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The existence of an isomorphism between these respective Floer homologies is stated
as the main theorem in [8]. A particular isomorphism is described in [8], which can be
written as the concatenation of three separate isomorphisms which involve an auxiliary
manifold that is obtained from the original by connect summing a certain number
of copies of S1 � S2 . As noted in Section 3 of [8], the middle isomorphism in this
concatenation identifies a version of the Seiberg–Witten Floer homology on the connect
sum manifold with a version of Michael Hutchings’ embedded contact homology [3]
on this same connect sum. The relevant version of this embedded contact homology
is described in Section 2.2 of [8] and in the appendix of [9]. This homology is also
the focus in [10]. The isomorphism between the respective Seiberg–Witten Floer and
embedded contact homologies on the connect sum manifold is asserted by Theorems 3.3
and 3.4 in [8]. The latter reference deduces its Theorem 3.4 from Theorem 3.3; this
paper proves [8, Theorem 3.3]. Section 1.4 explains why the latter theorem is a
consequence of Theorem 1.5 in Section 1.4. Respective proofs are also given below
for [8, Theorems 3.1 and 3.2]. These are seen in Section 1.3 to be consequences of
Propositions 1.1–1.4.

Most of what is done in [9; 10] is not relevant for what follows. Even so, certain
results and constructions from these papers are needed. In particular, the geometry
needed to define the appropriate versions of the Seiberg–Witten Floer homology and the
embedded contact homology is described in [9; 10]. Section 1.1 provides a summary
of this geometry.

The following conventions are used throughout the remainder of this paper: Section
numbers, equation numbers and other references from [8; 9; 10] are distinguished from
those in this paper by the use of the Roman numerals I, II and III as a prefix. For
example, “Section II.1” refers to Section 1 in [9]. Note also that the convention here as
in [9; 10] is to use c0 to denote a constant in .1;1/ whose value is independent of all
relevant parameters. The value of c0 can increase between subsequent appearances.
A second convention used here and in [9; 10] concerns a function that is denoted
by �. The latter is a fixed, nonincreasing function on R that equals 1 on .�1; 0� and
equals 0 on Œ1;1/.
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in part by grants from the National Science Foundation. Lee was supported by Hong
Kong Research Grants Council grants GRF-401913, 14316516, 14305541.
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1 Embedded contact homology and Seiberg–Witten Floer
homology

Let M denote the given compact, oriented 3–manifold. A self-indexing Morse function
for M and certain auxiliary data are used in [9] to construct a second manifold, Y , as
a connected sum of M with copies of S1 �S2 . The manifold Y has two orientations,
one coming from the part it shares with M and then the opposite orientation. Theorems
3.1–3.4 in [8] compare certain Seiberg–Witten Floer homologies on the M–oriented
version with a certain sort of embedded contact homology on the oppositely oriented
version. These respective homologies need certain geometric data for their definition.
This section starts with a description of the necessary data. It then briefly describes the
relevant version of embedded contact homology and the relevant version of Seiberg–
Witten Floer homology. It ends by restating Theorems 3.1–3.4 from [8].

1.1 The geometry of Y

The construction of Y from M is described in Section II.1. This subsection summarizes
the salient features of Y .

Part 1 The construction of Y starts with the choice of a self-indexing Morse function,
f W M ! Œ0; 3� with one index 0 critical point, one index 3 critical point and some
index 1 and index 2 critical points. The number of index 1 (and thus index 2) critical
points is denoted by G . The manifold Y is diffeomorphic to the connected sum of M
with GC 1 copies of S1 �S2 . The manifold Y is oriented so that the part from M

has the orientation opposite from M ’s orientation. Note that [8] uses Y to denote this
orientation of the connected sum and uses Y to denote the connected sum with the
orientation induced from M.

Also needed from M is the choice of a class in H 2.M IZ/, which defines a homo-
morphism from H2.M IZ/ to 2Z. This class is denoted in what follows by c1M . A
Spinc structure will be chosen in a moment, and its first Chern class will play the role
of c1M . Needed also is a chosen pairing between the set of index 1 critical points of f
and the set of index 2 critical points of f . The resulting set of G pairs is denoted by ƒ.
An element p 2ƒ is written as an ordered pair of points with it understood that the
first entry is the index 1 critical point of f and the second entry is the index 2 critical
point of f . Various other Morse-theoretic items from M are needed to construct Y
and its geometry, but these others play minor roles in this paper.
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The definition of Y required the choice of positive numbers which are denoted by ı�
and R . This ı� is from .0; 1/; it is determined by the chosen function f . Meanwhile,
R has the lower bound �100 ln ı� . This constant R has no a priori upper bound, and
the freedom to take R as large as needed is exploited in [9; 10] and in the constructions
to come in this article.

The construction of the geometry needed for the embedded contact geometry chain
complex required the choice of two additional positive numbers which are denoted by ı
and x0 . The trio .ı; x0; R/ are constrained by the requirements that ı < ı�=c0 , x0<ı3

and R��c0 ln x0 . The choice of ı determines an upper bound for x0 , and the choice
of x0 subject to this upper bound then determines a lower bound for R . Constants ı ,
x0 and R that satisfy these bounds are said to be appropriate. The freedom to take ı
as small as desired is also exploited in [9; 10] and in what follows.

Part 2 The manifold Y is constructed by attaching GC1 handles to M. In particular,
Y is written as the union of sets Mı [H0 [

�S
p2ƒHp

�
, where the notation is as

follows: First, Mı is the complement in M of 2.GC1/ disjoint balls about the critical
points of f . What is written as H0 is a 1–handle and so diffeomorphic to Œ�1; 1��S2 .
It intersects Mı near f�1g�S2 as an annulus in a ball centered on the index 3 critical
point of f , and it intersects Mı near f1g �S2 as an annulus in a ball centered on the
index 0 critical point of f . Meanwhile, the various p 2ƒ version of Hp are 1–handles
and so each is diffeomorphic to Œ�1; 1� � S2 also. These are pairwise disjoint and
disjoint from H0 . Any given p 2ƒ version of Hp intersects Mı near f�1g�S2 as an
annulus in a ball centered around p’s index 2 critical point and it intersects Mı near
f1g �S2 as an annulus in a ball centered around p’s index 1 critical point.

The handle H0 and those from the set fHpgp2ƒ have preferred coordinates, these
denoted by .u; .�; �// where .�; �/ are spherical coordinates for the S2 factor and
where u is the Euclidean coordinate for the closed interval Œ�R�ln.7ı�/; RCln.7ı�/�.
The function f appears in these coordinates near the u<0 end of H0 as f D3�e2.uCR/

and near the u > 0 end of H0 as f D e�2.u�R/ . Meanwhile, the function f appears
near the respective negative and positive u ends of any given p 2ƒ version of Hp as

(1-1) f D 2� e�2.uCR/.1� 3 cos2 �/ and f D 1C e2.u�R/.1� 3 cos2 �/:

The 3–form du sin � d� d� gives the Y –orientation to each handle. Orient the cross-
sectional spheres in each 1–handle using the 2–form sin � d� d� .
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Part 3 The definition of the relevant version of Hutchings’ embedded contact ho-
mology uses a pair .w; a/ of 2–form and 1–form on Y . The latter define a stable
Hamiltonian structure, which is to say that w is closed, a^w is nowhere zero and
defines Y ’s orientation, and da � Span.w/. The vector field that generates the kernel
of w and has pairing 1 with a is denoted by v . The salient features of w , a and v are
listed in the upcoming (1-3). This equation refers to auxiliary functions x , �C , �� , f
and g. These are functions on Œ�R� ln.7ı�/; RC ln.7ı�/� that are defined using the
chosen function �. By way of a reminder, � is a smooth, nonincreasing function on R

that is 1 on .�1; 0� and equals 0 on Œ1;1/. The aforementioned five functions are

(1-2)

x D x0�.juj �R� ln ıC 12/;

�C D �
�
�u� 1

4
R
�
; fD xC 2.�Ce2.u�R/C��e�2.uCR//;

�� D �
�
u� 1

4
R
�
; gD .�Ce2.u�R/���e�2.uCR//:

What follows is the promised list:

(1-3) � On Mı The 2–form w on Mı is nowhere zero on the kernel of the 1–
form df , and v here is a certain pseudogradient vector field for f .

� In the handle H0 The 2–form w and the vector field v on H0 are

w D sin � d� ^ d� and v D
1

2.�Ce2.u�R/C��e�2.uCR//

@

@u
:

� In the handles fHpgp2ƒ Fix p 2ƒ. The trio a , w and v on Hp are

aD .xC g0/.1� 3 cos2 �/ du�
p
6 f cos � sin2 � d�C 6g cos � sin � d�;

w D 6x cos � sin � d� ^ du�
p
6 dff cos � sin2 � d�g;

v D yc�1v ff.1� 3 cos2 �/ @u�
p
6 x cos � @� C f0 cos � sin � @�g:

Here, ycv D .xC g0/f.1� 3 cos2 �/2C 6.xfC gf0/ cos2 � sin2 � is a positive function
of .u; �/.

An additional property of w plays a central role in the story to come. To say more
about this, introduce the direct sum decomposition

(1-4) H2.Y IZ/DH2.M IZ/˚H2.H0IZ/˚
M
p2ƒ

H2.HpIZ/

that comes via Mayer–Vietoris by writing Y DMı[H0[
�S

p2ƒHp

�
. The summands

in (1-4) that correspond to the various 1–handles are isomorphic to Z, and any oriented,
cross-sectional sphere is a generator.
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The additional property concerns the cohomology class defined by w . This class is
determined by what follows: Integration of w over closed 2–cycles defines the linear
map from H2.Y IZ/ to Z that has value 2 on the generator of H2.H0IZ/; it has value
zero on each p 2 ƒ version of H2.HpIZ/; and it acts on the H2.M IZ/ summand
in (1-4) as the pairing with the chosen class c1M .

Part 4 A particular closed integral curve of the vector field v plays a distinguished
role in the embedded contact homology story. This curve is denoted by 
 .z0/ here and
in the other papers in this series. The curve is disjoint from

S
p2ƒHp and it crosses H0

so as to have intersection number 1 with each cross-sectional sphere. Note in this
regard that the convention here and in what follows is to orient the integral curves
of v using v for the oriented unit tangent vector. This curve intersects †D f �1

�
3
2

�
in

precisely one point. The latter is denoted by z0 .

A pair of additional 1–forms enter the story. These are denoted by �˘ and ya :

(1-5) � The 1–form �˘ The 1–form �˘ is closed and is such that �˘ ^w � 0.
Furthermore, �˘ ^ w D 0 only where both u D 0 and 1 � 3 cos2 � D 0

on each p 2 ƒ version of Hp . This 1–form equals df on Mı , it is given
by �˘ D 2.�Ce2.u�R/C��e�2.uCR// du on H0 , and it is given by �˘ D
d..�Ce

2.u�R/���e
�2.uCR//.1� 3 cos2 �// on any given p 2ƒ version

of Hp .

The definition ya refers to the function �ı that is defined on any given p 2ƒ version
of Hp by the rule �ı D �.juj �R� ln ıC 10/.

(1-6) � The 1–form ya The 1–form ya has pairing 1 with v and is such that
ya ^ w > 0. This 1–form is equal to �˘ on Mı [H0 and it is equal to
�ıaC .1��ı/�˘ on any given p 2ƒ version of Hp .

The kernel of the 1–form ya defines a 2–plane subbundle in T Y on which w is
nondegenerate. When oriented by w , the bundle Ker.ya/ has an Euler class which
evaluates as 2 on the generator of the H2.H0IZ/ summand in (1-4) and evaluates
as �2 on the generator of each p 2ƒ summand H2.HpIZ/. The vector field v has
pairing 1 with ya also.

Various other geometric properties of Y are introduced as needed in what follows.

Part 5 The almost complex geometry of R � Y is defined by an almost complex
structure, this denoted by J. The latter is constrained in various ways; most of the
constraints are given in Part 1 of Section II.3A and Section III.1C. The upcoming (1-7)
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reviews various features of J. We use s to denote the Euclidean coordinate on the
R factor of R�Y .

(1-7) � J maps the Euclidean tangent vector @s to the R factor of R�Y to v .

� J is not changed by constant translations of the coordinate s on R�Y .

� J preserves the kernel of the 1–form ya , and its restriction to this 2–plane
field defines the orientation given by w .

� J on R�H0 and on any given p 2ƒ version of R�Hp is invariant with
respect to constant translations of the R=.2�Z/ coordinate � .

It is a consequence of (1-7) that the 2–form y! D ds ^ yaCw on R�Y is compatible
with J. This is to say that the bilinear form y!. � ; J. � // on T .R � Y / defines a
Riemannian metric. Note in particular that this metric has the form ds2CgY with gY
being a metric on T Y that makes v a unit vector that is orthogonal to the kernel of ya .
The corresponding metric on T �Y gives ya norm 1 and is such that the Hodge star
of ya is w .

These respective metrics on R�Y and Y are used implicitly in what follows.

1.2 Embedded contact homology on Y

The appendix in [9] describes the relevant version of embedded contact homology
on Y . More is said about the chain complex and its homology in Sections III.1B
and III.9. This subsection provides a very brief summary of what is said in these
sections of [9; 10]. The summary here comprises Parts 2–4 of the five parts of this
subsection. The first part of the subsection constitutes a digression that concerns Spinc

structures on M and Y . The final part summarizes some observations from [9; 10] that
are particularly relevant in the subsequent sections of this paper.

Part 1 A Spinc structure on M is chosen whose associated first Chern class is the
chosen class c1M . The chosen Spinc structure is fixed for the remainder of this article.
The Spinc structure on M determines in a canonical fashion a corresponding Spinc

structure on Y . This is done using a version of Mayer–Vietoris with the decomposition
of Y as Mı [H0[

�S
p2ƒHp

�
. The first Chern class of the resulting Spinc structure

on Y has pairing 2 with the generator of the H2.H0IZ/ summand in (1-4) and it has
pairing 0 with each of the p 2ƒ labeled summands. The pairing with the H2.M IZ/
summand is that of the first Chern class of the Spinc structure on M, which is to say
that of c1M . It follows as a consequence that the image in H2.Y IR/ of the first Chern
class of the Spinc structure on Y is the class defined by the closed form w .

Geometry & Topology, Volume 24 (2020)
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The image of H2.M IZ/ in Z given by the pairing with c1M is a subgroup of Z. If
c1M is not torsion, use pM to denote the largest integer that divides all of its elements.
Note that pM is in all cases even.

Part 2 The Z–module that serves as the embedded complex homology chain complex
is defined using a certain principal Z–bundle over a set that is denoted by Zech;M .
The set Zech;M is described in Proposition II.2.8. The principal Z–bundle is denoted
by yZech;M and described in Section II.1F and in Part 4 of Section III.1B. The embedded
contact homology chain complex is denoted by Z. yZech;M /.

By way of a reminder, an element in Zech;M is a set, ‚, consisting of some number of
closed integral curves of v that lie entirely in the union of the f 2 .1; 2/ part of Mı

and the various p 2 ƒ versions of Hp . In particular, the union of the curves that
constitute such a set ‚ intersect each p2ƒ version of Hp in at most three components.
There exists in all cases one component of this intersection that lies entirely in the
1� 3 cos2 � > 0 part of Hp as an arc that crosses Hp from the uD�R� ln.7ı�/ end
to the uDRC ln.7ı�/ end. The locus in Hp where both uD 0 and 1� 3 cos2 � D 0
is a disjoint union of two closed integral curves of v , and one or both of these curves
can also appear in ‚. The curve with uD 0 and cos � D 1p

3
is denoted by y
Cp and

the curve where uD 0 and cos � D� 1p
3

by y
�p .

If 
 is used to denote a closed integral curve of v , then Œ
� is used to denote both the
oriented cycle defined by 
 and the corresponding element in H1.Y IZ/, where it is
understood that 
 is oriented by v . Meanwhile, Œ‚� D

P

2‚Œ
� is used to denote

both a sum of oriented 1–cycles and the corresponding homology class. The latter is
fixed by the chosen Spinc –structure; this class is the same for all elements in Zech;M .

The principal Z–bundle yZech;M !Zech;M is defined after choosing a fiducial element
‚0 2 Zech;M . The fiber of yZech;M over a given element ‚ 2 Zech;M is identified with
the set of equivalence classes of pairs of the form .‚;Z/ where Z is a relative cycle
in H2.Y I Œ‚�� Œ‚0�/. The equivalence relation is defined using the pairing with the
Poincaré dual of the homology class of the closed integral curve 
 .z0/ . This pairing
defines a homomorphism from the Z–module of closed 2–cycles to Z that is denoted
by Œ
 .z0/�Pd. � /. The equivalence relation that defines yZech;M has .‚;Z/� .‚0; Z0/
if and only if ‚D‚0 and also Œ
 .z0/�Pd.Z�Z0/D 0. The principal bundle projection
map sends an equivalence class .‚;Z/ to ‚. The element 1 2 Z acts to send .‚;Z )
to .‚;ZC ŒS0�/, where ŒS0� is the uD 0 sphere in H0 .
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The module Z. yZech;M / has a relative Z–grading when c1M is torsion, and it has
a relative Z=pMZ grading otherwise. The grading rule comes via a corresponding
grading of the generating set yZech;M . The rule for assigning the relative grading of the
generators is given by Hutchings in [3; 2]. The rule is described briefly in Section III.9A.

Part 3 The appendix in [9] and Sections III.1D and III.9B explain how the differen-
tial that defines the embedded contact homology is computed using J –holomorphic
submanifolds in R�Y . Keep in mind that a J –holomorphic submanifold is properly
embedded with J –invariant tangent space and such that the integral of w over the
submanifold is finite. The particular J –holomorphic submanifolds that are used to
define the differential form a topological space that is indexed by an ordered pair
from yZech;M . Let .y‚0; y‚/ denote such a pair. The corresponding component of this
topological space is denoted by M1.y‚

0; y‚/. This space is a finite disjoint union of
connected components, each being homeomorphic to R. In fact, each component has a
free R action that is induced by the constant translations along the R factor of R�Y .

Any given submanifold from M1.y‚
0; y‚/ is characterized in part by the behavior of

its jsj � 1 part. To elaborate, suppose that C is a given submanifold from this space.
There exists s�� 1 such that the jsj � s� portion is a disjoint union of embedded
cylinders where ds is nowhere zero. Each such cylinder is said to be an end of the
given submanifold. These ends have the following properties:

(1-8) � The s � s� ends are in 1–1 correspondence with the integral curves from ‚.
This correspondence is such that the set of constant s slices of any given
end converge isotopically in Y as s!1 to its partner in ‚.

� The s � �s� ends are in 1–1 correspondence with the integral curves
from ‚0. This correspondence is such that the set of constant s slices of any
given end converge isotopically in Y as s!�1 to its partner in ‚0.

Section III.9B associates a sign, either 1 or �1, to each component of M1.y‚
0; y‚/.

This is done in accordance with the rules laid out by Hutchings in [3; 2]. These
signs determine the endomorphism of Z. yZech;M / that supplies the embedded contact
homology differential as follows: the relevant endomorphism of this Z–module is
given by its actions on the set of generators by the rule

(1-9) y‚ 7!
X

y‚02 yZech;M

N y‚0;y‚
y‚0;

where any given y‚0 2 yZech;M version of N y‚0;y‚ is the sum of the C1’s and �1’s that
are associated to the components of M1.y‚

0; y‚/.
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The differential on Z. yZech;M / that defines the embedded contact homology decreases
the relative grading by 1.

Part 4 The appendix in [9] and Sections III.1D and III.9C describe a certain action
of Z.U/˝

V�
.H1.Y IZ/=tors/ on the embedded contact homology Z–module. The

endomorphism that generates the Z.U/ factor is called the U –map. The latter decreases
the relative degree by 2 and it commutes with the generators of the

V�
.H1.Y IZ/=tors/

factor. The generators of the latter decrease relative degree by 1. The U –map gen-
erator and those of

V�
.H1.Y IZ/=tors/ are given by corresponding endomorphisms

of Z. yZech;M /. Each such endomorphism is defined by a version of (1-9) with the
set fN y‚0;y‚gy‚0;y‚2 yZech;M

determined by certain sets of J –holomorphic submanifolds
according to rules laid out by Hutchings in Section 12 of [5]. See also Section 2.5
of [6] for a discussion of the U –map generator.

An endomorphism of Z. yZech;M / that defines the U –map is defined in Sections
III.1D and III.9C with the help of a chosen point in the handle H0 . With the point
chosen, the set of coefficients in the corresponding version of (1-9) is denoted by
fNU
y‚0;y‚
gy‚0;y‚2 yZech;M

. These are such that any given NU
y‚0;y‚

is nonzero only when y‚0 and
y‚ sit over the same element in Zech;M . Moreover, there is precisely one nonzero NU

y‚0;y‚
such that both y‚0 and y‚ sit over any given element in Zech;M , and the corresponding
NU
y‚0;y‚

is equal to 1. A single J –holomorphic submanifold is used to compute this
nonzero NU

y‚0;y‚
: if ‚2Zech;M is the given element, then the corresponding submanifold

is the union of the cylinders from the set fR� 
g
2‚ and f0g �S � R� Y with S
being the uD constant sphere in H0 that contains the chosen point.

The endomorphisms of Z. yZech;M / that define a set of generators for the action ofV�
.H1.Y IZ/=tors/ on the embedded contact homology are defined with the help of a

chosen set of 1–cycles that supply a basis for H1.Y IZ/=tors. Section III.1D took this
set to have the form that is described in a moment. To set the background, introduce
b1.M/ to denote the first Betti number of M. Section II.2A describes 1C b1.M/

closed integral curves of v in Mı [H0 that have intersection number 1 with each
cross-sectional sphere in H0 . One of these curves is the aforementioned 
 .z0/ . The
curves in this set are labeled by the intersection point with the surface f �1

�
3
2

�
. This

set of points is denoted by U and the curve that contains a given z 2 U is denoted
by 
 .z/ . Pairing with the Poincaré duals of the homology classes of the cycles that
constitute the set fŒ
 .z/�� Œ
 .z0/�gz2U�z0 generates the dual in Hom.H2.Y IZ/IZ/
of the H2.M IZ/ summand in (1-4).
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The basis used in Section III.1D contains the cycle Œ
 .z0/�; in addition it contains a
set of cycles that are labeled fO�.z/gz2U�z0 , and it is rounded out by a set of G cycles
that are labeled fO�pgp2ƒ . A given z 2 U � z0 version of O�.z/ lies entirely in the M7ı�

part of Y . It is homologous to Œ
 .z/�� Œ
 .z0/� and it is obtained from the latter by first
truncating the H0 portions of the curves 
 .z/ and 
 .z0/ and then reconnecting the
respective endpoints by arcs on the boundary of the radius 7ı� coordinate balls about
the index 0 and index 3 critical points of f . A given p 2ƒ version of O�p is disjoint
from the f 2 Œ1; 2� part of M7ı� , and it intersects the rest of M7ı� and H0 as a smooth
curve that is transverse to the level sets of f in Mı and the constant u spheres in H0 ;
the orientation is such that it has intersection number 1 with the uD 0 sphere in H0 .
Meanwhile, O�p intersects

S
p02ƒHp0 as the � D 0 arc in Hp ; its orientation gives it

intersection number �1 with each uD 0 sphere in Hp .

Suppose that O� is a given cycle from the chosen basis of cycles. As noted above,
the corresponding endomorphism of Z. yZech;M / has the form given in (1-9). Denote
by fNO�

y‚0;y‚
gy‚0;y‚2 yZech;M

the set of coefficients. Any given NO�
y‚0;y‚

is defined using the
J –holomorphic submanifolds from M1.y‚

0; y‚/. In particular, NO�
y‚0;y‚

is the value of
a sum that is indexed by the components of M1.y‚

0; y‚/ whereby the component of
a given submanifold C contributes either C1 or �1 times the algebraic intersection
number between C and R� O�. This intersection number is well defined because O� is
disjoint from the integral curves of v that come from elements in Zech;M . The C1
or �1 used here is the contribution of C ’s component to the version of N y‚0;y‚ that
defines the embedded contact homology differential.

Part 5 This last part of the subsection introduces a certain filtration of the embedded
contact homology chain complex that is preserved by the differential. The filtration is
depicted by (I.2-3). What follows reviews what is involved. To start, invoke Proposition
II.2.8 or Theorem I.2.1 to write the set Zech;M as ZHF�

�Q
p2ƒ.Z�O/

�
. By way of a

reminder, ZHF denotes a certain set that is defined using data coming strictly from M

and O is the 4–element set f0; 1;�1; f1;�1gg. The ZHF –label of any given element
‚ 2 Zech;M characterizes the intersection of

S

2‚ 
 with Mı . Meanwhile, each

p 2ƒ factor of Z� O characterizes the intersection of
S

2‚ 
 with Hp . The integer

component of this label characterizes the segment of
�S


2‚ 

�
\Hp that crosses Hp

from its u D �R� ln.7ı�/ end to its u D RC ln.7ı�/ end. The label from the set
f0; 1;�1; f1;�1gg signifies which, if any, integral curves from the set fy
Cp ; y


�
p g appear

in ‚. The C1 signifies y
Cp and the �1 signifies y
�p . Use the identification of Zech;M
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3230 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

with ZHF �
�Q

p2ƒ.Z� O/
�

to write a given element ‚ as .y�; .kp; Op/p2ƒ/. For each
p2ƒ, use jOpj 2 f0; 1; 2g to denote the sum of the absolute values of the elements in Op .

Associate to each nonnegative integer L the subset ZLech;M � Zech;M whose elements
are such that

P
p2ƒ.jkpj C 2jOpj/ < L. These sets are such that ZLech;M � ZL0ech;M

when L0 >L, and their union is the whole of Zech;M . Let yZLech;M denote the inverse
image of ZLech;M in yZech;M . It follows from Theorem I.2.3 or Theorem III.1.1 that the
embedded contact homology differential maps the submodule Z. yZLech;M /�Z. yZech;M /

to itself and so the latter defines a subcomplex. The embedded contact homology is the
direct limit of the homology for the filtered sequence of chain subcomplexes

(1-10) � � � � Z. yZLech;M /� Z. yZLC1ech;M /� � � �

of the chain complex Z. yZech;M /.

1.3 The Seiberg–Witten Floer homology on Y

This subsection describes various versions of the Seiberg–Witten Floer homology on
the manifold Y . The presentation that follows takes for granted the basic constructions
and theorems about Seiberg–Witten Floer homology and focuses almost exclusively
on those parts of the story that are specific to the geometry at hand. The book by
Kronheimer and Mrowka [7] is the recommended textbook for those who are not
familiar with the foundational background. There are nine parts to what follows.

Parts 1–5 introduce various geometric notions that are used in Part 6 to define the chain
complex and differential whose homology groups constitute the desired versions of
Seiberg–Witten Floer homology. These groups are introduced in Part 8. The intervening
Part 7 describes certain canonical endomorphisms of the chain complex that are used to
generate an action of ZŒU �˝

�V�
.H1.Y IZ/=tors/

�
on the homology. Part 9 explains

why Theorems I.3.1 and I.3.2 are direct consequences of what is said in Parts 6–8.

Part 1 Part 5 in Section 1.1 defined a Riemannian metric on Y , this being a metric
with �wD ya and jyaj D 1. Use this metric to define the bundle of oriented, orthonormal
frames for Y . The given Spinc –structure on Y determines a lift of this bundle to a
principal U.1/–bundle. The defining action of U.2/ on C2 supplies an associated
Hermitian C2–bundle. The latter is denoted by S . Use det.S/ to denote the complex
line bundle

V2 S .

There is a canonical homomorphism from T �Y into End.S/, this being the Clifford
multiplication. The homomorphism is denoted by cl; it is characterized as follows: Let
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a and b denote a pair of covectors in a given fiber of T �Y . Then

(1-11) cl.a/� D�cl.a/ and cl.a/ cl.b/D�ha; bi � cl.�.a^ b//;

where h � ; � i here denotes the metric inner product and � denotes the metric’s Hodge
dual. This Clifford multiplication map induces two other useful endomorphisms. The
first, denoted by yc , maps S ˝ T �Y to S . It is defined so as to send a reducible
element  ˝ a to cl.a/ . The second is the R–linear homomorphism from S˝S

to T �Y ˝R C that is written as �˝  7! ��� and defined by the rule whereby
ha; ��� i D �� cl.a/ .

Clifford multiplication by ya splits S as a direct sum of complex line bundles, this
written as

(1-12) SDE˚ .E˝K�1/:

Here, K�1 is isomorphic as a real 2–plane bundle to the oriented bundle Ker.ya/,
this being the kernel of ya with the orientation defined by w . The convention in what
follows takes the left-most summand as the Ci eigenspace of cl.ya/. The corresponding
component decomposition of a given section of S is written as .˛; ˇ/ with ˛ being a
section of E and ˇ being a section of E˝K�1 .

A unitary connection on det.S/ with the Levi-Civita connection on T Y jointly define
a unitary connection on S and thus a covariant derivative, this being a map from
C1.Y IS/ to C1.Y IS˝ T �Y /. Meanwhile, the Clifford multiplication endomor-
phism defines the endomorphism �clW S˝T �Y ! S . The composition of the covariant
derivative and �cl then defines a first-order, elliptic operator from C1.Y IS/ to itself,
this being the Dirac operator.

The Dirac operator is used in a moment to define a canonical connection on K�1 . To
do this, introduce IC to denote a topologically trivial complex line bundle over Y , and
let SI denote the Spinc structure given by the E D IC version of (1-12). Fix a unit
norm section, 1C , of IC and view the pair .1C; 0/ as a section of S using the splitting
in (1-12). Since det.SI /DK�1 , a unitary connection on K�1 defines an associated
Dirac operator. The canonical connection on K�1 is characterized by the fact that
.1C; 0/ is annihilated by its associated Dirac operator. This connection on K�1 is
denoted by AK .

Let S be the C2–bundle that comes from the given Spinc –structure. With (1-12)
understood, det.S/D E2K�1 and thus any given unitary connection on det.S/ can
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be written as AK C 2A, where A is a connection on E. With A a given connection
on E, the symbol DA is used in what follows to denote the Dirac operator on sections
of S that is defined using AK C 2A for the connection on det.S/. Use Conn.E/ to
denote the Fréchet space of smooth, unitary connections on E.

The Fréchet Lie group C1.Y IS1/ acts smoothly on Conn.E/�C1.Y IS/ by the
rule whereby any given map u sends any given pair .A; / to .A�u�1du; u /.

Part 2 The Z–module that serves as the chain complex for the Seiberg–Witten Floer
homology is constructed using solutions to certain versions of the Seiberg–Witten
equations. These are equations for pairs .A; / with  a section of S and A2Conn.E/.
The simplest of the relevant versions constitutes a family of equations whose members
are labeled by a real number greater than � and a smooth 1–form on Y . The version
defined by a given r 2 Œ1;1/ and 1–form � asks that .A; / obey

(1-13)
�
BA� r. �� � iya/C 1

2
BAK � i �d�D 0;

DA D 0;

where the notation is such that BA D �FA with FA being the curvature 2–form of the
connection A. Likewise, BAK denotes the Hodge dual of the curvature 2–form of AK .

Certain perturbed versions of (1-13) are needed to guarantee that the solutions to
the associated equation and its instanton counterpart are suitably generic. A given
perturbed version of (1-13) is defined using a chosen element in a certain Banach
space of C1.Y IS1/–invariant functions on Conn.E/�C1.Y IS/ (see Chapter 11
in [7]). This Banach space is denoted by P and its norm is called the P–norm.
The Banach space is such that the differential of a given g 2 P is a smooth map
from Conn.E/�C1.Y IS/ to C1.Y I iT �Y /˚C1.Y IS/. With g chosen, write its
differential at a given .A; / as .T.A; /;S.A; //, this being a pair consisting of an
iR–valued 1–form on Y and a section of S . The 1–form T.A; / is in the image of
the operator �d . The g–perturbed version of the Seiberg–Witten equations are

(1-14)
�
BA� r. �� � iya/C 1

2
BAK �T.A; / D 0;

DA �S.A; / D 0:

The simplest but nontrivial perturbation has TD i �d� and SD 0 with � a smooth
1–form on Y taken from a certain Banach space of such forms; this perturbation gives
the equation in (1-13). The Banach space is denoted by �. The norm on this space
is also called the P–norm. The latter is such that the inclusion �! C1.Y I iT �Y /

defines a bounded, compact mapping. The convention in this paper is to use 1–forms
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� from � with P –norm less than 1. All of the assertions hold (with the same proofs)
given any a priori upper bound on the P –norm.

When � 2�, then the corresponding version of g is denoted by e� ; it is the function
that assigns to any given .A; / the integral over Y of the 3–form �iFA ^�.

If .A; / is a solution to (1-14), then so is .A�u�1du; u / for any u 2C1.Y IS1/.
Use ZSW;r in what follows to denote the C1.Y IS1/–quotient of the space of solutions
to a given g 2 P version of (1-14). Note in this regard that the group C1.Y IS1/ acts
freely on the space of solutions to any given r> � and g 2 P version of (1-14). This
is so because the group acts freely on Conn.E/� .C1.Y IS1/� 0/ and no  D 0
pair can solve (1-14) because both i

2�

�
FAC

1
2
�BAK

�
and w represent the first Chern

class of det.S/. Note also that ZSW;r is in all cases compact (see Chapter 29 in [7]).
By way of a warning, the notation does not indicate that ZSW;r depends on the chosen
perturbation g.

Part 3 The definition of the Z–module for the Seiberg–Witten Floer homology re-
quires the introduction of a subgroup of C1.Y IS1/ which is denoted by GMƒ . A
given map u sits in this subgroup when � i

2�

R

.z0/ u

�1 duD 0. Note in this regard
that � i

2�
u�1 du has integer periods.

Use yZSW;r to denote the space of GMƒ –orbits of solutions to a given r 2 Œ1;1/
and g 2 P version of (1-14). The space is a principal Z D H2.H0IZ/–bundle
over ZSW;r . The action of k 2 Z sends the GMƒ –equivalence class of .A; / to
that of .A�u�1du; u / with u 2C1.Y IS1/ any map with � i

2�

R

.z0/ u

�1 duD k .

The geometry of Y supplies certain Z–equivariant maps from yZSW;r to R. The
definition requires the choice of a fiducial connection on E, this denoted by AE . This
choice is constrained by the requirement that AE be flat on H0 and have holonomy 1
around the curve 
 .z0/ . The definition of the Z–equivariant map from yZSW;r to R also
requires the choice of a smooth function }W Œ0;1/! Œ0;1/ which is nondecreasing,
obeys }.x/D 0 for x < 7

16
and }.x/D 1 for x� 9

16
. It proves convenient to choose }

so that its derivative, }0, is bounded by 210.1�}/3=4 . A function with these properties
can be readily constructed from the function on R that is set equal to 0 for t < 0 and
set equal to e�1=t for t > 0. Fix such a function } .

Given cD .A; / from Conn.E/�C1.Y IS/, write  D .˛; ˇ/ and define

(1-15) yAD A� 1
2
}.j˛j2/j˛j�2.x̨rA˛�˛rA x̨/;
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this being a connection on E. The corresponding equivariant map to R is the map
from .Conn.E/ � C1.Y IS//=GMƒ obtained from the GMƒ –invariant map from
Conn.E/�C1.Y IS/ to R that sends any given pair cD .A; / to

(1-16) X.c/D
i

2�

Z

.z0/

. yA�AE /:

A given element c 2 Conn.E/�C1.Y IS/ is deemed to be holonomy nondegenerate
when X.c/� 1

2
is not an integer. The locus where X.c/� 1

2
2 Z is a codimension 1

submanifold in Conn.E/�C1.Y IS/. The element c is holonomy nondegenerate if
and only if all pairs in its C1.Y IS1/ orbit are holonomy nondegenerate.

Part 4 A certain symmetric, first-order elliptic operator on C1.Y I iT �Y ˚S˚iR/ is
associated to each pair in Conn.E/�C1.Y IS/. Fix cD .A; /2Conn.E/�C1.Y IS/.
The corresponding operator in the case when gD e� sends a section bD .b; �; �/ to
the section with respective iT �Y , S and iR components

(1-17)

8<:
�db� d� � 2�1=2r1=2. ���C ��� /;
DA�C 2

1=2r1=2.cl.b/ C� /;
�d �b� 2�1=2r1=2.�� � ��/:

If g is generic, the operator is obtained from (1-17) by adding .2=r/1=2
�
d
d�

TcC�yb

�
�D0

to the top term and
�
d
d�

ScC�yb

�
�D0

to the middle term with ybD ..2=r/1=2b; �/. The
operator in all cases is denoted by Lc;r . The pair c is said to be nondegenerate when
Lc;r has trivial kernel. A given pair c is nondegenerate if and only if all pairs in its
C1.Y IS1/ orbit are likewise nondegenerate.

The following statements are analogs of what is asserted in Lemma 3.6 and Proposition
3.11 of [17] for the case when ya is a contact 1–form and w D d ya . The proofs differ
only slightly from those given in [17].

(1-18) � Fix r � 1. Then there is an open, dense set in � which is characterized
as follows: if � is from this set, then the corresponding gD e� version
of ZSW;r is a finite set of orbits of pairs in Conn.E/�C1.Y IS/ and each
such pair is nondegenerate and holonomy nondegenerate.

� There exists a residual set in � that is characterized as follows: Fix � from
this set. There is a countable, nonaccumulating set in .�;1/ such that if r
is from its complement, then the corresponding .r; gD e�/ version of ZSW;r

is a finite set of C1.Y IS1/ orbits in Conn.E/�C1.Y IS/ and each such
orbit contains only nondegenerate and holonomy nondegenerate pairs.
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Suppose now that .r; g/ is such that the corresponding ZSW;r is a finite set of orbits
and that each orbit contains only nondegenerate and holonomy nondegenerate pairs.
The principal bundle in this case has a canonical Z–equivariant isomorphism

(1-19) yZSW;r D ZSW;r �Z

that is characterized as follows: the section ZSW;r � f0g of the product bundle cor-
responds to the set of the GMƒ –orbits of solutions to (1-14) with X. � / 2

�
�
1
2
; 1
2

�
.

Granted this identification, use yZ�SW;r �
yZSW;r to denote the subset that is identified

via (1-19) to ZSW;r � f0; 1; 2; : : : g � ZSW;r �Z.

Part 5 Certain versions of the Seiberg–Witten equations on R�Y play a central role
in the story. As in the case of (1-14), the equations require the choice of r � 1 and
a perturbation g from P . The corresponding equations is viewed here as a system
of differential equations for a map from R to Conn.E/�C1.Y IS/. The equations
demand that s 7! d.s/D .A; /js obey

(1-20)

(
@
@s
ACBA� r. �� � iya/C 1

2
BAK �T.A; / D 0;

@
@s
 CDA �S.A; / D 0:

A solution to (1-19) is said to be an instanton if it has respective s!˙1 limits that
obey (1-14). Any constant R translate of an instanton solution to (1-20) is also an
instanton solution.

An instanton is said to be nondegenerate if a certain operator is Fredholm and has
trivial cokernel. The relevant operator maps an L21–Hilbert space completion of the
space of compactly supported elements in C1.R � Y I iT �Y ˚ S˚ iR/ to an L2

completion. This operator in the case gD e� sends a section .b; �; �/ to the section
whose respective iT �Y , S and iR components are

(1-21)

8̂<̂
:
@
@s
bC�db� d� � 2�1=2r1=2. ���C ��� /;

@
@s
�CDA�C 2

1=2r1=2.cl.b/ C� /;
@
@s
�C�d �b� 2�1=2r1=2.�� � ��/:

If g is generic, the operator is obtained from (1-21) by adding .2=r/1=2
�
@
@�
TdC�yb

�
�D0

to the top term and
�
@
@�
SdC�yb

�
�D0

to the middle term. The operator in any case is
denoted by Dd .

Let dW R! Conn.E/�C1.Y IS/ denote an instanton solution to some .r; g/ version
of (1-20). The corresponding version of (1-21) is a Fredholm operator if and only if
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the s!˙1 limits of d are nondegenerate pairs in Conn.E/�C1.Y IS/. If this is
the case, then Dd has a corresponding Fredholm index, this denoted by �d .

The assertion made by the upcoming (1-22) is used when considering perturbations.
This fact has an almost verbatim analog stated in Part 5 from Section 3b of [19] for the
case when ya is a contact 1–form on a given 3–manifold. The argument that proves
(1-22) differs only cosmetically from that given for their [19] analog.

To set the notation for (1-22), suppose that p 2 P and that c is a given pair from
Conn.E/�C1.Y IS/. Then p is said to vanishes to second order at c if p.c/ D 0,
and if both the first and second derivatives at � D 0 of the function � 7! p.cC �b/

are zero for all pairs b 2 C1.Y I iT �Y ˚ S/. With this term understood, introduce
P� � P to denote the subset whose members have the following property: if p 2 P� ,
then pD 0 to second order on any solution to (1-14) and pD 0 to second order at all
points on any path s 7! d.s/ with d an �d � 2, nondegenerate instanton solution to the
.r; gD e�/ version of (1-20).

(1-22) Fix r �1 and � such that all solutions to the corresponding g D e� version
of (1-14) are nondegenerate. There is a residual set in P� characterized as
follows: if p is a member, then all instanton solutions to the .r; gD e�C p/

version of (1-20) are nondegenerate.

Suppose that .r; g/ is such that all solutions to (1-14) are nondegenerate and such that
all �d � 2 instanton solutions to (1-20) are nondegenerate. If this is the case, then
the set of �d D 0 instanton solutions is the set of constant maps from R to the set
of solutions to (1-14). To say something about the set of �d D 1 instanton solutions
to (1-20), suppose that c� and cC are given solutions to (1-14). Introduce M1.c�; cC/

to denote the set of instanton solutions to (1-20) with s!�1 limit equal to c� and
s !1 limit a pair on the orbit of cC . This set M1.c�; cC/ has the structure of a
smooth 1–dimensional manifold with a finite set of components, each being a copy
of R. Moreover, the group of constant translations of R induces a smooth, free R

action on each component.

Part 6 This part defines chain complexes whose corresponding homology groups are
of central concern here. To this end, fix r� 1 and fix � 2� with P–norm bounded
by 1 and such that all solutions to the .r; e�/ version of (1-14) are nondegenerate
and also holonomy nondegenerate. A Z–module that serves for the chain complex of
interest is the free module generated by the elements in the .r; e�/ version of yZSW;r .
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This module is denoted in what follows by Z. yZSW;r/. The action of the generator of
H2.H0IZ/ gives this module a ZŒt; t�1� structure.

The Z–module Z. yZSW;r/ has a relative Z=pMZ–grading which is defined as fol-
lows: Let c0 and c1 denote two solutions to the relevant version of (1-14). Introduce
grSW.c0/ � grSW.c1/ to denote the difference between the grading degrees of their
respective GMƒ –orbits in yZSW;r . This number is �1 times the spectral flow for the
Œ0; 1�–parametrized family of operators � 7!Lc.�/ with c.0/D c0 and c.1/D c1 . Those
unfamiliar with the notion of spectral flow can read about it in Chapter 14.2 of [7]
or in [16]. The generator of the ZŒt; t�1� action on Z. yZSW;r/ acts as a degree �2
endomorphism.

The relevant differential is a certain square-zero endomorphism of Z. yZSW;r/. This
endomorphism is defined by its action on the generators. To say more, introduce by
way of notation Œc� to denote the GMƒ –equivalence class of a given pair cD .A; /
from Conn.E/�C1.Y IS/. Any given endomorphism of Z. yZSW;r/ is defined by a
rule

(1-23) Œc� 7! WŒc�;Œc0�Œc
0�

where each Œc0� version of WŒc0�;Œc� is an integer and only finitely many are nonzero.

In the case of the differential, the specification of the coefficient set fWŒc0�;Œc�g requires
first the choice of an element p2P with norm much less than 1 such that the conclusions
of (1-22) hold. Any given Œc�; Œc0� 2 yZSW;r version of WŒc0�;Œc� is a sum that is indexed
by the components of the .r; gD e�C p/ version of M1.c

0; c/ with each component
contributing either C1 or �1 to the sum. The sign is obtained by comparing two
orientations for the component, one given by the generator of the R action and the
other using Quillen’s notion of a determinant line bundle for a family of Fredholm
operators. This is done according to the rules given in Chapters 20–22 of [7]; see also
Section 3 of [21].

Proposition 1.1 There exists � � 1 with the following significance: Fix r� � and an
element � 2� with P–norm less than 1 such that all solutions to the .r; �/ version
of (1-13) are nondegenerate. Suppose that p 2 P� has small P –norm and is described
by (1-22).

� The rules given in [7] for specifying the various Œc�; Œc0� 2 yZSW;r versions
of WŒc�;Œc0� define a square-zero endomorphism of Z. yZSW;r/.
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� Each solution to (1-13) is holonomy nondegenerate and so Z. yZ�SW;r/ is well
defined.

� The endomorphism given by the first bullet maps the submodule Z. yZ�SW;r/ to
itself.

This proposition is proved in Section 7.1. Take it on faith for now and use @SW;Y to
denote the resulting endomorphism of Z. yZSW;r/. It follows from the definition that
@SW;Y decreases the Z=pMZ–grading by 1.

Part 7 This part of the subsection describes endomorphisms of Z. yZSW;r/ that gen-
erate an action of ZŒU �˝

�V�
.H1.Y IZ/=tors/

�
on the @SW;Y homology. Each such

endomorphism is defined by the coefficients that appear in the relevant version of (1-23).

Consider first the endomorphism that generates the ZŒU � factor. Fix Œc� and Œc0� so as
to specify the corresponding version of WŒc�;Œc0� . The specification of these coefficients
requires the choice of a point p2H0 . Reintroduce p2P� from Part 6 and use M2.c; c

0/

to denote the set of instanton solutions to the r and gD e�Cp version of (1-20) with the
corresponding Fredholm index �. � / equal to 2, with s!�1 limit equal to c and with
s!1 limit in the GMƒ –orbit of c0. Use M2;p.c; c

0/ to denote the subset of M2.c; c
0/

that is characterized as follows: a given instanton dD .A; D .˛; ˇ// is a member
if and only if ˛jsD0 vanishes at p . The upcoming Proposition 1.2 asserts in part that
M2;p.c; c

0/ is a finite set if r is large. Granted that this is so, the coefficient WŒc�;Œc0� is
given as a sum that is indexed by the instantons from M2;p.c; c

0/. The contribution
from each such instanton is specified using the rules in Chapter 23 of [7]. Parts 3 and 4
of Section 1b in [23] describe these same rules in the case when ya is replaced by a
contact 1–form and w is replaced by the latter’s exterior derivative.

The specification of the various endomorphisms that are meant to generate the action
of
V�
.H1.Y IZ/=tors/ on the @SW homology requires the reintroduction of the set

of 1–cycles fŒ
 .z/�gz2U , fO�pgp2ƒ from Part 4 of Section 1.2. Each cycle from this
set labels a corresponding endomorphism. Let O� denote such a cycle. Use WO�

Œc�;Œc0�

to denote any given Œc�; Œc0� coefficient in O�’s version of (1-23). This coefficient is a
weighted sum of intersection numbers that are defined using the elements in M1.c; c

0/

whereby the contribution of a given instanton .A; D .˛; ˇ// to the sum is either C1
or �1 times the algebraic intersection number between ˛�1.0/ and the locus R� O�

in R�Y . The rules for assigning a C1 or �1 weight to the intersection number are
laid out in Chapter 23 of [7]. Part 3 of Section 1b in [23] describe these same rules

Geometry & Topology, Volume 24 (2020)



HFD HM , IV 3239

in the case when ya is replaced by a contact 1–form and w is replaced by the latter’s
exterior derivative.

Proposition 1.2 There exists � � 1 with the following significance: Fix r � �

and � 2 � with P–norm less than 1 such that all solutions to the .r; �/ version
of (1-13) are nondegenerate and holonomy nondegenerate. If p 2 P has small
P–norm and is described by (1-22), then the rules given in [7] for specifying the
coefficients for the just-described endomorphisms of Z. yZSW;r/ define an action of
ZŒU �˝

�V�
.H1.Y IZ/=tors/

�
on the @SW homology. The generator of the action

of the ZŒU � factor decreases the relative grading by 2 and those that generate the
action of H1.Y IZ/=tors decrease the relative grading by 1. In addition, all of these
endomorphisms map the submodule Z. yZ�SW;r/ to itself.

This proposition is also proved in Section 7.1.

Part 8 The formal adjoint of @SW on the Z–module Hom.Z. yZSW;r/;Z/ defines the
differential for what is formally a version of Seiberg–Witten Floer cohomology. This
formal adjoint of @SW is denoted by @�SW . The endomorphism @�SW sends a given basis
element Œc� in yZSW;r to

(1-24) @�SWŒc�D
X

Œc0�2 yZSW;r

WŒc0�;Œc�Œc
0�:

This endomorphism increases the relative Z=pMZ–grading by 1 and has square zero.
The resulting @�SW homology groups enjoy an action of ZŒU �˝

�V�
.H1.M IZ/=tors/

�
with the generator of ZŒU � now increasing the grading by 2 and the generators of
H1.M IZ/=tors increasing the grading by 1. The generators of this action come from
the adjoints of the endomorphisms that are defined in Part 7.

Proposition 1.3 There exists � � 1 with the following significance: Fix r � � and
� 2� with P –norm less than 1 such that all solutions to the .r; �/ version of (1-13)
are nondegenerate. Suppose that p 2 P� has small P –norm and is described by (1-22).
Then the expression on the right-hand side in (1-24) defines @�SW as a square-zero
endomorphism of Z. yZSW;r/. The adjoints of the endomorphism of Z. yZSW;r/ that
are defined in Part 7 likewise map Z. yZSW;r/ to itself and so define an action of
ZŒU �˝

V�
.H1.Y IZ/=tors/ on the homology groups of @�SW .

Proposition 1.3 is likewise proved in Section 7.1.
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Let yZ<SW;r �
yZSW;r denote the subset that corresponds via the identification in (1-19)

to ZSW;r�f: : : ;�2;�1g. The endomorphism @�SW preserves the submodule Z. yZ<SW;r/

as do those that give the generators of the ZŒU �˝
V�
.H1.Y IZ/=tors/ action.

Granted what was just said, introduce H1SW;r , H�SW;r and HCSW;r to denote the respective
@�SW homology on the chain complexes Z. yZSW;r/, Z. yZ<SW;r/ and Z. yZSW;r/=Z. yZ<SW;r/.
Each of these homology groups has a relative Z=pMZ–grading, and each admits an
action of ZŒU �˝

V�
.H1.Y IZ/=tors/. Moreover, the latter are intertwined by the long

exact sequence that is induced by the evident short exact sequence.

The next proposition speaks to the r–dependence of these @�SW homology groups.

Proposition 1.4 The versions of � that appear in Propositions 1.2 and 1.3 can be
chosen so that the following is true: Suppose that r1 , r2 � � , and that .�1; p1/
and .�2; p2/ are pairs in � � P such that �1 and �2 have P–norm less than 1,
such that p1 and p2 have P–norm much less than 1, and such that the conclusions
of Propositions 1.1 and 1.2 hold for the data sets .r1; �1; p1/ and .r2; �2; p2/. Use
these respective data sets to define the corresponding rD r1 and rD r2 versions of the
groups H1SW;r , H�

SW;r
and HCSW;r .

� There is a canonical isomorphism between the .r1; �1; p1/ and .r2; �2; p2/
versions of H1SW;r that preserves the relative Z=pMZ–gradings and intertwines
the respective actions of ZŒU �˝

V�
.H1.Y IZ/=tors/.

� This canonical isomorphism maps the .r1; �1; p1/ version of H�SW;r isomorphi-
cally to the .r2; �2; p2 ) of H�SW;r version, it induces an isomorphism between
the two versions of HCSW;r and it intertwines the respective long exact sequence
homomorphisms.

� This canonical isomorphism is induced by a chain complex homomorphism from
the .r1; �1; p1/ version of Z. yZSW;r/ to the .r2; �2; p2/ version of Z. yZSW;r/

that maps the .r1; �1; p1/ version of Z. yZ<SW;r/ to the .r2; �2; p2/ version.

This proposition is proved in Section 7.3.

The canonical isomorphisms described by Proposition 1.4 are henceforth used to
identify distinct .r; �; p/ versions of H1SW;r , H

�
SW;r and HCSW;r and so write these

groups respectively as H1SW , H�SW and HCSW .

Part 9 This last part of the subsection brings the orientation-reversed version of Y
into the story so as to connect with what is said in [8]. What is said here explains why
Theorems I.3.1 and I.3.2 in [8] follow directly from Propositions 1.1–1.4.

Geometry & Topology, Volume 24 (2020)



HFD HM , IV 3241

The orientation-reversed twin of Y is denoted here by Y . So as to be clear, the
orientation on Y is defined so that the inclusion map Mı!M is orientation-preserving
and that of Mı into Y is orientation-reversing. The orientation is such that both of
the inclusion maps Mı !M and Mı ! Y are orientation-preserving. As noted in
the introduction, the convention used here for which orientation signifies Y and which
signifies Y is opposite the convention used in [8].

As explained below, the groups H1SW , H�SW and HCSW are canonically isomorphic to
certain Seiberg–Witten Floer homology groups on Y , these being the respective groups
H1� , H�� and HC� that are defined at the end of Section I.3.2. To see the connection,
write the first line of (1-13) as

(1-25) FA� r.� �� � iw/C 1
2
FAK D 0:

Now introduce x� to denote the Hodge star as defined by the orientation for Y . The
latter is equal to ��. Likewise, introduce cl to denote the Y version of the Clifford
multiplication map. The latter is equal to �cl and, as a consequence, the version
of  �� is equal to �1 times the Y version. Granted these last two observations, what
is written in (1-13) is the equation that results when x� is applied to both sides of the top
line in (I.3-1). Meanwhile the lower line in (I.3-1) is �1 times the lower line in (1-13).

What was just said canonically identifies yZSW;r with a corresponding equivalence class
of solutions to (I.3-1), this denoted in [8] by yZSW;Y;r . To see about the relation between
@�SW and the differential on yZSW;Y;r , a look at (1-20) leads to the following observation:
Let c� and cC denote solutions to (1-13) and suppose that s 7! d.s/ is an instanton
solution on Y with s!�1 limit equal to c� and s!1 limit equal to cC . Then
the map s 7! d.�s/ is an instanton solution to (I.3-3) with s ! �1 limit cC and
s!1 limit c� . This last observation implies that the identification just described
between yZSW;Y;r and yZSW;r extends in a linear fashion to give an isomorphism between
the chain complex on Y that is used to define the aforementioned groups H1� , H��
and HC� from Section I.3.2 and the chain complex Z. yZ<SW;r/ with the differential @�SW .

The conclusions of the preceding two paragraphs make Theorems I.3.1 and I.3.2
immediate consequences of Propositions 1.1–1.4.

1.4 Seiberg–Witten Floer homology and embedded contact homology

This subsection describes the relationship between the Seiberg–Witten Floer chain
complex from Section 1.3 and its @�SW homology and the embedded contact homology
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chain complex from Section 1.2. This is the content of Theorem 1.5. This relationship
is the analog of that described by Theorem 4.5 in [19].

Theorem I.3.3 from [8] follows directly from what is said in Theorem 1.5 and what is
said in Part 9 of the previous subsection.

The upcoming Theorem 1.5 refers to the filtration of yZech;M given in (1-10). The
theorem also refers to a certain subset in the various L � 1 versions of what is
denoted in Part 5 of Section 1.2 by yZLech;M . The subset in question is denoted in
the theorem and in what follows by yZL;<ech;M and it is defined as follows: Part 4
in Section II.1B defines a principal Z–bundle isomorphism yZech;M D Zech;M �Z.
This isomorphism sends the equivalence class .‚;Z/ to the pair .‚; k/ when Z has
intersection number k with 
 .z0/ . The subset yZLech;M corresponds via this isomorphism
to ZLech;M � f�1; : : : ;�1g.

Theorem 1.5 Let H1 , H� and HC denote finitely generated subgroups of the
respective groups H1SW , H�SW and HCSW . Given these subgroups , there exists LH and
given L� LH there exists L0 � L with the following significance: Fix r sufficiently
large, and then fix a pair .�; p/ 2��P such that � has P–norm less than 1, such
that p has sufficiently small P–norm, and such that Propositions 1.1–1.3 can be in-
voked to define the chain complex .Z. yZSW;r/; @

�
SW/, the subcomplex Z. yZ<SW;r/ and the

ZŒU �˝
V�
.H1.Y IZ/=tors/ action on the homology. There exists an injective principal

Z–bundle map ŷ rW yZL0ech;M !
yZSW;r that defines a Z–module homomorphism

Lr
W Z. yZL

0

ech;M /! Z. yZSW;r/

with the properties listed below:

� Lr reverses the sign of relative grading degrees.

� Lr induces a monomorphism from Z. yZL
0;<

ech;M / to Z. yZ<SW;r/ and another from
Z. yZL0ech;M /=Z.

yZL
0;<

ech;M / to Z. yZSW;r/=Z. yZ<SW;r/.

� Lr intertwines @ech with @�SW and it also intertwines the endomorphisms that
define the generators of the respective ZŒU �˝

V�
.H1.Y IZ/=tors/ actions on

the @ech homology and @�SW homology.

� Let QL
ech denote either Z. yZLech;M /, Z. yZL;<ech;M / or Z. yZLech;M /=Z.

yZL;<ech;M / and
let QL0

ech denote the L0 version. Use QSW to denote the corresponding Z. yZSW;r/,
Z. yZ<SW;r/ or Z. yZSW;r/=Z. yZ<SW;r/ as the case may be. If & 2QL

ech is such that
Lr.&/D @�SWz for some z 2QSW , then & D @ech&

0 for some & 0 2QL0

ech .
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� The subgroups H1 , H� and HC are represented by elements in the respective
Lr images of Z. yZLech;M /, Z. yZL;<ech;M / and Z. yZLech;M /=Z.

yZL;<ech;M /.

Suppose that distinct choices for .r; �; p/ are suitable for defining Z. yZSW;r/, the
differential @�SW and the subcomplex Z. yZ<SW;r/. If the respective values of r are large
enough to define Lr on Z. yZL0ech;M /, and , in any event , sufficiently large, then the
homomorphism from the third bullet of Proposition 1.4 can be chosen to intertwine the
resulting versions of Lr .

This theorem is proved in Sections 7.4 and 7.6.

1.5 Functions on Conn.E/�C1.Y IS/

This subsection introduces functions on Conn.E/�C1.Y IS/ that play essential roles
in the story. In what follows, cD .A;  D .˛; ˇ// 2 Conn.E/�C1.Y IS/ is a given
element.

The first function is the Chern–Simons function. Reintroduce the chosen fiducial
connection AE from Part 3 of Section 1.3 and write A D AE C yaA with yaA an
iR–valued 1–form. The Chern–Simons function sends A to

(1-26) cs.A/D�

Z
Y

yaA ^ d yaA� 2

Z
Y

yaA ^
�
FAE C

1
2
FAK

�
:

Note that cs is invariant only under the action on Conn.E/ of the subgroup in
C1.Y IS1/ of maps u that define classes in H1.Y IS1/ that have cup product pairing
zero with the first Chern class of det.S/. This subgroup is denoted by GS .

The second function is

(1-27) W.A/D i

Z
Y

yaA ^w:

This function is invariant only under the action on Conn.E/ of GS .

The next function is denoted by a. The critical points of a are the solutions to (1-13).
This function is given by

(1-28) aD cs� rWC e�C r
Z
Y

 �DA :

The spectral flow function is denoted by fs . This function is constant on the components
of the complement in Conn.E/�C1.Y IS/ of the codimension 1 subvariety where the
operator L. � / in (1-17) has nontrivial kernel. It is discontinuous across this subvariety,
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but in any event it is locally bounded. A precise definition can be found in [16]. What
follows defines fs where L. � / has trivial kernel. The definition of fs requires the
choice of a section of S , this denoted by  E . This section must be chosen so that the
cE D .AE ;  E / and the rD 1 version of the operator L. � /;r has trivial kernel. The
existence of such a section can be established using the Bochner–Weitzenböck formula
in (A-12) for the square of the operator L. � /;r . Now suppose that c is a given pair in
Conn.E/�C1.Y IS/ with the kernel of Lc;r D f0g. Select a smooth map c. � / from
Œ0; 1� to Conn.E/�C1.Y IS/ with c.0/D cE and c.1/D c and a smooth map r . � /
from Œ0; 1� to Œ1; r� with r .0/ D 1 and r .1/ D r. The function fs assigns to c the
spectral flow for the Œ0; 1�–parametrized path of operators fLc.�/;r .�/g�2Œ0;1� . Note that
fs.c/ is independent of the chosen maps c. � / and r . � /. So defined, the function fs is
also constant on the GS orbit of c.

Neither a, cs, W nor fs are invariant with respect to the action of C1.Y IS1/ on
Conn.E/ although all are invariant with respect to the action of the subgroup GS .
However, the following functions are invariant under the full action of C1.Y IS1/:

(1-29) csf D cs� 4�2fs; Wf
D W� 2�fs and af D aC 2�.r��/fs:

The last of the functions of interest is denoted by M and it is given by

(1-30) MD r
Z
Y

.1� j˛j2/:

The question of bounding M on a solution to (1-14) or along the path of an instanton is
a central concern in what follows.

