (6-55)(3), if we set
C=RIB; AOIWL). X =200, J(W)) —R[0,5, 1K)

in these formulas. This finishes the proof of the lemma. a

Remark 6.9 The preceding lemma has Yang—Mills analogs; see Theorem 7.16 and
Corollary 7.21 of [7]. A previous version of this article (arXiv:1204.0115v1) con-
tains sketches of an alternative proof, where the underlying geometric meanings of
computations done here are clearer.

We have now shown that V, defines a chain homotopy equivalence.

Step 6 We now verify the claim that V. and V,z intertwine with the A +(My)—action
on Sy, (6* (My, sy, rfw]u: Ty)) and the A4+(My)—action on CMy (My, sy, r{w]y; i)
described in Parts 2 and 3 of the previous subsection. More precisely, for each Q = U,
and t, for y € {yl-[l]}l- U {y][z] }j, we shall show that there exist homomorphisms

Zgx: CMy(My, sy, r[ws]; Ty) — Su,, (é*(Mu,ﬁu,r[wu]; ).
Z}),: Su, (Co(Mu.su.1[wul: T)) — CMu(My. sy t[wyl: Ty)
satisfying
Vit — Sy, (mo)Va = Zxds + (=1)%22 D Z g,
Vs, (mg) — (—1)*2 Qmo v = 8,2}, + (-1)*2 2z}, Dy,
We shall only verify the first line above, since the second line is basically the adjoint of

the first. Stated in terms of the decomposition (6-9), this amounts to verifying the set
of identities

(6-73)(1) VoUp —UpVo = duZu,0 + Zu,004.

(6-73)(2) ViUp —UpVi — Ky, Vo = —0uZu,1 + Zu,104 + UuZy,.
(6-73)(3) Vom, —my, Vo = —0uZy.0 + Zy.00%.

(6-73)(4) Vimy, +my, Vi — Ky Vo = 0uZy1 + Zy.105 — UuZy0.
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VAR Zyo
Zusx = ’ Zyx = ’
v [ZU,I]’ 7 [Zy,l ]
and K U, and KA,, are as defined in Part 3 of the last subsection. These are established
by arguments similar to those used to verify (6-3), (2-51) and (2-55).

where

To proceed, we define Zy« and Zy« as follows. Let p C V be a path such that on
V-V, >R xMy)URT x M), pn(V—V,) agrees with R x {p} under the
diffeomorphisms in (2-8). Suppose also that the path p U p CV Uy, V = Wy becomes
the line R x {p} C R x My >~ W, after the surgery of Wy along Ay4. (Equivalently,
pUp CVUy, V=W, also becomes R x {p} C R x M, ~ W/, after the surgery of
W, along S;.) Foreach y € {Vi[l]}i U {yj[z] }j , define in a similar fashion an embedded
cylinder T C V that ends at circles y C Y+ on both ends of V. Now set

Zuo = Kp(Viy) = mi[0,](V: V) + O Vo,

Zy = ilup ] (Vi Ty) = m[0,0:](V: Ty) +[M[0;](V: Tv), O] — Oy Zy o,
Zyo = m[Fy](V;Iy),

Zy1 =mFry](V;Iy) = m[Fy0,](V; V) +0OuZy,

(6-74)

where IA(I, (V; Ty) is as defined in (2-50) for X =V and A = p with respect to the
X —morphism I'y, and Fy is as defined in (2-53).

With the preceding definitions, items (1) and (3) of (6-73) are direct consequences of
(2-51) and (2-56). To derive items (2) and (4), first rewrite them in terms of the more
concrete cochains, 6p, 8 and Fry, using the now-established items (1) and (3) and
the identities (6-15):
() [m[0,](V), iildhp]leven — 7ildh 5 A dhy]m[1](V)

= [[0p A 03] (V), deven + A[dBLIV)R[G,](V),
@) [m[0,](V), iluylloda — Afuy A dhy]m[1](V)

= [A[Fr8;](V), dloaa — AldhL]V)A[FT](V),

(Y+) introduced in Part 2(b) of Section 2.5. Recall
that in our case y is used to denote both embedded circles in Y4 and Y_; we use the

where u,, is the 0—cochain on Bﬁm

same notation u, for the corresponding cochains on B (Y+) and B (Y-). The same
convention will be applied to the Y4 and Y_ versions of other cochains associated

to y that were constructed in Section 2.
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According to Proposition 25.3.4 of [17], verifying the identities (2") and (4') above is
equivalent to verifying that

mld(0p A 0)IV) = [m[03](V). ildhp]leven — 2[d D A dhu]m[1](V)
—n[dhy](V)m[6p](V),
mld(FyO)](V) = [m[0,](V). 2oy lloaa — t[uy A dhi]m[1](V)
+ ildhy](V)m[Fy](V).

The rest of the this step is devoted to verifying the preceding identities.

(6-75)

(i) (verifying the first line in (6-75)) We argue similarly to (2-47). Let M denote a 3—
dimensional moduli space of the form M3 - (V;c—, cy). Let g1 M — B (V) C BZ (V)
denote the embedding. Let 9 and M™ denote respectively the top-dimensional strata
of M and t™!M as in Section 2.5. The coefficients of the map on the left-hand
side are given by integrals of the form (d(6p A 6,),M). To compute them, let
EZU 5, (V) — B2 (V) be the U(1)xU(1)-bundle defined by the commutative diagram

= 44 ~
B (V) ———— B{(v)
ln/ w) l]t)L
A
Bo(v) — LS BoW)

Similarly to (2-34), we shall choose a map E: M* = BT(V) so that the diagram below

commutes:

MT 5 V)

E— _ ”Ul" "
6-76 ) > %
(6-76) v BZ(v) B3O
)
v c \ A
M B (V)

Consider the form ((”A) Up) A ((np) ;) on BGUA(V) Use the identities ¥, =
wh0p + (I1°)*9) — (TT°°)*¥, and m_nxeﬁ(na
((703)*0p) A ()" D2)
= 7552 0p A O2) + ()" (1) D, —(ni)*(ﬁ—w)*ﬁlg)m;w@
+ (50,0p) A ) (T*D,,
+ () * ([A®)* D), — () * (TT°)*9)) A () * ([15)*D;, .-

V¥ p2 p, torewrite it as
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Recall that the same notation p is used to denote corresponding points in both Y_
and Y4 . In the above, the same notation 191’, is used to denote either the Y_ or the Y+
version.

Now pull back the preceding identity by E and integrate over [(M™);] = 9[M]. (Here
we again used [17, Theorem 24.7.2 and Lemma 31.3.1].) The integral over the left-
hand side vanishes, because both ¥, and ¥, are exact. Meanwhile, by way of the
commutative diagram (6-76) and Stokes’ theorem, the integral over the first term on
the right-hand side is
(E*”;Ux(ep A6 M) = <‘§*7T;U)Ld(9p NG IMT]) = (d(0p A 03), M).
This is exactly the coefficients of the map m[5(6p A 6;)](V) that we aim to compute.
With a bit of diagram chasing, the aforementioned integral identity then becomes
(6-77) (d(0p A 63), M)
= —(S3((@@%)*d, = (I7)"9;) A7y 03). (MT)2)
— G135 0p) A (I 9, ). (MF)2)
— [ () @=y 0, — )" 79)"9,)
A ) (T*D, ). (M),

According to [17], (M™), is a union of product spaces of the forms

N0+(Y_c_, )X Ma(Viceq), Ma(Vie,0) xNOJr(YJr; ¢, c+),
(6-78) NS o) x My(Vieer), Mi(Vieo, o) x NP (Y43, ),
J\/'2+(Y_; c—, ) x Mo(V;ceq), Mo(V;ie—,¢) x./\/2+(Y+; C,C4).

The diagram requires that each N'* factor of the preceding product spaces must map
to fibers of the bundles E’g W), fi’g (V) or ZS;U ;5 (V), respectively, under $p, 3 and G .
Meanwhile, observe that on the right-hand side of (6-77), the first, second and third

term has respectively a factor of (ITF%)*¥/ (ﬁi)*ﬁl’)z_m and

() * ()"0, A ()" ([))* 0,
They restrict respectively to the volume forms on the fibers of, respectively, E’j’, W),
E’i’ (V) and Z@gu 5 (V). This means that product spaces of the types in the first line
of (6-78) never contribute to the integrals on the right-hand side of (6-77); those of

the types in the second line of (6-78) contribute only to the integrals in the first and
second terms on the right-hand side of (6-77); those of the types in the third line
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of (6-78) contribute only to the integrals in the last term on the right-hand side of (6-77).
Consequently,

(6-79)  (d(Bp A 62), M) = =3 (63, My (Vi e, ) dhyp, NiF (Yo, e4)
+ Y (dhp N (Y=ie, ) (2. Mi(Vic,cy))
= (. Ma(Vicm ) (dhu Ny (Y4 . c4))
—i(l,Mo(V; c—. ) (dhp Adhy Ny (Yyic,cq)).

This identity leads directly to the identity in the first line of (6-75).

(ii) (verifying the second line in (6-75)) We proceed similarly, but now take M =

(M), to be a 2—dimensional moduli space of the form M, ;(V;c_,c4). To com-

pute (8(Fy6), M) = (Fy0,,(M)1), consider the bundles y: Eg(V) — B2(V),
7: B°(V) — B°(V) defined by the commutative diagram

BY L, (V) — 2 B (V)

Tyua
lfri Y 2

BI(V) — 22— B(V)

lﬁ:ﬁ:oo [Itoe
BY (Vi) ——— B°(Yy)
where Py: 13't (Y1) — B? (Y1) was defined in Section 2. 5 s Part 2(b). Note that B" V)=

(TTHo0)* B"(Y+) ~ (IT7%°)* IS’t (Y-). Choose liftings ¢ g Sy and ¢, of the embeddlng
¢: M — B2 (V) that fit into the commutative diagram

MT 5 V)
—~— yU)L
N SN
N W A
(6-80) : BI(v) Tyua BZ(V)
\ /
M > B°(V)
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Let F:= (m7)*Fr . Noting that #, is closed, we have by (2-56) that

d(F97) = ()" (T1%°) " 11y) AL — ()" (TT7%°) " py) A D

Pull back by 71]/, on both sides of the preceding identity. Using the fact that P{ i1, = dx,,,
a bit of diagram chasing then yields

d(F9;) = d (((7))* (T1%)* x,, B1)) — d () (1) * x,, B1)),

where T := (yupr)*Fy and fh = (n)/,)*z?,x. Pull back both sides by ? and integrate
over M ™. Then apply the Stokes’ theorem [17, Theorem 24.7.2 and Lemma 31.3.1]
to get

(©*(F2). (M)1)
= (T ()" (1) * x D). M D)1) = (% () * (TA7)* x, 32)), (M),
Recall that 9 = 736, +(I19)* 9,
formula can be rewritten as
(6-81) (&, (Frfh). (M) + (E* ((p, Fr) () () * 97, ). (M)
= (& (((rp)* (1) * x,) (x5,,62)) . (M)
— (E* ()" (A0 * x) ) (7 ,260)) . (M)
+(E* () * (%) * ) () *([AD* D), ). (M)
— (& (G (%)% x, ) () * (F19)* 97, ). (M),
By the diagram (6-80), the leftmost term in the preceding formula is

(E*ﬂ;‘u,\(FTQA), (MF)1) = (c*(Frb)), )IMT]) = (d(Fy6)), M),

,—p; - Withabit more diagram chasing, the preceding

namely, it is precisely the typical coefficient of m[§(Fy6))](V) that we seek to compute.
To compute the other terms in (6-81), recall that according to [17], (J\/l+)1 is a union
of product spaces of the forms

J\/(;"(Y_c_, X Mi(Viceq), Mi(Vie—, ¢ x/\/(;"(Y.,.; ¢, Cy),
NF(Zem, o) x Mo(Viees),  Mo(Vieo, o) x NiF (Yqic, cy).

The map t is a diffeomorphism when restricted to spaces described by the first line of the

(6-82)

preceding expression while, according to (6-80), spaces described by the second line lie
in fibers of the U(1)-bundle m,y;: gf()/) — B (V). Note that (”;)*(ﬁg)*%z—pl
restricts to Thom forms on fibers of 59 (V), and both p; and p lie in the Y4 —end
of V. These imply that only spaces of the last type described in (6-82) contribute to the
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integrals in the second term on the left-hand side of (6-81), as well as to the integrals
in the last two terms on the right-hand side. Meanwhile, for the first two terms on the
right-hand side of (6-81), only spaces described in the first line of (6-82) contribute.
Make use of these observations to rewrite (6-81) as

<d(FT0A)’ M) = Z(Q/M M1(V, c—, c))<u)/vN(;+_(Y+7 C, C+))
+ Dy NG (Vi e )0 Ma (Ve eq)
=Y (L Mo(Vie, o)) {uy dhy, N (Vi ep))

+ D (Fr, MoV (=, ) (dhy, N1 (Mu)(c,c4)).

Note that the last term in (6-81) is zero, because integrals of the form
(E* (™) xy, Mo(V:c—. 0))

vanish. Now, the preceding identity relates the coefficients in the identity of maps in
the second line of (6-75), directly establishing the latter identity.

(b) The proof for assertion (b) of Proposition 6.7 differs from part (a) only in the
mechanism to ensure that the right-hand side of (2-27) and its analog are well defined.
Instead of monotonicity, this is now justified by the completeness condition on the local
coefficients, and by working with the grading-completed version of monopole Floer
complexes C,. The relevant compactness theorem here is Theorem 24.5.2 of [17]. O

Remark 6.10 (a) Recall from Section 2.1 that when ¢ (s) is torsion, the following
types of perturbations are all equivalent: positive monotone, negative monotone, bal-
anced, exact. Thus, the assumption in part (a) implies that ¢ (sx) is nontorsion. On
the other hand, the assumption that [ws] is monotone with respect to cx in part (a)
implies that both [w1] and [w5] are respectively monotone with respect to ¢1(s1) and
c1(s2) with the same monotonicity constant. Combined with the assumption that [wy]
is nonbalanced with respect to ¢ (s), this implies that [w;] is nonbalanced with respect
to c1(s;) for at least one of i = 1 or 2. Keep in mind that we always choose M; to
be the one endowed with a nonbalanced perturbation.

(b) Our proof follows the “standard” cobordism argument that appeared in [9; 7,
Section 7.4] in the Yang—Mills setting. Bloom, Mrowka and Ozsvith [2] proved a
connected sum formula for the case of exact perturbations, using a different approach
that involves surgery exact sequences. The use of the latter necessitates the use of the
completed version of monopole Floer homologies HM, .
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6.3 Filtered monopole Floer homology and handle addition

Continue to work with the same settings and notation from earlier parts of the section,
but now specialize to the 3—manifolds and cobordisms described in Sections 3.5 and 3.7.
More specifically, the following two cases are considered; fix an r > 7:

(6-83) (1) Let My =Y; fori =0,...,G— 1. Equip Y; with the nontorsion Spin®—
structure and a metric from the set Mer in Proposition 3.9. Let w; be the
corresponding harmonic 2—form w in Proposition 3.9. Let M, = S1x 52,
s, be the trivial Spin€—structure, and wp = 0. Then My ~ Y; 41, and
[ws] = c1(s#) is nontorsion. Choose the metric on Y; 4 to be from the
set Met from Proposition 3.9.

(2) Let M; = S x S?, with the nontorsion Spin®—structure s, closed 2—
form w1, and metric as described in Part 1 of Section 3.5. Let (M3, 55) =
(M, 5) be a connected Spin® 3-manifold, with @w, = rw, for a closed
2—form w, in the cohomology class c;(s2). Choose a metric on M
with respect to which w, is harmonic, and, in the case when ¢j(s) is
nontorsion, having nondegenerate zeros. (When ¢ (s) is torsion, wy is
necessarily 0.) In other words, M\, is the Yz in Part 1 of Section 3.5.
Thus My ~ Yy, and [ws] = ¢1(s#) is nontorsion. Choose the metric on
Yo to be from the set Met from Proposition 3.9.

In both cases above, M is of the type Yz in Section 3.2, and hence contains a special
1-cycle y. We denote this by y;. Consequently, assuming that p; is disjoint from 1,
both M\, and My inherit a 1-cycle from y; C M;. They are respectively denoted
by yu and ys. According to Section 3.8, the filtered monopole Floer homologies
HM®(My, (w1); Ay,) and HM®(My, (ws); Ay,) are well defined. In parallel to what
was done in Section 2.4, define CM° (M, (wu); Ay,) to be the product complex of
CM°(My, (w1); Ay,) and C(Mz,rwz) The map Uy = UMu, as given in (2-57), acts
on CM*° (M) and maps

CM™ (M) C CM*™(My)

into itself. The same notation is used to denote its induced maps on CM™ (M)
and CM™ (M\,). By construction, the four flavors of CM°(M)) are related by short
exact sequences of the form (3-18). Thus by Lemma 4.2, the H.(S')-modules
Su,, (CM°(My,)) are related by short exact sequences of the same form. The long exact
sequences induced are also called the fundamental exact sequences.
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The remainder of this subsection consists of three parts. The first part contains a filtered
analog of Proposition 6.7. The second part analyzes the filtered connected sum formula
from Part 1. The last part derives Theorem 1.1 from this computation.

Part 1 A filtered variant of Proposition 6.7 states:

Proposition 6.11 Let M\, and My be as in either case of (6-83). Then there is
a system of isomorphisms from HM®(My, (w4); Ay,) to Hy(Sy, (CM®(My))) for
o=—,00,+, A as graded A+(My) >~ A+(M)-modules, which is natural with respect
to the fundamental exact sequences on both sides.

Proof Both cases in (6-83) satisfy the conditions of Proposition 6.7(a). Take I7 = A,
and I =K (the constant local coefficients). Then Iy = A, and I}y = A, . Repeat the
proof of Proposition 6.7 using cobordisms (X, wy) constructed from Proposition 3.13
for case (1) of (6-83), and Proposition 3.11 for case (2). Like in the previous section,
we denote this by the shorthand V when Y_ = My, and by V when Y_ = M,,. By
construction, there is a cylinder C C X ending at y, C Y\, and ys C Yy satisfying the
constraints in Section 3.7. According to Section 3.8, this gives us chain maps

m®R)(X, (wx); Ac): CM™(Y_) - CM®(Ys),

m™~[u](X, (wx); Ac): CM™(Y=) — CM™ (Y3).
In parallel to (6-12), let

Vo =m°[1J(V:Ac), VP =m°[p](V:Ac),

Ve = moluzl(Vs Ac),  Vy® =m°[11(V; Ac)
for o = —, 0o, and use them to define V0 and Vf’o as in (6-11). Keeping in mind the
nonnegativity of the integers n(0) entering the definitions of d°° and m®°, the rest
of the proof of Proposition 6.7 may be repeated with only cosmetic changes to see
that V.2 and V*T’o induce chain homotopy equivalences between CM® (My, (wy): A,)
and Sy, (CM°(My)) for o = —, co. These fit into commutative diagrams with the

fundamental exact sequences (3-18) on both sides of V7 and V*T’o. This understood,
the rest of the proposition follows from the five lemma. O

Part 2 We next analyze the homologies Hx (SUu (CM°(MU))) in the two cases
of (6-83).

Case 1 Choose a product metric with constant curvature on M, = S! x S2. The
moduli space of Seiberg—Witten solutions over it is a circle of flat connections. Choose
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a real Morse function on this circle with a pair of index 1 and index O critical points,
and two gradient flow lines between them. Perform a perturbation to the Seiberg—Witten
equations adapted to this Morse function, as described in Chapter 33 of [17]. In this
context, é(Mz) = C" =K][uz, y2] and dps, = 0, where:

e The unit 1 € K[uz, y»] has grading [£4] in the notation of [17, page 57].
e u; has degree —2, and the U —map acts by multiplication by u5.
ey, has degree 1 and represents a generator of H(S';Z) cooriented with the

moduli spaces. In particular, y% =0.

Thus,
Sy, (CM®(My)) = CM®(M1)[u2, y2] @ K[y],

(6-84)
Dy=0y,®@)+U1®-1Qu2)®y.

Write a generic element a € Sy (CM°(My)) as

agp+ayy, where ag,a; € CM°(My)[uz, y2].
Then

Dua = dp,a0 — (0p,a1)y + (Ur —uz)(ao)y.
Thus,

H,(Sy, (CM°(My))) = {ao + a1y | dp,a0 =0, (U —uz)ap = Iy, a1} @ K[y]
mod (dar, b1y ~ 0,u2boy ~ Uiboy — dpm, bo) ® K[y2]
~ HM°(M1)y @ K[y2].
Consequently,
H(Sg (M) ~ HM®(M1)[y2].

(Alternatively, one may use a spectral sequence computation, filtrating (6-84) first by
degree in y, then by degree in u;.)

Case 2 Now €(M;) = €°(M) consists of a single irreducible point, (A4, («, B)) =
(0, (2r)~V 2,0)). (See eg [6] for this well-known fact.) Thus, CM°(M;) and the
fundamental short exact sequences relating them are simply the modules V° and the
sequences in (4-7), (4-8) and (4-9). Write the variable u in (4-7) as u; below. As
pointed out in Remark 3.16(a), u#; stands both for the deck transformation and U —map
on CM°(My).

Geometry & Topology, Volume 24 (2020)



HF =HM, V 3621

This said, we have, in this case,
6.85) Sy, (CM®°(My)) = V°(u1) ® CM(M, c-) ® K[y],
D=1y )+ U1 ®1—-1QU,)Ry.

This can alternatively be written as
(6-86)  E°(CM(M,c-) ®K[yl.dm ® 1 — U2 ® y) = E°(Su,(CM(M, c-))).

By Proposition 5.9 and Remark 5.10, the homology of the latter is H(i\/I(M ,Cp), and
the isomorphisms from Hy (Sy,, (CM®°(My))) to the latter preserves the K[u]-module
structure and are natural with respect to the fundamental exact sequences. Since the
U —-map commutes with the A* Hi(M;Z)/Tors—actions on both sides, These are
isomorphisms as A+ (M )-modules.

To conclude, combining the above computation with Proposition 6.11, we have:

Corollary 6.12 (1) There is a system of isomorphisms of A+(M )—-modules
HM®(Y;, (w); Ay) ~ HM®(Y;_1, (w); A)) ® Hi(S') fori=1,...,G

preserving the relative gradings and natural with respect to the fundamental exact
sequences.

(2) There is a system of isomorphisms of A+(M)—modules
HMC (Yo, (w); A,) ~ HM(M, c3)

preserving the relative gradings and natural with respect to the fundamental
exact sequences, respectively for o = —, 00, +, A on the left-hand side and
o = A,—,V, ~ on the right-hand side.

Proof of Theorem 1.1 (1) This follows from an iteration of Corollary 6.12(1) and
Lemma 6.13 below, in terms of the alternative notation (3-19).

(2) This is a restatement of Corollary 6.12(2) in alternative notation, according to the
second bullet of (3-19). O

Lemma 6.13 There is a system of isomorphisms of A+(Y)-modules
HM°(Y, (w); Ay) => HM® (Y, (w); Ay)

preserving the relative gradings and natural with respect to the fundamental exact
sequences.
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Proof Y and Y stand for the same manifold with different metrics and associated
2—form w. As mentioned in Section 2.4, chain homotopies between the corresponding
monopole Floer complexes are provided by chain maps induced from cobordisms
X =R xY equipped with metrics and self-dual 2—forms interpolating those associated
to Y_ and Y. (See eg Section IV.7.3 for this type of argument.) In our setting,
choose X with the metrics and self-dual 2—forms over it to be those constructed in
Proposition 3.14. This construction also provides a cylinder C C X ending at the
Y and Y;; versions of y. which induces X —morphisms A¢ between the ¥ and Y
versions of I),. The positivity result in Proposition 3.5 guarantees that these chain
maps are filtration-preserving, namely they map the Y_ version of CM™ C CM® to
the Y4+ version of CM™ C CM®°. As in the end of the proof of Proposition 6.11, their
induced maps on homology together with the five lemma supply the isomorphisms
asserted in the lemma. |

7 Properties of solutions to (2-5)

This section supplies proofs for Lemma 3.2 and Proposition 3.7. Even so, much of
what is done here is either used in Section 8 or has analogs in Section 8. Section 7.3
has the proof of Lemma 3.2 and Section 7.8 has the proof of Proposition 3.7.

By way of a convention, the manifold Z is assumed implicitly to be connected except
in Section 7.8’s proof of Proposition 3.7.

What follows is a brief outline of this section.

Section 7.1 Lemmas 7.1-7.3 in this section establish pointwise bounds on the norms
of ¥, V4 and B4 when (A4, V) is a solution to some (r, ) version of (2-5) in the
case when r is large.

Section 7.2 Supposing that r is large and (A4, ¥) is a solution to an (r, i) version
of (2-5), this section depicts length scales that are O(r_l/ 2). This is the content of
Lemma 7.4.

Section 7.3 This section introduces the notion of holomorphic domain. The principal
examples are #Ho and suitable neighborhoods of the special curve y that is described
in Section 3.2. Lemmas 7.4 and 7.5 establish some very strong a priori bounds for
solutions on holomorphic domains to (r, ;) versions of (2-5) when r is large. This
section has the proof of Lemma 3.2.
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Section 7.4 Lemma 7.7 in this section establishes very strong a priori bounds on the
1-form By4 for a solution (A, ¥) to an (r, i) version of (2-5) where the w is harmonic.

Section 7.5 Supposing that (A4, ) is a solution to some (r, t) version of (2-5), there
is a dichotomy between its behavior where || ~ |w| and where || < |w]|. In the
former case, the ¥ is nearly A—covariantly constant and A is nearly flat. This section
and Lemma 7.8 in particular describes (A, ) where || is significantly less than |w].

Section 7.6 This section gives a precise definition of the spectral flow function f
(see (7-37)) and summarizes some of its basic properties.

Section 7.7 Lemma 7.9 in this section gives a priori, r— and fs—dependent bounds for
the functions ¢s, W and a that appear in (2-6) and (2-7).

Section 7.8 This section has the proof of Proposition 3.7.

7.1 Pointwise bounds

Fix a Riemannian metric on Yz and a closed 2—form, denoted by w, whose de Rham
class is that of cj(detS). The four parts of this subsection assume such data so as to
supply a priori pointwise bounds for the C*°(Yz;S) component of any given pair in
Conn(E) x C*°(Yz;S) that obeys (2-5).

Part 1 The first lemma asserts relatively crude bounds which are subsequently refined.

Lemma 7.1 There exists k > w with the following significance: Fix r > x and an
element p € Q with P—norm less than 1. Let (A, ) denote a solution to the (r, 1)
version of (2-5). Then || + 17 V2|V ¢ | + 171 VaVay| < k(supy, |w|V/2 +171/2).

Proof If w is identically zero, write ¥ = r~'/2). The pair (4, 1) obeys the r = 1
version of (2-5). In this case, the standard differential equation techniques give the
desired bounds. See for example what is said in Chapter 5 of [17].

Granted that w is not identically zero, assume for what follows that w # 0 at points
on Yz. The bound on || follows by first using the Weitzenbdck formula for the
square of the Dirac operator to see that |y|? obeys a differential inequality that has the
schematic form

(7-1) dTd|y)? +2|Vay|? +2r([y|* — |w| — cor )|y¥|* <0.
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The maximum principle is now used with (7-1) to see that |/|> < co supy,, |w| when
r>cy 1. To say more about this, note that (7-1) in turn implies that

(7-2) dTd|y? 4+ 2r(|y|? —sup |w| — cor™ 1)y < 0.

Yz
Now suppose that p € Yz is a point where |/|? achieves its maximum. The term
dTd|y|? in (7-2) is nonnegative at p since it is —1 times the trace of the Hessian
of |¥|? and the Hessian of |1/|? at p is nonpositive because p is a point where |/ |2

1

is maximal. It follows as a consequence that the term | |? — supy,, |w|—cor™" must

be nonpositive at p, and this requires that |1/|? at p be less than supy,, |w|+ cor L.

The asserted bound follows from this.

To see about the norm of |V41|, we digress for a moment and fix a point p € Yz and
a number p that is positive but less than ¢, 1 We use y to construct a function on Yz
that is equal to 1 on the ball of radius p centered at p and is equal to zero outside
the ball of radius 2p centered at p. This function can and should be constructed so

1 and so that the norm of

that the norm of its differential is nowhere larger than cop™
the covariant derivative of its differential is nowhere larger than cop~2. Denote this
function by y,. Now let B denote the ball of radius 2p centered at p. Multiply both
sides of (7-1) by x, and then integrate the resulting inequality over B. An integration
by parts and an appeal to the bounds for |dy,| and |Vdy,| and the bounds for ||

leads to the bound

(7-3) /Bxplvmz = colsup wl + 1) (p-+ ).
Z

To continue, let G, denote the Dirichlet Green’s function for the operator dd on B
with pole at p. This is a smooth, nonnegative function on B — p that vanishes on dB
and obeys the pointwise bound

(7-4) Gp(-) <codist(p,-)™! and |dG,| < codist(p,-)">

at any given point ¢ € B — p. Multiply both sides of (7-1) by y,G, and then integrate
the resulting inequality over the ball B. Use an integration by parts, the bounds in (7-4),
the a priori bounds on dy, and Vdy,, the a priori bound on || and (7-3) (with p
replaced by 2p) to see that

(7-5) /B XpGp|Vay|? < co(sup [w| +17") (1 + p?r).

Yz
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One last step is needed to obtain the asserted pointwise bound for |V4/|?. To start this
step, differentiate the equation Diw = 0, commute covariant derivatives and then use
the Bochner—Weitzenbock formula again to obtain a differential inequality for |V4v/|?
that has the form

(7-6) de|vAw|2+2/B VAVav[? < cor(Vav|? + 1).

Multiply both sides of (7-6) by x,G, and then integrate the resulting inequality over B.
An integration by parts (for the left-hand integral) leads to an inequality that reads

37) IVavP(p)+2 /B 210Gl VaVaY 2

< cop? /B V4w + cor /B 10Go(IVav 2 + 1),

Granted (7-7), take p = ¢, 1:71/2 and then the desired bound for [V4y|2(p) follows
from (7-7) with appeals to (7-3) and (7-5). Much the same sort of argument using G
and y, can be used to obtain the asserted bounds for |V4 V4V |%. Here is an outline of
the argument: Multiplying the inequality in (7-6) by y,, integrating the result over B,
then integrating by parts and using the now-derived bounds for ||? and |V4y/|? leads
toa co(supy,, |w| +171) (14 p?r) bound for the integral of x,|V4 V4 |?. Multiplying
(7-6) by x,Gp and integrating the result over B leads to a co(supy,, |w[4+r~1) (14 p?r)
bound for the integral of y,Gp,|V4V4¥|*>. Meanwhile, differentiating the equation
Dfll/f = 0 twice leads to an inequality much like (7-6) for dTd |V y|?. Multiplying
the latter equation by y,G, and integrating the result over B leads to the desired
bound on |V4 V4 |?(p) with the help of the previously derived bounds. m|

Part 2 This part of the subsection sets the notation for what is to come in Part 3 and
in the subsequent sections. To start, introduce K, ! to denote the 2—plane subbundle of
the tangent bundle over the |w| > 0 part of Y given by the kernel of *w. Orient K !
by the restriction of w and use the induced metric with this orientation to view K ! as
a complex line bundle. Clifford multiplication by the 1-form *w on the |w| > 0 part
of Yz writes S as a direct sum of eigenbundles Ex @ (Ex ® K1) with E, being the
+i |w|—eigenbundle.

Use I¢ to denote the product complex line bundle and 8y to denote the product
connection on I¢. Let 1¢ denote the 6p—constant section of I¢ with value 1 at all
points. Fix a unitary identification between E;! ®c Ex and I and use the latter to
write E;' ®c S as Ic @ K;!. The bundle K ! has a canonical connection, which
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we denote by Ak, , such that the section (1¢,0) of the bundle I¢c @ K, ! obeys the
Dirac equation as defined using the connection Ag_ + 26y on its determinant line
bundle. The norm of the curvature of Ag, is bounded by co|w|™2 and the norm of the

|—2—k

k'™ derivative of Ag,’s curvature is bounded by ¢y |w with ¢ being a constant.

A section ¥ of S over U is written with respect to this splitting as |w|/2(a, B).
Meanwhile, the connection A on E defines a corresponding connection on FE, that
is, the connection A4 = A — %(A k — Ak, ). To keep the notation under control in
what follows, the Ay—covariant derivative on E is also denoted by V4, as is the
Ax+ Ak, —covariant derivative on E, ® K 1

Part 3 The next lemma refines Lemma 7.1’s bound on the |w| > 0 part of Yz.

Lemma 7.2 There exists k > m with the following significance: Fix r > k and an
element u € Q2 with P—norm less than 1. Let (A, ) denote a solution to the (r, i)
version of (2-5). Fix m € (k,«xr'/3(Inr)™%) and let U,, denote the |w|> m~' part
of Y. Write ¥ on Uy, as |w|'/?(«, B). Then the pair («, B) obeys the following
on Uy, :

o |al2<1+wkm3 L.

o B <km3r (1 —|a)?) + k3mCr2.

o |Vaal? +m73r| VB2 <kem™r(1 —|a|?) + k2m?.

e Denote by Uy the 1 — |at|> > k= part of U,,. Then

‘1 — |a|2| < (m2€—mdist(-,U*)/K +Km3r_1)_

Proof Write ¢ = |w|1/ 2 on Uy, . The section i on Usy, obeys an equation having
the schematic form Dg4n+ R -n = 0 with R being Clifford multiplication by the
1-form %d(ln |wl|). Note in particular that |2R| < com and the absolute value of the
covariant derivative of R is bounded by com?. Use the Weitzenbock formula for the
operator D4 + fR to see that n obeys an equation that has the schematic form

(7-8) VIVan—cl(Ba) - n+R1-Van+Ro-n=0,

where cl(-) denotes the Clifford multiplication endomorphism from 7*M to End(S)
and where 931 and 9 are linear and obey |R;| < com and |Rg| < com?. Let q
denote the maximum of 0 and |77|2 —1—com3r~ L. 1t follows from (7-8) that g on Uz,
obeys

(7-9) didg+2rm™g<o0.
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As Lemma 7.1 bounds g by com on U, the comparison principle with the Green’s

3

function for the operator d Td +rm™! to see that g=<com 1 on Us,, /2 This implies

the claim in the first bullet. It also implies that |B|? is less than 1+com3r~! on Usy, /2

To see about the second bullet, project (7-8) onto the E4+® K, ! —summand of S and
take the fiberwise inner product of the resulting equation with 8 to obtain a differential
inequality that has the form

(7-10) dVd|B1> 4+ 2em ™| B2 < —|V4BI? + cor ' m3|Vya|? + cor 'm.

Fix for the moment ¢ > 0. Project (7-8) next onto the E —summand and take the
pointwise inner product with @ to obtain an equation for the function w = 1 — |«|?
that has the form

(7-11) d¥dw+2rm™'w = 2| V| +rm~'w? + e,
where |¢| < coe|V4BI? + co(l + e V)ym? 4 com|Vaal.

It follows from (7-10) and (7-11) that there exist constants z; and z, that are both
bounded by ¢ and & > cgl such that the function ¢ = |B|? — z1r~ 'm3w — zor 2m®

obeys the equation
(7-12) dfdg+2rm™'g <0

on Uy, /». Granted this inequality, use the Green’s function for d Td +rm™1 as before
to see that |B]? < zym3r (1 — |a|?) + zom®™2 on Up,.

The proofs of the third and fourth bullets start by differentiating (7-8) to obtain an
equation for the components of V47 and it then copies the manipulations done in
Step 2 of Section 4d in [30] to obtain a differential inequality on Us,,/, for the function
b := |V4n|? that has the form

(7-13) dTdh +2rm™h < co(em™ ' wh + m?b + m* + 2m™2w?).

To prove the third bullet, use (7-10), (7-11) and (7-13) to find constants z;, z; > 0
and z3, all with absolute value less than cg, such that the function

q:=b—zim (1 —|a|?) — zom* + z3rm ™1 B)?

—1.1/3

obeys (7-12) on Uzp when m < ¢ . Meanwhile, Lemma 7.1 implies that §

is no larger than comr on U,, . Given this last bound, the comparison argument
that uses the Green’s function for d'd + Co Irm~1 says that |V4n|? is bounded by

—1,1/3

com™r(1 — |a|?) + c(%m2 on Uy, when m < ¢, . This gives Lemma 7.2’s bound
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for |V4a|?. The refinement that gives the asserted bound for |V4f|? is obtained by
the same sort of argument after first projecting (7-8) onto the E,® K ! —summand
of S before differentiating so as to get an elliptic equation for V4. The details of this
part of the story are straightforward and omitted.

To prove the fourth bullet, use the first bullet of the lemma with (7-11) and (7-13) to
see that ¢ :=h + calrm_lw — com? obeys an equation on the w < cal part of Uz,
that has the form dTdq + Co yrm=lg <0 when m < Co 111/3  Granted the latter and
granted the a priori bound ¢ < corm from Lemma 7.1, then the comparison principle
using the Green’s function for d¥d + Co Irm =1 leads to the following: if ¢ > cg, then
qg < corme_‘/r/imdiSt('’Uc)/c0 where U, denotes the w > ¢~! part of U,,,. This last

inequality implies Lemma 7.2’s fourth bullet. |

Part 4 The final lemma of this subsection refines what is said by Lemma 7.1 on the
part of Yz where |w| is positive but small.

Lemma 7.3 There exists k > 1 with the following property: Fix m in the interval
(k, k~'r'/3(Inr)7%). Fix r > k and fix pu € Q with P—norm less than 1 and let (A, V)
be a solution to the (r, i) version of (2-5). Then || <«m~2 and |Vq| <«m™'r!/2
on the |w| <m partof Yz.

Proof The maximum principle applied to (7-1) implies that |y|?> cannot have a local
maximum where |y|? > |w|+cor~!. Indeed, if p € Y7 is a point where this condition
holds, then the left-hand side of (7-1) at p is strictly greater than dd |y|? at p. If p
is a local maximum of |2, then d¥d|y|? > 0 at p and so the left-hand side of (7-1)
would be positive which violates (7-1).

Since || cannot have a local maximum where |/|? > |w| 4+ cor™!, it follows that
[¥|? cannot have a local maximum where [¥|> > m~! 4+ cor~! on the set where
|lw| < m~1. Meanwhile, Lemma 7.2 implies that |/|> < com ™! on the boundary of

the set where |w| < m™! (which is the boundary of U,,). Therefore, ||?> cannot be

1 on the set where |w| <m™1.

If m € (co, cglr1/3(ln r)~0), then this maximum is com L.

greater than the maximum of com ™! and m~1 4 cor™

To see about |V4v/|, let p € Y denote a given point where w < 2m~!. Fix Gaussian
coordinates for a ball of radius ¢, 1 centered at p and then rescale the coordinates so
that the ball of radius m~1/2r/2 about the origin in R3 and the ball of radius 1 are
identified. Let ¢ denote the corresponding map from the ball of radius 1 about the origin
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in R3 to the original ball in Y. With this understood, the pullback (¢* A, ml/ 20*y)
satisfies a version of (2-5) on the unit ball in R that is defined by the rescaled metric. It
follows from the bound on || that |B4| < com~'r, and this implies that |¢* B4| < co.
This understood, standard elliptic regularity techniques can be employed to see that the
rescaled version of m1/2|p*(V4v)| has norm bounded by ¢ and so |V4y| has norm
bounded by com~1rl/2, O

7.2 The microlocal structure of (A, V)

Part 3 of this section states and then proves Lemma 7.4, this being a lemma that
describes solutions to (2-5) on the |w| > 0 part of Yz when viewed with microscope
that magnifies by a factor of the order of r'/2. Parts 1-2 of the subsection set the
notation that is used in particular for Lemma 7.4 but elsewhere as well.

Part 1 This part of the subsection introduces the vortex equations on C. This is a
system of equations that asks that a pair (Ao, ®p) of connection on a complex line
bundle over C and section of this bundle obey

*Fpo =—i(1— |050|2)’
(7-14) 04,00 = 0,

lao| = 1.
The notation here is such that * denotes the Euclidean Hodge dual on C, while Fy4,,
and 5,40 denote the respective curvature 2—form of Ay and the d-bar operator defined
by Ag on the space of sections of the given complex line bundle. Note that if (Ag, o)
is a solution to (7-14), then so is (A9 —u~' du, uag) with u being any smooth map
from C to S!.