2 Solutions to the Seiberg–Witten equations on Y

The solutions to the large r versions of (1-13) have certain properties that play central
roles in many of the subsequent arguments that supply input to the proofs of the
propositions and theorems in Section 1. These properties are given by the various
lemmas and propositions in the first two subsections that follow. The third subsection
contains the proof of a proposition in the first subsection.

2.1 A priori properties of solutions to (1-13)

The lemmas in the first parts of this subsection consider the pointwise behavior of
solutions to (1-13). The second part of the subsection concerns the locus in Y where the
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curvature 2–form is large. This second part also talks about the function M in (1-30).
The third part of what follows discusses the spectral flow function fs and the final part
discusses the functions W , cs and a from Section 1.5.

Part 1 The upcoming Lemmas 2.1–2.3 have close analogs in Section 2a of [22], in
Section 6 of [17] and in Section 3 of [18]. When the proof of a given lemma here
differs only slightly from its partner in one of these references, then only the salient
differences (if any) are noted.

The first lemma speaks to the size of the C1.Y IS/ component of a solution.

Lemma 2.1 There exists � > 1 with the following significance: Fix � 2� with P–
norm less than 1 and r� � . Let .A; D .˛; ˇ// denote a solution to the corresponding
.r; �/ version of (1-13). Then:

� j˛j � 1C �r�1 .

� jˇj2 � �r�1.1� j˛j2/C �3r�2 .

� jrA˛j
2 � �r.1� j˛j2/C �3 .

� jrAˇj
2 � �.1� j˛j2/C �3r�1 .

In addition , for each q � 1, there exists �q 2 .1;1/ which is independent of .A; /, r
and �, and is such that

� jr
q
A˛jC r1=2jrqAˇj � �qrq=2 .

Proof The lemma and its proof differ only in notation from Lemma 2.3 in [22] and
the latter’s proof.

Given the equation in the top line of (1-13), what follows is an immediate consequence
of the first two bullets in Lemma 2.1:

(2-1) jBAj D i �.ya^�BA/C e

where jej � c0 .

The second lemma addresses the size of the connection A.

Lemma 2.2 There exists � > 1 with the following significance: Fix � 2� with P–
norm less than 1 and r� � . Let .A; D .˛; ˇ// denote a solution to the corresponding
.r; �/ version of (1-13). There is a map u 2 C1.Y IS/ which is homotopic to the
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identity and is such that A� u�1du can be written as AE C ya?C pA , where pA is
a harmonic 1–form and ya? is coclosed , L2–orthogonal to the space of harmonic
1–forms , and such that jya?j � �.jMj1=3r2=3C 1/.

Proof Given (2-1), the proof is identical to that of Lemma 2.4 in [17].

The third lemma in this series extends what is said in Lemma 2.1 with some precise
bounds for the size of 1� j˛j2 and the covariant derivatives of ˛ and ˇ .

Lemma 2.3 There exists � > 1 with the following significance: Fix � 2 � with
P–norm less than 1 and r � 1. Let .A; D .˛; ˇ// denote a solution to the .r; �/
version of (1-13). Let Y� � Y denote the subset of points where 1�j˛j2 � ��1 . Thenˇ̌

1� j˛j2
ˇ̌
� .e�

p
r dist. � ;Y�/=� C �r�1/ where 1� j˛j2 � ��1:

Proof The manipulations done to prove Proposition 4.4 of [14] can be repeated here
to obtain the desired inequality.

Part 2 The upcoming Proposition 2.4 describes the zero locus of the ˛ part of a
solution to a given large r version of (1-13) at the points in Y with distances greater
than c0r�1=2 from the curves in the set

S
p2ƒfy


C
p ; y


�
p g. The proposition refers to the

connection yA that is defined from any given pair of connection on E and section of E
in (1-16).

Proposition 2.4 There exists � > 1 with the following significance: Fix r � � and
� 2� with P –norm bounded by 1 and suppose that .A; D .˛; ˇ// is a solution to
the corresponding .r; �/ version of (1-13). Let Yr � Y denote the set of points with
distance greater than �2r�1=2 from the curves in

S
p2ƒfy


C
p ; y


�
p g. The zero locus of ˛

in the closure of Yr is transversal and it consists of the disjoint union of at most G

components with each a properly embedded arc or circle. The zero locus of ˛ has the
following additional properties:

� The tangent line to each component has distance at most �r�1=2 from v .

� Each component lies where 1� 3 cos2 � > 0.

� The intersection of the zero set with Mı consists of G properly embedded
segments that pair the index 1 and index 2 critical points of the incarnation of f
as a function on M in the sense that distinct segments start on the boundary of
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the radius ı coordinate balls about distinct index 1 critical points of f and end
on the boundary of the radius ı coordinate balls about distinct index 2 critical
points.

� The absolute value of 1�j˛j2 is less than ��1 at all points with distance greater
than �r�1=2 from the zero locus of ˛ in Y , and less than �r�1 at all points with
distance �.ln r/r�1=2 or more from the zero locus of ˛ in Y .

� The 2–form i
2�
F yA has compact support and integral 1 on any disk in Yr

that intersects ˛�1.0/ transversally at its center point , is otherwise disjoint
from ˛�1.0/, and has closure with all boundary points at distance at least �r�1=2

from ˛�1.0/.

The proof of Proposition 2.4 is given in Section 2.3. The first assertion of the next
lemma is little more than a corollary to Proposition 2.4. The second assertion refers to
the 1–form �˘ from (1-5).

Lemma 2.5 There exists � > 1 with the following significance: Fix r� � and � 2�
with P–norm bounded by 1 and suppose that .A; D .˛; ˇ// is a solution to the
corresponding .r; �/ version of (1-13).

� Set MD r
R
Y .1� j˛j

2/. Then �� � M � � ln r.

� r
R
Y j�˘j

2
ˇ̌
1� j˛j2

ˇ̌
� � .

Proof The lower bound on M follows directly from Lemma 2.1. To obtain the asserted
upper bound, use Proposition 2.4 to characterize the zero locus of ˛ in Yr . In particular,
Lemma 2.3 with the third bullet of Proposition 2.4 bound 1� j˛j2 at distance � in Yr

from ˛�1.0/\ Yr by c0 . It follows from the first bullet of Proposition 2.4 and the
formula for v in (1-3) that the length ˛�1.0/\ Yr is at most c0 ln r. These bounds
together imply that the Yr contribution to the integral that defines M is at most c0 ln r.
Meanwhile, the volume of Y �Yr is at most c0r�1 and so the Y �Yr contribution to
the integral that defines M is at most c0 ln r.

To prove the assertion of the second bullet, note that the integral over Y of �˘^ i
2�
FA

is equal to the pairing between c1.E/ and the class in H2.Y IR/ that is Poincaré dual
to the class that is defined by the de Rham cohomology by the closed form �˘ . With
this fact in mind, write �˘ as q˘yaC b , where b annihilates the vector field v . Note in
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particular that what is said in Part 4 of Section 1.1 can be used to see that j�˘j2 � c0q˘ .
Granted this last point, use the top equation in (1-13) to see that

(2-2) i �.�˘ ^FA/D rq˘.1� j˛j2/C r;

where jrj � c0rj˛jjˇjj�˘j. Given that j�˘j � c0q
1=2
˘ , the first and second bullets in

Lemma 2.1 with (2-2) find

(2-3) i �.�˘ ^FA/�
1
2

rq˘
ˇ̌
1� j˛j2

ˇ̌
� c0:

The lemma’s assertion follows from (2-3) with a second use of the bound c�10 j�˘j
2�q˘ .

Part 3 The spectral flow function fs plays a central role in the proofs of Proposition 1.4
and Theorem 1.5. The upcoming Proposition 2.6 supplies a crucial bound for its absolute
value. To set the stage for this proposition, reintroduce from Part 4 of Section 1.2 the
set f
 .z/gz2U of closed integral curves of v . This set has 1C b1.M/ elements. Each
curve in this set lies in Mı \H0 and it has distance c�10 or more from any segment
of an integral curve of v in the f �1.1; 2/ part of Mı that starts on the boundary of
the radius ı coordinate ball about an index 1 critical point of f in M and ends on the
boundary of the radius ı coordinate ball about an index 2 critical point of f . Associate
to each z 2U the map X.z/ from Conn.E/ to R given by following rule: Let A denote
any given connection on E, write A as AD AE C yaA and set

(2-4) X.z/.A/D
i

2�

Z

.z/
yaA:

Use Œ
 .z/� in what follows to denote the class in H1.M IZ/=tors that is defined by a
given z 2 U loop 
 .z/ . The set of such cycles generates the image of the Poincaré dual
of the classes in H 2.Y IZ/ that annihilate the

L
p2ƒH2.HpIZ/ summand in (1-4)’s

depiction of H2.Y IZ/. As the first Chern class of det.S/ annihilates this summand, the
image of its Poincaré dual in H1.M IZ/=tors can be written as

P
z2U CS;zŒ


.z/� with
coefficients fCS;zgz2U 2Z. Use XS to denote the corresponding map

P
z2U CS;zX.z/ .

What follows is a consequence of the fact that the classes from the set fŒ
 .z/�gz2U are
linearly independent in H1.Y IZ/=tors: Let A denote a connection on E. There is a
smooth map uW Y ! S1 such that A� u�1du obeys 0 � X.z/.A� u�1du/ < 1 for
each z 2 U . Note that u can be chosen so that A�u�1du�AE D yaA�u�1du is a
coclosed 1–form.
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Proposition 2.6 There exists � > 1 with the following significance: Suppose that
r > � and that � 2 � has P–norm less than 1. Let .A; / denote a nondegenerate
solution to the .r; �/ version of (1-13). Then jfs.A; /� XS.A; /j � � .

Section Bc extends the function jfsj as a piecewise constant function on the whole of
Conn.E/�C1.Y IS/. This understood, the assertion in Proposition 2.6 also holds in
the case when the .A; / version of (1-17) has nontrivial kernel.

The proof of Proposition 2.6 is in the appendix. The placement of the proof in an
appendix is not a reflection of the importance of Proposition 2.6; this proposition is
absolutely crucial with regards to what is said subsequently about instanton solutions
to (1-20). The proof is in the appendix as it is long and as the notions that enter are not
used elsewhere.

Part 4 The proposition that follows supplies a priori bounds for the functions cs

in (1-26), the function W in (1-27) and the function a in (1-28).

Proposition 2.7 There exists � > 1 with the following significance: Fix r � � and
� 2� with P –norm bounded by 1 and suppose that .A; / is a solution to the .r; �/
version of (1-13). Then

� jcsfj � �.r2=3M4=3CMC 1/,

� jWf�Mj< � ,

� ��r.MC 1/� af � �r.

Proof The assertion in the third bullet about af follows from the assertions about csf

and Wf . To prove the asserted bound for csf , use the Green’s function for the operator
dCd� to construct a smooth, coclosed 1–form on Y �

�S
z2U 


.z/
�

with the following
properties: Let BS denote this 1–form. Then jBSj � c0

P
z2U dist. � ; 
 .z//�1 and

(2-5) i

2�

Z
Y

ya^
�
FAE C

1
2
FAK

�
D

X
z2U

CS;z

Z

.z/
yaC

i

2�

Z
Y

BS ^ d ya

with ya being any given 1–form on Y . Granted (2-5), write cs.A/ as

(2-6) �

Z
Y

yaA ^ d yaA� 2

Z
Y

BS ^ d yaAC 4�XS:

To bound the integral of BS^d yaA , use the top equation in (1-13) to see that the 2–form
d yaA differs from �BA by a smooth, bounded form. This understood, use this same
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equation with (2-1) and Lemma 2.1 to bound jd yaAj at distances c�10 or less from any
curve in the set f
 .z/gz2U by c0r.1� j˛j2/C c0 , and use Lemma 2.3 to bound the
latter by c0 . The absolute value of the contribution to the integral of BS ^ d yaA from
the radius c�10 tubular neighborhood of any curve from f
 .z/gz2U is therefore bounded
by c0 . Meanwhile, the absolute value of the contribution to the integral of BS ^ d yaA

from the complement in Y of the union of these neighborhoods is less than c0M .

To bound the left-most integral in (2-6), note first that both of the integrals over Y
in (2-6) do not change when A is replaced by A�u�1du with u being any map from
Y to S1 . This understood, choose a map u so that the L2–orthogonal projection of
yaA�u

�1du has L2–norm bounded by c0 . Having done this, use Lemma 2.2 to bound
the left-most integral in (2-6) by c0r2=3M4=3 . Granted these bounds, Proposition 2.7’s
bound of csf follows from (2-6) and Proposition 2.6.

Consider next the assertion made by the second bullet of the proposition. Look at
(1-3) and (1-6) to see that w on the juj � R C c0 ln ı part of any p 2 ƒ version
of Hp can be written as d ya . As a consequence, the function � can be used with
the Green’s function for the operator �d C d� to construct a smooth 1–form on
Y �

�S
z2U 


.z/
�

with the properties listed next. Use Bw to denote this 1–form. The
form Bw is zero on the juj �RCc0 ln ı part of each p2ƒ version of Hp . In addition,
jBw j � c0

P
z2U dist. � ; 
 .z//�1 and

(2-7) i

Z
Y

ya^w D i
X
z2U

CS;z

Z

.z/
yaC i

Z
Y

ya^ d yaC i

Z
Y

Bw ^ d ya;

with ya being any given 1–form on Y .

Take ya in (2-7) to be the 1–form yaA . The left-hand side of the yaA version of (2-7)
is W.A/. The term on the right-hand side with the sum indexed by U is 2�XS . Use
the top equation in (1-13) with (1-30) to see that the integral of ya^d yaA can be written
as �iMC rA with jrAj � c0 . Meanwhile, Bw ^ d yaA can be written as Bw ^FAC qA ,
where FA denotes A’s curvature 2–form and qA is a 2–form with jqAj � c0 . Granted
the preceding, the second bullet of the proposition follows with a bound by c0 on the
absolute value of the integral over Y of the form Bw ^FA . Such a bound follows from
the second bullet of Lemma 2.5 and Lemma 2.1.

Given what was said in the preceding two paragraphs, the bound for jWf�Mj given in
Proposition 2.7 follows from (2-7) and Proposition 2.6.
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2.2 The vortex equations, I

The proof of Proposition 2.4 in Section 2.3 invokes various properties of the vortex
equations on C . Properties of these equations are also used to prove Proposition 2.6
and are used elsewhere as well. This section introduces these equations and supplies
what is needed for the proof of Proposition 2.4. More is said about these equations in
Sections 3 and 4.

The vortex equations ask that a pair .A0; ˛0/ of connection on a complex line bundle
over C and section of this bundle obey

(2-8)

8<:
�FA0 D�i.1� j˛0j

2/;
x@A0˛0 D 0;

j˛0j � 1:

The notation here is such that � denotes the Euclidean Hodge dual on C , while FA0
and x@A0 denote the respective curvature 2–form of A0 and the d–bar operator defined
by A0 on the space of sections of the given complex line bundle. The solutions with
1 � j˛0j

2 integrable are discussed at length in Sections 1 and 2 of [20]. Solutions
to (2-8) are also solutions to (4.1) in [22], so what is said in Proposition 4.2 in [22]
applies as well.

Two properties of the solutions to (2-8) are needed for the proof of Proposition 2.4 that
are not stated explicitly in Sections 1 and 2 of [20] or by Proposition 4.1 in [22]. These
are given by:

Lemma 2.8 Let .A0; ˛0/ denote a solution to the vortex equations. Then j˛0j cannot
have a local , nonzero minimum. Given " > 0, there exists � > 1 with the following
significance: Suppose that .A0; ˛0/ is a solution to the vortex equations and j˛0j<1�"
at the origin in C . Then j˛0j< " at a point with distance at most � from the origin.

Proof The function j˛0j can be written as eu on a set where it is nowhere zero with
u < 0 a smooth function. The top equation in (2-8) requires that ��uD .1� e2u/,
where � here denotes the Laplacian on R2 . This understood, the first assertion of the
lemma follows from the maximum principle. To prove the second assertion, suppose to
the contrary that it is false for some " > 0. The equations in (2-8) are uniformly elliptic,
and thus taking limits with counterexamples for the successive cases � D 1; 2; : : : finds
a solution .A0; ˛0/ with j˛0j< 1� " at the origin and with j˛0j> " on C . Introduce
the function t on Œ0;1/ whose value at any given s 2 Œ0;1/ is the average value
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of �u on the circle in C of radius s . The equation ��uD 1�e2u implies the equation
s@st D h, where h.s/ is the integral of 1�j˛0j2 over the radius s disk in C centered at
the origin. The fact that 1�j˛0j2<" at the origin implies that h� c�10 " on Œ1;1/ and
so s@st� c�10 " on Œ1;1/. This being the case, then t� c0".ln s/� c20 . On the other
hand, t� jln "j if j˛0j>" and this bound is violated when ln s� c�10 "�1jln "jCc20 .

The vortex equations enter Proposition 2.4’s proof via the upcoming Lemma 2.9. The
lemma refers to a transverse disk with a given radius through a given point in Y . Such
a disk is the image via the metric’s exponential map of the centered disk of the given
radius in the 2–plane bundle Ker.ya/ at the given point. There exists c0>100 such that
any transverse disk with radius c�10 is embedded with a priori bounds on the derivatives
to any given order of its extrinsic curvature. In addition, the vector field v along D0 is
everywhere c�10 close to the normal vector to D0 . All transverse disks are assumed
implicitly to have radius less than c�10 so as to invoke these two properties.

Lemma 2.9 uses J to view Ker.ya/ as a complex line bundle and it uses the Riemannian
metric to define a compatible Hermitian structure on Ker.ya/. Fix p 2 Y and an
isometric isomorphism from Ker.ya/jp to C . Use ' in what follows to denote the map
from C to Y that is obtained by composing first the isomorphism with Ker.ya/jp and
then the metric’s exponential map. With r� 1 given, Lemma 2.9 uses 'r to denote the
composition of first multiplication by r�1=2 on C and then ' . To finish the notational
preliminaries, suppose next that .A; D .˛; ˇ// is a given solution to some r� 1 and
� 2 � version of (1-13). Use .Ar;  r/ to denote '�r .A; /. Lemma 2.9 writes  r

as .˛r; ˇr/.

Lemma 2.9 Fix an integer k � 1; there exists � > 1 with the following properties:
Fix r� � and �2� with P –norm bounded by 1 and suppose that .A; / is a solution
to the corresponding .r; �/ version of (1-13). Fix a point in Y and use the associated
map 'r to define the pair .Ar; ˛r/ of connection on and section of a complex line bundle
over C . There exists a solution to the vortex equation on C whose restriction to the
radius k disk about the origin in C has C k –distance less than 1

k
from .Ar; ˛r/ on this

same disk.

Proof The argument is essentially identical to that used to prove Lemma 6.1 in [17].

2.3 Proof of Proposition 2.4

The proof of the proposition has seven parts. By way of a look ahead, the arguments
are much like those in Section 6.4 of [17].
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Part 1 Let D0 denote a transverse disk in Y with the following properties: First,
the disk has radius � > c0r�1=2 . Second, all points in the disk have distance at least
.c0C 10

8/� from
S

p2ƒfy

C
p ; y


�
p g. Lie transport by v moves D0 to a new disk. For

t 2R, use Dt to denote the new disk that is obtained by moving the points in D0 a
distance t along the integral curves of v . The formula for v in (1-3) can be used to
see that t D t1 and t D t2 versions of Dt are disjoint unless t1 D t2 .

Fix a compactly supported function on D0 which is equal to 1 on the radius 1
2
�

concentric subdisk in D0 and with the absolute value of its derivative bounded by c0��1 .
Use �0 to denote this function and use �t to denote the time-t Lie transport of �0 by v .

Part 2 Fix �0 � 1. Fix r� c0 and � 2� with P–norm bounded by 1 and suppose
that .A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13). Let D0 denote a disk
as described in Part 1 with 1� j˛j2 � ��10 at the center point of D0 .

Use f to denote the function on Œ0;1/ that is given by the rule

(2-9) t 7! f.t/D r
Z
Dt

�t .1� j˛j
2/:

Note that f.0/� c�10 . This lower bound follows from the upper bound on jrA˛j given
in Lemma 2.1 with the fact that 1� j˛j2 � ��10 at the center point of D0 .

The derivative of f is denoted in what follows by f0 ; it is given by

(2-10) f0 D r
Z
Dt

�t .x̨.rA˛/vC .rA x̨/v˛/;

where .rA˛/v is used here and subsequently to denote the section of E that is obtained
by pairing rA˛ with the vector field v . As explained in the next paragraph, the norm
of the derivative of f is such that

(2-11) jf0j � c0r
Z
Dt

�
j@t�t jjˇj

2
C .jv?jC jd?�t j/j˛jjˇj

�
;

where the notation uses v? and d?�t to denote the orthogonal projections of v
and d�t to the respective tangent and cotangent bundles of Dt . Granted (2-11), use
Lemma 2.1 to see that

(2-12) jf.t/� f.0/j � c0t:

This last inequality implies that

(2-13) f.t/� c�10 ��10 when jt j � c�20 ��10 :
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3254 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

To prove (2-11), note first that J defines an almost complex structure on the kernel
of ya . Equation (1-13) identifies .rA˛/v with a constant multiple of the part of rAˇ
that comes from the .1; 0/ part of the dual to the kernel of ya . Meanwhile, it identifies
.rAˇ/v with a constant multiple of the part of rA˛ that comes from the dual to the
.0; 1) part of the kernel of ya . Equation (2-11) follows from these observations with an
integration by parts. By way of a warning, these same identifications are used later in
the proof without further comment.

Part 3 This part constitutes a digression of sorts to draw attention to some conse-
quences of the bounds given by Lemma 2.1. The remarks that follow here concern
the integral over disks in Y of the curvature of the connection yA given in (1-16) and
the curvatures of analogs of yA that are defined using (1-16) with a different version
of the function } . In particular, allow in (1-16) any function } on Œ0;1/ that is
nondecreasing and such that }.x/� c0x for x near 0.

Given r � c0 and � 2 � with P–norm bounded by 1, let .A; D .˛; ˇ// denote
a solution to the .r; �/ version of (1-13). Use the pair .A; ˛/ to define yA. The
corresponding curvature 2–form is denoted by F yA ; it is given by the formula

(2-14) F yA D .1�}/FA�}
0.rA x̨ ^rA˛/;

where FA here denotes the curvature 2–form of the connection A. In the context at
hand, FAD�BA . What is said in the last paragraph of Part 2 with the bounds provided
by Lemma 2.1 can be used to write

(2-15) F yA D ..1�}/r.1� j˛j
2/C}0jrA˛j

2
C ev/wC ya^ e

?;

where
jevj � c0..1�}/C}

0/
�ˇ̌
1� j˛j2

ˇ̌
C r�1

�
;

je?j � c0..1�}/C}
0/
�
r1=2

ˇ̌
1� j˛j2

ˇ̌1=2
C 1

�
:

This depiction of F yA plays an important role in subsequent arguments.

An additional fact about yA is used extensively, this concerning the case when } is
chosen to equal 1 on a neighborhood of Œ1;1/ in Œ0;1/: if �0 > 1 is such that
} D 1 on Œ1� ��10 ;1/, then yA is flat and ˛j˛j�1 is yA–covariantly constant where
1� j˛j2 < ��10 .

Part 4 Fix �0>4 and a function } on Œ0;1/ that is zero on Œ0; 1�2��10 � and is equal
to 1 on Œ1� ��10 ;1/. Use this version of } to define the connection yA. The 2–form
i
2�
F yA represents the first Chern class of E in the de Rham cohomology of Y and so
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it has integral G on the f 2 Œ1C ı; 2� ı� level sets in Mı . It follows as a consequence
that there are points on any such surface where 1� j˛j2 > ��10 . Meanwhile, it has
integral zero on any level set of f with f not in this range, and it has integral zero on
the uD constant 2–spheres in H0 . This last observation implies that 1�j˛j2 must be
O.r�1/ on much of Y . The next lemma describes this region.

To set the stage for the lemma, fix q � 1 and let Yq denote the set of points in Y with
the following property: a point is in Yq if it lies on a segment of an integral curve of v
with length q or less and with one endpoint in H0 . Note that Yq contains H0 , and
it contains both the f � 1 and f � 2 parts of Mı if q > c0 . If q > c0 , then it also
contains a small radius tubular neighborhood of the integral curve segments of v in Mı

that start on the boundary of the radius ı coordinate ball about an index 1 critical point
of f and end on the boundary of the radius ı coordinate ball about an index 2 critical
point of f . It also contains much of the 1� 3 cos2 � � 0 portion of any given p 2ƒ

version of Hp ; the missing part is a small radius tubular neighborhood of y
Cp [ y

�
p .

To say more about these last parts of Yq , fix "> 0 and fix p2ƒ. Let Hp;"�Hp denote
the subset of points with distance greater than " from y
Cp [ y


�
p and with .u; �/ coordi-

nates such that either 1� 3 cos2 � � 0 or f.u/jcos � j sin2 � > 2

3
p
3
.x0C 4e

�2R/C ".
By way of a reminder, the function f is given in (1-2). Lemma II.2.2 finds q" > 1 such
that each point in Hp;" has distance q" or less along an integral curve of v from H0 .
For example, Hp\Mı is the part of Hp where juj>RC ln ı and so a given point in
Hp \Mı is in Hp;" unless both 1� 3 cos2 � > 0 and jcos � j < c0ı�2.x0C "/. This
has the following consequence when "� x0 . The complement of the radius c0x0ı�2

tubular neighborhood of the Mı part of the union of the ascending disks from the
index 1 critical points of f and the descending disks from the index 2 critical points
of f is in Yq if q > q" .

Lemma 2.10 Fix q�1 and there exists �>1 with the following significance: Suppose
that r � � and that � 2 � has P–norm less than 1. Let .A; D .˛; ˇ// denote a
solution to the .r; �/ version of (1-13). Then 1� j˛j2 � �r�1 at all points in Yq .

The proof is given in a moment. The lemma that follows directly plays a central role in
the proof of Lemma 2.10.

Lemma 2.11 There exists � > 1 with the following significance: Fix r � � and
� 2 � with P–norm less than 1. Let .A; D .˛; ˇ// denote a solution to the
.r; �/ version of (1-13). Then 1� j˛j2 � �r�1 on H0 and on the part of Mı where
f � 1� 2ı2� �.ln r/r�1=2 or where f � 2C 2ı2C �.ln r/r�1=2 .
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The proof of Lemma 2.11 and subsequent parts of the proof of Proposition 2.4 use ��
to denote the constant that appears in Lemma 2.3.

Proof of Lemma 2.11 To prove the assertion, let S denote either a constant u sphere
in H0 or a compact, level set of f in Mı with f either less than 1� 2ı2 or greater
than 2C 2ı2 . Suppose that p 2 S is a point where 1 � j˛j2 > 1

4
��1� . It follows

from Lemma 2.1’s bound on jrA˛j that the integral of i
2�
FA over the disk in S

centered at this point with radius r�1=2 is greater than c�10 ��1� . This understood, use
the formula for BA in (1-13) with the bounds on jˇj supplied by Lemma 2.1 to see
that the integral of i

2�
FA over S is larger than c�10 ��1� . But this is impossible given

that the 2–form i
2�
FA represents the first Chern class of E. Granted this conclusion,

use Lemma 2.3 to conclude that 1�j˛j2 � c0r�1 on H0 and on the parts of Mı where
f � 1� 2ı2� c0.ln r/r�1=2 and where f � 2C 2ı2C c0.ln r/r�1=2 .

Proof of Lemma 2.10 Fix z > 1 to be specified shortly. It is enough to consider the
cases when q D nz�1 with n 2 f0; 1; 2; : : : g. Since Lemma 2.11 gives the case for
nD 0, an induction argument will prove the lemma for the general case for a suitable
z D c0 . This understood, suppose that the lemma holds for a given integer n� 0 and
suppose for the sake of argument that there is a point in Y where 1 � j˛j2 � 1

2
��

and with distance less than .nC 2/z along a segment of an integral curve of v with
an endpoint from the part of Y that is described in Lemma 2.10. Let D0 denote the
transverse disk centered at this point with radius c0r�1=2 . The function f given in
Part 2 is such that f.0/ � c�10 �� � 1. It follows from (2-11) that the function f.t/ is
greater than 1

4
c�10 �� if |t j � c�10 . If z < c�10 , this last conclusion violates the induction

hypothesis that 1� j˛j2 � c0r�1 on integral curve segments of length nz or less with
one endpoint in the set described by Lemma 2.11. Thus, 1�j˛j2 must be less than 1

2
��

at all points along an integral curve segment of length less than .nC 2/z�1 with one
endpoint in this same set from Lemma 2.11. Granted this fact, then what is said in
Lemma 2.3 completes the proof.

Part 5 Let S �Mı denote a level set of f with f 2 .1Cı; 2�ı/. As noted in the first
paragraph of Part 4, there are points on S where 1� j˛j2 is greater than 1

2
��1� . Let p

denote such a point. It follows from Lemmas 2.8 and 2.9 that there is a point in S with
distance at most c0r�1=2 from p where j˛j< 1

100
. In fact, there is a point in S with

distance less than c0r�1=2 from p where ˛ D 0. To prove the existence of such an
˛ D 0 point, define yA as in the first paragraph of Part 4 using �0 D 2�� and a suitable
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function } . It follows from Lemmas 2.8 and 2.9 that a disk of radius c0r�1=2 centered
on any point in S where yA is not flat must contribute at least c�10 to the integral
of i

2�
F yA over S. Use this last observation with (2-15) to see that there can be at most

c0 pairwise disjoint disks in S where yA is not flat. It follows that 1� j˛j2 < 1
2
��1� on

the boundary of the disk centered at p with radius at most c0r�1=2 . In particular, the
connection yA is flat near the boundary of the latter disk and ˛=j˛j is yA–covariantly
constant. As the integral of i

2�
F yA over this disk is nonzero, it is a positive integer.

These last two facts require a zero of ˛ in this disk because the integral of i
2�
F yA over

the disk is the sum of the local Euler numbers at the zeros of ˛ in the disk. What
follows summarizes this. There exists z 2 Œ1; c0� and at most G pairwise disjoint disks
in S of radius zr�1=2 with the following properties:

(2-16) � 1� j˛j2 is less than 1
2
��1� on the complement of the union of these disks.

� The integral of i
2�
F yA over each disk is a positive integer, and this integer

for any given disk is the sum of the local Euler numbers of the zeros of ˛
in the disk.

Use the fact that there are at most G such disks to see that there is a set of at most G

disks of radius at most .zCc0/r�1=2 such that each disk in the set obeys (2-16) and such
that the distance between pairwise distinct disks from the set is greater than c�10 . Let N

denote the number of elements in this set. Enumerate this set of disks as fD.i/S g1�i�N .
For each index i 2 f1; : : : ; Ng and for each t 2 R, use D.i/S;t to denote the disk in Y
that is obtained from D

.i/
S by moving its points for time t along the integral curves

of v . Let tS denote the value of f on S. If tS C t 2 .1C ı; 2� ı/, then each D.i/S;t
is a disk in the tS C t level set of f . It follows from (2-15) and from the comment in
the final paragraph of Part 2 that there exists c0 2 .1; c0/ with the following property:
If tS C t 2 .1C ı; 2� ı/ and if jt j< c�10 , then 1� j˛j2 < ��1� on the complement ofS
1�i�N D

.i/
S;t and the integral of i

2�
F yA over any given D.i/t is the same as its integral

over D.i/S . Meanwhile, the diameter of D.i/S;t is bounded by c0r�1=2 and the pairwise
separation between D.i/S;t and D.i

0/
S;t when i ¤ i 0 is at least c�10 .

Granted the preceding observations, let t be such that tS C t 2 Œ1C ı; 2� ı� and such
that jt j< c�10 . Let S 0 denote the tSC t level set. Define N0 and fD.i/S 0 g1�i�N0 as done
above for the case of S. It follows from what was said in the preceding paragraph
that N0 D N and that the set fD.i/S 0 g1�i�N can be labeled so that any given D.i/S 0 has
nonempty intersection with D.i/S;t and has distance at most c�10 from any i 0¤ i version
of D.i/S;t . If r� c0 , then these facts when applied sequentially to some 2N � c0 level
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sets of f starting with †, and then with f value 3
2
˙ c�10 , then with f value 3

2
˙2c�10 ,

and so on lead to the following:

(2-17) � The integer N is independent of the value of f 2 Œ1C ı; 2� ı�.

� There is a set of N segments of integral curves of v with the following
properties:

(a) Each segment starts on the f D 1Cı level set and ends on the f D 2�ı
level set.

(b) Distinct segments from the set have pairwise separation no less than c�10 .

(c) The intersection of each segment with a level set of f has distance at
most c0r�1=2 from a zero of ˛ .

(d) 1� j˛j2 < 1
2
�� at the points in the f 2 .1C ı; 2� ı/ part of Mı [H0

with distance greater than c20r�1=2 from the union of the segments in
this set.

Part 6 explains why ND G and it says more about the start- and endpoints of (2-17)’s
integral curve segments.

Part 6 Fix p2ƒ and "> 0 so as to reintroduce from Part 4 the subset Hp;"�Hp . By
way of a reminder, this is the subset of points with distance greater than " from y
Cp [y


�
p

and such that either 1� 3 cos2 � � 0 or f .u/jcos � j sin2 � > 2

3
p
3
.x0C 4e

�2R/C ".
Lemma 2.9 finds c" > 1 such that if r > c" , then 1� j˛j2 � c0r�1=2 on

S
p2ƒHp;" .

Fix "� x0 and assume henceforth that r> c" .

Given what was just said, the segments of integral curves of v that arise in (2-17)
intersect the f � 1Cı2� part of Mı in the union of the radius ı� coordinate balls about
the index 1 critical points of f and they likewise intersect the f > 2� ı2� part of Mı

in the union of the radius ı2� coordinate balls about the index 2 critical points of f .
Moreover, each such intersection lies where 1� 3 cos2 � > 0 and jcos � j � c0x0ı�2 .
This understood, Lemma 2.10 implies that 1� j˛j2 < c0r�1 on the jcos � j> c0x0ı�2

portion of the juj �RC ln ı part of Hp .

Define yA as in Part 5. As the integral of i
2�
F yA over any given constant u sphere

in Hp is equal to 1, and as yA is flat where 1� j˛j2 < 1
2
�� , it follows from what was

just said that the radius ı� coordinate ball about any given index 1 critical point of f
must contain the starting point of one of (2-17)’s integral curve segments. By the same
token, the radius ı� coordinate ball about any given index 2 critical point of f must
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contain the ending point of one of (2-17)’s integral curve segments. This can happen
only if ND G .

Granted that ND G , then the following must also hold: Let D denote an embedded
disk in Mı that intersects just one of (2-17)’s integral curve segments and is such
that its boundary has distance c0r�1=2 or greater from all of (2-17)’s integral curve
segments. Then the integral of i

2�
F yA over D is equal to 1.

Part 7 Let T" denote the set of points with distance " or less from ˛�1.0/. What is
said by Lemma 2.10, by (2-17) and in Part 6 verify all of Proposition 2.4 on Mı [H0
but for the assertion that ˛�1.0/ is transversal in Y �T" with G components and with
tangent line very close to v . As explained next, these as yet unproved assertions are all
consequences of Lemmas 2.9 and 2.10.

To see about a proof, fix R > c0 for the moment and let D � Mı [H0 denote a
smoothly embedded, transverse disk of radius 2Rr�1=2 and center on one of (2-17)’s
integral curve segments. Assume that v is normal to D at its center point. Define
.Ar; ˛r/ as in Lemma 2.10 and fix "0 > 0. According to Lemma 2.10, there is a
constant r"0 that depends only on "0 and is such that if r� r"0 , then there is a solution
to (2-8) with C 2–distance at most "0 from .Ar; ˛r/ on the disk of radius R centered at
the origin in C . Let .A0; ˛0/ denote such a solution.

To say more about .A0; ˛0/, keep in mind that yA is flat and ˛=j˛j is yA–covariantly
constant along D at points with distance greater than some fixed multiple of r�1=2 that
is independent of R . Denote this multiple as r and assume that R� r . If "0 < c�10 , it
then follows that 1� j˛0j2 < 3

4
��1� on the radius r disk about the origin in C . It also

follows that the .A0; ˛0/ version of the connection yA is flat on the annulus in C with
inner radius r and outer radius R , and is such that ˛0=j˛0j is yA0–covariantly constant
on this same annulus Moreover, the integral of the .A0; ˛0/ version of i

2�
F yA over any

centered disk in C with radius between r and R must equal 1. This understood, then
˛0 must have at least one zero in the centered, radius r disk. Given that ˛0 is x@A0 –
holomorphic, there can be at most one such zero and it is necessarily nondegenerate
with local Euler number 1.

Use z0 2C to denote this zero. Given the aforementioned holomorphicity, ˛0 must
appear near z0 as ˛0D&.z�z0/Ce, where & 2C and with e such that jej�& 0jz�z0j2 .
Note in this regard j& j � c�10 and j& 0j<c0 , this being a consequence of the fact that the
equations in (2-8) are elliptic modulo the action of C1.CIS1/ and so any sequence of
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solutions has a subsequence that converges up to this group action in the C1 Fréchet
topology on compact subsets of C . This same sequential compactness property implies
that j˛0j � c�10 jz� z0j=.1Cjz� z0j/ in the radius R disk about 0 2C .

These last facts about ˛0 have the implications that follow with regards to ˛ . First, if
"0 < c�10 , then ˛ has a single, transverse zero in D with distance at most c0"0r�1=2

from D ’s center point. To give the second implication, use J as before to define the
.1; 0/ and .0; 1/ parts of the complexification of the 2–plane bundle Ker.ya/. Introduce
by way of notation @A˛ to denote the .1; 0) part of rA˛ , this being the homomorphism
from the .1; 0/ part of this complexification to E that is defined by restricting the
domain of rA˛ . It must also be the case that j@A˛j � c0r1=2 at this zero of ˛ . Note
in this regard that the corresponding restriction x@A˛ of rA˛ to the .0; 1/ part of
Ker.ya/˝R C is equal to the directional covariant derivative of ˇ along v and so
has norm bounded by c0 . By way of a reminder, the directional covariant derivative
of ˛ along v was denoted by .rA˛/v and, being a linear combination of covariant
derivatives of ˇ , it too has norm bounded by c0 .

What was just said as applied to transverse disks along the various components of
(2-17)’s integral curve segments verifies the claim that ˛�1.0/ is transverse and it
verifies the claim that each component of the radius c0r�1=2 tubular neighborhood of
(2-17)’s integral curve segments contains precisely one component. To see about the
tangent line to a component, parametrize a neighborhood of a given point in a segment
at unit speed by a map from a small interval about the origin in R to Y . Use x to denote
this map. Let @t denote the Euclidean vector field on R. Then x�@t pairs with rA˛
to give zero. With this in mind, write x�@t at the origin in R as xvvCx.1;0/Cx.0;1/ ,
where x.1;0/ is the projection of x�@t to the .1; 0/ part of Ker.ya/˝R C , and x.0;1/ is
the complex conjugate of x.1;0/ . The fact that rA˛ annihilates x�@t means that

(2-18) xv.rA˛/vC x.1;0/@A˛C x.0;1/x@A˛ D 0:

Given what is said in the preceding paragraph about the relative sizes of the various
projections of the covariant derivative of ˛ , the equality in (2-18) cannot hold unless

(2-19) r1=2jx.1;0/j � c0jxvj:

This last inequality implies the claim about the tangent vector to ˛�1.0/.

Part 8 What is said by Lemma 2.10 and by (2-17) with what is said in Parts 6 and 7
verify the assertions of Proposition 2.4 for the Mı [H0 part of Y . The upcoming
Lemma 2.12 is used in a moment to extend the domain where these assertions hold
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into
S

p2ƒHp . To set the stage for this lemma, fix p 2ƒ. Given D > 0, use Hp;D to
denote the set of points in Hp with distance at least D from all points in y
Cp [ y


�
p .

Lemma 2.12 There exists � >1 with the following significance: Fix r� � and fix �2
� with P –norm less than 1. Let .A; D .˛; ˇ// denote a solution to the .r; �/ version
of (1-13). If n is a given positive integer , set D.n/D .1C ��1/n�r�1=2 . Assume that
n is such that the assertions of Proposition 2.4 hold in Mı [H0[

�S
p2ƒHp;D.nC1/

�
.

Then the assertions of Proposition 2.4 also hold in Mı [H0[
�S

p2ƒHp;D.n/

�
.

This lemma is proved in a moment.

To finish the proof of Proposition 2.4, introduce � from Lemma 2.12 and let N
denote the least integer such that Hp;D.NC1/ � Hp \Mı for all p 2 ƒ. The asser-
tions of Proposition 2.4 have been verified on Mı [H0 [

�S
p2ƒHp;D.NC1/

�
. This

understood, invoke Lemma 2.12 a total of N times to prove sequentially that the
assertions of Proposition 2.4 hold on Mı [H0[

�S
p2ƒHp;D.N/

�
, then on Mı [H0[�S

p2ƒHp;D.N�1/

�
, etc.

Proof of Lemma 2.12 Fix L > 1 and set D.n/D .1CL�1/nLr�1=2 . Suppose that
the assertions of Proposition 2.4 hold on Mı [H0 [

�S
p2ƒHp;D.nC1/

�
. The proof

that they also hold on Mı [H0[
�S

p2ƒHp;D.n/

�
for a suitable, r–independent choice

of L is given in seven steps.

Step 1 Only the third bullet of Proposition 2.4 needs comment when 1� j˛j2 < ��1�
on Hp;D.n/�Hp;D.nC1/ . In any event, the third bullet restates part of Lemma 2.3 and
so it holds whether or not 1� j˛j2 < ��1� on the whole of Hp;D.n/�Hp;D.nC1/ .

Step 2 Fix p 2ƒ. Given c � c0 , suppose that D0 denotes an embedded disk in Hp

with radius cr�1=2 whose points have distance at least .c0C 108/cr�1=2 from both
y
Cp and y
�p . Assume in addition that the vector field v along D0 is at all points c�10
close to the normal vector. For example, a transverse disk has this last property.

Use d�.t/ to denote the distance from y
Cp [ y

�
p to the point at time t along the

integral curve of v that starts at the center point of D0 . Let Dt denote the time-t
flow of D0 under v . It follows from (1-3)’s formula for v (see equation (II.2-3)) that
there exists �� c�10 with the following property: either one or both of the inequalities
d�.t/� d�.0/e

�t and d�.�t /� d�.0/e�jt j hold if t is such that the relevant point at
time t on the integral curve is in Hp . The discussion that follows assumes the first of
these conditions and t is assumed implicitly to be nonnegative.
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The rest of this step contains observations on the geometry of D0 and the t > 0

versions of Dt . Assume for all of these that the center point of Dt is in Hp . Granted
this assumption, then d�.t/ can serve as a proxy of sorts for the distance between
any given point in Dt and y
Cp [ y


�
p . In particular, all points in Dt have distance

at least .1 � c�10 /d�.t/ from y
Cp [ y

�
p and distance at most .1C c�10 /d�.t/ from

y
Cp [ y

�
p because the points in D0 have distance at least 108cr�1=2 from y
Cp [ y


�
p

and at most cr�1=2 from each other.

It is also the case that the image in Dt of two points in D0 with a given distance �
from each other are distance at most �e�t apart in Dt . This is to say that the disk Dt
is not seriously distorted if t < c�10 . Moreover, if t � c�10 , then the normal vector
to Dt at all points will be close to v .

There is one other point to keep in mind about D0 , this concerning the number of
intersection points between D0 and a given segment in Hp of an integral curve of v .
In particular, D0 has at most one intersection with any such segment. This is proved
using the formula for v in (1-3) given the assumption that d�.0/ is at least c0 times
D0 ’s diameter.

Step 3 Assume in this step that the function f from (2-9) is such that f.0/ is
greater than c1=3 . Given that d�.t/ � d�.0/e�t , so d�.t/ � .1 C L

�1/3d�.0/ if
t � 3��1 ln.1CL�1/. Set t� D 100��1 ln.1CL�1/ and use (2-20) to see that

(2-20) f.t�/� 10
�2c1=3� c0 ln.1CL�1/:

Suppose that D0 �Hp;D.n�1/ and that c > c0.1C ln.1CL�1//3 . If such is the case,
then the inequality in (2-20) is not compatible with the assumption that the assertions
of Proposition 2.4 hold on Mı [H0[

�S
p2ƒHp;D.nC1/

�
. It follows as a consequence

that f.0/ can be no greater than c1=3 if c > c0.1C ln.1CL�1//3 . Assume this bound
for c in what follows and likewise assume that D0 � Hp;D.n�1/ so as to guarantee
that f.0/ < c1=3 .

Step 4 Fix R � 2 but less than c�10 c2=3 . Since f.0/ < c1=3 , the bounds from
Lemma 2.1 for jrA˛j requires a point x 2 Œ1; Rc1=3� such that 1� j˛j2 � c0R�1 on
the concentric annulus in D0 with inner radius xr�1=2 and outer radius .xC 1/r�1=2 .
With this understood, use Lemma 2.3 to deduce the following: if R � c0�� , then
1� j˛j2 � 1

16
��1� on such an annulus. Assume in what follows that c > c0 is such

that R can be chosen greater than c0�� . Reintroduce the connection yA from Part 4 as
defined with �0 D 2�� . This connection is flat and ˛j˛j�1 is yA–covariantly constant
on this annuli in D0 .
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Step 5 Take D0 to be a transverse disk. With �� denoting as before the constant from
Lemma 2.3, assume in addition that 1� j˛j2 � ��1� at the center point of D0 . This
assumption with Lemmas 2.8 and 2.9 guarantee a point with distance at most c0r�1=2

from the origin in D0 where 1� j˛j2 > 9
10

. If c > c0 , then the existence of such a
point implies that the integral of i

2�
F yA over the subdisk in D0 of radius .xC 1/r�1=2

is nonzero and positive. Moreover, this integral must be a positive integer because yA
is flat with a covariantly constant section near the boundary of this subdisk. Use n1
in what follows to denote this integer. Keep in mind that ˛ has a zero in this subdisk
with positive local Euler number because the sum of the local Euler numbers of the
zeros of ˛ in the subdisk is equal to this same n1 .

Use (1-13) with Lemma 2.1’s bound on jrAˇj to draw the following conclusion: there
exists t0 � c�10 such that 1� j˛j2 < 1

2
��1� at all times t � t0 on the image in Dt of

the annulus with inner radius xr�1=2 and outer radius .xC 1/r�1=2 . This being the
case, the integral of i

2�
F yA0

over the image in Dt of the radius .xC 1/r�1=2 subdisk
in D0 is still equal to n1 and ˛ still has at least one zero with positive local Euler
number in the image in Dt of the radius .xC 1/r�1=2 subdisk of D0 .

With the preceding understood, remark that if L� c0 , then t0 > t� with t� as defined
in Step 3. Assume that this is the case. Then Dt0�Hp;D.nC1/ and, as a consequence, n1
must equal 1 because Proposition 2.4’s assertions hold on Mı[H0[

�S
p2ƒHp;D.nC1/

�
.

Step 6 Let x 2 Œ1; Rc1=3� denote the constant from Step 4. It follows from what is
said in Step 3 that there is a zero of ˛ in D0 with local Euler number 1 with distance
at most c0r�1=2 from the center of D0 . Use D0 now to denote the transverse disk
through this point with radius .1 � c�10 /cr�1=2 . The conclusions of the preceding
steps hold for this new version of D0 also. In particular, there exists x 2 Œ1; Rc1=3�
such that the connection yA is flat with covariantly constant section ˛j˛j�1 on the
concentric annulus with inner and outer radii xr�1=2 and .xC1/r�1=2 . Let D˘ denote
the concentric subdisk in D0 with radius .x C 1/r�1=2 . As before, the integral of
i
2�
F yA over D˘ is equal to 1. This value of 1 for the integral of i

2�
F yA demands the

following:

(2-21) There exists z � 1 that is independent of .A; ˛/, � and r such that if r � z,
then 1� j˛j2 � 1

32
��1� on the part of D˘ with distance greater than zr�1=2

from the origin.
What follows explains why (2-21) is true. To start, let p 2D˘ denote a given point
where 1� j˛j2 � 1

32
��1� . Use Lemmas 2.8 and 2.9 to find a point p0 in the transverse
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disk of radius c0r�1=2 through p where j˛j is less than 10�5 . Since v is almost normal
to this transverse disk at p0 and also to D˘ , there is a point in D˘ on the integral curve
of v through p0 with distance at most c0r�1=2 from p0. Let p00 denote the latter point.
As noted previously, the Dirac equation in (1-13) identifies the covariant derivative
of ˛ in the direction of v with a linear combination of covariant derivatives of ˇ . This
understood, then it follows from Lemma 2.1 that j˛j at p00 is no greater than 10�4 .
Given this upper bound for j˛j, use Lemma 2.1’s upper bound for jrA˛j to see that
the contribution to the integral over D˘ of i

2�
F yA from the radius c0r�1=2 disk in D˘

centered at p00 is greater than c�10 . This conclusion has the following consequence:
There can be at most c0 points in any subset of D˘ such that the distance between any
two distinct points is greater than c0r�1=2 and 1� j˛j2 > 1

32
��1� at each point.

Now, suppose that p is a point in D˘ with 1 � j˛j2 > 1
32
��1� . It follows from

what was just said and from Lemmas 2.1 and 2.3 that there exists an .A; /–, �–
and r–independent constant z1 � 104 and a subdisk Dp � D˘ centered at p with
radius z1r�1=2 with the following properties: First, 1� j˛j2 < 1

32
��1� on the annular

neighborhood of the boundary of Dp with inner and outer radii equal to 1
2
z1r�1=2

and z1r�1=2 . Second, the integral of i
2�
F yA over Dp is at least c�10 . This last property

implies that the integral of i
2�
F yA over Dp is at least 1 since the connection yA is flat

with ˛=j˛j covariantly constant on the annular boundary neighborhood.

Since the integral of i
2�
F yA over the whole of D˘ is equal to 1, the conclusions of the

preceding paragraph have the following consequence: Any two versions of Dp are
certain to overlap. It follows that 1� j˛j2 is less than 1

32
��1� at any point in D˘ with

distance c0r�1=2 or greater from the center point since ˛ is zero at this point. This last
observation verifies Proposition 2.4’s fourth bullet for Mı [H0[

�S
p2ƒHp;D.n/

�
.

Step 7 Suppose that t 2 Œ0; t0�. Use D˘t � Dt to denote the image of D˘ . The
definition of t0 is such as to guarantee that 1� j˛j2 is no greater than 1

2
�� on the

image in D˘t of the set of points in D˘ with distance at most c0r�1=2 from the
origin. This understood, the integral of i

2�
F yA over D˘t is equal to 1. Granted these

last conclusions, an essentially verbatim repetition of what is said in Part 7 proves
that the zero locus of ˛ in the cylinder

S
1�t�t0

D˘t is transverse and consists of a
properly embedded arc whose tangent vector has angle at most c0r�1=2 from v and
whose points have distance at most c0r�1=2 from the integral curve of v through the
center point in D˘ . Since D˘t0 �Hp;D.nC1/ , this arc smoothly extends the zero locus
of ˛ in Hp;D.nC1/ . The preceding observations verify Proposition 2.4’s first bullet for
Mı [H0[

�S
p2ƒHp;D.n/

�
.
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3 The map ˆr from ZL
ech;M to ZSW;r

Fix �2� with P –norm less than 1 and fix L� 1. The map ŷ rW yZLech;M !
yZSW;r for

Theorem 1.5 is a principal Z–bundle covering map over a map from ZLech;M into ZSW;r

that is denoted in what follows by ˆr .

The following proposition makes a formal assertion as to the existence of the desired
map ˆr . It then says something about the form of the solutions to the relevant version
of (1-13) that lie in the C1.Y IS1/ orbits in Conn.E/�C1.Y IS/ that form ˆr ’s
image. The proposition uses the isomorphism in (1-19) to identify yZSW;r with ZSW;r�Z

and it uses the isomorphism described in the paragraph preceding Theorem 1.5 to
identify yZech;M with Zech;M �Z and thus yZLech;M with ZLech;M �Z. The proposition
also uses the following notation: when 
 denotes a closed integral curve of v , then `

denotes its length.

Proposition 3.1 There exists � > � such that given E > 1 and L > �E , there exists
�L>� with the following significance: Fix r��L and an element �2� with P –norm
less than 1. Use the solutions to the .r; �/ version of (1-13) to define ZSW;r . There
exists a 1–1 map ˆrW ZLech;M !ZSW;r whose image contains the subset of ZSW;r with
M< E . Moreover , suppose that ‚ 2ZLech;M and that cD .A; D .˛; ˇ// is a solution
to the .r; �/ version of (1-13) on the C1.Y IS1/ orbit defined by ˆr.‚/. Then:

� c is nondegenerate and holonomy nondegenerate.

� M.c/ < 2�
P

2‚ `
 C �

�1 .

� The zero locus of ˛ is a disjoint union of embedded circles whose components
are in 1–1 correspondence with the integral curves of v that constitute ‚. This
correspondence is such that :

(1) Any given component of ˛�1.0/ lies in the radius �r�1=2 tubular neigh-
borhood of its partner from ‚ and it is isotopic in this neighborhood to its
partner.

(2)
ˇ̌
1 � j˛j2

ˇ̌
� �.e�

p
rd=� C r�1/ at points with distance d or more fromS


2‚ 
 .

(3) Let D � Y denote an oriented, embedded disk with all boundary points at
distance greater than �r�1=2 from

S

2‚ 
 and with algebraic intersection

number 1 with
S

2‚ 
 . Then i

2�

R
D F yA D 1.
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� View ˆr as a map from ZLech;M�Z to ZSW;r�Z that acts as the identity on the Z

factor. As such , ˆr defines a Z–equivariant covering map ŷ rW yZLech;M !
yZSW;r

via the isomorphisms described above that reverses the sign of the relative Z or
Z=pMZ degrees.

The map ˆr is constructed by copying in an almost verbatim fashion some of what is
done in Section 3 of [20] to construct an analogous map in the context where ya is a
contact 1–form and w D 1

2
d ya . The latter version of ˆr is the map that is described in

Theorems 4.2 of [19] and Theorem 1.1 of [20]. This contact 1–form incarnation of ˆr

is constructed in Section 3 of [20] and its salient properties are stated as Theorem 1.1
in [21] and Theorem 1.1 in [22]. These theorems are proved respectively in Section 2
of [21] and Section 2 of [22]. As explained below, only the simplest case of what is
done in Section 3 of [20], Section 2 of [21] and Section 2 of [22] are needed for what
follows because of certain special features of the closed integral curves of v that arise
from elements in Zech;M .

By way of a look ahead, Section 3.1 summarizes some basic facts about a particular
subset of solutions to the vortex equations that are used to construct ˆr . The proof of
Proposition 3.1 is given in Section 3.2. Section 3.3 has the proof of Lemma 3.2 from
Section 3.1.

3.1 The vortex equations, II

The proof of Proposition 3.1 makes reference to (2-8)’s vortex equations. Of relevance
here are the solutions which are such that 1�j˛0j2 is integrable on C . The discussion
of this subset of solutions to (2-8) has four parts. What is said in Parts 1–3 summarize
various observations from Section 2 in [20].

Part 1 As all complex line bundles over C are isomorphic to the product line bundle
C�C , no generality is lost by the focus in what follows on solutions .A0; ˛0/ with A0
a connection on this product bundle and ˛0 a complex function. Introduce �0 to denote
the product connection on the product line bundle C �C . Write any given connection
on C�C as �0Cya with ya being an iR–valued 1–form on C . Doing so identifies the
set of solutions to (2-8) with a subset of the space C1.CI iT �C/�C1.CIC/. This
identification endows the set of solutions with a topology. Meanwhile, there is a free
action of C1.CIS1/ on the space of solutions to (2-8) whereby a given map u sends
a given solution .A0; ˛0/ to .A0�u�1du; u˛0/. This action is continuous, and so the
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set of C1.CIS1/ equivalence classes of solutions has the induced quotient topology.
The resulting subspace of solutions with 1� j˛0j2 being integrable is a disjoint union
of components labeled by the nonnegative integers. The integer m component consists
of the set of equivalence classes of solutions that obey

(3-1) 1

2�

Z
C
.1� j˛0j

2/Dm:

The integer m component is denoted by Cm .

The space Cm has the structure of a complex manifold that is holomorphically isomor-
phic to Cm . The m complex functions f�qg1�q�m defined by

(3-2) �q D
1

2�

Z
C
zq.1� j˛j2/

define such an isomorphism. (In (3-2) and in what follows, what is denoted by z is
the complex coordinate for C .) There are no convergence issues with regards to the
integral in (3-2) by virtue of the fact that a solution to (2-8) and (3-1) obeys

(3-3) � j˛0j � 1, with equality if and only if j˛0j D 1;

� 1� j˛0j
2 � c0e

� dist. � ;˛�10 .0// .

Here, c0 depends only on the integer m. As it turns out, the zeros of ˛ are the roots
of the polynomial z 7! }.z/D zmC �1z

m�1C �2z
m�2C � � �C �m .

Part 2 Let L! C denote a Hermitian line bundle. Suppose for the moment that
.A0; ˛0 ) defines a pair of unitary connection on L and section of L. Define the
operator # on C1.C; L/ by the rule

(3-4) .x; �/ 7!
�
@xC 1p

2
x̨0�; x@A0 �C

1p
2
˛0x

�
:

Here, @ is the holomorphic derivative on C1.CIC/. The formal L2–adjoint of # is
denoted by #� and it is given by the rule

(3-5) #�.c; &/D
�
�x@cC 1p

2
x̨0&;�@A0& C

1p
2
˛0c

�
:

The corresponding Laplacian ##� can be written as

(3-6) ##�.c; &/D
��
�@x@C1

2
j˛0j

2
�
c;
�
�x@A0@A0C

1
2
j˛0j

2
�
&
�
C

1p
2
.@A0 x̨0&;

x@A0˛0c/:

What follows is an important observation to keep in mind: the right-most term in (3-6)
is zero when .A0; ˛0/ obeys the vortex equations.
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Part 3 Suppose now that .A0; ˛0/ is a solution to (2-8) and (3-1). The .1; 0/–tangent
space to the orbit of .A0; ˛0/ in Cm is canonically isomorphic to the vector space of
square-integrable pairs .x; �/ of complex-valued functions that are annihilated by # .
This identification is used implicitly in what follows. The vector space of square-
integrable elements annihilated by # is called the kernel of # .

Introduce the Hermitian inner product on the kernel of # defined by the rule that sends
an ordered pair .wD .x; �/; w0 D .x0; �0// in the kernel of # to

(3-7) hw;w0i D
1

�

Z
C
.xxx0Cx��0/:

This Hermitian inner product is compatible with the complex structure and it defines
a complete Kähler metric on Cm . In the case m D 1, this is the standard metric on
Cm DC , but such is not the case if m> 1.

Given a real number � and a complex number �, define the function h on Cm by the
following rule: if cD .A0; ˛0/, then

(3-8) h.c/D 1

4�

Z
C
.2�jzj2C�xz2C x�z2/.1� j˛0j

2/:

Suppose now that � and � depend on t 2R, so that (3-6) defines a function on R�Cm .
The Kähler metric on Cm defines an associated symplectic form, and the latter with the
R–dependent function h define a corresponding 1–parameter family of Hamiltonian
vector fields on Cm . An integral curve of this 1–parameter family of vector fields
constitutes a map, t 7! c.t/ 2 Cm , from R to Cm that obeys the equation

(3-9) 1
2
ic0Cr.1;0/ h jc D 0;

where c0 is shorthand for the .1; 0/ part of c� ddt , and where r.1;0/ h denotes the .1; 0/
part of the gradient of h . Of interest in what follows are the solutions to (3-7) that obey
the condition c.t CT /D c.t/ for some T � 0. Such a solution is said to be a periodic
solution.

Let cW S1! Cm denote a given map. Associate to c the bundle c�T1;0Cm! S1 . The
pullback of the Riemannian connection on T Cm defines a unitary connection on S1 .
The map c is said to be nondegenerate when the operator

(3-10) � 7! i
2
rt�C .r�R

r
.1;0/ h/jc

on C1.S1I c�T1;0Cm/ has trivial kernel. The notation here is such that rt denotes the
covariant derivative of the aforementioned unitary connection. Also, .r�R

r.1;0/ h/jc
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denotes the covariant derivative at c along the vector defined by � in T Cmjc of the
vector field r1;0 h 2 C1.CmIT1;0Cm/.

Part 4 Let 
 denote an integral curve of v . The proof of Proposition 3.1 refers to a
certain pair of R–valued and C–valued functions on 
 that are associated to a given
unitary isomorphism between K�1j
 and 
 � C . To define these functions, fix a
C–linear, unitary isomorphism between K�1j
 and 
 �C . Let z denote the complex
coordinate on C and let t denote an affine parameter for 
 such that 
� @@t D

1
2�
`
v .

Use the metric’s exponential map along 
 to give a tubular neighborhood of 
 in Y
with the coordinates .t; z/ with it understood that these coordinates are only valid
when z is in a small radius disk about the origin in C . Use these coordinates with the
first-order Taylor’s expansion to write w as w D i

2
dz ^ dxz� 2.�zC�xz/ dxz ^ dt �

2.�xzCx�z/ dz^dtC� � �, where � and � are respectively R– and C–valued functions
on S1 , and where the unwritten terms are bounded by c0jzj2 . Note that � must be
R–valued because w is closed.