Solutions with 1 —|ag|? integrable are discussed at length in Sections 1 and 2 of [36],
Section IV.2.2 and Section IV.3.1. As noted in these references, if 1 —|ag|? is integrable
then its integral is 27t times a nonnegative integer. Fix m € {0, 1, ... }. The space of
C®(C; S') equivalence classes of solutions to (7-14) with the integral of 1 — |ag]|?
equal to 2zm has the structure of a smooth, 2m—dimensional manifold. This manifold
is denoted in what follows by €. By way of a parenthetical remark, the space &,
has a natural complex structure that identifies it with C™. A solution with 1 — |ag|?
integrable is said here to be a finite-energy solution to the vortex equation.

Part 2 Lemma 7.4 and some of the later subsections refer to the notion of a transverse
disk with a given radius through a given |w| > 0 pointin Yz. A transverse disk is
the image via the metric’s exponential map of the centered disk of the given radius in
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the 2—plane bundle Ker(xw) at the given point. There exists co > 100 such that any
transverse disk with radius ¢ ! is embedded with a priori bounds on the derivatives
to any given order of its extrinsic curvature. If D C Yz is a transverse disk centered
at a point p, and if ¢ > cg, then |w| will be greater than %|w|( p) on the subdisk
in D centered at p with radius ¢~!|w|(p). The constant ¢ can be chosen so that the
following is also true: Let v denote the vector field on the |w| > 0 part of Y that
generates the kernel of w and has pairing 1 with xw. Then v is orthogonal to D at p
and the length of the projection to 7D of v on the concentric disk in D of radius
¢ Hw|(p) is no greater than coc™!. Choose ¢ > co with this property and use D), to
denote the transverse disk through p of radius ¢~ !|w|(p).

Reintroduce from Part 2 of Section 7.1 the complex line bundle K, ! defined over
the |w| > 0 part of Yz. Recall that the underlying real bundle is the 2—plane bundle
in TYz annihilated by *w. Let p again denote a point in the |w| > 0 part of Y.
Fix an isometric isomorphism from K;!|, to C. Use ¢ in what follows to denote
the map from C to Yz that is obtained by composing first the isomorphism with
K«|p = Ker(*xw)|, and then the metric’s exponential map. With r > 1 given, use ¢,
to denote the composition of first multiplication by r~/2|w(p)|~/2 on C and then
applying ¢.

To finish the notational preliminaries, let (4, ) be a pair in Conn(E) x C*°(Yz;S).
Write ¥ where |w| > 0 as |w|'/%(«, B) to conform with Part 2 of Section 7.1s
splitting of S as Ex @ (E« ® K 1). Likewise reintroduce from Part 2 of Section 7.1
the connection Ax on the bundle E«. Given p € Yz with |w(p)| > 0, introduce
(Ar, ;) to denote the g,—pullback of the pair (A, @) to the radius ¢ ~1r!/2|w(p)|}/?
disk in C.

Part 3 Lemma 7.4 below characterizes the pair (A;, ¥;).

Lemma 7.4 There exists k > 10 and given R > k2, there exists kz > 1 with the
following property: Fix r > kz and p € Q with P—norm bounded by 1. Suppose
that (A, V) is a solution to the (r, ) version of (2-5). Fix a point in Yz where
|w| > r~/3(Inr)* and use the corresponding version of ¢, to obtain the pair (A, ;)
of connection and section of a complex line bundle over C. There exists a solution
to the vortex equation on C whose restriction to the radius R disk about the origin
in C has C!—distance less than R™* from (A;, ;) on this same disk. Moreover, if
1—|og|? < % at distances between R + k (InR)? and R —« (InR)? from the origin, then
(A, o) has C ' —distance less than R™* in the radius R disk about the origin in C from
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a finite-energy solution to the vortex equations that defines a point in some m < mwR?
version of €.

Proof It follows from (2-5) and what is said by the first three bullets of Lemma 7.2
that the curvature of A, and o, are such that

(7-15) *Fq =—i(l—|a/*)+eo and dg0, = e,

where |eg| + |e1] < co(Int) ™€ on the disk in C of radius less than ¢~ 'r'/2m~1/2_ The
third bullet in Lemma 7.2 also finds |V4 0| < co. Granted (7-15), then the argument
used to prove Lemma 6.1 in [33] can be used with only minor modifications to prove the
assertion with C!—distance replaced by the distance as measured by any v < 1 —R™!
Holder norm. The convergence in the C ! —topology follows using the arguments from
Section 6 in [33] given also the second derivative bound from Lemma 7.1. O

7.3 Holomorphic domains

What follows directly sets the notation for what is to come in this subsection. An open
set U C Yz is said to be a holomorphic domain when the following criteria are met:

¢ The metric has nonnegative Ricci curvature on U.
e The 2—form w is nonzero on U and covariantly constant.

e The curvature of Ag on U is a multiple of w.

e The 1-form p on U and its derivatives to order 10 have norm less than e /2,

The following lemma strengthens the conclusions of Lemma 7.2 on a holomorphic
domain:

Lemma 7.5 Let U C Yz denote a holomorphic domain and let Uy C U denote an
open set with compact closure in U. Use D to denote the function on U that measures
the distance to Yz — U. There exists k > w with the following significance: Fix r > k
and a 1-form p € Q with P—norm less than 1 whose norm on U and those of its first
10 derivatives is bounded by e /2, Suppose that (A, ) is a solution to the (r, (1)
version of (2-5). Write ¥ on U as |w|'/?(, ). Then B on U, obeys:

o Bl =kemVIx,

e Given g > 1, there exists kg > 1 such that |(V4)4p| < qu_*ﬁD/" with kg4
depending only on the metric, Ag, U and U;.

Proof The proof that follows assumes that &+ =0 on U. The proof in the general case
differs little from what is said below and is left to the reader.
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Keep in mind that the norm of |w| is constant on U because w is covariantly constant.
Project the Weitzenbock formula for D/21 onto the E,® K, ' —summand of S to obtain
an equation for 8 on U that has the schematic form

(7-16) VIVAB +rlw|(1+ |a|? + 18128 + R =0,

with R determined solely by the metric and Ak . Granted this, then by the conditions
on the metric and Ax over U, || obeys an equation of the form dTd |B|+r|w||8] <0
on U when r is larger than a constant that depends only on U and U;. The bound
in the first bullet of the lemma follows from the latter equation using the comparison
principle and the Green’s function for the operator d 'd +r|w|. Given the bounds from
Lemma 7.2, very much the same strategy leads to the bounds in the subsequent bullets
after differentiating (7-1) to obtain an equation for (V4)?8. |

Lemma 7.5 leads directly to the next lemma, which describes v on U, and Hog.

Lemma 7.6 Given ¢ > 0, there exists k > 7 with the following significance: Introduce
U to denote U, UH and let D denote the function on U that measures the distance to
Yz — U. Introduce U, C U to denote the subset with D > ¢. Fix r > k and a 1-form
w € Q with P—norm less than 1 whose norm on U and those of its first ten derivatives
is bounded by /2 Let (A, ) denote a solution to the (r, ) version of (2-5). The
following is true on Ug:

e The conclusions of Lemma 7.5 hold with U, therein set to U,.

o —ke VI < la|? < e~ mlK

e Given g > 1, there exists kg > 1 such that [(V4)9a| < qu_*ﬁD/" with kg
depending only on the metric, Ax, U and ¢.

Proof The first bullet follows by virtue of the fact that U, U #Hg is a holomorphic
domain where the constraints in (3-5) and (3-6) are obeyed. To see about the other
bullets of the lemma, suppose for the moment that § > 0, that p € Ho N U and that
1 —|a| > 6 at p. As is proved in what follows, this assumption leads to nonsense
unless ¢ is very small. So, supposing that 1 — |a| > § at p, it follows from the
second bullet of Lemma 7.2 and from Lemma 7.5 that the integral of *B4 on the
radius ¢, 11=1/2§ disk in the constant u slice of g through p is greater than ¢ 183,
Lemma 7.5 implies that the pullback of * B4 to the constant u sphere through p can be
written as #F sinf df A d¢ and that F > —coe~ v/ This implies that the integral
of xB4 on this transverse sphere in Hy will be positive if § > coe_*ﬁ/ €0 But the
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integral of % B4 on this transverse sphere is zero because E’s first Chern class has zero
pairing with the H(H¢; Z)—summand in (3-4). Therefore, it must be the case that
—|a| < coe v/ on Ho N U,. Now suppose that p € U, N Ug. The Dirac equation
writes the a%—covariant derivative of o as a linear combination of covariant derivatives
of B. This understood, Lemma 7.5 implies that the absolute value of the %—covariant
derivative of « in U, is bounded by coe_\/f/ ¢, Tt follows as a consequence that if
I —|a| >4 atapointin U, N U, then |a| > %8 at points in Ho N U if § > coe Vil
and as explained previously, this is not allowed if r > ¢¢. Therefore, the conclusion
is that 1 — || < coe V€0 on the whole of (Uy UHp) UUg. Much the same sort of
argument proves that 1 — || > —coe~ v/ on this same domain.

The assertion in the third bullet is proved by writing ¥ = |w]|!/2

n on U. Keeping in
mind that |w| is constant on U, project the Weitzenbock formula for Dfll/f onto the
E —summand of S and differentiating to obtain an equation for (V4)?«. Given the first
bullet of Lemma 7.6 and given Lemma 7.5, the latter implies a differential inequality
for the function o := |(V4)?a| of the form dTdo + rjw|o < cqe_*ﬁ/c(’ when g =1,
and it implies an equality of this same sort for ¢ > 1 if the second bullet holds for all
g’ < q. Here, ¢, depends only on ¢. Use the Green’s function for d Td 4+ r|lw| with

this differential inequality for o to prove the third bullet’s assertion. |
Lemma 7.6 in turn leads to the:

Proof of Lemma 3.2 If r > ¢, then Lemma 7.6 asserts that |«| is very close to 1 on
a neighborhood of y and so what is denoted in (3-8) by g(|«|) is equal to 1 on this
neighborhood. With this in mind, note that o|e|™! is A —covariantly constant where
¢ = 1. This implies that A has holonomy 1 along y. Since Ag has holonomy 1
on v, it follows that A—Ag on y can be written as i1 (¢) dt with 7 being a function
on R/(¢,Z) whose integral is an integer multiple of 27 . m|

7.4 The L'-norm of B4 when w is harmonic

This section supplies a crucial bound for the integral of |B4| over Yz given an extra
assumption about w.

Lemma 7.7 Suppose that w is a harmonic 2—form and that the zeros of w are
nondegenerate. There exists k > m with the following significance: Fix r > « and
a l-form p € Q with P—norm less than 1. Suppose that (A, ) is a solution to the
(r, u) version of (2-5). Then [y |w||Ba| <« and [y, |Ba| < krl/5.
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By way of a look ahead, the lemma’s bound of kr'/5 for the L'-norm of By is
replaced in Lemma 7.9 by the bound (Inr)<°.

Proof The proof has three steps. By way of an overview, the plan is to compare the
integrals of |B4| and |w||B4| with the integral of w AiB4. The point being that the
absolute value of the latter integral enjoys an (A4, ¥)—, r— and p—independent bound
by virtue of the fact that w is harmonic; it computes the cup product pairing between
the de Rham class of *w and 27 times the first Chern class of the bundle E.

Step 1 Fix m € (cq, cor'/3(Inr) =) so as to invoke Lemmas 7.2 and 7.3. Use Uy,
to again denote the part of Y where |w| > m™!. Since w has nondegenerate zeros,
the volume of Yz — U, is less than com™3. Since |B4| < cor(|¥/|> + |w|) + co, it
follows from Lemma 7.3 that

(7-17) / |B4| < corm™* and / |w A By| < corm™.
Yz—Um YZ_Um

Save these bounds for the moment.

Step 2 Fix m € (co, cor'/3). Use the equations in (2-5) and Lemma 7.2 to see that
|B4| on Uy, obeys |B4| < r|w|(}1 - |a|2‘ + |B) + co. This understood, the first and
second bullets in Lemma 7.2 imply that

(7-18) |Bal = corlw|(1 = |a?) + colw|m?

at all points in U, . Meanwhile, use the equations in (2-5) to see that

(7-19) wAiBa = tjw|*(1—|a|?) = colw]

on U,,. This lower bound and the upper bound in (7-18) imply that if ¢ € {0, 1}, then
(7-20) |w|?|By| < com'™(w AiBy) + com?>™?

at all points in Uy, .

Step 3 Fix for the moment mg > co and a positive integer N with an upper bound
such that 2¥ mq < cglrl/?’. For k € {1,2,..., N}, set my := 2km0. Noting that the
volume of Uy, — Up,_, is bounded by 002_3k, it follows from (7-20) that

(7-21) / |lw|?|B4| < com}v_q / wAiBg + co27F.
Unp=Unmp_, mg —Umy_

Sum the various k € {1,..., N} versions of (7-21) to see that
(7-22) / |w|?|By4| < comzlv_q [ w AiB4 + co.
UmN UmN

Geometry & Topology, Volume 24 (2020)



HF =HM, V 3635

This last inequality and the m = mpy version of (7-17) imply that
1—q . —4—q
(7-23) / |B4| < comy / WAIBg+co(tmy * +1).
Yz Yz

The integral on the right-hand side of (7-23) is in any event bounded by c¢ and so what
is written in (7-23) leads to the bound

(7-24) / |lw|?|B4| < co(mjlv_q + rm_4_q).
Yz

This understood, take N so that rl/5 <mpy < corl/ 3 to obtain Lemma 7.7’s assertion.
O

7.5 Where 1 — |«|? is not small

Suppose that (A, ¥) is a solution to a given (r, i) version of (2-5). Write ¥ where
|w| > 0 as |w|'/?(«, B) and denote the version of « that appears in Lemma 7.4 by k.

The lemma that follows in a moment characterizes the |w| > r~1/3(Inr)¥> part of Y
where 1 — |«|? is not very small. To set the notation for the lemma, introduce v to
denote the unit-length vector field on the part of Yz where |w| > O that generates the
kernel of w and has positive pairing with *w. A final bit of notation concerns the
version of k that appears in Lemma 7.2. The latter is denoted in what follows by «..

Lemma 7.8 Assume that w is a harmonic 2—form with nondegenerate zeros. There
exists kK > ko and k1 > k with the following significance: Fix r > k1 and p € 2 with
‘P—norm bounded by 1 and let (A, ) denote a solution to the (r, i) version of (2-5).
Fix a positive integer k and set my := (1 + k=1 )k«2. If my <r'/3(Inr)™*, then there
exists a set Oy, of at most k segments of integral curves of v with the following
properties:

e FEach segment from ®; is properly embedded in the |w| > m;l part of Yz
and has length at most k. Moreover, the union of the radius k=12 tubular
neighborhoods of the segments in ©1 contain all points in the |w| > k2 part of

Yz where 1 — |a|? > %Kgl.

e If k > 1, then each segment from Oy is properly embedded in the |w| €
[m]:_}_l,m,:ll] part of Yz and the union of the radius lcm]lc/zr_l/2 tubular
neighborhoods of the segments in © contain all 1 — |a|? > %KZI points in the
|lw| e [m,:il,m,:ll] partof Yz.
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Proof The proof has eight steps. By way of a parenthetical remark, the proof follows
a strategy like that used in Section IV.2.3 to prove Proposition IV.2.4.

Step 1 This step states a fact about the finite-energy solutions to the vortex equations
that plays a central role in the subsequent arguments. Keep in mind that a solution
(Ao, ap) is a finite-energy solution when 1 — |ag|? is an L!—function. As noted in
Part 1 of Section 7.2, if (Ag, ag) is a finite-energy solution then the integral of 1—|erg|?
is 2w times a nonnegative integer. Use m to denote this integer. The function «g
vanishes at precisely m points in C (with repetitions allowed). This set of zeros of «g
is denoted by ¥. As noted in Part 4 from Section 2a in [36],

(7-25) 1—Jao* <c Y e™ 42,

zed
with the number c¢q in (7-25) being independent of (Ag, @¢) and m. The bound in
(7-25) with Lemma 7.4 has a number of consequences with regards to the proof.

To say more, return to the context of Lemma 7.4. Let ., denote the version of the
constant x that appears in this lemma. Take R > k¢ so as to apply Lemma 7.4 when r
is greater than the corresponding k. With r > ki and p € Q with P—norm bounded
by 1, let (A,) denote a solution to the (r, ) version of (2-5). Fix p € Yz with
lw(p)] = r~/3(nr)*> and use p to define the pair (A, ;) as instructed in Part 2
of Section 7.2. Assume for what follows that 1 — |er|? < % at distances between
R + ko (InR)? and R — ko, (InR)? from the origin in C.

4 in the radius R disk

Lemma 7.4 asserts that (A, ;) has C'—-distance at most R™
about the origin in C from a finite-energy vortex that defines a point in some m < 7R?
version of €. Let (Ao, ag) denote this solution. It follows from Lemma 7.4 that
1 — |ao|? can be no greater than % + 2R~ at all points in C with distance between
R — ko (InR)? and R from the origin in C (since otherwise (Ao, @) would have C°—

distance greater than R™*

in the radius R disk about the origin in C). This implies
that each zero of ® (which are the points in the set ) that appears in (7-25) has
distance either less than R — ko (InR)? from the origin in C or it has distance greater
than R from the origin in C. This understood, then it follows as a consequence of
(7-25) that 1 — |o¢0|2 < R™* on the annulus about the origin in C with inner radius
R — ko (InR)? 4 co InR and outer radius R — co InR. Indeed, at distance p from the
set ¥, the sum on the right-hand side of (7-25) is at most come ™. Since m < 7R?, this
is at most coR?e ™. Thus, if p > co InR, then the sum on the right-hand side of (7-25)

will be at most R™#. Granted that 1 — |ag|> < R~ on the annulus in C centered at the
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origin with inner radius equal to R — ks (InR)? + ¢ InR and outer radius R — co InR,
it then follows from Lemma 7.4 that 1 — |o,|?> < 2R~ on this same annulus.

If R > cg, then the preceding conclusion implies that 1 — |«|? is bounded by 2R™* on
the annulus in transverse disk centered at p with respective outer and inner radii given
by (R—co InR)(r]w|(p))~1/2 and inner radius (R —ko(InR)2 + co InR) (r|w|(p)) /2.
Since « is nowhere-vanishing on this annulus, the connection A « 18 defined on this
annulus by the same formula (3-8), and the last observation implies in particular that
the connection Ay is flat and o loe| =1 s Ay —covariantly constant at points on this same
annulus.

In the applications to come, the integer m will be bounded by cg. If this is the case,
then (7-25) with Lemma 7.4 implies that A, is flat and ofal™! is Ay —covariantly

1/2

constant at all point on the radius (R—co(InR)?)(r|w|(p))~1/? transverse disk centered

at p except at distance less than co(r|w|(p))~!/2 from a set of at most co points.

Step 2 Fix mg > cg so that the |w| < mo_1 part of Yz is a disjoint union of components
with each component lying in the radius coma1 ball about a zero of w. Require in
addition that each such component lie in a Gaussian coordinate chart centered on the
nearby zero of w as the embedded image of a closed ball in R3.

Fix z > mg and let ko denote the sum of the versions of « that appear in Lemmas
7.1, 7.2 and 7.7; and let k;, denote the sum of k¢ and the R = z10
constant xy that appears in Lemma 7.4. But for cosmetic changes, the arguments in
Section 6.4 of [33] can be used with Lemmas 7.2, 7.4 and 7.6 plus what is said in
Step 1 to find a z—independent «; > 100xo and a z—dependent k; > kz, such that the

version of the

following is true:

Fix r > k; and p € Q with P—-norm bounded by 1. Suppose that (A, V) is a solution
to the (1, t) version of (2-5). There exists a positive integer ng < k1 and a set ®g, of
at most nq pairs of the form (y, m) with y being a properly embedded segment of an
integral curve of v in the |w| > z~® part of Yz with length less than k1. Meanwhile,
m is a positive integer. The set ®¢ has the following additional properties:

(7-26) o Z(V’m)€®0 m=<«ki.

e Distinct curves from ®g are separated by distance at least K1z 12,

o If p € Yz is such that |lw(p)| > z7% and 1 — |a|?> > k3!, then p has
distance less than z*r~1/2 from a curve in ®p.
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e If (y,m) € O, then the integral of %F 1. over the radius 24~ 1/2 trans-
verse disk centered at each point in y is equal to m.

What follows is a parenthetical remark concerning the fourth bullet. The condition
in the third bullet of (7-26) implies that ||~ is Ay —covariantly constant near the

boundary of the radius z4r~1/2

transverse disk about each point in y. It follows as
a consequence that the integral of %F 7, over this disk is an integer; and it follows
from Lemma 7.2 that this integer is nonnegative. This being the case, the fourth bullet
adds only that the integer is at least 1 and it is bounded a priori by a z—, (A4, ¥)—, u—

and r—independent number.

Step 3 Fix aball B C Yz centered on a zero of w that contains a component of the
lw| < mo_1 part of Yz. Suppose that ¢ € (0, 1) and that z > m¢ have been specified.
With «; as in Step 2, fix r > k, an element u €  with P—norm bounded by 1 and a
solution, (A, V), to the (r, u) version of (2-5). Let k denote the largest integer with
the properties listed below in (7-27). By way of notation, set m; := (1 + g)/ z°.

For each j € {1,...,k}, there exists ¢; € (100, (100)2") and a set, ©;, that consists

of data sets which have the form (y, m, D) with y being a properly embedded segment
-1
J+
integer and with D € (1, ¢j). The set ©®; has the following additional properties:

(7-27) . Z(y,m,D)G(aj m=<«ki.

* Curves from distinct data sets in ®; are separated by distance at least
12 ,.1/2 —1/2

of an integral curve of v in the |w| € [m 1,mj__ll] part of B, with m being a positive

s¢zm;"r
* If peYz issuchthat [w(p)| € [m;{,,m;!)) and 1 —|a|* > 1oL, then
p has distance at most pzm'/?=1/2 from a point on a curve from a dataset

J
in ©;.

/2.—1/2

e If (y,m,D) € ©;, then the integral of %F 7, over the radius Dzm} r-

transverse disk centered at each point in y is equal to m.

The next steps find (A, ¥)—, u— and r—independent choices for ¢ and then z, and
an (A, ¥)—, u— and r—independent k4 > k, such that my > r'/3(Inr) ™ when r is
greater than k.. Lemma 7.8 follows if such ¢, z and k. exist.

The upcoming steps find the desired conditions on ¢ and z and the lower bound for r
such that the conditions of the integer k + 1 version of (7-27) are met if they are met
for an integer k with my < r!'/3(Inr)~20_ This being the strategy, assume in what
follows that k is such that my < r'/3(Inr)=20 and (7-27) holds.
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Step 4 The A.—directional covariant derivative along the vector field v is used in a
moment to analyze the behavior of « at points along v’s integral curves. This directional
derivative is denoted in what follows by (V4«), . The equations in (2-5) identify the
latter with a linear combination of A, —covariant derivatives of B. This being the case,
Lemma 7.2 finds |(Vqa)y| < com[(1—||?) 4 cor~'m>]'/2 on the |w| > (2m)~" part
of Yz if m <r'/3(Inr)~. By way of a comparison, Lemma 7.2 bounds the norm of
the remaining components of Vo by com™Y2r=12[(1 — |a|?) 4 cor  m3]1/2.

What was said in the preceding paragraph about the norm of |(V4«),| has the following
consequences for a point p € Yz where |w| € [m,:_}_z m,:l]; let ¥, denote the integral
curve of v through p and let p’ denote a point on the segment of y, where the distance
to p is less than callcglmlzlz
(7-28) o If I —|a|?> > %Kgl at p, then 1 —|a|? > %Kgl at p’.

o If1—|af? <ik;tat p,then 1—Jo|? < x5t at p.
This segment of y,, is said in what follows to be the short segment of y,,.
Note thatif € <c, 12, then ¥p’s short segment has points with |w| > m,;ll . Assume

2

in what follows that ¢ < ¢, 1452 is satisfied so as to invoke this fact about the short

segment.

Step 5 This step constitutes a digression to supply a coordinate chart for any given
|w| > 0 point in Yz that is used to exploit what is said in Step 4. To this end, suppose
1

that m > 1 has been specified. Use I, to denote the interval [—cy m_l,ca Un=1]

;=1 Use ¢ to denote

and use D, to denote the centered disk in C with radius ¢
the coordinate for the interval I, and use z for the complex coordinate on Dy,. As
will be explained in a moment, there is a coordinate chart embedding from I, X Dy,
to Yz with the following properties:
(7-29) e The point (0, 0) is mapped to p and [, x {0} is mapped to a segment of
the integral curve of v through p.
e The image of any disk {¢} x Dy, is a transverse disk centered at the image
of (¢,0).
e The function z > |z| on {¢} X Dy, is the pullback of the distance along the
image of {¢t} x Dy, to the image of {¢, 0}.
¢ The vector field v appears in these coordinates as 8% ~+ e, with |e| < com|z|.

To construct such a coordinate chart, fix an isometric isomorphism between K !| p
and C. By way of a reminder, K; ! is used to denote the complex line bundle over
the |w(p)| > 0 part of Yz whose underlying real bundle is the kernel of xw with the
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complex structure defined using the metric and the restriction of the form w. Let y,
again denote the integral curve of v through p. Parallel transport the resulting frame
for K1 along Yp toidentify K ! along ¥p with y, x C. Fix a unit-length affine
parameter, ¢, for the segment of y, consisting of points with distance ¢ Um=1 or less
from p with # = 0 corresponding to p. This identifies this segment with [,,. Granted
this identification, compose the metric’s exponential map from the 7, part of y, with
the identification between K, ! on this segment and the product C—bundle to define a
map from [, x C into Yz. The restriction of this map to I, X D,, gives the desired

coordinate embedding.

Step 6 Fix p € Yz such that |w(p)| € [mk+2,mk1] and 1— |a|? > Let p
denote a chosen point on Step 4’s short segment of yp with |w(p’ )| = mk - It
follows from (7-28) that 1 — |a|? > g/c<> at p’. This being the case, it follows from

Lemma 7.4 and Lemma IV.2.8 that if z > ¢ and if r > ¢g, then there is a point, with
distance at most c()m]l(/_i_z1 ~1/2 from p’ where 1 —|a|? > %Kgl
the third bullet of (7-27) that there exists (y, m, D) € O such that p’ has distance at
most (Dz + co)m}c/fl —1/2
coordinate chart in (7-29) to see that short segment of y, intersects the transverse disk
¢

. It then follows from
from a point in y. Let ps« denote the latter point. Use the

through py at a point with distance at most (1 + co)(Dz + co)m, > t~1/2 from px.

Extend the curves from ©j into the |w| > m;}rz part of Yz by integrating the vector
field v. Use I}y, to denote this set of extended curves. Given y € I}, fix a
point p, € y where |w| = m;}rl. The point p,, has its corresponding version of
the coordinate chart in (7-29) with y appearing as an interval in the z = 0 locus that
contains (0,0). Let /,, denote this interval.

It follows from what was said in the preceding paragraph that the each point in B where

2.1 k! m—1 lies i 1/2 —1/2
I—la|*> 7 and |w|€[mk+2, ] lies in the |z|<(l+c08)(Dz+c0)mk+1 /
part of some y € I, version of I X Dy yy - In partlcular if e <cy!and z > co,

1/2
k+1

—1/2

then this subset is contained in the subset where |z| < 2Dzm r . Assume that ¢

and z are such that this is the case.

Note in this regard that if (y, m, D) and (y’, m’, D’) are distinct elements in ®, then
1/2 —1/2
k41t

part of I X Dy, are disjoint.

the respective subsets of B that are parametrized via (7-29) by the |z| <2Dzm
part of I, X Dy, and the |z] < 2D’Zm,1€/+21r_1/2

This is a consequence of the second bullet in (7-27).

Step 7 Fix (y,m,D) € O. It follows from what was said in Step 6 that o|a|™!
is Ax—covariantly constant in the solid annulus in I, X D, that intersects any
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constant ¢ slice as the annulus with inner radius Dzm}c/ﬁl =1/2 and outer radius

20zmy/2 Y 2. Granted this, it then follows from the third bullet of (7-27) that

1/2 . —1/2

the integral of 5— F, over the |z| <2Dzm, r

part of any constant ¢ disk in
Iy X Dy, s the 1nteger m.

To exploit the preceding observation, fix ¢ € I, and let p € Yz denote the point that
corresponds to (z,0) € Iy X Dy, . Associate to p the pair (4;, ;) as described
in Part 2 of Section 7.2. Use ¢, in what follows to denote a constant that is greater
than 1 and depends only on z. It follows from Lemma 7.4 that if z > ¢ and if r > ¢,

10 on the radius 2Dz disk in C from a

then (A, ;) have C 1_distance less than z~
finite-energy solution to the vortex equations. Moreover, what is said by Lemma 7.4
implies that such a finite-energy solution must define a point in the space €,,. Granted

this, then (7-25) and Lemma 7.4 imply the following when z > cp and r > ¢;:

If z > co and r > c;, then there is a set of at most n¢ points in the |z| < %Dmllc/_‘_zlr_l/2

part of {t} X Dy, ., such that
(7-30) e each point is a zero of «o;

o if I—|a?>> 1/(_1 at (t,z) and |z| < 2Dmy 11~ "/2, then z has distance
1/2 —1/2

at most com /5t

from some point in this set.

Use 1y, to denote this set of points and let i, ; denote the set of connected components

of the union of the disks of radius com}c/fl r1/2

assertion is a z > ¢g and r > ¢, consequence of (7-30) plus Lemma 7.4 and (7-25):

about the points in ¥, ;. The next

(7-31) e The connection A, is flat and oo™l is Ay —covariantly constant on the
complement of UUeuyt U in the radius 2Dm,1€/+21 r~1/2 disk about the
origin in {¢} X Dkarl .
» The integral of 5~ 2 over any set U € il ; is a positive integer; and the
sum of these 1ntegers is equal to m.

The next step constructs ®y ., with the help of the various (y, m, D) € ® versions
of 19),,() .

Step 8 To construct O, it is necessary to cluster the points from the various
(y,m, D) € O versions of 1, so that points in the same cluster are pairwise much
closer to each other than they are to any point in another cluster. This is necessary
so as to find the desired constant ¢, for the integer k + 1 version of (7-27). An
appropriate clustering can be found by invoking Lemma 2.12 in [38]. In particular,
)2

an appeal to this lemma finds ¢4+ € (100, (100)~ ") and a set of at most k; pairs of
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the form (p, D), where p € B is such that |w(p)| = m;}rl and where D € (1, cg41).
This set is denoted by @ and it has the properties in the list that follows:
(7-32) e If (p,D) and (p’,D’) are distinct elements in ©#, then

dist(p, p') > c,%+lzm,1€fl —1/2,

e If p corresponds via (7-29) to a point in some (y,m,D) € O version
of ¥ ¢, then p has distance at most —Dzm k/ 2 12 froma point of some
pair from 9.

Note for future reference that the bound in the first bullet of (7-32) has the following
implication when z > ¢g and r > ¢;:

(7-33) If (p,D) and (p’,D’) are distinct elements in ¥, then the distance between
any two points on the respective short segments y, and y, is greater than

1.2 1/2 /2
2% +17M 41" /
It follows from (7-31) and (7-32) that if (y,m,D) € O and if U € il o, then U is

1/2
k+1
Granted this last conclusion, then the next assertion is a direct consequence of what is

—-1/2

in the transverse disk of radius %Dzm r centered at a point of some pair in ¢.

said in Step 4 if z > ¢cp and r > ¢;.

(7-34) If (y,m,D) € O and t € I, then each U € i, ; is contained in the radius
1/2 —1/2
k+1F /

of some pair from .

Dzm tubular neighborhood of the integral curve of v through a point

Let (p,D) € 9. What is said in (7-33) and (7-34) has the following consequence:

(7-35) The integral of %F i, on the radius Dzmllc/Jr2 1 r~1/2 transverse disk about any
point in the |w| € [m;}rz, m,:l] part of y, is a positive integer.

Let m denote now this integer.

Define ®f 4 to be the set {(p,m,D) | (p,D) € ¥}. It follows from (7-31) and (7-33)-
(7-35) that the requirements for the integer k + 1 version of (7-27) are met using cx 41
and the set O if e <cp, z>co and r> 5. O

7.6 The spectral flow function

This subsection constitutes a digression to say more about the definition of f;. Each
pair ¢ = (A,v) in Conn(E) x C*®(Yz;S) and a given real number z determine
an associated, unbounded, self-adjoint operator on L2(Yz;iT*Yz &S @iR). This

Geometry & Topology, Volume 24 (2020)



HF =HM, V 3643

operator is denoted by £, and it is defined as follows: a given smooth section
h=(b,n¢) of iT*YzdS ®iR is sent by £, to the section whose respective
iT*Yz—, S—and i R—summands are

wdb —dp — 2712212yt + pfcy),
(7-36) Dan+ 22212 (cl(b)y + ),
sd xb—2712212(nTy —yTy).

The spectrum of this operator is discrete with no accumulation points and has finite
multiplicity. The spectrum is also unbounded from above and unbounded from below.

The section Y g of S is chosen so that the (Ag, ¥g) and z = 1 version of (7-36) has
trivial kernel. If the z =r and ¢ = (4, ¥) version of (7-36) has trivial kernel, then
the value of the spectral flow function f4(c) is a certain algebraic count of the number
of zero eigenvalues that appear along a continuous path ? of operators that start at
the z =1 and (Ag, ¥ g) version of (7-36) and end at the z =r and (4, ¥) version
and such that each member of the path differs from £, by a bounded operator on
L?>(Yz;iT*Yz®S®iR). For the purposes of the definition, it is sufficient to consider
paths that are parametrized by [0, 1] such that the following conditions are met: Let
¥ C [0, 1] denote the parameters that label an operator with zero as an eigenvalue.
Then 9 is finite and in each case, the zero eigenvalue has multiplicity 1 and the zero
eigenvalue crossing is transversal as the parameter varies in a small neighborhood of
the given point in [0, 1]. Having chosen such a path, a given point in the corresponding
version of ¥ contributes either +1 or —1 to f4(c). The contribution is +1 when the
eigenvalue crosses zero from negative value to positive value as the parameter in [0, 1]
varies near the given point in ¢; and it contributes —1 to f(c) if the eigenvalue crosses
zero from a positive value to negative value near the given point.

If £, has nontrivial kernel, then f(c) is defined in the upcoming (7-37). The definition
uses the following terminology: Given & > 0, and ¢ € Conn(E) x C*®°(Yz; C), the
definition uses 9. (c) to denote the subset of pairs in Conn(E) x C*°(Yz; C) with the
following two properties: a pair ¢’ is in 91:(c) if it has C ! —distance less than & from c,
and if £y, has trivial kernel. Standard perturbation theory for elliptic operators proves
that 91, (c) is nonempty for any & > 0. With the notation set, define fs(c) by the rule

(7-37) fs(c) = lim sup{fs(c') | ¢ € Mg (c)}.
e—0

Note by the way that the lim sup in (7-37) differs from the corresponding liminf by
the dimension of the kernel of £ ;.
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7.7 The L'-norm of B4, the spectral flow and the functions cs’, W%, a

The functions
(7-38) csl = c5— 4712)“5, w/ =w —2nxfs and d=a+ 27 (r — 7)fs

are invariant under the C®(Yz; S1)—action on Conn(E) x C®(Yz;S) that has i €
C>®(Yz;S!) sending (A, V) to (A—i—'d i, i1y). The upcoming Lemma 7.9 supplies
a priori bounds on the values of these functions when evaluated on solutions to a given
(r, ;v) version of (2-5). It also gives a better bound for the L!—norm of the curvature
of the connection component of a solution than the bound in Lemma 7.6.

Lemma 7.9 Suppose that w is a harmonic 2—form with nondegenerate zeros. There
exists kK > w and k1 > « with the following significance: Fix r > k1 and a 1-form
W € Q with P-norm less than 1. Suppose that (A, V) is a solution to the (r, t) version
of (2-5). Then:

e The L'—norm of By is no greater than k (Int)*.

o |esf| <1®/7.

o Wi <197,

. |le| <1,13/14.
As a parenthetical remark, the precise powers of r that appear in the last three bullets
are significant with regards to the applications to come only to the extent that the power
is less than 1 in the second and third bullets and so less than 2 in the final bullet.

Proof By way of a look ahead, what is said in Lemma 7.8 plays a vital role in the
proof of all four bullets. The proof of Lemma 7.9 has 10 parts.

Part 1 The proof of Lemma 7.9’s first bullet has four steps. To set the notation for the
proof, introduce x4 to denote the version of the constant x that appears in Lemma 7.8.
As in Lemma 7.8, set my = (14«3 1)¥«2 for k € {1,2,...}. Assume in what follows
that k is such that my < r'/3(Inr)=%*.

Step 1 Use the first bullet of Lemma 7.8 and the fourth bullet of Lemma 7.2 to see that
|B4| < co at points in the |w| > ml_1 part of Yz where the distance to all segments
in ©; is greater than co(In r)zr_l/ 2 This understood, this part of Yz contributes at
most cg to the L!-norm of B,. Meanwhile, the |w| > ml_1 part of Yz of the union

—-1/2

of the radius co(Inr)?r tubular neighborhoods of the segments in Yz contributes

at most co(Inr)* to the L!-norm of By.
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Step 2 Fix k > 1. Use the integer k version of the second bullet of Lemma 7.8 with
the fourth bullet of Lemma 7.2 to see that | B4| is bounded by co(1 + mi) at points
in the |w| € [m;l,m]:ll] part of Yz where the distance to all segments in ® is
greater than comllc 2(ln r)zr_l/ 2. Since this subset of Yz has volume at most com;3,
so this portion of the |w| € [m;lm,:ll] subset in Yz contributes at most com;1 to
the L!-norm of B,4. The volume of the remaining part of the |w| € [m,:l,m,:il]
subset in Y is at most cor~!(Inr)*. Indeed, this can be seen from (7-29) using the
fact that each segment in ®; has length at most com,:1 . As |By4] is no greater than
comlzlr on this part of Yz, so this part of Yz contributes at most comgl(ln r)4 to the
L1 —norm of By.

Step 3 Lemma 7.3 implies that | B4| is bounded by cor?/3(Inr)** on the subset of Y
where |w| < cor™1/3(Inr)** . The volume of this subset is at most r~!(Inr)3** and so

the contribution from this part of Yz to the L 1 _norm of By is no greater than cor_l/ 4,

Step 4 Sum the bounds in Steps 1-3 to see that the L!-norm of By is no greater

geee

Part 2 The proof of the last three bullets of the lemma starts with the following
observation: There is a smooth map, ii: Yz — S!, such that the connection A’ =
A —1"1dii can be written as A’ = Ag + a4 where dy’ is a coclosed, i R—valued
1 —form whose LZ—orthogonal projection to the space of harmonic 1-forms on Yz
is bounded by c¢. The upcoming Lemma 7.10 asserts the pointwise bound |a4/| <
cor'/3(Inr)€0. Assume this bound for the time being.

Introduce ¢ to denote (A —1i~'di,1y). The supremum bound for |G| and the L'
bound for B4 from Lemma 7.9’ first bullet imply directly that |cs(¢’)| < cor!/2(Inr)c0.
The L!-bound for By also implies that [W(c’)| < co(Inr)0. Thus, |a(c')| < cor(Int)°.
Granted these bounds, then the last three bullets of Lemma 7.9 follow if

(7-39) 55 ()] <17,

The fact that (7-39) holds given the assumptions of the lemma is proved in the remaining
parts of this subsection.

Part 3 The proof of the last three bullets of Lemma 7.9 invoked a pointwise bound
for |d4/|. The lemma that follows supplies the asserted bound:

Lemma 7.10 There exists « > m and k1 > « with the following significance: Fix
r > k1 and an element p € Q with P—-norm less than 1. Let (A, {) denote a solution
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to the (r, i) version of (2-5). Write A as Ag + d4 and assume that a4 is a coclosed
1—form. Use ¢ to denote the L?—norm of the L?—orthogonal projection of Gy to the
space of harmonic 1—forms. Then |d4| <1'/2(Inr)* + kc.

Proof The proof that follows has three steps.

Step 1 Write 44 as @+ + p, where @+ is L?—orthogonal to the space of harmonic
1—-forms and where p is a harmonic 1-form. The norm of p is bounded by coc. To
bound a1, let C+ C C°(Yz; T*Y,) denote the subspace of coclosed 1-forms that are
L?—orthogonal to the space of harmonic 1-forms. The operator *d maps C* to itself
and Hodge theory gives a Green’s function inverse. Given p € M, the corresponding
Green’s function with pole at p is denoted by G;-( -). This function is smooth on the
complement of p and it obeys the pointwise bound |GPL( | < codist(-, p)~2.

Step 2 Introduce k4 to denote Lemma 7.8’s version of . Reintroduce from Lemma 7.8
the sequence {m; = (1 + Kﬂfl)klci}kﬂ,zm,]v with N being the greatest integer
such that my < r'/3(Inr)™=. Let U; denote the |w| > m, ! part of Yz. For
ke{l,...,N—1}, use Uy to denote the |w| € [m,:_lH,m,:il] part of Yz, and use Uy
to denote the part of Yz where |w| < m&l_l. Given k € {1,..., N —1}, let [}, denote
the set of curves from ®y’s data sets. By way of a reminder, there are at most i
curves in [} and each is a properly embedded segment of an integral curve of v in Uj.
Lemmas 7.2 and 7.8 supply cx € (1, co) with the following property: If p € Uy has
distance greater than c,.m ¥ 2(nr)? to any curve from I}, then 1 —|a|? < comir_1 .
Denote by 7g; the union of the radius c*mkr_l/ 2(Int)? tubular neighborhoods of
the curves from I}. Since *d at = By, it follows from Lemmas 7.1 and 7.2 that
|Ba| < com,2c on Uy —Tg1, and it follows from Lemmas 7.2 and 7.3 that | B4| < comglr
on Ti1. Note also that the volume of U is at most com,:3 and that of 7y at most
comlzlr_1 (Inr)*.

Step 3 Suppose that k € {1,..., N — 1} and that p € U . Keeping in mind that the
volume of U, is bounded by com;3, it follows from what is said about G;- in Step 1
and what is said about | B4| in Step 2 that

340)  1atp) o [ disCe.p) 2 |Bal + colme+ (1),
Tk

Use the various y € I, versions of (7-29) to see that the integral on the right-hand side

of (7-40) is no greater than com;” 21/ 2(Inr)o.

Suppose that p € Uy . In this case, what is said about GIJ; in Step 1 and what is said
in Step 2 about |B4| imply that |a1|(p) < cor!/3(Inr)%. o
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Part4 Fix ¢ > 1 and suppose that ¢ = (A, ¥) solves (2-5) and is such that the iR—
valued 1-form @4 = A — Ag is coclosed and that the L2-norm of its L2—0rth0gonal
projection to the space of harmonic 1—forms on Yz is less than ¢. The value of §;
will be computed by choosing a convenient, piecewise continuous path of self-adjoint
operator from the (Ag,¥g) and z = 1 version of (7-36) to £ . This path is the
concatenation of the three real analytic segments that are described below. The absolute
value of f4(c) is no greater than the absolute value of the sum of the absolute values of
the spectral flow along the three segments.

By way of notation, each segment is parametrized by [0, 1] and the operator labeled by
a given s € [0, 1] in the k™M segment is denoted by Lk s - The first segment’s operator
Ly, for s € [0,1] is the (Ag, ¥E) and z = 1 —s version of (7-36). This path has no
dependence on (A4, ) or r, and so the absolute value of the spectral flow along this
path is no greater than cg. The remaining two segments are:

(7-41) o The second segment’s operator L, s for s € [0, 1] is the (Ag + s dy4,0)
version of (7-36).

e The third segment’s operator L3 s for s € [0, 1] is the (4, ) and z = s°r
version of (7-36).

The strategy for bounding the absolute value of the spectral flow along (7-41)’s two
segments borrows heavily from Section 3 of [34]. To say more about this, suppose
that £ is an unbounded, self-adjoint operator on a given separable Hilbert space with
discrete spectrum with no accumulation points and finite multiplicities. Let {es}se[o,1]
denote a real analytic family of bounded, self-adjoint operators on this same Hilbert
space. Of interest is the spectral flow between the s = 0 and s = 1 members of the
family {Ls = L + es}se[0,1]- To obtain a bound, fix for the moment 7" > 0 and let
nr,s denote the number of linearly independent eigenvectors of £; whose eigenvalue
has absolute value no greater than 7. Set ny = sup{n7,s}se[o,1]- As explained in [32],
the spectral flow for the family {L;}se[o,1] has absolute value no greater than

1 d
(7-42) Vi SuP{ “ dss op}se[o,u’

where the norm || - ||, here denotes the operator norm.

The supremum in (7-42) for the family {L£5 s}se[o,1] is bounded by cg|d/|, and thus
by cor'/2(Inr) . It follows from Lemma 7.3 that the supremum that appears in (7-42)
for the family {£3s}se[0,1] 18 cor'/2. This understood, then (7-42) in either case leads
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to:

(7-43) The absolute value of the spectral flow along the families {£3 s}se[0,1] and
{£3,5}5€[0,1] 18 no greater than corl/z(lnr)"o%nT.

The next part of the subsection describes the strategy that is used to bound nz for a
suitable choice of 7.

Part 5 A bound for nr is obtained with the help of the Weitzenbock formula in
(IV.A-12) for a given z > 0 version of Siz. This formula writes Siz as Vj; Va+Q,
where Q denotes an endomorphism of i7*Yz &S ® iR and V4 denotes here the
connection on the bundle iT*Yz &S @ iR given by the Levi-Civita connection on

the i T*Yz—summand, the Levi-Civita connection and A on the S—summand, and the

2

oz is used to write the

product connection on the i R—summand. This rewriting of £
square of the L2 -—norm of £..zq as

(7-44) / £esq = f (1V4a + (a. Qa)).
V&4 Yz

with (-,-) denoting here the Hermitian inner product on i7 x Yz &S @ iR. If g isa
linear combination of eigenvectors of £, with the norm of the eigenvalue bounded
by T, then what is written in (7-44) is no greater than T2 times the square of the
L?-norm of q.

The formula in (7-44) is exploited to bound n7 using the following observation:
Suppose that il is an open cover of Yz such that no point is contained in more than cg
sets from 4. Let & denote for the moment a given function on Yz. Then

(7-45) / R <> / h2<co | W2
Yz Uesl v Yz
Hold onto this last observation for the moment. Use ¢, to denote the version of cg

that appears in this last inequality.

The endomorphism @ is self-adjoint, so it can be written at any given point as a sum
QT + O~ with Q* being positive semidefinite and Q~ being negative definite. With
this fact in mind, suppose now that each set U € il has an assigned, finite-dimensional
vector subspace Vy € C®(U;iT*M & S & iR) with the following property:

(7-46) Ifge C®U;iT*M &S & iR) is L>—orthogonal to V7, then

/(|qu|2+<q, Q+q>)>2co(T2+sup|Q—|)/ qP2.
U U U
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Given Vy, define ®y: C®(Yz;iT*M &S ®iR) — Vi to be the composition of first
restriction to U and then the L2—orthogonal projection. Set V = Dy ey Vu and denote
by @ the linear map from C*°(Yz:iT*M &S @ iR) to V given by Py Pu -

The inequalities in (7-45) and (7-46) have the following immediate consequence: If
q € Ker(®), then the L?-norm of £, ; is greater than 7. Given that such is the case,
it then follows directly that ny <Y ;¢ dim(Vy).

The subsequent parts of the proof define a version of 4l for suitable 7" with associated
vector spaces {Vy }uey such that (7-46) holds. The resulting bound for nr leads via
(7-43) to the bound in (7-39) for |fs|.

Part 6 Part 5 alludes to a certain open cover of Yz . This part of the subsection defines
this cover. To this end, reintroduce from Step 2 of the proof of Lemma 7.10 the sets
{Ur }1<k<n - The cover in question is given as U = | Jp_; » n U where all U € 8l
are subsets of Uy_; UUr U U4 1. The definition requires the choice of a constant
¢ > 1. Part 10 of the proof gives a lower bound for ¢ by c¢. Any choice above this
bound suffices.

To define a given k € {1,..., N — 1} version of il;, reintroduce from Step 2 of the
proof of Lemma 7.10 the set [}, this being the set of curves from ®’s data sets.
By way of a reminder, there are at most x4 curves in I} and each is a properly

embedded segment of an integral curve of v in U . This same step in the proof of

Lemma 7.10 introduced a constant ¢4 such that 1 — |a|? < com,3c

distance c*m}c/

r~ 1 at points with
2r=1/2(Inr)2 or more to all curves from T}, . The discussion that follows

/

uses Ry to denote c*m}{ 2r_l/z(lnr)2 and py to denote ¢! min(T,m,:l).

The collection L for k € {1,..., N — 1} is written as £z U Uzo U L4 . The sets
from L _ are balls of radius p; whose centers have distance at least pj to all curves
from I} . These balls cover the complement in ) of the union of the radius 2py
tubular neighborhoods of the curves from I} . A cover as just described can be found
with less than cg p,:3m,:3 balls, and such is the case with the cover (.

The sets from il are balls with distance between 2p; and Ry to at least one curve
from I} . Let U denote a give ball from L[ and let D denote its distance to the union
of the curves from I} . The radius of U is equal to %D. The various y € I} versions
of (7-29) can be used to see that a collection of cq In(pg /Ry )(Rgmy) ™! balls of this
sort can be found whose union contains every point in U with distance between py
and 2Ry to at least one curve from I} . The set L is such a collection of balls.
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The set 4, consists of balls of radius ¢~!m ,lc/ 21/

2 whose centers have distance
at most Rx to some curve from Ij. The balls from i cover the set of points
with distance Ry or less to some curve from I . The collection ;4 has at most

coc3(In r)“m,?/zrl/2 balls.

The sets that form Uy are balls of radius r—!/ 3(Inr)~¢ with centers in Uy . These sets
define an open cover of Uy . A cover of this sort can be found with less than cq(In r)€0¢
elements, and such is the case for Uy .

Part 7 This part of the subsection defines the vector spaces {Vy}yesy. The next
lemma is needed for the definition.

Lemma 7.11 There exists « > 1 with the following significance: Let U C Yz denote
a ball of radius p € (0, k™). Fix an isometric isomorphism between E|y and U x C.
Use the latter to view the product connection on U x C as a connection on E|y . Use
Vo to denote the corresponding covariant derivative on C®°(U;iT*M & S @ iR).
There exists a k —dimensional vector space Wy € C®°(U;iT*M @ S @ iR) such that
if q is a section over U of iT*M & S @ iR which is L?—orthogonal to Wy, then

fU |V0q|2 = K_llo_z fU |C||2-

This lemma will be proved in a moment; assume it to be true for now.

Fix U C . If ¢ > ¢¢ then the radius of each ball from il will be smaller than
Lemma 7.12’s version of ! and each ball from £( will sit in the Gaussian coordinate
chart about its center point. With this understood, fix U € 4 and let p denote U’s
center point. Fix an isometric isomorphism between E|, and C and use A’s parallel
transport along the radial geodesics from p to extend this identification to one between
E|y and the product bundle U x C. Define V7 to be Lemma 7.11’s vector space Wy .

Proof of Lemma 7.11 If p <c¢, 1 then U has a Gaussian coordinate chart centered
at its center point. Fix an isometric identification between K~! at the center point
of U with C and use the Ax parallel transport along the radial geodesics through the
center point to extend this isomorphism to one between K~ !|yy and U x C. Use the
coordinate basis with the identification K~!|;y = U x C and the chosen identification
E|y = U x C to give a product structure to 7*M and S over U. Having done so,
rescale the coordinates so the ball of radius p becomes the ball of radius 1; then invoke
the next lemma. d
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Lemma 7.12 Let U C R3 denote the ball of radius 1 centered on the origin. If
h e C®(U;C) is such that [;; h =0, then [;; |[db|® > % [;; b2.

Proof It is sufficient to prove the bound for functions that depend only on z through
its absolute value. This understood, use p to denote |z| and let h denote a function
that depends only on p and has integral zero over the unit ball. Let h. = §H—h(1). Use
integration by parts to see that

1 1
(7-47) [ hip” dp < 2/ \aib( |b+|p dp.
0 o 'op

What is written in (7-47) implies that
1 1
(7-48) / bidp <4 / |db|*p* dp.
0 0

Meanwhile, fol b2 dp > fol h2p? dp, the latter being the integral of h2 over the unit
ball. This last integral is %6(1)2 plus the integral of h? because the integral of b is
zero. |

Part 8 This step sets the stage for the specification of ¢ and {px }1<k<ny—1 SO as to
guarantee (7-46). To start, let U C 4l denote a given ball and let p denote the center
point of U. Fix an isometric isomorphism between E|, and C and then use A’s
parallel transport along the radial geodesics from p to extend this isomorphism to give
an isomorphism between E|y and U x C. Let 6y denote the product connection on
U x C. Use the isomorphism just defined to view 6y as a connection on E|y . Having
done so, write A on U as 6y + a4,y with a4,y being an iR—valued 1—form on U.
Let Dy denote the radius of U. The norm of d4,y is bounded by coDy supy; |B4.

Fix k € {1,..., N — 1}; let U denote a ball from either L{;_ or q. It follows
from what Lemma 7.2 that |B4| < comi on U and so |d4,y| < coc_lpkmi. If
U € Uy 4, then it follows from Lemma 7.2 that |B4| < comlzlr on U and so |da,y| <
coc_lmlzl/zrl/2 on U. If U is from Uy, then Lemma 7.3 finds | B4| < cor?/3(Inr)©
on U and so |aq,u| < coc 13 (Inr)%0.

Given U C 4, use the isomorphism defined above between E|y and U x C to again
view 6y as a connection on E|y. Use Vj to denote the corresponding covariant
derivative on C®(U;iT*M &S @ V). Since |d4,u|* < co supy |Ba| in all cases, so

(7-49) IVaal?® = 3[Voq|*> — co(sup | Bal) g
U

forall qe C®(U;iT*M &SaV).
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Consider next the endomorphism Q that appears in (7-46). A look at the formula in
(IV.A-12) finds

(7-50) 1Q7| < co(1+ |Bal +22|Vay) and |QF|>co'z|y|?

To say more about the bounds in (7-50) on the sets from &, fix first k € {1,..., N —1}
and let U denote a ball from L;_ or Lzg. Lemma 7.2 finds |[Vqy| < comllc/ 2 and
[y]? > com,:1 on U. Since |B4| on U is bounded by com%, the inequalities in (7-49)
and (7-50) imply that

(7-51) IVagl* + (q. Q% q) > | Voq|* + 2¢o sup |07 [|g]? — com?|q|?

forall q € C®(U;iT*M &S & V). Meanwhile, if U is a ball from Lz, then
Lemma 7.3 finds |V4¢/| < com,:Irl/2 and |By| < comlzlr. This being the case, then
(7-49) and (7-50) find

(7-52) IVaal® + (9. Q% q) = 3|Voal* + 2¢o sup |97 |1al? — comp 'rlq|?
forall qe C®(U;iT*M @Sa@V).

Suppose next that U is a ball from (5. What is said in Lemma 7.3 implies that
|B4| < cor?/3(Inr) and |V4y¥| < cor/® on U, so (7-49) and (7-50) lead to the
inequality

(7-53)  |Vaql* + (9, % q) > 1|Voql?® + 2co sup | Q7| q|* — cor?/ 3 (In1)*°|q|?
U

forall qe C®WU:iT*M &S®V).

Part9 This part of the subsection specifies ¢ and {px }1 <k <n—1 S0 as to satisfy (7-46).
To this end, suppose that k € {1,..., N —1}. Suppose that U is from Ll;_ or Uzq. If
qeC®U;iT*M &S @ V) is L?>—orthogonal to the subspace Vi, then Lemma 7.11
and (7-51) find

(7-54) fU(lqu|2+<q,Q+q>)z(calp,:z—com,%+2cosgp|9‘|)/u|q|2.

It follows as a consequence that (7-46) holds if p;z > co(T? + m,zc) and this is so if
¢ > co. Suppose next that U is from Lz, and that q € C®(U;iT*M &S V) is
Lz—orthogonal to V. Lemma 7.11 and (7-52) imply that

(7-55) /U (Vasl® +(9.a) = (65" — copmy'r + 2c0 sup| 07 /U al?
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if g is L?-orthogonal to V. Thus (7-46) holds if ¢ > co(1 4+ myr~'T?); and in
particular, (7-46) holds for ¢ > ¢g if the eigenvalue bound T is less than rl/6 (Inr)=¢o,

The last case to consider is that where U comes from . Lemma 7.11 and (7-53)
imply for such U that

(7-56) / (VaaP + (2. @ a)) = (c5 " (D) — (InD)r2/3 + 2¢, sup | Q7)) / g2
U U U

if q is L?—orthogonal to V. It follows as a consequence that (7-46) holds for such U

if both ¢ > ¢o and the eigenvalue bound 7 is less than /3,

Granted all of the above, and given that T < r'/®(Inr)~, then (7-46) holds for all sets
from 4 if ¢ > co. This understood, choose ¢ to be twice this lower bound.

Part 10 The dimension of each U € 4 version of Vi is bounded by ¢, and so it
follows from what is said at the end of Part 5 that nr is no greater than c¢ times the
number of sets in the collection 4[.

An upper bound for size of Ll is obtained by summing upper bounds for the sizes of
the various k € {1,..., N} versions of 4l;. Let N7 denote the largest value of k such
that T > my, and suppose first that k € {1,..., N7}. It follows from what is said in
Part 6 that ${;_ contains no more than cOT3m,:3 sets. Meanwhile, Lz and Lz to-
gether contain at most com;3/ 21/ 2(Inr)0 balls. Thus | J, <k<N, g contains at most
co(T3 + r'/2(Inr)0) balls. Suppose next that k € {N7 +1,..., N —1}. In this case,
Hy— has at most c¢o balls while Lz and U again have at most com;3/ 21/ 2(Inr)co
balls. Thus, UNT <k<N—1 i contains at most co T—3/211/2(Inr)% balls. As noted in
Part 6, the set {1y has at most ¢o(Inr)“0 balls.

Given that T < cor'/®(Inr)°, the bounds just stated imply that ny < cor'/2(Inr)%o.
Thus, (7-43) bounds the spectral flow along the families {£2 s}se[0,1] and {£3 s }se0,1]
by co7 ~'r(Inr)€. This understood, take T =r'/7(Inr)<° to obtain the bound in (7-39).

O

7.8 The proof of Proposition 3.7

If Yz has a single component, then the function f; is defined in Section 7.6. Proposition
3.7’s assertion in this case is implied directly by Lemma 7.9’s fourth bullet.

Suppose now that Yz has more than 1 component. To define f in this case, introduce
Y to denote the set of components of Y. The space Conn(E) x C*°(Yz;S) can be
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written as [ [y, ¢y, (Conn(E]y) x C*(Y'; S|y’)). Section 7.6 defines any given Y’ € ¥
version of fs on Conn(E|y’) x C*°(Y’;S|y’). Denote the latter by fs.y’. Set

]cs = Z fs;Y’-
Y'ey
Each Y’ € Y has its version of the function a on Conn(E|y) x C®(Y’;S|y’). Use
ay to denote the latter. Then o/ = Yy, (ay’ + 27(r — 7)fs;y/). This understood, it
is enough to bound |ay’ + 27 (r — 7)f.y/| for each Y’ € Y. Lemma 7.9 supplies a
suitable bound when ¢y (det(S|y~)) is not torsion. This understood, suppose Y’ € Y
and ¢ (det(S)|y-) is torsion. Thus, w =0 on Y.

Write ¥ on Y as r~1/2 to see that the set of solutions to (2-5) on Y’ is r—independent.
It follows as a consequence of what is said in Chapter 5 of [17] that the space of
C>®(Y’; S1)—orbits of solutions to (2-5) on Y’ is compact. Hold on to this fact for the
moment. Write ¥ in the Y’ version of (7-36) as /2 and write the sections b and ¢
as (rz)1/2b" and (rz)1/2¢’ to see that the spectrum of the operator in (7-36) depends
neither on r nor z. What was just said about compactness and what was just said about
the spectrum implies directly that |ay’ + 27 (r — 7)fs.y/| < co.

8 Cobordisms and the Seiberg—Witten equations

This section proves Propositions 3.5 and 3.8. Here is an outline of what is to come.

Section 8.1 This section states three key lemmas (Lemmas 8.1-8.3) that are used in
Section 8.2 to prove Proposition 3.5. These are used subsequently also. These lemmas
establish a priori estimates on the norms of i and V4¢ and the curvature F4 when
(A, ) is an instanton solution to (2-10) and r is large. Lemmas 8.1-8.3 are proved in
subsequent subsections of Section 8.

Section 8.2 This section uses the lemmas in Section 8.1 to prove Proposition 3.5.

Section 8.3 This section ties up a loose end by giving the proof of Lemma 8.1 from
Section 8.1.

Section 8.4 This section ties up a loose end by giving the proof of Lemma 8.2 from
Section 8.1.

Section 8.5 This section gives the proof of Lemma 8.3 from Section 8.1 modulo
Lemma 8.5, which is an assertion about the behavior of ¥ on certain domains in a
cobordism.
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Section 8.6 This section proves Lemma 8.5.

Section 8.7 This section uses the results in the previous sections of Section 8 and the
results from Section 7 to prove Proposition 3.8.

8.1 The three key lemmas

The three parts of this subsection supply three lemmas that assert pointwise bounds
for v, the curvature of A and for the covariant derivative of . These bounds are used
in the next subsection to prove Proposition 3.5. All three lemmas assume implicitly
that the conditions in Section 3.3 are satisfied. Additional assumptions are stated when
needed.

Part 1 The first lemma starts the story with a pointwise bound for || and L?-bounds
on F4 and the covariant derivatives of . With regards to notation, this lemma uses
(Vav)s to denote the section of ST over the |s| > 1 part of X that gives the pairing
between V¥ and the vector field %

Lemma 8.1 There exists « > 1 such that given any ¢ > «, there exists k. with the
following significance: Fix r > k.. If X is not the product cobordism, assume that
the metric obeys (2-9) with L < ¢, that the norm of the Riemann curvature is bounded
by r'/¢ and that the norm of wy is bounded by c. Fix p_ and p from the Y_
and Y4 versions of 2 with P—norm bounded by 1 and use this data to define the
equations in (2-10). Suppose that 0 = (A, V) is an instanton solution to these equations.
Then || <« . If X is not the product cobordism, assume in addition that the volume
of the s —inverse image of any length 1 interval is bounded by ¢ and that the metric’s
injectivity radius is greater than r~V/¢. Also assume in this case that Ly, < cr and that
wy obeys (2-12) plus item (c) of the fourth bullet of (3-15). Let ¢— and ¢4 denote
the respective s — —oo and s — oo limits of 0 and suppose that a(c—) —a(cy) < cr?.
Then:

e The L?-norms of |FA(%,-)| and r'/2|(Va)s| on the |s| > L part of X are
less than k,r.

e The L?—norms of Fy and r'/2V sy on the s—inverse image of any length 1
interval in R are no greater than k.r.

This lemma is proved in Section 8.3.

Part 2 The next lemma supplies a refined set of bounds for || and its covariant
derivatives on Uc and Up. This lemma and the subsequent lemma implicitly write S
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on Uc and Uy as E @ (E ® K~!). Having done so, they then write 1 with respect
to this splitting as («, B); and they write the connection A as A = Ag +2A with A
being a connection on E.

The notation in these upcoming lemmas refers to the complex structure on Uc and Uy
that is defined using the metric and the compatible symplectic form ds A *w + w. The
(1, 0)—part of the complexified cotangent space for this complex structure is the direct
sum of the span of ds +i *w and dz on Uc and it is the direct sum of the span of
ds+i xw and the (1, 0)—part of the tangent space to the constant- (s, u) spheres in Uy
with the complex structure on S? being the standard one. These lemmas write Vo
with respect to the (1,0)— and (0, 1)—splitting of the complexified cotangent bundle
as 040 + 040 with d4cx denoting the (1, 0)—part of V4o and with dqx denoting the
(0, 1)—part. The next two lemmas also introduce pp to denote the diameter of the
cross-sectional disk D that is used to define Uc¢ .

Lemma 8.2 There exists k > 100(1 + pBl) such that given any ¢ > k, there exists
k. > k with the following significance: Fix r > k. and assume that the metric obeys
(2-9), (3-14) and the (¢, r = 1) versions of the conditions in the first two bullets of
(3-15). Assume that |wy| < ¢ and that wy obeys (3-13). Fix elements ju— and
U+ from the Y_ and Yy versions of 2 with P—norm bounded by 1. Assume in
addition that their norms and those of their derivatives to order 10 on U, and Hg are

I

bounded by e~ *. Use this data to define the equations in (2-10). Let c— and ¢4 denote
respective solutions to the (r, u—) version of (2-5) on Y_ and the (r, ;t4+) version of
(2-5) with a(c—) — a(cy) < cr?, and suppose that ® = (A, y) is an instanton solution
to (2-10) with s — —oo limit equal to ¢— and s — oo limit equal to ¢4. If p isa
point in one of the domains U¢c or Uy with distance greater than k2r~'/2(Inr)? from

the domain’s boundary, then the following holds at p:
e B2 < e~/ and a2 <1 + e ViIK,
o [VaBI+|VaVaB| < e Vi
o |04 < eVl

o If la|?> e (k1,1 =« at p, then either |Vqa|?> > k3r at p or the Hessian

3

Vd|a|? at p has an eigenvalue with absolute value greater than k ~3r.

o |Va|+r V2|V (V)| <kr'/? if |F4| < cr on the radius kr~/2 —ball centered
at p.

This lemma is proved in Section 8.4.
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Part 3 The final lemma here writes F4 on Uc and Uy as Fq = ds A E4 + B4 with
&4 and By denoting s—dependent, iR valued 1-forms on either R/(£,,Z) x D or Hg
as the case may be. These 1-forms are written as

Ea=—i(1—=0)r(1 —|a|?) +34)dt +t+ X,
Bg=—io@(l1—|a|?) +3p)dt +t—X,

where o, 34 and 3p are functions, and where both vt and X annihilate the vector
field % Note that 4 + B4 = —i (r(1 — lot|?) + 34 + 3B) ds + 2t, which means that
v and the combination 34 + 3p contain the terms with f that appear in the leftmost
equation of (2-10).

(8-1)

Lemma 8.3 There exists k > m such that given any ¢ > «, there exists k. >
200(1 + ,051) with the following significance: Fix r > k. and assume that the metric
and wy are (c, r = r)—compatible. Fix elements y— and 4 from the Y_ and Y4
versions of 2 with P—-norm bounded by 1. Assume in addition that their norms and
those of their derivatives up to order 10 on U, and Ho are bounded by e~ . Use all
of these data to define the equations in (2-10). Let ¢— and ¢4 denote the respective
solutions to the (r, u—) version of (2-5) on Y_ and the (r, ;t4+) version of (2-5) on Y4+
with a(c_)—a(cy) <r2~1/¢. Suppose that 9 = (A, V) is an instanton solution to (2-10)
with s — —oo limit equal to c— and s — oo limit equal to ¢ . Let p denote a point

1

in either one of the domains Uc or Uy with distance k" or more from the domain’s

boundary. Then the following are true at p:
o 110 ] g < 41100

34| + |38] <1100,
100

[t| < «r
1%12 < 2r20(1 —0)(1 — |a|?) + k1100,
IVEA| + |VBy4| < kr3/2.

Lemma 8.3 is proved in Section 8.5 modulo a key lemma which is proved in Section 8.6.
8.2 Proof of Proposition 3.5

This part of the subsection uses what is said in Lemmas 8.1-8.3 to prove Proposition 3.5.
The argument assumes that the integral of iF; over C is negative so as to derive
nonsense. This is done in the eight parts that follow. Before starting, note that the
assumptions in this proposition allow Lemmas 8.1 and 8.3 to be invoked, and the
conclusions of Lemma 8.3 imply in particular that Lemma 8.2 can be invoked as well.

Geometry € Topology, Volume 24 (2020)



3658 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Part 1 This first part of the proof sets the stage for what is to come by supplying two
observations about the pullback of iF ; to C. What follows is the first observation:

(8-2) The integral of ﬁF 7 over C is an integer.

This follows from Lemma 7.6 since the latter implies that A is flat and o /|| is

~

A—covariantly constant where |s| 3> 1 on C.

The second observation concerns the function F on C that is defined by writing the
pullback to C of iF; as Fds Adt:

(8-3) The function F is nearly nonnegative in the sense that F > —cor™ 199,

This follows directly from the formula given below for F using the second bullet of
Lemma 8.2 and the first and second bullets of Lemma 8.3. The upcoming formula for F
uses (d4)o to denote the ds + i *w component of dqa and use (51401)0 to denote
the ds —i *w component of 94a. Here is the promised formula for F:

84 F=(1-p)1—0)(t(1—|al’) +34) + &' (|(ax)ol* —(@a)o]?)-
This formula follows directly from (3-9) and (8-1).

Part 2 Let I C R denote the set characterized as follows: a point s is in I if the
integral of F over the slice {s} x y in C is negative. The following assertion is a direct
consequence of (8-2) and (8-3):

(8-5) If fc iF 7 <0 then the measure of the set I is greater than co_lrloo.
Granted (8-5), there are at least ¢, 1r100 disjoint open intervals of length 1 in R with
center point in [. This understood, use the first bullet of Lemma 8.1 to find an interval
I C R of length 1 with center point in I, with |s| > L 4 2 and such that

[ (G ) +rma?) <7

This inequality enters the story in Parts 3 and 7.

Part 3 Supposing that / C R is given by Part 2, let s denote its center point, this
being a point for which the integral of F over {s} x y is negative. This part proves that
lo|? < % on {s} x y. To see why this is true, suppose for the sake of argument that

this condition is violated at p € {s} x y. Since the integral of F on {s} X y is negative,
9

E .
As a consequence, the variation of |a| on {s} x y must be greater than ¢ 1 As

there must be some point where the function  is less than 1 and thus |a|? <
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explained next, this variation is in fact no greater than cor~!° if r > ¢¢. To start the
explanation, suppose that & > 0 and that there are points on {s} xy with their respective
values of |«| differing by more than ¢. Let % denote the unit-length tangent vector
to {s} x y and let (V4); denote the directional covariant derivative of « along %.
It follows as a consequence of the fundamental theorem of calculus that there is a
point g € {s}xy where |(Vqa)| > ¢y le. Let (V4@), denote the directional covariant
derivative of « along the vector field %. Granted this lower bound for |(V4a);| at ¢,
then the inequality in the third bullet of Lemma 8.2 requires that |(Vaa)s| > ¢y leatg
also if ¢ is greater than coeVi/co, Assuming r > ¢y, then this will be the case when
e>r1r"13. The cy ¢ lower bound for |(V4)s| at g, what is said by the fifth bullet of
Lemma 8.2 and what is said by Lemma 8.3 imply that |[(V4a)s| > ¢y ¢ in the ball in

Uc of radius ¢y Ler=1 centered at ¢. The latter bound implies in turn that the integral

_1861'_4 15

of [(V4a)s|? on this same ball is greater than Co , which is nonsense if € >~

because it runs afoul of what is said in (8-6).

Part 4 Let / and s € I be as in Part 3. Keep in mind that the integral of F over
{s} x y is negative. As will be explained in a moment, the lower bound in (8-3) for F
leads to the following observation:

8-7) The variation of g over {s} x y is no greater than cor>°.

To prove this, first use the fundamental theorem of calculus to see that

1/2
(8-8) sup o — inf pfc()(/ sO’I(VAa)tlz) -
{s}xy {s}xy {s}xy

The bound in (8-7) follows from (8-8) using the lower bound for F and the third bullet
of Lemma 8.2.

Part 5 This part uses the conclusions of Part 3 to deduce the following:

(8-9)  The function o on the |u| < 1 part of {s} x (y NHg) obeys o < cor™>°.

To see why this is the case, let (s, p) denote a given point in the |u| < 1 part of
{s} x (y N Hp) where o > 0. Let S denote the cross-sectional sphere in H¢ that
contains p. Use (3-9) to write the pullback of F4 to S as %de Adz with B =
O’(I‘(l — |oe]?) + 33). Use ¢ to denote the value of o at (s, p). Invoke the first and
second bullets of Lemma 8.3 to conclude (using what is said in Part 3 to the effect
that |a|? < %) that value of B at (s, p) is greater than %re — cor~ 190 The fifth bullet
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—1,1/2

of Lemma 8.3 finds that B > Co le on the radius Co & disk in the cross-sectional

sphere {s} x S with center at (s, p). Meanwhile, the first bullets of Lemma 8.3 and

Lemma 8.2 imply that B > —cor—>° on the whole of {s} x S, and so the integral of B

over {s} x § is no less than ¢ 1g3 _ cor=°. This integral must be zero because the

first Chern class of £ has zero pairing with the cross-sectional spheres in Hg. Thus
e < cor_33.

Part 6 What is said in Part 5 implies that (1 — ) < cor>° on {s} x y. Indeed, if
this bound is violated, then it follows from (8-7) and the formula for F in (8-4) that the
integral of F over the |u| < I part of {s} x y is greater than cor~*°. Given the lower
bound in (8-3), this last lower bound runs afoul of the assumption that F’s integral
over {s} x y is negative. The small size of 1 — g implies in particular that |a|? > %
on {s}xy.

Part 7 Granted the conclusions of Parts 5 and 6, then the fourth bullet of Lemma 8.2
asserts that one or the other of the following are true at each point in the |u| < 1
part of {s} x (y NHo): either |V a|?> > calr or the Hessian matrix Vd|«a|? has an
eigenvalue with absolute value greater than ¢, Ir. As explained next, this has the
following consequence:

(8-10) Let (d4);1 denote the component of d4« that annihilates both % and the

kernel of w. Then |(d4a)1|? is greater than cglrl/2

—1.—1/2
co T

at all points in a radius

ball with center at distance less than cor_l/ 2

|u| < 1 part of {s} x (y NHop).

from each point in the

To prove this, suppose first that |V a|? > Co It at a given point. Use the third bullet of

1

Lemma 8.2 to see that one or both of [(d40)1|? and |(040t)0|? are greater than co T

In the latter case, the third bullet of Lemma 8.2 implies that |(V4a)s|? is greater than

Co It at the point, and the second derivative bound from the fifth bullet of Lemma 8.2

implies that |(Vqa)s|? > cglr at all points in a radius calr_l/2

| 2

ball centered on this
point. This being the case, the integral of |(V4a)s|* over this ball is greater than
Co 1r=1 and this violates (8-6). Granted that |(V4a)1|? > Co It at the given point, then
the second derivative bound from the fifth bullet of Lemma 8.2 implies what is asserted

by (8-10).

Now suppose that the Hessian matrix Vd |a|? at the given point has an eigenvalue
that is greater than ¢, r. Let v denote a unit-length eigenvector at the point with
such an eigenvalue. As will be explained directly, this vector must be such that
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lds(v)| + |dt(v)]| < 1—(1)0. To see why this is the case, suppose to the contrary that
the latter bound is violated at a given point. It then follows from the first and fifth

bullets of Lemma 8.2 that [(Vqa)s| > ¢g 111/2 4t all points in some ball of radius

Co 1:=1/2 whose center has distance at most corl/ 2

|2

from the given point. This implies

1

in particular that the integral of |(V4a)s|* over this same ball is no less than cor™".

But this is nonsense as it runs afoul of (8-6).

The fact that v is a unit-length vector implies that |dz(v)| > % Use this lower bound
for |dz(v)| with the third bullet of Lemma 8.2 and the second derivative bounds from
the fifth bullet of Lemma 8.2 to see that [(d40)1|*> > ¢y 1r1/2 at all points in a ball of
radius ¢ 1=1/2 whose center point has distance at most cor~'/2 from the given point.
Part8 Introduce the connection A- 1 on E’srestriction to I x Hg that is obtained from

A, o) by the formula /Tl = A— Y@V 0 —aV4&). The curvature 2—form of /T] is
( y 2
(8-11) Fp =( —|e|?) Fq + Vya A V4@

Let (s’, p’) denote the center point of a ball that is described by (8-10). Introduce
S C Ho to denote the cross-sectional sphere that contains the point p’. Use (3-9) to
write the pullback of the curvature of A; to {s}x S as B1 dz Adz with By given by

(8-12) By =0 (1—|a*)(r(1—|af?) +34) + [(D40)1]* — |(Qa0)1 |,

with (5,401)1 denoting here the dzZ component of 5A0t. The function B is also very
nearly nonnegative in the sense that By > —cor~ 199, this being a consequence of what
is said in the first and third bullets of Lemma 8.2 and the first and second bullets of
Lemma 8.3. This understood, then it follows from (8-10) and this lower bound for B;
that the integral of By over {s’} x S is positive. But this is nonsense because the latter
integral computes 27 times the pairing of the first Chern class of E with the homology

class defined by S, and this pairing is equal to zero. |

8.3 Proof of Lemma 8.1

The bounds in the lemma constitute a particular case of bounds that are used in
Chapter 24 of [17]. As most of the machinery behind what is done in [17] is not needed
for the proofs, the argument for Lemma 8.1 is presented in a moment. What follows
directly lays a convention that is invoked implicitly in the arguments for Lemma 8.1
and in some of the subsequent lemmas.
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If X is the product R x Yz, the bundles E and K~! over Yz pull back via the
projection to define bundles over X ; their connections Ag and Ag likewise pull back
to define connections on these bundles. The bundle det ST is isomorphic to E? ® K~!
and thus to the pullback of detS. Fix once and for all an isometric isomorphism.

Suppose now that X is not a product. Use the embedding in the second bullet of (2-8)
to identify the s < —1 part of X with (—oo, —1] x Y_, and then use the projection
to Y_ to view the Y_ version of the bundle S as a bundle over the s < —1 part of X.
The bundles ST and S~ are isometrically isomorphic to S via an isomorphism that
covers the isomorphisms between both A* and A~ and T*Y given by the interior
product with 8_as Fix such an isomorphism once and for all. This induces a Hermitian
isomorphism between the bundle det ST over the s < —1 part of X and the Y_ version
detS. Fix once and for all an isometric isomorphism between these bundles. Use this
isomorphism with the pullback via the composition of the embedding from (2-8)’s
second bullet and the projection to Y_ to view Agx + 2Ag as a Hermitian connection
on the s < —1 part of det ST . The analogous constructions can be made on the s > 1
part of X using the Y4 version of S and so define an incarnation of the Y version
of Ag +2AE as a Hermitian connection on detS+.

Suppose for the moment that A is a given Hermitian connection on detS™ — X. If X
is the product R x Yz, then A can be written as Ax +2A with A now a connection
on the bundle £ — X. Thereisamap i1 : X — S! such that A —ii~'dii = Ap +ady,
where a4 annihilates the vector field 3% If X is not the product, then A can be written
as Ax +2A onthe s <—1 and s > 1 parts of X with A being a connection on the
incarnation of E over the relevant part of X In this case, there exists a map # as just
described but with domain the s < —1 part of X, and likewise there exists such a map
with domain the s > 1 part of X.

The map # in the case when X = R X Yz is unique up to multiplication by an s—
independent map from Yz to S', and in the other cases, it is unique up to a map
from the either the s < —1 or s > 1 part of X whose differential annihilates %. The
convention in each case is to take a map % whose restrictions to the constant s slices of

its domain are homotopic to the constant map to S!.

The connection Ay« = A — i~ 'dii can be viewed as a map from R or (—oo, —1] or
[1,00) to Conn(E|y,) with Yy either Yz or Y_ or Y as the case may be. If ¥ is a
given section over X of S, then ¥« = iy can likewise be viewed as a map from R
or (—oo,—1] or [1,00) to C*°(Y«;S|y,). When viewed in this light, the equations
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in (2-10) can be written as equations for (A, ¥x) on the whole of X when X is the
product cobordism, and on the s < —L and s > L parts of X when X is not the
product cobordism. These equations are

D Au+ Ba, —v(Wlvyn —i xwx,) — 1Bay —idps =0,

(8-13) 5
2 Ys+ DaYu =0.