The pair .�; �/ is the desired pair. Use this pair to define the function h . This done, fix
a nonnegative integer m and use C.
;m/ to denote the set of periodic solutions to (3-9)
on Cm .

Lemma 3.2 Suppose that ‚ 2 Zech;M and that 
 is a closed integral curve of v
from ‚.

� The space C.
;1/ consists of the constant map from S1 to the �1D 0 point in C1 .
This is the equivalence of solutions to (2-8) and the mD 1 version of (3-1) with
˛�10 .0/D 0. This solution is nondegenerate.

� Suppose that p 2ƒ and that 
 2 fy
Cp ; y

�
p g. Then C.
;m/ D∅ when m> 1.

The proof of Lemma 3.2 constitutes Section 3.3.

3.2 Proof of Proposition 3.1

The proof differs only cosmetically from that of Theorem 4.2 in [19]. As with the proof
of the latter, there are three parts: Part 1 constructs the map ˆr and verifies what is
said in the second and third bullets; Part 2 proves what is said in the first and fourth
bullets; and Part 3 verifies that the image of ˆr contains the M < E subset of ZSW;r .
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Part 1 The map ˆr is constructed by copying what is done for its namesake in
Theorem 1.1 from Section 1d in [20]. The construction here constitutes what is perhaps
the simplest of cases because only ‚ 2 ZLech;M and 
 2‚ versions of C.
;1/ are used.
By way of a parenthetical remark, the first step in the construction of ˆr uses the data
from ‚ to build a pair in Conn.E/�C1.Y IS/ that comes very close to solving (1-14).
This construction is described in the first subsection of the appendix.

The first bullet of Lemma 3.2 guarantees that each map from ffC.
;1/g
2‚g‚2Zech;M

is nondegenerate, and so this set can be used as input for Theorem 1.1 in [20]. The
assertions made by the second and third bullets all follow directly from the construction
and from Lemmas 2.1 and 2.3.

Part 2 To see about the first bullet of the proposition, suppose that ‚ 2 ZLech;M and
that cD .A; ˛/ is a solution to (1-13) that defines the equivalence class ˆr.‚/. The
assertion that c is nondegenerate can be had by copying almost verbatim the arguments
in Section 2a of [21] that prove the analogous assertion in Theorem 1.1 from [21].
There are no substantive changes to these arguments from [21]. The assertion that c is
holonomy nondegenerate follows from the third and fourth bullets of Proposition 2.4.
To elaborate, these bullets imply that the connection yA has a covariantly constant
section on a neighborhood of the curve 
 .z0/ . Because of this, the number X. yA�AE /

is necessarily an integer because AE was chosen to have holonomy 1 around 
 .z0/ .

To argue for the fourth bullet, fix ‚ 2 ZLech;M and suppose that .A; ˛/ is a solution to
(1-13) that defines the equivalence class ˆr.‚/. Fix a 2–cycle Z 2H2.M; Œ‚�� Œ‚0�/
that has algebraic intersection number zero with 
 .z0/ . The Z–equivariant covering
map ŷ r sends the equivalence class of a pair .‚;Z/ to the GMƒ –orbit of a solution
.A; / of (1-13) with the property that X. yA�AE /D 0. With this point understood,
the argument for the third bullet differ only cosmetically from those used [21] to prove
an analogous assertion from Theorem 4.2 in [19]. The latter theorem follows directly
from the relative degree assertion about the namesake ˆr that appear in Theorem 1.1
in [21]. The proof of this part of [21, Theorem 1.1] constitute Sections 2b and 2c
of [21]. Note in this regard that the assumption that is made in equation (2.56) in [21]
is not needed by virtue of the fact that the map ˆr is constructed using only elements
from the set ffC.
;1/g
2‚g‚2Zech;M .

Part 3 But for one additional substantive remark, the arguments for Theorem 1.1
in [22] can copied with only notational changes to prove that if L is large, then ˆr
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maps ZLech;M onto the M < E subset of ZSW;r when r is large. The extra remark
concerns the input to Theorem 1.1 of [22] of a set denoted by CZL and a subset
CZL� � CZL . Theorem 1.1 in [22] requires CZL� to be the whole of CZL . As
explained below, CZL in this case is

˚Q

2‚ C.
;1/

	
‚2ZLech;M

and CZL� in this case
is indeed all of CZL .

To define CZL , introduce first Z to denote the set whose typical element consists
of a finite collection of pairs whose first entry is a closed integral curve of v and
whose second entry is a positive integer. Let ‚ denote such a collection. This set is
constrained in two ways: Distinct pairs from ‚ contain distinct closed orbits of v . The
second constraint requires Œ‚� D

P
.
;m/2‚mŒ
� 2 H1.Y IZ/ to be the class that is

defined by the elements in Zech;M . The set Zech;M sits in Z , but Z is strictly larger
than Zech;M ; this can be seen using the parametrization given next.

Invoke Proposition II.2.8 or Theorem I.2.1 to write Z as ZHF�
�Q

p2ƒ.Z�yO/
�
, where

yO is the set f0; 1; 2; : : : g � f0; 1; 2; : : : g. This parametrization is such that the factor
ZHF �

�Q
p2ƒZ

�
parametrizes pairs of the form .
; 1/ with 
 �Mı [

�S
p2ƒHp

�
crossing each p 2ƒ version of Hp once. To explain the factors of yO , fix p 2ƒ. The
element f0; 0g in p’s version of yO signifies that neither y
Cp nor y
�p appears in ‚. The
element .mC; 0/ from yO with mC > 0 signifies that ‚ contains .y
Cp ; mC/ and that ‚
lacks a pair with y
�p . By the same token, the element .0;m�/ from yO with m� > 0
signifies that ‚ contains the pair .y
�p ; m�/ and that ‚ lacks a pair with y
Cp . The
element .mC; m�/ with both entries positive signifies the appearance in ‚ of .y
Cp ; mC/
and .y
�p ; m�/. Use ZL to denote the subset of ‚D .y�; kp; .mpC; mp�/p2ƒ/ 2Z withP

p2ƒ.kpC 2mpCC 2mp�/ < L.

The set CZL maps to ZL with fiber over any given ‚ being
Q
.
;m/2‚ C.
;m/ . The

fiber over ‚ of CZL� consists of the elements in
Q
.
;m/2‚ C.
;m/ whose entries are

nondegenerate.

Granted these definitions, invoke the second bullet in Lemma 3.2 to see that CZL is in-
deed

˚Q

2‚ C.
;1/

	
‚2ZLech;M

. This being the case, invoke the first bullet in Lemma 3.2
to see that CZL� D CZL .

3.3 Proof of Lemma 3.2

To prove the first bullet, view C1 as C using (3-2)’s coordinate �1 . Viewed in this way,
then (3-9) is an equation for a function t 7! z.t/ from R to C , this being the equation

(3-11) i

2

d

dt
zC �zC�xz D 0:
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Let z. � / denote a solution, but viewed as a map from R to R2 . Then z.2�/ can be
written as U
z.0/, where U
 2 SL.2IZ/ is the linear return map that is described in
Part 3 of Section II.1F. Proposition 2.7 of [9] asserts that all of the relevant integral
curves are hyperbolic, and by definition, this means that U
 has real eigenvalues with
neither being 1 or �1. Thus (3-11) has a single solution, this being the constant map
t 7! 0. The operator (3-10) in this case is the operator that appears on the left side
of (3-11), and so its kernel is trivial.

The proof of the second bullet has ten parts. Parts 1–3 say more about the solutions
to the vortex equation. The remaining parts contain the proof proper. The arguments
in Parts 4–10 focus on the case when 
 D y
Cp . The arguments when 
 D y
�p are
essentially identical.

Part 1 The lemma that follows supplies three facts that play a central role in the proof
of Lemma 3.2.

Lemma 3.3 Fix m� 1 and suppose that .A0; ˛0/ is a solution to (2-8) that defines a
point in Cm . Then:

�
1
�

R
C

�
1
2
.1� j˛0j

2/Cj@A0˛0j
2
�
Dm.

�
1
2�

R
C
1
2
.1� j˛0j

2/� 2
5
m and 1

�
m
R

C j@A0˛0j
2 �

3
5
m.

� j@A0˛0j �
p
3
2
.1� j˛0j

2/.

Proof Use � in what follows to denote the Laplacian on C . Meanwhile, let w denote
the function .1� j˛0j2/ and use g to denote @A0˛0 . It follows from (2-8) that

(3-12) �
1
4
�wC 1

2
j˛j2wD jgj2 and �

1
4
r
�
ArAgC 1

2
j˛j2gD 3

4
wg:

Write j˛0j2 D�wC 1 to write the left-most equation in (3-12) as

(3-13) �
1
4
�wC 1

2
wD 1

2
w2Cjgj2:

Integrate both sides of this equation and appeal to (3-1) to obtain the first bullet in the
lemma.

The second bullet follows from the first and the third. To elaborate, use the third bullet
of the lemma to see that the integral on the left-hand side of the first bullet is less than
5
4�

times the integral of w2 . As a consequence, the contribution of the term 1
2

w2 to
the integral on the left side of the first bullet is no less than 2

5
m and so the contribution

to this integral of jgj2 is no greater than 3
5
m.
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To obtain the third bullet, use the right-hand identity in (3-12) to see that

(3-14) �
1
4
�jgjC 1

2
j˛j2jgj � 3

4
wjgj:

To exploit (3-14), set x D jgj �
p
3
2

w. The left-most equation in (3-12) and (3-14)
require

(3-15) �
1
4
�xC 1

2
j˛j2x� jgj

�
3
4

w�
p
3
2
jgj
�
D�

p
3
2
jgjx:

Granted (3-15), use the maximum principle to see that x cannot have a positive local
maximum. Given that x is square-integrable, this implies that x� 0, which is what is
asserted by the second bullet of the lemma.

Part 2 Various additional facts about any given m 2 f1; 2; : : : g version of Cm are
needed for the proof. The first of these facts concerns an isometric and holomorphic
action of the semidirect product of S1 and C on Cm . This action is induced by the
group’s action on C , where S1 acts as the group of rotations about the origin and C

acts on itself by translation. The generator of the action of C on Cm at the equivalence
class of a solution .A0; ˛0/ to (2-8) is the tangent vector that is defined by the element

(3-16) w1 D
�
1p
2
.1� j˛0j

2/; @A0˛0
�

in the kernel of # . The action of S1 on Cm is such that � 2 S1 pulls back (3-2)’s
functions f�qg1�q�m to f�q�qg1�q�m . The action has a unique fixed point in Cm ,
this given by the point where all �q are zero. The latter point is the equivalence class
of the solutions to (2-8) with ˛�1.0/D 0. The fixed point of the S1 action is called
the symmetric vortex.

Part 3 Define (3-4)’s operator # using the solution .A0; ˛0/. The absence of the
right-most term in (3-6) and the integrability of 1�j˛0j2 imply that ##� has a bounded
inverse that maps L2.CIC�C/ to the L2–orthogonal complement of the kernel of # .

The other Laplacian, #�# , can be written as #�# D ##�Ce, where e is a zeroth-order
term that is bounded by c0.1� j˛0j2/. Given this last fact, the Bochner–Weitzenböck
formula for x@A@A can be used in conjunction with the left-most equation in (3-12)
and the maximum principle to see that any given element in the kernel of # with
L2–norm 1 is bounded pointwise by c0.1� j˛0j2/. The argument also invokes the
third bullet of Lemma 3.3 and (3-3). Granted the latter as input, the argument differs
little from the argument in Part 1 proving the third bullet in Lemma 3.3. This being the
case, the details are omitted.

Geometry & Topology, Volume 24 (2020)
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Part 4 Use (3-2)’s coordinates f�qg1�q�m for Cm so as to view the equation in (3-9)
as an equation for a map, t 7! .�1.t/; �2.t/; : : : ; �m.t//, from R to Cm . In particular,
the map t 7! �2.t/ must obey the equation

(3-17) i

2

d

dt
�2C 2��2C�g

2x2
D 0;

where g2x2 is the norm of d�2 as defined by the Kähler metric on Cm . Note that g2x2

is a strictly positive function on Cm . Parts 6–10 explain why

(3-18) g2
x2 > 2j�2j:

Meanwhile, Part 5 explains why the functions � and � in (3-8) and (3-17) can be
assumed constant, with � real and such that � > j�j C c�10 . With the preceding
understood, write �2 as �xC i�y with �x and �y real-valued functions. Then (3-17)
and (3-18) require � d

dt
�y < 0 and so there are no periodic solutions.

Part 5 The functions � and � that appear in (3-8) and (3-17) depend on a chosen
unit-length basis vector for the bundle K�1 along the given closed integral curve, this
being y
Cp . Even so, the question of existence or not of solutions to the corresponding
version of (3-9) does not depend on the trivialization. This fact is exploited in what
follows to choose a convenient trivialization.

The metric on Hp is invariant with respect to rotations of the coordinate � and as v
is a constant multiple of � @

@�
along y
Cp the basis vector for K�1 along y
Cp can be

chosen so as to be covariantly constant along y
Cp . Choosing such a basis vector gives
a pair .�; �) with both being constants. As noted previously, � must be real, and if �
is not real and nonnegative to begin with, a suitable constant rotation of C changes the
coordinates so that the resulting version of � is real and nonnegative.

The assertion � > j�j follows from the fact that y
Cp is hyperbolic. By way of an
explanation, the fact that � and � are constant can be used to solve (3-11) and thus
write the matrix U
 and see directly its eigenvalues. These are real and neither 1
nor �1 if and only if � > j�j.

By way of a parenthetical remark, Part 2 of Section III.5A introduces the coordinates
.sC; �C; �C; uC/ for the product of R with a tubular neighborhood in Y of y
Cp . These
are such that the locus �C D 0, uC D 0 is the cylinder R� y
Cp with sC being the
Euclidean coordinate for the R factor and �C an R=.2�Z/–valued coordinate for y
Cp .
This understood, the differentials d�C and duC together define a trivialization of the

Geometry & Topology, Volume 24 (2020)



HFD HM , IV 3275

normal bundle of y
Cp . Given this trivialization, the coefficients that appear in equation
(III.5-1) determine � and � as functions of the constants x0 and R that are used in
Section 1.1 to define the geometry of Y . A direct calculation using these coordinates
will also verify the claim that � and � can be assumed constant, with � real and
greater than j�j.

Part 6 Suppose that .A0; ˛0/ is a solution to (2-8) that defines a point in Cm . Let
wD .x; �/ denote an element in the kernel of the operator # . The .1; 0/ part of d�2
pairs with the tangent vector defined by w to give

(3-19) �
1

2�

Z
C
z2 x̨�:

Since #w D 0, the first entry of (3-4) is zero and so the integrand in (3-19) can be
replaced by �

p
2z2@x . Having done so, integration by parts writes (3-19) as

(3-20) �

p
2

�

Z
C
zx:

Note in this regard that such an integration by parts is possible here (and in a subsequent
integration by parts) by virtue of what is said in Part 3 to the effect that jwj is bounded
by a multiple of 1� j˛0j2 , and thus is exponentially small where jzj is large.

The integrand in (3-20) is the same as z.1 � j˛0j2/x C z x̨0˛0x . As #w D 0, the
left-hand entry in (3-4) is zero, and so this is the same as z.1� j˛0j2/x�

p
2z x̨0x@A0 �.

Use this fact with a second integration by parts to see that (3-19) is equal to

(3-21) �
2

�

Z
C

�
1p
2
z.1� j˛j2/xC zx@A x̨�

�
:

Introduce … to denote the L2–orthogonal projection from L2.CIC˚C/ to the kernel
of # . This last identity implies that d�2 acts on the kernel of # as w 7! 2h….xzw1/;wi

with w1 as defined by (3-16). It follows as a consequence that

(3-22) g2
x2
D 4h….xzw1/;….xzw1/i:

Meanwhile, ….xzw1/ can be written as xzw1C#�z and so

(3-23) h….xzw1/;….xzw1/i D
1

�

Z
C
jzj2

�
1
2
.1� j˛0j

2/2Cj@A0˛0j
2
�
� h#�z; #�zi:

With (3-23) in hand, write (3-22) as

(3-24) g2
x2
D
4

�

Z
C
jzj2

�
1
2
.1� j˛0j

2/2Cj@A0˛0j
2
�
� 4h#�z; #�zi:
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The comparison of g2x2 with 2j�2j uses (3-24) with the rewriting of �2 as

(3-25) �2 D
1

�

Z
C
z2
�
1
2
.1� j˛0j

2/2Cj@A0˛0j
2
�
:

To obtain this last identity, multiply both sides of (3-13) by 1
2�
z2 and integrate the

resulting equation over C . The integral of 1
2�
z2�w is zero.

The inequality g2x2 > 2j�2j follows directly from (3-24) and (3-25) if

(3-26) 1

�

Z
C
jzj2

�
1
2
.1� j˛0j

2/2Cj@A0˛0j
2
�
� 2h#�z; #�zi � 0:

The remaining Parts 7–10 supply a proof of this inequality.

Part 7 This step supplies an upper bound for h#�z; #�zi. To this end, use (3-6) to see
that zD .0; &/ with & being the L2–solution on C to the equation

(3-27) �x@A0@A0& C
1
2
j˛0j

2& D�@A0˛0:

It follows as a consequence that

(3-28) h#�z; #�zi D
1

�

Z
C

�
j@A0& j

2
C
1
2
j˛0j

2
j& j2

�
:

Granted (3-28), it then follows from (3-27) that h#�z; #�zi � 1
�
k&k2k@A0˛0k2 with

k � k2 denoting here the L2–norm. To see about the L2–norm of & , commute derivatives
using the top bullet in (2-2) to write the left-hand side of (3-27) as �@A0x@A0& C

1
2
& .

Take the L2 inner product of both sides of the resulting equation with & . This leads
to an equality between integrals. An application of Hölder’s inequality to the latter
equality finds 1

2
k&k22 � k&k2k@A0˛0k2 and so k&k2 � 2k@A0˛0k2 . This being the

case, then

(3-29) h#�z; #�zi �
2

�

Z
C
j@A0˛0j

2:

Part 8 This part of the proof exploits another identity coming from (3-13),

(3-30) 1

�

Z
C
jzj2

�
1
2
.1� j˛0j

2/2Cj@A0˛0j
2
�
D

1

2�

Z
C
jzj2.1� j˛0j

2/� 2m:

To derive (3-30), multiply both sides of (3-13) by 1
�
jzj2 and then integrate the resulting

equation over C . An integration by parts identifies the integral over C of � 1
4�
jzj2�w

with that of � 1
�

w. According to (3-1), the latter integral is equal to �2m.

With (3-30) in mind, digress for a moment to consider a certain constrained minimization
problem for a real-valued, measurable function on C . The problem asks for an infimum
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of the functional

(3-31) u 7! s.u/D
1

2�

Z
C
jzj2u� 2m� 4

�
m�

1

2�

Z
C
u2
�

subject to the two constraints 0� u� 1 and 1
2�

R
C uDm. By way of an explanation,

the function uD 1� j˛0j2 obeys the constraints, and it follows from (3-13) with the
first bullet of Lemma 3.3 that the value s in this case is no greater than what is written
on the left-hand side of (3-26). As a consequence, (3-26) follows if the infimum of s
is positive.

As explained in a moment, the functional s takes on its minimum with the function, u� ,
given as follows: Set �D 2mC 4. Then

(3-32)

8<:
u� D 1 if jzj2 � �� 8,
u� D

1
8
.�� jzj2/ if �� 8� jzj2 � �,

u� D 0 if jzj2 � �.

The value of s on u� is 1
4
�2� 16

3
�6mDm2�2m� 4

3
, and this is positive for all m�3.

With regards to (3-32), note first that an averaging argument shows that any minimizer
is a function of the radial coordinate on C . Meanwhile, the variational equations
for s assert that a constrained minimizer, u� , is such that jzj3C 8jzju� D �jzj where
0� u� � 1. Here, � is the Lagrange multiplier for the constraint that the integral of
1
2�
u is equal to m. Thus, the minimizer u� has the form that is depicted in (3-32) with

� chosen so that this integral constraint is obeyed. A calculation finds that �D 2mC4
and a second calculation finds that s.u�/D 1

4
�2� 16

3
� 6m.

Part 9 The verification of (3-26) when m D 2 requires more care with regards to
the difference between j�2j and the integral of 1

�
jzj2

�
1
2
.1� j˛0j

2/2Cj@A0˛0j
2
�
. As

explained in Part 10, this difference is no less than 2q , where q is the integral of
this same function in the case when .A0; ˛0/ is a symmetric solution to (2-8) from
the space C1 . By way of a reminder, the space C1 is diffeomorphic to C with the
diffeomorphism given by the function �1 . The symmetric solution is the �1 D 0 point,
this the solution with ˛�1.0/D 0. This step proves that q > 2

3
. Granted the latter, then

(3-24) and what is said in Part 8 find

(3-33) g2
x2 > 2j�2jC 4q � 8

3
> 2j�2j:

To derive the asserted lower bound for q , introduce w to denote 1�j˛0j2 and introduce
g to denote @A0˛0 for a C1 version of .A0; ˛0/ with ˛�10 .0/ D 0. Use � D jzj to
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denote the radial coordinate on C . Then @�w� 0 since w is rotationally symmetric
and has no local maxima. Meanwhile, j@�wj D

p
2 j˛0jjgj <

p
2 jgj. What with

Lemma 3.3, this finds j@�wj<
p
3
p
2
jwj. Keeping in mind that w is exponentially small

at large � , integration by parts finds that

(3-34) 0D

Z 1
0

@�.�
2w/ d�D 2

Z 1
0

w� d�C
Z 1
0

.@�w/�2 d�:

Given what was said about @�w, this last equation implies that

(3-35)
Z 1
0

w�2 d� > 2
p
2

p
3

Z 1
0

w� d�D 2
p
2

p
3
:

By way of explanation, (3-1) asserts that the integral on the right-hand side is equal
to 1. To continue, use Hölder’s inequality with (3-1) to see that the left-hand side
of (3-35) is no less than

(3-36)
�Z 1

0

w�3 d�
�1=2�Z 1

0

w� d�
�1=2
D

�Z 1
0

w�3 d�
�1=2

:

Taken together, (3-35) and (3-36) assert that

(3-37)
Z 1
0

w�3 d� > 8
3
:

This last equation with (3-30) say that q > 2
3

.

Part 10 Suppose now that .A0; ˛0/ is a solution to (2-8) that defines a point in C2 .
This step explains why

(3-38) 1

�

Z
C
jzj2

�
1
2
.1� j˛j2/2Cj@A0˛0j

2
�
> j�2jC 2q :

To this end, note that (3-38) holds if the left-hand side is greater than 2q plus the
real part of xu�2 for any u 2 S1 . Therefore, no generality is lost in proving that the
left-hand side of (3-38) is greater than 2q plus the real part of �2 . Reintroduce �x to
denote this real part. Let � W C2! .0;1/ denote the function given by the left side
integral in (3-38).

Lemma 3.4 The function � � �x does not take on its infimum at any point in C2 .
Furthermore, sequences in C2 on which � � �x converges to its infimum have the
following properties: Fix R� 1; all but a finite number of elements in the sequence are
C1.CIS1/–orbits of pairs .A0; ˛0/ with ˛0 such that its two zeros have distance R
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or greater between them. Moreover , these zeros have distance 1
R

or less from the real
z–axis in C .

Granted for the moment Lemma 3.4, write the coordinate z as xC iy with x and y
being real, and then use (3-29) to write

(3-39) � � �x D
1

�

Z
C
y2.1� j˛j2/� 2m:

It follows from (2-4) in [21] that if R� 1 and .A0; ˛0/ is as described in Lemma 3.4,
then what is written on the left-hand side of (3-39) differs by at most c0R�1 from
twice its value for the case where mD 1 and .A0; ˛0/ is the �1 D 0 solution in C1 .
Meanwhile, the �1 D 0 solution in C1 is invariant with respect to the S1 action on C1
and so the mD 1 and �1 D 0 version of (3-38) is equal to q .

Proof of Lemma 3.4 Fix an element in C2 and write the zeros of any corresponding
solution to (2-8) as an unordered pair .z1; z2/ 2 Sym2.C/. Fix pairs, .A1; ˛1/ and
.A2; ˛2/, of mD 1 solutions to (2-8) with ˛�11 .0/D z1 and with ˛�12 .0/D z2 . Part 4
in Section 2a of [20] writes the given C2 element as the C1.CIS1/–orbit of an mD 2
solution to (2-8) that can be written as .A; ˛/ with

(3-40) AD A1CA2C .x@u dxz� @u dz/ and ˛ D e�u˛1˛2

such that u is a smooth, real-valued function on C that obeys juj�c0e� dist. � ;˛�1.0//=c0 .
The top line in (2-8) requires u to obey

(3-41) �uD .1� e�2uj˛1j
2
j˛2j

2/� .1� j˛1j
2/� .1� j˛2j

2/:

Were u�0, then the right-hand side of (3-41) would be less than �.1�j˛1j2/.1�j˛2j2/
and thus not positive. This being the case, the maximum principle demands that u > 0.
With this in mind, multiply both sides of (3-41) by y2 and then integrate the result
over C . An integration by parts writes the integral of y2�u as twice the integral of u.
In particular, the integral of u is positive, and so

(3-42)
Z

C
y2.1� j˛j2/�

Z
C
y2.1� j˛1j

2/C

Z
C
y2.1� j˛2j

2/:

Meanwhile, the bound u� c0e� dist. � ;˛�1.0//=c0 implies that

(3-43)
Z

C
y2.1� j˛j2/�

Z
C
y2.1� j˛1j

2/C

Z
C
y2.1� j˛2j

2/C c0e
�jz1�z2j=c0 :

The assertions of Lemma 3.4 follow directly from (3-42) and (3-43).
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4 Instantons

The purpose of this section is to provide various facts about the solutions to the r and
gD e� versions of (1-20), this being the version reproduced below:

(4-1)

(
@
@s
ACBA� r. �� � iya/C 1

2
BAK � i �d�D 0;

@
@s
 CDA D 0:

These facts assert a priori bounds on various integrals on pointwise norms.

4.1 A priori integral bounds

The analysis of (4-1) concerns the versions with r>� and with �2� a given element
with P –norm bounded by 1. Assume in what follows that � is such that all solutions
to (1-13) are nondegenerate.

To set some notation, suppose that dW R! Conn.E/�C1.Y IS/ is a given instanton
solution to (4-1). The s ! �1 limit of d is denoted by c� and the s !1 limit
by cC . The latter are solutions to (1-13). The respective Conn.E/ and C1.Y IS/
components of d are written as .A; /, and  is often written in two-component form
as .˛; ˇ/. The lemmas that follow use Ad to denote a.c�/� a.cC/.

Many of the lemmas here and in the rest of Section 4 have analogs in Section 3 of [22].
Except for one item, the statement of a given lemma here is virtually identical to the
statement of its partner in Section 3 of [22]. Various lemmas in Section 3 of [22] give
the option of assuming the lower bound fs.cC/� fs.c�/ > �r2 in lieu of an upper
bound on Ad . Their partners here do not give such an option. This difference is due
solely to the term 2�rfs in (1-29)’s formula for af . The version of af used in Section 3
of [22] has fs appearing only as �2�2fs while the version here has 2�.r��/fs . Of
relevance here is the sign difference when r> � .

Except for what was just said about fs.cC/� fs.c�/, the proof of almost every lemma
here is virtually identical to that of its partner in Section 3 of [22]. When this is the
case, the reader is referred to Section 3 of [22] for the proofs. The correspondence
between lemmas here and lemmas in Section 3 of [22] are noted below. Be forewarned
however that the lemmas in Section 3 of [22] do not appear in the same order as those
here.

The first lemma below supplies an inequality that relates Ad to the change in fs .
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Lemma 4.1 There exists a constant � � 1 with the following significance: Suppose
that r � � and that � 2 � with P–norm less than 1. Suppose that cC and c� are
solutions to the .r; �/ version of (1-13). Then

a.c�/� a.cC/� 2�.r��/.fs.cC/� fs.c�//C �r.M.cC/C 1/:

Proof Write a.c�/�a.cC/ as af.c�/�a
f.cC/C2�.r��/.fs.cC/� fs.c�// and then

appeal to the third bullet of Proposition 2.7.

The next lemma refers to a certain iR–valued 1–form that can be associated to a given
.A; / 2 Conn.E/�C1.Y IS/. This 1–form is denoted by B.A; / :

(4-2) B.A; / D BA� r. �� � iya/� i �d�C 1
2
BAK :

The upcoming Lemma 4.2 gives an a priori bound for the L2–norms of @
@s
 , @

@s
A,

B.A; / and DA . Lemma 4.2 is partnered with Lemma 3.4 in [22] and its proof is
identical to the latter’s but for notation.

Lemma 4.2 There exists a constant � � 1 with the following significance: Suppose
that r� � , that �2� has P –norm less than 1 and that .A; / is an instanton solution
to the .r; �/ version of (4-1). Let s0 � s 2R. Then

1

2

Z
Œs;s0��Y

�ˇ̌̌
@

@s
A
ˇ̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌
@

@s
 
ˇ̌̌2
CjDA j

2
��
D a.djs/� a.djs0/:

Moreover ,

1

2

Z
R�Y

�ˇ̌̌
@

@s
A
ˇ̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌
@

@s
 
ˇ̌̌2
CjDA j

2
��
D a.c�/� a.cC/:

Lemmas 4.1 and 4.2 with Lemma 2.5 have the following as a corollary: there is a
constant � that is independent of d, r and � and is such that fs.cC/ > fs.c�/� � ln r.

The final lemma in this section speaks to the L2–norms of BA and the covariant
derivative of  along the constant s slices of R�Y . The latter is denoted by rYA  .

Lemma 4.3 There exists � � � with the following significance: Suppose that r� �
and that � 2� has P –norm less than 1. Let dD .A; / denote an instanton solution
to the .r; �/ version of (4-1) with Ad < r2 . Fix a point s 2R. ThenZ

Œs;sC1��Y

�ˇ̌̌
@

@s
A
ˇ̌̌2
CjBAj

2
C 2r

ˇ̌̌
@

@s
 
ˇ̌̌2
C 2rjrYA  j

2
�
� �r2:

The proof of Lemma 4.3 is identical to its [22] analog, Lemma 3.3 in [22].
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4.2 A priori bounds on ˛, ˇ and BA and @
@s
A

The lemma that follows supplies the first of a series of a priori pointwise bounds on
the size of the components of  , BA and @

@s
A. The bounds in this first lemma are

the fundamental ones from which all else follows. This upcoming Lemma 4.4 is the
analog of Lemma 3.1 in [22] and its proof essentially the same as that of the latter.

Lemma 4.4 There exists � � � with the following significance: Fix r � � and fix
� 2� with P –norm bounded by 1. Suppose that dD .A; / is an instanton solution
to the corresponding .r; �/ version of (4-1). Then

� j˛j � 1C �r�1 ,

� jˇj2 � �r�1.1� j˛j2/C �2r�2 .

Proof The second line of (4-1) implies that
�
�
@
@s
CDA

��
�
@
@s
CDA

�
 D 0. Taking

the respective E and E˝K�1 summands of this identity and commuting derivatives
where appropriate leads to Laplacian-type equations for ˛ and ˇ ,

(4-3) � r�ArA˛C r.j˛j2� 1Cjˇj2/˛C c0˛C c1rAˇC c2ˇ D 0,

� r�ArAˇC r.j˛j2C 1Cjˇj2/ˇC c3rAˇC c4ˇC c5rA˛C c6˛ D 0,

where c0; : : : ; c6 are endomorphism-valued functions on Y that are independent of r,
A and .˛; ˇ/. They are determined solely by the geometric data for Y and the choice
of � and the connection AK Taking the inner product of the top equation with ˛ and
the lower one with ˇ leads to corresponding Laplacian-type differential inequalities
for j˛j2 (which is 1�w) and jˇj2 . The latter are then used in the manner of their [22]
analogs (equation (3.1) in [22]) to establish the assertions of Lemma 4.4.

The next set of bounds are for jBAj and
ˇ̌
@
@s
A
ˇ̌
. Those stated by the next lemma are

the analog of Lemma 3.2 in [22]. The proof of the next lemma is virtually identical to
the proof of the latter with Lemma 4.3 serving as the substitute for Lemma 3.3 in [22].

Lemma 4.5 There exists � � � with the following significance: Suppose that r� �
and that � 2� has P–norm less than 1. Suppose in addition that dD .A; / is an
instanton solution to the .r; �/ version of (4-1) with Ad < r2 . Then jBAjC

ˇ̌
@
@s
A
ˇ̌
� �r.

The bound supplied by this lemma is used to prove the next one. This upcoming
Lemma 4.6 is the analog of Lemma 3.6 in [22] and its proof is identical with Lemma 4.5
serving as a substitute for Lemma 3.2 in [22].
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The notation used in Lemma 4.6 and subsequently has rA denoting the covariant
derivative on sections of the pullback of E over R�Y that is defined by viewing the
connection A as an R–dependent connection on this pullback bundle. By way of an
example, rA D @

@s
 dsCrYA  .

Lemma 4.6 There exists � � � with the following significance: Suppose that r� �
and that � 2� has P–norm less than 1. Suppose in addition that dD .A; / is an
instanton solution to the .r; �/ version of (4-1) with Ad < r2 . Then

� jrA˛j
2 � �r,

� jrAˇj
2 � � .

In addition, for each q � 1, there exists a constant �q which is independent of d, �
and r, and is such that when r� � then

� jr
q
A˛jC r1=2jrqAˇj � �qrq=2 .

The upcoming Lemma 4.7 is the analog of Lemma 3.7 in [22]. This lemma and
subsequent lemmas refer to the function M on R that is defined by the rule

(4-4) s 7! M.s/D r
Z
Œs�1;sC1��Y

.1� j˛j2/:

The proof of the upcoming lemma differs little from that of Lemma 3.7 in [22] with
Lemma 4.5 serving in lieu of Lemma 3.2 in [22].

Lemma 4.7 There exists � � � with the following significance: Fix r� � and � 2�
with P–norm less than 1. Let dD .A; / denote an instanton solution to the .r; �/
version of (4-1) with Ad < r2 . Assume in addition that s0 2R and that K� 1 are such
that sups2Œs0�2;s0C2� M.s/� K . Thenˇ̌̌

@

@s
A�BA

ˇ̌̌
� r.1C �K1=2r�1=2/.1� j˛j2/C �

at all points in Œs0� 1; s0C 1��Y .

The upcoming Lemma 4.8 is a refinement of Lemma 3.8 in [22] in that it makes no
reference to M . The proof given below works just as well in the context of Lemma 3.8
in [22] and so the assertion of the latter lemma holds also with no reference to M .
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Lemma 4.8 There exists � � � with the following significance: Fix r> � and � 2�
with P–norm less than 1. Let dD .A; / denote an instanton solution to the .r; �/
version of (4-1) with Ad < r2 . Fix s0 2R and let X� � Œs0�2; s0C2��Y denote the
set of points where 1� j˛j � ��1 . The bounds stated below hold on X� :

� jrA˛j
2C rjrAˇj2 � �r.1� j˛j2/C �2 .

� jrA˛j
2C rjrAˇj2 � �.r�1C re�

p
r dist. � ;X�/=�/.

� jˇj2 � �.r�2C r�1e�
p

r dist. � ;X�/=�/.

� r.1� j˛j2/� �.1C re�
p

r dist. � ;X�/=�/.

Remark Lemma 3.8 in [22] misstates the bound on r.1� j˛j2/ in its second bullet;
the correct bound is of the form given by the fourth bullet in Lemma 4.8 here. The
proof of the second bullet of Lemma 3.8 in [22] has a corresponding misstep. See [24]
for a corrected version of Lemma 3.8 in [22] and its proof.

Proof The proof of the top bullet is the same as the proof of the analog in [14,
Proposition 2.8]. It uses only the bounds from Lemma 4.6 on jBAj and

ˇ̌
@
@s
A
ˇ̌
. The

bounds in the second and third bullets of Lemma 4.8 are derived in the three steps that
follow. See also [24] for a different proof.

Step 1 Mimic what is done in Step 2 of the proof of Proposition 4.4 in [14] to find
positive .A; /– and r–independent constants c > 1 and z1 and z2 such that the
function y1 D .jrA˛j2C z1rjrAˇj2C z2r2jˇj2/ obeys a differential inequality of the
form

(4-5) d�dy1C c�2ry1 � c0r.1� j˛j2/y1C c0:

With regards to the derivation, differentiating the equations in (4-3) and commuting
covariant derivatives leads to second-order, Laplacian-type equations for rA˛ and rAˇ .
Note that the 2–form FA D

@
@s
A^ dsCBA on R�Y will appear in these equations

because of the covariant derivative commutators. A c0r.1� j˛j2/C c0 bound on the
norm of FA should be kept in mind; it follows from (4-1) and from the KD c0r version
of Lemma 4.7, which is always available because M is in no event greater than that
version of K . The covariant derivative commutators will also give a term proportional
to either d�FA˛ or d�FAˇ as the case may be. Keep in mind in this regard that d�FA
can evaluated using just the top equation of (4-1) because dFA D 0. Taking the inner
product of the respective second-order, Laplacian-type equations for rA˛ and rAˇ
with rA˛ and rAˇ leads to second-order, elliptic differential inequalities for jrA˛j2
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and jrAˇj2 . Equation (4-5) is obtained from the latter plus the equation for jˇj2 that
results from taking the inner product of the second equation in (4-3) with ˇ .

Step 2 Fix x0 2 X� and let d0 denote the distance from x0 to the boundary
of X� . There exists c0 > 1 such that the function x 7! h0.x/D e

�
p

r .dist.x;x0/�d0/=2c

obeys the differential inequality d�dh0 C
1
2

c�2rh0 � 0 when dist.x; x0/ � c�10 .
Lemma 4.4 and the top bullet in Lemma 4.8 bound y1 by c0r in any event, and so
y2 D y1 � c0.rh0 C r�1/ is nonpositive where dist.x; x0/ � d0 . Meanwhile, (4-5)
implies that d�dy2 � 0 if X� is defined to be where 1� j˛j2 � 1

2
c�10 c�2 . Granted

this definition, then the maximum principle asserts that y2 � 0 on X� . In particular,
this is the case at x0 and so y1 � c0.re�

p
rd0=2c C r�1/. The latter implies the second

and third bullets in Lemma 4.8.

Step 3 Take the inner product of both sides of the top bullet of (4-3) to obtain a
differential inequality for wD 1� j˛j2 that has the form

(4-6) d�dwC 2rw� 2rw2C c0.y1C 1/:

Granted (4-6), and granted the bounds from the second and third bullets of Lemma 4.8,
then Step 2’s maximum principle argument using h0 can be repeated with only cosmetic
changes to prove the lemma’s fourth bullet. By way of a parenthetical remark with
regards to w, keep in mind that Lemma 4.4 bounds w from below by �c0r�1 .

Lemmas 4.9 and 4.10 are the respective analogs of Lemmas 3.9 and 3.10 of [22]. To
set the stage for these lemmas, suppose that x 2 R� Y and � 2 .r�1=2; c�10 / have
been specified. The lemmas use M.x;�/ to denote the integral of r.1� j˛j2/ over the
radius � ball in R�Y centered at x .

Lemma 4.9 There exists � � � , and , given data consisting of an open set U �R�Y ,
an open subset V � U with compact closure and K � 1, there exists �K;U;V � 1
with the following significance: Fix r� � and � 2� with P–norm less than 1. Let
d D .A; / denote an instanton solution to the .r; �/ version of (4-1) with Ad < r2 .
Assume that d is such that supx2U M.x;1=�/ � K . Thenˇ̌̌

@

@s
ACBA

ˇ̌̌
� r.1� j˛j2/C �K;U;V ;ˇ̌̌

@

@s
A�BA

ˇ̌̌
� r.1� j˛j2/C �K;U;V

at all points in V .
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The proof of Lemma 4.9 is very similar to that of its analog in [22], the latter being
very similar to the proof of Proposition 3.4 in [14].

The final lemma in this subsection is a monotonicity result and of a different flavor
from the pointwise bounds given above. It plays a role in the proof of Lemma 4.9.

Lemma 4.10 There exists � � � , and , given z � 1, there exists �z � 1 with the
following significance: Fix r � � and � 2 � with P–norm less than 1. Let d D

.A; / denote an instanton solution to the .r; �/ version of (4-1) with Ad < r2 and
sups2R M.s/ � r1�1=z . Given x 2 R�Y and � 2 .r�1=2; ��1z /, use M.x;�/ to denote
the integral of r.1� j˛j2/ over the radius � ball in R�Y centered at x . Then:

� If �1 > �0 are in .r�1=2; ��1z /, then M.x;�1/ > �
�1
z �21=�

2
0 M.x;�0/ .

� Suppose that j˛j � 3
4

at x . If � 2 .r�1=2; ��1z /, then M.x;�/ � �
�1�2 .

� Suppose that K 2 .1; r1�1=z/ and suppose that d 2 .r�1=2; ��1/ and x 2R�Y

are such that M.x;d/ � Kd2 . If � 2 .r�1=2; d /, then M.x;�/ � �zK�2 .

As with the proof of Lemma 3.10 in [22], the proof of Lemma 4.10 differs little from
the proof of Proposition 3.1 in [14]. This lemma also plays a role in the subsequent
sections.

4.3 Instantons and holomorphic data on C2

The three parts of this section first introduce holomorphic notions on C2 , and then
explain how they model an instanton solution to (4-1) in a radius O.r�1=2/ ball.

Part 1 This part introduces the relevant holomorphic data on C2 . To this end, intro-
duce complex coordinates .x0; x1 ) for C2 DR4 . Give C2 the standard metric with
Kähler form !0 D

i
2
.dx0 ^ d xx0C dx1 ^ d xx1/. Use PCW

V2
T �C2!

V2
T �C2 to

denote the projection to the self dual subspace and P� the projection to the anti-self
dual subspace.

Of interest here are pairs .A0; ˛0/ on C2 where A0 is a unitary connection on the
trivial bundle and ˛0 is a section of this bundle, and where these are such that

(4-7)
x@A0˛0 D 0; PCFA0 D�

1
2
i.1� j˛0j

2/!0;

j˛0j � 1; jP
�FA0 j � jP

CFA0 j � 2
�1=2.1� j˛0j

2/:

Proposition 4.1 in [14] and Proposition 4.2 in [22] describe the pairs .A0; ˛0/ that
satisfy these conditions. Except for the second bullet, the following proposition restates
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Proposition 4.2 in [22]. The proof of the second bullet is the same as that of the second
bullet of this same Proposition 4.2 in [22].

Proposition 4.11 Suppose that .A0; ˛0/ obeys (4-7).

� If j˛0j< 1 somewhere , then j˛0j is strictly less than 1, it has no positive local
minimum and infC2 j˛0j D 0. If ˛�10 .0/¤∅, then ˛�10 .0/ is either all of C2

or a complex analytic subvariety of complex dimension 1.

� There exists �0 > 1 that is independent of .A0; ˛0/ and has the following
significance: Let X� �C2 denote the set of points where 1� j˛0j � 3

4
. Then

1� j˛0jC jrA0˛0j � �0e
� dist. � ;X�/=�0 :

� If j˛0j < 1 somewhere , and if there exists m � 1 such that the integral of
1� j˛0j

2 over the ball of any given radius R � 1 centered at the origin is less
than m R2 , then:

(a) The locus ˛�1.0/ is a nonempty, complex algebraic subvariety with complex
dimension 1. As such, this locus near any given point is the zero locus of a
holomorphic polynomial.

(b) The order of the latter polynomial has a purely m –dependent upper bound.

If , in addition , the integral over C2 of jPCFA0 j
2� jP�FA0 j

2 is finite , then:

(c) This integral is a nonnegative integer multiple of 4�2 .

(d) If the latter integral is zero, then .A0; ˛0/ is the pullback via a projection
C2!C of a solution on C to the vortex equations in (1-4) and ˛�10 .0/ is
a union of planes.

� The set of gauge equivalence classes of pairs .A0; ˛0/ that obey (4-1) is sequen-
tially compact with respect to convergence on compact subsets of C2 in the C1

topology.

The solutions to (4-7) constitute the desired holomorphic data on C2 .

Part 2 Fix a point p 2R�Y . A complex Gaussian coordinate system centered at p is
a coordinate chart map from a ball about the origin in C2 to a neighborhood of p that
takes the origin to x and defines a Gaussian coordinate chart when written in terms of
the real coordinates for C2 . In addition, the almost complex structure J at the point p
must appear in these coordinates as the standard complex structure. The complex
coordinates on C2 are written again as .x0; x1/. No generality is lost by assuming
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that any given such Gaussian coordinate chart is defined where jx0j2C jx1j2 � c�10
with c0 being independent of p .

Introduce a new coordinate chart by composing the original one with the map from C2

to itself that sends .x0; x1/ to .r�1=2x0; r�1=2x1/. The new coordinate chart is defined
on the ball of radius c�10 r1=2 centered at the origin in C2 . Use 'r in what follows to
denote this coordinate chart map from the ball of radius c�10 r1=2 in C2 to R�Y .

The 'r –pullback of the metric from R�Y differs from the standard Euclidean metric
by no more than c0r�1 on the radius 24 ball. The pullback of the Riemannian curvature
is also bounded in absolute value on this ball by c0r�1 , and the latter’s derivatives to a
given order k � 1 on this ball have norm bounded by ckr�1�k=2 with ck depending
on k only. Meanwhile, the 'r –pullback of the almost complex structure on this ball
differs from the standard one by at most c0r�1=2 and its derivatives to order k have
norm bounded by ckr�.1Ck/=2 .

Part 3 Let dD .A; D .˛; ˇ// denote an instanton solution to (4-1) with Ad � r2

and such that there exists z > 1 such that sups2R M.s/� r1�1=z . Introduce .Ar; ˛r/ to
denote the 'r –pullback of the .A; ˛/. Use FAr to denote the curvature 2–form of the
connection Ar . Lemmas 4.4, 4.6 and 4.7 have implications with regards to .Ar; ˛r/ that
are described in what follows. To say more, fix R � 1. Given Part 2’s remarks about
the 'r –pullbacks of the metric and almost complex structure, there exists cR > 1 that
is independent of p and such that if r� cR , then the d version of .Ar; ˛r/ is nearly a
solution to (4-7) on the ball of radius R in C2 centered at the origin in the sense that

(4-8)

jx@Ar˛rj�cRr�1=2;ˇ̌
PCFArC

i
2
.1�j˛rj

2/!0
ˇ̌
�cRr�1;

j˛rj�1CcRr�1;

jP�FAr j�jP
CFAr jCcRr�1=2z�2�1=2.1�j˛rj

2/CcRr�1=2z :

Moreover, with the 'r –pullback of ˇ , the pair .Ar; ˛r/ plus '�r ˇ obey an equation on
the radius R ball in C2 that gives bounds on the covariant derivatives of ˛r and FAr

to any given order that are independent of p , d and R . These bounds with (4-8) lead
to the following lemma:

Lemma 4.12 Given q � 1, R > 1, " > 0, k 2 f1; 2; : : : g and m > 1, there exists
� > 10R with the following significance: Fix r � � and � 2 � with P–norm less
than 1 and suppose that .A; / denotes an instanton solution to (4-1) with Ad � r2
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and sups2R M.s/ � r1�1=q . Given p 2 R� Y , there exists a solution to (4-7) on C2 ,
this denoted by .A0; ˛0/, such that .Ar; ˛r/ D .A0C ya; ˛0C �/ with .ya; �/ having
C k –norm less than " on the ball of radius R in C2 centered at the origin. Moreover,
suppose that the integral of r.1�j˛j2/ on each radius � 2 .r�1=2; �r�1=2/ ball centered
on p is less than m�2 . Then .A0; ˛0/ can be chosen so as to obey items (a) and (b) of
the third bullet in Proposition 4.11.

Lemma 4.12 is the analog here of Lemma 4.3 in [22]. As with the latter, the proof
differs little from that of Proposition 4.2 in [14].

5 A priori bounds for the function M: the complement ofS
p2ƒ.y


C

p [ y

�
p /

Write �˘ as q˘yaC b where the 1–form b annihilates v . By way of a reminder, the
function q˘ differs from 1 only in

S
p2ƒHp , it vanishes only on

S
p2ƒ.y


C
p [ y


�
p /,

and it is such that q˘ � c�10 j�˘j
2 . Fix r> c0 and � 2� with P –norm less than 1 so

as to define (4-1). Suppose that dD .A;  D .˛; ˇ// is an instanton solution to this
.r; �/ version of (4-1). This section supplies a d– and r–independent bound for the
function on R given by the rule

(5-1) s 7! M˘.s/D r
Z
Œs�1;sC1��Y

q6˘.1� j˛j
2/:

The proposition that follows makes a formal statement that such a bound exists:

Proposition 5.1 There exists � � � and , given c � 1, there exists �c > 1 with the
following significance: Suppose that r � � and that � 2� has P–norm less than 1.
Suppose in addition that d D .A; / is an instanton solution to the .r; �/ version
of (4-1) with Ad < cr. Then the corresponding function M˘ obeys �� < M˘ < �c .

The lower bound follows directly from Lemma 4.4, so it holds without the bound
for Ad . The proof of the upper bound occupies the rest of this section. By way of a
parenthetical remark, the proof looks much like the proof of Lemma 5.8 in [11].

5.1 Preliminary bounds for M˘ and M

The lemma that follows supplies a preliminary and easy-to-come-by bound for M that
is used in the later subsections to invoke Lemma 4.7.

Lemma 5.2 There exists � � � with the following significance: Fix r� � and � 2�
with P–norm less than 1. Let dD .A; / denote an instanton solution to the .r; �/
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version of (4-1). The corresponding version of M˘ obeys �� � M˘ � �.AdC1/
1=2

and the corresponding version of M obeys �� < M < �r2=3.1C Ad/
1=6 .

Proof The lower bounds follow from Lemma 4.4. The first step of what follows
establishes the upper bound for M˘ and the second step establishes the upper bound
for M . The notation in these steps is that used earlier in the proof of the second bullet
of Lemma 2.5.

Step 1 To prove the upper bound for M˘ , take the inner product on Y between �˘
and the 1–form on the right-hand side of the top line in (4-1). Integrate the result over
Œs� 1; sC 1��Y . This integral is, of course, equal to zero. Thus,

(5-2)
Z
Œs�1;sC1��Y

�
�˘ ^�

@

@s
A
�
C

Z
Œs�1;sC1��Y

.�˘ ^�BA/

D r
Z
Œs�1;sC1��Y

.�˘ ^�. 
�� � iya//C e;

where jej � c0 . Write �˘ as q˘yaC b with b annihilating the vector field v and use
this rewriting for the integrand of the integral on the right-hand side of (5-2). Then, use
the bounds jbj � j�˘j and j�˘j � c0q

1=2
˘ with Lemma 4.4’s bounds for jˇj to see that

this integrand is greater than 1
2
j�˘j

2.1� j˛j2/� c0r�1 . This the case, a bound on the
integral on the left-hand side of (5-2) supplies one for the integral on the right-hand
side of (5-1).

To obtain an upper bound for the left-hand side of (5-2), use Lemma 4.2 to see that
the integral of �˘ ^ � @@sA that appears on the left-hand side of (5-2) is no greater
than c0.1C Ad/

1=2 . Meanwhile, the integral of �˘ ^�BA is independent of A and r
because it computes a pairing with the first Chern class of the bundle E. These last
facts imply that the left-hand side of (5-2) is no greater than c0.AdC1/

1=2 .

Step 2 Fix � > 0 and let Y � denote for the moment the set of points in Y with
distance � or more from the curves in the set

S
p2ƒ.y


C
p [ y


�
p /. The integral in (5-1) is

no less than the contribution from Y � and this is no less than c�10 �4.M� c0r�2/� c0 .
It follows as a consequence that M � c0.�

�4.AdC1/
1=2C r�2/. This understood, take

�2 D r�1=3.AdC1/
1=6 to obtain what is asserted by Lemma 5.2.

5.2 A vortex-like inequality

This subsection shows how Proposition 5.1 follows from Lemma 5.3. This lemma asserts
an inequality that is reminiscent of the equality asserted by the first bullet of Lemma 3.3.
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Lemma 5.3 refers to a certain function, Q˘ , on Y which is specified in the next
subsection. For the purposes of the lemma, it is enough to know that Q˘ � c

�1
0 q6˘

and that jdQ˘j � c0 . Given s 2 R, this lemma uses �s to denote the function
�.2js � . � /j � 1/ on R. This function is 1 on

�
s � 1

2
; sC 1

2

�
and it is equal to 0 on

the complement of Œs� 1; sC 1�.

Lemma 5.3 There exists � >� and , given c�1, there exists �c �1 with the following
significance: Fix r� � and � 2� with P –norm less than 1. Let dD .A; / denote
an instanton solution to the .r; �/ version of (4-1) with Ad < cr. Then

sup
s2R

M˘ � �c sup
s2R

Z
R�Y

�sQ˘.rj˛j2.1� j˛j2/� jrA˛j2/C �2c :

This lemma is proved in a moment.

Proof of Proposition 5.1 The proof assumes that Lemma 5.3 is true so as to deduce a
suitable upper bound for M˘ . To deduce such a bound from Lemma 5.3, introduce by
way of notation DA to denote @

@s
CDA , this being an operator on the space of sections

of S over R � Y . Use D�A to denote its formal L2–adjoint. Given that DA D 0,
D�ADA is also zero. Projecting the equation D�ADA D 0 to the E summand of S

gives an equation of the form

(5-3) r
�
ArA˛C r˛.j˛j2� 1/C rD 0;

where jrj � c0.j˛jC jˇjC jrAˇj/. Take the inner product of this equation with ˛ to
find an equation of the form

(5-4) 1
2
d�d.1� j˛j2/C rj˛j2.1� j˛j2/� jrA˛j2C eD 0;

where jej � c0.j˛j2Cjˇj2CjrAˇj2/. Multiply both sides of this last equation by �sQ˘
and integrate the result over R�Y . Integrate by parts and appeal to Lemma 4.4 and
the bound on jrAˇj2 from Lemma 4.6 to see that the integral that appears on the
right-hand side of Lemma 5.3 has an .A; /– and r–independent upper bound.

5.3 Proof of Lemma 5.3

The four steps that follow derive Lemma 5.3 from the upcoming Lemma 5.4. The rest
of the subsection supplies a proof of Lemma 5.4.

Step 1 This step specifies the function Q˘ . To do this, first introduce the function f�
that is defined on each p 2ƒ version of Hp by the rule f�.u; �/D g.u/.1� 3 cos2 �/
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with g as defined in the third line in (1-2). By way of a reminder from (1-5), this
function is such that �˘ D df� on Hp . Choose a smooth, nondecreasing function
on Œ0;1/ with the properties listed next. This function is denoted by Q . It is such that
Q.t/D t5 for t 2

�
0; 1
2

�
and Q.t/D 1 for t � 1. With Q in hand, fix for the moment

" 2 .0; 1/ and use Q" to denote the function Q."�2q˘/. Let v.Q"/ denote the pairing
between v and dQ" . The function Q˘ is the function Q"q˘C f�v.Q"/ for a choice
for " that guarantees it to be greater than c�10 q6˘ and to have derivative norm bounded
by c0 . This choice is such that " > c�10 .

Step 2 The upcoming equation (5-5) supplies an integral form of the Bochner–
Weitzenböck identity for the operator DA.Q˘DA/. The formula reintroduces from
(1-11) the Clifford multiplication endomorphism cl. � /. This formula is derived us-
ing integration by parts. Suppose for the moment that .A; / is any given pair in
Conn.E/�C1.Y IS/. What follows is the promised identity:

(5-5)
Z
Y

Q˘.jBAj
2
C r2j �� � iyaj2C 2rjrYA  j

2/

D 2i r
Z
Y

Q˘ya^�BA� r
Z
Y

. � cl.dQ˘/DA � .DA/
� cl.dQ˘/ /

C

Z
Y

Q˘.jB.A; /j
2
C 2rjDA j2/C e;

where e obeys jej � c0.1C r/. The proof of Lemma 5.3 uses the a priori bounds given
by the next lemma on the first two integrals that appear on the right-hand side of (5-5).
Lemma 4.2 is used to bound the third, right-most integral on the right-hand side of (5-5).

Lemma 5.4 There exists � >� and , given c�1, there exists �c >1 with the following
significance: Fix r� � and � 2� with P –norm less than 1. Let dD .A; / denote
an instanton solution to the .r; �/ version of (4-1) with Ad < cr and sups2R M˘ � 1.
Then

� sup
s2R

2r
Z

R�Y
�s

�
i

Z
Y

Q˘ya^�BA

�
�

1
1000

r sup
s2R

M˘C �cr,

� sup
s2R

r
ˇ̌̌̌Z

R�Y
�s
�
 � cl.dQ˘/DA � .DA/

� cl.dQ˘/ 
�ˇ̌̌̌
�

1
1000

r sup
s2R

M˘C �cr.

This lemma is proved in a moment. The remaining steps use Lemma 5.4 to complete
the argument for Lemma 5.3.

Step 3 Take the Conn.E/�C1.Y IS/ pair .A; / in (5-5) to be the pair given in
the statement of Lemma 5.4 at any given slice of R�Y with constant R factor. Add
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the integral over this slice of Q˘
ˇ̌
@
@s
 
ˇ̌2 to both sides of (5-5). View the result as an

equality between functions on R. Multiply this equality by �s and integrate over R.
Then use Lemmas 4.2 and 5.4 with (5-5) to see that

(5-6)
Z

R�Y
�sQ˘

�
jBAj

2
C r2.1� j˛j2/2C 2rjrA˛j2

�
�

1
100

r sup
s2R

M˘C cc�r;

where cc� denotes the version of �c that is given by Lemma 5.4. To make something
of this, mimic what is done in Section 5.4 of [11] by writing

(5-7)
@

@s
AD�i.1� �/.r.1� j˛j2/C zA/yaC rCX;

BA D�i�.r.1� j˛j2/C zB/yaC r�X;

where the notation uses � to denote a function on R�Y . The notation has zA and zB
denoting functions on R � Y with norms bounded by 1, and it has both r and X

annihilating v . Lemma 4.4 finds jrj � c0
�
r1=2

ˇ̌
1� j˛j2

ˇ̌1=2
C 1

�
. To say something

more about X, use the top bullet in (4-1) and Lemma 4.7 with Lemma 5.2 to see that

(5-8) 4jXj2C .1� 2�/2r2.1� j˛j2/2 � r2.1C ccr�1=12/2.1� j˛j2/2C cc ;

where cc here and in what follows denotes a purely c –dependent constant with value
greater than 1. The notation is such that cc increases between subsequent appearances.
This last inequality implies that

(5-9) jXj2 � r2�.1� �/.1� j˛j2/2C ccr23=12.1� j˛j2/2C cc :

Use (5-7) to write

(5-10)

Z
R�Y

�sQ˘

ˇ̌̌
@

@s
A
ˇ̌̌2
D

Z
R�Y

�sQ˘
�
.1� �/2r2.1� j˛j2/2CjXj2

�
C eA;Z

R�Y
�sQ˘jBAj

2
D

Z
R�Y

�sQ˘
�
�2r2.1� j˛j2/2CjXj2

�
C eB ;

where eA and eB are such that jeAjC jeB j � 1
1000

r sups2R M˘C ccr.

Step 4 Let s 2R denote a point where the function of M˘ is greater than 3
4

times its
supremum. Following along the lines of what is done in Section 5.4 of [11], consider
two cases: that when

(5-11)
Z

R�Y
�sQ˘

ˇ̌̌
@

@s
A
ˇ̌̌2
�

1

100

Z
R�Y

�sQ˘r2.1� j˛j2/2

and otherwise. If (5-11) holds, add 100 times the right-hand integral in (5-11) to
both sides of (5-6) and invoke Lemma 4.2 to bound the resulting contribution to the
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right-hand side. Doing so leads to the inequality

(5-12)
Z

R�Y
�sQ˘

�
2r2.1� j˛j2/2C 2rjrA˛j2

�
�

11
100

r sup
s2R

M˘C ccr:

Write the left-hand side of this inequality as

(5-13) 2r2
Z

R�Y
�sQ˘.1� j˛j

2/C r2
Z

R�Y
�sQ˘

�
�2j˛j2.1� j˛j2/2C 2rjrA˛j2

�
:

The left-most integral in (5-13) with the factor of 2 is no less than 3
2

sups2R M˘ and
so (5-11) and (5-13) imply what is asserted by Lemma 5.3.

Now suppose that (5-11) is not true. If this is so, then (5-8) and (5-10) imply that

(5-14)
Z

R�Y
�sQ˘jBAj

2
�
�
1� 1

50

� Z
R�Y

�sQ˘r2.1� j˛j2/2:

Use this last inequality in (5-6) with the top bullet in Lemma 3.3 to see that (5-12) still
holds. This being the case, then what is said at the end of the last paragraph can be
repeated so as to complete the proof of Lemma 5.3.

Proof of Lemma 5.4 The first seven steps in the proof verify the top line and the
eighth step verifies the lower inequality.

Step 1 As noted previously, �˘ D df� on any given p 2 ƒ version of Hp . This
understood, a homologous closed 1–form, denoted by �" , is defined to be �˘ on
Mı[H0 and to equal d.Q"f�/ on each p2ƒ version of Hp . This form can be written
as �"DQ˘yaCb" with b" annihilating the vector field v . Writing �˘D q˘yaCb allows
b" to be written as Q"bC f�d?Q" with d? denoting here the orthogonal projection of
the exterior derivative to the annihilator of v in T �Y . Use the fact that jbj � j�˘j and
j�˘j � c0q

1=2
˘ and that jf�j � c0q˘ to see that jb"j � c0q

11=2
˘ .

Step 2 Write Q˘ya as �"� b" . The integral of i
2�
�"^�BA computes the cup product

pairing between the cohomology class defined by �˘ and the first Chern class of the
line bundle E. This being the case, the lemma’s top bullet follows given a suitable
bound for the absolute value of the integral of b" ^�BA . To obtain such a bound, use
(5-9) to write this form as b ^�.r�X/. As Lemma 4.4 finds jrj � c0 , an appropriate
bound for the integral of rjb ^�Xj will suffice.

To obtain the desired bound on jb" ^�Xj, first use (5-7) to see that

(5-15) jb" ^�Xj � c0rq11=2˘ .j1� � j1=2C ccr�1=12/
ˇ̌
1� j˛j2

ˇ̌
C cc :
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Introduce the set X� from Lemma 4.8. It follows from this lemma (and Lemma 4.4)
that

ˇ̌
1 � j˛j2

ˇ̌
� c0r�1 where the distance to X� is greater than c0r�1=2 ln r. The

right-hand side of (5-15) is therefore less than cc where the distance to X� is greater
than c0r�1=2 ln r. Thus, this part of R�Y contributes at most ccr to the absolute value
of any s 2R version of the integral over R�Y of 2r�sjb" ^�Xj. With the preceding
understood, the remainder of the proof of Lemma 5.4 restricts attention (implicitly for
the most part) to the contribution to the integral of the function 2r�sjb"^�Xj from the
part of R�Y where dist. � ; X�/� c0r�1=2 ln r. To set the notation, let m denote the
particular value of this last incarnation of the number c0 , and use X�� to denote the
part of R�Y where dist. � ; X�/� mr�1=2 ln r.

To continue exploiting (5-15), fix z � 1 for the moment and use the inequality

(5-16) q
11=2
˘ ccr�1=12

ˇ̌
1� j˛j2

ˇ̌
� z�1q6˘

ˇ̌
1� j˛j2

ˇ̌12=11
C zccr�1

to see that the term with factor q11=2˘ r�1=12 in (5-15) contributes at most z�1rM˘Czccr
to the integral of r�sjb" ^�Xj.

Meanwhile, the inequality

(5-17) q11=2˘ j1� � j1=2
ˇ̌
1� j˛j2

ˇ̌
� z�1q

22=3
˘

ˇ̌
1� j˛j2

ˇ̌2=3
C zc0.1� �/

2.1� j˛j2/2

implies that the term in (5-15) with the factor q11=2˘ j1� � j1=2 contributes at most

(5-18) c0z
�1r2

Z
.R�Y /\X��

�sq
22=3
˘

ˇ̌
1� j˛j2

ˇ̌2=3
C c0zr2

Z
.R�Y /\X��

�s.1� �/
2
ˇ̌
1� j˛j2

ˇ̌2
to the integral of r�sjb" ^�Xj. Use (5-7) to see that the right-most integral in (5-18)
is no greater than c0z

R
R�Y

ˇ̌
@
@s
A
ˇ̌2 and therefore no greater than zccr on account of

Lemma 4.2.

Step 3 The conclusions of Step 2 supply the bound

(5-19) r
ˇ̌̌̌Z

R�Y
�sb" ^�BA

ˇ̌̌̌
� c0z

�1r2
Z
.R�Y /\X��

�sq
22=3
˘

ˇ̌
1� j˛j2

ˇ̌2=3
C z�1rM˘C zccr:

This step and the next supply an appropriate upper bound for

(5-20) r2
Z
.R�Y /\X��

�sq
22=3
˘

ˇ̌
1� j˛j2

ˇ̌2=3
:
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To start this task, introduce �� to denote the version of � given by Lemma 4.8. Separate
the domain of integration in (5-20) into two parts: The first part is the set of points
in X� (where 1� j˛j2 � ��1� ) and the second part is the part in X���X� (which is
the part of X�� where 1� j˛j2 � ��1� ). Noting that q22=3˘ D q6˘q

4=3
˘ , the contribution

to the integral in (5-20) from the 1 � j˛j2 � ��1� part of the domain is no greater
than c0rM˘ . Because of this, it is enough to bound the integral of (5-20) with the
domain restricted to the subset in Œs� 2; sC 2��Y where 1� j˛j2 < ��1� and which
is in X�� (which is where the distance to X� is no greater than mr�1=2 ln r). The
strategy will be to show that the contribution to (5-20) from the part in X���X� is no
greater than c0 times the contribution from the X� part. The upcoming Step 5 finds a
lower bound for the contribution from X� , and then Step 6 considers the contribution
from X���X� . Step 4 supplies some preliminary observations.

Step 4 It follows from Lemma 4.12 and the second bullet of Proposition 4.11 that
there is a point where j˛j < 1

2
with distance c0r�1=2 or less from each point in X� .

With the preceding in mind, let p denote a point where j˛j< 1
2

.

The function q˘ in the radius 2mr�1=2 ln r ball centered at p is no less than 1
2
q˘.p/

and no greater than 2q˘.p/ unless p has distance less than c0mr�1=2 ln r from the
zero locus of q˘ , this being

S
p2ƒ.y


C
p [ y


�
p /. The contribution to (5-20) and to rM.s/

from the set of such points is no greater than c0r�5 because q˘ near any of these
closed integral curves of v is bounded by c0 times the square of the distance to the
integral curve. If p does indeed have distance greater than c0mr�1=2 ln r from where
q˘ is zero, then the function q˘ in the radius mr�1=2 ln r ball centered at p is bounded
above and below (uniformly) by constant multiples of its value at p . Thus, if B is a
radius �D mr�1=2 ln r ball centered at p , then

(5-21) 1

c0
q˘.p/

22=3

Z
.R�Y /\B

�s
ˇ̌
1� j˛j2

ˇ̌2=3
�

Z
.R�Y /\B

�sq
22=3
˘

ˇ̌
1� j˛j2

ˇ̌2=3
� c0q˘.p/

22=3

Z
.R�Y /\B

�s
ˇ̌
1� j˛j2

ˇ̌2=3
:

This says, in effect, that the point-to-point variation of q˘ on B is of no concern with
regards to the derivation of upper or lower bounds for the middle integral in (5-21).

Step 5 Fix n 2 f1; 2; : : : g which is less than c0m ln r. Let p denote a point in X�
where j˛j < 1

2
and where the distance to

S
p2ƒ.y


C
p [ y


�
p / is greater than c0m ln r.
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It follows from what was is said in Step 4 and from Lemmas 4.10 and 5.2 that the
contribution to rM˘.s� 1/C rM˘.sC 1/ from the ball of radius nr�1=2 centered at p
is no less than c�1c n2q˘.p/

6 . Note that this is a lower bound for the contribution. With
the preceding in mind, fix a maximal set Un �X� obeying the following:

(5-22) � The function j˛j is less than 1
2

at all points in Un .

� The union of the balls of radius 28nr�1=2 centered at the points in Un cover
the subset in X�� with distance 4nr�1=2 or less from the subset where
j˛j< 1

2
.

� The respective balls of radius nr�1=2 centered at distinct points in Un are
disjoint.

The conditions in the second and third bullets of (5-22) imply that any given point
in X�� with distance 28nr�1=2 or less from where j˛j < 1

2
is in at most c0 balls of

radius 28nr�1=2 centered at the points in Un .

It follows from what said in this step’s opening paragraph and from the condition in
the third bullet of (5-22) that

(5-23) rM˘.s� 1/C rM˘.sC 1/� c
�1
c n2

X
p2Un

q˘.p/
6:

Note that this is also asserting a lower bound.

Step 6 Supposing that n 2 f1; 2; : : : g but less than c0mr�1=2 ln r, let Xn for n 2
f1; 2; : : : g denote the subset of X��\

��
s� 3

2
; sC 3

2

�
�Y

�
with distance between nr�1=2

and .n�1/r�1=2 from X� and with 1�j˛j2 < ��1� . Lemma 4.8 with Proposition 4.11
and Lemma 4.12 have the following corollary: given that r� c0 , there is a point in X�
where j˛j< 1

2
and with distance less than .nC c0/r�1=2 from each point in Xn .

With the preceding understood, let p denote a point in X� where j˛j< 1
2

and where
the distance to

S
p2ƒ.y


C
p [ y


�
p / is greater than c0m ln r. Use Lemma 4.8 to see that

the contribution to (5-20) from the part of Xn that is in the ball of radius .nCc0/r�1=2

centered at p is no greater than c0e�n=c0n4q6˘ . This bound and the second bullet
in (5-22) and the lower bound in (5-23) imply the following: the Xn contribution to
the integral in (5-20) is less than cce

�n=c0r sups2R M˘ . (Note that a straightforward
inequality is used here: if x > 0, then n4e�nx D .n2e�nx=2/.n2e�nx=2/, which is less
than c0x�2n2e�nx=2 .)

Sum these various n 2 f1; 2; : : : g contributions to (5-20) to see that the contribution to
(5-20) from X�� is at most ccr sups2R M˘ .

Geometry & Topology, Volume 24 (2020)
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Step 7 Being that the integral in (5-20) is no greater than ccr sups2R M˘ , the right-
hand side of (5-19) is no greater than cc.z

�1r sups2R M˘C zr/. The z � c2c version
of this last bound with what is said at the outset of Step 2 give the top inequality of
Lemma 5.4.

Step 8 This step proves the second inequality of Lemma 5.4. To this end, use
Lemma 4.8 to see that jDA j�c0r1=2..1�j˛j2/Cc0r�1/1=2. Meanwhile, jd.Q"q˘/j�
c0q

11=2
˘ because q1=2˘ �c�10 jdq˘j. These observations have the following consequence:

the supremum in the second bullet is no greater than c0.z�1r sups2R M˘C zr/ for any
z � 1. Any z � 1000c0 version of this last fact gives the assertion of Lemma 5.4’s
second bullet.

6 A priori bounds for M

Fix r>c0 and �2� with P –norm less than 1. Suppose that d is an instanton solution
to the corresponding .r; �/ version of (4-1). This section uses Proposition 5.1’s bound
on M˘ to derive a d– and r–independent bound for the function M . The proposition
that follows makes the formal statement that such a bound exists:

Proposition 6.1 There exists � � � and , given c � 1, there exists �c > 1 with the
following significance: Fix r� � and � 2� with P –norm less than 1. Suppose that
d D .A; / is an instanton solution to the .r; �/ version of (4-1) with Ad < cr and
lims!1 M.djs/ < c . Then the corresponding function M obeys �� < M < �c .

But for one extra lemma, the proof of Proposition 6.1 is in Section 6.2. The extra lemma
is proved in Section 6.4. Section 6.1 makes observations that are used in the proof of
Proposition 6.1. Sections 6.1 and 6.2 borrow much from the proof of Lemma 5.2 in [22].
Section 6.3 supply some facts that are used in Section 6.4 and again in Section 7’s proof
of Theorem 1.5. The assertions in Section 6.3 all have analogs in Section 4 of [22].

6.1 Functions E and E

Let dD .A; /W R!Conn.E/�C1.M IS/ denote an instanton solution to the .r; �/
version of (4-1) with Ad<cr and with lims!1 M.djs/< c . Introduce the function E. � /

on R given by

(6-1) s 7! E.s/D i

Z
fsg�Y

ya^�BA;
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and introduce the function E on R given by the rule

(6-2) s 7! E.s/D

Z
Œs�1;sC1��Y

E. � /:

This section explains how bounds on E give bounds on M .

To do this, differentiate E and use the top bullet of (4-1) and an integration by parts to
see that

(6-3) d

ds
ED i

Z
fsg�Y

d ya^ .�BAC r. �� � iya//C e

with jej � c0 . The 2–form d ya is zero on Mı [ H0 and it is equal to w where
juj<RCc0 ln ı on each p2ƒ version of Hp . In particular, d yaDw where q˘� c�10 .
This understood, use Lemma 4.4 with Proposition 5.1 to write (6-3) as

(6-4) d

ds
ED�ECMC rE;

where jrEj � cc , with cc denoting a purely c –dependent constant. By way of notation,
cc will henceforth denote a purely c –dependent constant that is greater than 1. Its
value can be assumed to increase between successive appearances.

Integrate (6-4) to see that

(6-5) E.s/D e�s
Z s

�1

ex.M.x/C rE/ dx:

It follows from Lemma 5.2 that M. � /� �c0 , and thus (6-4) leads to the bound

(6-6) �c0 � E.s/� et .E.sC t /C cc/ for any t � 0.

It then follows from (6-5) and (6-6) that

(6-7) E.s/� cc C c
2
c E.sC 2/ and M.s/� cc.E.sC 4/C 1/:

Thus, a bound on E gives a bound on M . By way of a converse to (6-7), note that

(6-8) E.s/� .1C ccr�1=12/M.s/C cc and E.s/� .1C ccr�1=12/M.s/C cc ;

this being a consequence of (5-7) and (5-9).

As explained next, the function E is closely related to the function s 7!w.Ajs/ with w
as defined in (1-27). The discussion that follows uses wA.s/ to denote w.Ajs/. To say
more about E and wA , use (4-1) to see that

(6-9) d

ds
wA D�ECMC rw
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where jrwj � c0 . In particular, a comparison with (6-4) finds that

(6-10)
ˇ̌̌
d

ds
.E�wA/

ˇ̌̌
� cc :

Most of jE�wAj is accounted for by the restriction of A to Mı [H0 in the sense that
the yaD yaAjs version of (2-7) with (5-7), (5-9) and Proposition 5.1 can be used to write

(6-11) wA D EC i
X
z2U

CS;z

Z
fsg�
.z/

yaAC r�;

where fCS;zgz2U are integers and where r� is a function on R with jr�j � cc . A
given z 2 U version of the integral that appears in (6-11) is the value at Ajs of (2-4)’s
function X.z/ . The lemma that follows says more about the U –indexed sum in (6-11).
This lemma writes the s!1 limit of d as .AC;  C/ and writes AC as AE C yaAC .

Lemma 6.2 There exists ��� and , given c�1, there exists �c >1 with the following
significance: Fix r� � and �2� with P –norm less than 1. Let dD .A; / denote an
instanton solution to the .r; �/ version of (4-1) with Ad < cr and lims!1 M.djs/ < c .
Then ˇ̌̌̌X

z2U

CS;z

�Z
fsg�
.z/

yaA

�
�

X
z2U

CS;z

�Z

.z/
yaAC

�ˇ̌̌̌
< �c

for all s 2R.

This lemma is proved in Section 6.4. Accept it as true in the meantime. By way of a
look ahead, Proposition 5.1 plays a key role in the proof of this lemma; it plays no role
otherwise.

6.2 An algebraic inequality for E

The equation that follows asserts the desired algebraic inequality for E :

(6-12) E.s/� cc
�
1C r�1=3 sup

x�sC1

jE.x/j4=3
�
:

The derivation of this formula is given in a moment. What follows directly assumes
(6-12) to prove Proposition 6.1.

Proof of Proposition 6.1 The s!1 limit of E is by assumption bounded by c . Fix
for the moment T > c and let sT denote the largest value of s with E.s/� T . Let c�
denote the version of cc that appears in (6-12). The s D sT version of (6-12) reads
T < c�.1C r�1=3T 4=3/. This has no solutions for T 2 .2c�; c�1� r/ if r > 28c8� . The
bound E < 2c� leads via (6-7) to a purely c –dependent bound for M .
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The four parts that follow derive the inequality in (6-12).

Part 1 The derivation starts with an inequality that involves the functions a.djs/, E

and M and a function, O , on R that is defined at any given s by

(6-13) O.s/D

Z
fsg�Y

.jB.A; /j
2
C rjDA j2/;

with B.A; / as defined in (4-2). The derivation of this first inequality mimics the
derivation of an analogous inequality in Section 5b of [22].

To start, use (1-28) to see that

(6-14) a.djs/� cs.Ajs/� rwA.s/C c0r1=2O.s/1=2:

The next part of the derivation talks about the function cs.

Part 2 The formula for cs is given in (1-26) as a sum of two integrals. To say more
about the right-most integral in (1-26), keep in mind that the iR–valued 2–form
2FAE CFAK that appears in this formula is cohomologous to �2�iw . This being the
case, their difference is the exterior derivative of a fixed, smooth 1–form, this denoted
by y. As a consequence, integration by parts equates the right-most integral in (1-26)
with

(6-15) �2

Z
fsg�Y

yaA ^
�
FAE C

1
2
FAK

�
D 2�wAC i

Z
fsg�Y

�BA ^ y:

Use Lemma 5.2’s preliminary bound for M in Lemma 4.7 to bound the absolute value
of the right-most integral in (6-15) by cc.MC 1/.

The remaining term in (1-26) is the integral of yaA ^ d yaA . This term can be bounded
by writing yaA D ya?A C q with ya?A a coclosed 1–form that is orthogonal to the space
of harmonic 1–forms on Y . Meanwhile, q is a closed 1–form on Y . (This is just the
Hodge decomposition of the 1–form yaA .) The integral of yaA^d yaA is the same as that
of ya?A ^ d ya

?
A . Meanwhile, the norm of ya?A ^ d ya

?
A obeys

(6-16)
ˇ̌̌̌Z
fsg�Y

yaA ^ d yaA

ˇ̌̌̌
� cc.r2=3M4=3C 1/:

The derivation of the latter bound has two steps.

Step 1 This step bounds jyaAj pointwise by cc.r2=3M1=3C 1/. This is done with the
help of Lemmas 4.7 and 5.2 and the Green’s function for the Laplacian �d�d �d�d�
acting on 1–forms that are L2–orthogonal to the space of harmonic 1–forms. (The
strategy here mimics what is done in the proof of Lemma 2.4 of [17].) To elaborate:
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3302 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Because d ya?A D �.BA�BAE / and d �ya?A D 0, and because ya?A is orthogonal to the
harmonic forms, it can be written as �dG.BA�BAE /, where G is the aforementioned
Green’s function. With G viewed as a homomorphism-valued function on M �M,
it obeys jdG j.p;q/ � c0 dist.p; q/�2 . Given the latter bound, then Lemma 4.7 (with
Lemma 5.2’s preliminary bound for M) can be used to see that jdG.BA �BAE /j �
cc.�

�2MC �rC 1/, where � can be any given number in .0; c�10 /. This bound is
obtained by bounding jdG j.p;q/ by c0��2 where dist.p; q/ > � and bounding jBAj
by ccr where dist.p; q/�� . (This last bound comes from Lemma 4.7 with Lemma 5.2’s
preliminary bound for M .) Taking �D r�1=3M1=3 gives the asserted bound for jyaAj.

Step 2 Use the bound jyaAj � ccr2=3M1=3 to obtain a bound ccr2=3M1=3jBA �BAE j

for the integrand in (6-16). Then use Lemma 4.7 again with Lemma 5.2’s bound for M

to bound the latter integral by cc.r2=3M4=3C 1/.

Use the bound in (6-16) and the bound by cc.MC1/ for the right-most integral in (6-15)
to see that

(6-17) cs.Ajs/� 2�wAC cc.1CMC r2=3M4=3/:

The next step exploits this inequality for cs.

Part 3 Replacing cs in (6-14) with the right-hand side of (6-17) leads to the inequality

(6-18) a.djs/� �.r��/wAC cc.MC OC rC r2=3M4=3/:

Replace the function wA in (6-18) by E using Lemma 6.2. Having done so, rearrange
terms to obtain the following inequality for E :

(6-19) .r��/E � �a.djs/� .r��/
X
z2U

CS;z

�Z

.z/
yaAC

�
C cc.OC rC r2=3M4=3/:

As the function s 7! a.djs/ is nonincreasing, the right-hand side of (6-19) is no less
than

(6-20) �a.cC/� .r��/
X
z2U

CS;z

�Z

.z/
yaAC

�
C cc.OC rC r2=3M4=3/:

Use the AC versions of (6-11), (6-15) and (6-16) to bound the combined two left-most
terms in (6-20) by c0.rM.cC/Cr2=3M.cC/

4=3/. Using this bound leads to the inequality

(6-21) rE � cc.rM.cC/C r2=3M.cC/
4=3
C OC rC r2=3M4=3/

when r> 2� . The assumed M.cC/� c bound and (6-21) imply that

rE � cc.OC rC r2=3M4=3/:
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Part 4 Let F for the moment denote any given nonnegative function on Œ�1; 1� and
let F denote its integral over this interval. The measure of the set of points where F is
less than 8F must be greater than 8

15
. This being the case, suppose that F0 is a second

nonnegative function. Then there are points in Œs� 1; sC 1� where both F and F0 are
less than 8F and 8F0, respectively.

With the preceding in mind, introduce O.s/ to denote the integral of O. � / over the
interval Œs� 1; sC 1�. Fix s0 2 Œs� 1; sC 1� where O.s0/� 8O.s/ and M.s0/� 8M.s/.
The s0 version of the inequality rE � cc.OC rC r2=3M4=3/ implies that

(6-22) rE.s0/� cc.O.s/C rC r2=3M.s/4=3/:

As explained next, the inequality in (6-12) follows from (6-20) with three additional
replacements. The first replacement invokes Lemma 4.2 to substitute 2 Ad for O.s/.
The second replacement invokes (6-7) to replace M.s/ with sups�R E.x/.

To explain the final replacement, fix for the moment s00 2 Œs�3; s�1� and invoke (6-6)
with t D s0� s00. With the first and second replacements made, (6-22) and (6-6) imply

(6-23) rE.s00/� cc
�
rC AdCr2=3 sup

x�s
E.x/4=3

�
:

View both sides of (6-23) as functions on Œs�3; s�1�, with the right-hand side being the
constant function. Integrate both sides over this interval. The integral of the left-hand
side is rE.s� 2/ and that of the right is twice what is written in (6-23). The resulting
inequality with the assumed Ad � cr bound leads directly to (6-12) when evaluated
at sC 2 rather than s .

6.3 Local convergence to pseudoholomorphic subvarieties

The upcoming Proposition 6.3 describes how certain instanton solutions to (4-1) can
be used to determine pseudoholomorphic subvarieties in bounded subsets of R� Y .
Proposition 6.3 and the subsequent two lemmas about pseudoholomorphic subvari-
eties are used to prove Lemma 6.2 and they are invoked again in Section 7 to prove
Theorem 1.5. Proposition 6.3 is the analog of Proposition 4.1 in [22] and subsequent
two lemmas are the respective analogs of Lemma 4.6 and Corollary 4.7 in [22].

Proposition 6.3 and the two lemmas use Y� to denote either Mı [H0 or Y . Their
assertions with regards to Y�DMı[H0 are used in the upcoming proof of Lemma 6.2
and those that concern Y� D Y are used in Section 7.
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Proposition 6.3 introduces the notion of a pseudoholomorphic subvariety in an open set
of R�Y . To define this term, let U �R�Y denote the open set. A subset C � U is
said to be a pseudoholomorphic subvariety in U when the conditions below are met:

(6-24) � C is the intersection between U and a closed subset, C 0, of a neighborhood
of U.

� The complement in C 0 of a finite set of points is a smoothly embedded
submanifold of this neighborhood with J –invariant tangent space.

� C 0 has no totally disconnected components.

� The integral of w over C 0 is finite.

� There exists an s 2R independent upper bound for the integral of ds ^ ya
over the intersection between C 0 and Œs� 1; sC 1��Y .

The subvariety C is said to be irreducible when the complement in C of any finite set
of points is connected.

Proposition 6.3 Fix c � 1 and , in the case Y� D Y , also K > 1. There exists
�c > 1 and , given m >max.�c ; 100/, there exists �c;m > � , these having the following
significance: Fix r � �c;m and fix � 2 � with P–norm less than 1. Suppose that
dD .A; D .˛; ˇ// is an instanton solution to the .r; �/ version of (4-1) with Ad < cr.
If Y� D Y , assume in addition that sups2R M.s/ <K . Let I �R denote an interval of
length 2m . Then each point in I �Y� where j˛j< 1� ��1c;m has distance �c;m r�1=2 or
less from ˛�1.0/. Also , there exists a finite set , # , of at most �c elements with each
element having the form .C;m/ with C an irreducible , pseudoholomorphic subvariety
in I � Y� and m a positive integer no greater than �c . Distinct pairs from # have
distinct subvariety components. Furthermore:

� supz2S.C;m/2# .C\.I�Y�// dist.z; ˛�1.0//
C supz2.˛�1.0/\.I�Y�// dist

�S
.C;m/2# C; z

�
< m�1:

� Let � denote the restriction to I � Y� of a smooth 2–form on R � Y with
k�k1 D 1 and kr�k1 � m . Thenˇ̌̌̌

i

2�

Z
I��Y

� ^F yA�
X

.C;m/2#

m

Z
C\.I�Y�/

�

ˇ̌̌̌
� m�1:

Proof But for one extra remark in the Y� DMı [H0 case, the arguments for the
first bullet and items (a) and (b) of the second bullet of Proposition 4.1 in [22] can be
used with only notational changes to prove Proposition 6.3. The extra remark concerns
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the assumption made by Proposition 6.1 for a bound on M.s/. The arguments for
Proposition 4.1 in [22] require only a bound on Lemma 4.10’s function M.x;�/ for
�D c�10 and for all x 2R�Y� . Such a bound comes from Proposition 5.1’s bound
on M˘ when Y DMı [H0 .

The next two lemmas are used to say more about the subvarieties that can arise in the
context of Proposition 6.3. The lemma that follows directly is an analog of Lemma 4.6
in [22]. The notation is such that if s 2R and C is a pseudoholomorphic subvariety
that is defined in a neighborhood of fsg �Y� , then C js denotes C \ .fsg �Y�/.

Lemma 6.4 Given m > 1 and " > 0, there exists �m" > 1 with the following sig-
nificance: Suppose that C is a closed , irreducible, pseudoholomorphic subvariety
in a neighborhood of J WD Œ�4; 4�� Y� with

R
C\Jw < �

�1
m" and

R
C\J ds ^ ya � m .

Then each point of C js for jsj � 1 has distance along Y� no greater than " from
a closed integral curve, 
 , of length less than m C ". Moreover, there is a positive
integer q which is bounded by an m and " independent multiple of m , and is such that
if � is a smooth 2–form on Œ�1; 1�� Y� with k�k1 D 1 and kr�k1 � "�1 , thenˇ̌R
C\.Œ�1;1��Y�/

� � q
R
Œ�1;1��
 �

ˇ̌
� ".

Proof The proof is the same but for notation of Lemma 4.6 in [22].

The next lemma is an analog of [22, Corollary 4.7]. Note in this regard that [22,
Corollary 4.7] makes an assumption that is not guaranteed here, this being that all
integral curves of v with an a priori length bound are nondegenerate. The upcoming
Lemma 6.5 is a version of [22, Corollary 4.7] that suffices for the present purposes.

Lemma 6.5 Given m > 1 and " > 0, there exists �m" > 1 with the following sig-
nificance: Let I � R denote an interval of length at least 4, and suppose that C
is an irreducible, pseudoholomorphic subvariety in a neighborhood of I � Y� withR
C\.I 0�Y�/

w < ��1m" and
R
C\.I 0�Y�/

ds ^ ya < m for all intervals I 0 � I of length 1.
Assume in addition that C has intersection number zero with all submanifolds in R�Y

of the form fsg�S with S being a cross-sectional sphere in H0 . Let I � I denote the
subset with distance at least 3 from any boundary point of I . There exists a finite set ‚
consisting of pairs .
; q/ with 
 a closed , integral curve of v and q a positive integer.
The set ‚ is such that no two pairs share the same closed integral curve. Moreover:

� The intersection of 
 with Mı is a collection of arcs that begin on the boundary
of radius ı coordinate balls about the index 1 critical points of f in M and end
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on the boundary of radius ı coordinate balls about the index 2 critical points
of f in M.

�
P
.
;q/2‚ q`
 < m C ".

� Each point of C js for s 2 I has distance along Y less than " from
S
.
;q/2‚ 
 .

Conversely, each point in
S
.
;q/2‚ 
 has distance no greater than " from C js .

� If � is a smooth 2–form on I �Y with k�k1 D 1 and kr�k1 � "�1 , thenˇ̌̌̌Z
C\.I�Y /

� �
X

.
;q/2‚

q

Z
I�Y

�

ˇ̌̌̌
< ":

Proof But for one additional remark, the argument in [22] that explains how [22,
Corollary 4.7] follows from Lemma 4.6 in [22] explains why Lemma 6.5 follows from
Lemma 6.4. The additional remark concerns both the first bullet of the lemma and the
assumption for Corollary 4.7 in [22] of nondegenerate Reeb orbits. The assumption that
C has intersection number zero with submanifolds of the form fsg �S with S �H0
being a cross-sectional sphere replaces the nondegeneracy assumption in Lemma 4.6
of [22] and it leads directly to the first bullet of Lemma 6.5. To see how this comes
about, note that if S �H0 is a constant u sphere, then fsg �S is pseudoholomorphic,
so if C js is close to a closed integral curve of v that crosses H0 , then C will have
positive intersection number with fsg�S. This is ruled out by assumption. Meanwhile,
Section II.2 finds that the only closed integral curves of v that don’t intersect H0 are
hyperbolic and so nondegenerate. Moreover, those that intersect Mı are described by
the first bullet of Lemma 6.5.

6.4 Proof of Lemma 6.2

The proof has four parts. These parts use cc to denote a number greater than 1

that depends only on c . Its value can be assumed to increase between successive
appearances.

Part 1 The curvature of the version (1-15) that defines yA can be written as

(6-25) F yA D .1�}/
�
ds ^

@

@s
AC�BA

�
C}0rA˛^rA x̨

with it understood that the ds component of rA˛ is @
@s
˛ . The notation here uses

} and }0 to denote the respective functions on I� � Y� given by }jtDj˛j2 and
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�
d
dt
}
�ˇ̌
tDj˛j2

. Use (6-25) to see that w ^ F yA can be written as �iF ds ^ ya ^ w

with F being

(6-26) i.1�}/
�
@

@s
A
�
v
� i}0

��
@

@s
˛
�
.rA x̨/v � .rA˛/v

�
@

@s
x̨

��
;

where
�
@
@s
A
�
v

and .rA˛/v denote the pairing of these 1–forms with the vector field v .

Part 2 Let I denote an interval of length 2 and introduce V to denote the subset of
I � .M �H0/ where j˛j2 < 5

8
. The support of F yA in I � .M �H0/ is in V . Use

(6-25) and (6-26) to see that

(6-27) c0

Z
V

ˇ̌̌
@

@s
˛
ˇ̌̌2
�

ˇ̌̌̌
i

2�

Z
I�.M�H0/

w^F yA

ˇ̌̌̌
� c0 vol.V /;

where vol.V / denotes the volume of the set V . Proposition 5.1 bounds the integral
of r.1� j˛j2/ over V by cc and this implies that vol.V / � r�1cc . Therefore, (6-27)
implies that

(6-28) c0r
Z
I�Y

ˇ̌̌
@

@s
 
ˇ̌̌2
� r
ˇ̌̌̌
i

2�

Z
I�.M�H0/

w^F yA

ˇ̌̌̌
� cc :

This last bound leads directly to the following conclusion: if " 2 .r�1cc ; 1/, there are
at most "�1cc disjoint intervals in I of the form Œs� 1; sC 1� withˇ̌̌̌

i

2�

Z
Œs�1;sC1��.M�H0/

w^F yA

ˇ̌̌̌
> ":

Part 3 Apply the Y�DMı [H0 version of Proposition 6.3 to intervals of length 200
in R. Use the first bullet of the latter, Lemma 6.5 and the final conclusion in Part 2
to see that there exists a set of at most cc points in R with the following property: if
s 2 R has distance 1 or more from all points in this set, then F yA D 0 and ˛=j˛j is
yA–covariantly constant at points with distance c�10 or less from any z 2 U version of
fsg � 
 .z/ . Let Q denote this finite set in R.

Suppose that s 2 R has distance less than 2 from some point in Q. The fact that Q
has at most cc elements implies that there are points in Œs� cc ; sC cc � with distance at
least 2 from each point in Q. Let s0 denote such a point. Use the s and s0 versions
of (6-11) with the derivative bound in (6-10) to conclude that Lemma 6.2 is true for s
if and only if it is true for s0.

Introduce Q��R to denote the set of points with distance less than 2 from some point
in Q. Let .s; s0/�R denote a connected component of Q� . Then js0�sj<cc because
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Q has at most cc elements. This understood, use the s and s0 versions of (6-11) with
(6-10) again to see that

(6-29)
ˇ̌̌̌X
z2U

CS;z

�Z
fsg�
.z/

yaA

�
�

X
z2U

CS;z

�Z
fs0g�
.z/

yaA

�ˇ̌̌̌
< �c :

Given the conclusions of the preceding two paragraphs, the fact that Q has at most cc

elements implies that Lemma 6.2 holds if (6-29) is also true when s and s0 are any
two elements in the same component of R�Q� .

Part 4 To see about (6-29) when s and s0 are in the same component of R�Q� , fix
for the moment a point z 2 U . Write yA as yAD AE C ya yA and use the R�Y version
of (1-15) with Lemma 4.8 to see that

(6-30)
ˇ̌̌̌Z
fsg�
.z/

yaA�

Z
fsg�
.z/

ya yA

ˇ̌̌̌
� c0

when s has distance 2 or more from every point in Q. Note that this inequality also
holds with A replaced by AC and with yA replaced by yAC , this being the s !1
limit of yA.

With (6-30) in mind, suppose that s0 > s are in the same component of R�Q� . Use
Stokes’ theorem to see that

(6-31)
Z
fs0g�
.z/

ya yA�

Z
fsg�
.z/

ya yA D

Z
Œs;s0��
.z/

F yA:

The right-hand side of (6-31) is zero, so it follows using the s and s0 versions of (6-30)
that the integral of yaA over fsg � 
 .z/ differs by at most c0 from its integral over
fs0g � 
 .z/ . Thus, (6-29) does indeed hold for any pair s0 > s in the same component
of R�Q� .

7 Propositions 1.1–1.4 and Theorem 1.5

This last section supplies the proofs for Section 1’s propositions and theorem.

7.1 Proofs of Propositions 1.1–1.3

Leave out for the moment the second and third bullets of Proposition 1.1 and the
assertions of Propositions 1.2 and 1.3 that refer to yZ�SW;r . The remaining assertions
of these propositions, those that refer only to yZ�SW;r , are all special cases of theorems
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from [7]. To elaborate, the essential concern is a compactness theorem for the space
of instanton solutions (1-20). See in particular the discussion at the beginning of
Chapter 29.2 in [7]. The desired compactness theorem is Proposition 29.2.1 in [7].
This is because the r > � versions of (1-14) and (1-20) are defined by what is said
in [7] to be a monotone perturbation.

The second bullet of Proposition 1.1 follows directly from Proposition 2.4. To elaborate:
The bullets in Proposition 2.4 imply that j˛j is nearly 1 along 
 .z0/ . This being the
case, then (by construction) the section ˛=j˛j is yA–covariantly constant along 
 .z0/ .
Therefore, the holonomy of yA is 1 along 
 .z0/ , which implies that X. yA�AE / is an
integer (because AE also has holonomy 1 along 
 .z0/ ).

The third bullet of Proposition 1.1 and the assertions about yZSW;r in Propositions 1.2
and 1.3 follow from a proof that the value of the function X in (1-16) on the s!1
limit of any relevant instanton is no less than its value on the s ! �1 limit if the
instanton contributes to the differential on the chain complex, or to one of the other
homomorphisms. This property of X follows from the upcoming Proposition 7.1
together with Lemmas 2.5, 4.1 and 4.2. Note in this regard that Proposition 7.1 proves
this assertion about X for instanton solutions to (4-1), this being the version of (1-20)
that uses g D e� with � 2 � having P–norm less than 1. Even so, the fact that
lims!1 X.djs/ � lims!�1 X.djs/ for the instanton solutions to (4-1) implies this
inequality is also true for any instanton solutions to a gD e�Cp version of (1-20) that
contributes to the differential or the other relevant homomorphisms if p comes from a
certain residual set in P� and has small P –norm. More is said about why this is after
the statement of Proposition 7.1.

To set the stage for Proposition 7.1, let 
 denote a closed, integral curve of v . Define
the function X
 on Conn.E/ by the rule that assigns to a connection A on E the
integral over the curve 
 of the 1–form i

2�
. yA�AE /. The 
 D 
 .z0/ version of X
 is

the function X in (1-16).

The proposition assumes that 
 �Mı [H0 and that 
 has a tubular neighborhood of
the sort described directly. Let ` denote the length of 
 and let t 2R=.`Z/ denote an
affine parameter for 
 . Use z to denote the complex coordinate for C . The operative
assumption is that 
 has a tubular neighborhood with coordinates .t; z/ that are defined
for jzj less than a positive constant and are such that:

(7-1) � The curve 
 is the z D 0 locus.
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� The vector field v , the 2–form w and the 1–form ya appear as

v D
@

@t
C � � � ; w D 1

2
i dz ^ dxzC � � � and yaD dt;

where the unwritten terms are bounded by a constant multiple of jzj.

� The vector field v annihilates jzj2 .

It follows from the constructions in Sections II.1C and II.1D that each z 2 U version
of 
 .z/ has a tubular neighborhood with coordinates of the sort described by (7-1), and,
in particular, the curve 
 .z0/ has such a tubular neighborhood.

Proposition 7.1 There exists � � � and , given c � 1, there exists �c > 1 with
the following significance: Fix r � � and � 2 � with P–norm less than 1 and
suppose that d D .A; / is an instanton solution to the .r; �/ version of (4-1) with
Ad < cr ln r. Let 
 denote a closed , integral curve of v that lives entirely in Mı [H0
and has a tubular neighborhood with coordinates of the sort described by (7-1). Then
lims!1 X
 .Ajs/� lims!�1 X
 .Ajs/.

Given what is said by the third bullet of Proposition 2.7 and Lemma 4.1, the assumption
Ad < cr ln r is satisfied if the difference between the value of fs on the s!1 limit
of d and the value of fs on the s ! �1 limit of d is no greater than c ln r. The
bound Ad < cr ln r in Proposition 7.1 is used to invoke Lemma 5.2 so as to bound
d’s version of the function M by ccr6=7 . This bound on M is then used to invoke
Lemma 4.7. Lemma 4.7 in turn is used to write @

@s
A and BA as in (5-7). A crucial

point in subsequent arguments is that the function � that appears in (5-7) is constrained
to obey

(7-2) �ccr�1=q < � < 1C ccr�1=q where
ˇ̌
1� j˛j2

ˇ̌
> r�1C1=2q;

with q being any number greater than 12. Indeed, this follows from (5-9) because its
left-hand side is nonnegative.

�
In general, r j˛j

ˇ̌
1� 1

2
j˛j2

ˇ̌
and r

ˇ̌
1� j˛j

ˇ̌ ˇ̌
1� 1

2
j˛j2

ˇ̌
are bounded by cc , which is a consequence of Lemma 4.9.

�
The proof of Proposition 7.1 is given in Section 7.2. What follows directly explains
how Proposition 7.1 is used to prove the assertions in Propositions 1.1–1.3 that refer
to yZ�SW;r . To this end, suppose that the conclusions of Proposition 7.1 hold for instanton
solutions to a given gD e�C p version of (1-20) if .r; �/ obey its assumptions and if
the perturbation p is in P� . If d is an instanton solution to this version of (1-20) and
if it contributes to either the differential or one of the other relevant homomorphisms
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of the Seiberg–Witten chain complex, then the s!1 limit of fs.djs/ is either 1 or 2
more than the s!�1 limit of fs.djs/. Use this observation with Proposition 2.7 and
Lemma 4.1 to see that d obeys Proposition 7.1’s bound Ad � cr ln r.

Given what was said in the preceding paragraph, the assertions in Propositions 1.1–1.3
hold if the conclusions of Proposition 7.1 hold for instanton solutions to any gD e�Cp

version of (1-20) if .r; �/ obey its assumptions and if p 2 P� has small P –norm. To
see why this is so, assume it to be false so as to derive nonsense. Under this contrary
assumption, there is a sequence fpngnD1;2;::: with the following two properties: the
P –norm of each n 2 f1; 2; : : : g version of pn is less than n�1 and the conclusions of
Proposition 7.1 fail for some instanton solution to the gD e�C pn version of (1-20)
with Ad < cr ln r. Let fdpngnD1;2;::: denote a corresponding sequence of recalcitrant
instantons. This sequence can be chosen so that all its constituent members have the
same s !1 limit, and all have the same s ! �1 limit. The latter are denoted
respectively by cC and c� . Since the function X takes integer values on the solutions
to (1-13), the operative assumption in what follows is that X.cC/� X.c�/� 1.

The function s 7! a.dpn js/ C pn.dpn js/ is a nonincreasing function on R and as
the sequence fpngnD1;2;::: is bounded and converges to zero, the fact that the set of
d D dpn versions of Ad is bounded implies that the sequence fdpngnD1;2;::: has a
subsequence that converges in the sense described in Chapter 16 of [7] to what is
said in Definition 16.1.2 of [7] to be a broken trajectory. In the situation here, such
a trajectory consists of a nonempty, finite, ordered set fdkgkD1;2;:::;N of instanton
solutions to (4-1) with the following property: the s!1 limit of dk is the s!�1
limit of dkC1 for k < N. In addition, c� is the s ! �1 limit of d1 and cC is
the s ! 1 limit of dN . This being the case, X.cC/ � X.c�/ can be written asP
kD1;2;:::;N

�
lims!1 X.dkjs/�lims!1 X.dkjs/

�
. This sum is nonnegative if each dk

obeys Adk � cr ln r so as to invoke Proposition 7.1.

To see that this last bound is obeyed, use Lemma 4.2 to see that each dDdk version of Ad

is positive, so the desired bound holds if it holds for
P
1�k�N Adk . Meanwhile, the

fact that the function on R given by the rule s 7! a.dpn js/Cpn.dpn js/ is nonincreasing
and the fact that fpngnD1;2;::: converges to zero implies that the n ! 1 limit of
the set of d D dpn versions of Ad exists. Moreover, the manner of convergence of
fdpngnD1;2;::: to fdkgkD1;2;::: as described in Chapter 16 of [7] guarantees that the
limit of the corresponding set of dD dpn versions of Ad is no less than

P
1�k�N Adk .

In fact, the limit equals the sum if all solutions to the .r; �/ version of (1-13) are
nondegenerate.
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The conclusion that X.cC/� X.c�/� 0 violates the assumptions and so constitutes the
desired nonsense.

7.2 Proof of Proposition 7.1

The proof has six parts. By way of notation, cc is used in what follows to denote a
constant which is greater than 1 that is determined solely by c , 
 and the geometry
of Y . In particular, cc does not depend on d, nor does it depend on the chosen values
of r or �. The value of cc can be assumed to increase between successive appearances.

Part 1 Let cC D .AC;  C/ denote the s !1 limit of d and let c� D .A�;  �/

denote the corresponding s!�1 limit of d. Both yAC and yA� are flat with trivial
holonomy on a fixed, but small radius tubular neighborhood of 
 if r is greater than a
purely 
 –dependent constant. This fact implies that X
 .AC/� X
 .A�/ 2 Z.

With the preceding in mind, fix for the moment a smooth, closed 2–form on Y with
compact support in this tubular neighborhood whose de Rham cohomology class is
the image of the Poincaré dual of the class in H1.Y IZ/ that is defined by viewing the
oriented loop 
 as a 1–cycle. Use �
 to denote the chosen 2–form.

Reintroduce yA to denote the connection that is defined by A using the formula in (1-15)
with it understood that rA˛ has ds component equal to @

@s
˛ . The curvature of this

connection is depicted in (6-25). Stokes’ theorem writes X
 .AC/� X
 .A�/ as the
integral over R�Y of the curvature 2–form i

2�
F yA ^ �
 .

By way of a parenthetical remark, if Ad � cr, then Propositions 5.1 and 6.3 can be
invoked if r is greater than a purely c –dependent constant. Assume this to be the case.
It follows from Proposition 6.3 and what is said in Part 4 of the proof of Lemma 6.2
that the integral of i

2�
F yA ^ �
 is a weighted, algebraic count with positive weights of

the intersections between the submanifold R� 
 and a pseudoholomorphic subvariety
that is defined in some neighborhood of R� 
 . Thus X
 .AC/� X
 .A�/� 0.

The equality between X
 .AC/ � X
 .A�/ and the integral of i
2�
F yA ^ �
 does not

depend on the chosen version of �
 as long as its support is in a radius c�10 tubular
neighborhood of 
 . This being the case, the remainder of this Part 1 defines a useful
choice. To this end, let T denote a radius c�10 tubular neighborhood of 
 with
coordinates of the sort that are described in (7-1). Assume that T appears in these
coordinates as R=.`Z/�D0 , where D0 is a radius c�10 disk centered at the origin in C .
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The desired version of �
 is constructed with the help of a nonnegative, nonincreasing
function on Œ0;1/ with support in Œ0; 2�. The latter is denoted in what follows by q
and it has the following properties:

(7-3) � q.x/D 1 where x < 1 and q.x/D 0 where x > 2.

� q.x/D e�1=.2�x/=.1� e�1=.1�x/C e�1=.2�x// where x 2 Œ1; 2�.

Use � to denote the integral of the function x 7! 2�xq.x/. With � in hand, fix D so
as to be greater than 100 times the inverse of the radius of D0 . The value of D can be
taken smaller than a constant that is determined ultimately by c and 
 . With D fixed,
let qD denote the function on D0 that is defined by the rule z 7! ��1D2q.Dz/. Use the
coordinates for T in (7-1) to view qD as a function on Y with compact support in T .

The desired version of �
 is defined to be zero on the complement of T and defined
to equal qDw on T . So defined, the condition in the third bullet of (7-1) guarantees
that �
 is closed. This understood, it follows from the definition that its de Rham
cohomology class is the image in de Rham cohomology of the Poincaré dual of 
 ’s
class in H1.Y IZ/.

Part 2 The upcoming Lemma 7.2 refers to certain notions that are defined directly.
The first of these is �r , this used to denote .ln r/�4 . To define the rest, fix s0 2 R,
t0 2R=.`Z/ and a point z0 2D0 with jz0j at most half the diameter of D0 . The lemma
uses Q.s0;t0;z0/ to denote the set in R �R=.`Z/ �D0 whose .s; t; z/ coordinates
obey the two conditions js � s0j � 2�r and jt � t0j C jz � z0j < 4�r . The integral of
iF yA^.ds^yaCw/ over Q.s0;t0;z0/ is denoted by �.s0;t0;z0/ . The lemma uses Q.s0;z0/
to denote

S
t2R=.`Z/Q

.s0;t;z0/ ; this is the set whose .s; t; z/ coordinates obey the two
constraints js� s0j< 2�r and jz� z0j< 4�r with no constraint on t .

Lemma 7.2 Given c > 1 there exists �c > 1 with the following significance: Fix
r� �c and �2� with P –norm less than 1 and suppose that dD .A; / is an instanton
solution to the .r; �/ version of (4-1) with Ad < cr ln r. Fix s0 2R and z0 2D0 with
jz0j less than half the radius of D0 . If supt2R=.`Z/�.s0;t;z0/ > �c�

2
r , thenZ

Q.s0;z0/

iF yA ^w > �
�1
c �r sup

t2R=.`Z/
�.s0;t;z0/:

Step 1 This step states five observations that play central roles in the subsequent steps.
The first observation constitutes the next equation. This writes @

@s
A and BA as in (5-7).
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These equations with (6-25), (4-1) and Lemma 4.6 lead to

(7-4)
�.iF yA ^w/D .1�}/.1� �/r.1� j˛j

2/C 2}0j.r.1;0/˛/0j
2
C eA;

�.iF yA ^ ds ^ ya/D .1�}/� r.1� j˛j2/C 2}0j.r.1;0/˛/1j2C eB ;

with the notation as follows. What is denoted by � is the function that appears in (5-7).
To define .r.1;0/˛/0 and .r.1;0/˛/1 , first introduce r.1;0/˛ to denote the T 1;0.R�Y /
part of the covariant derivative of ˛ . View the latter as a homomorphism from the .1; 0/
summand in T .R� Y /˝C to E. What is denoted by .r.1;0/˛/0 is the restriction
of this homomorphism to the span of @

@s
� iv , and what is denoted by .r.1;0/˛/1 is

the restriction of r.1;0/˛ to the Ci eigenspace of J in the K�1˝C summand in
T .R�Y /˝C . Meanwhile, eA and eB are such that their absolute values are bounded
by c0..1�}/C}0/. The 1�} contribution to the latter bounds follows from the
bounds on zA and zB in (5-7), and the }0 contribution follows by using (4-1) to write
the T 0;1 part of rA˛ as a linear combination of covariant derivatives of ˇ and then
invoking Lemma 4.6.

Adding the two equalities in (7-4) leads to the second observation:

(7-5) �.iF yA ^ .ds ^ yaCw//�
1
4
.1�}/rC 2}0jr.1;0/˛j2C e;

with eD 0 where }D 1 and jej � c0r�3=2 in any event. By way of an explanation, this
inequality follows from the fact that j˛j2 < 9

16
on the support of 1�} and from the

fact that }0 � c0.1�}/3=4 . To elaborate, remember that } < 1 only where j˛j2 � 9
16

.
Therefore, summing the two inequalities in (7-4) yields

(7-6) �.iF yA ^ .ds ^ yaCw//�
7
16
.1�}/rC 2}0jr.1;0/˛j2C eAC eB :

Now, eA and eB obey

(7-7) jeAjC jeB j � c0..1�}/C}
0/;

and }0 is nonnegative and it obeys }0 < c0.1�}/3=4 . The c0.1�}/ term in (7-7)
is accounted for by replacing the 7

16
.1�}/r term in (7-6) with 3

8
.1� }/r; that is,

�.iF yA^ .ds^ yaCw//�
3
8
.1�}/rC2}0jr.1;0/˛j2C e0 , where je0j � c0.1�}/3=4 .

Writing .1�}/3=4 as r3=8.1�}/3=4r�3=8 and using a standard algebraic inequality
shows that .1�}/3=4 � c0.r1=2.1�}/C r�3=2/. For r greater than c0 , this implies
that je0j � 1

8
r.1�}/C c0r�3=2 .

Fix q 2 Œ12; c0� to invoke (7-2). The third observation is

(7-8)
Z
Q.s0;z0/

iF yA ^w � �cc.r�1=.qC1/��C r�3=2/:
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This is a consequence of (7-5), the first bullet of (7-4) and (7-2). (Remember that
(7-2) says that � is at most 1C ccr�1=q on the support of .1�}/.) The point is that
the expression on the right side of the first bullet in (7-4) is negative only where � is
greater than 1 or the eA term is negative and dominates the others. What with (7-2),
this leads to a �cc..1�}/r1�1=qC .1�}/3=4/ lower bound for the right-hand side of
the top bullet in (7-4). (Remember that }0 � c0.1�}/3=4 .) Because of the inequality
.1�}/3=4 � c0r1=2.1�}/C c0r�2=3 from the preceding paragraph, the right-hand
side of the top bullet in (7-4) is in no account less than �cc..1�}/r1�1=qC r�3=2/.
Now, by virtue of (7-5) and the definition of �� , the integral of r.1�}/ over Qs;t is
at most cc`..ln r/4��C r�3=2/. (Keep in mind here that the length of 
 in units of �r

is at most `.ln r/4 .) Therefore, the integral of �cc.1�}/r1�1=q � ccr�3=2 is at most
r�1=q times cc`..ln r/4��C r�3=2/, which is at most �cc.r�1=.1Cq/��C r�3=2/.

The fourth observation is a direct corollary to (7-8):

(7-9) Fix t 2R=.`Z/. If m >0 and if the integral of iF yA^w overQ.s0;t;z0/ is greater
than m C ccr�1=.qC1/.��C 1/, then

R
Q.s0;z0/

iF yA ^w > m .

The fifth observation is a tautology that comes by writing iF yA ^ .ds ^ yaCw/ as the
sum of iF yA ^w and iF yA ^ ds ^ ya . To set the notation, fix t0 2 R=.`Z/ such that
�.s0;t0;z0/ D�� . Use Q� to denote Q.s0;t0;z0/ .

(7-10) If the integral of iF yA ^ w over Q� is less than 1
2
��, then the integral of

i �B yA ^ ds ^ ya over Q� is greater than 1
2
��.

This is so because iF yA ^ ds ^ yaD i �B yA ^ ds ^ ya .

Step 2 This step outlines the argument that is used to prove Lemma 7.2. Assume that
�� > �

2
r . It follows from (7-9) that the assertion of Lemma 7.2 is true if the integral

of iF yA ^w over Q� is greater than 1
100
�� , so assume that this is not the case. Use

(7-10) to see that the integral of i �B yA ^ ds ^ ya over Q� is greater than 1
2
�� .

The constant .s; t/ slices of Q� are disks that lie either in a cross-sectional sphere
of H0 or a level set of f in Mı . The former are compact surfaces without boundary,
and so are most of the latter. The integral of i �B yA over a surface of this sort without
boundary is 2� times the pairing of the first Chern class of E with the homology class
defined by the surface and this no greater than 2�G . Thus, the integral of i �B yA over
such a surface is a priori bounded by 2�G . If the integral of i �B yA over a disk in one
of these surfaces is greater than this bound, then there must be other parts of the surface
where the corresponding integral is negative.
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The second bullet in (7-4) and (7-2) imply the following: the pullback of i �B yA to
such a surface is no smaller than �ccr1�1=q times the area form (which is the pullback
of w ). Indeed, when this pullback is written as Bw , then the function B is what is
depicted on the right-hand side of the second bullet of (7-4). Now B is zero where j˛j2

is close to 1 because } D 1 there, so the issue is where 1� j˛j2 > c�10 . Since }0 is
nonnegative, the function B can be negative only if � < 0 or if the eB term is negative.
Meanwhile, jeB j � c0 (which is less than r1�1=q ) and, as noted in (7-2), � is greater
than �ccr�1=q where } ¤ 1. Thus, if B is negative, it is no smaller than �ccr1�1=q .
As explained in a later step, because B is greater than �ccr1�1=q , the area where B is
negative cannot be smaller than c�1c r�1C1=q . Now, Lemma 4.7 and (7-2) have a second
implication which is this: the function B is negative at a point only if �

�
ds^ @

@s
A^w

�
is of order r (because } must be less than 1 and so j˛j<1�c�10 ). As shown in a later
step, this implies that

ˇ̌
@
@s
A
ˇ̌2 is of order r2 where B < 0. Since the area where this

happens is greater than c�1c r�1C1=q , the integral of
ˇ̌
@
@s
A
ˇ̌2 on the surface is therefore

greater than ccr1C1=q . The extra factor of r1=q is seen below to lead to a violation of
Lemma 4.2 unless the number �� is a priori bounded by cc�

2
r .

Step 3 Given .s; t/ 2 R�R=.`Z/ with js � s0j < 2�r and jt � t0j < 4�r , introduce
by way of notation D.s;t/ to denote the slice at .s; t/ of Q� , and use E.s; t/ to denote
the integral of i

2�
�BA over the disk f.s; t/g �D.s;t/ . Given n 2 f0; 1; 2; : : : g, let

Un �R�R=.`Z/ denote the set of points with js� s0j< 2�r and jt � t0j< 4�r and
with one additional constraint: if nD 0, require that 0� E.s; t/ < G ; if n� 1, require
that E.s; t/ 2 ŒnG; 2nG�. Use Vn to denote the measure of Un .

Suppose for the remainder of this step that 
.t0/ is either in H0 or in the part of Mı

where f is either less than 1� 4ı2 , or between 1C 2ı2 and 2� 2ı2 , or greater than
2C 4ı2 . This assumption has the following implication: no point in Q� is on a level
set of f that enters a radius ı coordinate ball centered on either an index 1 or index 2
critical point of f in M. Keep this fact in mind.

Fix n 2 f2; : : : g such that Un ¤∅ and fix .s; t/ 2 Un . The disk f.s; t/g �D.s;t/ lies
in a compact surface in R� .Mı [H0/ whose tangent space is annihilated by ya . This
surface is either in a component of a level set of f in Mı or a cross-sectional sphere
of H0 . Use S.s;t/ to denote this surface. The integral of i

2�
�B yA over S.s;t/ is equal

to G if it is an f –level set with f 2 .1Cı2; 2�ı2/ part of Mı ; it is equal to 0 otherwise.

Since E.s; t/� 2G , the integral of i
2�
�B yA over S.s;t/�D.s;t/ must be less than �G�

because the integral of i
2�
�B yA is at most G

�
. To see what this entails, write the pull-

back of i
2�
�B yA to S.s;t/ as Bw ; the function B is what appears on the right-hand side
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of (7-4). The latter function is no less than �cc..1�}/r1�1=qCr�3=2/. To explain: The
term .1�}/� r.1�j˛j2/ on the right-hand side of the second bullet of (7-4) is no smaller
than �cc.1�}/r1�1=q because of (7-2) and the fact that 1�} is zero unless j˛j is less
than 1�c�10 . The next term, 2}0jr.1;0/˛j2 , is nonnegative because }0 is nonnegative.
Finally, jeB j � cc..1 � }/C }

0/, which is smaller than cc..1 � }/r1�1=q C r�3=2/
because }0 < c0.1�}/3=4 and .1�}/3=4 < c0.r1=2.1�}/C r�3=2/.

The factor �ccr�3=2 from the bound B � �cc..1�}/r1�1=qC r�3=2/ contributes no
more than �ccr�3=2 to the integral of Bw and this is no more than �10�6 if r > cc .
Assume this to be the case.

If E.s; t/��2G , then it follows from the bound B ��cc..1�}/r1�1=qC r�3=2/ that
the measure of the set in S.s;t/�D.s;t/ where B is such that .1�}/� <0 is no less than
c�1c .n� 1/Gr�1C1=q . Noting that j˛j< 3

4
on this set, it follows from (5-7) (see also

the first bullet in (7-4)) that �
�
i ds^ @

@s
A^w

�
> c�1c r on this same set. This implies in

particular that
ˇ̌
@
@s
A
ˇ̌2
> c�1c r2 on a set of measure greater than c�1c .n� 1/Gr�1C1=q

in S.s;t/ . And, as a consequence, the integral of
ˇ̌
@
@s
A
ˇ̌2 over

�S
.s;t/2Un

S.s;t/
�
�R�Y

is no less than c�1c r1C1=q.n� 1/GVn .

Step 4 Suppose that f .
.t0// is between 1�4ı2 and 1C2ı2 or else between 2�2ı2

and 2C 4ı2 . Fix .s; t/ 2 R � R=.`Z/ with js � s0j < 2�r and jt � t0j � 4�r . If
t > t0 , use T.s;t/ to denote the set of points in R� T that have coordinates .s; �; z/
with � 2 Œt; t0C 8ı� and with z such that jz � z0j C jt � t0j � 4�r . If t � t0 , define
T.s;t/ � R� T to be the set that have coordinates .s; �; z/ with � 2 Œt0 � 8ı; t � and
with z as in the t > t0 case. In either case, T.s;t/ is a manifold with corners. In
the t > t0 case, there are three codimension 1 faces of T.s;t/ . These are the disks
D.s;t/ and D.s;t0C8ı/ , and third is the cylinder consisting of the points .s; �; z/ with
� 2 Œt; 8ıC t0� and jz� z0jC jt � t0j D 4�r . There is a similar story when t < t0 : the
cylinder face of T.s;t/ in this case is the set of points .s; �; z/ with � 2 Œ�8ıC t0; t � and
with z as in the t > t0 case. In either case, let C.s;t/ denote the cylindrical face of T.s;t/ .

Use Stokes’ theorem to see that the absolute value of the difference between the integral
of i �B yA over the two disk faces of T.s;t/ is equal to the absolute value of the integral of
i �B yA over C.s;t/ . This integral involves only the r�X part of (5-7)’s depiction of BA .
Meanwhile, the contribution from the term proportional to }0 in (6-25) is bounded by
c0}
0
�
j.r.1;0/˛/0jj.r

.1;0/˛/1j C 1
�
. With these last facts in mind, introduce by way

of notation

(7-11) ND

Z
J

�Z
C.s;t/

�
.1�}/.jXjCjrj/C}0.j.r.1;0/˛/0jj.r

.1;0/˛/1jC1/
��
ds^dt;
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where the outer integral is over J D f.s; t/ j js � s0j < 2�r and jt � t0j < 4�rg. Let
Q˘ denote either Q.s0;t0C8ı;z0/ or Q.s0;t0�8ı;z0/ . What was said above about Stokes’
theorem implies that

(7-12) QD

ˇ̌̌̌Z
Q�
.i �B yA ^ ds ^ ya/�

Z
Q˘
.i �B yA ^ ds ^ ya/

ˇ̌̌̌
< c0N:

Use T � to denote the union of the t 2 Œt0� 8ı; t0C 8ı� versions of Q.s0;t;z0/ . Fix for
the moment e > 1. Change variables in the integration that defines N and use (5-8)
with the fact that � > �ccr�1=q and .1� �/ > �ccr�1=q to see that N is no greater
than

(7-13) e�1
Z
T �
ds ^ ya^ iF yAC cce

Z
T �
iF yA ^wC ccr�1=.qC1/��:

The left-most integral in (7-13) is no greater than c0�
�1
r �� and so the left-most

term in (7-13) is no greater than c0e�1��1r �� . Therefore, if e D 1000c0�r�1 and if
Q > 1

100
�� , then

(7-14)
Z
T �
iF yA ^w > c

�1
c �r��

when r> cc . If (7-14) holds with r> cc , then what is said by Lemma 7.2 is true, this
being a consequence of (7-8).