The notation here uses wy « to denote the 2—form w when X is the product cobordism.
When X is not the product cobordism, wy « denotes the s—dependent 2—form that is
defined on the relevant constant s slices of X by the pullback of wy . In particular,
Wy« = w on the components of the s < —L and s > L parts of X where c;(detS) is
not torsion. What is denoted in (8-13) by .« is either w, p— or p4 as the case may be.

Proof The proof has four steps.

Step 1 The assertion that || < « is proved by using the Weitzenbdck formula to
write DKD;{W as V‘L VAW +cl(F g’ )W+ %Rl/f, where R denotes the scalar curvature
of the Riemannian metric. Granted this rewriting, it then follows from (2-10) and from
the assumed bound on the norm of Riemann curvature that the function || obeys
the differential inequality d¥d |v| 4+ r(|¥/|? — |lwx| —c.)|¥| < 0. Use the maximum
principle with this last inequality and the large |s| bounds on || that follow from
Lemma 7.1 to see that |{/| < ¢+ co.

Step2 Let L, denote either L or L. Thenuse I C R to denote either R, (—oo, —L]
or [L,00). Define Yi to be Yz in the case when I = R. When [ = (—o0, L] or
[L«,00) and Ly = L, define Y, to be the union of the components of the constant
s €1 slices of X where cq(detS) is not torsion. In the case when Ly = Ly, define
Y« to be the union of the components of the constant s € I slices of X where c;(detS)
is torsion. Write A on I x Y, as Ax + 2A4 and introduce by way of notation 0|5 to
denote the pullback to {s} x Yy« of (A, ¥). Also introduce B4,y to denote

(8-14) Bay) = Ba—1(W ey —ixw) +i xdps + 1 Bay.

with s denoting either p— or 4 as the case may be. Use Dy in what follows
to denote the Dirac operator on Yy as defined using the connection Ax + 2A for
the Spin®—structure with spinor bundle S = S*. Suppose that s’ > s are two points
in 1. Take the L?—norm of the left-hand expressions in both equations of (8-13) over
[s, 5] x Y«. The square of these norms are zero. This being the case, integration by
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parts in the square of these L2—norms results in an identity of the form

1 9
(8-15) -/ ‘—A
2 [s,s/]XY*( as *

Taking limits in (8-15) as s — —oo or as s' — oo as the case may be leads to the

2 0 2
B P+26(| | DAV R)) = a@l5)—a0ls).

identities

1 d

= —A
2~/]IXY*<‘ 3S *
1 d

) /]1 (=
Note that the identities in (8-15) and (8-16) hold with 0 = (Ag + 24,v) on the
right-hand side. By way of an explanation, the integration by parts proves the analogs
that have 0, = (Ag + 2Ax, V) used on the right-hand side, and if they hold using 0.,
then they hold using 0 because the restriction of the map # to any slice {s} x Yy in

"B 2(| v HDav ) =ate ) -adli= 1)

(8-16)

2 2
HB a0 P+20(| 2| +DaY ) =a(0lemr.)-alc).

I x Y, is homotopic to the constant map to S!.

Step 3 The assertion made by the first bullet of Lemma 8.1 follows directly from
(8-16) when the data is such that X is the product cobordism. The proof in the general
case and the proof of the second bullet of Lemma 8.1 use an integral version of the
Weitzenbock formula for the operator DKDX. The details follow directly.

Integrate |F1&Ir - r(Wwa - ’in) + im;’;|2 + 2r|D;§1ﬁ|2 over s~ ([-L —3,L +3])
and denote the result by Z. Integrate this same expression over the respective |s| €
[L,Ly«—4] and [L«—5, L«+ 1] parts of Xy. Denote these integrals as Zioro and Zioq -
In each case, let X denote the region of integration and let d_ X4 and 0+ X, denote
the two boundaries of the relevant region of integration with d_ X at the smaller value
of s and d4 X at the larger value. Use the Weitzenbock formula for D&wa from
Step 1 with Stokes’ theorem to rewrite the identities Z = 0, Ziyo;0 = 0 and Zior; = 0,
respectively, as

1 . .
817 5 [ QAP+ e —iux P+2]Vap ) +is =0l x.) =00l x.),

with 14 in the case of Z and Zi,;1 denoting a term with absolute value no greater than
Co Cr(fs—1 ([_L_3’L_|_3])(|FAlz))l/2 +coriTeo/c In the case of Ty, the absolute value
of i is no greater than cocLyr. This bound on |ix| in the case of Z and Zg is a
direct consequence of the bounds on the norms of the Riemannian curvature tensor
and wy, the size of L, the volume of the s—inverse image of intervals, and the bound
|¥|? < 2¢ from Step 1. In the case of Ziro, the bound for [|ix| is a consequence of
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the fact that dwy = 0 on the integration domain, this being the assumption made by
item (c) of the fourth bullet of (3-15). By way of an explanation, is in this case can be
written as sum of three terms, these denoted by iy, i), and ig. The term that is denoted
by iy gives the contribution of the scalar curvature term in the Weitzenbock formula for
DKDX. As such, it is bounded by the integral of cor|y|? over the |s| € [L, Ly — 4]
part of Xyr. The bound |1/|? < coc leads to a bound on |ig| by coerLy.

The term that is denoted by i,, comes by writing | F;” —r(y Tty — Lwy) + it }2 as
the sum of |F —r(y Ty — Lwy) ‘2 with terms that involve w,". One of these terms
has the inner product between F g’ and mj. Stokes’ theorem identifies the integral of
the latter with the contributions to the boundary terms on the right-hand side of (8-17)
from the ¢, part of the functional a. The other m;‘;—terms are bounded by the integral
over X« of co(r“zmz — }’in H |mj;| + |mI|2) This understood, the bounds on |/|?
and |wy| lead to a bound on [i,| by cocrLy.

What follows explains how the term ix in i arises. The dwy = 0 assumption is
used to derive a suitable bound on |ig|. As noted above, the derivation starts by
writing |Ff —r(y Tty — Swy) +iw/ﬂ2 as |[Ff—r(yTry — %wX)|2 plus terms that
involve m;:. The norm |F1§- —r(¢ Tty —wy)|? is then written as a sum of |Fg’|2,
2y Ty — Lwy ‘2 and twice the inner product between F,~ and r(y Tty — Lwy).
The integral over X, of the term with the inner product between F X and ryTry
is canceled by the contribution from the F g —term in the Weitzenbock formula for
D&DXW. The inner product between F g and —%er is equal to that of Fy with
_lier and thus its integral is that of rF4 A wy. Stokes’ theorem identifies most
of the latter with the contributions to the boundary terms on the right-hand side of
(8-17) from the rw—term in a. The term designated by ix is what remains after
the application of Stokes’ theorem. To say more about ix , note that the application
here of Stokes’ theorem requires writing A as Ag + 2Ag + aa with a, being an
iR—valued 1-form on X.. Stokes’ theorem involves only d4. The ix—term is the
integral of érF Ax+24; Awx . This understood, the bound [ig | < cocrL 4 follows from
the |wy| < ¢ assumption.

There is one other subtle point with regards to the derivation of (8-17) in the case when
Xy is the |s| < L + 3 part of X, this being that the application of Stokes’ theorem
requires a Hermitian connection on the bundle detS™ whose curvature has norm
bounded by r€1/¢ with ¢; being a constant that is independent of 9, r, ¢, the metric
and wy . The pullback of this connection from the s < —L and s > L part of X via the
embeddings from the second and third bullets should also be the respective Y_ and Y4
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versions of Ax +2AEg . Such a connection can be constructed using the isomorphism
between de Rham cohomology and the Cech cohomology that is defined by a cover
of the |s| < L + 1 part of X by Gaussian coordinate charts with the property that the
any given number of charts have either empty or convex intersection (see Chapter 8
in [3]). The r'/¢_bound on the norm of Riemannian curvature and the r—/¢ lower
bound on the injectivity radius can be used to obtain such a cover by sets of radius
greater than /¢ As the connection is constructed from the de Rham isomorphism
using a subordinate partition of unity, this lower bound on the minimum chart radius
can be used to construct a connection on det ST with an r°/¢ bound on the norm of
its curvature.

Section 8.6 says more about i, when the (¢, r =r) version of (3-15) is assumed.

Step 4 Define X, 0— X« and 04+ X« as in Step 3. Granted Step 3’s bound for the
norm of the ix—term in (8-17), then (8-15) and (8-17) imply that

(8-18) a®ly, x,) < a@ls_x,) + coc’r’.

This inequality with the top identity in (8-16) imply that a(c4) <a(d|s) <a(c_)+coc?r?
when s > L; and the identity in the bottom bullet of (8-16) and (8-18) imply the
inequalities a(c—) > a(d|y) > a(cy) — coc?r? when s < —L. Given these inequalities,
then (8-17) implies that

(8-19) % / (IFal? + 2y oy —iwy |> + 21| Vay?) < a(e=) —alcy) + coc®r?.
X«

This last inequality with the identities in (8-15) and (8-16) imply directly the assertion
made by the first bullet of Lemma 8.1 and it implies the second bullet when the length 1
interval is part of [-L —3, L+ 3] or [-L«—1,—Lyx+5] or [Lx—5, L«+1].

Granted what was just said, the second bullet of Lemma 8.1 holds if its assertion
is true when the length 1 interval is disjoint from [—L, L], [—=L«,—L« + 4] and
[L«—4, L«]. To prove the assertion for these cases, use (8-18) with (8-15) and (8-16)
to see that a(d|5) — a(d|y’) < cocr? if s > s’ and if both are in the same component
of the complement in R of any of these three intervals. This fact is exploited for the
case s’ = s + 1 using an integration by parts argument to rewrite the integrand on
the left-hand side of the s’ = s + 1 version of (8-15) so as to have the same form as
the integrand on the left-hand side of (8-17). The resulting inequality with the bound
a@|s) — a(®|s+1) < coc®r? leads directly to what is asserted by Lemma 8.1’s second
bullet. |
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8.4 Proof of Lemma 8.2

The proof of Lemma 8.2 has five steps. By way of a look ahead, the arguments depend
crucially on the fact that the metric with the 2—form ds A *w + w define a Kéhler
structure on Uc and on Up. The proof that follows considers only the special case
where both p— and 4 vanish on the respective Y_ and Y, versions of U, and Hop.
The argument in the general case is little different and so not given.

Step1 Let Vi denote either Uc or Uy. The fact that the metric with ds A xw + w
defines an integrable complex structure on Vi has following consequence: View f as
a section of the (0, 2)—part of /\2 T*V, ® C. Then the rightmost equation in (2-10)
can be written on either Uc or Uy as

(8-20) daa+ 058 =0.
This last equation implies that 8 obeys
(8-21) VAVAB +1(1+ la” + |B)B + 1B = 0.

where t is determined solely by the metric. In particular, the absolute value of v and
its derivatives to any specified order are also bounded by cq. The equation just written
implies that |8|? obeys the differential inequality

(8-22) dTd|B|? +1|B|? + |V4B|?> <O.

This last inequality is exploited in a moment with the help of the Green’s function for
the operator dTd +r.

Let x € Vi denote a given point and let G, (-) denote the Dirichlet Green’s function for
d¥d +r with pole at x. Keep in mind for what follows the following fact about Gy (-):
it is nonnegative and it obeys

(8-23) Ga(+) < co—dist()lc, Jee Y,

Introduce D: Vi — [0, ¢o) to denote the function that measure the distance to the
boundary of V.. Fix x in the interior of D, multiply both sides of (8-22) by G (-)
and integrate the resulting inequality over V. An integration by parts in the left-hand
integral using the bound |B|? < coc from Lemma 8.1 leads directly to the inequalities

|BI? < coce™ VTP,

[ Gx|VaBI? < coc(1/D?)e™ VTP,

The second inequality is used in Step 3 to derive bounds on the higher-order derivatives

of §.

(8-24)
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Step 2 This step constitutes a digression to state some very crude bounds for the
norms of Fa and Vv and their covariant derivatives. The following lemma states
these bounds:

Lemma 8.4 There exists «k > m such that given any ¢ > k, there exists k. with
the following significance: Fix r > k. and assume the (¢, r = r) version of the first
two bullets of (3-15). Assume in addition that |wy| < ¢ and that the norms of its
derivatives to order 10 are bounded by r'/¢. Fix respective elements (— and [y from
the Y_ and Y versions of 2 with P—norm bounded by 1. Use this data to define the
equations in (2-10). Let 0 = (A, ¥) denote an instanton solution to (2-10) with Fa
and 1/ 2|Vayr| having L?—norm less than cr on the s—inverse image of any length 1
interval in R. Then the norm of Fa and |Va V|, and those of their derivatives up
through order 4 are bounded everywhere by K r*c.

Proof This follows using a standard elliptic boot-strapping argument since the equa-
tions in (2-10) can be viewed as elliptic equations on any given ball in X for a suitable
pair on the C®(X; S!)—orbit of (A, ). Except for one remark, the details of this
bootstrapping are completely straightforward and so they will not be presented. The
remark concerns the fact that the assumed lower bound for the injectivity radius is
needed for the proof so as to invoke various Sobolev embedding theorems using
embedding constants that are bounded by powers of r. |

The bounds supplied by Lemma 8.4 are used in the next step.

Step 3 To obtain the asserted bound for the covariant derivative of 8, differentiate
(8-21) and commute covariant derivatives to obtain an equation for V48 that has the
schematic form
(8-25) VIVa(VaB)+r(1 + o +|B*)Vap

+Ro(FA)VaB +R1(VFg)B +1R2(Vay)Vap +11VaB =0,
where Ko, 2R and R, are endomorphisms that are linear functions of their entries

and are such that |2R«(b)| < co|b|. Meanwhile, t; is such that |v;| < ¢ also. Take the
inner product of both sides of (8-25) with V4 and invoke Lemma 8.4 to see that

(8-26) dTd(IVaBI?) +1VaBI* + [VaVaBI? < cax(IVaBI? + |BI?).

where c, here and in what follows denotes a constant that is greater than 1 and depends
only on ¢. The value of ¢, can be assumed to increase between consecutive appearances.
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Fix a point x € V, with distance greater than cor~/2(Inr)? from the boundary of V.
Having done so, multiply both sides of (8-26) by Gx and integrate both sides over V.
Use the second bullet in (8-24) to bound integral on the right-hand side of the resulting
inequality by coe™ v/ when r> c.. An integration by parts on the left-hand side
using Lemma 8.4 to bound |V48]| on the boundary of Vi and the bound just stated
implies that

(8-27) Va2 (x) + /B G| VAVABI? < coe™ Vil

when r > ¢,. This gives the desired bound for |V4f].

To obtain the bound for |V4V 48|, differentiate (8-25) twice and take the inner product
of both sides with V4V after commuting covariant derivatives. The result is an
equation that looks much like (8-26) with V48 replaced by V4V48 on the left-hand
side and with the addition of the term 1¢|V4V4B|? on the right-hand side. Granted
that this is the case, then the same Green’s function argument that led to (8-27) leads
to an analogous bound for |V4V48|2.

Step 4 This step and Step 5 addresses the assertions of Lemma 8.2 that concern «.
To start, act by 5}; on both sides of (8-20), commute covariant derivatives and use the
bounds from Lemma 8.2 for |B| to see that o obeys an equation that has the form

(8-28) VZVAa —r(l—|eP)a=e,

where |e| < e~V when r > ¢,. This equation implies that w = 1 — |a|? obeys a
differential inequality of the form

(8-29) dtdw +rw > |Vaal? +rw? —e VT,

Use of the Green’s function G with the fact that |w| < coc on the boundary of Vi
along the same lines as in Steps 1 and 3 finds w > e~V1/¢0 at distances greater than
cor~Y/2(Inr)? from the boundary of Vi when r > c,. This is the |«|? assertion in the
first bullet of Lemma 8.2.

The assertion in the third bullet follows directly from (8-20) given Lemma 8.2’s bounds
for |B| and |V4p]|. The assertion in the fourth bullet follows directly from (8-29) given
that w(l —w) = |a|?(1 — |«|?) and that this is greater than %52 at points where |o|?
is between ¢ and 1—§. The assertions in the fifth bullet about the covariant derivatives
of o are proved in Step 5.

Step 5 This step derives the asserted bounds in the fifth bullet for the norms of the
covariant derivatives of «. To do this, suppose that x € Vi is such that | F4| < cr on the
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ball of radius cor~'/2 centered at x. Use 7 in what follows to denote the rescaling map
from C2 to C2 that is given by the rule x > r(x) = r~'/2x. The pullback of (4, V)
by this map is denoted by (Ay, ¥;). The bound | F4| < cr implies that the absolute value
of the curvature of A, is bounded in the radius 1 ball about the origin in C? is bounded
by ¢. Meanwhile, the pullback of the equations in (2-10) by this map constitutes a
uniformly elliptic system of equations (modulo the action of C*®(C2;S!)) in the
radius 1 ball about the origin in C? with coefficients that have r—independent bounds
for their absolute values and for those of their derivatives to any a priori chosen order.
This understood, the fact that || <2 in this ball and the aforementioned bound by ¢
for the norm of the curvature of A, imply via standard elliptic bootstrapping arguments
that the A,—covariant derivatives of y; through order 2 are bounded by coc in the
radius ¢, 1 ball about the origin in C?. Granted these bounds, use the chain rule of
calculus to obtain the bounds asserted by the fifth bullet of Lemma 8.2 for the covariant
derivative of «. a

8.5 Proof of Lemma 8.3

Use Vi again to denote either Uc or Up. The functions 34 and 3p are both equal to
r|B|? on Vi and so what is asserted by the second bullet of Lemma 8.3 follows from the
first bullet of Lemma 8.2. The absolute value of r is bounded by cor|a||8] on Vi and
so the third bullet of Lemma 8.3 also follows from the first bullet of Lemma 8.2. The
bounds in the first bullet of Lemma 8.3 follow from the bound in the fourth bullet and
that for |er|? in the first bullet of Lemma 8.2. If the bounds in first through fourth bullets
of Lemma 8.3 hold, then |F4| is bounded by cor at the points in Vi with distance
ﬁ pp from the boundary of V.. Granted that this is the case, then the rescaling
argument in Step 5 of the proof of Lemma 8.2 can be used to derive the bound given in
the fifth bullet of Lemma 8.3.

The upcoming Lemma 8.5 is the critical ingredient for the proof of the fourth bullet of
Lemma 8.3. The a(c_) —a(cy) <r2~1/¢ assumption in Lemma 8.3 and the final three
bullets of (3-15) are needed only to invoke Lemma 8.5.

Lemma 8.5 There exists k > 100(1 + ,01_)1) such that given any ¢ > k, there exists
k. > k with the following significance: Fix r > k. and assume that the metric and wy
are (¢, r = r)—compatible. Fix elements j.— and 4+ from the Y_ and Y. versions of
Q with P—-norm bounded by 1 and use this data to define the equations in (2-10). Let c—
and ¢4 denote solutions to the (r, u—) version of (2-5) on Y_ and the (r, jt+) version
of (2-5) on Y4 with a(c_) —a(cq) <r2~V¢. Let o = (A, y) denote an instanton
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solution to (2-10) with s — —oo limit equal to c— and s — oo limit equal to ¢y . Use
B to denote a ball of radius k2 in the domain Uc or in the domain Uy with center at

1 1-1/k,

distance k' or more from the domain’s boundary. Then r |, B {1 — |1ﬁ|2‘ < K r

Lemma 8.5 is proved in Section 8.6. Granted Lemma 8.5, then the six steps that follow
prove the fourth bullet of Lemma 8.3 in the case when p— and p4 are zero on the
Y_ and Y versions of Uy, and Ho. The proof when they are not zero but bounded

2

by e™" is little different and so not given.

Step 1 Let Vi denote either Uc or Up. Keep in mind that metric on Vi has nonneg-
ative Ricci curvature tensor, that the 2—form wy = w is covariantly constant on Vi,
that both w,, = 0 and that B4, is covariantly constant on V. These facts with the
bounds from Lemma 8.2 for || and |V4f]| have the following implication: Let s
denote |E4 — B4|. Granted that r > ¢, then the equations in (2-10) imply that s obeys
the differential inequality

(8-30) dlds +t|a|?s <t|Vaa|* + e~ Vi

at the points in Vi, with distance greater than cor~Y/2(Inr)? from the boundary of V.
Let w again denote 1 — |«|? and let go denote s —rw. It follows from (8-29) and
(8-30) that

(8-31) dtdgo +rlaPqe < e~ Vo
at the points in Vi with distance cor_l/ 2(ln r)2 or more from V. ’s boundary if r > c,.

Step 2 Fix ps« > 0 such that px < 1078pp. Fix s9 € R. Let V' C V4 denote the
set of points in the (s9 — 1 — p«, S0 + 1 + px) part of Vi with distance ps or more
from the boundary of Vi, and let V' C V' denote the set of points in Vi with distance
greater than 2p, from the boundary of V.. Thus, each point in V' has distance ps or
more from the boundary of V.

Fix a sequence {cp}n=1,... of smooth, nonnegative functions on V' with the following
properties: Each function in this series is bounded by 1 and is equal to 1 on V. Second,
¢1 has compact support and for each n > 1, the function ¢,4; has compact support
where ¢, = 1. Finally, the absolute values of the first and second derivatives of the
functions in this series enjoy s¢—independent upper bounds.

Step 3 For each integer n > 1, set g, = max(sygn—1,0). Use go to denote the
maximum of go; and for n > 1, use g, to denote the maximum of g,. Note that
gn < gn—1. It follows from (8-31) that if r > ¢, then any given n > 1 version of g,

Geometry € Topology, Volume 24 (2020)



3672 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

obeys
(8-32) ddgn +rlaPqn < ddTcp)gn1 +2(dcn. dgn_1) + coe™ V70,

where (-,-) denotes the metric inner product. Fix a constant z,, > 1 to be determined
shortly, and let g, denote the maximum of 0 and ¢, — rlz, gn—1. The function g «
obeys

(8-33) dTdgus +rla>gns
< Znfna W+ (—Zngn1 + (ddT sn)gn_1 +2{dgn. dgn_1)) + coe™ V<.
Note also that ¢, has compact support in V'’ since ¢, —r 1z, -1 = 11z, Gn—1

on the complement of the support of ¢, .

Step 4 Fix x in the interior of V' and let G, now denote the Dirichlet Green’s
function for the operator dTd on V' with pole at x. The function G is nonnegative,
|Gx(+)] <codist(x,-)"2 and |d Gy (-)| <codist(x, ). Multiply both sides of (8-33)
by Gy and integrate the two sides of the resulting inequality over V’. Integrate by
parts on both sides to remove derivatives from g« and g,—; to obtain the inequality

1 — —/r
(8-34) qn*(X) < ann_l /V/ (mW) + (—CO lzn —+ en)qn_l +e \/»/CO’

where e, < co sup,ep/(|d Tdcn| + |dcn|). Granted this bound, a purely n—dependent
choice for z, leads from (8-34) to the inequality

1
_ I —/t/co.
(8-35) Gnx(X) = Zngn—1 /V,(dist(x,-)zw) e ’

Lemma 8.5 is used to exploit this inequality.

Step 5 Fix p > 0 and break up the integral in (8-35) into the part where dist(x, -) is
greater than p and the part where dist(x,-) is less than p. Having done so, appeal to
Lemma 8.5 and the first bullet of Lemma 8.2 to see that

(8-36) () < 2 (07210 4 p?) gy €7V

when r > c.. Let cx denote the value of cq that appears in (8-36). Take p = r1/4ex
in (8-36). The resulting right-hand side is independent of x, and this leads directly to
the inequality

(8-37) Gn < zur V262 g,_y 4 V<0

when r > ¢.. As Lemma 8.4 finds gg < r, what is written in (8-37) implies that an

n = c. version of g, is bounded by 200
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Step 6 Since ¢, =1 on V, the conclusion from Step 5 implies that
(8-38) |4 — Ba| < (1 —a|?) +172%

at all points in V. Square both sides of (8-38). What with the bounds for |34| and 35|
from Lemma 8.3’s second bullet, the resulting inequality implies that

(8-39) (1-20)22(1 —|a|?) + %> <r2(1 —|a|?) + cor 18,
and rearranging terms writes this as
(8-40) 1212 < 2r?0(1 —0)(1 — ||?) + cor %3,

This gives the bound stated in the fourth bullet of Lemma 8.3. |

8.6 Proof of Lemma 8.5

The proof has six parts. Parts 1 and 2 revisit the formula in (8-15) and Part 3 revisits
the formula in (8-17). These steps present the proof in the case when cq(detS) is
nontorsion on all components of the |s| > 1 part of X. But for the two remarks that
follow, the proof when X # & differs only cosmetically.

The first remark concerns the formula in (8-17) in the case when X is the respective
|s| € [L, L« —4] part of X, the remark being that the absolute value of iy in this
case is bounded by coc?rinr. The reason is as follows: As noted subsequent to (8-17),
the absolute value of the relevant version of i, is bounded in any event by coerLy.
Meanwhile, the first bullet of (3-15) bounds L« by clnr.

The second remark concerns (8-17) in the case when X is the |s| € [Lx — 4, L]
part of X, this being that the absolute value of the corresponding version of i, is at
most c¢g when r is larger than a purely c—dependent constant. Given item (d) of the
fourth bullet of (3-15), the proof that this is so differs only in notation from what is
said below in Part 2 to prove the analogous bound for the version of i that appears in
(8-17) when X is the |s| € [L —4, L] part of X.

Part 1 Write 0 = (A,v). When X, the metric and wy are as described by the
first bullet of (3-16), use this pair as instructed in the proof of Lemma 8.1 to define
the map (Ax, ¥s) from R to Conn(E) x C°°(Yz;S). When the second bullet of
(3-16) is relevant, then (A«, V) as defined in the proof of Lemma 8.1 denotes a
map from (—oo, —1] to Conn(E|y_) x C*°(Y—; S|y_) and also a map from [1, co) to
Conn(Ely, ) x C®°(Y4;S|y,).
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Set Ir, = [-L, L] when X, the metric and wy are as described by the first bullet
of (3-16), and set I, to be either [-L, —L + 4] or [L —4, L] otherwise. Use Yy to
denote the constant s € I slice of X, this being either Yz, Y_ or Y. Write the
metric on I, X Yy as ds? + g with g denoting an s—dependent metric on Y. Define
the s—dependent 1—form w4 on Yy by writing wy as ds A xwx + w4 with the Hodge
dual defined here by g. The two equations in (2-10) on the s € I} part of X are
equivalent to equations for (A, ¥«) that can be written as

LA +B, =0,
a5 Vs + DaYu =0,
with B, denoting the s € I;, dependent 1—form on Y

. . d
(8-42) %a=BA—r(t/errl/f—lw*)+lmlJ[($,~)+%BAK.

By way of notation, D4, in (8-41) denotes the Dirac operator defined by the metric g,

(8-41)

its Levi-Civita connection and the connection Ax + 2As on the {s} x Yy version
of detS.

Part2 If X, the metric and wy are as described by the first bullet of (3-16), then the
integration and use of Stokes’ theorem that leads to (8-15) can be repeated with the
domain of integration being s~!([—L, L]) to find that

o L (A ") i

= a(@|s=—1) —a@|s=L):

where i, = 0 when tv, is such that X, the metric, wy and tv,, define the product
)1/2

2 d
+ |$B(A,1/,)|2 + 2[‘(’&1&*

metric, and where [i,| < CO(fs—l([—L L]){%A*F in any event. This being the

case, the second bullet of Lemma 8.1 implies that |i,| < cor.

Assume now that X, the metric and wy are as described by the second bullet in (3-16).
The derivation of (8-15) and (8-43) can be repeated with the domain of integration
being s 1 ([—L,—L +4]) and also s~!([L — 4, L]) to obtain the identities

0
%/[—L,—L—M]XYZ ()gA*

1 0
3 s, (i

2 d 2 .
+ |£B(A,w)|2+2l‘(‘glﬂ* + IDAWIZ)) +i
= a(a|s=—L) - a(a|s=—L+4)»
2 0 2 .
1B+ 20| 50| +1Dav ) +i

= a@|s=r—4) —a®|s=1),

(8-44)
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where 1 in this case is such that |i| < cor>~1/¢

when ¢ > ¢ and r > ¢, with ¢, denoting
a constant that depends only on ¢. The paragraphs that follow explain how this bound

comes about.

The term denoted by i can be written as the sum of three integrals, i =iy +1iy + 1.
What is denoted by 1,, appears here for the same reason it appears in (8-43) and it has the
analogous bound, [i,,| < cor. The integral denoted by i5 accounts for the s—dependence
of the metric g on Y, when commuting the operators a% and Dy, . In particular, the
integrand that defines iy is bounded by cor(‘%gq Y| |Vav| + }9‘{9(%,-) ,|[¥|?) with
Mg denoting the Riemannian curvature tensor of the metric d 52 + g. This understood,

(3-15) with Lemma 8.1’s bounds for |¥|?> and the L?-norm of |V | imply that
3/2+1/¢

|ig| = cor
‘2 of the
metric inner product of %A* with —ir * ws. The integral of this inner product is
written as | 1 h(s)ds with I;, denoting [—L,—L + 4] or [L —4, L] as the case may
be, and with A(s) denoting the integral of the 3—form —i ra%A* A Wy over {s} X Y.

The integral i,, arises from the contribution to the integral of ‘%A* + By

Only a portion of the integral of —ir%A* A Wy contributes to iy, . To say more, write
Ay as Ag + ay with @4 denoting an s—dependent 1—form on Y. The integral of the
3—form —ir%A* A Wsx over {s} X Yy is written using a4 as

(8-45) _itd (f GAN w*) + ir(/ AN ﬁw*).
95 \ Jisyxv. {s}xYa ds

The contributions of the function W in (2-7) to the right-hand side of (8-44) are given
by the integral over I;, of the leftmost term in (8-45), this being a consequence of the
fundamental theorem of calculus. What is denoted by 1i,, is the integral over I of the
rightmost term in (8-45). A bound for the absolute value of the latter is obtained by
using the assumption in item (b) of the fourth bullet of (3-15) to write %w* as db
with 6 as described by this same part of (3-15). Stokes’ theorem equates the rightmost
integral in (8-45) with the integral of irddy A b. This being the case, it follows from
(3-15) that this second contribution to i,, has absolute value less than corz_l/ ‘.

Part3 Integrate |Fg—r(wTIW—iw;)—im;|2+r|DAW|2 over s~ ([—~L+4, L—4]).
Integrate by parts using the fact this integral is zero to derive an identity that can be

written as
(8-46) 1

/ (Fal? + 2 oy —iwt P+ 2|Vavl?) + iz
2 s—1([—L+4,L—4])

= a(@|s=—L+4) —a(@|s=L—-4)
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with iz such that |ig| < cor! T€0/¢. The paragraphs that follow in a moment derive the
latter bound. By way of comparison, the absolute value of the term i in (8-17) has the
bound cocr(fs—l([—L+4,L—4]) |FA|2)1/2 + coriteo/c The difference can be traced to
the assumption that wy is a closed 2—form on s~ ([—L + 4, L — 4]).

The bound on |iz| can be seen by writing iz, as a sum of four integrals, these denoted
by iy, ics, iw and i,. The integrand of iy is %r|w|2R with R denoting the scalar
curvature of X. By way of an explanation, this term comes from the integration by
parts and subsequent commuting of covariant derivatives that rewrites the integral
of r|Dav|? as an integral over the s~'(—L + 4) and s~!(L — 4) boundaries of the
integration domain plus an integral over s~ ([—L + 4, L — 4]) whose integrand is the
sum of 1|V |2, a curvature term involving F g and the product of %r|w|2R with R
denoting the scalar curvature of the metric on X. The boundary terms account for the
rightmost integral in (2-6)’s formula for a. Use the bounds from the first two bullets
of (3-15) with the bound || < coc from Lemma 8.1 to see that |iy| < cor'T2/¢ if
r > ¢, with ¢, again denoting a constant that depends only on c.

The integrals ics and i, involve a chosen Hermitian connection on det ST whose
curvature has norm bounded by cr0/¢ and whose pullback from the s < —L 4+ 8 and
s > L — 8 part of X via the embeddings from the second and third bullets is the
respective Y_ and Y4 versions of Ag +2AE. Step 3 of the proof of Lemma 8.1
explains why such connections exist. Let Ag denote a chosen connection with this

property.

The integral i,y comes by first writing |F g |2 as %|F 'Al? plus the Hodge star of
%F ‘A A Fa . The latter is rewritten using an integration by parts after writing A as
As + a4 with a4 being an i R—valued 1-form on X. Writing A in this way yields

(8-47) SFANFp =3%dasgndag+das A Fag + 2 Fag A Fag.

An integration by parts writes the integrals of the first two terms on the right side of
(8-47) as boundary integrals, these giving the respective cs contributions to a(d|s=7+4)

and a(d|s=r—4). The integral of the rightmost term in (8-43) is ics. Thus [i¢cs| <
corCO/‘.

The integral i,, is obtained by invoking Stokes’ theorem to rewrite the term from the
inner product between Fg and %er that arises when |Fg_—r(lﬁTTlﬂ—%wX) +im;: }2
is written as |F g 12 4+ r|y Tty — wy|? plus remainder terms. One of these remainder
terms is twice the inner product of F g with %rwx. The integral of the latter is the
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integral of the 4—form —ing Awy . Write —irFa Awy as the sum of —irddg A wy
and —2irFa A wy . Because wy is closed, an integration by parts writes the integral
of the first of these as an integral over the boundary of the integration domain. The
latter accounts for the respective W contributions to a(d]s=—7+4) and a(0|s=r—4).
The integral of —2irFa A w; is iy, . This being the case, the bound [iy | < ¢coer!*eo/¢
follows directly from the (3-15) and what is said in Step 3 of the proof of Lemma 8.1
about |Fa|.

The integral denoted by i, has two contributions. The first accounts for the terms with
tv,, that arise in the aforementioned rewriting of | F 1_{{ —r(y Ty —iwy) +i m/:L" |2, 1t
follows from the left-hand equation in (2-10) that the integrand for this part of i, is
bounded by co. The second contribution is proportional to the integral of ddg Atoy,; it
appears when Stokes’ theorem is used to write the respective ¢, parts of a(d|s=—r7+4)
and a(d|s=7—4) as a term that has norm bounded by c¢ and another whose integrand
is proportional to dd4 A to,,. The norm of the latter is bounded by coc(|Fa| + ¢?).
Granted this, it follows that |i,| < cOC((fs—l([—L+4,L—4]) |FA|2)1/2 + ¢?) and this is
guaranteed by Lemma 8.1 to be less than coc(r + ¢?).

Part 4 If the first bullet of (3-16) holds, the assumption a(c_) — a(cy) < r2~1/¢ with
(8-16) and (8-43) imply that

w0 [ (B emee(?

"o+ 26| Ly H1D4v 1)) < ate)—ates) teor

< COrZ—l/c

when ¢ > ¢ and r is greater than a constant that depends only on ¢. If the second
bullet of (3-16) holds, the assumption a(c—) —a(c4) < r2~1/¢ with (8-16), (8-44) and
(8-46) imply the bounds that follow when ¢ > ¢ and r is greater than a constant that
depends only on ¢:

ad
/(—oo,—L+4]XY—()$A*

(8-49) AL—4,00)XY+ (‘ E%A*

(Fal+ 2y ey —iwd |2 + 20 Vay ?) < cor® Ve

’ + B> + 2r(‘%1/f* 2+|DA1//|2)) <cor?7Ve,

“ 1ol 4 20| L[+ 104U PR)) o

/s—l([—L+4,L—4])

Put away for now the bounds in (8-48) and those in the first two bullets of (8-49).
Assuming that the second bullet of (3-16) holds, the bound in the third bullet of (8-49)
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implies the bound
(8-50) r/ lyTry —iw;l < cor' Ve
s~1([—-L+4,L—4])

when ¢ > ¢ and r is greater than a constant that depends only on ¢. Let B denote the
given ball from Lemma 8.5. Use the second and third bullets of (2-9) and (3-14), the
first bullet of Lemma 8.2, and (8-50) to see that

1-1/¢

(8-51) 1= ae|?| < cor

r
/Bms—l ([-L+4,L—4])

when r is greater than a purely c—dependent constant.

Part 5 If the first bullet of (3-16) holds, then / denotes in what follows any given
length 1 interval in R. If the second bullet of (3-16) holds, then / denotes a length 1
interval in either (—oo,—L + 4] or in (L — 4,00). In either case, reintroduce the
I—-form vy from the fifth bullet of (3-16). Take the inner product of both sides of
(8-41) with i vy, then integrate the resulting identity over s~1(). The left-hand side
of the result can be written as a sum of four integrals; and the assertion that this sum is
zero can be rewritten as the identity

(8-52) /I(/Y ux Ar(ws + *iwrw)) ds
:/1(/ UX/\idZiA)ds+/I(/ Ux/\*%A*)ds
(o) s

Use what is said by either the first bullet in (3-16) or the second and fifth bullets
of (3-15) to bound the absolute value of the rightmost integral in (8-52) by a purely
c—dependent constant. Meanwhile, Stokes’ theorem finds the middle integral on the
right-hand side of (8-52) equal to zero. The absolute value of the leftmost integral
on the right-hand side of (8-52) is bounded by coc times the L2—norm over s~ (1)
of %A*. This being the case, use either (8-48) or the first two bullets in (8-49) to
bound the absolute value of the leftmost integral on the right side of (8-52) by r1=1/29
when r is greater than a purely c—dependent constant.

It follows as a consequence of what was just said in the preceding paragraph that the
absolute value of the integral on the left-hand side of (8-52) is no greater than r1=1/@29
when r is large. The plan for what follows is to rewrite this integral as the sum of two
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terms, one being the integral of r|vy| ‘|w*| - |1ﬂ|2‘ and the other bounded by r!~1/¢.
This is done in Part 7. Part 6 supplies the necessary tools. A bound of this sort with
the second and third bullets of (2-9) and (3-14) plus the first bullet of Lemma 8.2 leads
directly to the bound

(8-53) r/ ‘1 - |a|2’ < cor' Ve
Bns—1(I)

when B is any given ball from Lemma 8.5. This bound implies Lemma 8.5’s assertion
if the first bullet of (3-16) holds. This bound with (8-52) imply Lemma 8.5’s bound
when the second bullet of (3-16) holds.

Part 6 The two lemmas that are stated in a moment and then proved supply what
is needed for Part 7. To set the stage for the first lemma, note that Clifford multi-
plication by wy splits ST where wy # 0 as a direct sum of eigenbundles for the
endomorphism given by Clifford multiplication by wy . Write this direct splitting
as ST = Ex ® (Ex ® Ky 1) with it understood that the leftmost summand is the
i|wy |-eigenspace. The upcoming lemma writes a section ¥ of ST where wy # 0

1/2) and it writes 5 with respect to the direct sum decomposition of St as

as [wy|
(e, B). The lemma that follows asserts bounds for || and | 8| that are the analogs of

those asserted by the first two bullets of Lemma 7.2.

Lemma 8.6 There exists « > 100, and given ¢ > «, there exists k. with the following
significance: Fix r > k. and assume that the metric obey the (¢, r = r) version of the
constraints in the first three bullets of (3-15) and |wy| < ¢, or that the first bullet of
(3-16) holds. Fix elements jt— and ju4 from the respective Y_ and Y versions of 2
with P—norm bounded by 1 and use all of this data to define the equations in (2-10).
Let 0 = (A, ) denote an instanton solution to these equations. Fix m > 1. Then

la|? <1 +Kcm3r_1+’</c and |B)? < Km3r_1+K/C(1 —la?) + i 3mOr2tK/e
at the points in X where |wy|>m~"L.
Proof The proof is much like that of the first two bullets in Lemma 7.2 with the
only salient difference being the r—dependent bounds for the norms of the Riemannian
curvature and the covariant derivatives of wy. The paragraphs that follow briefly
explain how this r—dependence is dealt with.

The section 7 = (a, B) of ST obeys an equation of the form Dyn + R-n = 0 with
R being an endomorphism that is bounded by cem™ 11/ on Us,, . The Weitzenbock
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formula for the operator (Dy + 9%)? leads to an equation for 7 that has the schematic
form

(8-54) VIVan—Lc(FHn+ %1 - Van+%0-n=0,

where |R1| < c¢.m™! and |Ro| < c,m™2. As in the proof of Lemma 7.2, introduce g
to denote the maximum of 0 and |5|? — 1. It follows from (8-54) that ¢ obeys the
inequality

(8-55) deq +rm ! g < ccm_zrz/c

on Uy, when > c,. It follows from Lemma 8.1 that ¢ < c.m on the boundary of Uz, .
This understood, the comparison principle using the Green’s function for dTd 4 rm~!
can be used to see that g — ccm3r_1+2/” is no greater than cﬁme_‘/r/(zm) on Uy, .

This bound on ¢ implies what is said by Lemma 8.6 about |a|?.

To see about the bound for |8]2, project (8-54) to the Ex®K X ! _summand of ST to
see that |3|? obeys a differential inequality on U, that has the schematic form

(8-56)  dTd|B12+rm™ B2 < =2|VB|? + crr 0 m3 Vg 4 com?i€0/¢

when r > c¢.. Meanwhile, the projection of (8-54) to the Ey —summand can be used to
see that w = 1 — |a|? on Uy, obeys the following analog of any given & > 0 version
of (7-11):

(8-57) d¥dw+m™'w > |Va|? —coe|VBI? —co(l + a_l)mzrc(’/c.

It follows from (8-56) and (8-57) that there are constants z1 and z, that are both bounded
by c., and there exists an & > ¢, such that ¢ := | |2—z r1teo/ e 3w —zyrm2Hc0/ e 6
obeys the equation dTdg +1m~'g <0 on Uy,,. This being the case, a comparison
principle argument much like that used in the preceding paragraph bounds g by
ceme=Y2m on Uy, . This bound implies Lemma 8.6’s assertion about |B|2. m|

The next lemma supplies an analog for X of Lemma 7.3:

Lemma 8.7 There exists k > 100, and given ¢ > k, there exists k. with the following
significance: Fix r > k., and assume that the metric obeys the (¢, r = r) version of
the constraints in the first three bullets of (3-15) and |wy| < ¢, or that the first bullet
of (3-16) holds. Fix elements — and w4 from the respective Y_ and Y, versions
of Q with P—norm bounded by 1 and use this data to define the equations in (2-10).
Let 0 = (A, ) denote an instanton solution to these equations. Fix m > 1. Then
[V|% < ko(m™' 4 cr~1F%/¢) at points in X where |wy| <m™'.
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Proof The Weitzenbock formula for Di was used in Step 1 of the proof of Lemma 8.1
to write the differential inequality dTd || + r(|W|? — |wx | — car™ 1T/ ¢) | < 0. The
maximum principle precludes a local maximum for | |> —m ™1 —c 1+ /¢ on X —Up,
and Lemma 8.6 implies that |y|> < 2(m~" + ¢.m?r~17¢0/¢) on the boundary of
X —-Uy. m|

Part7 Fix m > 1 for the moment and write (ds Avy)™* on Uy, as gxwy + by with
bx being a self-dual 2—form that obeys by A wy = 0. Note in this regard that

(8-58) qx |wx |> = *(ds A vy Awy)

with the * here denoting the Hodge star that is defined by the metric ds?>+g on I x Y.
Granted (8-58), it follows either from the first bullet of (3-16) or from the fourth bullet
and item (c) of the fifth bullet of (3-15) that

(8-59) ax lwy|? = —ca7 Ve,

Noting that *(ds Avx Awy) is also the g—Hodge star on Y, of vy Awx, the integrand
of the Uy, part of the integral on the left-hand side of (8-52) is

(8-60) rgx |ws|*(1 = |a|* +|B%) +v  where |r] < corl6]Jwx ||| |B].

Use the bound in (8-59) and the bounds supplied by Lemma 8.6 to see that the Uy,
part of the integral on the left side of (8-52) can be written as

(8-61) r[ lax | |w] ||ws] —|¢|2| +e¢  where [e] < ¢ (r!760/¢ 4 m3re0/¢),

Meanwhile, it follows from Lemma 8.7 that the contribution to the integral on the left
side of (8-52) from X — U, is no greater than ¢ (rm ™! + merO/E). Lemma 8.7 also
gives such a bound for the integral of |gx ||w«| }|w*| — |W|2} over the part of I x Yy

1

in X — Uy, . Granted these bounds, fix for the moment ¢ > 0 but with € < cgc™" and

take m = r¥/¢. Use the just stated bounds and (8-61) to see that

(8-62) / lgx | |wx] ‘Iw*I—IWIZ‘ 5/ ds Auy At(ws +*iy T Ty) + el 7,
I XY,

IxXYy

This last bound with what is said at the end of Part 5 implies Lemma 8.5. |

8.7 Proof of Proposition 3.8

Fix a smooth, r—independent metric on X whose pullback via the embeddings from
the second and third bullets of (2-8) restricts to the s < —2 and s > 2 parts of X as the
product metric ds? + g, where g.« denotes the given metric on Y_ and Y as the case
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may be. Use my to denote this metric. Use this metric to define the bundles S* and
ST over X. The constructions at the beginning of Section 8.3 can be repeated to view
the Y_ and Y4 versions of S as the restrictions to the respective s < —1 and s > 1
parts of X of the my versions of ST and S™. Use this view of these versions of S to
view the Y_ and Yy versions Ax + 2AE as a Hermitian connection on the restriction
of the my version of the bundle detS™ to the |s| > 1 part of X. This connection has
smooth, r—independent extensions to the whole of X as a Hermitian connection on the
my version of det S*. Fix such an extension and denote it by Ag.

Use the s < —1 and s > 1 isomorphisms between the Y_ and Y4 versions of S to
view the corresponding versions of ¥z as a section of the my version of S* over the
|s| > 1 part of X. Fix a smooth extension of the latter to the whole of X and denote it

by ¥s.

The metric my and the pair 0 = (Ag, ¥s) defines a version of the operator that
appears in (2.61) of [37]. This operator defines a map from C®°(X;iT*X & S™) to
C®(X; AT @S~ @iR). The latter defines an unbounded, Fredholm operator between
the L2 versions of these spaces, and so it has a corresponding Fredholm index, this
denoted in what follows by ig.

Fix ¢ > ¢ so that Proposition 3.7 can be invoked using Y_ and Y. Fix r > 1 and
pairs p— and p4 from the respective Y_ and Y4 versions of 2 with P—norm less
than 1, and suppose that ¢— and ¢4 are the corresponding solutions to the Y_ and Y4
versions of (2-5). Let m denote a metric on X that obeys (2-9) and (3-14). Suppose
that 0 = (A, ¥) is a pair of connection on detS* over X and section over X of ST
with § — —oo limit ¢— and s — oo limit ¢4 . This metric m and 0 together define a
corresponding version of the operator that appears in (2.61) of [37]. If both ¢_ and ¢4+
are nondegenerate then this operator has an unbounded, Fredholm extension whose
domain and range are the respective spaces of square-integrable sections of i T*X ST
and i AT &S~ @ iR. Assume this to be the case for the moment, and let 7,4 denote
the corresponding Fredholm index. It follows using the excision theorem for the index
(or from what is said in [1]) that 1§ = 15+ + fs(c—) — fs(c4).

With the preceding understood, write a(c—) —a(c4+) as

(8-63) ol (c-) =l (c4) =27 (r = ) (Fs () — fis(c4)
and then use the formula in the last paragraph to write
(8-64) a(e-) —a(eq) = al(c=) = (e4) + 27 (1 = 7) (1o — 1)
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Since 1g is independent of r and ¢, this last formula proves Proposition 3.8 when both
c— and c4 are nondegenerate.

If one or neither is nondegenerate, fix ¢ > 0 and fix ¢’ in the set DM.(c—) from
Section 7.6 that takes on the supremum in the c¢— version of (7-37). Fix c’+ in Ng(c4)
with the analogous property. With ¢’ and ¢/_ as just described, choose a pair o’
of connection on detS* and section of ST with s — —oco limit ¢ and s — oo
limit c’+. The metric m with 9’ define an unbounded, but now Fredholm version of
the operator from (2.62) in [37] with domain and range being the respective spaces
of square-integrable sections of iT*X @St and i AT @ S~ @ iR. Let 1,y denote the
Fredholm index of this operator. Define i34+ to be 174 . Note that this definition does
not depend on ¢, ¢/ or 0.

The arguments that lead to (8-64) can be repeated verbatim to obtain the modified
version that has ¢_ replaced by ¢’ and ¢4 replaced by c/+. Keeping this in mind,
choose ¢__ so that |a(c”) —a(c—)| < 1, and choose ¢/, so that |a(c/_) —a(c4)| < 1.1t
follows using (7-37) that |af(¢.) —a’(c—)| <1 and |a’(¢/,) —af(c4)| < 1. The latter
bound with the (¢”_, c’+) analog of (8-64) implies what is asserted by Proposition 3.8
when the nondegeneracy condition does not hold for one or both of ¢_ and ¢ . O

9 Constructing 2—forms on cobordisms

This section mainly supplies proofs for Propositions 3.9, 3.11, 3.13 and 3.14. The proof
of Proposition 3.9 is in Section 9.2, that of Proposition 3.11 is in Section 9.4, that of
Proposition 3.13 is in Section 9.5, and Section 9.7 contains the proof of Proposition 3.14.
The basic issue in each proof is to construct metrics and closed 2—forms on cobordisms
with certain prescribed properties. These constructions occupy most of these subsections.
By way of a look ahead, these constructions are, on the whole, quite intricate. Note
that there is little by way of the Seiberg—Witten equations in this section.

A proof of Proposition 1.5 is given in Section 9.6, using notions introduced in Section 9.5.

9.1 MetT metrics on {Yk}ke{o,...,c}

The eight parts of this section describe a set of preferred metrics on each k € {0, ..., G}
version of Y3 . These parts also describe the associated harmonic 2—forms with de
Rham cohomology class that of ¢q(detS). Let Yx« denote Yj for any k € {0,...,G}.
As the Mg U Hg parts of Yy and Y are canonically isomorphic, notions defined on
any of them are defined for others and are denoted by the same notation.
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Part 1 This part of the subsection summarizes various properties of Y that concern
Ho and the curve y(ZO). Most of what is said below can be found in Section II.1.

The handle Hg in Y, has coordinates (u, 6, ¢) with (6, ¢) being the standard spherical
coordinates on the 2—sphere and with u# € [-R —In(76«), R 4+ In(78«)]. As can be
seen in (IV.1-5), the 2—form w and the 1-form v, restrict to this handle as

(9-1) w=sin0doAndp and ve =2(y4e2HR 4y e2(HR)y gy

where y4+ = )((—u - %R) and y_ = )((u — %R). The curve y(ZO) intersects Ho as
the & = 0 line. Meanwhile, the My part of ¥ has a tubular neighborhood with
coordinates (¢, (0, ¢)) with ¢t € [§2,3 — §2], with § € [0, 6x) and with ¢ the affine
coordinate on R/(27Z). Here, 6 is positive, smaller than ﬁ&k but greater 10053.
The 2—form w here appears as in (9-1) and v, appears as d¢. The coordinate transition
function identifies ¢ with e"2(R=%) near the index O critical point and with ¢ ~2(R+)
near the index 3 critical point.

Recall the function f on M that plays a central role in much of [19; 20; 21; 22]. This is
described in detail in Section II.1. Recall also the vector field v in [20, page 2876]. Set
Ex = Ox sin(%G*). The coordinates just described can be used to construct a piecewise
smooth embedded 2—sphere in the f € [¢2,3 —¢2] part of My as follows:

(9-2) e« The 2—sphere intersects the complement of the radius-8, coordinate balls
about the index 0 and 3 critical points of # as the cylinder where 6 = %0*.

e The 2—sphere intersects the r € (g4, §«] part of the radius-§, coordinate ball
centered on the index 0 and index 3 critical points of f as the locus where
(r,0,¢) are such that cos @ > 0 and rsin 6 = §x sin(%G*).

e The 2-sphere intersects the r = €4 spheres centered about the index 0 and
index 3 critical points as the locus where cos 6 < 0.

e The 2-sphere is tangent to v on the rest of M.

As can be seen, this embedding is smooth except along the following loci: It is C! on
the cos 8 = 0 circle in the boundary of the respective radius &, coordinate balls about
the index 0 and index 3 critical points of f. Itis only C° on the § = %9* circle in the
boundary of the respective radius §« coordinate balls about the index 0 and index 3
critical points.

The piecewise smooth embedding just described can be smoothed to any desired
accuracy so that the vector field % along the resulting 2—sphere is everywhere tangent,
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the vector field v along the 2—sphere is tangent everywhere on the f = % circle but
nowhere else, and so that the restriction of £ to this sphere has just two critical points
(both nondegenerate), these at the points with # =0 and 8 = & on the boundary of

the radius &4 coordinate balls about its respective index 0 and index 3 critical points.

Part 2 It proves useful for what follows to be somewhat more precise about the
smoothing of the surface from (9-2) near the f = % circle. To this end, introduce first
0« to denote %—si and p1x = P« + \/5(1 —cos(%G*)). Return to the f € [82, 3—82]
tubular neighborhood of y(?0) with the coordinates (z, (6, ¢)) as described above.
Replace the coordinate 6 on a neighborhood of the 6 = %9* locus by the function
b= ~/2(1 —cos0)/2. Fix &; € (0, c(jlsi) and use the coordinate p to define the
smoothing of the f € (3 — &1, 2 + &1) part of the surface defined by (9-2) to be the

locus where
(9-3) p=rpre—(p2—(1=3)")".

Note that the vector field v is tangent to the locus defined by (9-3) only along the ¢ = %
circle, and note that the corresponding lines are tangent from the inside. Introduce by
way of notation S to denote a smoothing as just described of the original piecewise
smooth embedding given by (9-2). (This is the sphere denoted by S, in [23], about
equation (6.2).)

Part 3 Use (x1, x2, x3) for the Euclidean coordinates on R3. The function f and the
R /(2mZ)—valued coordinate function ¢ can be used to embed a neighborhood of S
into R3 as the sphere of radius ps — %ei about the origin by taking x3 = f — % and
by setting the pair (x1,x2) to equal ((p2 — x%)l/2 cos ¢, (p2 — x%)l/2 sin¢). Note in
this regard that the values of x3 on the image of S range from —px to p« because the
values of f on S range from &2 to 3 —&2.

This embedding is extended to a neighborhood of S by exploiting the fact that the
} f— %} > %81 part of S has a neighborhood with the following property: Let p denote
a point in this neighborhood. Then p sits on an integral curve of v that intersects S,
and there is precisely one such intersection point with distance ¢, 18% or less from p.
Here, ¢, > 1 is a constant that depends on €. Such a neighborhood exists because v
is tangent to S only on the f = % circle in S. Let N denote this neighborhood. Given
p N1, let n(p) € S denote the unique point on the integral curve of v through p with

distance less than ¢, 18‘;’ from p. Associate to p the point in R3 with the coordinates

(9-4) x1(p) =x1(0(p)).  x2(p) =x2(n(p)). x3(p)=Ff(p)—3.
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To complete the definition of the embedding, suppose next that p is a point near the
fe (% -1, % + 81) part of S where the coordinates (¢, p, ¢) are defined. Associate
to p the point in R3 with the coordinates

x1(p) =1p(p) — p1x| cos ¢ (p),
(9-5) x2(p) = |p(p) — p1x| sing(p).
x3(p) =1(p)—3.
Note in particular that if p is also in N7, then it follows from the definition of the

function p and the definition of p; that the points given by (9-4) and (9-5) are the
same.

What is said at the end of the preceding paragraph has the following implication: the
map from N to R3 and the map described in the preceding paragraph together define
a smooth, ¢—equivariant embedding of a neighborhood of S into R3 that maps S to
the radius p« sphere and maps v to %.

Fix & > 0 so that the region in R® with (x? + x2 +x2)1/2 € (px — &, ps + &) is in
the image of the embedding of N;. By way of notation, N is used in the subsequent
discussion to denote both this region in R? and its inverse image in My . It is worth
keeping in mind for what follows that the points in the R3 incarnation of N; with
distance greater than p, from the origin are in the o component of ¥ — S.

By construction, the 1—form v, appears on the R3 version of N, as dx3. Meanwhile,

the 2—form w must appear here as K dx; Adx, with K being a strictly positive function

of xf + x%. This is because w is closed, it annihilates v and v appears on the R?
. a

version of N as T

Use p to denote the function (x% + x%)l/ 2 on R? and introduce the R /(27 Z)-valued
function ¢ by writing x; and x, as pcos¢ and psin¢. The observations from the
preceding paragraph, the fact that w is harmonic and the fact that its metric Hodge
dual is v, have the following implication: the metric from Mj appears on the R3
incarnation of Ay as

(9-6) g=K(h"?dp* + h*p?d¢?) + dx3
with /2 denoting a strictly positive function of p?.

Part 4 This part of the subsection says something of the topological significance
of S and Part 3’s embedding of S and its neighborhood A in R3. To set the stage,
recall that Yy was obtained from M by attaching the 1-handle #Hg. This was done
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by first deleting the radius 78, coordinate balls about the index 0 and index 3 critical
points of f to obtain a manifold with boundary. The resulting boundary spheres
were then glued to the ¥ = R +1In(78«) and u = —R —In(78+«) boundary spheres of
[—R —1In(784), R 4+ In(784)] x S2.

The sphere S enters a second description of Yy as the connected sum of M with
the manifold S! x S2. (See [23, (6.2)].) The connected sum description constructs
Yo by deleting the respective 3—balls from M and S' x S? and gluing the resulting
two boundary spheres to the boundary spheres of the product of an interval with S2.
Denote this product as / x S? with I C R being an interval. As explained below, the
surface S can be viewed as a cross-sectional sphere of I x S2.

To see directly this connected sum depiction of Yy, first view S and N, as subsets
in R3. Let r = (p? + x%)l/ 2 denote the radial coordinate on R3. The connected
sum picture of Yo results in an embedding of 7 x S? into R3 whose image is the
r € [px — g€ px + 1c¢] part of N,. This depiction of 7 x S? in Yo identifies the
r=ps+ %8 sphere in N with the boundary of the complement of a ball in S! x §2.
This missing ball can be identified with the r < px« + %8 part of R3. Indeed, the Yo
incarnation of the r = p« + %8 sphere in R3 splits Yy into two components. The
component that contains the r > psx + 1—168 part of NV is the complement of a ball in
S1x 82, and S! x §? is reconstituted in full when this complement is filled in by
adding the r < ps + %8 part of R3 to the r > py + %68 incarnation of A;.

The Yy incarnation of the r = ps — %8 sphere in R3 also separates Y, into two

components. The component that has the r < px — 1—165 part of A is the complement

of a ball in M. This ball is attached to give back M by viewing the complement of its

center point as the r > py — %8* part of R3. To see this, take a second copy of R3

and use 1’ to denote the distance to the origin in the latter. Use (0, ¢’) to denote

the associated spherical coordinates. The manifold M is obtained by attaching the
1

r< (,o>,< — %8)_1 ball in this second copy of R3 to the r = py — 1¢€ sphere in the

original copy of R3 via the identifications ¥ = r~! and (' =7 -0, ¢' = ).

Since S splits Yy into two parts, it likewise splits Y into two parts. The component of
Y« — S that contains y(%9) has its canonical identification with the y(?0) component of
Yo—S. The other component of Y, —.S is obtained from the complementary component
of Yo — S by attaching the p € A labeled 1-handles.

Both Yx — N and Yy — N, likewise have two components because N is a tubular
neighborhood of S. A given k € {0, ..., G} version of Y} is obtained from Yy by

Geometry € Topology, Volume 24 (2020)



3688 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

attaching k& 1-handles with attaching regions that are disjoint from the component of
Yo — N; that contains y(ZO). This understood, A, can be viewed as a subset of Y; and
Yr — Ne also has two components. By way of notation, the component of Y, — N
or any given k € {0,...,G} version of ¥; — A\ that contains y?0) is denoted in
what follows by ) and the other component is denoted by Yas (Vs has a natural
interpretation as a sutured manifold, which is denoted by M (1) in Remark 1.3).

Part 5 This part of the subsection introduces a family of distinguished metrics on
the k € {0, ..., G} version of Y that play central roles in the subsequent discussions.
Parts 6 and 8 say more about this set.

This distinguished set of metrics is parametrized by a parameter 7" which is in all cases
greater than 1. With T chosen, the corresponding set of metric is denoted in what
follows by Metr . The metrics from Met7 are constructed in a moment from the set of
metrics on Yy U N, that are given by (9-6) on N;. This set of metrics on Yy UN; is
denoted by Met" . Note with regards to (9-6) that its formula depicts a 1—parameter
family of metrics with the parameter being the length of the curve )/(ZO). The length
of y(%0) plays no role of significance. In any event, the length is assumed to be the
same for all metrics in Met" whether defined on ¥ oron a k € {0, ..., G} version
of Y.

The criteria for membership in Mety follow directly: All metrics in Mety agree on
Yo U Ng; the metric they define on this set is denoted in what follows by gr. The
metric g7 on ) is the metric from (3-6). Meanwhile, the metric g7 on A is defined
in the three steps that follow.

Step 1 Introduce y, to denote the function on R3 given by y(64e™!(r— psx) —1).
This function equals 1 where r < px« + éé‘ and equals 0 where r > p4 + 3—128. Fix
T > 1 and introduce r7 to denote (l —xr+ % )(,)r. The r derivative of rr is strictly
positive because that of y, is nonpositive. Set pr = rpsin6 and x37 = rrcosf.
Noting that dp7 and dx37 are linearly independent, the quadratic form

9-7) K(pr)(h~(pr) dp} + h(pr) 0 dp?) + dxy

defines a smooth metric on R3. The metric g7 on the r > py — %e part of Ny is given
by (9-7).

Step 2 The definition of g7 on the r € [p* — %8, Px — %e] part of A requires yet
another function of r. This one is defined by the rule 7+ y(4e~1(r—px) +2) and it is
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denoted by y,«. The function y,« is equal to 1 where r < psx — 8 and it is equal to 0
where r > py — 48. Set x374 to denote the function (1 X s + T X,*)X3. Introduce
by way of notation K7 and it to denote the functions K(p/T) and h(p/T). Noting
that dxq, dx, and dx37 are linearly independent, the quadratic form

1
(9-8) = — Ky (hp?dp?* + h%p* dp?) + 3 dx3T*
defines a smooth metric on the r € [p* 8 Px — ] part of Ne. The latter extends

the metric given in (9-7) because pr = T,o and x3T = Tx3 where p < px + 648.

Step 3 The definition of g7 on the r < px — % part of N\ requires one more function
of r. This one is denoted by ¥, and it is defined by the rule r— y(4¢~1(r—ps) +3).
This function is equal to 0 where r > py — %8 and it is equal to 1 where r < py — %8.
With this function in hand, define the function Ty to be T (1 — yy«x) + Yr+%. The
function T is equal to T where r > py — 18 and it is equal to 1 where r < py — 38.
The metric g7 is defined on the r < ps — —8 part of N to be the quadratic form

1 -2 2

This definition of gr smoothly extends the metric defined in (9-8). Moreover, the

(9-9)

metric g7 as just defined is the metric in (9-6) where r < px — %s.

Part 6 This part of the subsection and Part 8 point out some key properties of the
Metr metrics. This part focuses on the metric gr, this being the restriction of each
Met7 metric to Yo U N;. As explained in the subsequent two paragraphs, each 7' > 1
version of g7 on the complement in Yo U N, of the r < p, part of Ay can be viewed
as the pullback of a T —independent metric on S x S? by a T'—dependent embedding
of the y(?0) component of Yy — S or ¥ — S as the case may be. The embedding is
denoted by ®r7.

To define this 7 —independent metric on S xS2, view S!x S? as in Part 4. By way of a
reminder, this view comes with a distinguished ball with a distinguished diffeomorphism
onto the r < px + 1—168 ball in R? centered on the origin. There is in addition, a
distinguished identification between the complement of the concentric r < p4 ball in
S1x 82 and the union of Y and the r> px part of Ng. The latter identifies the metric
from Section 1 on Yy with a metric on S!x.S?2 whose restriction to the r < Px+ %8 ball
in the distinguished coordinate chart appears as K(0)(h~2(p)dp>+h?(p)p*d¢?)+dx3.
This is the desired T —independent metric on S! x S2. This S! x §2 metric is denoted

by g«.
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Fix T > 1. The promised embedding of the )y component of Yy — S into S! x §? is
defined as follows: This embedding agrees with the embedding from the preceding para-
graph on )y and on the r > ps + %8 part of NV;. Meanwhile, the promised embedding
on the r € (,o*, Px + %8) part of Az maps the latter onto the r € (T_lp*, Px + %8)
ball in the distinguished coordinate chart. The map here sends the point with spherical
coordinates (r, 6, ¢) to that with spherical coordinates (r7, 6, ¢).

Part 7 This part of the subsection describes a certain closed 2—form on a given
k €1{0,...,G} version of Y; with compact support in Vs and with the following
additional property: the de Rham class of this 2—form annihilates all but the H, (M ; Z)—
summand in the Mayer—Vietoris direct sum decomposition for H»(Y ; Z) in (IV.1-4) or
in the analogous direct sum decomposition for H,(Yy; Z). Meanwhile, it acts on the
H>(M; Z)-summand as cy(detS). A version of this 2—form is also defined on M. In
all cases, the 2—form is denoted by p. It is used in the upcoming Lemma 9.1 and in
later subsections. The construction of p follows directly.

View Mj as being a subset of each k € {0, ..., G} version of Y. As such, it sits in the
Y part of Yy . It follows from the description of H,(Y; Z) in Part 4 of Section IL.1C
that there exists a finite set of the form ® whose elements are pairs of the form (y,z,),
with y being a loop in a level set of Mg of the function f on M. Meanwhile, z, is an
integer. The loops from ® generate the image in any given k € {0, ..., G} version of
H{(Yy:Z)/Tors of Hi(M:Z)/Tors via the Mayer—Vietoris homomorphism for the
Y analog of the direct sum decomposition in (IV.1-4). Meanwhile, the paired integers
are such that Zye@ Zyy represents the image of the Poincaré dual of the restriction
of cy(detS) to the Hy(M ; Z)—summand in this same direct sum decomposition. Let
(¥,Zy) denote a pair from ®. The loop y has a tubular neighborhood in M which is
the image via an embedding of S' x D, where D C R? is a small radius disk about the
origin and where y corresponds to the image of S! x {0}. Use 7T, in what follows to
denote a tubular neighborhood of this sort. These are to be chosen so that the pairwise
distinct versions have disjoint closure that is disjoint from the boundary of the closure
of the My part of N.

Note that there exists such a tubular neighborhood with an embedding that has the
following property: the pullback of df via the embedding is a constant 1—form from
the D factor of S!x D and the kernel of the pullback via the embedding of the 2—form
w is a constant vector field that is tangent to this D factor. The existence of such an
embedding follows from two facts, the first being that y is in an f—level set. The
second fact follows from the definition in the first bullet of (IV.1-3) of w on 7, as
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the area form for the f—level sets. An embedding of this sort is used in Part 6 of the
upcoming Section 9.7.

Fix a compactly supported 2—form on D whose integral is equal to 1. View this
2—form first as an S!—independent form on S! x D and then as a 2—form on M and
on each k € {0, ..., G} version of Y} with compact support in 7, . Use p, to denote
the latter incarnation; then set p = Z(y,z,,)e@) Zy py . By construction, the de Rham
class of p agrees with c;(detS) on the H>(M ;Z)—summand of the Mayer—Vietoris
direct sum decomposition of H,(Y;Z) in (IV.1-4) or its analog for H,(Yy;Z) as the
case may be. The de Rham class of p also annihilates the H»(Ho; Z)—summand in
these direct sum decompositions. In the case of H»(Y;Z), the de Rham class of p
also annihilates the @pe A H2(Hp; Z)—summand in (IV.1-4).

Part 8 Fix k €{0,...,G}. Given T > 1 and a metric from Metr on Yy, the next
lemma uses wr to denote the associated harmonic 2—form on Y; whose de Rham
cohomology class is that of ¢ (detS).

Lemma 9.1 There exists k > 1 with the following significance: Fix a metric from
the Yy version of Metr so as to define wr. Let | p|l» denote the metric L?—norm
of p, and let w be the closed 2—form from (3-5). Then the L?—norm of wr is at most
k(1 + |pll2) and the C'—norm of wr —w on Yy and on the r > py + %8 part of Ny

is at most kT ~1/2,

Proof The proof has four steps.

Step 1 The L?-norm of w7 as defined by the metric from Metz on Yy is greater
than ¢y ! because the integral of wr over Ho must be greater than Co 1 50 as to have
integral 2 on each cross-sectional 2—sphere. As explained directly, the LZ—norm
of wr is also less than co(1 + ||p|l2). The proof that this is so uses the fact that
a given harmonic form minimizes the L2—norm amongst all closed forms in its de
Rham cohomology class. To obtain such a form, reintroduce the coordinates (¢, z)
for U, and let B denote a smooth function with compact support centered on the
origin in C and with integral 2. Choose a T —independent version of B so that its
incarnation as a function on U, has support in U, N#Ho. With B chosen, set pp to
denote %B dz AdzZ. This is a closed, compactly supported 2—form in )y whose de
Rham cohomology class when viewed in either H?(Y):Z) has pairing zero with all
but the H,(Ho; Z)—summand in the Y} version of (IV.1-4). By construction, the de
Rham cohomology class of ps = po + p is that of ¢;(detS). The metric L2-norm

of ps is less than co(1 + ||p[l2).
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Step 2 Use o to denote the function on y(ZO) ’s component of Yz — S that equals 1
on y0)°s component of Yy — A and is given near S by the function on the r > ps
part of R3 by the radial function r+— y(2 —128¢~1(r — px)). The function o is equal
to 1 where r > p« + 6L48 and it is equal to 0 where r < px + ﬁe.

Use er to denote the ®7! —pullback to S! x §2 of the 2—form owr . This 2—form
is supported on the complement in S! x S? of the r < 7 (o« + 7ag€) part of the
distinguished coordinate ball. It follows from what is said in Step 1 that the L?-norm
of ey is bounded from below by ¢ 1 and bounded from above by cg.

Use * to denote the g«—Hodge dual on S! x S?. Note that d ez and d *er are equal
to zero on the complement of the r < % (,o* + 61—48) part of the distinguished coordinate
chart. Meanwhile, the norms of both are bounded by cOTl(CD}I) * wr|g, on this same
ball. This observation, the fact that the g7 metric is the @7 —pullback of g, and the
fact that the g«—volume of the r < % (p* + &8) coordinate ball is bounded by co7 3

implies that the L'—norm of both d ez and d *er is bounded by co(1 + ||pll2)T~'/2.

Step 3 The 2—form w appears in the r > p4 part of the R> incarnation of N as
K(p)pdp A dp. The latter form extends smoothly to the r < ps part of R? as a
gx—harmonic 2—form. It follows as a consequence that w’s restriction to Yo and
to the r > px + %8 part of N is the pullback by all ®7 of the g«—harmonic 2—
form on S! x S? whose de Rham class has pairing equal to 2 with the generator of
H,(S' x $2;7). This corresponding form on S! x S2 is % sinf df A d¢ and also
denoted by w.

Step 4 Introduce the operator D, = *d + d* on S! x S? and use it to write the
2—form ey as (1 + 37)w + ur with 37 denoting a constant with norm bounded
by ¢oT 32 and with u7 denoting a 2—form which is L2—orthogonal to w and
such that Dur = Der. As the Green’s function kernel for 3 is smooth on the
complement of the diagonal in X5(S! x §2), the fact that Der has support where
r < (o« + &¢) and the co(1 + ||p|2)T /2 bound on its L'-norm implies that
lur|+ |Vur| <co(1+ ||p||2)T_1/2 on Yy and also on the r > px + %e part of V. O

9.2 Proof of Proposition 3.9
The three parts of this subsection prove the assertion made by Proposition 3.9.

Part 1 Let Yz denote a given compact, oriented 3—manifold and let Z denote a
nonzero class in H?(Yz;Z)/Tors. Hodge theory associates to each metric on Yz a
harmonic 2—form whose de Rham cohomology class is Z. Of specific interest in what
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follows are metrics whose associated harmonic 2—form has transverse zeros. There is
a residual set of metrics on Yz with this property; see for example [11] for a proof.

Fix k €{0,...,G}. Let g, denote a metric in the ¥} version of Met" . Fix 7' > 1 and
use gu to define a metric in Metr, this denoted by g;. Let wy denote the associated
harmonic 2—form with de Rham cohomology class cq(detS). If w; has degenerate
zeros, fix a second metric, g, on Y with the following properties: Let w, denote
the corresponding g, harmonic 2—form. Then w, has nondegenerate zeros, and the
g1—norms of wy, —w; and gz — g1 and those of their g;—covariant derivatives to
order 100 are less than 7. If w; has nondegenerate zeros, take g> = g .

Part2 Write w; on )y and on the r> px + %8 part of Nz as w+u,. By Lemma 9.1,
the 2—form is such that |uz| < coT~'/2. This 2—form is also exact; but, more to the

1/2 5n the

point, u, can be written as dz,, where z, is a 1-form with |z3| < coT ™
r> ps+ %8 part of A;. Hold on to z, for the moment. Let 0| denote the function
of r on N, given by 0 = (8 '(r— px) —5). This function is equal to 1 where
r<psx+ %8 and it is equal to O where > py + %8. Use w3 to denote the closed 2—form
on Y, that is given by wy on Yy, given by w on )y and given by w + d(0 z2)
on N;. The 2—form w3 has the same de Rham class as w,, the same zero locus as it
agrees with w, where both are zero, and |w2 — w3| < co T-1/2,

Use v, to denote the g«—Hodge dual on S! x S? of the 2—form w = sin 0 dO A d¢.
Write the g —Hodge star of wy as ve + ¢ on Vo and on the r > p4 + %8 part of Ng. As
both the g,—Hodge star of w, and v. are exact on N, it follows that ¢» = dox on N;.
Moreover, such a function o> can be found with |os| < coT~1/2 on the r> py + %s
part of N;. This is so because |w —ws| < coT ! and |g2 — g«| < coT ! on this part
of N.. Fix a version of o, that obeys this bound. Let v3 denote the closed 1-form
on Y, given by v, on )y, by the go—Hodge star of w, on Yy and given on N
by ve + d(01 02). This closed 1-form is such that w3 A vs > 0 when T > ¢¢ with
equality only at the zeros of ws.

With T > co chosen, the upcoming Lemma 9.2 uses what was just said about w3
and vs as input to supply a metric on Y, with the properties in the list that follows.
This new metric is denoted by g3r. The gsr—Hodge star sends w3 to vs3; thus w3
is gz —harmonic. The metric g37 on )y and on the r > p« + %8 part of N is the
metric g«. The metric g37 on the r € [px + %8, Px + %8] part of N can be written
as g» + b with h and its gp—covariant derivatives to order 20 having g, —norm less
than co7T~!. Finally, the metrics g3z and g, are identical except on the rest of Y.
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Any sufficiently large 7' version of the metric g3 meets the requirements of Proposition
3.9’s space Met. Conversely, each metric in Met is a sufficiently large T version of
a metric gs7 that is constructed as described above from some metric in Met" . The
lower bound on 7" depends on various properties of the chosen Met" metric, these
being an upper bound on the norm of the metric’s Riemann curvature, the metric volume
of Vs, and a lower bound on the metric’s injectivity radius.

Part 3 The existence of the metric g37 follows from the first lemma below:

Lemma 9.2 Let Yz denote an oriented 3—manifold and let g denote a given Rie-
mannian metric on Yz . Use % in what follows to denote the Hodge star defined by g¢.
Suppose that U and V are open sets in Yz with the closure of V being a compact
subset of U. Let w and v denote respectively a 2—form and a 1-form on Yz such
that o Av >0 on U and such that xw =v on Yz —V.

e There are smooth metrics on Yz which equal g on Yz — U and have Hodge
star sending w to v. Moreover, there exists metric of this sort whose volume
3—form is the same as the g—volume 3 —form.

e Fixke{0,1,...} and D> 1. There exists k > 1 with the following significance:
Suppose that the C k _norms on U of w and v and the Riemann curvature tensor
of g are less than D. Then Yz has a metric that obeys the conclusions of the first
bullet and differs from g by a tensor whose g—norm and those of its g—covariant
derivatives to order k are bounded by k times the C k _norm of xw —v.

Lemma 9.2 has a generalization that holds for 1—parameter families of data sets. This
parametrized version is given below but used in the next subsection.

Lemma 9.3 Let {(g:, W, Vr)}re[o,1] denote a smoothly parametrized family of met-
rics, 2—tforms and 1—forms on Yz with w; Av; >0 on U and such that the g, —Hodge
dual of wy is vy on Yz — V. There is a corresponding smooth, 1-parameter family
of metrics such that each t € [0, 1] member obeys the conclusion of the first bullet of
Lemma 9.2. Moreover, this new family of metrics can be chosen to obey the properties
listed below:

e Let I C[0,1] denote an open neighborhood of one or both of the endpoints.
Suppose that the conclusions of the first bullet of Lemma 9.2 hold for (g, @, Ur)
when t € I. There is a neighborhood 1’ C I of the endpoints such each T € I’
member of the new family is the corresponding g .
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e Given a nonnegative integer k and D > 1, there exists k > 1 with the following
significance: Suppose that the conditions of the second bullet of Lemma 9.2
are satisfied for each t € [0, 1] and that the C k _norms of the T —derivatives to
order k of {(g¢,wr, Ur)}re[o,1] are also bounded by D. There is a 1—parameter
family of metrics that obeys the preceding bullet and the first and second bullets
of Lemma 9.2. In addition, each t € [0, 1] member of the family differs from
the corresponding metric g, by a tensor whose t—derivatives to order k have
C* —norm bounded by k times the C k _norm of the sum of the t—derivatives to
order k of the difference between v, and the g, —Hodge star of w-.

Proof of Lemmas 9.2 and 9.3 Let Q2 denote g’s volume 3—form. Write w A v as
q$2 with q being a nonnegative function on U. Let v denote the vector field on U that
is annihilated by @ and has pairing q with v. Let Ker(v) C TU denote the 2—plane
bundle that is annihilated by v. The 2—form w is symplectic on Ker(v) and so orients
Ker(v). Choose an w—compatible almost complex structure on Ker(v), denoted by
J below. Note in this regard that there are no obstructions to finding such an almost
complex structure. This is so because the space of almost complex structures that are
compatible with a constant symplectic form on R? is contractible. The construction
just given yields a new metric with volume 3—form 2.

With J chosen, a metric on U is defined as follows: The vector field v has norm q'/2
and is orthogonal to Ker(v). The inner product between vectors v and v’ in a given
fiber of Ker(v) is q~"/2w(v, Jv'). A metric of this sort has @ = v and is such that

both w and v have norm q'/2

. Moreover, any metric with these two properties is of
the form just described. In particular, any two differ only with respect to the choice of

the almost complex structure on the Ker(v).

Let J; denote a chosen, w—compatible almost complex structure on Ker(v)|y and let
g1 denote the corresponding metric. The metric g on U — V' is by necessity of the sort
just described, thus it differs from g; only on Ker(v). In particular, the metric g on

Ker(v) is given by q~1/2

w(v, Jgv') with Jg being an w—compatible almost complex
structure on Ker(v)|y—_y. As noted above, if point p € U, then the space of w|,—
compatible almost complex structures on Ker(v)|, is contractible. This understood,
there are no obstructions to choosing an w—compatible almost complex structure on
Ker(v)|y that agrees with Jg near Yz — U and agrees with J; on V. Let J, denote
an almost complex structure of this sort. The metric defined as instructed above by J»

has the properties that are asserted by the first bullet of Lemma 9.2.
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The assertions of the second bullet of Lemma 9.2 and those of Lemma 9.3 are proved
by taking care with the choice of J, and its 7 € [0, 1] counterparts. As the details are
straightforward and rather tedious, they are omitted. |

9.3 Metr metrics on cobordisms

Lemma 9.1 has an analog given below that concerns self-dual forms on cobordisms.
The cobordism manifold is denoted below by X and it is assumed to be of the sort that
is described in Section 3.3 with its constant s slices where s < —1 and s > 1 given as
follows: Either one is Y and the other is Y, or one is some k € {1, ..., G} version
of Y and the other is Y;_; U (S' x S?), or one is Yy and the otheris M LIS x S2.
The case when both are Y or both some k € {1, ..., G} version of Y} is also allowed,
but only the case where both are Y; are needed in what is to come. The topology
of X is further constrained by the requirement that s have 1 critical point when it is
not diffeomorphic to a product with R. If one of these slices is Y and the other Y,
or if both are Y or both Y} for k € {1, ..., G}, then s has no critical points and the
cobordism manifold X is R x Y or R x Y} as the case may be, with the projection
to R given by the function s.