Assume that (7-14) does not hold. Then Q < 1
100
�� when r� cc and so a repetition

of Step 2 with .s0; t0; z0/ replaced by either .s0; t0C 8ı; z0/ or with .s0; t0� 8ı; z0/
supplies a lower bound for the integral of

ˇ̌
@
@s
A
ˇ̌2 over

�S
.s;t/2Un

S.s;t/
�
�R�Y for

each n 2 f2; : : : g.

Step 5 Sum the bounds from Step 3 or Step 4 for the integral of
ˇ̌
@
@s
A
ˇ̌2 over�S

.s;t/2Un
S.s;t/

�
�R�Y for nD2; 3; : : : to see that the integral over R�Y of

ˇ̌
@
@s
A
ˇ̌2

is no less than .c�1c �� � 2GV/r1C1=q , where V is the upper bound for the various
.s; t/ versions of the sum V0C V1 . Since V is at most 16��2r , this implies that

(7-15)
Z

R�Y

ˇ̌̌
@

@s
A
ˇ̌̌2
� .c�1c ��� c0G�2r /r

1C1=.2q/:

What with Lemma 7.2’s assumption about Ad , this last inequality runs afoul of what is
asserted by Lemma 4.2 if �� > cc�

2
r and r> cc .

Part 3 The next lemma is an analog of Lemma 7.2 for pairs .s0; z0/ 2R�D0 whose
corresponding �� is small. Lemma 7.3 uses the following notation: Given x 2R and
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� 2 .r�1=2; c�10 /, the lemma uses yM.x;�/ to denote the integral of iF yA ^ .ds ^ yaCw/
over the ball of radius � in R�Y centered at x . The lemma also introduces T.s0;z0/
to denote the radius �r tubular neighborhood of the s D s0 and z D z0 slice of R�T ,
this being the set of points of the form .s; t; z/ with .s � s0/2C jz � z0j2 < �2r and
with t 2R=.`Z/.

Lemma 7.3 Given c > 1 there exists �c > 1 with the following significance: Fix
r � �c and � 2 � with P–norm less than 1 and let dD .A; / denote an instanton
solution to the .r; �/ version of (4-1) with Ad < cr ln r. Fix .s0; t0/ 2R�R=.`Z/ and
a point z0 2D0 with jz0j less than one fourth the radius of D0 . If yM..s0;t0;z0/;�r/¤ 0,
then there exists s1 2 R and z1 2D0 with js1 � s0j < 8�r and jz1 � z0j < 8�r withR
T.s1;z1/

iF yA ^w > �
�1
c �4r .

The proof of Lemma 7.3 invokes an yA analog of Lemma 4.10, this being:

Lemma 7.4 There exists � � � , and , given q � 1, there exists �q � 1 with the
following significance: Fix r � � and � 2 � with P–norm less than 1. Let d D

.A; / denote an instanton solution to the .r; �/ version of (4-1) with Ad < r2 and
sups2R M.s/� r1�1=q . Suppose that x 2R�Y is a point where j˛j � 3

4
.

� If �1 > �0 are in .�qr�1=2; ��1q /, then yM.x;�1/ � �
�1
q �21=�

2
0
yM.x;�0/ .

� If � 2 .�qr�1=2; ��1q /, then yM.x;�/ � ��1�2 .

It follows from Lemmas 2.5, 4.1 and 5.2 that the assumptions of Lemma 7.3 are met
using q > 6.

Proof of Lemma 7.4 Given Lemma 4.4 and the first bullet of Lemma 4.8 and the
formula in (6-25) for F yA , the proof of Proposition 3.1 in [14] can be used with only
cosmetic changes to prove the assertions. A second proof deduces Lemma 7.4 from
Lemmas 4.8, 4.10 and 4.12 by proving the following assertion:

(7-16) There is a purely q–dependent constant, cq , which is greater than 1 and is
such that if x 2 R� Y is a point where j˛j < 1

2
and � 2 .r�1=2; c�1q /, then

c�1q M.x;�/ < yM.x;�/ < cqM.x;�/.

What follows is a sketch of the argument for (7-16). To start, fix m > 100 and use
Lemma 4.12 with Proposition 4.11 to see that the contribution to M.x;�/ from the set
of points where j˛j � 1�m�1 is greater than c�1q if r is greater than a purely m – and
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q–dependent constant. This proves the upper bound in (7-16). To prove the lower
bound, use Lemma 4.12 and Proposition 4.11 to see that the contribution to M.x;�/ from
this same set is no less than cmq yM.x;�/ if r> cmq with cmq > 1 being a constant that
depends only on m and q . Meanwhile, the assertions in the second and fourth bullets
of Lemma 4.8 can be used to prove the following: if m � cq , then the contribution
to M.x;�/ from the complement of the set where j˛j � 1�m�1 is no greater than cmq
times the contribution to M.x;�/ from the set where j˛j � 1�m�1 .

The assertion of the second bullet of Lemma 7.3 follows from Lemma 4.12 and
Proposition 4.11 as they imply that j˛j< 1

2
on a ball in R�Y of radius at least c�10 r�1=2

with distance at most c0r�1=2 from x .

Part 4 This part of Proposition 7.1’s proof supplies a proof of Lemma 7.3. By way of
notation, the proof uses yM� to denote supt2R=.`Z/ yM..s0;t;z0/;�r/ . The proof uses the
same conventions about cc that are used in Lemma 7.2’s proof; and it introduces one
additional convention of the same sort: Given m > 1, the proof uses ccm to denote a
number that is greater than 1 and depends only on m , c , 
 and the geometry of Y .
In particular, this number does not depend on d nor on r. The value of ccm can be
assumed to increase between successive appearances.

Proof of Lemma 7.3 The proof has five steps.

Step 1 There exists N <c0 and a set of N points f.sk; zk/gkD1;2:::;N with the follow-
ing properties: First, js0�skj<8�r and jz0�zkj<8�r for each k2f1; : : : ; N g. Second,
the union of the sets fT.sk ;zk/gkD0;1;:::;N contains Q.s0;z0/ . This understood, invoke
Lemma 7.2 to see that Lemma 7.3’s assertion holds unless supt2R=.`Z/�.s0;t;z0/<cc�

2
r .

Indeed, if this isn’t the case, then the integral of iF yA ^ w over at least one k 2
f0; 1; : : : ; N g version of T.sk ;zk/ will be greater than c�1c �3r .

Let t0 2R=.`Z/ denote a point with yM..s0;t0;z0/;�r/ > 0. If such is the case, then there
must be a point in the radius �r ball centered at .s0; t0; z0/ where }<1 and so a point in
this ball where j˛j< 3

4
. Let .s1; t1; z1/ denote such a point. The operative assumption

that supt2R.`Z/�.s0;t;z0/ < cc�
2
r requires that supt2R=.`Z/ yM..s1;t1;z1/;�r/ < cc�

2
r also.

This being the case, it is enough to prove the following assertion:

(7-17) If m >10, there is ccm >1 such that if r� ccm and supt2R=.`Z/ yM..s1;t1;z1/;�r/ 2

.0;m�2r /, then
R
T.s1;z1/

iF yA ^w > c
�1
cm �

4
r .

The remaining steps prove (7-17).
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Step 2 Let T1=4 � T.s1;z1/ denote the set of points whose .s; z/–coordinates are such
that js� s1j2Cjz� z1j2 < 1

16
�2r . The assertion below summarizes the content of this

step:

(7-18) If r> ccm then either (7-17) holds or F yA D 0 on T1=4\H0.

The proof of (7-18) is given after a digression that follows directly. The proof invokes
two key facts that are supplied by this digression.

To start the digression, let x0 denote the point with .s; t; z/ coordinates .s0; t 0; z0/ with
s0 and z0 constrained so that js0� s1j2Cjz0� z1j2 � 1

4
�2r . The operative assumption

in (7-17) requires that yM.x0;�r=2/ � m�2r . Assume in addition that j˛j< 3
4

at x0. The
first bullet of Lemma 7.4 requires the bound yM.x0;�/ � ccm�2 for all � 2 .ccr�1=2; c�1c /

if r� cc . Fix r > m4 , " 2 .0;m�4/ and k 2 f10; 11; : : : g to invoke Lemma 4.12 with
the given q and value of m . As will be apparent in the proof of (7-18), choices for r , "
and k that depend only on c and m are sufficient. In any event, with r , " and k chosen,
Lemma 4.12 with the given bound on yM.x0;�/ will be invoked with it understood that
r is greater than a constant that depends only on m , c and the chosen values for r , "
and k . Of particular interest here is the fact that the corresponding solution .A0; ˛0/
of (4-7) is described by items (a) and (b) of the third bullet of Proposition 4.11. The
assertions of these two items imply the following:

Fact 1 There are zeros of ˛0 with distance less than ccm from the origin in C2 and
so there are zeros of ˛ with distance less than ccm r�1=2 from x0.

Fact 2 Each zero of ˛r with distance less than r from the origin has distance less
than ccm" from a zero of ˛0 , and each zero of ˛.0/ with distance less than r from the
origin has distance less than ccm" from a zero of ˛r .

With regards to Fact 1, the assertion about the distance from origin of zeros of ˛0
follows from three facts: the equations in (4-7) are elliptic modulo the action of
C1.C2IS1/; the polynomial that defines the zero locus of ˛0 has a priori bounded
degree; and j˛0.0/j < 3

4
C " because j˛r.0/j <

3
4

. Fact 2 follows from the a priori
degree bound for the polynomial that defines the zeros of ˛0 . In particular, this fact has
the following consequences: All but at most a finite set of affine lines in C2 intersect
˛�10 .0/ in a finite set of points. Those that do not have this property are irreducible
components of ˛�10 .0/. Moreover, if a line intersects ˛�10 .0/ in a finite set of points,
then the local degree of each intersection point is positive and their sum is bounded by
a purely m –dependent constant. Given that these zeros have positive local degree, each
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such intersection point must have distance less than ccm" from an ˛r D 0 point on the
affine line if all points on the line at distance r from the origin have distance ccm"r or
more from all zeros of ˛0 .

With the digression now over, what follows is the proof of (7-18). To start the argument,
suppose that x 2 T1=4\H0 and that F yA ¤ 0 at x . As } < 1 at x , so j˛j< 3

4
at x . It

follows from Fact 1 that the integral of iF yA^.ds^yaCw/ over the radius ccm r�1=2 ball
centered at x is greater than c�1cm r�1 and so it follows from Lemma 7.4 that yM.x;�r=4/

is greater than c�1cm �
2
r . If the integral of iF yA ^w over the radius 1

4
�r ball centered

at x is greater than 1
2
yM.x;�r=4/ , then the conclusions of Lemma 7.3 follow because the

integral of iF yA ^w over T.s0;x0/ is no less than �ccm r1=qm2�2r .

Granted what was just said, assume that the integral of iF yA^w over the radius 1
4
�r ball

centered at x is less than 1
2
yMx;�r=4 . It then follows that the integral of iF yA ^ .ds ^ ya/

over this same ball is greater than c�1cm �
2
r .

Let .sx; tx; zx/ denote the .s; t; z/ coordinates of x . Introduce Qx to denote the
subset of R � R=.`Z/ � D0 whose .s; t; z/ coordinates obey js � sxj < 2�r and
jt � txj C jz � zxj < 4�r . Given .s; t/ with js � sxj < 2�r and jt � txj < 4�r , use
D.s;t/ to denote the constant .s; t/ slice of Qx and use E.s; t/ to denote the integral
of i

2�
�B yA over D.s;t/ . What follows is a direct consequence of Lemma 4.12 and

Facts 1 and 2:

(7-19) If E.s; t/ is greater than ccm", then E.s; t/ is greater than 1� ccm".

Given n 2 f1; : : : g, let Un � R � R=.`Z/ denote the set where the conditions
js�sxj<2�r , |t� txj<4�r and E.s; t/2

�
n� 1

2
; nC 1

2

�
hold. Use U0 to denote the set

of points with .s; t/ such that E.s; t/ 2
�
0; 1
2

�
. Use Vn to denote the measure of Un .

Given .s; t/ as just defined, let S.s;t/ denote the slice of H0\Mı containing D.s;t/ .
This is a J –holomorphic 2–sphere that has pairing 0 with the first Chern class of E.
In particular, the integral of i

2�
�B yA over S.s;t/ is zero. This being the case, an almost

verbatim copy of the arguments from Step 3 of the proof of Lemma 7.2 prove that
the integral of

ˇ̌
@
@s
A
ˇ̌2 over

S
.s;t/2Un

S.s;t/ is no smaller than c�1c r1C1=qVn . What
with (7-19), an almost verbatim repeat of the arguments in Step 5 of the proof of
Lemma 7.2 proves that

(7-20)
Z

R�Y

ˇ̌̌
@

@s
A
ˇ̌̌2
� .c�1c � ccm"/�

2
r r1C1=.2q/:

This runs afoul of Lemma 4.2 if " < c�1cm and the latter happens if " < ccm and r> ccm .
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Step 3 This step states two observations that are used in the subsequent steps. To set
the stage, fix � 2

�
1
4
; 1
8

�
and introduce T� to denote the subset of points in T.s1;z1/

whose .s; z ) coordinates are such that js�s1j2Cjz�z1j2� �2�2r . The first observation
here is that

(7-21) c�1c �2r <

Z
T�

iF yA ^ .ds ^ aCw/ < ccm�r:

By way of an explanation, the lower bound follows from the version of the top bullet of
Lemma 7.4 that takes xD .s1; t1; z1/ and �0D ccr�1=2 and �1D 1

2
�r . Meanwhile, the

upper bound follows from the bound yM� < m�2r and the fact that T1=4 can be covered
by c0��1r balls of radius 1

16
�r with centers in T1=4 .

The second observation concerns the integral of iF yA ^w . To say more, let U denote
a given open subset of T1=4 . Then

(7-22)
Z
U

iF yA ^w � �ccm�rr�1=q:

Given the upper bound in (7-21), this follows from the fact that the function 1�� that
appears in (5-7) is no less than �ccr�1=q .

Step 4 Assume for this and the remaining steps that F yAD 0 on T1=4\H0 . This being
the case, the R=.`Z/ parameter t on T1=4 can be lifted to an R–valued parameter on
a neighborhood of the support of jF yAj and nothing is lost by assuming that the now
R–valued parameter t is constrained to an interval I � R of the form Œ�c0; c0� at
points in T1=4 with distance 1 or less from the support of jF yAj. Meanwhile, it follows
from (7-1) that the 2–forms ds ^ ya and w on R� I �D can be written as

(7-23) ds ^ yaD d.�t ds/ and w D i
4
d.z dxz�xz dzC � � � /;

where the unwritten terms in the formula for w have no ds component and are bounded
in absolute value by jzj2 .

Fix � 2
�
1
8
; 1
4

�
and use Stokes’ theorem with (7-21) to see that

(7-24)
Z
T�

iF yA ^ ds ^ yaD

Z
@.I�Y /\T�

i �B yA ^ t ds:

Look at (6-25) and (5-7) to see that the absolute value of the right-hand side of (7-24)
is no greater than

(7-25)
Z
@.I�Y /\T�

�
.1�}/.jXjC jrj/C}0

�
j.r.1;0/˛/0jj.r

.1;0/˛/1jC 1
��
:
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Fix e > 64 to be determined shortly and use (7-24) and (7-25) with (5-7) and (5-9) and
the bound on yM� to see that

(7-26)
Z
T1=4�T1=8

�Z
T�

iF yA ^ ds ^ ya

�
d�

� c0e
Z
T1=4�T1=8

iF yA ^wC e�1
Z
T1=4�T1=8

iF yA ^ ds ^ yaC c0r�1=2:

This last inequality is the input for the final step in the proof of (7-17).

Step 5 There are two cases to consider with regards to (7-26). The first is that when
the integral on the left-hand side of (7-26) is less than

(7-27) e�1=4
Z
T1=4�T1=8

�Z
T�

iF yA ^ .ds ^ yaCw/

�
d�:

If this is the case, then there exists � 2
�
1
8
; 1
4

�
such that

(7-28)
Z
T�

iF yA ^w >
1

2

Z
T�

iF yA ^ .ds ^ yaCw/:

Use the lower bound in (7-21) to see that the integral on the left-hand side of (7-28)
is no less than c�10 �2r . Thus

R
T�
iF yA ^w >� c

�1
0 �2r . This with the bound in (7-22)

implies what is asserted by (7-17).

The other case to consider is that where the left-hand side of (7-26) is greater than
what is written in (7-28). It follows from the lower bound in (7-21) that what is
written in (7-27) is greater than c0e�1�2r . Meanwhile, the term on the right-hand
side of (7-26) that is proportional to the integral of iF yA ^ ds ^ ya is bounded by
c0e�1

R
T1=4

iF yA ^ .ds ^ ya C w/. The upper bound in (7-21) implies that this last
expression is no greater than c0e�1m�r . Granted all of this, then (7-26) implies that

(7-29)
Z
T1=4�T1=8

iF yA ^w > c
�1
0 e�5=4�2r � c0e�2m�r:

If e D ��8=5r , then the right-hand side of (7-29) is greater than c0�4r . This with (7-22)
implies what is asserted in (7-17).

Part 5 Fix .s0; t0; z0/ where the function qD from Part 1 is nonzero and reintroduce
Lemma 7.2’s set Q.s0;t0/ so as to consider the integral

(7-30)
Z
Q.s0;t0/

iF yA ^ qDw:

The assertion that follows summarizes what is said here about (7-30):
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(7-31) Assume that r is greater than a constant that depends only on D, c, 
 and
the geometry of Y. Then the integral in (7-30) is nonnegative if qD.z0/ >

c0e
�.ln r/2=c0 .

To explain (7-31), note first that the integral in (7-30) is zero if supt2R=.`Z/�.s0;t;z0/

is zero, so assume that this is not the case. Use �� to denote this supremum. Write qD

as qD.z0/C q with q.z0/D 0. The integral in (7-30) has the corresponding decompo-
sition as

(7-32) qD.z0/

Z
Q.s0;t0/

iF yA ^wC

Z
Q.s0;t0/

iF yA ^ qw:

To see about the right-most term in (7-32), let Q� �Q.s0;t0/ denote the set of points
where iF yA^w is a negative multiple of the volume form. The inequality in (7-22) has
its Q.s0;t0/ analog, this being the lower bound

(7-33)
Z
Q�

iF yA ^w � �cc�
�1
r ��:

The proof of (7-33) is identical to that of (7-22) with it understood that the Q.s0;t0/
version of the upper bound in (7-21) replaces the integration domain with Q.s0;t0/
and replaces the term ccm�r on the far right-hand side of (7-21) with cc�

�1
r �� .

Granted (7-33), write Q.s0;t0/ as .Q.s0;t0/�Q�/[Q� and then use Taylor’s theorem
with remainder to see that

(7-34)
Z
Q.s0;t0/

iF yA ^ qw � �
�

sup
fzjjz�z0j<4�rg

ˇ̌̌
@

@z
qD

ˇ̌̌�
�r

Z
Q.s0;t0/

iF yA ^w

� cc

�
sup

fzjjz�z0j<4�rg

ˇ̌̌
@

@z
qD

ˇ̌̌�
r�1=q��:

Introduce &.z0/ to denote

(7-35) qD.z0/�
�

sup
fzjjz�z0j<4�rg

ˇ̌̌
@

@z
qD

ˇ̌̌�
.�rC ccr�1=q/:

If &.z0/ is positive, then Lemmas 7.2 and 7.3 with (7-32) and (7-34) find

(7-36)
Z
Q.s0;t0/

iF yA ^ qDw � &.z0/c
�1
c �2r ��;

which is positive. A look at (7-2) finds &.z0/ to be negative only in the case that

(7-37) 2� Djz0j � c0�
1=2
r ;

in which case qD is less than c0e�.ln r/2=c0 because �r D .ln r/4 .
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Part 6 Define the function f on R by the rule

(7-38) s 7! f.s/D

Z
Œs�2�r;sC2�r��Y

i

2�
F yA ^ qDw:

It follows from what is said in (7-31) that f.s/ � �c0e�.ln r/2=c0 . Note here and for
future reference that the function on Œ0; 1� given by the rule x 7! e�.lnx/

2=c0 is bounded
from above by ckx�k for any k > 0 with ck being a purely k–dependent constant.

With the lower bound on f in mind, define the subset W �R by the following rule: a
point s 2W if and only if f.s/ is negative. The set W is open. More to the point, the
fact that X
 .AC/� X
 .A�/ is an integer implies that X
 .AC/� X
 .A�/ is negative
only if the measure of W is greater than c�10 e.ln r/2=c0 . The paragraphs that follow
explain why W is nowhere near this large.

Let I �R denote a closed interval of length 1 where the total change in the function
s 7! a.djs/ across the interval is less than r�1 . Invoke Lemma 4.2 to see that

(7-39)
Z
I�Y

�ˇ̌̌
@

@s
A
ˇ̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌
@

@s
 
ˇ̌̌2
CjDA j

2
��
� 2r�1:

This fact is used in a moment.

If W has total length greater than r4 , then it can be covered by no fewer than c�10 r4

closed intervals of length 1 with center at a point in W and such that no more than
c�10 of these intervals contain any given point. Given that the total change along R of
the function s 7! a.djs/ is bounded by cr ln r, there are at least c�10 r4 intervals in the
cover where (7-39) holds. Let I denote one of the latter and let s0 2W denote I ’s
center point.

By assumption, f.s/ is negative, and so there exists z02D0 with supt2R=.`Z/�.s0;t;z0/

greater than zero. It then follows from Lemmas 7.2 and 7.3 that the integral of
iF yA^w over Q.s0;z0/ is greater than c�1c �2r supt2R=.`Z/�.s0;t;z0/ . Given the formula
in (6-25) and the bounds in Lemma 4.8 for jrAˇj, this can occur only if the integral ofˇ̌
@
@s
A
ˇ̌2
C
ˇ̌
@
@s
 
ˇ̌2 over Q.s0;z0/ is likewise greater than c�1c �2r supt2R=.`Z/�.s0;t;z0/ .

Since the latter is in any event greater than c�1c �4r , it follows that the integral ofˇ̌
@
@s
A
ˇ̌2
C
ˇ̌
@
@s
 
ˇ̌2 over Q.s0;z0/ is greater than c�1c �4r . This runs afoul of what is

asserted by (7-39).

7.3 The proof of Proposition 1.4

The subsequent argument for Proposition 1.4 differs little from those used in [19] to
prove corresponding assertions that concern the analogs of (1-14) and (1-20) in the
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case when ya is replaced by a contact 1–form and w is replaced by the latter’s exterior
derivative.

Use D1 to denote the data .r1; �1; p1/ and use D2 to denote the corresponding set
.r2; �2; p2/. Fix a smooth map, s 7! r.s/ , from R to Œr1; r2� which is equal to r1 for
s��1 and equal to r2 for s� 1. Fix a smooth map, s 7! �.s/ , that is equal to �1
for s��1 and equal to �2 for s� 1. Finally, fix a smooth map from R to P of
the form s 7! p.s/ such that p.s/ D p1 for s � �1 and p.s/ D p2 for s � 1. The
data .r.s/; �.s/; p.s// can be used to define a version of (1-20), this being a system of
equations that requires a map from R to Conn.E/�C1.Y IS/ to obey

(7-40)

(
@
@s
ACBA� r. � /. �� � iya/C 1

2
BAK �T

. � /

.A; /
D 0;

@
@s
 CDA �S

.A; /

. � /
D 0;

where r. � / is the function s 7! r.s/ and T. � / and S. � / at any given s 2 R are the
gradients of e�.s/ C p.s/ along the respective Conn.E/ and C1.Y IS/ factors of
Conn.E/�C1.Y IS/. Of interest are the solutions to (7-40) with s 7!�1 and s!1
limits that are solutions to the respective .r1; �1/ and .r2; �2/ versions of (1-13). Such
a solution is called an instanton.

As explained in Chapter 25 of [7], if the map p. � / is chosen from a suitable residual
set, then there will be but a finite number of instantons of the form s 7! djs with
lims!1 fs.djs/� lims!�1 fs.djs/D 0. Chapters 25 and 23 of [7] explains how to use
the latter set to define a homomorphism between the .r1; �1/ version of yZSW;r to the
.r2; �2/ version of yZSW;r that preserves the relative Z=pMZ–gradings and intertwines
the endomorphisms that define the respective D1 and D2 differentials. This chapter
also explains why the homomorphism intertwines the endomorphisms that define the
actions of ZŒU �˝

�V�
.H1.Y IZ/=tors/

�
on the respective D1 and D2 homologies.

The relevant homomorphism is defined by its action on the set of generators of the
.r1; �1/ version of yZSW;r . As such, it has the form

(7-41) Œc� 7! WŒc0�;Œc�Œc
0�;

where the sum is indexed by the elements in the .r2; �2/ version of yZSW;r with any
given coefficient WŒc0�;Œc� being an integer. Only a finite set of these are nonzero. In
particular, WŒc0�;Œc� is nonzero only if fs.c/D fs.c

0/. In the latter case, Chapter 23 in [7]
defines WŒc0�;Œc� to be a certain ˙1 weighted count of the instanton solutions to (7-40)
with s 7! �1 limit equal to c and with s!1 limit equal to c0.
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What is said in Chapter 23 in [7] proves that the homomorphism in (7-41) induces an
isomorphism between the corresponding D1 and D2 versions of H1SW;r . Chapter 23.1
in [7] asserts that the respective isomorphisms that are defined by any two such R–
parametrized families are identical. The fact that any two such isomorphism are identical
leads directly to the conclusion that there is a canonical isomorphism between the D1

and D2 versions of H1SW;r .

The proof of the assertions in Proposition 1.4 that concern H�SW;r , HCSW;r , and the long
exact sequence that relates the latter with H1SW;r , has two parts.

Part 1 Let r� D 1
2
.r1C r2/. Fix �� 2� with P–norm less than 1 and such that all

instanton solutions to the .r�; ��/ version of (1-13) are nondegenerate. Fix in addition
an element p� 2 P with small norm that obeys the .r�; ��/ version of (1-22). Use
the data set .r�; ��; p�/ to define the corresponding versions of Z. yZSW;r/, Z. yZ<SW;r/

and Z. yZSW;r/=Z. yZ<SW;r/, the operator @�SW and then H1SW;r , H
�
SW;r and HCSW;r . Let

L�1 denote a homomorphism of the sort described above from the .r1; �1/ version
of Z. yZSW;r/ to the .r�; ��/ version, and let L2� denote a homomorphism of this sort
from the .r�; ��/ version to the .r2; �2/ version.

Assume that L�1 maps the .r1; �1/ version of Z. yZ<SW;r/ to the .r�; ��/ version and that
L2� maps the .r�; ��/ version to the .r2; �2/ version; then the composition L2�L�1
will map the .r1; �1/ version of Z.H1SW;r/ to the .r2; �2/ version of H1SW;r and will
map the .r1; �1/ version of H�SW;r to its .r2; �2/ counterpart, and likewise define a
homomorphism between the respective version of HCSW;r . These homomorphisms will
necessarily intertwine the homomorphisms in the two exact sequences.

Chapter 26 in [7] explains why the composition L2�L�1 induces the canonical isomor-
phism from the .r1; �1/ version of H1SW;r to the .r2; �2/ version. This understood, it
follows as a consequence of what was said in the preceding paragraph that the canonical
isomorphism from the .r1; �1/ version of H1SW;r to the .r2; �2/ version induces respec-
tive homomorphisms from the .r1; �1/ versions of HCSW;r and H�SW;r to their .r2; �2/
counterparts that intertwine the associated long exact sequence homomorphisms.

Part 2 Given the conclusions of Part 1, the assertions in Proposition 1.4 that concern
H�SW;r and HCSW;r and the long exact sequence relating H1SW;r , H�SW;r and HCSW;r follow
as corollaries of the following lemma:

Lemma 7.5 The versions of � in Propositions 1.1–1.3 can be chosen so that what is
said below is also true. Fix R > � ; there exists �R > � with the following significance:

Geometry & Topology, Volume 24 (2020)



HFD HM , IV 3329

Fix r1 2 .�; R/ and an element �1 2� with P –norm less than 1 such that all solutions
to the .r1; �1 ) version of (1-13) are nondegenerate. Fix r2 > r1 with jr1� r2j< ��1R

and fix �2 2� with P –norm less than 1 such that all solutions to the .r2; �2/ version
of (1-13) are also nondegenerate. Require in addition that �2 � �1 have P–norm
less than ��1R . Fix respective elements p1 and p2 in P with small norm that obey the
�D�1 and �D�2 versions of (1-22). There are homomorphisms of the sort described
at the outset from the .r1; �1; p1/ version of Z. yZSW;r/ to the .r2; �2; p2/ version that
maps the .r1; �1; p1/ version of Z. yZ<SW;r/ to the .r2; �2; p2/ version of Z. yZ<SW;r/.

Proof Suppose that no such �R exists so as to derive nonsense. Given this contrar-
ian assumption, there exist sequences .rn1; �n1; pn1 ) and .rn2; �n2; pn2/ that obey
the assumptions of the lemma but not the conclusions with jrn1 � rn2j < n�1 , with
j�n1��n2j < n

�1 and with the P–norms of pn1 and pn2 being less than n�1 . For
each n, fix a corresponding R–parametrized data set .rn. � /; �n. � /; pn. � // that gives a
version of (7-40) with instanton solutions that can be used to define the homomorphism
between the respective .rn1; �n1; pn1/ and .rn2; �n2; pn2/ versions of Z. yZSW;r/ in the
manner described in the paragraph that surrounds (7-41). Such a path can and should be
chosen so that j�n. � /��n1j<n�1 and such that pn. � / has P –norm less than n�1 . The
resulting index n homomorphism will map the .rn1; �n1; pn1/ version of Z. yZ<SW;r/ to
the .rn2; �n2; pn2 ) version if the following is true: Let d denote an instanton solution
to the index n version of (7-40) with equal s !1 and s ! �1 limits of fs.ds/.
Then the s!1 limit of X.djs/ is no less than the s 7! �1 limit of X.djs/.

Granted this point, there is for each n an instanton solution to be denoted by dn with
equal s!1 and s!�1 limits of fs.dn/ and with

lim
s!1

X.djs/� lim
s!1

X.djs/� 1:

An almost verbatim repetition of the final three paragraphs of Section 7.1 generates
nonsense via Proposition 7.1 from the existence of the sequence fdngnD1;2;::: .

7.4 Proof of Theorem 1.5, I

This subsection gives a proof of the first and second bullets of Theorem 1.5 and explains
how the third bullet follows from an auxiliary proposition that is proved in the next
subsection.

To start, fix r large and define Theorem 1.5’s map ŷ r to be the L0 version of the map
supplied by Proposition 3.1. What is said by Proposition 3.1 implies that the resulting
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version of Lr defines a Z–module monomorphism from Z. yZL0ech;M / to Z. yZSW;r/

obeying the first and second bullets of Theorem 1.5.

The upcoming Proposition 7.6 is used to prove Theorem 1.5’s third bullet. To give
some background for item (c) of the third bullet in this proposition, suppose for the
moment that c and c0 are nondegenerate solutions to some .r; �/ version of (1-13),
and suppose that d is a nondegenerate instanton solution to the corresponding version
of (4-1) with s ! �1 limit c0 and s ! 1 limit c. The corresponding operator
in (1-21) is Fredholm, and this being the case, suppose that its index is 1 and that it
has trivial cokernel. These properties are all that is needed to compute the ˙1 weight
that d would contribute to the coefficient WŒc0�;Œc� in (1-24) were the pair .r; gD e�/

suitable for defining the @�SW homology. This point is important for the following
reason: if .r; gD e�C p/ with p from P� is suitable for defining the @�SW homology,
then the .r; �/ instanton d contributes to the .r; gD e�C p/ version of WŒc0�;Œc� , and
its contribution to the .r; gD e�C p/ version of WŒc0�;Œc� is this same ˙1.

Proposition 7.6 refers to notation that is used in Section 1 to describe the endomorphisms
that generate the respective actions of ZŒU �˝

V�
H1.Y IZ/=tors action on the @ech

homology and on the @�SW homology. By way of a reminder, from Part 4 of Section 1.2,
the endomorphism of Z. yZech;M / that defines the action of U on the @ech homology
is defined as in (1-9) by a set of integers, fNU

y‚0;y‚
gy‚0;y‚2 yZech;M

, these being either 0
or 1. Part 7 of Section 1.3 describes an analogous set of integers, fWU

Œc0�;Œc�
gŒc0�;Œc�2 yZSW;r

,
that appear in the version of (1-24) for the endomorphism that gives the action of U

on the @�SW homology. Part 4 of Section 1.2 defines the set ffŒ
 .z/�gz2U ; fO�pgp2ƒg,
this being a set of 1–cycles that give a basis for H1.Y IZ/=tors. Let O� denote a cycle
from this set. This same Part 4 of Section 1.2 defines the endomorphism that gives
the action of O� on the @ech homology. This endomorphism is a version of (1-9) whose
coefficients are denoted by fNO�

y‚0;y‚
gy‚0;y‚2 yZech;M

. Meanwhile, Part 7 of Section 1.3
defines the endomorphism that gives O�’s action on the @�SW homology by a version
of (1-24) with the coefficients denoted by fWO�

Œc0�;Œc�
gŒc0�;Œc�2 yZSW;r

.

Proposition 7.6 Given ‚ 2 Zech;M , there exists �‚ � 1 with the following signifi-
cance: Fix r � �‚ and an element � 2 � with P–norm less than 1. Suppose that
y‚ 2 yZech;M is a lift of ‚.

� The element y‚ is in the domain of ŷ r . Use c to denote its image in yZSW;r .

� If c0 2 yZSW;r is such that M1.c
0; c/¤∅, then c0 is in the image of ŷ r .
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� If y‚0 2 yZech;M is such that M1.y‚
0; y‚/¤∅, then y‚0 is in the domain of ŷ r .

Granted that such is the case , use c0 to denote ŷ r.y‚0/.

(a) The space M1.c
0; c/ has only nondegenerate instantons.

(b) There exists a smooth, R–equivariant, 1–1, onto map ‰rWM1.y‚
0; y‚/!

M1.c
0; c/.

(c) The ˙1 weight that any given element in M1.y‚
0; y‚/ contributes to the

coefficient N y‚0;y‚ in (1-9)’s formula for @ech y‚ is the same as the weight that
its ‰r –image would contribute to the coefficient WŒc0�;Œc� in (1-24)’s formula
for @�SWc.

(d) Let O� denote a cycle from the set
˚
fŒ
 .z/�gz2U ; fO�pgp2ƒ

	
. The contribution

of any given element in M1.y‚
0; y‚/ to the coefficient NO�

y‚0;y‚
is the same as

that of its ‰r image to the coefficient WO�
Œc0�;Œc�

.

� If c0 2 yZSW;r is such that M2;p.c
0; c/¤∅, then c0 D ŷ r.y‚0/ with y‚0 2 yZech;M

being the unique element that contributes to the U –map coefficient NU
y‚0;y‚

. The
corresponding space M2;p.c

0; c/ contains a single instanton which is nondegen-
erate and the contribution of the latter to WU

Œc0�;Œc�
is 1, this being NU

y‚0;y‚
.

This proposition is proved in the next subsection. Accept it as true until then. What
follows directly uses Proposition 7.6 to prove the third bullet of Theorem 1.5.

Fix L0. The corresponding set ZL0ech;M contains but a finite number of elements. This
understood, introduce �L0 to denote the largest of the ‚ 2 ZL0ech;M versions of the
constant �‚ supplied by Proposition 7.6. Fix r> �L0 and fix an element � 2� with
P–norm less than 1 and such that all solutions to the .r; �/ version of (1-13) are
nondegenerate. Use these solutions to define the set ZSW;r and to define the Z–module
Z. yZSW;r/. Fix an element p 2P� with small P –norm that can be used to define @�SW;r .

The assertion of the third bullet in Theorem 1.5 to the effect that Lr@ech;M D @
�
SWLr fol-

lows directly from what is said by the second and third bullets of Proposition 7.6. Indeed,
as elements in P� vanish to second order on the images in Conn.E/�C1.Y IS/ of
nondegenerate instantons with I. � /D 1, the second bullet of Proposition 7.6 with items
(a) and (b) of the third bullet of Proposition 7.6 imply that any instanton that is used to
compute the action of @�SW on the image of ˆr is in the image of some version of ‰r .
Granted that such is the case, item (c) of the third bullet of Proposition 7.6 guarantees
that the contribution of such an instanton to @�SW is the same as the contribution of its
‰r –inverse image to @ech .
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The fact that Lr intertwines the endomorphisms that define the respective actions
of ZŒU �˝H1.Y IZ/=tors action on the @ech homology and on the @�SW homology
follows directly from the preceding paragraph with item (d) of the third bullet of
Proposition 7.6 and the fourth bullet of Proposition 7.6.

7.5 Proof of Proposition 7.6

The proof of the proposition has seven parts.

Part 1 The first bullet of the proposition follows from Proposition 3.1. It is also the
case that if r is large and y‚0 is such that M1.y‚

0; y‚/ ¤ ∅, then y‚0 is also in the
domain of ŷ r when r is large, the reason being that there are but a finite number of
such y‚0 in yZech;M , this a fact that is explained in Section II.A2.

The second bullet of Proposition 7.6 follows from Propositions 3.1 and 6.1, as does
the assertion in the fourth bullet to the effect that if r is large, and if c0 is such that
M2;p.c

0; c/ ¤ ∅, then c0 is in the image of ˆr . To explain how this comes about,
introduce the function M on Conn.E/ � C1.Y IS/ from (1-30). Proposition 3.1
bounds M.cC/ by a multiple of

P

2‚ `
 . Suppose that c0 is a solution to the .r; �/

version of (1-13) and is such that M1.c
0; c/¤∅ or M2;p.c

0; c/¤∅. Let d denote an
instanton in either one of these spaces. Use Lemma 4.1 to see that Ad � c0r.M.c/C 1/
and thus it is bounded by c0r

�P

2‚ `
C1

�
. Granted this bound, use Proposition 6.1 to

conclude that d’s version of the function M is bounded by c‚ with c‚ > 1 determined
solely by ‚. It follows as a consequence that the s!�1 limit of d’s version of M

is bounded by c‚ and so M.c0/ < c‚ . This being the case, Proposition 3.1 asserts that
c0 is in the image of ŷ r if r is larger than a purely ‚–dependent constant.

Part 2 Keep in mind for what follows that the almost complex structure J is such
that any .y‚0; y‚/ version of M1.y‚

0; y‚/ has a finite set of R orbits and the Fredholm
operator associated to each such orbit has trivial cokernel. The next remark is also
important for what follows: Given k 2Z, use y‚k for the moment to denote the translate
of y‚ by the action of k on yZech;M that comes about by viewing yZech;M as a principal
Z–bundle over the set Zech;M . Fix y‚0 2 yZech;M . The respective sets of component
subvarieties of M1.y‚

0; y‚/ and of M1.y‚
0
k
; y‚k/ are identical.

Granted these last facts, the construction that is described in Sections 4–7 of [20] can
be employed with only minor alterations if r is large to construct an R–equivariant,
injective map from any given y‚0 2 yZech;M version of M1.y‚

0; y‚/ to the corresponding
space M1.c

0; c/. Denote this map by ‰r . The arguments in Section 2b of [23] can
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be used to construct ‰r to have the following property: Let C denote any given
component subvariety in M1.y‚

0; y‚/. Write the instanton ‰r.C / as .A;  D .˛; ˇ//.
If O� 2

˚
fŒ
 .z/�gz2U ; fO�pgp2ƒ

	
, then the intersections between C and R�O� enjoy a 1–1

correspondence between those of ˛�1.0/ and R� O� and this correspondence is such
that partnered intersections have the same local intersection number. Note in this regard
that J is such that C ’s intersections with R� O� are finite in number and transversal.
This is also the case for the intersections of ˛�1.0/ and R� O�. Note in addition that
the distance between any given point in C \ .R� O�/ and its corresponding partner in
˛�1.0/\ .R� O�/ is bounded by a ‚–dependent multiple of r�1=2 .

What follows is a parenthetical remark with regards to the use here of the constructions
in Sections 4–7 of [20] and in Section 2b of [23]. The constructions here use the
simplest versions of those in the latter references by virtue of three facts, the first being
that all integral curves of v from all elements Zech;M are hyperbolic. The second is
implied by the first: All subvarieties from any y‚0, y‚ 2 yZech;M version of M1.y‚

0; y‚/

have the following property: Let C denote an element in M1.y‚
0; y‚/. If jsj � 1,

then distinct components of the any constant s slice of C are in small radius tubular
neighborhoods of distinct integral curves of v , and each such component is isotopic in
this neighborhood to its core integral curve. The final fact constitutes what is asserted
by Lemma 3.2.

Part 3 The arguments in Section 3 of [21] can be used with only very minor changes
when r is large to prove the following: Fix y‚02 yZech;M with M1.y‚

0; y‚/¤∅. The map
‰r restricts to each component of M1.y‚

0; y‚/ as an R–equivariant diffeomorphism
onto a smooth component of M1.c

0; c) with only nondegenerate instantons. Moreover,
the contribution of any given component of M1.y‚

0; y‚/ to the coefficient N y‚0;y‚ is the
same as that of its ‰r image to WŒc0�;Œc� . Note in this regard that the assumptions in
equation (1.14) of [21] are not needed, this being a consequence of the three facts that
are stated in the final paragraph of Part 2.

Given what was said in Part 1 about intersections with O� 2
˚
fŒ
 .z/�gz2U ; fO�pgp2ƒ

	
versions of R � O�, the conclusions of the preceding paragraph lead directly to the
following: if O� 2

˚
fŒ
 .z/�gz2U ; fO�pgp2ƒ

	
, then the contribution of any given component

of M1.y‚
0; y‚/ to NO�

y‚0;y‚
is identical to that of its ‰r image to WO�

Œc0�;Œc�
.

Part 4 Suppose that y‚0 2 yZech;M is such that NU
y‚0;y‚
¤ ∅. If r is large, then con-

structions in Sections 4–7 of [20] with those in Sections 2d and 4 of [23] construct
a component of M2;p.c

0; c/ that contains a single instanton which is nondegenerate
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and suitable for use in the definition of the coefficient WU
Œc0�;Œc�

and contributes C1 to
this integer. Note again that only the simplest versions of what is done in [20; 22] are
needed because only the J –holomorphic subvariety

�Q

2‚.R� 
/

�
[ .f0g � S/ is

used, and this is the union of disjoint product cylinders and a compact submanifold.
Note also that there is no need to introduce the notion of a .ı; L/ approximation to use
the constructions in [22], this being yet another consequence of the three facts stated at
the end of Part 2.

Part 5 It remains to prove that ‰r maps any given version of M1.y‚
0; y‚/ onto the

corresponding version of M1.c; c
0/ and to prove that M2;p.c

0; c/ has just the one com-
ponent that is described in Part 4. The proofs that these assertions are true uses almost
verbatim versions of arguments in Sections 4–7 of [22] and in Section 4e of [23]. Only
the simplest cases of the arguments from [22; 23] are needed, this also a consequence
of the three facts stated in the final paragraph of Part 2. What follows directly and in
Parts 6 and 7 say more about the analogs here of the relevant parts of [22; 23].

Let c0 denote a solution to the .r; �/ version of (1-13) with either M1.c
0; c/ or M2;p.c

0; c/

nonempty. Let d denote an instanton in one or the other of these spaces. The applications
of the arguments from [22] require as input the bound M < c‚ from Part 1 on d’s
version of the function M . Keep in mind that such a bound exists.

Suppose that there exists for each n2 f1; 2; : : : g a pair rn >n and an element �n in �
with P –norm less than 1 such that the .rn; �n/ version of the map ‰r is not onto. If this
is the case, there exists y‚0 2 yZL0ech;M and, for each n, either an instanton solution to the
.rn; �n/ version of (4-1) in the corresponding version M1.c

0; c/ that is not in the image
of the relevant version of ‰r , or an instanton in M2;p.c

0; c/ that is not the one from
Part 4. Use dn to denote this instanton. The latter is written when needed as .An;  n/.

The rest of Part 5 and Parts 6 and 7 assume that the sequence fdngnD1;2;::: contains
an infinite subset from the corresponding version of M1.c

0; c/. Granted that this is the
case, Lemma 6.1 in [22] has the following analog:

Lemma 7.7 There is an element C �M1.‚�; ‚C/, a subsequence of fdngnD1;2;:::
(hence renumbered consecutively from 1) and a corresponding sequence of constant
translations along the R factor of R�Y , all with the following property: For each n,
write the translated version of  n as a pair .˛n; ˇn/. The sequence whose nth element
is

sup
z2C

dist.z; ˛�1n .0//C sup
z2˛�1n .0/

dist.C; z/
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converges with limit zero. In addition , if I �R is an interval of length 1 and � is a
2–form on R�Y with k�k1 D 1 and support on I �Y , then the sequence whose nth

element is i
2�

R
R�Y � ^F yAn

�
R
C � also converges with limit zero.

The proof of this lemma is given in Part 6; assume it to be true in the meantime.
Lemma 7.7 leads to the analog of Lemma 6.2 in [22]; this has the identical assumptions
and adds the following conclusion:

(7-42) lim
n!1

r1=2n
�

sup
z2C

dist.z; ˛�1n .0//C sup
z2˛�1n .0/

dist.C; z/
�
D 0:

The proof of (7-42) is almost identical to that of Lemma 6.2 in [22] and so the reader
is referred to Section 7 of [22] for the proof of the latter’s Lemma 6.2. By way of a
guide to the proof of Lemma 6.2 of [22], much of what is done in Section 7 of [22]
is of no concern to (7-42) because of the three facts listed at the end of Part 2. In
particular, the integer m that enters in Lemmas 7.2–7.5 and Lemma 7.7 of [22] can be
set equal to 1. Moreover, most of the delicate estimates in Section 7d of [22] are not
needed because distinct s� 1 slices, or distinct s��1 slices, of any given subvariety
from M1.y‚

0; y‚/ are in tubular neighborhoods of distinct integral curves of v and are
isotopic in these neighborhoods to the core integral curve.

Given Lemma 7.7 and (7-42), the argument to prove that ‰r is onto is an almost
verbatim copy of the arguments in Sections 6b–6e of [22]. Only the simplest cases of
these arguments are needed by virtue of the facts listed in the final paragraph of Part 2.
In any event, the modifications of the arguments in Sections 6b–6e of [22] are minimal
and so nothing more will be said.

Part 6 The proof of Lemma 7.7 invokes an analog of Proposition 5.5 in [22], this
constituting the lemma that follows:

Lemma 7.8 Given c � 1, there exists � � 1, and , given m > � , there exists �m � 1

which , with � , has the following significance: Fix r� �m and � 2� with P–norm
less than 1. Suppose that dD .A; D .˛; ˇ// is an instanton solution to (4-1) with
Ad � cr and with lims!1 M.djs/ < c .

� Each point in R� Y where j˛j � 1� ��1 has distance at most �r�1=2 from
where ˛ D 0.

� Moreover , there exists:
(a) A positive integer N � � and a cover of R as

S
1�k�N Ik by connected

open sets of length at least 1
2

m . These are such that Ik \ Ik0 D ∅ if
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jk� k0j> 1. In addition, if jk� k0j D 1, then Ik \ Ik0 has length between
1
128

m and 1
64

m .

(b) For each k 2 f1; 2; : : : ; N g, a set #k whose typical element is a pair .C;m/,
where m is a positive integer and where C � R � Y is an irreducible,
pseudoholomorphic subvariety. No two pairs from #k contain the same
subvariety component and

P
.C;m/2#k

m
R
C w < � .

In addition , these sets f#kgkD1;:::;N are such that :

(1) supz 2S.C;m/2#k C and s.z/ 2 Ik dist.z; ˛�1.0//
C supz 2 ˛�1.0/ and s.z/ 2 Ik dist

�S
.C;m/2#k

C; z
�
< m�1:

(2) Let k 2 f1; : : : ; N g, let I 0 � Ik denote an interval of length 1, and let �
denote the restriction to I 0 �Y of a 2–form on R�Y with k�k1 D 1 and
kr�k1 � m . Then

ˇ̌
i
2�

R
I 0�Y � ^F yA�

P
.C;m/2# m

R
C �

ˇ̌
� m�1 .

The arguments for this lemma are given in a moment. Assume it to be true for the
subsequent proof of Lemma 7.7.

Proof of Lemma 7.8 The proof has three steps.

Step 1 Pass to a subsequence of f.rn; �n/; dngnD1;2;::: and renumber from 1 with the
subsequence chosen so that Lemma 7.8 can be invoked with mD n for each index n.
Lemma 7.8 provides a corresponding sequence f#k;ngkD1;:::;Nn with each Nn a priori
bounded by Lemma 7.8’s constant � . Since the sequence fNngnD1;2;::: is bounded,
the sequence f.rn; �n/; dngnD1;2;::: can be assumed to have the property that Nn DN
for all n.

A subsequence of f.rn; �n/; dngnD1;2;::: can be chosen and renumbered from 1 so
that the sequence

˚
f#k;ngkD1;2;:::;N

	
nD1;2;:::

converges to what is said to be a broken
pseudoholomorphic subvariety. This is a collection f#kgkD1;2;:::;N 0 of sets with the
properties that are listed next. First, each #k is a finite set of pairs with each pair having
the form .C;m/ with C 2R�Y being an irreducible pseudoholomorphic subvariety
and with m being a positive integer. Moreover, if N 0 > 1, then each #k contains at
least one pair whose subvariety is not R–invariant.

The second property concerns the large s limits of the elements in each #k . In
particular, the s ! 1 limit of the constant s slices of #k determine a finite set,
denoted by ‚kC , whose elements are pairs of the form .
; q/ with 
 being a closed
integral curve of v and q being a positive integer. The manner by which #k determines
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‚k;C is as follows: For s 2 R, let C js � Y denote the constant s slice of C. ViewS
.C;m/2#k

mC js as a current. This current converges as s!1 and the limit is the
current

S
.
;q/2‚kC

q
 . By the same token, the s!�1 limit of
S
.C;m/2#k

mC js

determines a second set, ‚k;� , this having the same form as ‚kC . The collection
f.‚k;�; ‚k;C/gkD1;2;:::;N 0 are constrained by the requirement

(7-43) ‚1� D‚0; ‚k;C D‚kC1;� for k D 1; : : : ; N 0� 1; ‚N 0;C D‚:

Here and in what follows, ‚0 denotes the image of y‚0 via the projection to Zech;M .
The convergence of

˚
f#k;ngkD1;2;:::;N

	
nD1;2;:::

to f#k0gk0D1;2;:::;N 0 is analogous to
that described in the paragraph surrounding equation (5.38) in [22], with the only
salient modification being the replacement of da in this equation in [22] with w .

Step 2 The constraints on the first Chern class of E, what is said in (7-43) and
what is said in Section II.3 about pseudoholomorphic subvarieties in R � Y place
extra constraints on the pairs from f#kgkD1;:::;N 0 . The first constraint involves the
integer components of these pairs: if .C;m/ 2

S
kD1;:::;N 0 #k , then m D 1 unless

either C is compact or all components of its constant s slices converge as jsj !1 to
closed integral curves of v in

S
p2ƒHp . The remaining constraints involve the sets˚

f‚k�; ‚kCg
	
kD1;:::;N 0

:

(7-44) � If 
 comes from a pair in
S
kD1;:::;N 0.‚k� [‚kC/, then 
 is disjoint

from H0 and as a consequence, 
 lies entirely in the union of the f 2 .1; 2/
part of Mı with

S
p2ƒHp .

� Each .
; q/ 2
S
kD1;:::;N 0.‚k�[‚kC/ has q D 1 unless 
 �

S
p2ƒHp .

� Fix k 2 f1; : : : ; N 0g and let ‚k;� denote either ‚k;� or ‚k;C . Then�S
.
;1/2‚k

; 

�
\Mı consists of G arcs that pair the index 1 and index 2

critical points of f in M in the sense that distinct arcs start on the respective
boundaries of the radius ı coordinate balls about distinct index 1 critical
points of f and end on the respective boundaries of the radius ı coordinate
balls about distinct index 2 critical points of f .

The proof given below that these constraints must be satisfied uses the following
observation: if ‚ is any element from the set f‚k;�; ‚k;CgkD1;2;:::;N 0 , then the
homology class Œ‚� D

P
.
;q/2‚ qŒ
� is Poincaré dual to the first Chern class of E.

This is proved using backwards induction on the integer k , starting from k DN 0. It
holds in this case because ‚N 0;C D‚. Supposing that it holds for any ‚k;C , then it
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holds for the corresponding ‚k;� because ‚k;� and ‚k;C are homologous. (The class
Œ‚k;C�� Œ‚k;�� is the pushforward to Y via the projection from R�Y of the relative
homology class

P
.C;m/2#k

mŒC �.) And, it holds for ‚k�1;C if it holds for ‚k;�
because these two sets are identical.

The proof that the constraints in (7-41) are obeyed uses backwards induction on k also.
Start with ‚N 0 to see that the constraints on the integer components of its pairs are
forced by the condition that ‚N 0;CD‚. The constraints on ‚N 0;� are then forced by
the first Chern class considerations and what is said in Section II.2 about the closed,
integral curves of v . For example, a loop 
 from a pair in ‚N 0;� cannot intersect H0
because, as explained in Section II.3, it would then have positive intersection number
with any cross-sectional 2–sphere in H0 . This would mean that the first Chern class
of E has positive pairing with such spheres, which is not the case by assumption. The
fact that .
; q/2‚N 0;� has qD 1 unless 
 2

S
p2ƒHp follows for a similar reason: If

q > 1 and 
 is not entirely in some p2ƒ version of Hp , then the class Œ‚N 0;�� would
have intersection number at least q with a cross-sectional sphere in some p2ƒ version
of Hp . (According to Section II.2, all integral curves of v intersecting Hp have positive
intersection number with such spheres except 
Cp and 
�p .) This can’t happen because
the first Chern class of E has pairing 1 with each such cross-sectional sphere. The
condition in the third bullet of (7-41) must hold because the first Chern class of E has
pairing G with the f D 2

3
level set in M (and because of what Section II.3 says about

the integral curves of v in the Mı part of Y being arcs on which f is monotonic).

The constraints on ‚N 0�1;C are obeyed because this is the same set as ‚N 0;� . Then,
exactly the same considerations (except with N 0 changed to N 0�1) as in the preceding
paragraph shows that the constraints in (7-41) must hold for ‚N 0�1;� . Continuing in
this vein proves that the constraints hold for all of the ‚k;C and ‚k;� .

Step 3 Fix k 2 f1; : : : ; N 0g and use Zk to denote the 2–cycle in Y given by the
pushforward via the projection of

P
.C;m/2#k

mŒC � with ŒC � here denoting the non-
compact cycle in Y that is carried by the fundamental class of C. The boundary of Zk
is the 1–cycle

P
.
;q/2‚k;C

qŒ
��
P
.
;q/2‚k;�

qŒ
�.

Definition 2.14 in [2] uses ŒZk� to define the embedded contact homology index, this be-
ing an integer that is denoted here by I.‚k�; ‚kC; Zk/. Let Z denote

P
1�k�N 0 Zk .

Given Remark 2.16 in [2], what is said by (7-43) implies that

(7-45) I.‚0; ‚;Z/D
X

1�k�N 0

I.‚k;�; ‚k;C; Zk/:
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The argument in Part 2 of the proof of Lemma 6.1 in [22] for the nontorsion case can
be copied here with only minor changes to see that I.‚0; ‚;Z/D 1. This argument
uses what is said in Lemma 7.8 about the large n versions of ˛�1n .0/ and the fact that
the instanton dn is in the .rn; �n/ version of M1.c

0; c/.

It follows from Hutchings’ Definition 2.14 in [2], from the description in Propositions
II.3.1–II.3.4 of the pseudoholomorphic subvarieties in R� Y , and from (7-41) that
I.‚0; ‚;Z/ D 1 if and only if N 0 D 1, in which case #1 defines an element in
M1.y‚

0; y‚/. The argument for this uses the inherently positive intersection numbers
between pseudoholomorphic subvarieties in much the same way as used in the proof
of Lemma III.8.3 to more than offset negative contributions to the sum in (7-45) that
come from any given pair .C;m/ 2

S
kD1;:::;N 0 #k . This is illustrated in the proof of

Lemma III.8.3 by the formula (III.8-6).

Proof of Lemma 7.7 Given that N 0D1 and that #1 defines an element in M1.y‚
0; y‚/,

then what is said in Lemma 7.7 follows directly from the conclusions of Lemma 7.8.

Part 7 This part contains the:

Proof of Lemma 7.8 The arguments are much like the simplest versions of those
used to prove Proposition 5.5 in [22]. The six steps that follow describe what is needed
from [22] and what parts of these arguments need more than purely cosmetic changes.

Step 1 Given the bound in Proposition 6.1 on M , Proposition 4.5 in [22] has a
simpler analog here also. This analog is a slightly weaker version of Lemma 7.8 that
differs from Lemma 7.8 only to the extent that it does not make the claim that the
pseudoholomorphic subvarieties in any given k 2 f1; : : : ; N g version of #k are defined
on the whole of R�Y . The weaker version claims instead that the #k subvarieties are
defined on a neighborhood of Ik �Y .

The argument that derives Lemma 7.8 from its weak version amounts to little more
than a standard application of a local form of the Gromov compactness theorem for
pseudoholomorphic subvarieties. This argument differs little from the compactness
theorems in [1]. Given the a priori bound on M from Proposition 6.1, the derivation of
Lemma 7.8 from its weak analog differs only in notation from what is said in [22] to
deduce Proposition 5.5 in [22] from Proposition 5.1 in [22].

Step 2 What follows here and in the subsequent steps proves the weak version of
Lemma 7.8 using a modified version of the argument for Proposition 4.5 in [22]. The
modified version of this proposition is stated by the next lemma:
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Lemma 7.9 Given c � 1, there exists � � 1, and , given m > � , there exists �m � 1

which , with � , has the following significance: Fix r� �m and �2� with P –norm less
than 1. Suppose that dD .A; D .˛; ˇ// is an instanton solution to (4-1) with Ad � cr
and with lims!1 M.djs/ < c . Let I �R denote an interval of length at least 2m .

� Each point in I � Y where j˛j � 1� ��1 has distance �r�1=2 or less from a
zero of ˛ .

� There exists a finite set , # , whose components are pairs of the form .C;m/ where
C is a closed , irreducible pseudoholomorphic subvariety in a neighborhood of
the closure of I �Y and where m is a positive integer. Moreover , no two pairs
in # share the same subvariety component. This set is such that :
(a) supz2S.C;m/2# C; s.z/2I dist.z; ˛�1.0//

C supz2˛�1.0/; s.z/2I dist
�S

.C;m/2# C; z
�
< m�1:

(b) Let � denote a smooth 2–form on I � Y with compact support, with
k�k1 D 1 and with kr�k1 � m . Thenˇ̌̌̌

i

2�

Z
I�Y

� ^F yA�
X

.C;m/2#

m

Z
C

�

ˇ̌̌̌
� m�1:

(c)
P
.C;m/2# m

R
C w � � .

The proof of this lemma is given in a moment. The next lemma plays a central role in
the proof, and in subsequent arguments in this section:

Lemma 7.10 Given c � 1, there exists �c � 1 with the following significance: Fix
r � �c and � 2 � with P–norm less than 1. Suppose that d D .A; D .˛; ˇ// is
an instanton solution to (4-1) with Ad � cr and with lims!1 M.djs/ < c . Let I �R

denote an open interval. Then ��cr�1=3 <
R
I�Y iF yA ^w < �c .

Proof of Lemma 7.9 Given the bound in Proposition 6.1 on M , what is asserted by
Lemma 7.9 follows directly from the Y� D Y version of Proposition 6.3 with the
help of Lemma 7.10. The latter is needed to deduce item (c) of the second bullet of
Lemma 7.9 from the second bullet of Proposition 6.3.

Proof of Lemma 7.10 Invoke Proposition 6.1 to bound M by cc with cc denoting
here and in what follows a purely c –dependent constant which is greater than 1. Its
value can be assumed to increase between successive appearances.

Consider first the upper bound. To this end, write I as .s1; s2/. Fix s 2 .0; 1/ and
suppose that m > 0 is such that the integral of iF yA ^w over Œs1 � s; s2C s�� Y is
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bounded from above by m . As explained directly, this implies that the integral of
iF yA^w over the smaller region I�Y is bounded from above by mCccr�1 . To see why
this is, use the bound on M to invoke Lemma 4.9. The depiction of @

@s
A˙BA by this

lemma implies that the function � in (5-7) must obey 1�� ��ccr�1 . With this bound
available, then use the top bullet in (7-4) to see that �.iF yA^w/��cc.1�}/

3=4 . (Keep
in mind that jeAj � cc..1�}/C}

0/ and that }0 � c0.1�}/3=4 .) Since } < 1 only
where j˛j2 is less than 9

16
, putting a factor of .1� j˛j2/ here (and making cc bigger)

gives the bound �.iF yA ^w/ � �cc.1� j˛j
2/. Therefore, the integral of �.iF yA ^w/

over the domain in question is no smaller than that of �cc.1� j˛j
2/. Meanwhile, the

integral of r.1� j˛j2/ over Œs1� s; s1��Y is at most M (which is less than cc ), and
likewise the integral over Œs2; s2Cs��Y ; and so the integral of �.iF yA^w/ over either
of these domains is no smaller than �ccr�1 . Thus, the integral of �.iF yA ^w/ over
I�Y is at most mCccr�1 because its integral over the larger domain Œs1�s; s2Cs��Y
is bounded by m (by assumption).