One more constraint on X is needed. By way of background, what is said in Part 4
of Section 9.1 identifies Yo U A, as a subset of ¥ and Y, and also S! x S2. This
extra constraints uses )oe to denote the union of )y and the r > px + %88 part of Ng.
Here is the extra constraint:

(9-10) There is a distinguished embedding of R x )y, into X with the following
property: the respective s < 0 and s > 0 slices of the image of this embedding,
when written using the diffeomorphisms from the second and third bullets
of (2-8), appear as the incarnation of )y, in either Y, ¥ or S 1 % 82 as the
case may be.

The metric for X is assumed to obey a constraint that requires membership in an
analog for X of the various 7" > 1 versions of the space Mety. The definition of
this X version of Metr requires the a priori selection of metrics g— and g from the
respective Y_ and Y4 versions of Metr with it understood that Metr in the case of
M L (S x §?) is the space consisting of the metric g« on S! x S? and a metric on M
of the following sort: If ¢1(detS) is torsion on M, then any metric on M is allowed.
If this class is not torsion, then the metric’s associated harmonic 2—form with de Rham
coholomogy class ¢ (det(S|ps)) has nondegenerate zeros. Meanwhile, Metr for any
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given k € {1,...,G} version of Y} LI (S! x S?) consists of a Mety metric for Yj;_;
and any metric for S x §2. Reintroduce from Part 5 of Section 9.1 the metric g7 on
Yo U Ne. Of immediate interest in what follows is g7 ’s restriction to )os. By way
of a reminder, g7 on ). is the metric g« on )y and it is the metric in (9-7) on the
r> px+ 1;—88 part of A;.

The analog of Mety for X consists of the space of metrics with the following three
properties:
(9-11) o The metric obeys the L = 100 version of (2-9).

¢ The metric pulls back via the embedding in (9-10) as the metric ds? + [sGa

¢ The metric pulls back from the s < —104 part of X via the embedding in
the second bullet of (3-10) as ds? +g_, and it pulls back from the s > 104
part of X via the embedding from the third bullet of (2-8) as ds? + g .

This analog for X of Metr is denoted in what follows by Metr also, its dependence
on g— and g4 being implicit.

Lemma 9.4 given in a moment supplies the promised analog to Lemma 9.1. To set the
notation, suppose that a metric on X has been specified and that py is a differential
form on X. The lemma uses (px)> to denote the L?—norm of py over the |s| < 104
part of X. Lemma 9.4 uses w_ and w4 to denote the respective g— and g4+ harmonic
2-forms with de Rham cohomology class that of ¢y (detS); and it uses the embeddings
from the second and third bullets of (2-8) to view w— and w4 as 2—forms on the
s <—1 and s > 1 parts of X.

Lemma 9.4 Let X denote a cobordism manifold of the sort described above. Given
metrics g— and g4 in the respective Y_ and Y, versions of Metr, there exists k > 1
with the following significance: Fix T > 1, and fix a Riemannian metric on X from the
corresponding set Metr . There is a self-dual, harmonic 2—form on X whose pullback
to the constant s slices of X converges as s — —o0 to w— and as s — o0 to w4 . Let
px denote a closed 2—form on X that equals w— where s < —102, that equals w4
where s > 102, and with de Rham cohomology class that of c¢1(detS).

o The L?-norm of this harmonic self-dual 2—form on the s—inverse image of any
length 1 interval in R is bounded by «(px )2 .

e The pullback of this harmonic self-dual 2—form to the constant s > 1 and s < —1
slices differs in the C ! —topology from w— and w4 by at most K(px)2€_|s|/z
with z > 1 depending on the corresponding limit metric.
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e The pullback of this harmonic self-dual 2—form to R x Yy, via the embedding
from (9-10) differs from ds A ve + w by a 2—form whose C I _norm on R x Yy
and on the r > py + %8 part of R x N is less than K(pX)zT_l/Z.

Proof The existence of a closed, self-dual harmonic 2—form with the desired s — —o0

and s — oo limits follows from the index theorem in [1]. This 2—form is denoted in

what follows by w. Given the first bullet, then the assertion in the second bullet follows
from the eigenfunction expansion that is depicted below in (9-13). As explained next,
the third bullet also follows from the second bullet.

To prove the third bullet, fix so C R and introduce og to denote the function on R
given by the rule s — y(|s —so| — 1). This function equals 1 where |s — s¢| is less
than 1 and it equals zero where |s — s¢| is greater than 2. Let o denote the function
from Step 2 of the proof of Lemma 9.1 and let &7 denote the embedding from Part 5
of Section 9.1. View the CD;l pullback of opow as a 2—form on R x (S x $2) with
support where |s —sg| < 2. The assumed L?—bound for @ with a Green’s function
argument much like that used in Step 4 of the proof of Lemma 9.1 can be used to derive
the pointwise bound that is asserted by Lemma 9.4. The derivation differs little from
that in Step 4 of the proof of Lemma 9.1 save for the fact that the Green’s function in
question is that for the elliptic operator

(9-12) D: C®Rx(S'xS?); ATOR) - CP(Rx (S x S2); T*R x (S x §2)))

given by the formula D = xyxdy + dx, where dy denotes the 4—dimensional exterior
derivative ds A %( -)+d and where xy denotes the Hodge star for the metric ds?+ g«.

The lemma’s first bullet is proved in the four steps that follow.

Step 1 Let w denote the relevant closed, self-dual harmonic form. Fix an integer
n € {106,107, ...} and introduce by way of notation /,, C R to denote a closed interval
of length 2n whose endpoints have distance 106 or more from the origin. Let C
denote the space of closed 2—forms on the domain s~!(7,,) that agree with @ on some
neighborhood of the s—inverse images of the boundary points of 7,,. The 2—form w is
the minimizer in C of the functional that is defined by the rule tv — fs_l (1) lrot|2.

Step 2 Use the embedding from the second bullet of (2-8) to write the s > 100 part
of X as [100, co) x Y4 and likewise write the s < —100 part of X as (—oo, —100]x Y_.
Let Y, for the moment denote either Y4 or Y_. Let % denote either the g— or g+
version of the Hodge star on Y. . The corresponding operator d * defines an unbounded,
self-adjoint operator on the space of closed 2—forms on Y. Let £~ denote an L?—
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orthonormal basis of eigenvectors of d* on the space of closed 2—forms with negative
eigenvalue and let £ denote an L2—orthonormal basis of eigenvectors of d* with
positive eigenvalue. The eigenvalue of d* on a given eigenvector, a, is denoted by A,.

The 2—form w on (—oo, —1] x Y_ and on [1, 00) X Y4 can be written as

9-13) = dsA¥W_+W_+Y cmt Ze? 6TV (ds A xa+a) where s < —104,
o =dsA*xwy+wWi+) - Z,e*06~D(dsaxa+a) where s > 104.

What is denoted by Z(.) in (9-13) is a real number. Keep in mind for what follows
that any given version of et (ds A a4+ a) is the exterior derivative on its domain of

definition of the 1—form g, = A7 e xa.

Step 3 Fix m > 1. Let a denote an eigenvector in the Y_ version of E T . Introduce o,
to denote the function on R given by the rule s > 0,(s) = 1 — y(—m A, (s +102)—1).
This function equals 0 where s >—102—mA; ! and itequals 1 where s <—102—2mA L.
If a is in the Y version of &7, then o, is given by the rule

s> 0a(s) =1 — y(—m A (s — 102) — 1).

This version of o, is 0 where s < 1024m|A,|~! anditis 1 where |s| > 10242m|A,|7L.
Meanwhile, use y« to denote the function y(102 — |s|). This function is 1 where
|s| > 102 and 0 where |s| < 101.

Use px and these functions to define the 2—form tv on X by the rule
(9-14) w = y«ds A*xpxy +px + Z Za d(aakgleka(s"'loz) *a)
=lchs
i< + Z Zad(aa)\a_le’l“(s_loz) *a).
a€E—
This is a closed 2—form whose de Rham cohomology class is the same as w. Let E
denote the smallest of the numbers from the set {1, |[a€ ET}U{|A,||ac B~} with it

understood that 21 refers to the Y_ version and E~ refers to the Y version. The
2—form tv equals @ where |s| > 1 +2mE™!,

Step 4 The square of the L?—norm of to over the |s| < 102+ 2mE™! part of X is
no greater than

(9-15) / lpx |2
s—1([—102,102])

Feom™2e™m Y ANzl A (o + s 1)
a€BTUE—

LD D A e G

a€BTUE—
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Meanwhile, the integral of @ over this same part of X is equal to

(9-16) / ]2
s—1([—102,102])

+ Y Pl TNz —e ™)+ dmET (-3 + [w113)
a€ETUE—
+ Z Mal_l |Za|2(e—2m _ e—4|ka|m/E).
a€ETUE—
As noted in Step 1, the expression in (9-16) cannot be greater than what is written
in (9-15). This being the case, the m > ¢ versions of (9-15) and (9-16) imply the
bound

o 0+ D Al = ol + ().
s=1([-102,102]) A€ETUE~

This last bound has the following corollary: let / C R denote any interval of length 1.

Then [i-1 7 lo|* < co(1+ (px)3). O

9.4 Proof of Proposition 3.11

To explain the first bullet, identify a neighborhood of the critical point of the function s
with a ball about the origin in R* using coordinates (y1, y2, y3, y4) and write s in
terms of these coordinates as s = yf - y% - y% — y% when the constant s < —1 slices
of X are Yy and the constant s > 1 slices are M L (S' x $?). With the ends reversed,
the function s appears as s = — yf + y% + y% + y%. The embeddings given in the
second and third bullets of (2-8) are defined using a pseudogradient vector field for s.
This pseudogradient vector field in the Y_ = Yy and Y4 = M L (S! x S?) case can
be chosen so as to have the following properties: The inverse image of the descending
3-ball from the critical point via the embedding given by the second bullet of (2-8)
appears as the locus (—o00,0) x S with S being the 2—sphere that is described in
Part 4 of Section 9.1. Meanwhile, the inverse image via the embedding given by the
third bullet of (2-8) of one of the ascending arcs from this critical point intersects the
(0, 00) x (S x §2) component of (0, 00) x (M U (S x §2)) as the locus (0, 00) X p«
with ps € S! x S2? being the r = 0 point in the ball that is described in the third
paragraph of Part 4 in Section 9.1. The other ascending arc intersects the (0, c0) x M
component as the ¥ = 0 point in the ball that is described in the fourth paragraph of
Section 9.1. There is a completely analogous picture of X when Yy is the constant
s > 0 slice of X and S' x S? is the constant s < 0 slice.
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What is said above about the descending and ascending submanifolds from the critical
point has the following consequence: the pseudogradient vector field that defines the
embeddings from the second and third bullets of (2-8) can be chosen so that (3-11) are
obeyed and likewise the condition in (9-10). These properties are assumed in what
follows. The fact that S carries no homology implies that the fourth bullet of (2-8)
holds for X.

Parts 1-10 of this subsection construct large L versions of the form wy and the
metric that are used in Part 11 to satisfy the requirements of the second bullet of
Proposition 3.11. These constructions require the choice of parameters 7> 1, Lo > 1
and L; > Lo + 1. Granted these large choices, Parts 1-10 construct a closed 2—
form denoted by w74« and a metric denoted by mr. that makes wrx self-dual. Any
L > Ly + 20 version of wr, can serve for Proposition 3.11’s desired 2—form wy and
the corresponding version of mr, can serve for the desired metric.

Proposition 3.11 requires as input a metric on M LI (S! x §2) and asserts that such a
metric determines a certain subset of the set Met on Y. To say more about this subset,
recall from Part 2 of Section 9.2 that each metric in Mer is determined in part by a
metric from Section 9.1’s set Met" and a large choice for a number denoted by 7. A
metric of this sort was denoted by gs7 in Section 9.2. As noted at the end of Part 2
of Section 9.2, a lower bound on 7 is determined by certain properties of the metric
from Met" . A metric of this sort is in Proposition 3.11°s subset if and only if 7 is
greater than a new lower bound that is determined by the aforementioned properties of
the Met" metric. Suffice it to say for the purposes of the proof that this new lower
bound is defined implicitly by the constructions in the subsequent eleven parts of this
subsection.

The upcoming Parts 1-10 are written so as to simultaneously supply a metric and a
closed, self-dual 2—form for Section 9.5’s proof of Proposition 3.13 and Section 9.7’s
proof of Proposition 3.14. This is done by considering a cobordism space X as
described in the previous section whose limit manifolds Y_ and Yy are as follows:
Either one is Yo and the otheris M L (S!x S?), or one is some k € {1, ..., G} version
of Y; and the other is Yz_; U (S! x $2), or both are Y. Although not needed for
what follows, the constructions in Parts 1-10 can be done when both limit manifolds
are Y or both are some k € {1, ..., G} version of Yj.

Part 1 When Y_ or Yy isnot M LI (S! x S2), choose metrics, gi_ and gi4 in the
respective Y_ and Y4 versions of MetV as the case may be. In the case when one of
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Y_ or Yy is some k € {1,...,G} version of Y; and the other is Yz_; L (S! x S?),
what is denoted by Met" allows any metric for the S! x §2 component. Fixa 7 > 1;
in particular so that Lemma 9.1 can be invoked for the metric in Metr defined using
g1— in the case of Y_ and g4 in the case of Y. Use g;— to choose a metric g,
as directed in Part 2 of Section 9.2 on Y_. Then set g— = g». Meanwhile, use g, to
construct a version of the metric g37 and denote it by g_7. Do the same using g;+;
denote the chosen g, metric on Y4 by g4+ and use g7 to denote the resulting g7
metric. If either of Y_ or Y is M U (S! x §2), take the metric of the sort described
in Part 1 of Section 3.5 for M and the metric g« on S' x S2. Denote the resulting
metric on M LI (S! x §?) as g_ in the Y_ case and gy in the Y4 case. With T > 1
chosen, this same metric is also denoted at times by g_7 and g47 as the case may be.

By way of notation, the constant co in what follows depends implicitly on the various
properties of the metrics g;— and g;+. In particular, co depends on an upper bound
for the norm of the metric’s curvature, upper and lower bounds on the metric’s volume
and a lower bound on the injectivity radius.

Let m denote a chosen metric in the g— and g4 version of Metr on X. Certain
constraints on m are imposed later in this subsection. Note that some of the latter
impose constraints on g;— and g .

Part2 Use w—_ and w4+ to denote the respective g— and g4+ harmonic 2—forms on
Y_ and Y4 with de Rham cohomology class that of c¢j(detS). Fix for the moment a
closed 2—form pxy on X as described in Lemma 9.4. Use w to denote the self-dual
2—form on X given by Lemma 9.4 for the case when the metric on X is m. The
distinguished embedding from (9-11) pulls w back to R x Y. as a 2—form that can
be written as

(9-18) w:dsAv<>+w+ds/\%g+dq,

with ¢ being an s—dependent 1—form on )p.. Lemma 9.4 says that the C!-norms
of 3%‘1 and dg on R x )y and on the r > ps + %8 part of R x N, are less than

co(px)2T~V2.

An s— and T —-independent open cover of Y. by balls of radius ¢, e can be used
to write ¢ on ) and on the r > px + %8 part of N; as qo + dk with go obeying
|q0] <colpx)2T~1/? and ‘%90} <co(px)2 T~V
with |d(K)| < co (pX)zT_l/z. Both go and K can be constructed so as to depend
smoothly on s. It follows as a consequence of the bound ‘d (% &)! <co(px) 2T_1/ 2

. Meanwhile, £ is a smooth function
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that an s—dependent constant can be added to £ so that the resulting function, Ko,
depends smoothly on s and obeys ‘%kg{ < co(px)zT_l/z.

Reintroduce o from Part 2 of Section 9.2. The 2—form w + d (o1 q0) is equal to w
on R x )y on the r> py + %s part of R x ;. Meanwhile, it is equal to w + dg on
the r < px + %8 part of R x ;. Moreover, the norm of the difference between this
2—form and w on the r> ps + %8 part of N is bounded by co(px)2T /2, this being
a consequence of the bounds in the preceding paragraph for ¢p.

Of interest in what follows is the 2—form on R x )y, given by

S I
(9-19) ds A6+ w+d(oLgy) with b= U<>+0J_8Sgo+d((u_asko).

This is a closed 2—form on R x Yy, which is ds A xw + w on R x )y and on the
r> px + %8 part of R x ;. The bounds given above on the norms of Ko, its s—
derivative, and on the norms of ¢, dgo and a%qo imply the following: there exists
¢o > 1 such that each s € R version of the 3—form 6 A (w+d (0 qp)) is strictly positive
on Voe if

(9-20) (px)2 T~ V2 <5t

Assume in what follows that this bound holds. Granted (9-20), then Lemma 9.3 supplies
a smooth, s—dependent metric on )y, with the properties listed below; the notation
uses gx to denote the metric at any given s € R:

(9-21) e The Hodge star of gx sends w + d(ogp) to b.
e The metric gx is g« on R x )y and on the r > ps« + %8 part of R x Ng.
e The metric gy is the metric in (9-7) on the r < p« + %8 part of R x Ng.

e Given k € {1,2,...}, there exists ¢y > 1 such that the s < —104 and
s > 104 versions of gy and their derivatives to order £ > 1 differ by at
most cxe~151/¢0 from the metric g_7 on Y_ incarnation of N or g7 on
the Y4 incarnation as the case may be.

By way of an explanation for the fourth bullet, this follows from (9-19) and the third
bullet of Lemma 9.4 given the following fact: the derivatives to order k of any given
coclosed eigenvector of *d on Y_ or Y4 with L?—norm 1 is bounded by a polynomial
function of the norm of the eigenvalue with coefficients that are determined solely by
the given metric.
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Part 3 Let m7 denote the metric on X that is equal to m on the complement of the
image of (9-10)’s embedding and whose pullback to R x )y, via this embedding is the
metric ds? + gx . This is a smooth metric on X whose pullback by the embeddings
from the second and third bullets of (2-8) converge as s — —oo to the metric d s2+g_r
and converge as s — 0o to the metric ds?+ g 7. These pullbacks are also independent
of s for |s| > 104 at points of the form (s, p) if p is in either )y, the r > psx + %s
part of Ng or Vyr.

Let w7 denote the closed 2—form on X given by @ on the complement of the image
of (9-10)’s embedding and whose pullback to R x ). via this embedding is the
2—form in (9-19). The 2—form w7 is closed. This 2—form is also self-dual when
self-duality is defined by the metric m7, this being a consequence of the first bullet
in (9-21). Let w_r and w47 denote the g_7 and g4+7 harmonic 2—forms with de
Rham cohomology class that of ci(detS). Use * in what follows to denote either
the g_7— or gy7—Hodge dual. The pullbacks of w7 via the embedding from the
second bullet of (2-8) differs from ds A xw_7 4+ w_r in the C!—topology by at most
cre B8Ver with ep > 1 being a constant. The pullback via the embedding from the
third bullet of (2-8) differs from ds A w1 4+ w47 in the C ! —topology by at most ¢ .
By way of an explanation, these bounds follow from the second and third bullet of
Lemma 9.4. Keep in mind that w7 obeys the second and third bullets of (2-8).

Neither wr nor m7 is likely to be s—independent where |s| is sufficiently large. This
is a defect that is remedied in Parts 4-7 below.

Part 4 Both w_7 and w47 have nondegenerate zeros on the components of Y_
and Y4 where they are not identically zero, these being the components where ¢ (det S)
is not torsion. Let Y4« C Y_ denote such a component and let p € Y, denote a zero
of w_r. Let B C Y« denote a small radius ball centered on p with the following
properties: the point p is the only zero of w_r in the closure of B; and B is disjoint
from )y and from the r > p, + %8 part of A;. Since w_r vanishes transversely at p,
there exists Lo > 1 such that each s < —L¢ version of w_r + dg vanishes transversely
in the closure of B at a single point. Let ps denote this point. Note in particular
that dist(p, ps) < c_e~ 51/~ Granted that dist(p, ps) < 1 for s <« —1, there exists
so > 1 such that dist(p, ps) is less than % times the radius of B when s < —sg. This
being the case, there exists Lo > sg, c— > 1 and a family of diffeomorphisms of Y.
parametrized by (—oo, —Lg] with the properties in the list that follows. The list uses
W to denote the diffeomorphism labeled by a given s € (—oo, —Lo].

(9-22) o If s >—Lo—1, then Wy is the identity map.
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e Every s € (—o0, —Lg] version of ¥ is the identity where dist(-, p) >
2dist(p, ps)-

e Every s € (—00, —Lg] version of Wy differs from the identity in the C 10—
topology by at most e~1sl/¢.

e Wi(p)=ps when s <—Lo—2.

This family of diffeomorphisms defines a diffeomorphism of X which is the identity
onthe s > —Lo—1 part of X, and on the image in X of (—oo, —Lg] x (Y= —Yx) via
the diffeomorphism in the second bullet of (2-8). This diffeomorphism is defined on the
image of (—oo, —Lg] x Yy via the second bullet of (2-8) by that of (—co, —Lg] X Y«
that sends a given point (s,g) to (s, ¥5(q)). Use ¥, to denote this diffeomorphism
of X. Various versions of this diffeomorphism are defined by the zeros of w_7 on the
components of Y_ where c;(detS) is not torsion. These diffeomorphisms pairwise
commute. Use W to denote their composition.

Introduce mpq to denote ¥*my and wrq to denote W*wr. The 2—form wrq is
closed and it is self-dual if the notion of self-duality is defined using mzqo. The form
wTo can be written on (—oo, —Lg] X Y as ds A (xw— + n) + (w—7 + m), where n
and m have C—norm less than c_e~ 151/~ and both vanish on (—oco, —1] x Vo and on
the r > py« + %8 part of (—oo, —1] x N;. By way of notation, c— denotes here and in
what follows a constant that is greater than 1. Its value can increase between successive
appearances. Note that the fact that wrg is closed requires that dn equals %m.

The pullback of w_7 + m to each constant s slice of (—oo, —1] x Y, defines the same
cohomology class as w_7. This implies in particular that m = du with u being an
s—dependent 1—form on Y.. Any s—dependent, closed 1-form can be added to u
without changing du, and this fact is used to choose # so that the conditions that follow
hold:

(9-23) e The 1-form u is zero on )y and on the r > p4 + %8 part of Ng.
e The C2—norm of u is less than c_e18/c—

e Let p denote a zero of w_r in (—o0, —Lg] X Y«. Then |u| and the norm
of u’s covariant derivative along % atany s € (—oo, —Lg] x Y% is bounded
by c_ dist(-, p)2e~Isl/e—

To explain how the third bullet can be satisfied, let p again denote a zero of w_7. Use
the metric g_r to construct a Gaussian coordinate chart centered at p so as to identify
B with a small radius ball in R3. The corresponding coordinate map to R3 is denoted
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by x or (x1, x2, x3). Write the 2—form w7 as ds A (xw—7 + n) + (w—g + m). The
2—form m appears in these coordinates as

(9-24) m= 30" x' /"M dx" dx™ +--- |

where the summation convention over repeated indices is used. The unwritten terms
in (9-24) are O(|x|?). What is denoted by {&/"™}1 < n.m<3 is antisymmetric with

respect to interchanging indices and so defined by the rule £!?3

= 1. Meanwhile,
{oij }i,j=1,2,3 are the entries of a traceless, s—dependent matrix whose norm and that
of its s—derivative are at most c_e51/¢1_ The matrix is traceless because  is closed.
The fact that this matrix o is traceless implies that m on B can be written as dup
with up = %oijxixnej"mdxm + .-+, where the unwritten terms are O(|x|?). Since
u—up = dp on B, it follows that u can be modified with no change near the boundary

of B sothat u# = up on a small radius ball in B centered at p.

Part5 Fix Ly > Lo+ 1 and let y; denote the function on R given by y(—Li —s).
This function equals zero where s < —L; — 1 and it equals 1 when s > —L;. Use )(/1
to denote the derivative of y;. The function y; and the 2—form w7 are used next to
define the 2—form on (—oo, —Lg] X Y« to be denoted by w7y . This 2—form is w7 on
the s > — L part of (—o0, —Lg] X Yx, and it is given where s < —L1 by the formula
that follows for its pullback via the embedding from (2-8)’s second bullet:

(9-25) o1 =ds A (kw_r + y1n+ yju) +w_r + x1du.

The 2—form w7 is a closed 2—form on (—oo, —Lg] X Y«. The remainder of this part
of the subsection and Part 6 describe a metric on the s € (—o0, — L] X Y that makes
w1 self-dual. This new metric is equal to m7g where s > —L; + 1 and it is equal to
ds? 4+ g_r where s < —L1 —2. This new metric is denoted below by m7;. The five
steps that follow describe the metric m7; at points in (—oco, —Lg] X Y« that project
to Y4« near the zero locus of w_7.

Step 1 The 2—form w_7 and the 1-form *xw_7 on B can be written using the
Gaussian coordinates (x1, X2, x3) on B as
(9-26) w_ = %Aijxisj”mdx” dx™ 4.~ and sw_p=AYxIdx/ +-..

with summations over repeated indices implicit. The various i, j € {1, 2, 3} versions of
A" in (9-26) are the entries of an invertible matrix, this denoted by A. The unwritten
terms in (9-26) vanish to order |x|?. The fact that w_r is closed implies that A is
traceless and the fact that «w_7 is self-dual implies that A is symmetric.
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The unwritten terms in (9-26) are incorporated using the notation whereby w_7 and
xw_7 on (—oo, —Lg] X B are written as

(9-27) ds A (fiel + f28% + f383) + fie? ne3 + fre3 nel + fzel ne?,

where {@k}15k53 denotes a g_7 —orthonormal set for 7* B with é¥ = dxk + O(|x|?)
for 1 <k <3 and where { f }1 <k <3 are functions with fx =), _; 3 AR X+ O(1x]?)
for 1 <k < 3. Note in particular that these are such that df; Ad f;/\_ dfs > % detA ona
concentric ball in B centered at the origin. This ball is denoted by B’. It is assumed in
what follows that L is chosen so that w79 = wr on the complement of a concentric
ball in B’ with radius one-fourth that of B’. In particular, it is assumed that (9-22)’s
diffeomorphism Wy is the identity for all s on a neighborhood in B of B — B’.

Step 2 The W—pullback of {ds,eé!,e2,&3} is my—orthonormal. The W—pullback
of ds is ds. Meanwhile, W can be chosen so that

(9-28) wrek =k Y pras+ > pMel,
1<k<3 1<j=<3

where D 1 ;<3 |p¥| < c_e™sV/e= and D i<k, j<3 Ipk7| < c_|x|e Ve~ when s <
—Lo — 1. This is done by defining (9-22)’s diffeomorphism Wy using the Gaussian
coordinates in (9-25) by the rule x — W (x) = x + p; at points (s, x) with |x| < %|ps|
and s < —Lg—1. Use {55}151{53 to denote {‘Ij*é\k}lfkf:;. Granted this notation, the
2—form w7, near p can be written as

(9-29) wrg =ds A(fs, 85 + f5,85 + f53€3) + [fs183 A&+ f5,8] N&5 + f385 NES
where {fsk = ‘D;fk}lgkgy

Step 3 Introduce {efx =+ x0 di<j<3 pk/ @7} <j<3. Use this s—dependent basis
to write the (9-25)’s 2—form w_7 + y1 du on B’ as

(9-30) w_r + y1du= fsxleszx A e?x + fsxzefx A eslx + st3€slx A eSZX,

where { fs, k}1<k<3 are smoothly varying functions of s and the coordinate x with
the property that f; (.) = f(.) when s < —L;—1and f; .) = fy.) when s > —Lj.
This depiction can be derived from the fact that { f3 };<x<3 generate C°°(B’). Note
that fs x = fi +--- with the unwritten terms such that their norms are bounded by
c_e~Isl/e~| x| and such that their first derivatives have norms bounded by ¢_e~Is!/¢~
This implies in particular that the functions { f; x }1<k<3 also generate C*°(B’) and
that dfs,1 Adfs,2 Adfs,3 > detA on B’ when Lo > c_.
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The 1-form *w_r + yon + ygu can be written schematically on (—oo, —Lg] x B’
using the basis {efx}lfksg, as

(9-31) «W_r + gon+ xou= Y fokCriek,.

1<k,i<3
with {Ck; }1<i k<3 denoting a matrix of smooth functions of s and the coordinate x.
Given that the functions { f k }1<k<3 also generate C°°(B’), such a depiction follows
because both n and » vanish at p. Keep in mind for what follows that the matrix with
coefficients {Cg; }1<; k<3 differs from the identity matrix by at most c_eIsl/e—,

Step 4 A particular set of three smooth functions of s € (—oo, —L¢] and the coordinate
x is specified in a moment. Let {qk}15k53 denote any given set of such functions.
Use this set to define 1-forms {éfx}15k53 on (—oo, —Lg] x B’ by the rule

(9-32) ek =k —qgkds.

Sx Sx
Given the formulas in (9-31) and (9-32), it follows that wz; on (—o0, —Lg] x B’ can
be written using {§§X}15k53 as

(9-33) ds A (fy ke (Chi + e qm)el + 3 fy reknmer ner.

Sx

This equation uses the summation convention over repeated indices.

Step 5 The set {qk}15k53 is introduced for the following reason: there is a unique
choice for {qk}15k53 that makes the matrix with entries {Cj; + ak"iq”}lsi,k53 a

k= %8kincni}. This choice is used in what follows.

symmetric matrix, this being {q
With this choice understood, a metric is defined on (—oo, —Lg] x B’ by the following

rules:

(9-34) o ds hasnorm 1 and it is orthogonal to {éksx}1§k§3.

e Given (i,k) € {1, 2,3}, then the inner product between (?fx

and & is

. X
Cri + 8knl qn )

The inner product defined by the second bullet is positive definite if Lo > coc— because

of the aforementioned fact that the matrix defined by {Cg; }1<; k<3 differs by at most

c_e~sl/e~ from the identity matrix.

The metric just defined is the metric m7¢ when s > —L1, and it is the metric ds?+ g9-T
when s < —Lj — 1. Moreover, the 2—form w7 is self-dual on (—oo, —Lg] X B’ when
self-duality is defined by this metric. Denote this metric by m7q,.
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Let B” C B’ denote the concentric ball whose radius is one-half that of B’. The desired
metric mz; is defined to equal mr;, on (—oo, —Lo] x B”.

Part 6 Use U to denote the union of the various versions of the ball B”. The two
steps that follow directly describe the metric m7; on (—oo, —Lg] X (Y« —U).

Step 1 This step describes a metric on (—oo, — L] x (Y« —U) to be denoted by m7,.
The metrics m7; and myi, agree on the product of (—oo, —Lg] with the complement
in Y, of the union of the various versions of the ball B’. The definition of this
metric mr1, assumes that Ly > ¢, with ¢, such that w = w—g + y1du and v =
*W_1 + y1n+ xju from (9-25) obey v Aw > 1/co on (=00, —Lo] x (Y« —U). The
existence of ¢, follows from (9-23). Let p denote a zero of w_7 and let B, C B’
denote the concentric ball whose radius is three quarters that of B”. Use V to denote
the union of the various versions of B, . Invoke Lemma 9.3 on (—oo, —Lo] X (Y« —U)
using w and v to obtain a smooth family of metrics on Yy« — V parametrized by
(—o0, —Lg] with the properties listed in the upcoming (9-35). The notation uses go
to denote any given s € (—oo, —Lo] member of the family. To explain more of the
notation, note first that pullbacks of m and Part 4’s metric m7¢ via the embedding
from the second bullet of (2-8) agree on (—o0, —Lg] X (Y« — U). In particular, the
pullback of m7 to this part of (—oo, —Lg] x Y« can be written as ds? + gy with gy
denoting here a smooth, s—dependent metric on Yy — U. This metric gy is the metric
g—7 on Yy — U and it is the metric from (9-19) on V..
(9-35) e Each s € (—oo,—L1 — 1] version of g is g—7 and each s € [-L1,—Lo]
version is the corresponding version of gy .
e The gy -Hodge dual of the 2—form w—_r + x1 du on Yx—V is the 1-form
s«w_r + yin+ yju.

The metric m7i, on (—oo, —Lg] x (Y« — U) is defined to be ds? + go. It fol-
lows directly from the second bullet in (9-35) that the 2—form w7 is self-dual on
(—00, —Lo]x (Y«—V') when the notion of self-duality is defined using the metric myq..

Step 2 Let p denote a zero of w_7 . The metrics mr1, and mry, are both metrics
on (—oo, —Lg] X (B’ — Bs). The 2—form wr; is self-dual on (—oo, —Lg] % (B’ — Bo)
when the latter notion is defined by either metric. Use z, and z, to denote the
respective mri,— and myq,—norms of wry. Since w1 Awry > ¢~ here, there are
w71 —compatible almost complex structures for (—oo, —Lg] x (B’ — Bs), these denoted
by Jo and Jp, such that

(9-36) mrio =25 or1(-, Jo(+)) and mrip =z, or1(-, Jp(+)).
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As the space of w71 —compatible almost complex structures on (—oo, —Lg]x (B’ — Bo)
is contractible, there exists an almost complex structure with two properties, the first
of which is as follows: The almost complex structure is J), at points with B’ — B,
component in a neighborhood of the boundary of the closure of B, and itis J, at
points with B’ — B, component in the B’ part of a neighborhood of the boundary
of the closure of B” in B. To state the second property, keep in mind that Jo, = J,,
in some neighborhood of (—oo,—L; — 1] x (B’ — B,) and also in some neighbor-
hood of [—L1,—Lo] x (B’ — Bs). What follows is the second property: the new
almost complex structure is J, and thus J, in a slightly smaller neighborhood of
(—o0,—L1—1]x(B’'—=Bs) and [—L1,—Lo] X (B’ — Bs). Use J« to denote an almost
complex structure of the sort just described.

Fix a smooth, strictly positive function on (—oo, —L; — 1] x (B’ — B,,) that is equal
to zo where Jx = J, and equal to z, where Jx = J,. Denote this function by zx.
Use Ji and z, to define the metric my; on (—oo, —L1 — 1] X (B’ — Bs) by the rule
m71 =z, ‘w71 (-, J«(+)). This metric smoothly extends the metrics defined in Step 1
and in Step 5 of Part 5 and it has all of the desired properties.

Part7 Let Y, C Y_ now denote a component where w_7 is identically zero, thus a
component where c(detS) is torsion. Suppose that L > 1 has been chosen. Let wrg
now denote the pullback of wr to (—oo, —L] x Yy via the embedding from the second
bullet of (2-8). It follows from Lemma 9.4 that the C ! —norm of wr¢ is bounded by
o (pX)ze_|s|/CO. The 2—form w7g is exact on (—oo, —L] X Yy, it can be written as
ds N %u + du with d denoting here the exterior derivative along the constant s slices
of (—o0, —L] x Y« and with u denoting a smooth, s—dependent 1-form on Y, with
|u|, |du| and |3%u‘ bounded by co(pX)ze_lsl/CO.

With the preceding understood, fix Ly > L + 4 and let y« denote the function on R
defined by the rule s — y(—Lr+3—s). This function equals 1 where s > —L;+3 and
it equals O where s < —Lo +2. Use y« to define a self-dual form on (—oco, —L] x Y
by the following rules: This form is equal to wrg on [—0o, —Lr + 4, —L] X Yy,
it is identically 0 on [—00, —L] X Yx and it is equal to y«(ds A %u + du) on
[—Liors —Lior + 4] X Yi. Denote this 2—form by w7y .

The 2—form w7 can be written as ds Axws 4wy with ws = d(y«u) with it understood
again that d here denotes the exterior derivative along Y. Let x/, denote the derivative
of the function s > y«(s). The 2—form wy on [— Lo, —Lior + 4] X Y can be written
as db with b = y’,u + y«u. Note in particular that |5| < coc(px)ze_|s|/c‘).
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Fix ¢ > 1. The bound just given for |5| leads to the following conclusion: Fix r> 1.
Then |6 <17 !0 if Lo > co(|In((px)2)| + Inr).

Part 8 Define the 2—form w7, on the s <0 part of X as follows: This 2—form is
equal to wy where s € [—L,0]. Meanwhile, its pullback to each component of the
s < —1 part of X via the embedding from the second bullet of (2-8) is the corresponding
version of the 2—form wr;. Modulo notation, what is said in Parts 4-7 can be repeated
for the s > 0 part of X to extend the definition of wr, and the metric mr4 to the
whole of X. The form w7 is self-dual if the latter notion is defined by mr. This
construction has the following additional property: Suppose that pxy obeys (9-20). Fix
¢ > co. If r > 1 has been chosen to be greater than a purely c—dependent constant,
then the (L = ¢, Lior = cInr) version of m74 and wr, obey the constraints given by
(2-9), (2-12), (3-13), (3-14) and the (¢, r) version of (3-15). Here, the closed 1-form
vy can be chosen so that it is s—independent and vy = *w47 over constant s slices
of X where |s| > L —4. The bounds in items (4)(b), (4)(d) and (5)(c) of (3-15) follow
from the bounds on # in (9-23) and those for 6 in Part 7 above.

Part 9 The happy conclusions of Part 8 are contingent on the existence of a closed
2—form, py,on X with the following properties: the de Rham cohomology class of px
is c1(detS), it equals w— where s < —102, it equals w4+ where s > 102, and it obeys
the bound in (9-20).

The subsequent four steps in this part of the subsection construct px on various parts
of X. These constructions are used in Part 11 and they are also used in the proofs of
Propositions 3.13 and 3.14.

Step 1 This step first states and then proves a lemma that supplies a crucial tool for
what is to come.

Lemma 9.5 Let U denote a 3—manifold and let V C U denote an open set with
compact closure in U. Given the data set consisting of U, V and a Riemannian metric
on U, there exists k > 1 with the following significance: Let u denote a closed, exact
2—form on U. There is a 1—form on U, this denoted by q, with [, |q|* <« [;; |u|?
and such that dqg = u.

To set the notation used below, the LZ—norm of a function or differential form over a
given set W C U is denoted by |- ||w .

Proof The set V' has a finite cover by Gaussian coordinate balls with centers in U
with the property that the mutual intersection of balls from this cover is either empty or
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convex. This cover can also be chosen so that each ball has the same radius and such
that no ball intersects more than cg others. The minimal number of balls in such a
cover, their common radius and the combinatorial properties of the mutual intersections
are determined a priori by U, V' and the metric. Let 4l denote such a cover and let o
denote the radius of its constituent balls.

Let B € 4l. The fact that B is convex can be used to write u on B as u = dgp with
llggllB <coo| x| p.Let B and B’ denote two sets from &I. Then dgp—dgp =0 on their
intersection, and so gg — g’ = dk pp’ with K gp’ being a function on B’ N B. It follows
that ||dk B’ ||B'nB < coo(||u|g + ||u|g’). Changing Kpp’ by a constant if needed
produces a version with ||Ksp'|BnB’ < coo||dkpp’|lB'np and thus ||dkp'|B'nB <
coo®(||ullp + llullz).

Now suppose that B, B’ and B” are from {( with a point in common. Let cgp’p~ denote
KBB'+Kkp B”+Kprp. This cgps/p~ is constant and the collection of such numbers is a
Cech cohomology cocycle whose cohomology class gives the class of « via the de Rham
isomorphism. It follows that this cocycle is zero, and so cgp’p” = cgp’ + cp'B” + cB” B
with each term being constant. Noting that |cgp g | < coo ™ (||u|l + || x| + ||| B~),
it follows that |cpp’| < cx0 ' supprey.prnpnpo(ulB + llulp + [[ul ) with
cx > 1 determined a priori by the combinatorics of the cover 4l.