Since M is bounded by cc , there exists s 2 .0; 1/ such that M.djs1�s/ and M.djs2Cs/

are both bounded by cc . Given what is said in the preceding paragraph, it is sufficient to
bound the integral of iF yA^w over Œs1� s; s2C s��Y . This is done by comparing this
integral to the integral of iFA^w over Œs1�s; s2Cs��Y . The comparison is made in a
moment. What follows directly studies the integral of iFA^w over Œs1� s; s2C s��Y .

Write AD AE C yaA and integrate by parts to see that

(7-46)
Z
Œs1�s;s2Cs��Y

iFA ^w D i

Z
fs2Csg�Y

yaA ^w� i

Z
fs1�sg�Y

yaA ^w:

Meanwhile, use (1-26)–(1-28) and the fact that i
2�

�
FAE C

1
2
FAK

�
can be written as

wC db to see that

(7-47) r�1.a.djs1�s/� a.djs2�s//

D .1� 2r�1/
�
i

Z
fs2Csg�Y

yaA ^w� i

Z
fs1Csg�Y

yaA ^w

�
C e;

where e has absolute value bounded by ccr�1=3 . To see why this is, note first that e is
bounded by c0 times a sum of two terms. The first is itself a sum,

(7-48) r�1
ˇ̌̌̌Z
fs2Csg�Y

yaA ^ d yaA

ˇ̌̌̌
C r�1

ˇ̌̌̌Z
fs2Csg�Y

b^ d yaA

ˇ̌̌̌
C r�1

ˇ̌̌̌Z
fs2Csg�Y

�^BA

ˇ̌̌̌
C r�1

ˇ̌̌̌Z
fs2Csg�Y

 �DA 

ˇ̌̌̌
;
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and the second has the same form but for the replacement of s2Cs with s1�s . The terms
in (7-48) are bounded as follows: starting from left to right, the integral of yaA^d yaA is
bounded as in (6-16), thus by r2=3M4=3 . (In this paragraph, MDM.djs2Cs/.) Thus, with
the extra r�1 factor, the left-most term in (7-48) contributes ccr�1=3 or less to e. The
two middle terms contribute at most ccr�1M to e, which is to say at most r�1cc . This
is because �d yaA D BA�BAE and because Lemma 4.7 (with Lemma 5.2) bounds the
norm of BA by c0

�
r
ˇ̌
1�j˛j2

ˇ̌
C1

�
. Finally, the right-most term in (7-48) is bounded by

c0.M
1=2Cr�1=2/ and thus by cc . (This bound follows from the top bullet of Lemma 4.8

and Lemma 4.4 since j �DA j is no greater than c0.jrA˛jC jrAˇjC jˇj/.)

To finish the story on (7-46), note that a.djs1�s/�a.djs2�s/ is nonnegative and, in any
event, no greater than Ad , and thus no greater than rc . Therefore, because e� cc , the
right-hand side of (7-46) is likewise less than cc .

Write yA as AE Cya yA and use integration by parts to write the yA analog of the formula
in (7-46). The latter has the integral of iF yA ^ w over Œs1 � s; s2 C s� � Y on the
left-hand side and has the same right-hand side as the original, A version but for the
replacement of yaA by ya yA . This being the case, (1-15) with the bounds in the top bullet
of Lemma 4.8 for jrA˛j can be used to see that the absolute value of the difference
between right-hand sides of the respective yaA and ya yA versions of (7-46) is at most
cc.M

1=2C r�1=2/. This is less than cc because M � cc .

To prove Lemma 7.10’s lower bound assertion, remember from what was said previously
that �.iF yA ^w/� �cc.1� j˛j

2/. Since the integral of r.1� j˛j2/ over an interval of
length 2 (centered at any given s 2R) is bounded by M.s/ (which is less than cc by
assumption), it follows that the integral of �.iF yA^w/ over I�Y is no less than �ccr�1

when I has length 2 or less. This understood, assume henceforth that the length of I
is greater than 2. Write I D Œs1; s2� and suppose that s 2 .0; 1/ and m > 0 are such
that the integral of iF yA ^w over Œs1C s; s2 � s�� Y is greater than �m . Then, the
integral of iF yA ^w over the larger domain Œs1; s2��Y is no less than �.m C ccr�1/
because the extra regions tacked on are of the form I 0�Y with length I 0D s which is
less than 1 (and, as just established, the integral of �.iF yA ^w/ over such domains is
not less than �ccr�1 .) With the preceding understood, use the fact that M is bounded
by cc to choose s so that both M.ds1Cs/ and M.ds2�s/ are bounded by cc . The plan
is to compare the integral of iF yA ^w over Œs1C s; s2� s��Y with that of iFA ^w
over Œs1C s; s2� s��Y . Use (7-46)–(7-48) with s replaced by �s to see that the latter
integral is no less than �ccr�1=3 . Meanwhile, the right-hand side of this �s version
of (7-46) differs from the right-hand side of its yA counterpart by at most ccr�1=2 . The
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argument for this is identical but for the change s 7! �s as that given in the preceding
paragraph.

Step 3 The Y� D Y versions of Lemmas 6.4 and 6.5 play the role here of that played
by Lemma 4.6 in [22] and Corollary 4.7 in [22]. The next lemma is a replacement for
Lemma 4.8 in [22]:

Lemma 7.11 Given m >1, there exists �m >1, and , given ">0, there exists R">16;
and these have the following significance: Let I � R denote an interval of length at
least 2R" , and suppose that C is a closed , irreducible , pseudoholomorphic subvariety
in a neighborhood of I�Y with

R
C\.I 0�Y /w < �

�1
m and

R
C\.I 0�Y / ds ^ ya � m for

all intervals I 0 � I of length 1. Assume in addition that C has intersection number
zero with all submanifolds in R�Y of the form fsg�S with S being a cross-sectional
sphere in H0 . Let I � I denote the subset with distance at least R" from any boundary
point of I . There exists a finite set ‚ consisting of pairs .
; q/ with 
 a closed ,
integral curve of v and q a positive integer. The set ‚ is such that no two pairs share
the same closed integral curve. Moreover:

�
P
.
;q/2‚ q`
 � m .

� Each point of C js for s 2 I has distance along Y less than " from
S
.
;q/2‚ 
 .

Conversely, each point in
S
.
;q/2‚ 
 has distance no greater than " from C js .

� If � is a smooth 2–form on I �Y with k�k1 D 1 and kr�k1 � "�1 , thenˇ̌̌̌Z
C\.I�Y /

� �
X

.
;q/2‚

q

Z
I�


�

ˇ̌̌̌
< ":

Proof The proof of Lemma 4.8 in [22] can be copied with only the replacement of M
with Y and with the references to Corollary 4.7 in [22] replaced by references to
Lemma 6.5.

The lower bound in Lemma 7.10 for integrals of iF yA ^w serves as a replacement for
Lemma 4.9 in [22].

Step 4 The remaining arguments for the weak version of Lemma 7.8 are similar in
most respects, and simpler, than those given in Parts 4 and 5 of Section 4d in [22] to
prove Proposition 4.5 in [22].

To complete the proof of the weak version of Lemma 7.8, fix "0 > 0 and define the
subset I � Z by the rule that places a given integer k in I if and only if the integral
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of iF yA ^w over Œk; kC 1��Y is greater than "0. It follows from the asserted upper
bound from Lemma 7.10 in the case I D R and from the lower bound as applied
to the components of R�

�S
k2I Œk; kC 1�

�
that I is a finite set with the number of

components bounded by a constant that depends solely on c and "0. Use n"0 to denote
this number.

Introduce the number R"0 from Lemma 7.11. There is a set, V , of at most n"0 intervals
in R and a pair of numbers, cm�"0 and cm"0 , with the properties listed below:

(7-49) � cm�"0 and cm"0 are determined solely by n"0 and m . In any event, cm�"0 >

cm"0 > 100n"0 .

�
S
I2V I contains

S
k2I Œk; kC 1�.

� Suppose that I 2 V .

(a) I has length greater than cm"0 .m C R"0/ but less than cm�"0 .m C R"0/.

(b) I contains at least one k 2 I version of Œk; kC 1�.

(c) I \
�S

k2I Œk; kC 1�
�

has distance at least 10R"0 from I ’s boundary.

� If I and I 0 are distinct intervals from V with nonempty intersection, then
I \ I 0 has length greater than 1

128
m .

� Each component of R�
�S

I2V I
�

has length greater than 4m .

Given I � V , use I�� I to denote the set of points with distance 1
64
m or greater from

any boundary point of I. The assertion of the weak version of Lemma 7.8 follows
directly by using Step 2’s analog of Proposition 4.5 in [22] (ie Lemma 7.9) for its
interval I taken in turn to be the intervals from V and using Lemma 7.11 for each
component of R�

�S
I2V I�

�
with the constant in both replaced by "0 and with the

latter being a suitable function of m .

7.6 Proof of Theorem 1.5, II

The five parts of this subsection complete the proof of Theorem 1.5. Part 1 proves the
assertion at the very end of the theorem about the versions of Lr that are defined by
distinct data sets. Part 2 of the subsection talks about some points in the proof given in
Part 1 that are used implicitly in Parts 3–5. Parts 3 and 4 of the subsection prove the
fifth bullet of Theorem 1.5, and Part 5 uses what is done in Parts 3 and 4 to prove the
fourth bullet of Theorem 1.5.
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Part 1 A proof is given in a moment for the final assertion of Theorem 1.5. What
follows directly spells out what need proving. Fix L0 > 1 and suppose that .r; �; p/
and .r0; �0; p0/ are data sets that satisfy the conditions demanded by Theorem 1.5. This
is to say that the solutions to the respective .r; �/ and .r0; �0/ versions of (1-13) are
nondegenerate and holonomy nondegenerate, and that the respective instanton solutions
to the .r; g D e�C p/ and .r0; g D e0�C p0/ versions of (1-20) are also nondegener-
ate. Granted these assumptions, the pair .r; �/ can be used to define Z. yZSW;r/ and
Z. yZ<SW;r/, and .r; �; p/ can be used to define the endomorphism @�SW . By the same
token, .r0; �0/ can be used to define Z. yZSW;r0/ and Z. yZ<SW;r0/, and with p0 they define
the corresponding version of @�SW . As noted in Proposition 1.4, there is a canonical
homomorphism between H1SW;r , H�SW;r and HCSW;r and the corresponding primed triad
that intertwines the respective long exact sequences. Now suppose in addition that r
and r0 are such that Proposition 3.1 can be used to define the ŷ r and ŷ r0 on ZL0ech;M .
Theorem 1.5 asserts that this canonical homomorphism between homology groups can
be lifted to a chain complex homomorphism between the respective Z. yZSW;r/ and
Z. yZSW;r0/ which has the properties demanded by Proposition 1.4 and also intertwines
the two versions of Lr .

To prove this assertion of Theorem 1.5, return for the moment to Section 7.3. The
existence of a lift of Proposition 1.4’s canonical homology homomorphism to a homo-
morphism from Z. yZSW;r/ to Z. yZSW;r0/ that satisfied Proposition 1.4’s requirements
is proved in Section 7.3. In particular, it follows from what is said in Section 7.3 that
such a lift can be found that factors as O�N ı O�N�1 ı � � � ı O�1 with O�1 mapping the .r; �; p/
version of Z. yZSW;r/ to an .r1; �1; p1/ version, with O�2 mapping the latter version to an
.r2; �2; p2/ version, and so on, and with O�N mapping an .rn�1; �n�1; pN�1/ version
to the .r0; �0; p0/ version. These various data sets are such that each k 2 f1; : : : ; N �1g
version of jrkC1� rkj is very small as are the P –norms of �kC1��k and pkC1�pk .
Likewise, both jr1 � rj and jr0 � rn�1j are small, as are the P–norms of �1 � �
and p1�p, and also �0��N�1 and p0�pN�1 . Note that “small” here means as small
as desired (but not zero) at the expense of increasing N.

Of particular import is that the sequence frkgkD1;2;::: can be chosen so that each element
obeys the requirements set forth by Proposition 3.1 to define the corresponding version
of ŷ . � / on yZech;M . According to Proposition 3.1, each such version of ŷ . � / maps
to nondegenerate and holonomy nondegenerate solutions to the appropriate version
of (1-13). It is also the case that each element can be assumed to obey the conditions
set forth in Proposition 7.6 for all pairs .‚;‚0/ 2 ZL0ech;M . Proposition 7.6 supplies for
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each such pair a corresponding map ‰. � / and of particular import is that the image
of the latter consists of nondegenerate solutions to (4-1). Granted these last remarks,
the final assertion of Theorem 1.5 follows from what is said in Parts 3–5 of Section 3h
in [19]. Part 2 of this subsection says more about these parts of [19].

Part 2 The appeal to Parts 3–5 of Section 3h in [19] uses only the fact that sufficiently
large versions of ŷ . � / map to GMƒ –orbits of nondegenerate solutions to the relevant
version of (1-13). What follows elaborates on what nondegeneracy implies. Let c

denote a nondegenerate solution to a given .r; �/ version of (1-13). The nondegeneracy
assumption is used in two related ways. The first uses c’s nondegeneracy with the
implicit function theorem to build a smooth map from a neighborhood of r in .�;1/��
into Conn.E/�C1.Y IS/ with two salient properties: The map sends .r; �/ to c and
it maps any .r0; �0/ in its domain to a solution to the .r0; �0/ version of (1-13). In
addition, if c0 is a solution to the .r0; �0/ version of (1-13) and if the C1.Y IS1/ orbit
of c0 is sufficiently close to c, then the image of .r0; �0/ via the map lies on this orbit.
This map is denoted by ycc in what follows.

The second use of the nondegeneracy assumption concerns instanton solutions to (7-40).
To say more, suppose that .r; �/ and .r0; �0/ are very close in .�;1/��, and that
p 2 P� and p0 2 P�0 are likewise very near each other in P . Consider (7-40) when the
data set .r. � /; �. � /; p. � // has s!�1 limit given by .r; �; p/ and s!1 limit given
by .r0; �0; p0/, and when it is such that .r. � /; �. � /; p. � // is nearly constant as s varies
in R. Because c is nondegenerate, standard perturbative techniques will prove the
following: There is a unique instanton solution to (7-40) with Fredholm index equal
to 0 whose s!�1 limit is c. This instanton is very close to c at each s 2R and its
s!1 limit is a solution to the .r0; �0/ version of (1-13) that is very close to c. In
particular, this limit is the translate of ycc.r0; �0/ by a map from Y to S1 that is very
close to the constant map to 1 2 S1 . Let c0 denote this limit.

Looking ahead to Parts 3–5, the fact that the map from Y to S1 is almost the constant
map has the following implications: The values on c0 of the functions cs and W

in (1-26) and (1-27) are identical to their values on .r0; �0/. Likewise, the value on c0

of the .r0; �0/ version of (1-28)’s function a is the same as its value on .r0; �0/. The r0

version of the function M automatically has the same values on c0 and ycc.r0; �0/.

Part 3 The proof of the fifth bullet of Theorem 1.5 is given here and in Part 4. To
start the proof, note that the residual set that is described by the second bullet in (1-18)
can be chosen so as to have the properties listed below:
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There is a countable, nonaccumulating bad set in .�;1/ such that if r avoids it, then:

(7-50) � The corresponding .r; gD e�/ version of ZSW;r is a finite set of C1.Y IS1/
orbits in Conn.E/�C1.Y IS/.

� Each solution to (1-13) is nondegenerate and holonomy nondegenerate.

� If c and c0 are solutions to (1-13) in distinct C1.Y IS1/ orbits, then
af.c/¤ af.c0/.

The arguments in Sections 7.2 and 7.3 of [17] can be used almost verbatim to prove
this.

Fix an element � 2� with P –norm less than 1 that is described by (7-47). The latter
describes a certain countable, nonaccumulating subset of .�;1/. Denote this set by U .
If r> � and is not in U , then the solutions to the .r; �/ version of (1-13) are suitable
for defining the Z–module Z. yZSW;r/. Fix r> � in the complement of U and choose
a suitably generic element p 2 P� to define the differential @�SW on Z. yZSW;r/. Let I

denote a given class in either H1 , H� or HC . The class I is then represented by a
@�SW cycle in Z. yZSW;r/. This is to say that any given representative of I can be written
as

(7-51) zD
X

Œc�2 yZSW;r

ZŒc�Œc�;

where each ZŒc� 2 Z and where only finitely many of these integers are nonzero.
Associate to such a representative cocycle the number

(7-52) afŒz; r�D inf
Œc�2 yZSW;r; Zc¤0

fafŒc�g;

and associate to the class I the number

(7-53) a
f
IŒr�D supfafŒz; r� j z 2 Z. yZSW;r/ represents Ig:

There are but a finite number of C1.Y IS1/–equivalence classes of solutions to (1-13)
and so there is at least one cycle in Z. yZSW;r/ that represents I with afŒ � ; r� equal
to a

f
IŒr�. Proposition 2.7 finds a

f
IŒr� < c0r and Proposition 2.7 with Lemma 2.5 find

a
f
IŒr� > �c0r ln r.

Propositions 4.7 and 4.8 in [19] have the following analog:

Lemma 7.12 Choose � 2 � with P–norm less than 1 and described by (7-47).
Denote by U � .�;1/ the bad set. Given r 2 .�;1/� U , use the solutions to the
.r; �/ version of (1-13) to define Z. yZSW;r/. There is a smooth map, r 7! pr , from
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.�;1/�U to P such that :

� For each r2 .�;1/�U , the element pr vanishes to second order on all solutions
to the .r; �/ version of (1-13).

� The pair .r; g D e� C pr/ is suitable for defining @�SW on Z. yZSW;r/ if r 2
.�;1/�U is chosen from the complement of a discrete set , V , that accumulates
only on the points in U .

� Proposition 1.4’s canonical isomorphism between the various r2 .�;1/�.U[V/
versions of the @�SW homology groups H1SW;r , H

�
SW;r and HCSW;r is such that

following is true: if I is any given nonzero homology class in H1SW , H�SW
or HCSW , then the assignment r 7! a

f
IŒr� as defined above for r2 .�;1/�.U[V/

is the restriction of a continuous and piecewise differentiable function on .�;1/.

Proof But for notation and interchanging min with max, the proof mimics the ar-
guments for Proposition 2.5 in [18] and for Proposition 4.2 in [17]. Note in this
regard that the arguments in these papers use a homomorphism between the .r; �; pr/

and .r0; �; pr0/ versions of the @�SW homology that is not obviously the canonical
isomorphism. Even so, what is said in Part 2 of this subsection with arguments much
like those in Section 7.3 can be used with the arguments in [18; 17] to obtain a proof
of Lemma 7.12’s assertion about the canonical isomorphism. See also Proposition 10.7
in [4] and its proof.

Let I denote a given class in either H1SW , H�SW or HCSW . The function a
f
I is important

only to the extent that it can be used to analyze a second function of r, this denoted
by MI. � /. To define the latter, fix p. � / as in Lemma 7.12 so as to define @�SW on
Z. yZSW;r/ when r 2 .�;1/� .U [ V/. Given such a value for r, let z denote a @�SW
cycle that represents I . Write z as in (7-47) and define MŒz; r�D supŒc�2 yZSW;r; Zc¤0

M.c/.
Define

(7-54) MIŒr�D inffMŒz; r� j z 2 Z. yZSW;r/ represents I and afŒz; r�D a
f
Ig:

It follows from what is said in Part 2 of this section that MI is a priori a smooth function
on .�;1/� .U [V/.

Part 4 Theorem 1.5’s fifth bullet follows from Proposition 3.1 if the following assertion
is true:

(7-55) Fix a class I in H1SW, H�SW or HCSW. Then the corresponding function MI. � / is
bounded.
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Of course, (7-55) makes sense only when � is described by (7-47); but Theorem 1.5
follows in any event using the fact that the set described in (7-47) is dense in � and
what is said in Part 2 of this subsection.

To see about (7-55), fix an interval component of .�;1/� .U [V/ and differentiate
the expression in (1-28) on this interval to see that

(7-56) d

d r

�
�
2

r
a
f
I

�
D
1

r2
csf.c/;

with c a particular solution to (1-13) whose equivalence class has nonzero coefficient in
some representative cycle for I with afŒ � ; r�D a

f
I . Use Lemma 2.5 and Proposition 2.7

to see that the right-hand side of (7-56) is no greater than c0r�4=3.ln r/4=3 . This being
the case, integrate (7-56) on the components of .�;1/� .U [V/ and use the fact that
a
f
IŒ � � is continuous to see that �afIŒr� � cIrC r1=3.ln r/4=3 with cI being a constant

that depends on I but is independent of r. This last bound plus the bound implied by
Lemma 2.5 and Proposition 2.7 for jcsfj requires WfŒc� � cIC r�2=3.ln r/4=3 with c

being a particular solution to (1-13) whose equivalence class has nonzero coefficient
in some representative cycle for I with afŒ � ; r� D a

f
I . Thus, WfŒc� is bounded by an

r–independent constant determined by the class I . This understood, (7-55) follows
directly from the second bullet of Proposition 2.7.

Part 5 This part proves the fourth bullet of Theorem 1.5 in four steps.

Step 1 Fix � from the set described by the second bullet of (1-18) and use U to
denote the corresponding countable, nonaccumulating set in .�;1/. Suppose that
r 2 .�;1/�U is sufficiently large. In particular, require that r with � and a suitably
generic, small-normed element p from P can be used to define Lr on ZLech;M so as to
satisfy the first three bullets of Theorem 1.5 and the fifth bullet. Require in addition that
the final assertion of Theorem 1.5 hold for .r; �; p/ and data sets .r0; �; p0/ with r0 � r.

Step 2 Introduce QL
ech to denote either

Z. yZLech;M /; Z. yZL;<ech;M / or Z. yZLech;M /=Z. yZ
L;<
ech;M /

and let QSW denote the corresponding Z. yZSW;r/, Z. yZ<SW;r/ or Z. yZSW;r/=Z. yZ<SW;r/.
Let & denote an element in QL

ech such that Lr& D @�SWz with z being an element
in QSW . If the fourth bullet of Theorem 1.5 holds for & , then it holds for &C@ech&

0 for
any & 0 2QL

ech , this being a consequence of the second and third bullets of Theorem 1.5
and the fact that Lr is a monomorphism.
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Since .@�SW/
2 D 0, the second and third bullets of Theorem 1.5 require @ech;M& D 0.

Granted this, then & defines a class in the homology of the chain complex .QL
ech; @ech/.

Use I& to denote this class. What is said in the preceding paragraph implies that the
question of whether the fourth bullet of Theorem 1.5 holds for a given element &
depends only on the class I& .

Step 3 The map Lr induces a homomorphism from the .QL
ech; @ech/ homology to

the .QSW; @
�
SW/ homology. The conclusions of Step 2 mean that the fourth bullet of

Theorem 1.5 is asking about the kernel of this map. Let KL denote this kernel. As
explained next, the Z–module KL does not depend on the value of r if sufficiently large.

To start the explanation, suppose that I& 2KL . This is to say that Lr& D @�SWz with
z 2QSW . As @ech& D 0, the chain Lr0& is annihilated by the .r0; �; p0/ version of @�SW
when r0 � r is disjoint from U . It follows as a consequence that Lr0& defines a class
in either H1SW;r0 , H

�
SW;r0 or HCSW;r0 as the case may be. It therefore defines a class in

H1SW , H�SW or HCSW . Given what is said in the last assertion of Theorem 1.5, this class
in H1SW;r0 , H

�
SW;r0 or HCSW;r0 corresponds to the class in H1SW;r , H�SW;r or HCSW;r that

is defined by Lr& .

The homology of .QL
ech; @ech/ is finitely generated, and so KL is finitely generated.

This understood, the assertion made by the fourth bullet of Theorem 1.5 holds for all &
with Lr& � Image.@�SW/ if it holds for a judiciously chosen finite set of such elements.
Therefore, the fourth bullet of Theorem 1.5 holds if the following assertion is true:

(7-57) Fix & 2QL
ech with Lr.&/D @�SWz for some z 2QSW. There exists L0 >L such

that & D @ech&
0 for some & 0 2QL0

ech.

The proof of this assertion is given in Step 4.

Step 4 Arguments much like those that prove Lemma 7.12 prove the following:

Lemma 7.13 Choose � 2 � with P–norm less than 1 and described by (7-47).
Denote by U � .�;1/ the associated accumulation set. Given r 2 .�;1/� U , use
the solutions to the .r; �/ version of (1-13) to define the Z. yZSW;r/. There is a smooth
map , r 7! pr , from .�;1/�U to P such that :

� For each r2 .�;1/�U , the element pr vanishes to second order on all solutions
to the .r; �/ version of (1-13).

� The data .r; g D e� C pr/ is suitable for defining @�SW on Z. yZSW;r/ if r 2
.�;1/�U is chosen from the complement of a discrete set , V , with accumu-
lation only at points in U .
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� The assignment r 7! a
f
& Œr� as defined above for r 2 .�;1/ � .U [ V/ is the

restriction of a continuous and piecewise differentiable function on .�;1/.

Fix p. � / as in Lemma 7.13 so as to define @�SW when r2 .�;1/� .U[V/. Given such
a value for r, let z denote an element which is in either Z. yZSW;r/ or Z. yZ<SW;r/, with
z in the latter when QL

ech is Z. yZL;<ech;M /. Assume that z obeys @�SWzD Lr& in QSW .
Write z as in (7-51) and set MŒz; r�D supŒc�2 yZSW;r; Zc¤0

M.c/. Now define

(7-58) M& Œr�D inffMŒz; r� j z is such that @�SWzD Lr& in QSW and afŒz; r�D af&}.

An almost verbatim copy of the argument in Part 4 of this subsection proves that M& Œr�
is bounded. This being the case, (7-57) follows from what is said in Proposition 3.1
about the map ŷ r .

Appendix The proof of Proposition 2.6

This appendix supplies a proof for Proposition 2.6. Much of what is done here mirrors
similar constructions in Section 3 of [20] and Section 2 of [21]. Even so, the reworking
can be justified for two reasons. First, the spectral flow function is not invariant under
the action on Conn.E/�C1.Y IS/ of the whole of the group C1.Y IS/, and so care
must be taken so as to not introduce a spurious gauge transformation in any given step
of the proof. Care must also be taken so as not to introduce spurious factors of ln r in
any given step. Such factors are easy to come by because there are solutions to (1-13)
with (1-30)’s function M being greater than c�10 ln r. The need to avoid spurious gauge
transformations and spurious factors of ln r accounts for the much of the length of the
proof.

This appendix has three sections.

A The eigenvalue equation Lc;rbD �b

This section of the appendix supplies some necessary background for the proof of
Proposition 2.6. Much of what is done here borrows heavily from Sections 3a–3c
of [20] and Section 2a in [21].

Aa Pairs in Conn.E/�C1.Y IS/ and solutions to the vortex equation

This subsection uses solutions to (2-8) to construct pairs of connection on E and
section of S over the complement in Y of tubular neighborhoods of a chosen subset of
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curves from
S

p2ƒ.y

C
p [ y


�
p /. These constructions mimic those in Section 3 of [20].

There are six parts to what follows.

Part 1 The input from the vortex equations includes first a pair .A0;˛0/ that obeys (2-8)
and is such that 1

2�
.1� j˛0j

2/ is integrable. As noted in (3-1), the integral of this
function is a nonnegative integer and of interest here is the case when the integer
in question is 1. This is to say that .A0; ˛0/ define a point in the vortex moduli
space C1 . Use the pair .A0; ˛0/ to construct the square-integrable solution & to (3-27).
Meanwhile, let y denote the square-integrable, real-valued function on C that solves
the equation

(A-1) �@x@yC 1
2
j˛0j

2y D�2�1=2.1� j˛0j
2/:

The pair .y; &/ can be written explicitly in terms of ˛0 and its covariant derivative in
the given case when .A0; ˛0/ determine an element in C1 . For example, if ˛�10 .0/D 0,
then

(A-2) & D�xz x̨�10 .1� j˛0j
2/ and y D 21=2z˛�10 @A0˛0:

In general, if m � 1 and if .A0; ˛0/ defines a point in Cm , then there is a unique
square-integrable solution to (A-1) and a unique, square-integrable solution to (3-27).
This pair .y; &/ obeys jyjC j& j � cme�dist. � ;˛�10 .0//=c0 .

Suppose that .A0; ˛0/ defines an element in C1 and is such that ˛�10 .0/ is the origin
in C . Any two such solutions differ by the action of C1.CIS1/ as they correspond
to a single point in C1 ; this is the point with �1 in (3-2) equal to zero. This point in C1
is called the symmetric vortex as it is the unique fixed point in C1 of the action by S1

that is induced by the latter’s action on C as the group of rotations about the origin.
There is a unique solution to (2-8) that maps to the symmetric vortex in C1 and is such
that

(A-3) A0 D �0� a0 � 12.z
�1dz�xz�1dxz/ and ˛0 D j˛0j

z

jzj
;

where the notation has �0 denoting the product flat connection on the product line
bundle over C and a0 denoting a real-valued function on C . Lemma 3.3 can be used
to prove that a0 and j˛0j obey

(A-4) j1� a0j � c0.1� j˛0j2/ and 1� j˛0j � c0e
�jzj=c0 :
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Note that if m > 1, then the point in Cm with (3-2)’s coordinate functions all zero
also corresponds to solutions .A0; ˛0/ with ˛�10 .0/D 0. There is in this case a unique
solution with ˛�10 .0/D 0 that has ˛0 D j˛0j.z=jzj/m .

Part 2 This part of the subsection defines various terms and notions that are employed
in the subsequent parts.

The constructions that are described below require the a priori choice of constants
cv � 106 , z � c6v and �� � c2vz�1=2 . The lower bound for cv is increased to some
c0 � 10

6 in the applications to follow. The constants cv and �� are also constrained
so that c2v�� � c

�1
0 and, in particular, c2v�� is smaller than 1

100
times the maximum

allowed radius of any transverse disk.

Proposition 3.1’s map ˆr uses the pairs constructed below with zD r, with cv on the
order of 1, with �� constrained to be greater than r�1=2Cı for some fixed ı > 0. The
proof of Proposition 2.6 uses versions of the constants with z 2 .c0; r/, with cv D c0 ,
and with �� no larger than c0z�1=2 (but �� here is still greater than c2vz�1=2 , as
required in the preceding paragraph). Thus, different versions of �� are used by these
propositions:

Let Y�ƒ denote the subset of Y with distance at least c2v�� from
S

p2ƒ.y

C
p [ y


�
p /.

Given that c2v�� � c
�1
0 , this subset Y�ƒ is a smooth manifold with boundary whose

boundary components are tori and whose complement is a disjoint union of solid tori
tubular neighborhoods of the curves from the set fy
Cp [ y


�
p gp2ƒ .

Part 3 A union of components of Y � Y�ƒ must be specified in advance before
starting the construction. This can be the empty set. The chosen subset of Y �Y�ƒ is
denoted in what follows by T�ƒ The constructions that follow define a connection on
E ’s restriction to Y�ƒ[T�ƒ and a section of S over Y�ƒ[T�ƒ . Proposition 3.1’s
map ˆr uses only the case when T�ƒ D Y �Y�ƒ . The proof of Proposition 2.6 uses
all possible versions of T�ƒ .

The construction of a connection and section of S over Y�ƒ[T�ƒ requires the choice
of a finite set ‚ whose elements are described below:

(A-5) � Each element in ‚ is either a curve from fy
Cp [ y

�
p gp2ƒ that lies in T�ƒ

or a properly embedded, 1–dimensional, oriented submanifold in Y�ƒ . The
curves from ‚ are distinct.

� The T�ƒ boundary components of Y � Y�ƒ are disjoint from the Y�ƒ
curves from ‚. Any other boundary component of Y�ƒ contains no more
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than two endpoints of arcs from ‚, and if two, then one has u < 0 while
the other has u > 0.

� Suppose that 
 is a curve from ‚ in Y�ƒ .

(a) The unit-length, oriented tangent vector to 
 has distance at most cvz�1=2

from v .

(b) The curve 
 intersects any p 2ƒ version of Hp where 1�3 cos2 � > 0.

(c) If 
 is disjoint from a given boundary torus of Y�ƒ , then it has distance
greater than 3cv�� from this torus.

(d) If 
 intersects a boundary torus of Y�ƒ , then it does so only at its
endpoints. These intersections are transversal. Moreover, one endpoint
of 
 lies where u < 0 on some boundary component of Y�ƒ and the
other where u > 0 on some boundary component of Y�ƒ .

� The intersection of
S

2‚ 
 with Mı sits in the f �1.1; 2/ part of Mı . This

intersection consists of G properly embedded segments that pair the index 1
and index 2 critical points of f in the sense that distinct segments start on
the boundary of the radius ı coordinate balls about distinct index 1 critical
points of f and end on the boundary of the radius ı coordinate balls about
distinct index 2 critical points.

The proof of Proposition 2.6 uses only versions of ‚ that lack curves from the setS
p2ƒ.y


C
p [ y


�
p /. Versions with curves from this set are needed to define Proposition

3.1’s map ˆr .

Let 
 denote a 1–manifold in Y�ƒ from an element in ‚. Introduce U
 to denote
the union of the radius 4�� transverse disks centered at the points in 
 . Use U 0
 � U

to denote the union of the radius �� transverse disks centered at the points in 
 . If 

is a

S
p2ƒ.y


C
p [ y


�
p / curve from ‚, use U
 to denote the union of the radius 4��ƒ

transverse disks centered on 
 and use U 0
 � U
 to denote the union of the concentric
radius ��ƒ transverse disks. Keep in mind the following consequence of the formula
in Section 1.1 for v : If cv � c0 , and if 
 � Y�ƒ is from ‚, then U
 is an open solid
torus with 
 the core circle. Moreover, if 
 and 
 0 are in Y�ƒ and come from distinct
elements in ‚, then U
 \U
 0 D∅. It is assumed in what follows that cv is such as to
guarantee this.

Part 4 This part of the subsection describes a certain set of preferred coordinates
for the various versions of U
 . Each element in this set is determined in a canonical
fashion by an isometric isomorphism from K�1j
 to 
 �C .
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To define these coordinates, introduce T
 to denote the union of the transverse disks
of radius c�10 centered at the points of 
 . Choose this radius so that the union of
the transverse disks with centers on any length less than c�10 segment of 
 is a
solid, embedded cylinder with the segment as the core arc. The desired coordinates
for U
 obtained by restricting the domain of a set of functions on T
 that define local
coordinates on each such solid cylinder.

Let `
 denote the length of 
 . The first of these functions is a parameter, denoted
by t , with values in R=.`
Z/ when 
 is a closed loop and with values in an interval
of length `
 otherwise. The coordinate t is constant along each transverse disk in T

with center on 
 . The other coordinate is denoted by z ; it is a C–valued function that
identifies each transverse disk with the radius c�10 disk in C centered at the origin.
The coordinate identification is such that the origin in C corresponds to 
 .

Definition Fix a C–linear isomorphism between K�1j
 and 
 �C . This defines
an orthonormal, oriented frame for the kernel of Oa along 
 . Use this isomorphism
with the metric’s exponential map to identify a tubular neighborhood of 
 with 
 �C .
Use t to denote an affine coordinate long 
 with the property that the corresponding
tangent vector field has unit length and positive pairing with Oa . The coordinate t and
the standard complex coordinate z for C are the desired coordinate functions.

These coordinates are such that the z D 0 locus is 
 and @z along 
 is in the kernel
of Oa and has norm 2�1=2 . The first-order Taylor’s expansion writes v and w as

(A-6)
v D @

@t
C 2i.�zC�xz� x
 /

@

@z
� 2i.�xzC x�z� xx
 /

@

@xz
C � � � ;

w D i
2
dz ^ dxz� .�zC�xz� x
 /dxz� .�xzC x�z� xx
 /dz ^ dt C � � � ;

where � is a real-valued function of t while � and x
 are C–valued functions of t
with x
 such that jx
 j � cvz�1=2 . The unwritten terms are bounded by

c0.j�jC j�j/jzj.z�1=2Cjzj/

with c0 here dependent on � and �. Note that � must be real so as to have dw D 0.
What is said in item (a) of the third bullet of (A-5) leads to the asserted bound on jx
 j.

Changing the isomorphism between K�1j
 and 
 �C writes z as z D u.t/z0 with
u being a smooth map from the domain of t to S1 . The resulting version of (A-6)
replaces � with �0 D � C i

2
u�1 d

dt
u, it replaces � with �0 D u�2� and it has x


replaced by x0
 D u
�1x
 .
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As is explained in a moment, this last observation has the following important conse-
quence: coordinates of the sort just described can be found with the property that the
functions � and � in (A-6) obey j�jCj�j � c0 . To see why this is, fix a point p in the
interior of 
 and a unitary frame for K�1jp . Parallel transport this frame along a small
length interval in 
 containing p . Use the latter frame with the exponential map to
define the coordinates .t; z/ for a solid cylinder with this interval as the core arc. Use
Tp to denote this cylinder. The Lie derivative of w by @=@xz is bounded by c0 at p
because the covariant derivative of @=@xz is zero at p . Use the .t; z/ version of (A-6)
to see that this Lie derivative at p is ��dz^dt��dxz^dt . This implies in particular
that j�j � c0 at p . The fact that j�j is independent of the chosen orthonormal frame
for K�1j
 implies that j�j � c0 along the whole of 
 no matter what frame is used to
define the coordinates. Meanwhile, the freedom to change � to � � i

2
u�1 d

dt
u can be

exploited to obtain a version of the coordinates with the function � such that j�j is
also bounded along 
 . Indeed, if 
 is not closed, then this equation can be integrated
so as to obtain a version with � D 0. If 
 is closed, then a version can be found with
� constant and less than c0`�1
 .

Unless told otherwise, assume in here and in Appendices B and C that any chosen
coordinate system of the sort described above has j�jC j�j< c0 . A second convention
with regards to these coordinates concerns the case when 
 is an integral curve from
the set

S
p2ƒ.y


C
p [ y


�
p /. As explained in Part 5 of Section 3.3 there is a version of

these coordinates with both � and � constant, with � real and such that �> j�j These
constant values for � and � are denoted at times by �0 and �0 . This .�0; �0/ version
of the coordinates should be assumed in what follows when 
 2

S
p2ƒ.y


C
p [ y


�
p /.

A coordinate system of the sort described above should be chosen for each set from
the collection fU
g
2‚ . These chosen coordinate systems are used in what follows.

Part 5 Fix a set ‚ as described in Part 3. The corresponding pair of connection and
spinor is defined with the help of the open cover of Y�ƒ [ T�ƒ that consists of the
collection fU
 \Y
g
2‚ and the set U0 D .Y�ƒ[T�ƒ/�

�S

2‚.U

0

 \Y�ƒ/

�
. Use

U to denote the collection of sets consisting of U0 and fU
g
2‚ . For each U 2 U,
an isometric isomorphism must first be chosen to identify EjU with U �C . The
bundle E can be reconstructed from these isomorphisms using the corresponding
transition functions.

The pair .A; / on any given set U from the cover is written using the isomorphism
between EjU and U �C as AD �0C aU , where �0 denotes the product connection
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on U �C and where aU is an iR–valued 1–form on U. Meanwhile,  is written
as .˛U ; ˇU /, where ˛U and ˇU denote a respective C–valued function and section
of K�1 on U. With regards to the section ˇU , the U ¤ U0 versions of K�1jU come
with an isomorphism K�1jU D U �C that is defined using the chosen coordinates
for U. This isomorphism is defined so that its inverse maps the constant section 1 of
U �C to the section that can written as .1C r/.@zC q/ with r being real and q being
orthogonal to @z . Moreover, jrjC jqj � c0jzj. Granted this isomorphism, the U ¤ U0
versions of ˇU are also viewed as functions on U.

What follows specifies the various U 2 U versions of .aU ; .˛U ; ˇU // on the comple-
ment in U of

S
U 02U�fU g U \U

0 .

(A-7) � When U DU0 Fix an isomorphism EjU0DU0�C . Set aU0D0, ˛U0D1
and ˇU0 D 0.

The definition of .aU ; .˛U ; ˇU // for U 2 U�fU0g requires first the introduction of
the rescaling map from C to itself that multiplies the coordinates by z1=2 . The latter
map is denoted here by rz . The definition refers to the functions y and & on C that
are depicted in (A-2) and the function a0 on C given in (A-3).

(A-8) � When U DU
 Fix an isomorphism between EjU and U�C . Use Part 4’s
coordinates to identify U with the product of either S1 or the appropriate
interval with the radius �� concentric disk in D0 . Use .A0; ˛0/ to denote
the symmetric solution to (2-8) from C1 with ˛0 D j˛0jz=jzj. Set aU D
i21=2�r�z ydt�

1
2

r�z a0.z�1dz�xz�1dxz/, ˛U D r�z ˛0 and ˇU D i�z�1=2r�z & .

Part 6 This part describes each U 2 U version of .aU ; .˛U ; ˇU // on the intersec-
tion between U and

S
U 02U.U \U

0/. The transition function between a given set
U 2 U�fU0g and U0 are as follows:

(A-9) � Suppose that 
 � Y�ƒ . The transition function for U0\U
 identifies the
constant section 1 of the bundle U0�C with the section z=jzj of the bundle
U
 �C .

� Suppose that 
 2
S

p2ƒ.y

C
p [ y


�
p /. The transition function for U0 \U


on the part where jzj � 2cv�� maps the section 1 of U0 �C to the section
z=jzj of U
 �C .

What is said in (A-9) is all that is needed for Proposition 3.1’s map ˆr because the
latter has no cases where three sets from the cover intersect.
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Suppose that U 2 U�fU0g. Use yU to denote the part of U \U0 that is considered
in (A-9). The definition of .aU ; .˛U ; ˇU // on yU follows. The definition introduces � yU
to denote �.��1� jzj � 1/.

(A-10) � aU D �� yU i2
1=2r�z ydt �

1
2
.1�� yU C� yU r�z a0/.z

�1dz�xz�1dxz/.

� ˛U D .1�� yU .1� r�z j˛0j//z=jzj.

� ˇU D i�z�1=2� yU rz � & .

Items (A-7)–(A-10) together define a smooth pair of connection on E ’s restriction to
U0[

�S

2‚ U


�
and section of S over this same set. In particular, they define a pair

of connections on E ’s restriction to Y�ƒ[T�ƒ and section of S over Y�ƒ[T�ƒ .

Ab Constraints

The operator in (1-17) will be analyzed in the case where the relevant version of .A; /
is assumed to have five properties that are given in a moment. In particular, these
properties are satisfied by solutions to a given .r; �/ version of (1-13). The upcoming
Lemma A.1 asserts that these properties are also satisfied by the pairs that are constructed
in Section Aa.

The upcoming properties refer to constants c0 � 100 and z� c100 , These lower bounds
are increased in subsequent subsections. The properties refer to a given pair .A; / 2
Conn.E/�C1.Y IS/. By way of a look ahead, a pair .A; / with these properties
looks much like a solution to the rD z and � version of (1-13) with � 2� having
P–norm bounded by 1. The properties listed below are such that .A; / resembles
such a solution inasmuch as

(A-11) z�1=2jBA� z. �� � Oa/jC jDA j � c�60 z1=2C c0:

The list of properties follows directly:

Property 1 The section  D .˛; ˇ/ is such that :

� j˛j � 1C c0z�1 and jˇj � c0z�1=2 .

� jrA˛j
2 � c0

�
z
ˇ̌
1� j˛j2

ˇ̌
C 1

�
.

� jrAˇj � c0 .

The second property introduces the following notation: the section DA of S is written
as .ŒDA �0; ŒDA �1/ with respect to the splitting S D E ˚EK�1 . As always, the
Hodge dual of the curvature 2–form of A is denoted by BA .
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Property 2 The 1–form BA and the section DA of S are such that :

�
ˇ̌
h Oa; BAiC iz.1� j˛j2/

ˇ̌
� c�200 zC c0 .

� j Oa ^BAj � c60z1=2
ˇ̌
1� j˛j2

ˇ̌1=2
C c0 .

� jŒDA �0j � c60 .

� jŒDA �1j � c�100 z1=2C c0 .

Note for future reference that the third bullets of Properties 1 and 2 have the following
consequence: Let .rA˛/v denote the section of E that is obtained by pairing rA˛
with v . The norm of this section .rA˛/v is bounded by c0c0 because ŒDA �0 is the
sum of i.rA˛/v with a linear combination of covariant derivatives of ˇ .

The third property introduces Y˘z to denote the subset of Y with distance at least
c40z�1=2 from 
 2

S
p2ƒ.y


C
p [ y


�
p /. This subset Y˘z is a smooth manifold with

boundary whose boundary components are tori. The third property also refers to the
.A; / version of the connection yA that is defined in (1-15).

Property 3 The zero locus of ˛ in Y˘z is transversal and it consists of the disjoint
union of at most G components with each a properly embedded arc or circle. The zero
locus of ˛ in Y˘z has the following additional properties:

� Any given boundary component of Y˘z contains either zero or two endpoints of
the arc components of ˛ ’s zero locus in Y˘z . If two , then the distance between
them is at least 100c20z�1=2 . Moreover , u < 0 on one and u > 0 on the other.

� Suppose that 
 is a component of the zero locus of ˛ in Y˘z .
(a) The unit-length , oriented tangent vector to 
 has distance at most c0z�1=2

from v .
(b) The curve 
 intersects any given p2ƒ version of Hp where 1�3 cos2 � >0.
(c) If 
 is disjoint from a given boundary torus of Y˘z , then it has distance

greater than 3c30z�1=2 from this torus.
(d) If 
 intersects a boundary torus of Y˘z , then it does so only at its endpoints

and these intersections are transversal.

� The intersection of ˛ ’s zero locus with Mı lies in the f �1.1; 2/ part of Mı .
This intersection consists of G properly embedded segments that pair the index 1
and index 2 critical points of f in the sense that distinct segments start on the
boundary of the radius ı coordinate balls about distinct index 1 critical points
of f and end on the boundary of the radius ı coordinate balls about distinct
index 2 critical points.
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� The 2–form i
2�
F yA has compact support and integral 1 on any transverse disk

in Y with radius c0z�1=2 and center at a zero of ˛ in Y˘z .

The fourth property constrains ˛ away from its zero locus.

Property 4 The absolute value of 1�j˛j2 is less than c�100 at all points with distance
greater than c0z�1=2 from the zero locus of ˛ in Y .

The final property is not strictly speaking required; it is imposed solely to avoid some
extra effort. To set the notation, let p 2Y denote a given point. Fix a C–linear isometry
between C and the kernel of Oa at p . With z given, use 'zW C ! Y to denote the
composition of first multiplication on C D Ker. Oa/ by z�1=2 followed by the metric’s
exponential map. With .A; D .˛; ˇ// 2 Conn.E/�C1.Y IS/ given, use .Az; ˛z/

to denote the pullback of .A; ˛/ using 'z .

Property 5 Fix p 2 Y . The pair .Az; ˛z/ has distance at most c�100 in the C 4–
topology from a solution to the vortex equations when restricted to the disk of radius c0
with center at the origin in C .

To see an example of a pair with these properties, fix r � c0 and � 2 � with P–
norm bounded by 1. Every solution to the corresponding .r; �/ version of (1-13) has
Properties 1–5 if z is set equal to r with r large, and if c0 is chosen less than r1=6

and chosen to avoid at most G intervals of a priori bounded length. By way of an
explanation why this is so, the top three bullets in Property 1 are asserted by Lemma 2.1
and the fourth bullet has zero on its right-hand side. Meanwhile (1-13) guarantees
Property 2, Lemma 2.3 guarantees Property 4 and Lemma 2.9 guarantees Property 5.
The first bullet of Proposition 2.4 gives item (a) of the second bullet of Property 3, its
second bullet guarantees item (b) of Property 3, its third bullet guarantees the third
bullet of Property 3 and its fifth bullet guarantees the fourth bullet of Property 3. If the
first bullet of Property 3 or items (c) or (d) of the second bullet of Property 3 are not
obeyed for a given choice of c0 , then at most G replacements of the form c0 7! c0Cc0
will satisfy all of them. That this is so follows directly from the first three bullets of
Proposition 2.4 and the formula for v in (1-3). This is explained in the next paragraph.

To elaborate on the last assertion: Fix p 2ƒ and consider the boundary of Y˘z near
the circle y
Cp . This circle is the locus in Hp where the coordinate u D 0 and the
coordinate � is such that cos � D 1p

3
. The “outside” of this boundary torus is a solid
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torus neighborhood of y
Cp . Now, the key point is that the unit tangent vector to 
 differs
by at most c0z�1=2 from v . This implies two key facts: First, if v has inner product
greater than c0z�1=2 with the normal vector to a given intersection point between 

and the boundary torus, then 
 will be transversal to the boundary torus at that point.
It also implies that 
 will have distance at most c0c50z�1 inside the corresponding
solid torus from the integral curve of v through that boundary point. (Note that since
z> c100 , this distance is at most c0c0z�1=2 .) Because of these facts about 
 and v ’s
integral curves, conclusions about 
 ’s intersections with the boundary torus follow
from properties of v ’s integral curves.

Keeping the preceding in mind, here are three facts that follow from (1-3)’s depiction
of v : First, v is transversal to the boundary torus except at the two uD 0 loci on this
torus

�
one where cos2 � < 1

3
and the other where cos2 � > 1

3

�
. These loci are circles

that are �–invariant. Second, v ’s inner product with the normal vector to the boundary
torus has norm greater than c0z�1=2 where the distance to these uD 0 circles is greater
than c0c�10 . Third, the distance from the uD 0 loci where an integral curve of v enters
the solid torus is the same as where it exits the solid torus.

Granted these facts, then there exists c� (with c� � c0 ) with the following significance:
the conditions in the second bullet of Property 3 and in items (c) and (d) of the third
bullet are guaranteed to be satisfied if 
 ’s distance from the u D 0 points on the
boundary torus is greater than c�c30z�1=2 if c0 is large and z is very much greater
than c0 .

With the last paragraph understood, suppose for the sake of argument that the distance
between 
 and the u D 0 points on the boundary torus is less than 100c�c30z�1=2 .
Fix e> 0 for the moment and consider a bigger solid torus neighborhood of y
Cp , one
with radius .c0C e/4z�1=2 . Then, the distance between 
 and the u D 0 points on
this torus will be greater than .c0e� 100c�/.c0C e/3z�1=2 , which will be greater than
3.c0C e/3z�1=2 if e> c0 .

The lemma that follows asserts that certain versions of the pairs .A; / that are
described in Section Aa also have the five properties listed above.

Lemma A.1 There exists � � 100 with the following significance: Fix parameters
cv � � and z � �c10v , and then set �� D c2vz�1=2 . Fix a set T�ƒ and then a set ‚ as
described by (A-5) which obeys the first and second bullets of the .z; c0 D cv/ version
of Property 3. Suppose that .A; / 2 Conn.E/�C1.Y IS/ is given by the .z; cv; ��/
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version of (A-7)–(A-10) on Y�ƒ[T�ƒ and that the .z; c0 D cv/ version of Properties
1, 2, 4 and 5 hold on Y � .Y�ƒ[T�ƒ/. Then .A; / obeys the .z; c0 D cv/ version of
Properties 1–5 on the whole of Y .

Proof This is a straightforward calculation given what is said in Section 3.3 and (3-3)
about solutions to (2-8). Much the same calculation is done in Sections 2e and 2f
of [15]. The specifics of the calculation are omitted.

Ac Bounds on eigenvectors

Suppose in what follows that c D .A; / satisfies Properties 1–5 in the previous
subsection. The two lemmas in this subsection give some preliminary information
about eigenvectors of the associated version of the operator Lc;z , this being the zD r
version of the operator that is depicted in (1-17). The notation is such that rb is used to
denote the covariant derivative of a given b 2 C1.Y I iT �Y ˚S˚ iR/ that is defined
by the Levi-Civita covariant derivative on the iT �Y summand, the covariant derivative
on sections of S that is defined by the Levi-Civita connection with the connection A,
and the exterior derivative on the sections of iR. These lemmas also use k � k2 to
denote the L2–norm on Y .

Lemma A.2 There exists � � 100 and , given c0 � � , there exists �c0 � � with the fol-
lowing significance: Fix z��c0c100 and suppose that cD.A; /2Conn.E/�C1.Y IS/
obeys the .c0; z/ version of Properties 1 and 2 in Section Ab.

� Let bD .b; �; �/ denote an eigenvector of Lc;z . Use � to denote the correspond-
ing eigenvalue. Then krbk2 � �.�C c0z1=2/kbk2 .

� Suppose in addition that c obeys Property 4 in Section Ab and that j�j� c��0 z1=2 .
Fix m > 2c0 . The L2–norm of b over the subset in Y with distance greater than
mz�1=2 from ˛�1.0/ is no greater than �m�1 .

To set the notation for the next lemma suppose that b D .b; �; �/ is a section of
iT �Y ˚S˚ iR. The lemma writes b as b D b0 OaCb? , where b? annihilates v , and
it writes � with respect to the splitting SDE˚EK�1 as �D .�0; �1/. Lemma A.3
also uses .rb?/v and .rA�0/v to denote the directional covariant derivatives along
the vector field v .

Lemma A.3 There exists � � 100, and , given c0 , there exists �c0 � � with the
following significance: Fix z � �c0c100 and let c D .A; / 2 Conn.E/ � C1.Y IS/
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denote a pair that obeys the .c0; z/ version of Properties 1–4 in Section Ab. Suppose
that b D .b; �; �/ is an eigenvector of Lc;z with L2–norm equal to 1, and use � to
denote b’s eigenvalue. Assume that j�j � c��0 z1=2 .

� The L2–norms of b0 , �1 and � are bounded by c�0z�1=2 and the L2–norms of
their covariant derivatives are bounded by �c0 .

� The L2–norms of .rb?/v and .r�0/v are bounded by �c0 C �j�j.

The proofs of Lemmas A.2 and A.3 are given in a moment. A Bochner–Weitzenbock
formula for L2c;r plays the central role in the arguments for these lemmas. To state
this formula, fix z � 1 and let cD .A; / denote a pair in Conn.E/�C1.Y IS/ and
let Lc;z denote the corresponding version of (1-17). The respective iT �Y , S and iR
components of L2c;zb are:

(A-12) � r
�
rbC 2zj j2b� 21=2z1=2.r ��� ��r /

C 2�1=2z1=2..D /���C ���D /CRic.b/;

� D2A�C zŒ. ��� �� / � cl. ���C ��� / �� 23=2z1=2hb;r i

� 21=2z1=2.cl.b/C�/D ;

� d�d�C 2zj j2�C 2�1=2z1=2..D /��� ��D /.

To explain the notation, Ric. � / denotes the endomorphism of T �Y defined by the Ricci
tensor. Meanwhile, h ; i is defined as follows: Let V ! Y denote any given vector
bundle. Given V , then h ; i is the homomorphism from the bundle T �Y ˝ .V ˝T �Y /
to V that is defined by the Riemannian metric.

Proof of Lemma A.2 To prove the first bullet, take the inner product between b and
L2c;zb and integrate the result over Y . Use (A-11) and (A-12) with an integration by
parts to obtain the asserted bound. Note in this regard that the bounds on j j by c0
and on jr j by c0z1=2 are needed.

To prepare the stage for the proof of the second bullet, let c 2 Conn.E/�C1.Y IS/
denote any given element. What is written in (A-12) can be depicted schematically as

(A-13) L2c;zbDr
�
rbC 2zbC e.b/;

where the endomorphism e obeys jej� c0.jBAjCz1=2jr jCc0/. If b is an eigenvector
of Lc;z with eigenvalue �, then (A-13) leads to the inequality

(A-14) d�d jbjC 2zjbj � jejjbj � �2jbj:
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Now suppose that b is as described in Lemma A.2’s second bullet. The assumption that
�� c�10 z1=2 and what is said in Properties 1, 2 and 4 in Section Ab have the following
consequence: the inequality in (A-14) implies the more straightforward inequality

(A-15) d�d jbjC zjbj � 0

at points with distance c0z�1=2 or more from ˛�1.0/. To exploit this inequality, let
�˛. � / denote for a moment the function dist. � ; ˛�1.0//. Given m � 2c0 , convolve the
function �.2� 2m�1z1=2�˛. � // with a suitably chosen smoothing kernel to construct
a nonnegative function on Y with the following properties: Let gm denote this function.
Then gm D 1 where the distance to ˛�1.0/ is greater than mz�1=2 and gm D 0 where
the distance to Y is less than 1

2
mz�1=2 . Furthermore, jdgm j � c0m�1z1=2 . Multiply

both sides of (A-15) by g2m jbj and integrate by parts. The resulting inequality implies
the bound zkgmbk2 � c0m�1zkbk2 . Divide both sides of this by z to obtain what is
asserted by Lemma A.2.

Proof of Lemma A.3 The bounds in the second bullet follow from those in the
first from the form of Lc;z . Indeed, the relevant version of the equation Lc;zb D �b

equates .rb?/v and .r�0/v with linear combinations of the following: first, covariant
derivatives of b0 , �1 and � ; second, linear combinations of z1=2b0 , z1=2�1 and z1=2�
times factors of ˛ or its complex conjugate; third, linear combinations of factors of
z1=2b? and z1=2�0 times factors of ˇ or its complex conjugate; finally, components
of �b. This property of Lc;z is directly evident from its depiction in the upcoming
(A-16) and (A-17).

The proof of the first bullet has six steps.

Step 1 The asserted bounds are proved with the help of (A-12). The bounds for � will
use the formula in (A-12) for the iR component of Lc;zb. Those for b0 are obtained
with the help of the formula in (A-12) for the iT �Y component of L2c;zb by projecting
the latter onto the span of Oa . Those for �1 are obtained using the formula in (A-12)
for the S component of Lc;zb by projecting the latter onto the EK�1 summand of S .
In this regard, the projection of the iT �Y component of Lc;zb to the span of Oa can be
written as

(A-16) d�db0C 2zj j2b0� 21=2z1=2..r /�v�� ��.r /v /

C 2�1=2z1=2..D /� cl. Oa/�C �� cl. Oa/D /CR0.rb/Ch Oa;Ric.b/i;

where .r /v denotes the directional covariant derivative along v and where R0
denotes a linear form on T �Y ˝T �Y that is defined by the covariant derivatives of Oa .
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In particular, the latter is bounded in absolute value by c0 . Meanwhile, the projection
of the S component of L2c;zb to the EK�1 summand of S can be written as

(A-17) r�ArA�1C ih Oa; BAi�1C 2z.j˛j2Cjˇj2/�1C cl.B?A /�0� 2
3=2z1=2hb;rˇi

� 21=2z1=2Œ.cl.b/C�/D �1CR1.r�/C r1.�/;

where the notation use B?A to denote BA� Oah Oa; BAi, it uses Œ � �1 to denote the EK�1

component of the given section of S , and it uses R1 and r1 to denote endomorphisms
that depend only on the Riemannian metric.

Step 2 The notation that follows uses � to denote .b0; �1; �/ and it uses r� to denote
the 3–tuple whose first and third entries are db0 and d� , and whose second entry
is rA�1 . Fix a constant mƒ > 8c40 to be determined shortly. Suppose in this step that
the L2–norm of � over the part of Y˘z with distance greater than mƒz�1=2 from the
boundary of Y˘z is less than m�1=4ƒ k�k2 .

Introduce �ƒ to denote the characteristic function for the set of points in Y˘z with
distance at least mƒz�1=2 from the boundary of Y˘z . Meanwhile, use the function �
to construct a smooth, nonnegative function which is 1 where the distance to Y �Y˘z is
less than 2mƒz�1=2 and zero where the distance to this set is greater than 4mƒz�1=2 .
Use �ƒ to denote this function. The function �ƒ can and should be constructed so
that its differential obeys jd�ƒj � 16m�1ƒ z1=2 . Note that jd�ƒj has support where
�ƒ is equal to 1.

Take the L2 inner product of the components of �2ƒ� with the relevant parts of the
eigenvalue equation L2c;zb D �b. Use the third bullet of (A-12), (A-16) and (A-17)
with an integration by parts to derive the inequality

(A-18) kr.�ƒ�/k22 � c0�
2
k�ƒ�k

2
2C c0m

�2
ƒ zk�ƒ�k22

C c0..c�100 zC c0/k�ƒ�k22C c60z1=2k�ƒ�k2kbk2Ckbk22/:

The rest of this step explains how the various terms in this inequality come about.

The term kr.�ƒ�/k22 on the left-hand side and the term c0m
�2
ƒ zk�ƒ�k22 on the right-

hand side arise from the integration by parts that rewrites the L2 inner product between
�2ƒ� and r�r� as the square of the L2–norm of r.�ƒ�/ and a term with derivatives
of �ƒ . The former accounts for the term on the left-hand side of (A-18) and the latter
accounts for the appearance of c0m�2ƒ zk�ƒ�k22 on the right-hand side of (A-18). These
two terms with the term c0kbk

2
2 on the right-hand side of (A-18) also account for

the L2 inner product between �2ƒ� and the R0.rb/ and R1.rb/ terms in (A-12)
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and (A-13). The term �2k�ƒ�k
2
2 comes from the L2 inner product between �2ƒ�

and �� .