Let {yB}Bey denote a partition of unity subordinate to the cover 4. Note that these
functions can be chosen so that |dyp| < coo~!. Define now a 1-form g on B by the
rule q|p = g + d(ZB, xB' (KB’ — CBB’))- This defines a smooth 1-form on V' with
dg = u and with [lglly < c.olully.

Step 2 The lemma that is stated and then proved in this step makes the first application
of Lemma 9.5.

Lemma 9.6 There exists k > 0 with the following significance: Fix k € {0, ..., G}
and then T > 1 so as to define Metr on Y. Let g denote a Mety metric on Y} and
let wy denote the corresponding harmonic 2—form whose de Rham cohomology class
is that of c1(detS). The 2—form wg on the r € [p* — 11—68, Ox + ﬁs] part of N can
be written as dq with ¢ being a 1 —form whose L?—norm on this part of N is bounded
by /T times that of wy.

Proof The metric on the r € [p* — %8, Px + és] part of Ny is the metric given by
(9-7) with pr = p/T and with x37 = x3/7T. The functions K and /& are smooth
around p = 0 with 4(0) and K(0) = 1. It follows as a consequence that the metric in
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the region of interest when written using pr and x7 is uniformly close for T > ¢g
to the Euclidean metric on the part of the radius (/o*< + 6—148) /T ball about the origin
in R3 that lies outside the concentric ball of radius (,o,.< — %8) / T. Take this to be the
region U for Lemma 9.5 and take V' to be the part of this same ball where the radius
is between (,o* — 1—168) /T and (p* + %88) /T. A cover 4 can be found as in the proof
of Lemma 9.5 with a 7'—independent bound on the number of sets, a T —independent
combinatorial structure to the intersections between them, and a common radius for
the balls, co. This can be done because the 7'—dependence is just given by scaling
the coordinates. Granted all of this, then the claim by the lemma follows by appeal to
Lemma 9.5. |

Step 3 This step supplies a part of what will be py on the s € [-102, —101] part
of X when Y_ isa k €{0,..., G} version of Y, and on the s € [100, 102] part of X
when Yy isa k € {0,...,G} version of Y;. The constructions that follow use the
embeddings from the second and third bullets of (2-8) to view the s <0 and s > 0
parts of X as (—o0,0) x Y_ and as (0, 00) x Y.

Let yo1 denote the function on R given by the rule y(|s|—101). Denote its derivative
by x%. This function is equal to 0 where |s| > 102 and it is equal to 1 where |s| <101.
Use y to construct a smooth function on N that equals 0 where |r— p«| > ﬁs and
equals 1 where |r— p«| < ﬁs. Construct this function of r so that its derivative is
bounded by cg. Use o7 to denote this new function of r.

If Y_isake{0,...,G} version of Y, let ¢ denote the wy = w_ version of g that
is given by Lemma 9.6. Define py1 where s € [-102, —101] to be

(9-37) N1 = —dS A f610141— + W— — xo1d(0141-).

This is a closed form with de Rham cohomology class that of ¢ (detS) and it equals w—

where s < —102. Of particular note is the fact that pr; =0 on the |[r—p«| < ﬁs part
1

128¢

part of N. It follows from Lemma 9.6 that the L2-norm of pxr at any given

s € [-102,—101] is bounded by ¢¢ times that of w_.

of Nz where s > —101 and that it equals w— on the complement of the |r— p«| <

If Yy isa k €{0,...,G} version of Y, then very much the same formula defines
an s € [101,102] analog to pprq1. The latter is obtained by using Lemma 9.6 with
Wy = w4 . Lemma 9.6 supplies a 1-form g14 with dgi4 = w4 onthe [r—p4| < ﬁs
part of Ny. Use wy and g4+ in (9-37) in lieu of w_ and ¢ to define py; where

s € [101,102].
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Step 4 This step extends the definition of py; to the s € [-101, —100] part of X
when Y_ isa k € {0, ..., G} version of Y, and to the s € [100, 101] part of X when
Y4 isa k €{0,...,G} version of Y. The embeddings from the second and third
bullets of (2-8) are again used to view the s <0 and s > 0 parts of X as (—oo0,0) x Y_
and as (0,00) x Y.

The extension of pyr; uses the function yo2 on R that is given by y(|s| —100). The
latter function is 0 where |s| > 101 and it is equal to 1 where |s| < 100. The derivative
of yo2 is denoted by y’,,. Reintroduce the closed 2—form py from Step 1 of the proof
of Lemma 9.1. By way of a reminder, this 2—form has compact support on )y, and it
has integral 2 over each cross sectional 2—sphere in Hg.

Suppose that Y_ is a k € {0, ..., G} version of Y. The extension of prr1 will equal
pa1 on the complement in Y_ of the union of )y and the » > py + %8 part of Ng.
Lemma 9.5 is used in a moment to obtain a 1-form to be denoted by g, with the
following properties: the 1-form ¢>— has compact support on Vo and the r> px + %s
part of N, its exterior derivative is Wy = w— — po +d(0141-), and its L2-norm is
bounded by c¢¢ times that of w_. Granted such a 1-form, the extension of pysp is
given by

(9-38) pv2 =—dS A Yoao— +w——d(o1q1-) + fo2 dgo—.

This is a closed 2—form that equals par; where s < —101 and for all s € [-101, —100]
on the complement of )y and the r > p, + %8 part of Ng. This 2—form for s > —100
is equal to pp on ) and the r > py part of N.

The application of Lemma 9.5 takes U = V = S! x S2. The diffeomorphism ®7
in Part 6 of Section 9.1 is used to view pp — (w— —d(0141—)) as a smooth 2—form
on S! x S2, and viewed as such, Lemma 9.5 is applied using this 2—form for w.
Lemma 9.5 then finds a 1-form, ¢, on S! x S? with dg = pp — (w— — d(0141-))
and with L2-norm bounded by c¢ times the L?-norm of w_ on Y_. The next two
paragraphs explain how to obtain g from g¢.

View po—(w——d(0141-)) as a 2—form on S! xS? as done in the preceding paragraph.
As explained in Part 4 of Section 9.1, the coordinates (p, ¢, x3) for Az can be viewed
where r < px + %8 as coordinates for a ball of this same radius in S x S2. The
2—form py—(w——d(0141—)) vanishes on the concentric ball of radius (p* + ﬁe) /T.
It follows as a consequence that g can be written as dk with K being a smooth function
on this ball. Since the L%—norm of dk_on this ball is bounded by cp times the L2 -norm
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of w_ over Y_, it follows that £ can be modified by adding a constant if necessary
so that its L?-norm over this ball is bounded by co/7T times the L2—norm of w_
over Y_.

Use y to construct a smooth function of the radial coordinate on this ball with compact
support that equals 1 on the concentric ball of radius (,o* + 5—128) /T. In particular,
such a function can be constructed so that the absolute value of its derivative is bounded
by coT. Let 02 denote such a function and define g4« to be ¢ —d (o k). This 1-form
has the same properties as ¢ but it is zero on the complement of the image of the
embedding ®7 from Part 6 of Section 9.1. The desired 1—form g is 7 q«.

If Yy isa k €{0,...,G} version of Y}, then there is an analogous construction that
defines pp» on the s € [100, 101] part of X. The formula for the latter is given by
replacing w—, ¢1— and g+ by w4, g1+ and a 1-form, ¢»4, that is defined by the
rules given in the preceding paragraph with wy and g1+ used in lieu of w— and ¢;_.

Part 10 Constructions in Part 11 and in the proof of Proposition 3.13 require a
particular choice for the metric m on certain parts of X. The constraint given in a
moment holds on the s € [—100, —96] part of X when Y_ isa k € {0, ..., G} version
of Yz, and it holds on the s € [96, 100] part of X when Yy isa k €{0,..., G} version
of Y.

The statement of the constraint uses the embeddings from the second and third bullets
of (2-8) to view the s <0 and s > 0 part of X as (—o0,0] x Y_ and as (0,00) x Y.
Viewed this way, the constraint on the metric m involves only the r € [,o* — }—ge, ,o*)
parts of [—100, —96] x N and [96, 100] x ;. To define m on these parts of X,
construct a smooth, nondecreasing function on R to be denoted by T, : This function
equals T where |s| > 99 and it equals 1 where |s| < 98. The ubiquitous function y
can be used to define this function 7% . Reintroduce the metric g7 on N; that is defined
in Part 5 of Section 9.1. The assignment s — g7, defines a 1—parameter family of
metrics on A, with parameter space either [—100, —96] or [96, 100] as the case may
be. The |s| = 100 end member of this family is g7 and the |s| = 96 member is the
metric in (9-6).

Use x to construct a smooth function of the coordinate r on N, that is equal to 1
where r < py — 101W8 and equal to 0 where r > py — letsg' Use oy to denote this
function.

The metric m is constrained by requiring that its pullback to [—100, —96] x N, via
the embedding from the second bullet of (2-8) or to [96, 100] x N, via the embedding
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from the third bullet of (2-8) to be the metric
(9-39) ds® 4+ oxg7, + (1 —04)gT.

Note in particular that this metric smoothly extends ds? + g7 near |s| = 100 and it
smoothly extends ds? + gr from the r < py — %8 part of N for all s in the relevant
interval.

An important observation is given in a moment about the versions of the L?-norm of
w—_—d(o1q1—) onthe r < pyx— %8 part of M. Keep in mind in what follows that this
2—form is zero on the r > py — ﬁs part of Ng. Given s € [—100, —96], the notation
uses ||w— —d(o141-)l|ls to denote the version of the L?—norm of w_ —d (o1 g1—) on
the r < px — 5%8 part of N. There is the analogous definition for w4 —d(o1q914) s
when s € [96, 100]. Here is the key observation:

(9-40) e« Each s € [-100, —96] version of ||w— —d(o141-)|s is bounded by co
times the L?-norm of w_ on Y_.

e Each s € [96, 100] version of ||w+ —d(0141+)]||s is bounded by cq times
the L?—norm of wy on Y, .

To see about (9-40), write any s € [-100, —96] or s € [96, 100] version of g7, at any

given point in the r < py — %8 part of A as

(9-41) a7, =AMel el + e’ @+ A e’

with A1, A2 and A3 being positive numbers and with {Ek}k=1,2’3 being a gr-—
orthonormal frame. It follows from (9-7)—(9-9) that each A; can be written as
(T/ To)zek, where the numbers ¢;, ¢; and e3 are such that ¢ 1 < ¢, 65 <o and
Co 1 < ¢35 < ¢o(T/Ts)?. Tt follows from this that the volume form of the metric
is less than co(7/To)* times that of g7 . It also follows from this that the square
of the g7, —norm of w—_ —d(o1q1-) is less than co(T/To)* times the square of its
gr—norm. These last two observations imply that the integrand whose integral gives
|w— —d(o1q1-)||? is no greater than cg times the integrand whose integral computes
the square of the g7 version of the L?-norm of w_ —d (o} q1—). This last fact implies
directly the first bullet of (9-40). But for replacing — subscripts with 4 subscripts, the
same argument proves the second bullet of (9-40).

Part 11 This part of the subsection completes the proof of Proposition 3.11. According
to Part 8, it is sufficient to find the closed 2—form py with certain special properties.
This is done given two more constraints on m. The first constraint affects m only on the
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|s| € [96, 100] part of X. The statement of this uses the embeddings from the second
and third bullets of (2-8) to view the s < 0 and s > 0 parts of X as (—oo, 0] x Y_ and
as (0,00) x Y4 :

(9-42) The metric m on [—100, —96] x Vs is the product metric ds? + g— when
Y_ = Yp; and when Y4 = Y, the metric m on [96, 100] x Vs is the product
metric ds? + g

To state the second constraint, reintroduce from Part 7 of Section 9.1 the set ® and

the associated collection {7y }(y,z,)c@ of subsets of Ms. The following observation

views them as subsets of Yy and M :

There exists an embedding of R x (U(y’ Z,)c® Ty) into X with the following two

properties:

(9-43) o The function s on X pulls back via the embedding to its namesake on the
R factor of R x (Uy,z,)e0 Tr)-

e The composition of this embedding of the |s| > 1 part of R x (U(y’ Z,)e0 Ty)
with the inverse of the embeddings from the second and third bullets of
(2-8) is the tautological inclusion map.

The existence of such an embedding is implied by what is said in the first paragraph of
this section about the ascending and descending manifolds from the critical point of s.
The second constraint uses m_ and m to denote the metrics ds? + g— and ds? + g+
on the product R x (U, z,)e0 Tr)-

(9-44) There exists a T—independent constant, ¢4 > 1, with the following significance:
The pullback of m via the embedding in (9-43) obeys c; !m_ <m < com_
and c;'my <m <cumg.

Granted these constraints, the three steps that follow construct py when Y_ = Yj.

The construction when Y4 = Yy is not given as it has the identical description but for

changes of — to + in various places.

Step 1 Define py on the s € [-102, —101] part of X to be prr1 and define py on
the s € [-101, —100] part of X to be pr2. The rest of this step extends the definition
of py to the s € [-100, —98] part of X. To this end, use the embedding from the
second bullet of (2-8) to view this part of X as [—100, —98] x Y.

The 2—form pp» near s = —100 is the s—independent 2—form on Yy given by po
on Vo and w—_ —d(o1q1—) on the rest of Y. This understood, px is extended to the
s € [-100, —98] part of X as this s—independent 2—form on Yj.
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Write the metric m appearing on [—100, —98] x Yy as ds? + g with g denoting an
s—dependent metric on Yy. The constraint in (9-42) asserts that g = g— on V.
Meanwhile, g is Part 9’s metric on the r < py — %8 part of Ng. It therefore follows
from (9-40) that the L?-norm of px on Y as defined by any s € [—~100, —98] version
of g is bounded by cp.

Step 2 This step extends the definition of py to the s € [-98, —96] part of X. To
do this, view the s € [—98, —96] part of X as [—98,—96] x Yy as in Step 1. Keep in
mind for what follows that the metric m here has the form ds? 4 gps with gps being
an s—independent metric on Y. Note in particular that gpsr = g— on Vs and it is the
metric that is depicted in (9-6) on the r < py — ﬁs part of N.

Lemma 9.5 is invoked in a moment to construct a 1—form on the union of Yy, and the
r < ps part of Mg, with the three properties listed in a moment. The list of properties
denotes the 1-form by ¢3— and it reintroduces the 2—form p from Part 7 of Section 9.1.
Here are the three properties: The 1-form g3 obeys dqz— = p—w_ +d(o1q1-), it
vanishes on the r > p, — %8 part of N, and its L?—norm as defined by the g/ is
bounded by ¢ times the L?-norm of w_ on Y.

Let xo3 denote the function on R given by x(|s| —97). The function y.3 equals O
where |s| > 98 and it equals 1 where |s| < 97. Introduce xl to denote its derivative.
The 2—form py on the s € [-98, —96] part of X is pp on ))p and it is given on the
rest of Yy by

(9-45) ds A fozf3— +w_—d(o1q1-) + xo3 dgs—.

Of particular note is that the m version of the L?-norm of the 2—form px on
[—98, —96] x Yy is bounded by cg. What follows is a key point to keep in mind
for Step 3: the 2—form py on [—97, —96] x Y is the 2—form pp + p from Y.

Lemma 9.5 is invoked using for the set U the union of Vs and the r < py — ﬁa part
of Ng. Lemma 9.5’s set V' is the union of Yy and the r < px — %8 part of . The
2—form wy is p—w— +d(0141-). Note that this 2—form is zero on the r > py — ﬁs
part of U. The metric used for the lemma is the metric gps. It follows from (9-40)
and (9-42) that the L?-norm of p—w— +d(o1q1—) as defined by gps is bounded
by co. As neither U, V nor gy depend on 7, Lemma 9.5 finds a 1-form ¢ on U
with dg = p—w_ + d(01q1—) whose L?—norm on V is bounded by co. To obtain
q3— from g, note that g on the r > pyx — ﬁe part of A is given by dk with K
denoting a smooth function. Changing K by a constant if necessary supplies a version
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whose L2-norm is bounded by co times that of dKk ; thus by c¢g. Take such a version.
Meanwhile, use y to construct a smooth function of r on N; that equals 0 where
> ps— %8, equals 1 where r < py — ﬁs and whose derivative has norm bounded
by co. Denote this function by o3 and set 3— = g —d(03K).

Step 3 This step extends the definition of py to the s € [-96, 102] part of X. To
this end, consider first the definition of px on the s € [-96, 100] part of X. As pp is
supported in the image of the embedding from (9-10) and as the 2—form p is supported
in the image of the embedding from (9-43), these embeddings can be used to view
po + p as a 2—form on the s € [-96, 100] part of X. View them in this light and define
px on this same part of X to be pp 4+ p. The constraint in (9-44) has the following
implication: the L2—norm of px on the s € [-96, 100] part of X is bounded by co.

The definition of py on the s € [100, 102] part of X views this part of X via the
embedding from the third bullet of (2-8) as [100, 102] x (M U (S! x $2)). The 2—form
po on S x S? can be written as w + dgo with gy being a smooth 1—form. Likewise,
the 2—form p on M can be written as w |y + dqy with gy denoting a smooth
1-form. Set g4+ = qo + qm - Let xo4 denote the function on R given by y(s —100).
This function yo4 is equal to 1 where s < 100 and it is equal to 0 where s > 101.
Use )%, to denote its derivative.

Define py on the s € [100, 102] part of X to be the 2—form

(9-46) ds A foaat+ + po+ p— Xoa da+.

This form is closed, and it extends px as a 2—form that equals w4 where s > 101. Of
particular note is that the L2—norm of px on the s € [100, 102] part of X is bounded
by cop. |

9.5 Proof of Proposition 3.13

The proof of this proposition has two parts. Of the two possible cases, only that where
Y_ =Y, and Yy = Yi_; U(S! x S?) is discussed as the case when the roles are
switched is proved with the same argument but for changing the direction of various
inequalities and signs that involve s.

Part 1 of what follows proves the first bullet of Proposition 3.13. Part 2 of this subsection
addressses the assertion in the second bullet and, in doing so, defines implicitly the
required subset Met(Y;). To make the definition only slightly less implicit, return
momentarily to what is said about Met just prior to Part 1 of Section 9.4. By way of a
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reminder, each metric in Met is determined in part by a metric from the ¥y version
of Section 9.1’s set Met" and a sufficiently large choice for a number denoted by 7.
A lower bound on T is determined by certain properties of the chosen Met"V metric.
This said, a metric from Met is in Proposition 3.13’s subset Met(Y%) if and only if
the chosen value for T is larger than a new lower bound. This new lower bound is
determined in part by the same properties of the chosen Met" metric that determine the
Met(Yy) lower bound. The chosen metrics on the S! x S2 components also determine
in part the lower bound for 7. By the way, no generality is lost by taking the metrics
on these components to be the product of the standard Euclidean S! and the standard
round metric on S2. In any event, this new lower bound is determined implicitly by
the constructions in Part 2.

Part 1 This part discusses the first bullet of the proposition. The notation used below
is that used to describe Y and its geometry in [19; 20; 21; 22]. In particular, the
manifold Y and its 2—form w are described in Section II.1. A summary of the salient
features can be found in Section IV.1.1. The notation used below is the same as that
used in Sections II.1 and IV.1.1.

To set the stage, label the G pairs in the set A as {p1,...,ps}. Ak €{l,...,G}
version of the manifold Y} is obtained from Yy by attaching k 1-handles, these being
the handles from the set {H }peqp,
just the handle H,, . By way of a short review, Y is obtained from Yy by a surgery

,,,,, pi )+ Thus, Yy is obtained from Y _; by attaching
that attaches G 1-handles to Yo —Hg. The attaching region of each handle are disjoint
coordinate balls centered around a pair of points in Yo — . The set of such pairs is
denoted by A. The 1-handle that corresponds to a given pair p € A is denoted by H,,.
The geometry of Yi near H,, is as follows: The handle H,, is diffeomorphic to
[~R—7In8x, R+ 7In8] x S? given by the preferred coordinates (u, (9, ¢)) with u
denoting the Euclidean coordinate for interval factor and with (6, ¢) denoting spherical
coordinates on the constant u cross-sectional spheres of H,, . The handle is attached
to Yx—1 using the identifications given in (3-3) with it understood that (4, (64, ¢+))
and (r—, (6—, ¢—)) are certain preferred spherical coordinates for respective balls about
the two points that form the pair py .

The definition of X requires choosing a properly embedded arc in the Vs part of Yz _q.
The arc has one endpoint at one of the points in pg and the other endpoint at the other.
This arc intersects a neighborhood of the boundary of the radius 78, coordinate ball
centered at the points from pj as a ray from the origin when viewed using the coordinate
system that is specified in Section II.1A. Part 7 of Section 9.1 introduces a finite set of
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pairs ® in Mg with one partner in each pair being an embedded loop in M. Part 7

of Section 9.1 associates each such loop a small radius tubular neighborhood, this

being 7, when y is the loop in question. The arc must be chosen so as to lie in the

complement of the closure of all such tubular neighborhoods. The arc can and should
3

be chosen to intersect the f = 5 Heegaard surface in My transversely in a single point.

Denote this arc by Ay, .

Let Sy, C Yu denote an embedded 2—sphere boundary of neighborhood of the arc A,
with each point having distance between 26 and 4§ from the arc. The neighborhood in
question and § = Sy, should be disjoint from the closures of the tubular neighborhoods
of the loops from ®. The sphere S appears in Y; as an embedded 2—sphere that
separates Y into two components. One of these contains Hy, and is diffeomorphic to
the complement in S! x S? of an embedded ball.

The following is a consequence of what is said above about the descending and ascending
submanifolds from the critical points of s: the pseudogradient vector field that defines
the embeddings from the second and third bullets of (2-8) can be chosen so that (3-11)
are obeyed and likewise (3-12) and the conditions in (9-10) and (9-43). These properties
are assumed in what follows. The condition for the first Chern class is satisfied if and
only it has zero pairing with the cross-sectional 2—spheres in each p € {p1,...,Pr_1}
version of the Y;_; version of H, and annihilates the generator of H>(S 1% 82:7).

Part 2 Proposition 3.13 requires as input a metric from a certain subset of a set of
metrics on Yj_; that is denoted by Met(Y;_1) and a metric from a set of metrics
on Y}, this denoted by Met(Y}). These subsets of metrics are in the respective Yj_;
and Y} versions of Met. They are defined roughly as follows: Let Y, for the moment
denote either Yx_1 or Y. Each metric in the Y, version of Met is determined in part
by a metric from the corresponding version of Mety , this defined in Section 9.1. The
second input for the definition is a large choice for the parameter 7. A metric in Met
of this sort is denoted in Section 9.2 by g37. A Y, metric gz is in Met(Yy) if T is
greater than a certain lower bound that is determined implicitly by the chosen Mety
metric. As in the case of Proposition 3.13’s implicit definition of Met(Yp), this lower
bound is determined implicitly by the requirements of subsequent constructions. In
any event, it is determined by certain curvature norms, injectivity radius lower bounds
and volume.

The construction of a suitable metric on X starts by choosing metrics g;— and g+
from the respective Y_ and Y versions of Mety . This done, use what is said in Parts
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1-10 of Section 9.4 to define a metric m7, and self-dual 2—form w7, on X. It then
follows from what is said in Part 8 and at the start of Part 9 of Section 9.4 that the pair
mrs and wrs satisfy the requirements of Proposition 3.13 if there exists a suitable
closed 2—form py on X with the following properties: The de Rham cohomology
class of py is that of c¢i(detS). In addition, pxy must equal w— where s < —102
and w4+ where s > 102 with w_ and w4 being the respective g— and g4+ harmonic
2—forms on Y_ and Y4 with de Rham cohomology class that of ¢ (detS).

The construction of py in this case differs in only one respect from the construction
described in Parts 9—11 of Section 9.4, this involving Step 3 in Part 11 of Section 9.4.
To say more about this difference, require as in Part 11 of Section 9.4 that the metric m
obey (9-42). Require in addition that (9-43) is obeyed; as noted in Part 1 above, such a
requirement can be met. With (9-43) understood, the metric m is chosen so as to obey
the constraints in (9-44). Proceed with the constructions in Steps 1 and 2 of Part 11 in
Section 9.4. Step 3 in Part 11 of Section 9.4 is replaced with the following Step 3':

Step 3’ Define px on the s € [—96, 96] part of X by viewing po + p as a 2—form
on this part of X via the embeddings in (9-10) and (9-43). The constraint in (9-44)
implies that such a definition yields a version of p with L2-norm bounded by ¢ on
the s € [-96, 96] part of X. Extend pyx to the [96, 102] part of X by copying almost
verbatim what is done in Steps 1 and 2 with the direction of s reversed and with the
metric g+ in (9-42) used in lieu of g_.

9.6 Proof of Proposition 1.5

This subsection provides a proof of Proposition 1.5 and thus completes the proof of
Theorem 1.4.

Explicit formulas for the differentials and A+ (Y )-actions on the chain complex used to
define ech® are given in Theorem 1.1 of [21]. These formulas were also written in terms
of a factorization of A+(Y) into a tensor product 4+(M) ® H_«(SYH)® H_+(S1H)®S,
which is however different from that in (1-8), the factorization used in the statement
of the proposition. The difference originates from a different choice of splitting for
H(Y;7Z)/Tors from that in (1-4).

In [21], an “ M —adapted 1—cycle basis” is assigned to H1(Y;Z)/Tors, whose basis
elements are represented by “M —adapted 1—cycles” in Y. Each “ M —adapted 1—cycle”
is of one of the following three types:

o i@ for every z € ¥ — z¢;
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o (0 and

e 1, foreachpeA.
Decompose H1(Y;Z)/Tors accordingly into

(9-47)  Hy(Y:Z)/Tors~ Hy(M; Z)/Tors® Hy (S' xS*: Z)®EP H1((S'xS?)y: Z)
peEA

with the first, second, and third summand generated by the ordered sets {[i ()]} z€¥—z0»
{[y9]} and {[{p]}pen , respectively.

On the other hand, in Section 1.1 we split H1(Y; Z)/Tors differently using a connected-
sum decomposition of Y. Namely, by combining (1-2) and (1-4) we get another splitting

(9-48) Hq(Y;Z)/Tors
~ Hy(M:Z)/Tors® P Hi((S" x $?),:Z)
peA
~ Hy{(M:Z)/Tors® Hi(S' x $*:Z) & P H1((S" x §?),: Z).
peA

Note that the preceding splitting (9-48) depends on the relative homology class of the
chosen arcs y; and A,. The summands from this splitting are generated by elements
in Hy(Y;Z)/Tors represented by the following sets of 1-cycles in Y :

¢ For the first summand Hy (M ; Z)/Tors, b1 (M) 1—cycles from the M —summand
of the connected sum decomposition Y ~ M #41 (S x S?), so that as 1—cycles
in M they avoid all the arcs y, and A, and their homology classes together
form an (arbitrary) basis for H; (M ; Z)/Tors. For example, the set of 1—cycles
{[i(z)]}ze¥_20 is a possible choice.

e For the second summand H{(S! x S2;7), the cycle coming from the 1—cycle
y in the M —summand of the connected sum Y ~ M # (S 1'% §2). (This cycle
in Y was called y(ZO) in [21].)

o Foreach Hy((S! sz)p; Z)-summand in @peA Hi((S! sz)p; Z),a l-cycle
Ap C Y constructed from the arc A, C M in Part 1, in a way parallel to the
construction of y#0) or y from y; C M.

Here is a more precise description of the cycles A,. For p =p; with k =1,...,G, let
Ap, be a 1—cycle in Yy characterized by the properties listed below. Recall the sphere
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Sy from Part 1. Let Ny . denote the version of N from Part 4 of Section 9.1 when
the sphere S therein is set to be Sy, . Then

o on Yi — Nk, Ay, agrees with A, Uiy, ;

e on Njg, Ay, is transverse to the spheres {p} x § 2 for all p € I under the
identification N , >~ I x S 2 in Part 4 of Section 9.1.

Recall that Y4 1,...,Ys =Y are constructed from Yj by iteratively connected sum-
ming with S! x SZ, and thus they all contain a 1—cycle inherited from the Apr C Yi
described above. We use the same notation A, forall suchcyclesin Yz 4q,...,Yg=Y.

With the above understood, the splitting (9-47) adopted in [21] is related to the splitting
(9-48) used in this article’s Section 1.1 via a transformation matrix of the block form

X 00
(9-49) 01do |,
Y 1 1d

where 1 denotes a row vector of all entries 1, X is an automorphism of Hy(M; Z)/Tors,
and Y depends on the relative homology classes of A,’s. One may choose the arcs A,
so that the entry Y vanishes. Such a choice of the A, is adopted in this article.

Use (C,,

1> Oech) to denote the underlying chain complex of ech®, and let (CF°, dur)

be the Heegaard Floer complex. In [21]’s notation, the chain module C2} is generated
by the set ZA,’ech, M, which is a Z-bundle over the set Z. as. The latter is written
in [21, (1-10)] as a product of Zyp, the generating set for the Heegaard Floer chain
module CF, and for each p e A,acopyof Z x 0. This can be used to write the ech
chain module Cg, as a tensor product of CF® and, for each p € A, a polynomial
algebra Cy, = Z[vp, 7, 1 y;r . ¥y |. Here, 7, is an even variable and corresponds to the
generator 1 € Z of the first factor in Z x 0, and y; and y, are odd variables such
that the polynomials 1, y;' . ¥p and y;' Vp ==Yy y;’ correspond respectively to the
elements 0, 1, —1 and {1, —1} of 0 in [21]’s notation.

Recall that a U —map on the ech—chain complex C_; , and for each M —adapted 1-
cycle ¥, a map we shall denote by t;, were defined in [20, Appendix; 21, Section 1].

Together they define the A+(Y )—action on ech®.

Stated in the language of this article, Theorem 1.1 of [21] asserts the following, with
respect to the aforementioned decomposition of the chain module

(9-50) on = CFP® Q) C, -
peA
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o (C2, . 0cch) is the product complex of the Heegaard Floer chain complex
(CF°, dgr) and for each p € A, the chain complex

(Cp. 0p) := (Z[Tp’ »Yp ] (1 +Tp)(a S +7, ayp )

where 7, has degree 0 and y;' and y," both have degree 1. Note that the
homology H(Cy, dy) has two generators, one of degree 0 and the other of
degree 1, and they are respectively represented by the elements 1 and y;' —TpVy
in the polynomial algebra Z[zy, 7, ", y’J Yo l-

e The U-mapon C_, actsonly on the CF° factor, namely Uecp = UHF®®p€ Ald,
and the map Ugr on CF° induces the U —action on HF®.

e The ty<zo) —action on C?2, likewise has the form t(ZO) ® ®p€ A Id under the

ech
decomposition (9-50).

e The t;:) —action on C ., has the form tHF ® ®p€ A Id under the decompo-
sition (9-50), and the map tI({F) induces the action of [{(?)] € H{(Y;Z)/Tors
on HF®.

e Forp=p, withk=1,...,G,the t;,—actionon C o, 18 the tensor product of 0 .
on the C, factor, and Id on all other factors of Cg, . Note that with 9,, N 1dent1ﬁed
as the generator of the algebra H_(S!) ~ Z[a + ~ N Hi((S!x Sz)p, Z), the
homology H(Cy, dp) is identified with the module H.(S') with the standard
H_.(S1)-action.

View HF® as a module over A+(M)® A\*H1(S'xS?;Z) withthe \"H1(S!xS?;Z)
factor part of the action generated by the induced map from tgg) in the fourth bullet
above. It follows that there is an isomorphism between ech® and HF® X H, (S1)®¢ as
modules over

(A4(M) ® H-+(S") ® H_.(S")®°.
Here, the (A+(M)®H_+(S1))® H_.(S')®°-module structure on ech® comes from
the decomposition (9-47) to identify A+(Y) with

Ap(Y) =i, (A (M) @ N Hi (S x $%:2)) © R N HI (S x 523 2)
peA

~ (A+(M) ® H-+(S") ® H-.(S1)®,

which is isomorphic to the external tensor product HF® X H, (S1)®¥¢ as modules over
(A4:(M)® H_4(SY)) ® H_.(51)®S. The two factorizations of A+(Y), isum in (1-8)
and, above, icycle, are related via (9-49) (where Y = 0). According to Theorem 1.1(2),
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the middle H_.(S!) factor in (1-8)’s factorization of A+(Y) acts trivially on H°(Y).
Recalling from [22] that H°(Y') and ech® are canonically isomorphic as A+(Y)—
modules, this means that the A+(M) ® H—_«(S 1Y®G _action on ech® in the statement
of Proposition 1.5 is the same as the one arising from composing the inclusion

Ar(M)@1® H_o(S1)® > A4 (M) ® H_.(S") ® H_.(S")®°

with 7¢ycle. The assertion of the proposition then follows from the isomorphism ech® ~
HF° X H,(S1)®¢ described above. i

9.7 Proof of Proposition 3.14

The construction of the cobordism manifold X, its metric and self-dual 2—form has
nine parts.

Part 1 This part sets some of the notation for the construction in the subsequent parts
of the subsection of the desired metric on X and the 2—form wy . Fix a metric on
Y of the sort that is described in Part 2 of Section 3.5 and denote the latter by gy .
The 2—form w on Y has gy —norm equal to 1 and its Hodge dual is the 1-form a
that is described in Section I1.3A; see also (IV.1-6). The constant L for use in (2-9) is
specified at the end of the proof. Assume until then that L > 100 has been chosen.

The description of the metric for X and the 2—form wy on the s € [-L,—L + 8] part
of X requires the formula for w on a given p € A version of H,, from (IV.1-3),
(9-51) w =6xcosfsinfdb du— \/Ef’cose sin? 6 du d¢

+ V6 f(1—=3cos?0)sin 0 db dg.
The notation here uses x and f to denote a pair of nonnegative functions on #,,, these
given in (IV.1-2), with f” denoting the derivative of f. Both x and f are invariant
under the reflection u — —u. The function x has compact support and is a nonzero

constant where |u| < 2. This constant is denoted by xg. The function f on the |u| <4
part of #,, is given by the rule u — f(u) = xo + 4e72R cosh(2u).

The 1-form v, given in (IV.1-5) plays a central role in what follows. This 1-form on
the |u| <4 part of #, can be written as

(9-52)  vo = 4e 2R cosh(2u)(1 — 3 cos? 0) du + 12¢ 2R sinh(2u) cos 0 sin 0 d6.

The 1-form v, is a closed form on Y, and its zero locus are the loci in each p € A
version of H, where both u and the function 1 —3 cos? @ are zero. Note also that
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*W = U, on the complement in Y of the |u| > R 4+ 1nd§ — 9 parts of each p € A
handle #,. A second point to note is that *(w A vs) > ¢y 1ve|? on the whole of Y.

Part 2 Let * denote for the moment the Hodge star of the metric gy on Y. The
desired metric for X must pull back to (—oo, —L] x Y via the embedding from the
second bullet of (2-8) as the metric ds? 4 gy . Meanwhile, the corresponding pullback
of wy must equal ds A *w + w. This 2—form is self-dual but it is not closed; this is
because d * w # 0 on the |u| < R+ 1Iné —9 part of each p € A version of H,. This
last fact follows from the formula in (IV.1-6).

The rest of this part of the subsection describes wy for s € [-L, —L + 3]. The metric
on this part of X still pulls back as ds? 4 gy via the second bullet of (2-8).

Let yo1 denote the function on R given by the rule s +— y(—s — L + 2). This function
is equal to 0 where s < —L + 1 and it is equal to 1 where s > —L + 2. The derivative
of xo1 is denoted in subsequent equations by x%,. Fix m > 1 and introduce y,, to
denote the function of the coordinate s given by the rule s+ y(m|u|—1). This function
equals O where |u| > 2m~! and it equals 1 where |u| < m~!. By way of a look
ahead, m will be set equal to r1/¢0¢ when the time comes to verify the requirements
of Proposition 3.13.

Use w; to denote the s—dependent 2—form on Y that is equal to w on the Mg U H,
part of Y, and equal to the following 2—form below on each p € A version of H,:

(9-53) wy =d(x(1 — yo1xm)(1 —3cos?0) du) — «/Ef'cos 6 sin® 0 du d¢
+ 6 f (1—3cos?6)sin6 db dg.

Note that |wq| < c¢. Meanwhile, %wl =db with b= —x Y xm(l — 3cos? 6)du.
As ym =0 where |u| >2m~!, the LZ—norm of 6 on [-L,—L + 3] x Y is no greater
than com™'. The appearance of yo; in the definition guarantees that w; = w where
s < —L. Note that w; is a closed 2—form on Y for each s. A key point to note is that
the zero set of the s > —L + 1 version of w; consists of two circles in each p € A
version of H,, these being the circles where v and 1—3 cos? 6 are both zero.

The desired 2—form wy pulls back to [-L,—L + 3] x Y via the embedding from the

second bullet of (2-8) as ds A xwq + w1 .

Part 3 What follows directly describes the desired metric and the 2—form wy on the
s € [-L +3,—L + 4] part of X. To this end, let yo» denote the function on R that is
given by the rule s — y(s + L — 3). This function is equal to 1 where s < —L + 3
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and it is equal to O where s > —L + 4. A smooth metric on Y will be constructed
in a moment, whose Hodge star sends the s > —L + 3 versions of w; to v, thus
making w; harmonic. Let g; denote this metric. Use g to denote the s—dependent
metric o209y + (1 — xo2)g1 and let x now denote its Hodge dual. The metric on X
pulls back [-L +3,—L 4+ 4] x Y via the embedding from the second bullet of (2-8) as
ds? + g. The pullback of wy to [-L +3,—L 4+ 4] x Y is the 2—form ds A xwy 4+ wy.
This 2—form is self-dual when s is near —L + 4. The two steps that follow construct
the metric g .

Step 1 The 2—form w; is equal to w on the Mg U Hg part of ¥ and its gy —Hodge
star here is v, . This understood, the metric g; on Mg U Hy is set equal to gy . To
define g1 on a given p € A version of H,,, note first that the function yq in (9-53) is
equal to 1 when s € [-L + 3, —L + 4]. This implies that w is s—independent when
s € [-L +3,—L +4]. More to the point, it also implies that the s € [-L + 3, —L + 4]
version of w; shares the same zero locus with the closed 1-form v, this being the
circles in each p € A version of H, where u and 13 cos? 6 are both zero. Meanwhile,
w1 A Vo > 0 on the complement of their common zero locus. This last observation
can be used with Lemma 9.2 to construct the desired metric g; on any part of the
complement in H, of the =0 and 1 -3 cos? § = 0 locus as a smooth extension of
the metric gy from Mg U Hy.

Step 2 Let 7 C H,, denote the |u| < m™! part of H,. The function y, in (9-36) is
equal to 1 on 7 and f = x¢ 4 4e~2R cosh(2u) on 7. This being the case, it follows
from (9-51) and (9-52) that the metric on 7 with volume 3—form Q =sin 6 du d6 d¢
and Hodge star defined by the rules

1 4e 2R cosh(Qu)

infdodp=— ’
* sin o) V6 xo + 4r—2R cosh(2u) !
(9-54) . —_3
*sm@dqﬁdu—zﬁde’
Mlua’g:%sin@dgﬁ

sends wj to v, . Note that a suitable change of coordinates near the § =0 and 6 = =
loci can be used to prove that the metric defined by (9-54) is smooth on the whole

of T.

As noted previously, Lemma 9.2 can be used to extend the metric defined in (9-54) to
the whole of H, so as to agree with gy on H, N Mg. This must be done with some
care 50 as to obtain an m = r'/€0¢ extension that can be used to satisfy the second item
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of (3-15). With this goal in mind, note that Lemma 9.2 can be used to find an extension
with the following three properties:

(9-55) e The norm of the Riemannian curvature tensor and those of its covariant
derivatives to order 20 are bounded by cg.

 The injectivity radius is bounded from below by ¢ L

e The metric volume of Y is at most cg.

The first bullet of Lemma 9.2 gives metrics that obey the third bullet of (9-55) and the
second bullet of Lemma 9.2 supplies metrics that obey all three bullets.

Part 4 The desired metric for X and the 2—form wy on the s € [—L +4, —%L + 2]
portion of X are described below. This is done by specifying their pullbacks via the
embedding from the second bullet of (2-8) to [—L +4, —%L + 2] x Y. In this part, we
use Yoz to denote the function on R given by the rule s > y (1255 (s + L —5)). This
function is equal to 1 where s < —L 4 5 and it is equal to zero where s > —%L. Use
X%, to denote the derivative of yo2. Note in particular that |y,,| < coL™!.

Let w, denote the s—dependent 2—form on Y given by w; for s < —L + 4, given by
w on Mg U H,, and given on each p € A version of H, for s > —L + 4 by

(9-56) w2 = yord(x(1— xm)(1 =3 cos?8)du)— /6 cos O sin? 0 du d¢

+ V6 (1 —3cos? ) sin 0 db dep.
The 2—form w, is a closed 2—form on Y for each s, it has the same zero locus as w;
and it has the property that wyAvVe = W1 A Vs

An s—dependent metric on Y is described in a moment for the cases when L > ¢g. This
metric is denoted by g. Let * denote the corresponding Hodge dual. By way of a look
ahead, g is chosen so that d xw, = %wz. The pullback of the desired metric on X to
[—L+4, —%L—I—Z] xY via the embedding from the second bullet of (2-8) is the quadratic
form ds? + g, and the corresponding pullback of wy is ds A xw, + w,. Note in
particular that wy is self-dual and closed if self-duality is defined by the metric ds®+g.

The metric g; from Part 3 is s—independent and so it is defined where s > —L + 4.
This understood, the metric g is set equal to g; where s < —L 4 5. It is also set equal
to g1 forall s € [—L + 4, —%L + 2] on Mg U%Hg. This is to say that it equals gy for
all such s on Mg U #Hg. The metric g is chosen where s > —L + 5 on each p € A
version of H, so that its Hodge star on each p € A version of H,, acts on wy as

(9-57) $Wy = xorx (1= xm)(1 =3 cos? 6) du + vs.
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As will be explained directly, if L > cg, there are metrics of the sort just described that
obey the cp =1 version of (9-55) where s > —%L +1.

To see about these requirements, consider first constructing a metric of the desired sort
where s > —%L. The metric that is defined by (9-54) with volume form sin 8 du d6 d¢
satisfies the requirements where |u| < 2. Since wz A Us > 0 on the rest of #, and
the gy —Hodge star of w; is v, on Mg U Hg, Lemma 9.2 finds an extension of the
latter metric from the |u| < 1 part of each H, that has the desired properties. Use g»
to denote this s—independent metric.

Consider next the story where s < —%L + 1. The metric on any given p € A version
of H, that is defined by (9-54) with volume form sin 6 du d6 d¢ has Hodge star
sending w, to v, where |u| <m™!. Let v denote the 1—form on the right-hand side
of (9-57). The 3—form v A wy can be written where |u| > %m_l as que A wp and it
follows from the fact that |x},| < coL™! that q > co_1 —coL™!. Thus, v Awy >0
where |u| > %m_l. Given this positivity and given what was said in the preceding
paragraphs, Lemmas 9.2 and 9.3 can be used to construct an s—dependent metric where
s < —%L + 1 that equals g, where s > —%L + % that equals g; where s < —L + 5
and equals gy on Mg U Hy.

Part 5 This part and Part 6 construct the desired metric for X and the 2—form wy
where 5 € [—3L +1,—1L +2]. By way of a look ahead, the metric pulls back from
this part of X via the embedding from the second bullet of (2-8) as ds? + g3 with g3
being an s—dependent metric on Y that equals the metric g, for all s on the set Yo,
from (9-10).

The metric g3 is independent of s on the whole of ¥ when s € [—%L +1, —%L + 2].
This s—independent version of g3 is in a large 7" version of the space Metr that is
defined in Part 5 of Section 9.1. For the purposes to come, the choice of T requires
choosing L > c¢7 with c¢7 denoting here and in what follows a constant that depends
on T and is greater than co72 in any event. The value of ¢z may increase between
appearances.

Use * now to denote the g3—Hodge star on Y. The 2—form wy pulls back via the
embedding from the second bullet of (2-8) to [—%L—i— 1, —%L+2] xY as dsAxwsz+ws,
with w3 denoting an s—dependent, closed 2—form on Y. The 2—form w3 is also
independent of s where s € [—%L +1, —%L + 2] and it is independent of s on Yo,
for all s. With regards to the motivation for what follows below and in Part 6, keep in
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mind that ds A xw3 + w3 is closed if and only if both dw3 = 0 and d(xw3) = %w3
for all s.

This part of the subsection assumes that ¢ (det S) annihilates the H» (M ; Z)—summand
of the direct sum decomposition for H>(Y;Z) given in (IV.1-4). This assumption
makes for a simpler construction. Even so, much of what is done here is used again for
Part 6’s construction for the general case.

The construction that follows has six steps. Note that some of these steps use notation
from Section 9.1.

Step1 Let yo3 denote the function of s given by )((Li_s(s + %L —2)). This function
equals 1 for s < —%L + 2 and it equals O for s > —%L. Reintroduce the notation
from Section 9.1 and let y, denote the function on R3 given by y(64e;!(r—p«)—1).
ée and it equals 0 where r > pyx + %e. Let
T > 1 and use y, with yo3 to define the s—dependent function on R3 given by

This function equals 1 where r < ps +

1
(9-58) ror = toar+ (1= o3) (1= 1o+ 77 )

Note in particular that %TST > 0 because y, is a nonincreasing function of r. Use pg;.
and xs,3 to denote the respective s—dependent functions on R* given by rs,. sin 6
and rg, cos 6.

Define the s—dependent 2—form w3 on Y by setting w3 = w, for s < —%L + 2 and
setting it equal to w on the )y component of ¥ —A;. The 2—form w3 is defined on N
by specifying it on the R incarnation of Az to be K(0s;)ps; dps; d¢. The definition
of w3 on the rest of ¥ uses 7 to denote the function of s given by (yo3+(1—xo3)/T)2.
The latter function equals 1 where s < —%L + 2 and it is equal to % where s > —%L.
The 2—form w3 is defined on Vs N Ms to be tw,, and it is defined on each p € A
version of H,, by the upcoming (9-59). This upcoming definition uses y A to denote
the function of u and @ given by y(|u|?> —1)x(4(1 —3 cos? §) — 1). The function xa
is equal to 1 where both |u| < 1 and |1 —3cos2 0| < 1, and it is equal to 0 where
either |u| > 2 or |1 —3cos? 0| > % Note in particular that the support of y A consists
of two open sets. These are mirror images under the involution 6 — & — 6, with one

being a neighborhood of the u = 0 and cos @ = —= circle with 0 < § < Z on its

3 2

closure. Define
(9-59) w3 = —/61 d(f cos @ sin® 0 dp — (xo + 4e~2R) sign(cos 0) y o d¢)

on H, fors>%L+2.
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By way of comparison, the 2—form w5 on #,, can be written as V6d(fcosBsin®0 dp).
What is written in (9-59) adds a 2—form with support on H; to Tw,.

The 2—form w3 on Y is closed for each s. Moreover, it defines the s—independent de
Rham cohomology class c;(detS) because the latter class is assumed to annihilate the
Hy (M ; Z)—summand in (IV.1-4).

Step 2 The s—dependent metric g3 is defined when s € [—%L +1, —%L + 2] with
the help of a certain s—dependent 1—form, 6. The 1-form 6 should obey db = %w3.
There are four additional constraints on 6. The first is that 6 should vanish on )y
and on the part of NV where r > px + %8. The second constraint specifies 4 on the
|u| < 4 part of H,:

(9-60) b=—~61'(f cosOsin? 0 — (xg + 4e2R) sign(cos 0) ya) do,

where t/ denotes %t. The third constraint asks that ’snorm at s € [—%L—I—l, —%L—I—Z]
when measured by the metric gy obeys |b|;_ <cT L~ The fourth constraint requires
the following: Fix k € {0, ...,20}. Then the gy —covariant derivatives up to order 20
of (%)kﬁ are bounded by ¢z L7%~1.

To see about satisfying these constraints, note first that 6 can be chosen to vanish on
Yo and on the r > py + %8 part of Ny because w3 is constant on these parts of Y,
and because the first cohomology of the r € [p* + %8, Px + &8] part of A\ is zero.
The coL ™! bound on | X%3| implies that 6 can be chosen to vanish on )y and so
that its norm elsewhere when measured by the metric gy is bounded by coL™!. A
1—form of this sort can be chosen so that the gy —norms of its derivatives also have the
required norm bound. Let 6, denote such a choice, and let 65 denote the 1—form on
any given p € A version of H,, given by (9-51). Their difference, b« — b4 , is a closed
I—form on H,. As H! (Hp N Ms; R) = 0, this difference can be written as dk with K
denoting a function on H,,. The function K can be taken so that |K| < coL~! since
the gy —norms of both 6, and b5 obey a similar coL~! bound. Granted this bound
on K, then 6 = by —d(y(Ju| —4)k) has all of the requisite properties.

Step 3 The definition of the upcoming Steps 4 and 6 use observations made below
about w3 and b on the |u| <4 part of each p € A version of H,. The first series of
observations concern ws. To start, note that the zero locus of the 2—form in (9-60) is
the same as that of v, this being the locus where both ¥ =0 and 1 -3 cos26 =0.
The reason being that f’ and ya have the same sign where ya # 0, and likewise
the functions 1 — 3 cos? § and sign(cos #) yo have the same sign where ya # 0. In
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fact, these comments about the derivatives of y A imply that w3 on #H, can be written
schematically as
9-61) w3 =—(1+A1)tvV6f cosOsin? 0 du de

+ (14 A2)TV6 f(1 —3cos? 0) sin 0 db d¢,

where A and A, are smooth, nonnegative functions of u and 6 that equal zero where
both |u| < 1 and |1 —3cos? 6| < % and where either |u| > 2 or |1 —3cos? 6| > %
Given that wy on H, is —6d(f cos8sin 0 dg), these last remarks imply that

(9-62) W3 AV > TW2 AUs ON Hp
with the inequality being a strict one only where dya # 0.

The next series of remarks concern the 1—form 6 on the |u| < 4 part of H,,, the first
point of note being that (1) cos @ sin’ @ is equal to (xq + 46_2R)ﬁ§ sign(cos 8) on
the zero locus of v,,. It follows as a consequence that § can be written as

(9-63) b=—B17'f'cosOsin? 0 dp + Byt f(1 —3cos®0)sinf dg,
where B and B, are smooth functions of u# and 6.

Step 4 The metric g3 on each p € A version of H,, is defined to be the metric from
Part 5 for s < —%L + 2. The metric g3 on H, at other values of s is defined in part
so that its Hodge star obeys

(9-64) *W3 = TUs + b.

There is one other constraint. To explain it, note first that the metric g, does not depend
on s when s € [—%L +1, —%L + 2]. Use go+ to denote this s—independent metric.
Look at (9-45) to see that the s > —%L + 1 version of w3 on the |u| > 4 part of
each H, is %wz. Since 6 is zero when s > —%L + 1, the constraint in (9-64) is
satisfied by taking the Hodge star to be that defined by g»+ . This understood, the final
constraint is as follows:

(9-65) The metric g3 on each p € A version of H, when s > —%L + 1 must be both
s—independent and T—independent, and it must equal g, where |u| > 4.
As explained in what follows, an s—dependent metric with all of these requisite proper-

ties exists if L is greater than a 7 —dependent constant.

Consider first the existence of a metric with the desired properties where |u| <1 and
[1-3cos? 6| < %, this being a neighborhood of the common zero locus of w3 and v, .
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The metric g is defined on this part of #, by its volume 3—form = sin 6 du d6 d¢
and the Hodge duals

) 1 4e2R cosh(2u) 1., .
0dodp =— d B 0do,
*sin ¢ /6 xo 1 4¢—2R cosh(2u) U+1 "TBysinfdg

(9-66)  ssing dg du = 22 do — L1710’y sin6 d,

24T
xdu do = % sinf d + =" v'By du — Jv ' 7'B, d.

These formulas for the Hodge dual define a symmetric, bilinear form on the cotangent

bundle of this part of H,. This bilinear form is positive definite if 7 < Co L

1

which is guaranteed if 72L~! < ¢g! since t™! < T2 and |t/| < coL7!.

To see about defining g3 on the rest of H,, use the fact that |6] < coL ™! to draw the
following conclusion: If L > c¢oT?, then w3 A (Tus + 6) > 0 on the complement in Y
of the |u| < % and |1 —3cos? 6| < % part of each p € A version of H,. This being
the case, then Lemma 9.3 can be used directly to obtain a family of metrics on #,,
parametrized by the set [—%L +1, —%L + 2] so as to obey (9-64) and (9-65). Use
g3A to denote this family of metrics on Upe A Hp.

Step 5 The 1-form v, is used here to construct another closed, s—dependent 1—form
that plays a central role in the upcoming definition of the s € [—%L +1, —%L + 2]
versions of g3 on Mg U Hg. This new 1-form is denoted by ve3 and its definition is
given in the subsequent paragraph.

The 1-form ve3 on )y is v, and it is defined on the r» > py — %s part of N to be
dxg,3 with the latter defined in Step 1. Since ve = dx3 on N, it follows from the
definition of x;,3 that vs3 as defined so far is a 1—form on the union of )Yy and the
> g — %8 part of Ng. The definition of ve3 on the r € [p* — %8, Ox — ie] part of N
requires the reintroduction of the function y,« from Step 2 in Part 5 of Section 9.1.
This function is used here to define x5, 3% = ()(03 +(1—- )(<>3)(1 — Xrx T+ %Xr*))x3.
Define ve3 on the r € [p* — %8, Px — %8] part of N to be fl/zdxsT3*. It follows
from the definitions of x,,3 and X, 3« that the definition just given defines a smooth
1—form on the union of )Yy with the r > py — %e part of A. As the latter’s restriction
near the r = px — %8 is T dx3, a smooth 1-form on Yy U N, is defined by setting
Uosz = Tdx3 onthe r < px — %8 part of Ng. Noting that T dx3 = tv,, defining ve3
on Vs to be tus defines a smooth, closed 1-form on Y.

The 1-form ve3 has the four properties that are listed below.
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Property 1 The 1—form v.3 is equal to v, Where s € [—%L +1, —%L + 2].
This follows because yo3 = 1 at these values of s.

Property 2 The zero locus of each s € [—%L + 1, —%L + 2] version of Ve3 1S
identical to that of v, .

This is because vo3 has no zeros on Yy U N, and it is equal to tve on Vs .

Property 3 Each s € [—%L + 1, —%L + 2] version of W3 A Ue3 1S positive on the
complement of the common zero locus of w3 and Vo3 .

This property follows directly from the definitions on ¥ — (Upe A ’Hp) and from (9-61)
on each p € A version of H,,.

To set the stage for the fourth property, note that w3 and ve3 do not depend on s
when s € [—%L +1, —%L + 2]. Use w34 and ve34 to denote these s—independent
differential forms. To continute the stage setting, let g5, denote the s—independent
metric on UpeA H, given by the s € [—%L+ 1, —%L +2] version of Part 5°s metric g3 .
What with (9-55), this metric on | J,cp Hp with go4 on ¥ — (UpeA H,) define a
smooth, s—and T —independent metric on Y. Denote the latter by g.. The restriction
of go to Vs UN, is in the space Met" from Part 5 of Section 9.1. This understood,
let go7 denote the Mety metric that is constructed in Part 5 of Section 9.1 from T
and Yy U N part of go.

Property 4 The g, —Hodge star of w34 iS Vo34 .

The definitions in Part 5 of Section 9.1 with those given above for w34 and ves4+
imply this on Y — (UpeA Hp) and (9-64)—(9-65) imply this on UpeA Hy.

Step 6 This step completes the definition of g3 on Y so as to satisfy five constraints,
the first being that w3 = Vo3 + b at each s € [-2L + 1,—1L + 2]. The second
constraint asks that the s € [—%L +1, —%L + 2] versions are independent of s; and
the third asks that the s € [—%L +1, —%L + 2] versions are also independent of s
and that this s—independent metric is g.7 . The fourth constraint asks that gz = gz
on the [u| < R+ 1né§ part of each p € A version of #,. The fifth and final constraint
asks that g3 = g« on )y and on the r > ps« + %8 part of Ng.

Use Property 3 and what is said in Step 4 with the bound |6, < coL ™! to see that
w3 A (Vo3 + 6) > 0 on the complement in Y of the common zeros of w3 and ves if
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L > cr. Given this bound, Lemma 9.3 with the input from Step 4 and Property 4 of
Step 5 find a metric with all of the desired properties. Take such a metric for g3. Note
for future reference that the s—independent, s > —%L + 1 version of g3 is equal to gy
on Yy N Mg.

Part 6 This part of the subsection puts no constraints on the restriction of ¢ (detS) to
the Hy(M ; Z)—summand in H,(Y;Z). The s—dependent metric g3 and the 2—form
w3 in this case are identical to their namesakes in Part 5 on ¥ — (| (1,2,)€0 7). The
three steps that follow define g3 and w3 on U(y,zy)e® Ty .

Step 1 Reintroduce from Part 7 of Section 9.1 the closed 2—form p on Y. By way of
a reminder, the de Rham class of p has pairing O with the H>(Ho; Z)@(@pe A Hp)—
summand in (IV.1-4)’s decomposition of H,(Y'; Z) and its pairing with the Hy(M ; Z)—
summand is the same as that of cj(detS). Since p’s support lies in U(y,z,,)e@ Ty and
thus in Yy — (UpGA Hp), setting w3 on Yy U (UpGA Hp) tobe w3 =twa+(1—1)p
defines a closed 2—form on Y for each s € [—%L + 1, —%L + 2] with de Rham
cohomology class cj(detS).

The metric g3 is defined on U(y,z,,)e(a Ty so that its Hodge star maps w3 to tv, + b
with 6 denoting a certain 1—form with db = %wg . As done previously, Lemma 9.3 will
be used to construct a metric with this property that meets all of the other requirements.

Step 2 The definition of g3 and 6 on U(y,z,,)e@ Ty requires what is said here about
the w> and p in the support of p. To start, reintroduce from Part 7 of Section 9.1 the
set ® and write p as Z(%Zy)e@ Zy py with each (y,Z,) version of p, being a closed
2—form with support in the tubular neighborhood 7, that is described in Part 7 of
Section 9.1. Part 7 of Section 9.1 describes a diffeomorphism from S! x D to T, with
D denoting a small radius disk about the origin in R?. The diffeomorphism identifies
y with ST x {0} and it has two important properties that concern the 2—form w on Y
and the function # from Section II.1. As noted in Part 7 of Section 9.1, the 1-form
df pulls back via the embedding of S! x D as a constant 1—form on the D factor
and the kernel of the pullback via the embedding of the 2—form w is a constant vector
field that is tangent to this D factor. These last properties are exploited in the next
paragraph.

As can be seen in (IV.1-5), the 1-form ve on 7, is df. Meanwhile, the 2—form w»
on 7, is still the original 2—form w on Y as described in (IV.1-3). This understood,
what was said above about df and the kernel of w imply that S x D has coordinates
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(t,(x,y)) with ¢ denoting an affine coordinate for the S! factor and (x, y) coordinates
for D with the following two properties: The 1-form v, pulls back as dx and the
2—form wy pulls back as Hy, (y, ?) dy dt with H, denoting a positive function. Granted
these coordinates, the 2—form p, has the form b, (x, y) dx dy with b, denoting a
function with compact support in a small radius disk about the origin in the (x, y)—plane
and with total integral equal to 1.

Step 3 An almost verbatim repeat of what is said in Step 2 of Part 6 supplies a version
of the 1-form 6 which obeys the four properties listed in the first paragraph of Step 2
in Part 6 with it understood that w3 is now defined as in Step 1.

It follows as a consequence of what is said in Step 2 that
(9-67) (twz2 + (1 =1)p) Ao = TW2 AU3;

thus, the gy —norm of (tw2+(1—1)p) A(tve + b) is no less than ‘[2(60_1 —crT?2L7Y).
This being the case, Lemma 9.3 supplies an s—dependent metric on Y with all of the
desired properties if L is larger than a purely T —dependent constant.

Let g3+ denote the s—independent metric on Y given by the s € [—%L +1, —%L + 2]
versions of g3. This is the metric gy on (Vm N Ms) — (U2, )e0 Tr)- It proves
necessary for what follows to take some care with regards to the choice of g3+ on
U(y,zy)€® Ty . In particular, Lemmas 9.2 and 9.3 will construct a version of g3 with
g3+ on each 7, by gy —volume 3—form Hy, dx dy dt and the Hodge star rules
xdx dy = Ay dl‘—Ay‘L’_l(l—‘C) H;lzyby dx+By dy,
(9-68) wdydt =u,'(1+72H,'A)(1-1)°Z,b,) dx—a, 7~ (1-1)H, 2, b, d1,
xdt dx = dy+B, dt,
1
ﬁ .

constrained for the moment only to the extent that A, < ¢y 72 on the support of Z, by,

with A, being a positive function and with 7 equal to The function A, is
and that A, is independent of 7" on the complement in 7, of a T'—independent open
set that contains the support of b, and has compact closure in 7, . This set is denoted
by 7'),’ This upper bound on A, is needed so that (9-68) defines a positive definite
metric. As for By, it is zero on 7, and it is independent of 7" elsewhere.

Part 7 This part of the subsection defines the desired metric on X and 2—form wy

on the s € [—%L +1, —%L + 5] part of X. As done previously, these are defined by
their pullbacks via the embedding from the second bullet of (2-8). The pullback of
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the metric will have the form ds? + g with g denoting an s—dependent metric on Y.
Meanwhile, the pullback of wy will have the form ds A xw4 + w4, with w4 denoting
a closed, s—dependent 2—form on Y and with * denoting the Hodge * defined by g.
The de Rham cohomology class of wy at each s is ¢y (detS).

The metric g is independent of s for s € [—%L + 1, —%L + 2] and the 2—form
wy is independent of s for s € [—%L + 1, —%L + 3]. Both the metric and w4 are
independent of s when s € [—%L + 4, —%L + 5]. Moreover, the restriction of both
to ¥V — (Upe A M) are independent of s for all values of s. The salient difference
between the s < —%L + 3 version of wy4 and the s > —%L + 4 version is that the latter
has nondegenerate zeros and the former does not.

The construction of g and w4 has two steps.

Step1 Let g3+ denote the —%L + 2 version of the metric that is supplied in Parts 5
and 6, and let w34+ denote the s = —%L + 2 version of ws. The 2—form w34 is
g3+ —harmonic but it does not vanish transversely. By way of a reminder, the zero locus
of w34 consists of the two circles in each p € A version of H,, where both u =0 and
1 —3cos?# =0. Note in this regard that w34 on Hp is the 2—form

(9-69) V6T 2(— f'cos B sin? 0 du dg + f(1 —3cos? 0)sin 6 db dg).

The construction of wy starts by introducing y4 to denote the function on R given
by s — x(s + L —3). This function is equal to 1 where s < —%L + 3 and it is
equal to 0 where s > —%L + 3. The derivative of yo3 is denoted by y% ;. Use yx«
to denote the function of u given by the rule u — y(Ju|—1). This function is equal
to 1 where |u| <1 and it is equal to 0 where |u| > 2. One last function is needed
for what follows, this denoted by yg. It is a function on [0, 7r] with values in [0, 2]
which has the following two properties: It is zero near the endpoints, and has two
local minima at the two values of # where 1 —3cos? 6 = 0. Moreover, yg should
appear on a neighborhood of these minima as 1 + (1 — 3 cos? §)2. Take yg so that

x6(0) = xo(m —0).

Fix z > 1 and define the 2—form w;, by

9-710) w; = —(\/Ef/ cos 0 sin 0 4+ z 71 cos ¢ yo4 yx sin b %){9) dudg
+v61(1—3cos?0)sinf db de

—z lsing )(04)(*%<sin9 %){9) du d®o.
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This is a closed 2—form for all s that equals w34 for s < —%L + 3 and for all s where
|u| > 2. This 2—form is independent of s when s > —%L + 4. Moreover, if z > ¢y,
then the s—independent version of w, defined where s > —%L + 4 has a nondegenerate
zero locus, this being the four points where sin¢ =0, 1 —3cos?># =0 and u = 0.

The desired 2—form wy is defined to be w3y on ¥ — (UpeA Hp) and it is defined on
each p € A version of #H, to be a z > ¢q version of T 2w,.

Step 2 This step defines the metric g. This is done by first constructing g near the
zero locus of w4 in each p € A version of H,, and then extending the result to the rest
of Y with the help of Lemma 9.3.

Fix z > ¢¢ so that w; as defined in (9-70) has nondegenerate zeros. The 2—form w,
can be written as db;, where b, is given by

(9-71) %Z‘l cos ¢ Yoa(Xuxo du + xx )y db) — %Z‘l sing xoax«xo dp

+z7Vsing ylq xxsin 6 %){9 du.

Granted this formula, then v + b, has the same zero locus as w, if z > ¢g, and it also
vanishes transversely. Moreover, w; A (Vs + ;) can be written as Qsin 6 du d6 d¢
and a calculation finds that Q > 0 with equality only on the joint zero locus of w, and
Vo + b . In fact, the calculation finds Q > ¢! (Ju |24-(1—=3 cos? 0)% 4272 sin? ¢ sin? 6)
if z>cy.

With z large and w4 defined by (9-70) on H,,, the metric g is defined near the zeros
of (9-71) so that its Hodge star sends w, to ve + b,. The definition requires the
introduction of yet another function of s, this denoted by yo4 and defined by the rule
whereby yoo4(s) = )((s + %L — 2). This function equals 1 where s < —%L + 2 and
it equals O where s > —%L + 3. The desired metric g is defined by taking its volume
form to be sin 6 du d6 d¢ and its Hodge star to act as follows:

xsin6 dO d¢p = %(4e‘2R cosh(2u) + 12z sin¢ %, cos 6 sin? 6) du,

(9-72) #*sinfd¢du = % do,

xdu df = %(XQM sinf + (1 — yooa) xo (8% (sin@ a%)(g))_l) de.

By way of a parenthetical remark, the metric g3+ near the zeros of w; is defined by
the same volume form but with Hodge star rule given by (9-54). The appearance of
Xoo4 in the third line of (9-72) guarantees that g = g3+ where s < —%L.
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As noted previously, w; A (Ve + b7) > 0 on the complement of the common zero locus
of w; and (ve + b;). Having constructed g on a neighborhood of this locus with
the desired properties, Lemma 9.3 provides an extension to the whole of ¥ which is
independent of s where s < —%L+2, where s > —%L+4 and on Y_(UpGA Hp) . This
extension is such that the 2—form ds A*xw4+w4 is self-dual on [—%L +1, —%L +5] xY
when self-duality is defined by the metric ds? + g.

Part 8 This part of the subsection supplies the input for the definition in Part 9 of the
desired metric and the 2—form wy on the s € [—%L +4, L] part of X. The discussion
in this section refers to an auxiliary copy of the space X, this denoted by Xi. The
manifold X is the same as X, but its metric is not a metric of the sort that is described
in Parts 1-7. The eight steps that follow construct a metric on X, and a corresponding
self-dual 2—form with certain desirable properties.

Step 1 Fix a metric in the Y version of Met" . The latter with a sufficiently large
choice for T determines metrics in the set Met(Yg). This understood, choose T large
enough that this is the case and that two additional requirements are met, the first being
that Part 7’s metric g and 2—form wy4 can be constructed for any choice of L > cr
with ¢7 denoting a constant that is greater than 1 and depends only on 7. The second
requirement is given in Step 2.

Let g— and w— denote the respective s € [—%L + 4, —%L + 5] versions of g and wy,
these being independent of 5. The metric g— isinthe Y version of the space Metr, so it
can be used for the metric g; in Part 1 of Section 9.2, and since w_ has nondegenerate
zeros, it can also be used for the metric g, in Part 1 of Section 9.2. This part of
Section 9.2 uses w, to denote the g, —harmonic 2—form with de Rham cohomology
class that of ¢ (detS). This 2—form w, is w—. The 2—form w_ is equal to w on Yy
and on the r> px + %8 part of N and so it follows that w_ is also the 2—form that is
denoted by w3 in Part 2 of Section 9.2. This fact implies that the metric g— is also a
version of what Part 2 of Section 9.2 denotes as g37 . Parts 1-10 of Section 9.4 will be
invoked in the upcoming steps using X, and the g_ version of g37. These parts of
Section 9.4 denote the latter version of gz by g_7. What Parts 1-10 of Section 9.4
denote as w_7 in this case is the 2—form w—.

Step 2 Let go denote the given metric from Met(Y;). By way of a reminder, the
metric g is determined in part by Step 1°s chosen metric from the Y version of MetV
and 7.
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As explained in Part 1 of Section 9.2, a metric denoted by g, determines various
versions of the metric gsr, and g, can be any one of these g3 metrics. Set g4 to
be the version of g, that is used to construct go and set g4+7 to denote g,. What
follows is the second requirement for 7 : It should be large enough that the Y_ =Y
and Y4 = Y versions of the constructions in Parts 1-10 from Section 9.4 can be
invoked using X and the metrics g— on Y_ and g4+ on Y.

The constructions in Parts 1-8 of Section 9.4 require a closed 2—form on Xy, this
denoted by px, whose de Rham cohomology class is cj(detS) and which has the
following additional properties: it equals w— where s < —102, it equals w4 where
s > 102 and it obeys the bound in (9-20). Given such a 2—form, Parts 1-8 of Section 9.4
supply L1 > 1, a metric on X, and a 2—form on X, with the properties listed below;
the metric and 2—form are denoted in the list and subsequently by mr, and w7:
(9-73) o The metric mr, obeys (2-9) and (3-14) when the version of L in the latter
is greater than L + 20.
¢ The pullback of m7 from the s < —L; — 1 part of X via the embedding
from the second bullet of (2-8) is ds? + g— and the pullback of mr, from
the s > L1 + 1 part of X, by the embedding from the third bullet of (2-8)
is ds®> +g4.
¢ The 2—form wrx is self-dual when self-duality is defined by mz.. In
addition, the pullback of w74 to any constant s > 1 slice of X is closed.
¢ The pullback of w7, from the s < —L; — 1 part of X, by the embedding
from the second bullet of (2-8) is ds A *w_ 4+ w— with * denoting here
the g_—Hodge star.
¢ The pullback of wr« from the s > L + 1 part of X, via the embedding
from the third bullet of (2-8) is ds A xw4 + w4 with * now denoting the
g+—Hodge star and with wy denoting the g4 —harmonic 2—form with de
Rham cohomology class cj(detS).
¢ The 2—form w74 obeys the constraint in (3-13).

e The norm of w7+ and those of its m7,—covariant derivatives to order 10
are less than co.

When comparing the notation in (9-73) with the notation in Parts 1-10 of Section 9.4,
keep in mind that this case has g7 = g— and w_7 = w—, and g4+7 = go and
W4T = Wo .

The remaining steps construct a version of py with the required properties.
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Step 3 The construction of py requires the three constraints on mr, that are described
here and a fourth constraint that is described in Step 4. The first constraint is that
imposed in Part 10 of Section 9.4.

The remaining constraints and that in Step 4 refer to the subset U(%Zy)e@ T, C Mg,
this viewed as a subset of Y and also as a subset of Y. The second constraint uses
the embeddings from the first and second bullets of (2-8) to view the s <0 and s > 0
parts of Xy as (—o00,0] x Y and as (0, 00) x Y. This constraint is the analog of that
given in (9-42):

(9-74) The metric m7, on [—100, —96] x Vs is the product metric ds? + gy. The
metric m74 on [96, 100] x Yy is the product metric ds? + g

By way of background for the third constraint, note that (9-43) holds for X, this being
a consequence of what is said in Part 1 about the ascending and descending manifolds
from the critical points of s. The third constraint refers to this embedding; it also uses
my and m4 to denote the metrics ds? + gy and ds® + g4+ on R x U(y,zy)€® Ty:

(9-75) There exists a T—independent constant, ¢, > 1, with the following significance:
the pullback of m7, from the s > —94 part of X4 via the embedding in (9-43)
obeys c; 'my <m <cyumy and c;'my <m <c.my.

This third constraint is the analog of the constraint in (9-44).

Step 4 This step describes the fourth constraint on my,. This constraint on myr
specifies its pullback to [—96, —94] x U(y,zy) <o Ty via the embedding from the second
bullet of (2-8). The constraint asks that this pullback have the form ds? + g with g
denoting a certain s—dependent metric on U(y,z,,)e@ Ty . The upcoming description
of g refers to the depiction in (9-68) of g— on U(%Zy)e@ Ty and it refers to an
analogous depiction of the metric gy on U(y,zy)€® Ty . The metric gy on each 7, has
the same form as (9-68) but with h,, = 0 and with different versions of A, and B, . The

gy versions of these functions are denoted by Ay, and By, . Note that Ay, > ¢\ L

The specification of g uses two functions on R, the first being the function )(Zl given
by x(s 4+ 96). This function equals 1 where s < —96 and it equals 0 where s > —95.
The second function is denoted by )(Zz , it is given by y(s + 95). The latter is equal
to 1 where s < —95 and it is equal to 0 where s > —94.

The metric g on 7, is defined by its volume form, this being H, dx dy dt, and by the
following Hodge star rules:
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xdx dy = (xLyay+(1—x)Ay,) di—x Ayt~ (1—0)H, 2, b, dx+B, dy.

0 A= (T (102 by ) d
—)(ZIAyr_l(l—t)H;Iny)y dt,

xdt dx =dy+B, dt.

Important points to note are that g is independent of 7' and s on a neighborhood of
s = —94, that g = g— on a neighborhood of s = —96 and that g = g_ for all s on the
complement of 7.

Step 5 This step describes py and says more about the metric mr,. The 2—form py
and the metric m7, on the s € [—102, —98] part of X are described by the analog of
Step 1 in Part 11 of Section 9.4 that has Y replacing Y. By way of a summary, py is
defined on the s € [-102, —101] part of X to be the 2—form par; that is described in
the Y version of Step 3 from Part 9 of Section 9.4. The 2—form px is defined on the
s € [-101, —100] part of X to be the Y version of the 2—form py~ that is described
in Step 4 from Part 9 of Section 9.4. The definition of py on the s € [-100, —98]
part of X is made by specifying its pullback via the embedding from the second
bullet of (2-8). This pullback is the s—independent 2—form that equals pp on )p and
w— —d(o141—) on the rest of Y. The metric mr, on this part of X pulls back via
the embedding from the second bullet of (2-8) as ds? + g with g denoting the metric
given by g— on Yz, the metric in (9-39) on [—100, —98] x N and the metric g« on
[—100, —98] x V. Note in this regard that mr is in any event described by (9-10).

Step 6 This step describes py and the metric on the s € [-98, —96] part of X. But
for one significant difference, the description of py here is similar to the description
of its namesake given in Step 2 from Part 11 in Section 9.4. Both py and the metric
on this part of X are described by their pullbacks via the embedding from the second
bullet of (2-8). The metric pulls back as ds? + g with g given by g« on Yo, and by
the metric in (9-39) on N. The metric g on Yy is the metric g—.

As in the Step 2 from Part 11 of Section 9.4, a 1-form to be denoted by g¢3— is
constructed with the following properties: it obeys dgz— = p—w—_ + d(o1q1-), it
vanishes on the 1> py — %8 part of N and its L2—norm is bounded by cq. Reintroduce
X3 to denote the function on R given by y(|s| —97) and use y/,; to denote its
derivative. The 2—form py on [—98, —96] x Y is pp on )y and given on the rest of ¥
by the formula in (9-45). Note that py is po + p near {—96} x Y, and that its L2-norm
on this part of X is bounded by cg.
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To start the description of ¢3—, let y denote a loop from a pair in the set ®. The
2—form w— on 7, is given by tw + (1 —1)Z, p, and so it can be written as

(9-77) py +1(Q, dt —7y,qy dx),

where Q) is a function of y and 7 whose y—derivative is H,, and where g, is a
function of x and y whose y—derivative is b, . Meanwhile, 7 = % Let ¢, denote
7(Qy dt—27yqy dx). Use (9-68) to see that the g, A*q, canbe written as oHy, dx dy dt
with |o| < corzA;l . Now, A, is constrained to be positive and less than ¢ 172 and
these constraints are met if A), is chosen greater than ¢ 272 Take Ay so that this is

the case, and then the L2—norm (and pointwise norm) of gy is bounded by cy.

The 2—form w— —d(oq1-) is exact on Vs — (U2, )eo Ty) and on the r < py part
of Ng. This being the case, it can be written as dgx on this part of Y. More to the point,
Lemma 9.5 can be used as in the last paragraph of Step 2 from Part 11 in Section 9.4
to obtain a version of g, that is zero where r > p, — #8 and has L2 -norm bounded

by co on Yy — (U(y,zy)e® 7';) and on the r < py — %e part of Nj.

Let y again denote a loop from a pair in ®. The difference ¢« — ¢, on 7, — 7'1,’ is
exact. This being the case, it follows from the Mayer—Vietoris exact sequence and
from the fact that the various loops from © freely generate H(Mg;R) that there is
a closed 1-form, K, on Yy with the following three properties: First, g« — g, = K
on each (y,zy) € © version of 7, —7,. Second, K = 0 near N and on (J,ep Hp-
Finally, the LZ—norm of £ is bounded by cq. This understood, the sought after 1—
form ¢3— is defined to be ¢, on each (y,Z,) € © version of 7, and to be g« — K on

I —Ug,z,yeo Tr-

Step 7 This step describes py and the metric on the s € [-96, —94] part of X. The
story with py is simple: it is the 2—form pp + p. The metric on X is described by
its pullback to [—96, —94] x Y via the embedding from the second bullet of (2-8). In
particular, it pulls back as ds? + g with g being an s—dependent metric on Y. The
s—dependence involves only g’s restriction to U(y,z,,)e@ T, where it is given in Step 4.
The metric g is independent of s on the rest of Y. As explained in the next paragraph,
this metric on X is such that the L2—norm of px on the [-96,—94] part of X is
bounded by cg, a T —independent constant.

The aforementioned L?-norm bound holds for po. To see about p, write it as
Z(y’zy) <o Zypy - A given version of p, has support in 7, , where the metric is given
by (9-76). Fix s € [-96, —94] and since p, = hy dx dy, the first bullet of (9-76) can
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be used to write p, A *py as P|bhy,|?Hy dx dy dt with P = ()(ZZAV +(1— )(ZZ)AYV)Z.
Since P < cg, so the L2—norm of p, atany s € [—96, —94] slice of [-96, —94] x Y is
bounded by cop.

Step 8 This last step describes py and the metric on the s € [-94, 102] part of X.
The description of py starts where s € [96, 102]. The 2—form px here is described by
the Y4 = Y; version of the 2—form that is defined in Steps 1 and 2 from Part 11 of
Section 9.4. The s € [96, 100] part of the constraint in (9-74) and the constraint from
Part 10 of Section 9.4 are needed to repeat Steps 1 and 2 from Part 11 in the case at
hand. These steps define a version of pxy whose L?—norm on the s € [96, 102] part
of X is bounded by cg times the L?—norm of w4 on Y. This version of py is w
near the s = 102 slice of X, and it is the 2—form pp 4 p near the s = 96 slice. The
2—form py is set equal to po + p on the s € [—94, 96] part of X. Its L2—norm on the
s € [—94, 96] part of X is bounded by c¢g, this being a consequence of (9-75).

Part9 Taking up where Part 8 left off, this last part of the subsection defines the desired
metric on X and wy on the s € [—4L +4, L] part of X. To this end, fix 7" large and
then L1 > cT so as to use the constructions in Part 8 of the metric m7, and w7 4. With
L1 chosen, assume that L > 4L. The metric m7, where s € [—%L +4, —%L —|—5] 18
the same as the s € [—%L + 4, —%L + 5] version of the metric from Part 8, and w7«
on this same part of X is the s € [—4 L +4, —3 L + 5] version of Part 8’s 2—form wy .
This understood, the desired metric for X is taken to be mr, where s > —%L + 4,
and the 2—form wy is taken to be wrs on this same part of X. Here, vy is set to
be the s—independent 1—form v, , and the bounds in items (4)(b) and (5)(c) of (3-15)
are verified by choosing the parameter m to be sufficiently small, as directed in Part 2
above. O
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