The terms .c�100 zC c0/k�ƒ�k22 and c60z1=2k�ƒ�k2kbk2 and kbk22 on the right-hand
side of (A-18) account for the L2 inner product between components of �2ƒ� and the
various terms in the third bullet of (A-12), (A-16) and (A-17) that lack covariant deriva-
tives of components of � . To elaborate, there are, first of all, the terms that have 2zj j2

multiplying � in (A-12) and b0 in (A-16). These are discarded when writing (A-18)
as they contribute nonpositive terms to the right-hand side of (A-18). There is also a
nonpositive contribution to the right-hand side of (A-18) from the 2z.j˛j2Cjˇj2/�1
term in (A-17) and from ih Oa; BAi�1 . Properties 1 and 2 are used to rewrite this last
term as z.1� j˛j2/�1 plus a remainder term that is bounded by .c�100 zC c0/j�1j. The
remainder term is accounted for by a part of the .c�100 zC c0/k�ƒ�k22 term on the
right-hand side of (A-18).

The other terms without covariant derivatives of � in the third bullet of (A-12), (A-16)
and (A-17) are bounded by either

(A-19) c0jŒDA �1jj�j or c0
�
jB?A jC j.r /v jC jrˇjC jŒDA �0jC 1

�
jbj:

With (A-19) understood, what follows is a consequence of Properties 1 and 2: The terms
without covariant derivatives of � that are bounded by c0jŒDA �1jj�j are accounted
for by the term .c�100 zC c0/k�ƒ�k22 on the right-hand side of (A-18). Meanwhile, the
terms without covariant derivatives of � that are bounded by the right-most expression
in (A-19) are accounted for by the term c60z1=2k�ƒ�k2kbk2Ckbk22/ in (A-18). Note
in this regard that Properties 1 and 2 imply the bound j.r /v j � c0c60 . This is stated
explicitly with regards to .rˇ/v ; and .rA˛/v j � c0c60 because ŒDA �0 is a sum of
i.rA˛/v and linear combinations of covariant derivatives of ˇ .

Step 3 Fix mƒ D 100c40 and use the assumption k�ƒ�k2 � m
�1=4
ƒ k�k2 to see that

the right-hand expression in (A-18) is at most c0.�C c�100 z/k�ƒ�k22C ck0 with k � c0 .

Meanwhile, the left-hand side of (A-18) is no less than c0m�2ƒ zk�ƒ�k2 . Indeed, this
follows from a standard Dirichlet eigenvalue inequality given that j�ƒ�j has compact
support in the radius .mƒCc40 /z

�1=2 tubular neighborhood of
S

p2ƒ.y

C
p [y


�
p /. These

upper and lower bounds find k�k22 � c0ck0 z�1 if c0 � c0 and �� c�50 z1=2 . This gives
the first assertion of the first bullet of Lemma A.3.

Step 4 Fix mƒ D 100c40 so as to invoke the conclusions of Step 2. With mƒ fixed,
use � to construct a smooth, nonnegative function on Y which is equal to 1 at distances
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greater than mƒz�1=2 from Y �Y˘z and equal to zero on Y �Y˘z . This function is
denoted by �˘z . The function �˘z can be constructed so that jd�˘zj � 32m

�1
ƒ z1=2 .

Fix a second constant m 2 .c0; c20 /. This step makes the following two assumptions:

(A-20) � The L2–norm of � over the part of Y˘z with distance greater than mƒz�1=2

from the boundary of Y˘z is not less than m�1=4ƒ k�k2 .

� The L2–norm of �˘z� over the part of Y˘z with distance mz�1=2 or more
from the zero locus of ˛ is greater than m�1=4k�˘z�k2 .

Use � once more, now to define a smooth, nonnegative function which is 1 where
the distance to ˛�1.0/ is greater than mz�1=2 and zero where the distance is less
than 1

2
mz�1=2 . Let �m denote this function. Given that m � c20 , what is said by

the first bullet of Property 3 and what is said by item (c) of the second bullet of
Property 3 imply that the function �m can be constructed so that its differential obeys
jd�mj � 16m

�1z1=2 . This bound is assumed in what follows. Introduce �m to denote
the characteristic function for the support of jd�mj and �˘z to denote the characteristic
function for the support of jd�˘zj.

Take the L2 inner product of .�m�˘z/
2� with the eigenvalue equation L2c;zbD �b and

use either the third bullet of (A-12) or (A-16) or (A-17) with an integration by parts
and (A-11) to derive from these integrals the inequality

(A-21) kr.�m�˘z�/k
2
2C

1
2

zk�m�˘z�k
2
2

� c0�
2
k�m�˘z�k

2
2C c0z.m�2k�m�k22Cm

�2
ƒ k�˘z�k

2
2/

C c0c60z1=2k�m�˘z�k2:

This proof of this inequality invokes Property 4, the bounds for the norms of the
components of BA and DA that are asserted in Property 2 and the bound for jrAˇj
that is asserted by Property 1. As noted previously, these imply that j.r /v j � c0c60 .

To make something of (A-21), use the first bullet in (A-20) to conclude that k�˘z�k2 �

m
1=4
ƒ k�˘z�k2 and then use the second to see that k�˘z�k2 � .mmƒ/

1=4k�m�˘z�k2 .
Use this bound in (A-21) to conclude that

(A-22) 1
4

zk�m�˘z�k
2
2

� c0�
2
k�m�˘z�k

2
2C c0.m

1=4
ƒ m�3=4Cm1=4m

�3=4
ƒ /zk�k22C c0ck0 ;

with k < c0 . By assumption, m � mƒ and so m1=4m
�3=4
ƒ �

1
100

. Meanwhile,
m
1=4
ƒ m�3=4 � 1

100
if m � c0c4=30 . Assume this to be the case. If it is also the case

that �� c�10 z1=2 , then (A-18) finds k�m�˘z�k2 � c0ck00 z�1=2 with k0 � c0 . This last
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bound with (A-20) gives the bound k�k22 by c0ck000 z�1=2 with k00 � c0 if mD c0c4=30

and if �� c�10 z1=2 .

Step 5 This step assumes that the top bullet in (A-20) is satisfied but that the lower
bullet is violated. Use � yet again, this time to construct a smooth, nonnegative function
which is 0 where the distance to ˛�1.0/ is greater than 2mz�1=2 and 1 where the
distance is less than mz�1=2 . Denote this function by �cm . Given that m � c20 , the
function �cm can and should be constructed so that jd�cmj � 32m

�1z1=2 . Use �cm to
denote the characteristic function for the support of d�cm .

Take the L2 inner product of .�cm�˘z/
2� with the two sides of the equation in either the

third bullet of (A-12) or (A-16) or (A-17) and use an integration by parts with (A-11)
to see from these integrals that

(A-23) kr.�cm�˘z�m/k
2
2 � c0.�

2
C c�100 z/k�cm�˘z�k

2
2Cm

�2zk�cm�˘z�k2

Cm�2ƒ zk�˘z�k
2
2C c60z1=2k�cm�˘z�k2:

The problematic terms on the right-hand side of (A-23) are those with k�˘z�k2 and
k�cm�˘z�k2 . The former is dealt with as follows: The top bullet in (A-20) asserts
that k�˘z�k2 � m

1=4
ƒ k�˘z�k2 . Hold on to this for the moment. The triangle in-

equality finds k�˘z�k2 � k�
c
m�˘z�k2 C k.1 � �

c
m/�˘z�k2 , and thus k�˘z�k2 �

k�cm�˘z�k2 Cm
�1=4k�˘z�k2 because the lower bullet in (A-20) is violated. Thus

k�˘z�k2 � 2k�
c
m�˘z�k2 and so the bound k�˘z�k2 � m

1=4
ƒ k�˘z�k2 implies that

k�˘z�k2�2m
1=4
ƒ k�

c
m�˘z�k2 . Meanwhile, the problematic term k�cm�˘z�k2 is bounded

by c0m�1=4k�cm�˘z�k2 because the lower bullet in (A-20) is violated.

Insert the bounds in the preceding paragraph for k�˘z�k2 and k�cm�˘z�k2 in (A-23)
and use the fact that mƒ D 100c40 and mD c0c4=30 to see that

(A-24) kr.�cm�˘z�m/k
2
2 � c0.1C .z

�1�2C c�40 Cm
�5=2/z/k�cm�˘z�mkC c0ck0 ;

with k < c0 . Consider now the left-hand side of (A-24). To this end, let D �
Y˘z denote a transverse disk centered at a point in ˛�1.0/ with radius 2mz�1=2 .
The points in the support of �cm�˘z have distance at most 2mz�1=2 from ˛�1.0/,
and so the Dirichlet inequality implies that the L2–norm of jr.�cm�˘z�m/j over
D is no less than c�10 m�1z1=2 times that of �cm�˘z�m over D . This being the
case, (A-24) has the following consequence: Assume that � � c�10 m�1z1=2 . Then
c�10 m�2zk�cm�˘z�mk

2
2 � c0ck0 . This last bound leads directly to the desired upper

bound on k�k2 .
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Step 6 Steps 2–5 established Lemma A.3’s claim about the L2–norms of � , b0 and �1 .
Granted this claim, take the L2 inner product of both sides of the eigenvalue equation
Lc;zbD�b with � and use the third bullet of (A-12), (A-16) and (A-17) with the bounds
in Properties 1 and 2 to derive the bound kr�k22 � �

2k�k22C c0ck0 .zk�k
2
2C 1/ with

k� c0 . This last bound implies what Lemma A.3 asserts about the L2–norm of r� .

Ad The vortex operator

This subsection constitutes a digression to supply various observations that are used
subsequently to say more about eigenvectors of Lc;z near the zero locus of ˛ . The
discussion here is given in four parts.

Part 1 Assume in what follows that .A;  D .˛; ˇ// obeys the constraints given
in Section Ab. Fix a point p 2 Y on the zero locus of ˛ in Y˘z or on one of the
curves from the set

S
p2ƒ.y


C
p [ y


�
p / in a component of Y �Y˘z that contains zeros

of ˛ . In the former case, set c1 D 20c0 and in the latter case, set c1 D c40 . Fix an
isometric, C–linear identification between Ker. Oa/jp and C . With this identification
understood, let 'z denote the map from C to Y that is obtained by composing first
multiplication by z�1=2 and then the metric’s exponential map. Use .Az; ˛z/ to denote
the 'z –pullback of .A; ˛/. Use #z in what follows to denote the .Az; ˛z/ version
of (3-4)’s operator # . Of particular interest is this operator on concentric disks about
the origin in C with radius c1 or less.

The analysis of #z uses the following consequence of Properties 1 and 2 in Section Ab:
The pair .Az; ˛z/ comes close to solving (2-8)’s vortex equations on the radius c1 disk
centered at the origin in C in the sense that

(A-25)
ˇ̌
�FAz C i.1� j˛zj

2/
ˇ̌
Cjx@Az˛zj � c0

�
c�10

ˇ̌
1� j˛zj

2
ˇ̌
C c�100

�
:

The ramifications with regards to #z stem from the fact that the right-most term in (3-6)
is bounded by c0c�10 on a disk about the origin of radius up to 20c1 if z� c100 . The
essential point here is that jx@Az˛zj is relatively small on a large radius disk about the
origin. This suggests in particular that #z#

�
z is uniformly positive in a suitable sense

because the remaining terms in the formula for #z#
�
z have the form of a covariant

Laplacian plus a zero-order, nonnegative term. The constructions that follow are used
to make a precise statement to this effect. These constructions assume that z� �cc100
with �c larger than the versions of �c0 that appear in Lemmas A.2 and A.3.
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Part 2 Suppose that k 2 f0; 1; : : : ; 7g and that ˛ lacks zeros in the open, concentric
annulus in the transverse disk centered at p with respective inner and outer radii
equal to .c1C kc0/z�1=2 and .c1C .k C 3/c0/z�1=2 . Zeros of ˛ on the transverse
disk through p with radius c1z�1=2 correspond via 'z to the zeros of ˛z on the
corresponding radius c1 disk about the origin in C . In any event, use A � C to
denote the concentric annulus with inner radius c1 C .k C 1/c0 and outer radius
c1C .kC 2/c0 .

It is a consequence of Property 4 that j˛zj � 1� c�100 in A. This being the case, there
is an isomorphism over A between '�z E and A�C that maps ˛z to j˛zj with the
latter viewed at any given point as a complex number with zero imaginary part. Let
�� denote the product connection on the trivial line bundle A�C . This isomorphism
pulls back Az as ��Caz , where az is an iR–valued 1–form on A. The second bullet
of Property 1 with Property 4 imply that jazj � c0.c�90 C z�1=2/.

Fix a nonnegative, radial function on C which is equal to 1 where the distance to the
origin is less than c1C

�
kC 4

3

�
c0 and equal to zero where the distance to the origin is

greater than c1C
�
kC 5

3

�
c0 . Choose a function whose derivative is bounded in absolute

value by 10c�10 . Denote the chosen function by �� .

Define a complex hermitian line bundle Ez ! C by identifying it with E on the
radius c1 C

�
k C 5

4

�
c0 disk about the origin in C and with the product bundle on

the complement of the radius c1 C .k C 1/c0 disk about the origin in C . Use the
isomorphism between '�z EjA and A�C to define the necessary clutching function.
A unitary connection, Az� , is defined on Ez by setting Az� D Az on the disk about
the origin in C with radius c1C

�
kC 5

4

�
c0 and by setting Az� D ��C ��az on the

complement of the disk about the origin with radius c1C .kC1/c0 . Use ˛z� to denote
the section of Ez given by ˛ over the radius c1C

�
kC 5

4

�
c0 disk centered at the origin

and given by .1���/C��j˛zj over the complement of the radius c1C .kC1/c0 disk.
The connection Az� is flat and ˛z� has norm 1 and is also Az�–covariantly constant on
the complement of the radius c1C 2

3
c0 disk about the origin in C . The pair .Az�; ˛z�/

also comes close to solving the vortex equations on the whole of C in the sense that
(A-25) still holds.

Part 3 Use n� to denote the integral of i
2�
FAz� over C . This is equal to 1 if the

point p is in Y˘z , but can be greater than 1 if p 2
S

p2ƒ.y

C
p [ y


�
p /. It follows from

(A-25) with Properties 1 and 2 that n� is a positive integer.
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The local Euler number of the zeros of ˛z� sum to n� because ˛z� has norm 1 and is
Az�–covariantly constant on the complement of a compact set in C . The following
lemma says more about these zeros:

Lemma A.4 There exists � > 100 such that if c0 � � and z� �c100 , then n� � �c40 .
Moreover there exists an open set in C with the following three properties:

� The set can be covered by n� disks of radius 4.

� j˛zj � �
�1 on its complement.

� The sum of the local Euler numbers of the zeros of ˛z in each component of this
set is nonzero and positive.

Proof The bound on n� follows from Properties 3 and 4, and the other bullets follow
from Property 5 using Lemma 2.9.

Fix a set in C that obeys the three bullets of Lemma A.4. Denote the set of components
of this set by Zp . Given U 2Zp , use mU 2 f1; 2; : : : ; n�g to denote the sum of the
local Euler numbers of ˛z on U.

Part 4 Use #z� to denote the .Az�; ˛z�/ version of (3-4)’s operator # . The upcoming
Lemma A.5 lists some salient features of #z� . This lemma uses L2.CIC˚Ez/ to
denote the completion of the vector space of smooth and compactly supported sections
of the bundle C � .C˚Ez/ using the norm whose square sends a given compactly
supported section zD .x; �/ to the integral of jzj2 . This norm is denoted by k � k2 . Use
rz to denote .dx;rAz �/. Lemma A.5 uses L21.CIC˚Ez/ to denote the completion
of this same space using the inner product whose square sends the given element z to
the integral over C of jrzj2Cjzj2 . This defining norm for L21.CIC˝Ez/ is denoted
by k � k2;1 .

Lemma A.5 There exists � > 100 such that what follows is true if c0 � � and
z� �c100 :

� The operator #z� extends as a bounded , Fredholm operator from L21.CIC˚Ez/

to L2.CIC˚Ez/ with index equal to n� and with trivial cokernel.

� If z 2 L21.CIC˚Ez/, then k#�z�zk2 � ��1kzk2;1 , and if z is L2–orthogonal
to the kernel of #z� , then k#z�zk � �

�1kzk2;1 .

� Square-integrable elements in the kernel of #z� are smooth and in L21.CIC˚Ez/.
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� If z is an L2.CIC˚Ez/ and in the kernel of #z� , then

jzj � �
X
U2Zp

mU e
�dist. � ;U /=2:

Moreover , if U 2Zp is a component with distance greater than � from the others
and such that mU D 1, then the L2.CIC˚Ez/–kernel of #z� has a nonzero
element with the properties listed below. The list uses zU to denote this element.

(a) jzU j � �e�dist. � ;U /=2kzU k2 .

(b) Any L2.CIC˚Ez/ element in the kernel of #z� can be written as xzUCz0

with x 2C and with z0 such that jz0j �
P
U 02Zp�fU g

mU 0e
�dist. � ;U 0/=2 .

Proof The fact that #z� defines a bounded map from L21.CIC˚Ez/ to L2.CIC˚Ez/

follows from the appearance of the L2–norm of the covariant derivative in the definition
of L21.CIC˚Ez/. To prove it Fredholm, it is necessary to prove that the kernel in
L21.CIC˚Ez/ is finite-dimensional, that the range is closed and that the cokernel
is finite-dimensional. The finite-dimensional kernel and the closed range follow as a
consequence of the Rellich lemma with the verification of the following:

There exists " > 0 and R� 1 such that k#z�zk2 � "kzk2 if the support of z has
compact support in the complement of the radius R disk in C about the origin.

This follows by virtue of the fact that #�z�#z�.x; �/D
��
�@x@C 1

2

�
x;
�
�@Az�

x@Az�C
1
2

�
�
�
,

where Az� is flat, and ˛z� has norm 1 and is also Az�–covariantly constant.

The fact that the range is closed implies that the cokernel is isomorphic to the kernel of
the adjoint. Standard elliptic regularity identifies the latter with the kernel of #�z� . The
fact that the latter is trivial can be seen using the .Az�; ˛z�/ version of (3-6). This is
done by invoking the bounds in (A-25) after commuting covariant derivatives to equate
x@A0@A0 and @Az�

x@Az� C
1
2
C e with jej � c0c�10

�ˇ̌
1� j˛z�j

2
ˇ̌
C 1

�
.

The fact that the dimension of the kernel is n� can be seen by comparing #z� with
the version of # that is defined by a pair .A0; ˛0/ that obeys (2-8)’s vortex equations
and is such that 1 � j˛0j2 is integrable and with integral equal to 2�n� . Such a
comparison can be made by using what is said in Section 2a of [20] to construct a
Œ0; 1�–parametrized path of pairs in Conn.Ez/�C

1.CIEz/ that starts at .Az�; ˛z�/,
ends at such a solution to (2-8) and is such that each member of the family defines a
Fredholm version of # . The construction of such a path amounts to little more than an
exercise with cut-off functions and so no more will be said.
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Granted the first bullet, the assertions of the second bullet are straightforward conse-
quences of two facts, the first being that #z� is Fredholm with trivial cokernel and
the second being (3-6). As for the third bullet, standard elliptic regularity arguments
prove that the elements in the kernel of #z� are smooth. Meanwhile, the fact that the
L2–kernel of #z� coincides with its L21–kernel follows from what was said above
about #�z�#z� where Az� is flat, ˛z� has norm 1 and ˛z� is Az�–covariantly constant.

The assertions of the fourth bullet can be proved using the same sorts of arguments as in
Part 5 from Section 2a in [20]. The modifications to these arguments are straightforward
given that the properties listed in Section Ab imply that .Az�; ˛z�/ looks very much
like a solution to the vortex equations with 1�j˛0j2 integrable and with integral equal
to 2�n� . Note in particular what is said by (A-25). Note that Part 5 of Section 2a
of [20] states a stronger version of what is asserted by the fourth bullet for the version
of # that is defined using just such a solution to the vortex equations. As nothing
fundamentally new is needed for the arguments in the case of #z� , the details of the
proof of the fourth bullet are omitted.

Ae The definition of Ker# and …#

Assume here that c D .A; / from Conn.E/ � C1.Y IS/ obeys Properties 1–5 in
Section Ab as defined with parameters c0 and z, with c0 and z chosen so as to satisfy
the requirements of Lemmas A.2–A.5. Parts 1 and 2 of this subsection use versions
of #z� to construct a complex line bundle over each component of ˛�1.0/ and a
complex vector bundle over the sets that form an open cover of certain components
of
S

p2ƒ.y

C
p [ y


�
p /. This bundle is denoted in each case by Ker# . Part 3 defines a

C–linear homomorphism from the space of sections of K˚E! Y to the space of
sections of each version of Ker# , this denoted by …#. � /. Part 4 defines a norm on the
direct sum of these spaces of sections. This map is used to say more about eigenvectors
of the operator Lc;z .

The construction of the associated complex line bundle and the associated homomor-
phism from C1.Y IK˚E/ for a component of ˛�1.0/ in Y˘z mimics constructions in
Section 3 of [20]. The construction for a curve in

S
p2ƒ.y


C
p [y


�
p / mimics constructions

in Section 5 of [20]. The definition of the norm also mimics what is done in Section 5
of [20].

Part 1 Use 
 to denote a component of the zero locus of ˛ in Y˘z . Given p 2 
 ,
define the pair .Az�; ˛z�/ on C . The L2–kernel of the corresponding operator #z�
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is 1–dimensional since the integral of i
2�
F yA over the radius c1z�1=2 transverse disk

with center p is equal to 1. (The number c1 is defined in Part 1 of Section Ad; it is
20c0 for this version of 
 .) The association to each point in 
 of the L2–kernel of the
corresponding version of #z� defines a complex line bundle over 
 , this being Ker# .

Part 2 Use 
 now to denote an element in
S

p2ƒ.y

C
p [ y


�
p /. Consider first the case

when there are no zeros of ˛ on the nearby boundary component of Y˘z . The associated
version of Ker# is the zero-dimensional bundle if the corresponding component of
Y � Y˘z has no zeros of ˛ . Suppose next that this component has zeros of ˛ . It
follows from item (c) of the second bullet of Property 3 that any given p 2 
 version
of the pair .Az�; ˛z�/ can be defined using k D 0. This understood, let n� denote the
integral over C of i

2�
times the curvature 2–form of Az� . This positive integer does

not depend on the chosen point in 
 . Lemma A.5 asserts that any given p 2 
 version
of #z� has L2–kernel dimension equal to n� . As p varies in 
 , these L2–kernels
define a rank n� complex vector bundle over 
 . This is the bundle Ker# .

Suppose next that 
 2
S

p2ƒ.y

C
p [ y


�
p / and that the nearby boundary component

of Y˘z has zeros of ˛ . Fix p 2 
 and let D0� Y denote for the moment the transverse
disk centered at p with radius .c40 C10c0/z�1=2 . Granted that c0 � c0 , use the second
bullet of Property 3 with the formula for v in (1-3) to find k 2 f0; 1; : : : ; 7g such
that the following is true: the concentric, closed annulus in D0 with inner radius
.c40Ckc0/z�1=2 and with outer radius .c40C.kC3/c0/z

�1=2 has no zeros of ˛ . To say
more about why this is so, suppose that � is a connected, closed segment of an integral
curve of v with each endpoint having distance either c40z�1=2 or .c40 C 10c0/z�1=2

from 
 . The formula in (1-3) implies that the � angle changes monotonically on �
with total change being much less than 2� if cv > c0 .

If p 2 
 and if k 2 f0; 1; : : : ; 7g and there are no zeros of ˛ in the transverse disk
centered at p with distance from p between .c40Ckc0/z�1=2 and .c40C.kC3/c0/z

�1=2 ,
then such is the case for any transverse disk centered at all points in some open
neighborhood of p in 
 . This being the case, 
 can be written as the union of 8 open
sets, f
kgkD0;1;:::;7 , where the 
k corresponds to the subset of points in 
 where k
has the property just described. The formula for v in (1-3) implies that 
k will have at
most two components.

Fix k 2 f0; : : : ; 7g and p 2 
k . Use the chosen value for k to construct the pair
.Az�; ˛z�/ and the operator #z� . The association to a point p 2 
k of the corresponding

Geometry & Topology, Volume 24 (2020)



HFD HM , IV 3375

L2–kernel of #z� defines a finite-rank, complex vector bundle over 
k . This bundle
is Ker# .

Part 3 Let 
� denote either a component in Y˘z of the zero locus of ˛ or else a
given 
 2

S
p2ƒ.y


C
p [ y


�
p / and k 2 f0; : : : ; 7g version of 
k . The associated C–linear

map …# W C1.Y IK ˚E/! C1.
�IKer#/ is defined as follows: Fix p 2 
� and
reintroduce the map 'z and the function �� from Part 2 of Section Ad that is used to
define the corresponding pair .Az�; ˛z�/. If f0 is a section of K˚E , then ��'�z .f0/
defines an element in C1.CIC˚Ez�/ with compact support. The L2–orthogonal
projection of ��'�z .f0/ to the L2–kernel of #z� is the value of the section …#.f0/
at p .

Introduce ‚� to denote the set whose elements are the components of ˛ ’s zero locus
in Y˘z and the various 
 2

S
p2ƒ.y


C
p [ y


�
p / and k 2 f0; 1; : : : ; 7g version of 
k with

it understood in the latter case that 
 D 
kD0 and 
k D ∅ for k > 0 if the nearby
boundary component of Y˘z lacks zeros of ˛ . The map …# is viewed in what follows
as a C–linear map from C1.Y IK˚E/ to

L

�2‚�

C1.
�IKer#/.

Part 4 In this last part of the subsection, we define a version of the L2–norm onL

�2‚�

C1.
�IKer#/. To this end, let q denote an element in this vector space. The
corresponding norm is denoted by kqk2 . The definition that follows writes a given

� 2‚� component of q as q
� and it writes the integral over 
� of jq
� j

2 as kq
�k
2
2 .

Granted this notation, kqk22 D
P

�2‚�

kq
�k
2
2 .

Af Rewriting L. � /

What follows in this subsection is used subsequently to bring what is said by Sections
Ad and Ae into the Lc;z story. It is necessary to start by introducing some new notation.
The annihilator of v in T �Y is defined to be the 2–dimensional subbundle of T �Y
that is orthogonal to the 1–form Oa . This subbundle is dual to Ker. Oa/. The almost
complex structure J splits its complexification as K˚K with it understood that K
annihilates the �i eigenbundle of J ’s action on the complexification of the kernel
of Oa .

Introduce IC to denote the product bundle Y �C . Write the complexification of the
direct sum of the line R Oa � T �Y with IR as IC ˚ xIC with it understood that the
projection to the IC factor of a point .b0 Oa; �/ 2R Oa˚ IR is �b0C i� .
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Introduce V0 to denote K˚E and V1 to denote IC ˚EK
�1 . Define an R–linear

isomorphism from iT �Y ˚S˚iIR to V0˚V1 as follows: Let .b; �; �/ denote a given
point in iT �Y ˚S˚ iIR . Write b as b0 OaC b? and use q to denote the orthogonal
projection of b? to the subbundle K of the complexification of the annihilator of v .
Use p to denote .�b0C i�/ Write � as .�0; �1/ using the identification of S with
E˚EK�1 . The desired isomorphism sends .b; �; �/ to ..q ; �0/; .p; �1// 2 V0˚V1 .
This isomorphism is used in what follows to write any given section of iT �Y ˚R˚iIR

as a section of V0˚V1 and vice versa.

To continue setting notation, suppose that q is a section of K . Use @Kq to denote the
projection of the covariant derivative of q to the K˝K summand in K˝ .T �Y /C .
Meanwhile, use .rq/v to denote the corresponding projection to the K˝ .C Oa/ sum-
mand. When p denotes a section of IC , use x@Kp and .rp/v to denote the respective
projections of dp to the K and C Oa summands of .T �Y /C . When �D .�0; �1/ denotes
a section of SDE˚EK�1 , write the directional covariant derivatives of �0 and �1
along v as .rA�0/v and .rA�1/v , write the K part of the covariant derivative of �0
as x@KA �0 and write the K part of the covariant derivative of �1 as @KA �1 .

With this notation understood, the operator Lc;v can be viewed as an operator mapping
C1.Y IV0˚V1/ to itself in the manner of (3.13) and (3.14) in [20]. Viewed in this
light, the operator is denoted by LV . Let f denote a given section of C1.Y IV0˚V1/.
To write LV f, first write the V0 D K˚E component of f as .q ; �0/ and the V1 D

IC˚EK
�1 component as .p; �1/. The K and E summands of the V0 component

of LV f are

(A-26) � i.rq/v � 2i
�
�x@KpC 1p

2
z1=2 x̨�1

�
�
p
2 iz1=2x�0ˇC t0q q ,

� i.rA�0/v � 2i
�
�x@KA �1C

1p
2

z1=2˛p
�
�
p
2 iz1=2xqˇC t0��1 ;

and the respective IC and K�1E summands of the V1 component of LV f are

(A-27) � �i.rp/v C 2i
�
x@Kq C 1p

2
z1=2 x̨�0

�
�
p
2 iz1=2x�1ˇC t1q q C t1pp ,

� �i.rA�1/v C 2i
�
x@KA �0C

1p
2

z1=2˛q
�
C
p
2 iz1=2xpˇC t1��0 .

Here, each t�� denotes an R–linear homomorphism between summands of V0˚V1
that depends only on the metric and has norm bounded by c0 .

The description of the V1 component of LV f given in (A-27) proves sufficient for what
is to come. The description in (A-26) of the V0 component requires some additional
rewriting. To begin this task, use 
 now to denote a small length open segment of ˛ ’s
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zero locus in Y˘z or a curve from
S

p2ƒ.y

C
p [ y


�
p / whose corresponding component

of Y �Y˘z has a zero of ˛ . Fix a point p 2 
 and use the coordinates from Part 4 of
Section Aa to parametrize a neighborhood of 
 in Y . This neighborhood is denoted
for now by T . Nothing is lost by taking the t D 0 point to be the value of 
 ’s affine
parameter at p . The segment 
 is assumed in what follows to be parametrized by
t 2 .��; �/ with � a constant that will be specified in the applications to come. This
constant � in any event obeys � 2 .c0z�1=2; c�10 /.

Each constant t slice of .��; �/ is the intersection between the transverse disk through
the corresponding point in 
 and the tubular neighborhood of 
 . An identification
of EjT with E ’s restriction to the t D 0 slice of T writes the directional covariant
derivative along @t of A as .rA/@t D @t C aA0 where aA0 is an iR–valued function
on T . With an identification of this sort chosen, then the terms .rq/v and .rA�0/v in
(A-26) can be written using (A-6) as

(A-28) �
@
@t

qC2i.�.z�x
 /C�.xz�xx
 // @@z q�2i.�.xz�xx
 /Cx�.z�x
 // @@xz qCrq dq ,

�
@
@t
�0C aA0�0C 2i.�.z� x
 /C�.xz� xx
 //@A�0

� 2i.�.xz� xx
 /C x�.z� x
 //x@A�0C r� � rAq ;

where the notation is such that @A is the covariant version of @
@z

and x@A is the covariant
version of @

@xz
. What are denoted by rq and r� obey jrq j C jr�j � c0jzj.z�1=2C jzj/.

Meanwhile, the terms just to the right of .rq/v and .rA�0/v in (A-26) can be written
as

(A-29) � �2i
�
�x@KpC 1p

2
z1=2 x̨�1

�
D�2i

�
�x@pC 1p

2
z1=2 x̨�1

�
C eq � rp ,

� �2i
�
�@KA �1C

1p
2

z1=2˛p
�
D�2i

�
�@A�1C

1p
2

z1=2˛p
�
C e� � rA�1 ,

where jeq jC je�j � c0jzj2 . The remaining terms in (A-26) can be written as

(A-30) � �
p
2 iz1=2x�0ˇC 2�q C 2�xq Cw � q ,

� �
p
2 iz1=2xqˇC t0��1 ,

where jwj � c0jzj and t0� � c0 .

Ag The operator LV and …#

The next lemma hints at the role played by …# as it talks about the …# of the V0 part of
an eigenvector of LV . This lemma and subsequent discussions abuse notation to some
extent by using …# to denote two maps to

L

�2‚�

Ker# . The first is Section Ae’s map
from C1.Y IV0/ and the second is the map from C1.Y IV0˚V1/ that is obtained
from Section Ae’s map by first projecting to the V0 summand.
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Lemma A.6 There exists � � 1 and , given c0 � � , there exists �c0 � � with the fol-
lowing significance: Fix z� �c0c100 . Suppose that cD .A; / obeys the corresponding
version of Properties 1–5 in Section Ab. The assumptions of Lemmas A.2–A.5 are
satisfied , and , this understood , let f denote an eigenvector of the operator LV with
eigenvalue bounded in absolute value by c��0 z1=2 . Then k…# fk2 � .1� �c�10 /kfk2 .

Proof Choose c0 and z so that Lemmas A.2–A.5 can be invoked. Write f as .f0; f1/.
Lemma A.3 finds kf1k2 � c0ck0 z�1=2kfk2 with k � c0 , so f0 accounts for most of the
L2–norm of f. Meanwhile, the second bullet of Lemma A.2 asserts that the L2–norm
of f on the set of points with distance 2c0z�1=2 or more from ˛�1.0/ is bounded by
c0c�10 kfk2 . As a consequence, the bulk of the L2–norm of f0 is accounted for by
its L2–norm on the radius 2c�10 z�1=2 tubular neighborhood of ˛ ’s zero locus. The
contribution to the L2–norm from this part of Y is analyzed in the four steps that follow.

Step 1 Reintroduce the set ‚� from Part 3 of Section Ae and let 
� denote a given
element in ‚� . This is to say that 
� is either a component of ˛ ’s zero locus in Y˘z

or some 
 2
S

p2ƒ.y

C
p [ y


�
p / and k 2 f0; : : : ; 7g version of 
k . Each p 2 
� has

an associated version of the map 'z and function �� on C as described in Part 2 of
Section Ad. In particular, the assignment to each point in 
� of the L2–norm over C

of the corresponding version of ��'�z .f0/ defines a function on 
� . The second bullet
of Lemma A.2 implies that

(A-31)
X

�2‚�

Z

�

k��'
�
z .f0/k

2
2 � .1� c0c�10 /kfk2:

This inequality is exploited in Step 4.

Step 2 Fix 
� 2‚� . If 
 is a component of ˛ ’s zero locus in Y˘z , set c1D c0 , and if
not, set c1D c40 , this being the definition of c1 that is used in Part 2 of Section Ad to con-
struct the versions of #z� that are associated to the points in 
� . Use T
� in what follows
to denote the union of the radius .c1C10c0/z�1=2 transverse disks with centers on 
� .

Write f0 D .q ; �0/ and assign to each p 2 
� the element ..'�1z /�.��//f0 , this being
a section of V0 over the transverse disk through p whose components are written as
.q�; �0�/. These sections define a smooth section of V0 over T
� and they are viewed
in this way. Use (A-27) with Lemma A.3 and Property 1 to see that

(A-32)


�@Kq�C 1p

2
z1=2 x̨�0�

�

2
2
C


�x@KA �0�C 1p

2
z1=2˛q�

�

2
2
� c0.�

2
Cc�20 z/kfk22

with it understood that the L2–norms on the right-hand side denote integrals over T
� .
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Step 3 Use z� in what follows to denote any given p 2 
 version of ��'�z .f0/. The
operator #z� enters the story by virtue of the fact that

(A-33) #z�z� D z�1=2'�z
�
@Kq�C 1p

2
z1=2 x̨�0�; x@KA �0�C

1p
2

z1=2˛q�
�
C e;

where e has compact support in the radius c1C .kC 2/c0 disk about the origin in C

and jej is no greater than the 'z –pullback of c0.c0z�1jrf0jC c�10 jf0j/. The argument
to prove (A-33) is identical but for notation to that used in [20] to derive the latter’s
(3.14) and (3.15).

Step 4 By definition, …# f at points on 
� is the L2–orthogonal projection of z� to
the L2–kernel of #z� . This understood, write z� D …# fC z?� . As the point in 
�
varies, so z?� varies and, this understood, view kz?� k2 as a function on 
� . Lemma A.5
asserts that k#z�z

?
� k2 � c

�1
0 kz

?
� k2 . This bound with Lemma A.2’s first bullet and

(A-32) and (A-33) imply that

(A-34) .1� c0c�10 /

Z

�

k��'
�
z .f0/k

2
2�

Z

�

k…#.f0/k
2
2 � c0.�

2z�1C c�20 /kfk22

when c0 � c0 and z� cc0 with the latter constant depending only on c0 .

The inequalities in (A-31) and (A-34) imply that k…# fk22 � .1� c0c�10 /kfk22 if it is
the case that c0 > c0 and j�j � c�10 c�10 z1=2 .

Ah The equation …#LV fD �…#f on Y �Y˘z

What is asserted by Lemma A.6 implies that …# f determines f for the most part if f is
an eigenvector of LV whose corresponding eigenvalue is greater than �c�10 c�10 z1=2

but less than c�10 c�10 z1=2 . This fact lies behind the focus in this subsection and the
next on the …# projection of the eigenvalue equation LV fD �f. By way of a look at
what is to come, (A-26) with (A-28)–(A-30) are used here to rewrite a given 
� 2‚�
component of the projected equation …#.LV f/D �…# f as

(A-35) i
2
@t .…# f/CR �…# fC e.f/D �…# f;

where R is an R–linear section of the bundle of endomorphisms of Ker# j
� and where
e is an R–linear functional of f that has small norm when f has L2–norm equal to 1.
An equation of this sort appears because the …# –image of the right-hand side of (A-29)
at any given t 2
� can be written schematically as #�zt zCr, where z depends on .p; �1/
and r is small in a suitable sense. Meanwhile, #�zt z projects to 0 in Ker# jt and so the
lack of an a priori small bound for the norm of #�zt z is of no concern.

Geometry & Topology, Volume 24 (2020)
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This subsection uses (A-26) with (A-28)–(A-30) to say more about (A-35) when the
given element 
� 2 ‚� is some 
 2

S
p2ƒ.y


C
p [ y


�
p / and k 2 f0; 1; : : : ; 7g version

of 
k . The salient points are summarized by Lemma A.7. The first two parts of this
subsection set up the background for Lemma A.7; the third part contains the lemma
and its proof.

Part 1 To set the notation for what is to come, introduce �˘ and �c˘ to denote the
larger of the respective versions of � and �c0 that are supplied by Lemmas A.2–A.6.
Fix c0 � �˘ and z� �c˘c100 for use in Section Ab. Let .A; D .˛; ˇ// denote a pair
that satisfies Properties 1–5 in Section Ab using the given values of c0 and z. Define
the set ‚� as in Section Ae, and focus attention on a given element in ‚� that has the
form 
k with 
 2

S
p2ƒ.y


C
p [ y


�
p / and integer k 2 f0; : : : ; 7g. If this element is the

whole of 
 , write 
 as the union of two open sets of length 3
4
`
 with distance 1

2
`


between their respective midpoints. These sets are denoted in what follows by 
C
and 
� . Introduce 
� to denote 
C or 
k if 
k D 
 and to denote 
k if 
k ¤ 
 .

Let T � Y denote the radius c�10 tubular neighborhood of 
 with radius chosen so
as to use 
 ’s version of the coordinates from Part 4 of Section Aa for T with � and
� constant and real, and with � greater than j�j. To spare notation, suppose that the
t D 0 point is in 
� . Use T� � T to denote the set of points with coordinate t 2 
�
and jzj � 2c4v . Fix once and for all an isomorphism between E ’s restriction to the
transverse disk in T through the t D 0 point and the product bundle over this same
disk. Parallel transport along the constant z 2C slices of T� from the t D 0 transverse
disk defines an isomorphism between EjT� and T� �C . This isomorphism writes A
on T� as

(A-36) AD �0C
1
2
.A dxz� xA dz/

with A being a C–valued function on T� . This isomorphism makes ˛ a C–valued
function.

Part 2 Given t 2 
� , use #zt to denote the zD r version of Section Ad’s operator #z�

that is defined by the restriction of .A; ˛/ to the transverse disk through t . The
isomorphism between EjT� and T� � C writes the family f#zt gt2
� as a smooth,
1–parameter family of operators on C and it identifies the bundle Ker# j
� with a
subbundle of the product bundle 
��C1.CIC˚C/. In particular, this isomorphism
writes any given section of Ker# over 
� as a map from 
� to C1.CIC˚C/. Viewed
in this way, the L2–orthogonal projection on L2.CIC ˚ C/ induces a covariant
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derivative on sections of Ker# j
� as follows: Let t 7! � D .xt ; �t / denote a smooth
map from 
� to C1.CIC ˚C/ such that � at each t 2 
� is a square-integrable
element in the kernel of #zt . The covariant derivative of this section is denoted by D�

and it is defined at any given t 2 # by the rule

(A-37) D� D
d

dt
�C#�zt$;

where $ is the square-integrable solution to the equation

(A-38) #zt#
�
zt$ C

�
@

@t
#zt

�
� D 0:

Note in this regard that @
@t
#zt is an endomorphism of the product bundle C� .C˚C/

whose coefficients are defined by the t –derivative of the function A and the correspond-
ing covariant derivative of ˛ on the union of the radius .c4v C 10cv/z�1=2 transverse
disks in T� with centers at the points in 
� . This covariant derivative on Ker# j
� is
metric compatible with it understood that the metric on this bundle is that induced by
the L2 inner product on the space of square-integrable maps from C to C˚C .

Let m denote the rank of Ker# j
� , this being the dimension of the L2–kernel of any
t 2 
� version of #zt . Fix an L2–orthonormal basis for Ker# j
� at t D 0. Parallel
transport this basis along 
� using the connection defined by (A-37) and (A-38) to
define an isomorphism from Ker# j
� to 
� �Cm . This isomorphism is used in the
upcoming Lemma A.7 to view a section of Ker# j
� as a map from 
� to Cm .

Part 3 The stage is now set for Lemma A.7:

Lemma A.7 There exists � � �˘ and , given c0 � � , there exists �c0 � �c˘ with the
following significance: Fix c0 � � and z� �c0c100 . Suppose that cD .A; / obeys the
corresponding version of Properties 1–5 in Section Ab. Let f denote an eigenvector
of the operator LV with eigenvalue bounded in absolute value by c��0 z1=2 . Define 
�
as in Part 1 and view both …# f and …#.LV f/ along 
� as maps from 
� to Cm as
instructed in Part 2. Viewed in this way , the equation …#.LV f/D �…# f has the form

i

2

d

dt
.…# f/C r.f/D �…# f

with the endomorphism r being an R–linear functional of f that obeys
R

�
jr.f/j �

c�0kfk2 .

Proof Use h � ; � i to denote the Ker# j
� inner product at a given t 2 
� . With
Ker# j
� viewed as 
��Cm , this is just the Hermitian inner product on Cm ; and with
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Ker# j
� viewed as a subbundle of 
� �C1.CIC˚C/, this same Hermitian inner
product is the L2 inner product on the subspace of square-integrable maps from C to
C˚C . Let � denote a covariantly constant section of Ker# j
� with unit L2–norm.
Use the two views of h � ; � i with (A-26) and (A-28)–(A-30) to write h�;…#LV fi as
i
2
d
dt
h�;…# fiC rV .F/C r!.f/ where the function t 7! rV .f/jt comes from the inner

product of � with the …# –images of all but the term @
@t
f0 D

�
@
@t

q ; @
@t
�1
�

in (A-28),
and with the …# –images of all of the terms in (A-29) and (A-30). Meanwhile, the
function t 7! r!.f/jt is the right-most term in the identity

(A-39) i

2

Z
C
����'

�
z

�
@

@t
f0

�
D
i

2

@

@t

Z
C
����'

�
z .f0/�

i

2

Z
C

�
@

@t
�
��
��'

�
z .f0/:

The term rV .f/ is such that

(A-40)
Z

�

�Z
C
jrV .f/j

2

�
� c0ck0 kfk

2
2

with k � c0 . This can be seen by using the first bullet of Lemma A.2 to bound
the contributions from (A-28), by using (A-33) with Lemma A.3 to bound those
from (A-29), and by using Property 1 in Section Ab to bound the contribution to the
terms with ˇ in (A-30). Note with regards to (A-28) that the function aA0 is zero
because there is no dt component on the right-hand side of (A-36).

To obtain the desired bound on the term r!.f/, use (A-37) to rewrite this term as

(A-41) i

2

Z
C
.#�zt$/��'

�
z .f0/:

Use the Minkowski inequality to bound (A-41) by the product of the L2–norm of #�zt$
on C and that of ��'�r .f0/. The latter norm is bounded by a uniform multiple of the
L2–norm of f over the transverse disk centered at the given point on 
� . Use (A-38)
with Lemma A.6 to bound the L2–norm on C of #�zt$ by a multiple of the L2–norm
on C of

ˇ̌
@
@t
#zt

ˇ̌
j�j. This in turn is bounded by

(A-42) c0 sup
f.t;z/2
��CWjzj<c40C10c0g

�
z�1=2

ˇ̌̌
@

@t
A
ˇ̌̌
C

ˇ̌̌
@

@t
˛
ˇ̌̌�

because � has unit L2–norm.

To say something about the size of (A-42), note first that @
@t
˛ is the covariant derivative

of ˛ along the coordinate vector field @
@t

because Part 1’s isomorphism between E
over T� writes A as depicted in (A-36). Meanwhile this covariant derivative differs
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from .rA˛/v by at most c0c40z�1=2jrA˛j because the vector fields @
@t

and v differ
on T� by at most c0c40z�1=2 . This being the case, use Properties 1 and 2 in Section Ab
to see that the derivative of ˛ in (A-42) is no greater than c0c60 . Meanwhile, 1

2
@
@t

A

is the dt dxz component of the curvature 2–form of A because of the lack of a term
in (A-36) that is proportional to dt . Use this fact with the aforementioned bound onˇ̌
@
@t
� v

ˇ̌
and Property 2 in Section Ab to see that the term z�1=2

ˇ̌
@
@t

A
ˇ̌

in (A-42) is
likewise no greater than c0c60 .

Ai Lemma A.1 and the equation …#LV fD �…#f

The lemma that follows talks about (A-35) in the case when .A; / is described by
Lemma A.1. This lemma refers to the functions � and � that appear in a given version
of (A-6) for the case when the relevant curve from ‚ lies in Y�ƒ . Choose a coordinate
system of the sort described in Part 4 of Section Aa for each such curve from ‚ with a
bound by c0 on the corresponding versions of j�j and j�j. Such a choice is assumed
implicitly in the lemma.

Lemma A.8 There exists � � 100 and , given cv � � , there exists �cv � � , both
greater than their incarnations in Lemmas A.1–A.6 and with the following additional
property: Fix z� �cv c10v and a pair .A; / 2 Conn.E/�C1.Y IS/ that is described
by Lemma A.1 using the chosen value of cv . Let 
 denote a curve from ‚ in Y�ƒ .
Suppose that � is an eigenvalue of the corresponding version of LV with j�j � c��v z1=2

and let f denote the corresponding eigenvector. Use � to denote the section of the line
bundle Ker# j
! 
 given by .…# f/j
 . There is an isomorphism of Ker# j
 with 
�C

that writes …# f as a map �W 
 ! C and the …# –image along 
 of the eigenvalue
equation LV fD �f as

(A-43) i

2

d

dt
�C ��C�x� D ��C e.f/;

where e.f/ is an R–linear functional of f that has L2–norm bounded by �c�1v kfk2 .

Proof Use (A-28)–(A-30) with the conclusions of Lemmas A.2–A.6 as input for the
arguments that are used in Steps 9 and 10 from Section 2a in [21]. These arguments
with one addition give a proof. Steps 9 and 10 in Section 2a of [21] prove the latter’s
Lemma 2.1, which is the analog of Lemma A.8 for the case where Oa is replaced by a
contact 1–form. The one addition concerns the terms in (A-28) that involve x
 . To say
more about these terms, note first that they appear only when 
 2 Y˘z . The relevant
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vortex solution defines the centered solution in C1 and if .A0; ˛0/ denotes such a
solution, then the L2–kernel of the corresponding version of # is 1–dimensional and
spanned by 1p

�

�
1p
2
.1� j˛0j

2/; @A0˛0
�
. This fact with an integration by parts shows

that the x
 terms contribute only to the e.f/ term in the statement of the lemma.

The next lemma states a stronger version of what is asserted by Lemma A.7 for
cases when .A; / on a given component of Y � .Y�ƒ [ T�ƒ/ is also given by the
constructions in Section Aa using ��D c�4v . To set the stage for the lemma, introduce 

to denote the curve from

S
p2ƒ.y


C
p [y


�
p / in the given component of Y �.Y�ƒ[T�ƒ/.

Assume that the curves in Y�ƒ from ‚ have distance at least .c4v C3c3v /z
�1=2 from 
 .

Use T here to denote the set of points with distance less than .c4v C c3v /z
�1=2 from 
 .

Coordinates for T are given by 
 ’s version of the coordinates from Part 4 of Section Aa
with � and � constant and real with � > j�j.

The definition of .A; / on T refers to a function, �˘˘ , of the radial coordinate
jzj on T . This function is nonnegative, it is equal to 1 where jzj is less than�
c4v �

7
4

c2v
�
z�1=2 , it is equal to zero where jzj is greater than .c4v � c2v /z

�1=2 , and
the norm of its derivative has absolute value bounded by 32c�3v z1=2 . Note in particular
that the function �˘˘ is equal to zero on T \ Y�ƒ . Such a function can be readily
constructed using the function �.

Let m denote a given positive integer. There is a unique solution to (2-8) with (3-1)
equal to m and having the following properties: Write this solution as .Am0; ˛m0/.
Then ˛m0 D j˛m0j.z=jzj/m . Meanwhile, Am0 can be written in terms of the product
connection �0 as Am0D �0�am0m2 .z

�1dz�xz�1dxz/. Note that both jam0j and j˛m0j
are functions only of the radial distance to the origin in C . The mD 1 version of am0 is
denoted by a0 in (A-3). Any given m� 1 version of am0 obeys the analog of the mD 1
bound in (A-4), this being j1�am0j � c0.1�j˛m0j/. The pair .Am0; ˛m0/ defines the
point in the space Cm from Part 1 of Section 3.1 that maps via the coordinates in (3-2)
to the origin in Cm . Let ym and &m denote the .Am0; ˛m0/ versions of the functions
y and & that are described in Section Aa.

Fix an isomorphism between EjT and T �C and use this isomorphism to view A as
a connection on T �C and the component ˛ of  as a complex-valued function on T .
Use this isomorphism with the coordinates from Part 4 of Section Aa to view ˇ as a
complex-valued function also. With this view understood, the connection A is written
as � C aU , where aU is an iR–valued 1–form on T . The 1–form aU , ˛ and ˇ are
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defined as follows:

(A-44)

aU D ��˘˘i2
1=2r�z ymdt �

1
2
m.1��˘˘C�˘˘r�z am0/.z�1dz�xz�1dxz/;

˛U D .1��˘˘.1� r�z j˛m0j//
�
z

jzj

�m
;

ˇU D i�z�1=2�˘˘r�z &m:

Let cmW S1! Cm denote the constant map to the point given by .Am0; ˛m0/. The
upcoming lemma also refers to the .Am0; ˛m0/ version of the linear operator that is
depicted in (3-10).

Lemma A.9 Fix m� 1; there exists � � 100 and , given c0 � � , there exists �c0 � � ,
both greater than their incarnations in Lemmas A.1–A.6 and with the following signifi-
cance: Fix z� �c0c100 . Set cv D c0 and then set �� D c20z�1=2 . Fix a set T�ƒ and then
a set ‚ as described by (A-5) which obeys the first and second bullets of the .z; c0/
version of Property 3.

� Suppose .A; / 2 Conn.E/�C1.Y IS/ is given by the .z; c0; �� D c20z�1=2/
version of (A-7)–(A-10) on Y�ƒ[T�ƒ . Fix a component of Y � .Y�ƒ[T�ƒ/
and suppose that .A; / is given by (A-44) on this component. Assume that
Properties 1, 2, 4 and 5 hold on the rest of Y � .Y�ƒ�T�ƒ/. Then .A; / obeys
Properties 1–5 on the whole of Y .

� Suppose that � is an eigenvalue of the corresponding version of LV with j�j �
c��0 z1=2 and let f denote the corresponding eigenvector. Let 
 denote the
curve from

S
p2ƒ.y


C
p [ y


�
p / in the given component of Y � .Y�ƒ [ T�ƒ/.

Use � to denote the section of the line bundle Ker# j
 ! 
 given by .…# f/j
 .
There is an isomorphism of Ker# j
 with 
 � C that writes …# f as a map
�W 
�!C and the …# –image along 
 of the eigenvalue equation LV fD �f as
� 7! i

2
rt�C .r�R

r1;0h/jcm C e.�/, where e.f/ is an R–linear functional of f

that has L2–norm bounded by �c�10 kfk2 .

Proof The proof of the first bullet is a version of what is done in Sections 2e and 2f
of [15]. The proof of the second bullet is a version of what is done in Steps 9 and 10 in
Section 2a of [21].

B Vortex equation solutions and .A; /

This section of the appendix supplies additional material for the proof of Proposition 2.6.
To give a look ahead, suppose that .A; D .˛; ˇ// is a solution to a given .r; �/
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version of (1-13) with � being a 1–form from � whose P –norm is less than 1. The
replacement of .A; / with a pair made from vortex solutions facilitates the upcoming
analysis of the r–dependence of the spectrum of LV . By way of a reminder, the value
of fs at .A; / requires comparing the spectrum of the .z D r; .A;  // version of
LV with that of a version defined using z D 1. If the z D r version of the operator
LV is defined not by .A; / but by a pair made from vortex solutions, then Lemmas
A.8 and A.9 can used to analyze the spectrum of LV . The inputs from these lemmas
are used in Appendix C to study the spectral flow for the versions of LV along 1–
parameter family that is defined by the value of z and a corresponding z–dependent
pair in Conn.E/�C1.Y IS/ that is built from vortex solutions.

The constructions that follow in this appendix use .A; / to construct a new pair
in Conn.E/ � C1.Y IS/ that is defined on all of Y using solutions to the vortex
equations in (2-8). This new pair is denoted by .A˘;  ˘/. The norm of the difference
between the values of fs as defined using the .z D r; .A;  // version of LV and
using the .zD r; .A˘;  ˘// version of LV is shown to be bounded by an .A; /– and
r–independent constant. It proves convenient to construct the desired pair .A˘;  ˘/ in
two stages. The first stage constructs a pair that is denoted by .A�;  �/. This pair is
defined on most, but not all of Y using solutions to the vortex equations in (2-8). In
particular, the definition does not use vortex solutions near certain curves from the setS

p2ƒ.y

C
p [ y


�
p /. The second stage modifies .A�;  �/ near these curves to obtain the

desired pair .A˘;  ˘/.

Ba The construction of .A�;  �/

This subsection constructs the desired pair .A�;  �/ from data supplied by the given
solution to (1-13). The first four parts of this subsection construct .A�;  �/. The fifth
part of the subsection explains why .A�;  �/ does not depend on the coordinates from
Part 4 of Section Aa that are chosen in Part 2. The sixth and final part of the subsection
constructs a path in Conn.E/�C1.Y IS/ between .A�;  �/ and the given solution
to (1-13).

Part 1 The constructions in Section Aa are used to define .A�;  �/ over most of Y .
These constructions require as input the specification of parameters cv , z and �� . The
parameter cv is chosen in a two-step process as follows: A preliminary step chooses
a parameter cv1 so as to be larger than the various incarnations of the constant �
that are given by Proposition 2.4 and Lemmas A.1–A.9. With cv1 chosen, let �˘
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denote the largest of the various c0 2 Œcv1; 2cv1� versions of the constant �c0 that are
given by these same Lemmas A.1–A.9. Assume that r> 220�˘c10v1 and suppose that
.A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a given element
in � with P –norm smaller than 1. The second step to choosing cv depends specifically
on the form of the zero locus of ˛ and thus on the chosen solution .A; / of (1-13).
The constant cv should be chosen from the interval Œcv1; 2cv1� so as to satisfy certain
conditions that are stated in a moment. These conditions refer to the subset Y˘˘ of Y
that consists of those points with distance at least .c4v � 3c3v /r

�1=2 from each curve in
the set

S
p2ƒ.y


C
p [ y


�
p /.

(B-1) � If a component of ˛ ’s zero locus in Y˘˘ is disjoint from a given boundary
torus of Y˘˘ , then all of its points have distance greater than 6c3v r�1=2 from
this torus.

� If a component of ˛ ’s zero locus in Y˘˘ intersects a boundary torus of Y˘˘ ,
then this intersection point is an endpoint of the component and it is a
transversal intersection. One endpoint of such a component lies where
u < 0 on some boundary component of Y˘˘ and the other where u > 0 on
some boundary component of Y˘˘ . If a given boundary component of Y˘˘
intersects the zero locus of ˛ , then it does so at two points. The distance
between these points is at least 100c2v r�1=2 , and one lies where u < 0 and
the other where u > 0.

Use Proposition 2.4 with the formula for v in (1-3) to see that (B-1) will hold if cv is
chosen from the complement of at most G intervals of length c0 in Œcv1; 2cv1�. These
intervals are determined by ˛ and thus by the chosen .A; /.

Take zD r and �� D c2v r�1=2 to complete the specification of Section Aa’s required
parameters.

Part 2 With the choices just made, use Y�ƒ � Y˘˘ to denote the set of points with
distance at least c4v r�1=2 from each curve in the set

S
p2ƒ.y


C
p [y


�
p /. The constructions

in Section Aa require as additional input the choice of a union of components of Y�Y�ƒ ,
this denoted by T�ƒ . Define T�ƒ as follows: a component of Y �Y�ƒ is in T�ƒ if
and only if the component lacks zeros of ˛ .

Having specified T�ƒ , the next order of business is to specify a set ‚ that consists of
embedded 1–manifolds in Y�ƒ[T�ƒ . These are the components of ˛�1.0/\Y�ƒ . In
particular, ‚ has no curves from

S
p2ƒ.y


C
p [ y


�
p /. The constraint in (B-1) guarantees

that the requirements of bullets two and three of (A-5) and bullets one and two of
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Property 3 of Section Ab are met by the curves in ‚. That such is the case can be seen
using Proposition 2.4 with the formula for v in (1-3).

Having specified the T�ƒ version of ‚, Part 3 of Section Aa introduces a set denoted
by U0 and sets fU
g
2‚ . The collection of fU0g[ fU
g
2‚ is denoted by U. Keep
in mind that the union of the sets from U contains Y�ƒ[T�ƒ . The constructions in
Section Aa require choosing coordinates of the sort described in Part 4 of Section Aa
for each U
 . Make such a choice once and for all.

Section Aa also requires isomorphisms between the various U 2 U versions of EjU
and U �C . Consider first the case of U0 . The chosen lower bound for r implies
that j˛j is nearly 1 on U0 and in particular j˛j> 3

4
. This being the case, there is an

isomorphism between EjU and U �C that sends ˛ to the map from U0 to C given
by j˛j. This is the isomorphism to use for U0 . Consider next the case for U
 with 

a given curve from ‚. The chosen coordinates for U
 supply an isomorphism from
EjU
 to U
 �C that makes ˛ appear as the map from U
 to C given by j˛jz=jzj.
Use this isomorphism for U
 .

Part 3 Section Aa uses the data supplied by Parts 1 and 2 to construct a pair of a con-
nection on E and section of E over U0[

�S

2‚ U


�
. The desired .A�;  �/ is defined

so as to equal this pair from Section Aa over Y�ƒ[T�ƒ . This understood, this part of
the subsection and Part 4 define .A�;  �/ over the components of Y � .Y�ƒ[T�ƒ/.

Reintroduce the set Y˘˘ from Part 1, this being the subset of Y whose points have
distance at least .c4v �3c3v /r

�1=2 from the curves in
S

p2ƒ.y

C
p [y


�
p /. Fix a component

of Y �.Y�ƒ[T�ƒ/ and use T to denote the radius .c4vCc3v /r
�1=2 tubular neighborhood

of the corresponding curve from the set
S

p2ƒ.y

C
p [ y


�
p /. This set T is open and the

given component is an open subset of T with compact closure.

The definition to come of .A�;  �/ on T uses the coordinates from Part 4 of Section Aa
that are defined by T ’s curve from

S
p2ƒ.y


C
p [ y


�
p /. The definition also refers to the

function, �˘˘ , that was introduced in the discussions just prior to Lemma A.9. By
way of a reminder, this is a nonnegative function of the radial coordinate jzj on T that
is equal to 1 where jzj is less than

�
c4v �

7
4

c2v
�
r�1=2 , and equal to zero where jzj is

greater than
�
c4v �

5
4

c2v
�
r�1=2 . The norm of its derivative has absolute value bounded

by 32c�3v r1=2 . This function �˘˘ is equal to 1 on T � .T \Y˘˘/ and it is equal to 0
on T \Y�ƒ .

The definition of .A�;  �/ over T when ˛ lacks zeros on T \Y˘˘ occupies the remain-
der of Part 3. To start the definition in this case, define .A�;  �/ over T � .T \Y˘˘/
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to be .A; /’s restriction to this same subset of T . To define .A�;  �/ on the rest of T ,
use the first bullet of (B-1) and Proposition 2.4 to conclude that all points in T \Y˘˘
have distance at least 2c3v r�1=2 from a zero of ˛ if cv � c0 . This last observation
has two immediate and not unrelated consequences, the first being that T \ Y�ƒ is
contained in Section Aa’s open set U0 . The second consequence comes via Lemma 2.3,
which guarantees that j˛j � 1� e�c2v on T \ Y˘˘ if cv � c0 . Granted these facts,
Part 2’s isomorphism from EjU0 to U0 �C sending ˛ to j˛j extends over T \Y˘˘
using this same rule to identify EjT\Y˘˘ with .T \ Y˘˘/ �C . This isomorphism
depicts A on T \Y˘˘ as a connection on .T \Y˘˘/�C , and, viewed as such, A can
be written as AD �0C aA;U0 , where �0 denotes the product connection and where
aA;U0 is an iR–valued 1–form on T \Y˘˘ . Use the isomorphism to write .˛; ˇ/ as
.j˛j; ˇU0/ with ˇU0 being a section over T \Y˘˘ of the bundle K�1 .

Write  � as .˛�; ˇ�/ with respect to the E˚EK�1 splitting of S . Granted this nota-
tion, use the isomorphism from the preceding paragraph to define .A�;  �D .˛�; ˇ�//
over T \Y˘˘ by declaring

(B-2) A� D �0C�˘˘aA;U0 ; ˛� D .1��˘˘/C�˘˘j˛j and ˇ� D �˘˘ˇU0 :

The definition given in (B-2) smoothly extends .A�;  �/ from U0 to U0[T because
the pair .A�;  �/ on U0 is defined in Section Aa using Part 2’s isomorphism between
EjU0\T and .U0\T /�C as .A� D �0;  � D .1; 0//.

Part 4 This part assumes that ˛ has zeros in T \ Y˘˘ . The definition in this case
also sets .A�;  �/ equal to .A; / on T � .T \Y˘˘/. Four steps are used to define
.A�;  �/ on T \Y˘˘ .

Step 1 To set the stage for the definition on T \Y˘˘ use (B-1), Proposition 2.4 and
the depiction of v in (1-3) to see that ˛ ’s zero locus in the Y˘˘ closure of T \ Y˘˘
consists of two embedded, closed arcs, each with one endpoint on the boundary torus
of the closure of T and the other on Y˘˘ ’s boundary torus in T . Moreover:

(B-3) � The oriented unit tangent vector to each arc differs from v by at most c0r�1=2.

� Each arc has transversal intersections with the level sets of jzj.

� One arc sits where u < 0 and the other where u > 0 and both where
1� 3 cos2 � > 0.

� The distance between any given point in one arc from any given point in
the other is at least 100c2v r�1=2 .
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Each arc from (B-3) extends a curve from the set ‚ into Y�ƒ[.T \Y˘˘/ so as to move
a boundary point on T ’s boundary component of Y�ƒ to T ’s boundary component
of Y˘˘ . Let 
 denote such an extended curve. The open set U
 from Section Aa
likewise extends into T with the same definition as the union of the radius 4c2v r�1=2

transverse disks centered on the extension of 
 . This is an open solid torus with core
circle 
 . The open set U0 also extends into T \Y˘˘ as the complement of the union
of the radius c2v r�1=2 disks centered on the relevant two arcs from (B-3).

Step 2 Granted what is said in Step 1, then Section Aa’s definitions can be used
to extend .A�;  �/ into T \ Y˘˘ . The extended pair over T \ Y˘˘ is denoted by
.A�T ;  �T /. By way of a reminder, the extension over the complement of the radius
3c2v r�1=2 tubular neighborhoods of (B-3)’s arcs is written using the isomorphism of E
with the product C–bundle that sends ˛ to j˛j. Meanwhile, .A�T ;  �T / is written
over the radius 4c2v r�1=2 tubular neighborhood of either of (B-3)’s arcs using the
coordinates from Part 4 of Section Aa and the isomorphism of E with the product
C–bundle that sends ˛ to j˛j. The respective formula on these sets are given below.
These formulas write  �T in two-component form with respect to the splitting of S

as E˚EK�1 . The formulas use �0 to denote the product connection on the product
C–bundle:

(B-4) � A�T D �0 and  �T D .1; 0/.

� A�T D �0C i2
1=2�r�r ydt �

1

2
r�r a0.z�1dz�xz�1dxz/;

 �T D .r�r ˛0; i�r�1=2r�r �/:

By way of comparison, the isomorphism used in (B-4) writes .A; / over the comple-
ment of the radius 3c2v r�1=2 tubular neighborhoods of (B-3)’s arcs and over the radius
4c2v r�1=2 tubular neighborhood of either arc as

(B-5) � AD �0C aA;U0 and  D .j˛j; ˇU0/,

� AD �0C aA;U
 and  D .j˛jz=jzj; ˇU
 /,

where aA;U0 and aA;U
 are iR–valued 1–forms. Keep in mind that

(B-6) aA;U0 D aA;U
 C
1
2
.z�1dz�xz�1dxz/ and ˇU0 D

xz

jzj
ˇU


on the intersection of the respective domains of definition.

The pair .A�T ;  �T / is not the desired extension of .A�;  �/ because it is observedly
not the same as .A; / near the boundary torus in T of Y˘˘ .
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Step 3 Let 
 2‚ denote a component with it understood that 
 extends into Y˘˘ .
Let U 0
 2 U
 denote the radius c2v r�1=2 tubular neighborhood of 
 . This step defines
a smooth map u
 W U
 ! S1 which is used to define

(B-7) aA;
 D aA;U
 �u
�1

 du
 ; ˛
 D j˛ju


z

jzj
and ˇ
 D u
ˇU
 :

The map u
 is constructed so as to obey u
 D 1 on U
 �U 0
 . This being the case,
then the pair .�0CaA;
 ; .˛
 ; ˇ
 // is gauge equivalent to .A; / on U
 and it extends
as .A; / to the whole of U0 .

The definition of u
 requires the introduction of a function �
 which is given on
the Y�ƒ part of U
 by the rule z 7! �.2c�2v r1=2 jzj � 1/. The function �
 on the
Y˘˘ � Y�ƒ part of U
 is the product of the function z 7! �.2c�2v r1=2 jzj � 1/ with
a second nonnegative function. The latter is also constructed using � and it has the
following properties: It is a function of the distance to the nearby component ofS

p2ƒ.y

C
p [ y


�
p /. This second function equals 1 where the distance to these curves is

greater than c4v �
9
4

c2v and it equals 0 where the distance is less than c4v �
11
4

c2v . The
derivative of this second function should have absolute value no greater than 100c�2v r1=2 .
Note in particular that this definition of �
 makes it zero on U
 ’s intersection with a
neighborhood of the boundary of Y˘˘ .

With �
 in hand write aA;U
 as aA;U
 D aA0dt C
1
2
.Adxz � xAdz/ with A being a

C–valued function on C and aA0 being an iR–valued function on C . The map u
 is
defined by the rule

(B-8) u
 D e
yo
 ; where yo
 .t; z/D �


1

2

Z 1

0

.xzA� zxA/j.t;sz/ ds:

By way of explanation, the map u
 is designed in part so that the 1–form a
 annihilates
the radial vector field z @

@z
Cxz @

@xz
where �
 D 1. Note in addition that u
 extends

to the whole of Y as a smooth map to S1 that is equal to 1 on the complement of a
compact set in U
 .

Step 4 The desired pair .A�;  �/ is written below using the isomorphisms of E with
the product bundle that are used in (B-4) and (B-5). The formula over the complement
of the radius 3c2v r�1=2 tubular neighborhoods of (B-3)’s arcs is

(B-9) A� D �0C�˘˘aA;U0 and  � D ..1��˘˘/C�˘˘j˛j; �˘˘ˇU0/:

Meanwhile, A� and �� are written over the radius 4c2v r�1=2 tubular neighborhood of
the extension to Y˘˘\T of an arc 
 2‚ as A�D ��Ca� and  �D .˛�; ˇ�/, where:
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(B-10) � a� D �˘˘aA;
C.1��˘˘/
�
� yU i2

1=2�r�r ydt
�
1
2
.1�� yU C� yU r�r a0/.z�1dz�xz�1dxz/

�
:

� ˛� D .1��˘˘/.1�� yU .1� r�r j˛0j//z=jzjC�˘˘˛
 .

� ˇ� D .1��˘˘/.i�r�1=2� yU r�r &/C�˘˘ˇ
 .

(The function � yU was defined just prior to (A-10) in Section Aa using � and the
transverse coordinate z ; it is �.��1� jzj � 1/.) The formulas in (B-6)–(B-8) guarantee
that (B-9) and (B-10) define a smooth connection on E and section of S over Y \T
because z=jzj is the transition function between the relevant product C–bundles.

Part 5 This part of the subsection explains why .A�;  �/ does not depend on the
choices made in Part 2 of coordinate charts from Part 4 of Section Aa. What follows
is the short explanation: A change in the coordinate chart for any given 
 2 ‚ also
changes the product structure for the bundle E over the corresponding set U
 . The
change in the product structure must be taken into account when comparing versions
of .A�;  �/ that are defined by two different choices from Part 4 of Section Aa. The
changed product structure compensates for the apparent coordinate dependence in the
formula for .A�;  �/. The next two paragraphs say somewhat more about how this
comes about.

Recall that a change in the coordinate chart writes the coordinate z on U
 as u.t/z0

with u being a smooth map from 
 to S1 . To see the effect, consider first the formula
in the second bullet of (B-4) that depicts .A�;  �/ on U 0
 \Y�ƒ . Write the pullback
of the expressions on the right-hand side of the equations in the lower bullet of (B-4)
via the map .t; z0/ 7! .t; z D u.t/z0/ in terms of �0 D �C i

2
u�1 d

dt
u and �0 D u�2�.

Use (A-2) to write y D�2�1=2.1� a0/ and use the formula for & in (A-2) to see that
the .t; z0/ 7! .t; u.t/z0/ pullback of the expression for A�T in the lower bullet of (B-4)
is obtained from the .z0; �0; �0/ version of the expression by subtracting

�
u�1 d

dt
u
�
dt .

Meanwhile, the pullback of the formula for  �T in the lower bullet of (B-4) is obtained
from the .z0; �0; �0/ version by multiplying the latter by u. These changes are precisely
offset by the change in the product structure.

The invariance of (B-10) with respect to coordinate change can be seen by writing
aA;U
 as 1

2
.˛�1rA˛� x̨

�1rA x̨/�
1
2
.z�1dz�xz�1dxz/ so as to compare aA;U
 with

its pullback via the map .t; z0/ 7! .t; u.t/z0/.

Part 6 Part 3 defined various 
 2‚ versions of a map u
 to S1 from the corresponding
Y˘˘ extension of U
 . As noted at the end of Part 3, such a map extends to the whole
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of Y as a smooth map that sends the complement of U
 to 1. Let u denote the product
of these extended maps; this a smooth map from Y to S1 . This part of the subsection
describes a path in Conn.E/�C1.Y IS/ between .A�u�1du; u / and .A�;  �/.
This path is parametrized by � 2 Œ0; 1� with the � D 0 member being .A�u�1du; u /
and the � D 1 member being .A�;  �/. The � 2 Œ0; 1� member of this path is denoted
in what follows by .A�� ;  �� / and  �� is written as .˛�� ; ˇ�� / with respect to the
splitting of S as E˚E�1 . The pair .A�� ;  �� / on Y �Y˘˘ is defined to be .A; /.
The pair .A�� ;  �� / on the Y�ƒ part of U0�

�S

2‚ U


�
is defined using the ˛ 7! j˛j

isomorphism from EjU0 to U0 �C by the rules

(B-11) A�� D �0C .1� �/aA;U0 ; ˛�� D �C .1� �/j˛j and ˇ�� D .1� �/ˇU0 :

Meanwhile, the definition on any given Y˘˘\T part of U0�
�S


2‚ U

�

is obtained
from the formula in (B-9) by replacing �˘˘ with .1��/C��˘˘ . The pair .A�� ;  �� /
on the Y�ƒ part of any given 
 2‚ version of U
 is defined using the ˛ 7! j˛jz=jzj
isomorphism from EjU
 to U
 �C by the rules

(B-12) � A�� D �0C �
�
i2�1=2�r�r ydt �

1
2

r�r a0.z�1dz�xz�1dxz/
�
C .1� �/aA
 ,

� ˛�� D � r�r ˛0C .1� �/˛
 and ˇ�� D .1� �/ˇ
 C � i�r�1=2r�r & .

The definition over any given Y˘˘\T part of U
 is obtained from the formula in (B-10)
by replacing �˘˘ with .1� �/C ��˘˘ and replacing � yU by �� yU .

By way of a parenthetical remark, this path in Conn.E/�C1.Y IS/ does not depend
on the chosen coordinates from Part 4 of Section Aa.

Bb .A�;  �/ and Properties 1–5

The upcoming Lemma B.1 asserts that .A�;  �/ and each � 2 Œ0; 1� member of the
path � 7! .A�� ;  �� / have all five of the properties that are listed in Section Ab. This
lemma is proved using the a priori bounds on the various components of .A; / and
.A�;  �/ that are supplied by Lemma B.2.

Lemma B.1 There exists � > 1 and , given cv � � , there exists �cv � � with the
following significance: Suppose that r � �cv c10v and suppose that .A; D .˛; ˇ// is
a solution to the .r ; �/ version of (1-13) with � a given element in � with P–norm
smaller than 1. Then the corresponding .A�;  �/ satisfies the c0 D cv and z D r
version of Properties 1–5 in Section Ab as do all � 2 Œ0; 1� members of the path
� 7! .A�� ;  �� /.

The proof of this lemma is given in a moment.
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Lemma B.2 talks about various components of .A; / on the Y˘˘ extensions of U0
and the various 
 2 ‚ versions of U
 . To set the stage for this lemma, use the
˛ 7! j˛j isomorphism between EjU0 and U0 � C to write .A; .˛; ˇ// on U0 as
.� C aA;U0 ; .j˛j; ˇU0/. The lemma also uses .aA;U0/v to denote the pairing of the
1–form with v .

With 
 2 ‚ fixed, Lemma B.2 uses the coordinates from Part 4 of Section Aa
for U
 . Lemma B.2 uses the coordinates from Part 4 of Section Aa, the map u

from (B-8) and the ˛ 7! j˛jz=jzj isomorphism between EjU
 and U
 �C to write
.A�u�1
 du
 ; .u
˛; u
ˇ// as .� C aA;
 ; .˛
 ; ˇ
 //, and it writes aA;
 as aA0;
 dt C
1
2
.A
 dxz� xA
 dz/. Lemma B.2 also borrows the functions a0 and ˛0 from (A-3).

Lemma B.2 Fix m � 1. There exists an m–dependent � > 1 and , given cv � � ,
there exists �cv � � with the following significance: Take r� �cv c10v and suppose that
.A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a given element
in � with P –norm smaller than 1. Define .A�;  �/ as instructed in Section Ba. Then:

� r�1=2jaA;U0 jC j.aA;U0/vjC
ˇ̌
1� j˛j

ˇ̌
C r1=2jˇU0 j � c�mv on the Y˘˘ extension

of U0 .

� r�1=2jA
 � r�r A0j C j˛
 � r�r ˛0j � c�mv and jaA0;
 j � �c2v on the part of the
Y˘˘ extension of any given U
 where the distance to

S
p2ƒ.y


C
p [ y


�
p / is greater

than .c4v � 2c2v /r
�1=2 .

The proof of Lemma B.1 assumes that Lemma B.2 is true.

Proof of Lemma B.1 The two steps that follow verify the five properties. These steps
use �c to denote a constant whose value is greater than 1 and depends only on an upper
bound for Lemma B.2’s constant m and cv , but not on the particulars of .A; / nor
on r. This constant can be assumed to increase between subsequent appearances.

Step 1 Given the definition of ‚, what is said in Proposition 2.4 implies Property 3.
The other properties hold where the distance to

S
p2ƒ.y


C
p [ y


�
p / is less than c4v � 2c2v

if they hold for .A; /, which is the case when cv � c0 and r� �c .

The remainder of this step verifies Properties 1, 2, 4 and 5 on U0 �
�S


2‚ U

�
.

Consider first the Y�ƒ part of this set. The inequality asserted by the first bullet of
Property 1 and by the first two bullets of Property 2 follow directly from Lemmas 2.1
and 2.3. Lemma 2.3 also leads directly to Property 4 and Lemma 2.9 to Property 5. To
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verify the remaining parts of Properties 1 and 2, take m� 100 and use Lemma B.2’s
bound jaA;U0 j � c�mv r1=2 and the bound j.aA;U0/vj � c�m with Lemmas 2.1 and 2.3
to see that r�1=2jrA��˛�� j and both j.rA��˛�� /vj and jrA��ˇ�� j are bounded by c0
on the Y�ƒ part of U0 �

�S

2‚ U


�
. The latter set of bounds lead directly to the

bounds on the Y�ƒ part of U0 �
�S


2‚ U

�

that are stated by the second and third
bullets of Property 1 and by the third and fourth bullets of Property 2 on Y�ƒ .

Given (B-9) and its .A�� ;  �� / analog, the arguments from the preceding paragraph
with but one additional comment establish Properties 1, 2, 4 and 5 on the Y˘˘�Y�ƒ part
of U0�

�S

2‚ U


�
. The additional comment concerns the function �˘˘ that appears

in (B-9), this being the fact that j.�˘˘/v � c0c6v on this part of Y˘˘ . Indeed, such a
bound follows because �˘˘ is independent of t and because (1-3) finds

ˇ̌
v � @

@t

ˇ̌
�

c0c4v r�1=2 at all points with distance c4v r�1=2 or less from
S

p2ƒ.y

C
p [ y


�
p /.

Step 2 This step verifies Properties 1, 2, 4 and 5 on any 
 2 ‚ version of U
 . To
start, take m� 100 in the second bullet of Lemma B.2. Its assertions about A
 and ˛

imply directly the first bullet of Property 1 and Properties 4 and 5. Introduce r?A�� to
denote the A�� –covariant derivative along the constant t slices of U
 . This same part
of Lemma B.2 implies that

(B-13) jr
?
A��

.˛
 � r�r ˛0/j � c0c�50v r1=2.1� j˛
 j2/1=2C c0:

Lemma 2.1 and Lemma B.2’s assertions about A
 give the bound jr?A��ˇ
 j � c0 and
they imply that (A-2)’s function & is such that r�1=2jr?A�� .r

�
r &/j � c0 . These bounds

with (B-13) imply part of what is required by the second and third bullets of Property 1
and part of what is required by Property 2. The remaining parts of Properties 1 and 2
follow directly from Lemma B.2’s bound on jaA0;
 j given that the absolute value of the
directional derivative of �˘˘ along v is bounded by c0c6v and that of � yU is bounded
by c0c2v , the latter being a consequence of what is asserted in the first bullet of (B-3).

Proof of Lemma B.2 The proof has four steps. The proof also uses �c to denote a
constant greater than 1 that depends only on a given upper bound for m and cv .

Step 1 This step proves the first bullet of Lemma B.2. The bounds for 1� j˛j and
for r1=2ˇU0 come directly from Lemmas 2.1 and 2.3 as they bound both by e�cv if
cv � c0 and r� �c . To obtain the other bounds, write rA˛ on U0 as d j˛jCaA;U0 j˛j.
Given that aA;U0 j˛j is iR–valued, Lemmas 2.1 and 2.3 imply that jaA;U0 j � e

�cv r1=2

if cv � c0 and r � �c . Meanwhile, these same lemmas together with the vanishing
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of the EK�1 component of DA imply the bound j.aA;U0/vj � e
�cv . These bounds

lead directly to what is asserted by the first bullet.

Step 2 To start the proof of the second bullet of Lemma B.2, use Proposition 2.4 and
Lemma 2.9 to see that

(B-14)
ˇ̌̌̌
j˛j

jr�r ˛0j
� 1

ˇ̌̌̌
� e�cv

on U
 when cv � c0 and r� �c . Keeping this in mind, use the isomorphism between E
over U
 and the product bundle that sends ˛ to j˛jz=jzj to write ˛ over U
 as j˛jz=jzj.
Having done so, (B-14) implies that j˛�r�r ˛0j is bounded by e�cv on U
 . Use the same
isomorphism to write A over U
 as AD�0CaA;U
 , and use the coordinates from Part 4
of Section Aa on U
 to again write aA;U
 as aA;U
 D aA0dt C

1
2
.Adxz� xAdz/. The

bound in (B-14) together with Lemma 2.9 have the following additional consequence:
Write A0 as done in (A-3) using the function a0 . For any given t , the .rr/

�1–pullback
of .A; ˛/jt to the radius 4c2v ball about the origin in C differs from .a0xz�1; ˛0/ in the
C 6–topology by less than c4ve

�cv if cv � c0 and r� �c . Note in this regard that a0xz�1

is smooth near the origin although the notation suggests otherwise. (In any event, the
left-hand inequality in (A-4) implies that a0 is O.jzj2/ near z D 0.)

The function a0 has to be a function of jzj2 because .A0; ˛0/ gives the symmetric
vortex in C1 and ˛0D j˛0jz=jzj. It follows from this that xzA�zxA must be very small.
(The point is that A is very close to a0xz�1 and xz.a0xz�1/ is real.) This understood, the
fact that jzj2a0� .r�1r /�A has small C 6–norm implies that the r�1r –pullback of the
function yO
 in (B-8) from any given constant t slice of U
 has C 6–norm bounded
by c0c4v on the ball of radius 4c2v centered at the origin in C .

The preceding observation about yO
 has the following consequence: Write the 1–form
aA;
 now as aA0;
 dtC 1

2
.A
 dxz�xA
 dz/. For any given t , the .rr/

�1–pullback of the
pair .A
 ; ˛
 /jt to the radius 4c2v ball about the origin in C differs from .a0jzj2; ˛0/
in the C 6–topology by less than c6v if cv � c0 and r� �c . These bounds lead directly
to Lemma B.2’s assertions about A
 and ˛
 .

Step 3 The bound on aA0;
 requires first a bound on aA0;
 on the jzj � r�1=2 part
of U
 . By way of a parenthetical remark, .�0C aA;
 ; .˛
 ; ˇ
 // are used in (B-10)
and (B-12) in lieu of .�0C aA;U
 ; .j˛j; ˇU
 // in part because no bound of the form
jaA0j � c0c2v has been found for the whole of U
 . As explained below, a bound of this
sort does exist on the complement of any given radius tubular neighborhood of 
 and
the latter bound is needed to derive the desired bound for jaA0;
 j.
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To bound jaA0j, use the depiction of A on U
 as AD �0C aA0dt C .Adxz � xAdz/
and that of ˛ as j˛jz=jzj to write the A–covariant derivative of ˛ along @

@t
as

(B-15) .rA˛/@=@t D
�
@

@t
j˛jC aA0j˛j

�
z

jzj
:

Since aA0 is iR–valued, the norm of this directional covariant derivative is greater than
jaA0jj˛j. Meanwhile,

ˇ̌
v � @

@t

ˇ̌
� c0cvr�1=2 on U
 , and as j.rA˛/vj � c0 it follows

from the bound in Lemma 2.1 that jaA0j˛ � c0cv . Thus, jaA0j � c0cvjzj�1 at any
z ¤ 0 point on U
 .

Use d?aA0 to denote the differential of aA0 along the constant t slices of U
 . The
identity in (B-15) is used next to obtain a bound by c0cv.r1=2Cjzj�1/jzj�1 on jd?aA0j.
To get this bound, first write .rA˛/@=@t as .rA˛/v CR � rA˛ , where R is an endo-
morphism with norm bounded by c0r�1=2 and with derivative bounded by c0 . Use the
EK�1 component of the equation DA D 0 to write .rA˛/v as a linear combination
of covariant derivatives of ˇ . Meanwhile, (B-15) finds aA0 D im.˛�1.rA˛/@=@t / and
so

(B-16) jd?aA0j

� c0j˛j
�1
�
j˛j�1jrA˛jj.rA˛/@=@t jC jrRjjrA˛jC jRjjr

2
A˛jCr

2
Aˇj

�
:

The desired bound for jd?aA0j follows from (B-16) and Lemma 2.1.

Step 4 The bounds for jaA0j and jd?aA0j in Step 3 are used first to bound jaA0;
 j on
the jzj � r�1=2 part of U
 under the henceforth implicit assumption that the distance
to
S

p2ƒ.y

C
p [ y


�
p / is greater than c4v � 2c2v . To this end, note first that jaA0;
 j �

jaA0jCj@t yO
 j and so what is needed is a suitable bound on j@t yO
 j. To obtain one, use
(B-8) to see that j@t yO
 j � c0jzjj@tAj. Meanwhile, j@tAj � c0

�
jd?aA0jC

ˇ̌
FA
�
@
@t
; �
�ˇ̌�

,
where FA denotes the curvature 2–form of A. Use the top bullet in (1-13) with the
fact that @

@t
is very close to v to see that

ˇ̌
FA
�
@
@t
; �
�ˇ̌

is bounded by c0r1=2cv on U
 .
What with Step 3’s bound for jd?aA0j, the latter bound implies that j@t yO
 j � c0c2v on
the jzj � r�1=2 part of U
 . This with Step 3’s bound for jaA0j leads directly to the
desired jaA0;
 j � c0c2v bound on the jzj � r�1=2 part of U
 .

To obtain the desired bound for jaA0;
 j on the jzj � r�1=2 part of U
 , fix z with
jzj D r�1=2 and, for any given � 2 Œ0; 4c2v r�1=2�, write

(B-17) aA0;
 j�z D aA0;
 jz �

Z
Œ�r�1=2;1�

@s.aA0;
 jsz/ ds:
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Meanwhile, the function yO
 was chosen specifically so as to guarantee that the 1–form
1
2
.A
 dxz�xA
 dz/ annihilates the radial vector field on C , and this implies the identity

(B-18) @s.aA0;
 jsz/D�FA

�
@

@t
;
@

@jzj

�ˇ̌̌
sz
:

As noted in the preceding paragraph, the norm of the right-hand side of (B-18) is
bounded by c0cvr1=2 . Use this bound for j@s.aA0;
 jsz=jzj/j in (B-17) to obtain the
bound for jaA0;
 j by c0c2v on the jzj � r�1=2 part of U
 when cv � c0 and r� �c .

Bc The difference between fs at .A; / and at .A�;  �/

Both the .A; / and the .A�;  �/ version of L. � /;r might have nontrivial kernel. What
follows first defines what is meant by the norm of the spectral flow difference if this is
the case. The subsequent Proposition B.3 asserts that this difference is bounded by a
purely cv–dependent constant.

Let c0 and c1 denote a given pair in Conn.E/ � C1.Y IS/. Fix z0; z1 � 1 and
introduce L0 and L1 to denote the respective .c0; z0/ and .c1; z1/ versions of L. � / .
The norm of the spectral flow between L0 and L1 is denoted here by jfs1� fs0j and it
is defined as follows: Fix " > 0 and introduce C0" � .Conn.E/�C1.Y IS//� .0;1/
to denote the set of pairs .c 0; z0/ such that c 0 has C 2–distance less than " from c0 and
jz0 � z0j < ". Require in addition that the .c 0; z0/ version of L. � / have trivial kernel.
Define C1" likewise using .c1; z1/. Granted this notation, define

(B-19) jfs1�fs0jD lim
"!0

supfjfs.c 01; z
0
1/�fs.c

0
0; z
0
0/j W .c

0
0; z
0
0/2C0" and .c 01; z

0
1/2C1"g:

Perturbation theory can by used to prove that the lim-sup on the right in (B-19) is finite,
and that it is equal to the norm of the honest spectral flow difference when both the
.c1; z1/ and .c2; z2/ versions of L. � / have trivial kernel. The limit in (B-19) is said in
what follows to be the norm of the difference between the values fs .

Proposition B.3 There exists � � 100, and , given cv � �2 , there exists �c � � with
the following significance: Suppose that r � �cc10v and that � 2 � has P–norm
bounded by 1. Let .A; / denote a solution to the .r; �/ version of (1-13). Use .A; /
as directed in Section Ba to construct the pair .A�;  �/. The norm of the difference
between the values of fs at .A; / and at .A�;  �/ is bounded by � .

Proof The � D 0 point on the path � 7! .A�� ;  �� / is .A � u�1du; u /, where
uW Y !S1 is a homotopically trivial map. This being the case, it is sufficient to exhibit
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an r– and .A; /–independent bound for the absolute value of the difference between
fs at .A�u�1du; u / and at .A�;  �/. Such a bound is derived in the subsequent
four parts of the proof.

Part 1 Suppose that L is a given Hilbert space and that L is an unbounded, self-
adjoint operator on L. Assume that L has pure point spectrum with no accumulation
points and such that each eigenvalue has finite multiplicity. Let e denote a bounded,
self-adjoint operator on L and suppose that fe�g�2Œ0;1� is a real analytic family of
bounded, self-adjoint operators on L with e0D 0 and e1D e . Section 2 of [19] explains
how to label the eigenvalues of each � 2 Œ0; 1� version of LC e by the integers so that
the following is true: Given an integer n, let f�n�g�2Œ0;1� denote the corresponding
1–parameter family of eigenvalues. Then the map from Œ0; 1� to R given by the rule
� 7! �n� is continuous and piecewise real analytic. Moreover, the corresponding 1–
parameter family of eigenvectors varies in a real analytic fashion where �n. � / does. Let
ff.�/g�2Œ0;1� denote a corresponding 1–parameter family of unit-length eigenvectors.
The map � 7! f.�/ can be assumed real analytic on the open subsets in Œ0; 1� where
�n. � / is real analytic. As noted in [19], the derivative of �n. � / where it is real analytic
is given by

(B-20) d

d�
�n� D

D
f.�/;

�
d

d�
e�
�
f.�/

E
L
;

where h ; iL denotes here the inner product on L.

Part 2 Let L denote the Hilbert space L2.Y IV0˚V1/, let L denote the z D r and
.A�0;  �0/ version of the operator LV (from (A-26) and (A-27)) and let LC e denote
the corresponding .A�;  �/ version of this operator. The next lemma implies in part
that what is said in Part 1 can be invoked for this version of L, L and e . This lemma
uses �˘ to denote a number that is greater than the versions of the constant � that
appear in Lemmas A.1–A.8 and B.1–B.2.

Lemma B.4 Fix m � �˘ . There exists an m–dependent � > 1 and , given cv � � ,
there exists �cv � � with the following significance: Suppose that r � �cv c10v and
suppose that .A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a
given element in � with P–norm smaller than 1. Construct the family of operators
fLV ;�g�2Œ0;1� for the path f.A�� ;  �� /g�2Œ0;1� (see Lemma B.1 and Part 1 above). Fix
n 2 Z and let f�n�g�2Œ0;1� denote the corresponding family of eigenvalues. Then
j�n� j D 0 for some � 2 Œ0; 1� only if j�n� 0 j � �c�mv for all � 0 2 Œ0; 1�.

Lemma B.4 is proved in the upcoming Section Bd of this appendix.
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Let �˘ now denote a constant that is greater than the various versions of � that
appear in Lemmas A.2–A.8 and Lemmas B.1–B.2 and B.4. Fix cv and r so that the
assumptions of these lemmas are met. Let � denote the dimension of the span of the
eigenvectors of LV ;1 with eigenvalue between ��˘c�1v and �˘c�1v . It is a consequence
of Lemma B.4 that the norm of the spectral flow difference between .A�0;  �0/ and
.A�;  �/ is no greater than �. This being the case, Proposition B.3 follows if � has
an r– and .A; /–independent bound given a suitable r– and .A; /–independent
choice of m and then cv . A choice for cv that yields such a bound � is derived in
Parts 4 and 5 of the proof. The subsequent Part 3 of the proof supplies two observations
in the form of lemmas that are used in the derivation.

Part 3 To set the stage for the first lemma, use �˘˘ to denote the version of � given
by Proposition 2.4. Fix r� �˘˘ and � 2� with P –norm bounded by 1. Let .A; /
denote a solution to the corresponding .r; �/ version of (1-13). Let 
 � Y denote
a closed, connected segment in ˛ ’s zero locus whose points have distance at least
100�2˘˘r�1=2 from all curves in

S
p2ƒ.y


C
p [ y


�
p /. Use the coordinates from Part 4

of Section Aa to define the functions � and � on 
 and having done so, use L
 to
denote the operator on C1.
 IC/ that is defined by the rule � 7! i

2
d
dt
�C ��C�x� .

This operator defines a function on C1.
 IC/ by the rule � 7! kL
�k2 , where k � k2
denotes here the L2–norm on C1.
 IC/. This function can be restricted to any given
linear subspace in C1.
 IC/. Given T > 0, there is always an integer that is greater
than or equal to the dimension of any linear subspace in C1.
 IC/ on which the
function � 7! kL
�k2 obeys kL
�k2 � Tk�k2 .

The upcoming Lemma B.5 concerns L
 and a least upper bound of the sort just
described. By way of a parenthetical remark, the versions of L
 that appear in
Lemma A.8 are of particular interest with regards to the proof of Proposition B.3.

Lemma B.5 There exists � > �˘˘ with the following significance: Fix r � � and
� 2� with P –norm bounded by 1. Suppose that .A; D .˛; ˇ// is a solution to the
corresponding .r; �/ version of (1-13). Let 
 denote a closed , connected segment of
the zero locus of ˛ whose points have distance at least 100�˘˘r�1=2 from all of the
curves in the set

S
p2ƒ.y


C
p [ y


�
p /. Use �
 to denote the least upper bound for the

dimensions of the linear subspaces in C1.
 IC/ on which the function � 7! kL
�k2
obeys kL
�k2 � ��1k�k2 . This least upper bound obeys �
 � � .

The argument for this lemma would be straightforward were there an r–independent
upper bound on 
 ’s length, but such a bound does not exist. In any event, the proof
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is given in a moment. The next lemma states an analog of Lemma B.5 with the
straightforward argument for its proof. This lemma enters the proof of Proposition B.3
in conjunction with Lemma A.7. Lemma B.6 also plays a role in Lemma B.5’s proof.

Lemma B.6 Fix R > 0 and E > 0. The least upper bound for the dimension over C

of the linear subspaces in C1.Œ0; R�IC/ on which the function � 7!


 d
dt
�



2

obeys

 d
dt
�



2
� Ek�k2 is bounded by 2C��1RE .

Proof The subset of elements in C1.Œ0; R�IC/ that vanish at both endpoints has
complex codimension 2. This understood, the least upper bound in question is no
greater than 2 plus the number of linearly independent eigenvectors for the operator
�
d2

dt2
on C1.Œ0; R�IC/ that vanish at both endpoints and have eigenvalue less than E .

This number is ��1RE .

Proof of Lemma B.5 The four steps that follow constitute the proof.

Step 1 The lemma is proved by cutting 
 into a concatenation of c0 closed, connected
segments, and then bounding a version of �. � / on each segment. To explain why such
a cutting strategy works, suppose for the moment that 
0 � 
 is a closed, connected
segment. Fix T > 0 and introduce �
0;T to denote the least upper bound for the
dimensions of the linear subspaces in C1.
0IC/ on which the function kL
0. � /k2 is
bounded by T�1k � k2 with k � k2 denoting here the L2–norm on C1.
0IC/. Suppose
that 
1 and 
2 are two such segments that share at least one endpoint. Then �
1[
2;T�
4C�
1;T C�
2;T . This is because the subspace in C1.
 IC/ that vanishes at the
common endpoints of 
1 and 
2 has codimension 2 if they share one endpoint and
codimension 4 if they share two endpoints.

With the preceding understood, suppose that 
 is written as the concatenation of N

segments f
kg1�k�N . Iterate the bound given in the previous paragraph to see that
�
;T is no greater than 4NC

P
1�k�N �
k ;T .

Step 2 Fix " > 0 and let 
" � 
 denote the part of 
 with distance at least " from the
curves in the set

S
p2ƒ.y


C
p [ y


�
p /. As explained directly, �
";T � c0.1C T�2/jln "j.

To see why this bound holds, keep in mind that L
 is defined by the pair .�; �/ and
the latter are defined by the chosen coordinates from Part 4 of Section Aa. Granted that
such is the case, any version of L
 can be obtained from a given version by conjugating
the given version with a map from 
 to S1 . This implies, in particular, that �
";T does
not depend on the choice of coordinates. This being the case, choose the coordinates
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from Part 4 of Section Aa so that the resulting pair � and � are such that j�jCj�j � c0 .
Use B to denote to denote an upper bound for j�j and j�j on 
" .

Let L denote the length of 
" . Let V � C1.
"IC/ denote a linear subspace of
the sort under consideration. If 
" has no endpoints, then the dimension of V is no
greater than the dimension of the span of the eigenvectors of � d

2

dt2
with eigenvalue no

greater than .BC T�1/2 . As noted in the proof of Lemma B.6, if 
" has endpoints,
then V ’s dimension is at most 4 more than the span of the Dirichlet eigenvectors
of � d

2

dt2
with eigenvalue no greater than .B C T�1/2 . In both cases, there are at

most c0.1C BC T�1/2L linearly independent eigenvectors with this eigenvalue bound.
Meanwhile, Proposition 2.4 with Proposition II.2.7 and Lemma II.2.2 imply among
other things that the length of 
" is no greater than c0jln "j, and that both j�j and j�j
are bounded by c0 .

Step 3 Let y
 2
S

p2ƒ.y

C
p [ y


�
p / denote a given curve. As explained in Part 4 of

Section 1.1, there is a version of the coordinates from Part 4 of Section Aa for y
 with
both � and � constant, with � real and such that � > j�j. This version is assumed
in what follows. The corresponding constant values for � and � are denoted by �0
and �0 .

Fix "> 0 such that the radius " tubular neighborhood of y
 is well inside the coordinate
chart just described. Let T denote such a tubular neighborhood, and suppose that
� � T is a closed, connected segment in T of an integral curve of v . Taylor’s theorem
with remainder can be used with the formulas in (A-3) to see that � has a tubular
neighborhood with coordinates from Part 4 of Section Aa with j���0jCj���0j<c0".

Reintroduce from Proposition 2.4 the subset Yr � Y . By way of a reminder, the points
in T \ Yr have distance no less than c0r�1=2 from y
 . Let 
T denote a properly
embedded, connected component of ˛ ’s zero locus in the closure of T \Yr . Thus, 
T

has two boundary points, either both on the boundary of the closure of T , or one on
the latter and one on Yr ’s boundary torus in T .

Step 4 Define the operator L0 on C1.RIC/ by the rule � 7! i
2
d
dt
�C�0�C�0x� . Fix

` > 0 and restrict L20 to the subspace of elements in C1.Œ0; `�IC/ that vanish at the
boundary points. The corresponding Dirichlet eigenvalues of L20 on this domain are of
the form K2C�20C�

2
0˙2�0.K

2C�0/
2 with KD�.2k4`C1/=.4`/ for k 2Z. Note

in particular that the smallest eigenvalue is greater than .�0 � �0/2 when �0 > �0 ,
thus greater than c�10 .
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Let L
T denote the restriction of L
 to C1.
T IC/. What was said in the preceding
paragraph and what was said in the final paragraph of Step 3 have the following
implication: Let � 2 C1.
T IC/ denote an element that vanishes at both boundary
points of 
T . Then kL
T �k2 � ..�0� �0/� c0"/k�k2 . Thus, if " < c�10 , then

(B-21) kL
T �k2 �
1
2
.�0� �0/k�k2;

and this implies that �
T ;.�0��0/=2 � 4. Note that (B-21) and the preceding bound
on �
T ;.�0��0/=2 hold even if the pair .�; �/ that define L along 
T are not "–close
to .�0; �0/. This is because any two versions of .�; �/ that arise from different choices
for coordinates from Part 4 of Section Aa define corresponding versions of L that are
obtained from each other by conjugating with a map from 
 to S1 .

Lemma B.5 follows from the �
 T;.�0��0/=2 � 4 bound and those given in Step 2.

Part 4 Fix m and then cv and r so as to invoke the conclusions of Lemmas A.2–A.8
and Lemmas B.4–B.6. Sum Lemma B.5’s integers f�
g
2‚ and use �‚ to denote
the result. Let �� denote the largest of the versions of the constant � that appears in
Lemmas A.4, A.7 and B.5. Let N denote the number of components of Y �Y�ƒ with
zeros of ˛ . Each such component has the same length, this denoted by `� . Lemma A.7
associates an integer m to each such component. As noted in Part 3 of Section Ad, no
version of m is greater than ��c4v .

Use N to denote the number of linearly independent eigenvectors of LV ;1 with
eigenvalue between �c�1v and c�1v . As is explained in the subsequent paragraphs, N
is no greater than 104.�‚C N��c4v .1C `���c

��
v // if cv � c0 and r is larger than a

constant that depends only on cv .

To see why this bound holds, suppose in what follows that N is larger than what is
claimed, so as to generate nonsense. If N is larger than the asserted bound, then there
exists a section, f, of V0˚V1 with four properties that are described next. Lemmas B.5
and B.6 guarantee that the third and fourth properties can be satisfied. First, f is a linear
combination of an orthonormal set of eigenvectors of LV ;1 with eigenvalue between
�c�1v and c�1v . Second, f has unit L2–norm. The third property concerns the curves
in ‚. Let 
 denote such a curve. Let �
 denote 
 ’s component of …# f. The function
� 7! kL
�k2 from Lemma B.5 is such that kL
�
k2 � ��1� k�
k2 . The final property
concerns the components of Y �Y�ƒ that contain zeros of ˛ . Let 
 2

S
p2ƒ.y


C
p [y


�
p /

denote a curve from such a component. Part 1 of Section Ah describes a cover of 
 by
open sets f
kg0�k�7 or by open sets 
C and 
� . Let 
� denote a component of this
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cover. Denote by m the rank of Ker# j
� . Use the isomorphism between Ker# j
� and

� �Cm in Lemma A.7 to view the component of …# f in Ker# j
� as a map from 
�

to Cm . Let �
� denote this map. Then


 i
2
d
dt
�
�



2

is greater than 2��c��v k�
�k.

What with the third and fourth properties, Lemmas A.7 and A.8 imply k…#LV ;1fk2 �

��1
�
k…# fk2 . This being the case, Lemma A.6 finds k…#LV ;1fk2 �

1
2
��1
�
kfk2 if

cv � c0 and if r is greater than a purely cv –dependent constant. Meanwhile, it follows
from the definitions that kqk2 � c�10 k…#qk2 for any given section q of V0 ˚ V1 .
Take q to be LV ;1f to see that kLV ;1fk2 � .c0��/

�1kfk2 . Even so, the first property
listed in the preceding paragraph requires the bound kLV ;1fk2 � c�1v kfk2 and so
c�1v � .c0��/

�1 unless f is identically zero, and f¤ 0 because of the second of the
listed properties.

This .A; /– and r–independent lower bound for c�1v is the required nonsense because
cv has no a priori upper bound.

Bd Proof of Lemma B.4

The proof of Lemma B.4 has three parts.

Part 1 This part of the proof states an auxiliary lemma that augments what is said
by Lemma B.2. By way of a reminder, Lemma B.2 concerns the Y˘˘ extension of
a given 
 2 ‚ version of U
 . With coordinates from Part 4 of Section Aa chosen,
Lemma B.2 uses the ˛ 7! j˛jz=jzj isomorphism from EjU
 to U
 � C to write
.A�u�1
 du
 ; .u
˛; u
ˇ// as .�CaA;
 ; .˛
 ; ˇ
 // with the map u
 W U
!S1 defined
in (B-8). It goes on to write the iR–valued 1–form aA;
 as aA0;
 dtC12.A
 dxz�xA
 dz/.
Whereas Lemma B.2 talks about the functions A and ˛
 , the upcoming Lemma B.7
talks about the functions aA0;
 and ˇ
 . This lemma brings in the functions & and y
on C from (A-2), and it uses u to denote the function of the radial coordinate jzj on C

that is given by integrating the function 1�j˛0j2 along any ray from the origin starting
at distance jzj from the origin. Thus

(B-22) u.jzj/D

Z 1
jzj

.1� j˛0j
2/js ds:

The lemma also invokes the coordinates from Part 4 of Section Aa to bring in the
corresponding version of the function t 7! x
 .t/.

Lemma B.7 Fix m � 1. There exists an m–dependent � > 1 and , given cv � � ,
there exists �cv � � with the following significance: Take r� �cv c10v and suppose that
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.A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a given element
in � with P –norm smaller than 1. Use .A; / as directed in Section Ba to construct
the pair .A�;  �/. Let 
 denote a component of ˛ ’s zero locus in Y�ƒ .

� jr1=2ˇ
 � i�r�r & j � c�mv at all points in the Y�ƒ part of U
 .

� jaA0;
 � i�2
1=2r�r yC i r.x
xz=jzjC xx
z=jzj/r

�
r uj � c�mv at all points in the Y�ƒ

part of U
 .

Proof The proof has six steps. The first four prove the top bullet and the last two
prove the lower bullet. As in the proofs of Lemmas B.1 and B.2, what is denoted by �c

is a constant with value greater than 1 that depends only on m and cv ; in particular, it
has no r– and .A; /–dependence.

Step 1 The EK�1 component of the equation D2A D 0 (with a factor of 1
4

in front)
can be written in the schematic form �1

4
..rA/v/

2ˇ�x@A@AˇC
1
2

rj˛j2ˇD��@A˛C r

where jrj � c0 . This equation is used in what follows on the extension of U
 into Y˘˘
with the coordinates from Part 4 of Section Aa. The section ˇ of EK�1 is viewed
as a C–valued function on U
 using these coordinates and the chosen isomorphism
on U
 between E and U
 �C . This function is denoted by ˇ
 . Meanwhile, the
connection A� u�1
 du
 is written as A
 D aA0;
 dt C 1

2
.A
 dxz � xA
 dz/. Use the

derivative bounds for ˇ given by Lemma 2.1 to replace the derivative .rA/v with @t
so as to obtain from (A-36) the equation

(B-23) �
1
4
@2t ˇ
 �

x@A@Aˇ
 C
1
2

rj˛j2ˇ
 D��@A˛
 C r

with r different and now such that jrj � c0c2v when cv � c0 and r� �c . The notation
here uses @A D @

@xz
C
1
2

A
 and it uses x@A for the complex conjugate operator. (With
regards to replacing .rA/v by @t , this leads to a small error because the vector fields
@
@t

and v are nearly the same on U
 . Indeed, their difference is at most c0c2v r�1=2

because they are equal on the central arc inside U
 and because the radius of the
transverse disks in U
 is 4�� , which is 4c2v r�1=2 .)

Reintroduce the section ˇ� from Part 5 of Section Aa. Of particular interest here is ˇ�
on U
 , where it can be written (see (A-8)) as i�r�1=2r�r & . It follows from (3-27) that
the section ˇ� obeys an .A�; ˛�/ analog of (B-23):

(B-24) �
1
4
@2t ˇ��

x@A�@A�ˇ�C
1
2

rj˛�j2ˇ� D��@A�˛�C r;

with r here different from its (B-23) incarnation but such that jrj � c0c2v . With regards
to (B-24): This equation is very nearly the pullback of (3-27) via rr . This is because
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the r�r & factor in ˇ� is independent of the t –coordinate (so its t –derivatives are zero)
whereas the norms of the t –derivatives of the � factor in ˇ� (which can depend on t
are O.1/. Granted these facts, then the �1

4
@2t ˇ� term on the left-hand side of (B-24)

is small, and it is canceled by a part of what is denoted by r on the right-hand side
of (B-24).

Step 2 Use �A to denote A
 �A� and use �˛ to denote ˛
 � ˛� . Their absolute
values on U
 are such that r�1=2j�Aj C j�˛j � r1=2e�cv when cv � � and r � �c .
Write the connection A� as A
 ��A , and write ˛� as ˛
 ��˛ . Write A
 as A and
˛
 as ˛ (to stem the proliferation of subscripts), and rewrite (B-24) as

(B-25) �1
4
@2t ˇ��

x@A@Aˇ�C
1
2

rj˛j2ˇ�D��@A˛C�@A�˛���
.1;0/
A �˛�R�ˇ�Cr;

where the notation uses �.1;0/A to denote the .1; 0/ part of �˛ . Meanwhile, what is
written as R �ˇ� is linear in ˇ� and can be written as

(B-26) .x@A�
.1;0/
A /ˇ�C�

.0;1/
A @Aˇ�C�

.0;1/
A
x@Aˇ��w0.�A; �A/ˇ�C rw1.�˛/ˇ�;

where jw0;1j � c0 and with r different but still obeying jrj � c0c2v .

Let �ˇ D ˇ�ˇ� . The two equations (B-23) and (B-25) imply that �ˇ obeys

(B-27) �1
4
@2t�ˇ �

x@A@A�ˇ C
1
2

rj˛j2�ˇ D��@A�˛C��
.1;0/
A �˛CR �ˇ�C r;

where r is again a term with absolute value bounded by c0c2v . Use oˇ to denote the
function 1

2
j�ˇ j

2 . Take the Hermitian inner product of both sides of (B-27) with �ˇ
and commute covariant derivatives of A to obtain an equation for oˇ , this being the
next equation. This upcoming equation uses r?A to denote the covariant derivative
along the constant t slices of U
 and it uses ReŒ � � to denote the real part of the
indicated expression. What follows is the promised equation for oˇ :

(B-28) �1
4
@2t oˇ �

x@@oˇ C
1
2

r.1Cj˛j2/oˇ

D�
1
4
j@t�ˇ j

2
�
1
4
jr
?
A �ˇ j

2

CReŒ��x�ˇ@A�˛C�x�ˇ�
.1;0/
A �˛C x�ˇR �ˇ��C r:

What is denoted by r here signifies a term with absolute value bounded by c0c2v .

Step 3 Let p D .t; z/ denote a given point in R�C and introduce Gp. � / to denote
the Green’s function for the operator �.@2t C4x@@/C2r on R�C with pole at p . This
Green’s function is positive and is such that

(B-29) Gp� c0
1

jp� . � /j
e�
p

rjp�. � /j; jdGpj� c0

�
1

jp� . � /j2
C
p

r
�
e�
p

rjp�. � /j;
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where d here denotes the full exterior derivative on R�C . Introduce �˘ to denote the
function on the Y�� extended U
 that is defined as follows: Take �˘D� yU on Y�ƒ and
take it equal to � yU .1��˘˘/ on U
 ’s intersection with a given component of Y˘˘�Y�ƒ .
Thus, �˘ has compact support on the interior of U
 and it is equal to 1 at the points
in Y�ƒ with distance c2v r�1=2 or less from 
 . Take p to be a point in U
 where � yU is
equal to 1. Multiply both sides of (B-29) by .�˘/2Gx and then integrate both sides to
obtain an equality between two integrals. The left-hand side integral is denoted by IL
and the right-hand side by IR . As explained in the next step of the proof, the equality
IL D IR leads directly to the bound j�ˇ j � c0r�1=2c10v e

�cv=2 at p . This proves the
assertion of the top bullet of Lemma B.7 at points in U
 \Y�ƒ with distance c2v r�1=2

or less from 
 if cv � c0 and r � �c . Meanwhile, Lemmas 2.1 and 2.2 with (3-3)
imply what is asserted by the top bullet of Lemma B.7 on the points in U
 \Y�ƒ with
distances greater than c2v r�1=2 from 
 if cv � c0 and r� �c .

Step 4 The asserted bound on IL is derived by integrating by parts twice in the
relevant integral. The result can be written as

IL D
1
2
j�ˇ j

2.x/C e;

where e is a function with jej � c0r�1e�c2v=c0 . By way of explanation, the function
e comes from an integral whose integrand has a term that is bounded in absolute
value by c0j�ˇ j2.jd�˘j2C jd�d�˘j/Gx and one that is bounded in absolute value
by c0j�ˇ j2jd�xjjdGxj. Since these terms are supported at distances no less than
.1C c�10 /c2v r�1=2 from x , and since j�ˇ j � jˇj C jˇ�j � c0r�1=2 in any event, the
claim about IL is a consequence of the exponential factors in (B-29).

Meanwhile, the integral IR is bounded by c0r�1c10v e
�cv . By way of explanation,

some judiciously chosen applications of integration by parts will remove derivatives
along the C factor of R�C from �˛ and �A and replace them with terms that have
derivatives of either Gx or �˘ or covariant derivatives of ˇ� . A covariant derivative
of ˇ� is bounded by c0.jr?A �ˇ jC jrAˇj/. Lemma 2.1 has jrAˇj � c0 and this with
(B-29) together with the bounds from Step 2 for j�Aj and j�˛j can be used in a
straightforward fashion to bound the integrals that result by c0r�1c20v e

�cv .

Step 5 This step begins the proof of the lower bullet of Lemma B.7. As is explained
in this step and Step 6, the second bullet’s assertion is a consequence of the identity
in (B-18) and what is asserted by a version of Lemma B.7’s top bullet that uses a suitable
m0 > m. To exploit (B-18), first write @=@jzj as .z=jzj/@=@z C .xz=jzj/@=@xz . Next
write @=@z as 1

2
.ye1� iye2/C rt@=@t C r2 , where fye1; ye2g is an oriented, orthonormal
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frame for the kernel of Oa , where jrt j � c0jzj, and where jr2j � c0jzj2 . Doing so writes
@=@jzj in terms of fye1; ye2g. Use this depiction in (A-6). Meanwhile, use (A-6) to write
@=@t in terms of v . The result of all of this rewriting replaces the curvature component
on the right-hand side of (B-18) by

(B-30) �jzj�1.z1FA.v; ye1/C z2FA.v; ye2/

C .2�jzj2C�xz2C x�z2� x
xz� xx
z/FA.ye1; ye2//C r;

where the notation is such that z1 and z2 denote the respective real and imaginary
parts of z , and where r denotes a term with absolute value bounded by jzj2jFAj.

Since the 2–form FA is the Hodge dual of BA , the equation in (1-13) can be invoked
to replace (B-30) with

(B-31) �rjzj�1
�
x̨ˇxz�˛ x̌zC i.2�jzj2C�xz2C x�z2� x
xz� xx
z/.1� j˛j

2/
�
C r0;

where r0 has norm obeying jr0j � c0cve�
p

rjzj=c0 , this due to Lemmas 2.1 and 2.2. A
further rewriting uses the top bullet in Lemma B.4 to replace ˇ in (B-31) by i�r�1=2r�r &
plus a term with small norm. Make this substitution and then invoke the formula for &
in (A-2) to write (B-31) as

(B-32) �i r
�
2�jzj � x


xz

jzj
� xx


z

jzj

�
.1� j˛j2/C r00;

where jr00j � c0.c20�m
0

v r1=2C cv/e�
p

rjzj=c0 .

Step 6 Granted (B-32), use the formula for y in (A-2) and the formula for A0 in (A-3)
to write y D �21=2.a0 � 1/. Keeping in mind that a0 is real and a function of jzj2 ,
use the formula in (A-3) and the top bullet in (2-8) to see that d

d jzj
a0 D jzj.1� j˛0j2/.

This understood, it follows from (B-18) and (B-32) that

(B-33) @s.aA0;
 � i�2
1=2r�r y/jsz D i r

�
x

xz

jzj
C xx


z

jzj

�
.1� jr�r ˛0j

2/C r00:

To exploit (B-33), first look again at what is said in the first paragraph from Step 4
of the proof of Lemma B.2 to see that jaA0;
 j � c0c2ve

�
p

rjzj=c0 , where jzj � r�1=2

on U
 \ Y�ƒ . Given (3-3), such a bound also holds for r�r y . These bounds imply
what is asserted by the second bullet of Lemma B.7 at the points in U
 \ Y�ƒ with
distance greater than c2v r�1=2 from 
 . Given this last observation, integrate both sides
of (B-33) from a given value of s to c2v r�1=2 with a choice for m0 > 2mC 100 to
obtain the second bullet’s assertion on the part of U
 \ Y�ƒ at points with distance
less than c2v r�1=2 from 
 when cv � c0 and r� �c .
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Part 2 The next lemma writes the various versions of LV ;� as LV ;1C e� and gives a
bound for the norm of the � –derivative of e� .

Lemma B.8 Fix m � 1. There exists m–dependent � > 1 and , given cv � � ,
there exists �cv � � with the following significance: Take r � �cv c10v and suppose
that .A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a given
element in � with P–norm smaller than 1. Define f.A�� ;  �� /g�2Œ0;1� as instructed
in Section Ba. Given � 2 Œ0; 1�, let LV ;� denote the .A�� ;  �� / and z D r version
of the operator LV . Write LV ;� as LV ;1C e� . Then the resulting map � 7! e� from
Œ0; 1� to C1.Y IV0˚V1/ is real analytic with derivative bound

ˇ̌
d
d�

e�
ˇ̌
� c�mv r1=2 at

all points in Y .

Proof Given Lemmas B.2 and B.7, the assertion is a direct consequence of the formula
for .A�� ;  �� / in Section Ba and the formula for LV in (A-26) and (A-27).

The lemma that follows uses the
ˇ̌
d
d�

e�
ˇ̌
� c�mv r1=2 bound from Lemma B.8 to give a

version of Lemma B.4 with an r–dependent eigenvalue bound.

Lemma B.9 Fix m � 1. There exists m–dependent � > 1 and , given cv � � , there
exists �cv � � with the following significance: Suppose that r � �cv c10v and that
.A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a given element in
� with P–norm smaller than 1. Construct as in Lemma B.8 the family of operators
fLV ;�g�2Œ0;1� and introduce f�n�g�2Œ0;1� to denote the resulting family of eigenvalues.
If j�n� j D 0 for some � 2 Œ0; 1� then j�n� 0 j � c�mv r1=2 for all � 0 2 Œ0; 1�.

Proof Return for a moment to the context in Part 1. Let T denote sup�2Œ0;1�


 d
d�

e�


.

It follows from (B-20) that any n 2 Z version of the map � 7! �n� is such that
j�n� 0 � �n� j � T for any pair �; � 0 2 Œ0; 1�. This implies in particular that j�n� j > 0
for all � if j�n� 0 j > T for any � 0 2 Œ0; 1�. Given Lemma B.8, this last observation
leads directly to the assertion in Lemma B.9 when applied to the family fLV ;�g�2Œ0;1�

with TD c�mv r1=2 .

Part 3 The three steps that follow complete the proof of Lemma B.4.

Step 1 If m > c0 , then Lemma B.9 can be invoked. With m so chosen, suppose
that � 2 Œ0; 1� and that �n� D 0. Let ff.� 0/g� 02Œ0;1� denote the corresponding family of
eigenvectors. Fix � 0 2 Œ0; 1�. If cv � �˘ and if r is greater than a purely cv –dependent
constant, then Lemma B.9’s bound on j�n� j implies that the assumptions of Lemmas
A.2, A.3 and A.6 are met with zD r, with .A�� 0 ;  �� 0/ used in lieu of .A; /, with
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� D �n� 0 , and with f D f.� 0/ . In particular, what is asserted by the first bullet of
Lemma A.3 holds using cv in lieu of c0 . This is to say that when f is written in
terms of its V0 and V1 components as .f0; f1/, then the component f1 has L2–norm
bounded by c0ckv r�1=2 with k � c0 .

Step 2 Assume that cv and r are chosen so that the assumptions of Lemmas B.1–B.2
and B.7–B.9 are met. Suppose that � 0 2 Œ0; 1� is a point where the map �n. � / is real
analytic. Let a0v denote the endomorphism of S given by the derivative

�
d
d�
rA�. � /

�
v

at the point � 0. It follows from Lemmas B.2 and B.7 that ja0vj � c0c�mv . Write  �. � /
as .˛�. � /; ˇ�. � // and let ˇ0 denote the derivative d

d�
ˇ�. � / at � 0. Lemma B.7 implies

that jˇ0j � c0c�mv r�1=2 . Meanwhile, Lemma B.8 has
ˇ̌
d
d�

e. � /
ˇ̌
� c0c�mv r1=2 .

Step 3 Look at (A-26) and (A-27) to see that the absolute value of the inner product
between f and

�
d
d�

e. � /
�ˇ̌
� 0
f at any given point in Y is no greater than

(B-34) c0c�mv r1=2jf0jjf1jC c0.ja0vjC r1=2jˇ0j/jfj2:

The integral of the expression in (B-34) over Y is no less than
ˇ̌
d
d�
�n. � /

ˇ̌
at � 0, this

being a consequence of (B-20). Meanwhile, what is said by Steps 1 and 2 imply that
the integral of the expression in (B-34) is no greater than c0c�mCkv .

Use m0 to denote m � k . The argument used in the proof of Lemma B.9 proves
that the bound by c0c�m0v on

ˇ̌
d
d�
�n. � /

ˇ̌
implies that j�n� j D 0 for some � only if

j�n.� 0/j � c0c�m0v for all � 0 2 Œ0; 1�. Since m0 can be any positive number greater
than �˘ , this last bound implies what is asserted by Lemma B.4.

Be The pair .A˘;  ˘/

This subsection modifies .A�;  �/ on the components of Y � .Y�ƒ[T�ƒ/ so that the
resulting pair is given on these components by solutions to the vortex equations. The
five parts of this subsection describe this modification.

Part 1 This first part describes the modification in the simplest case. To this end,
fix attention on a component of Y � .Y�ƒ [ T�ƒ/ whose boundary is disjoint from
the zero locus of ˛ . This is the simplifying assumption. Let 
 denote the curve in
this component from

S
p2ƒ.y


C
p [ y


�
p / and let T � Y denote the subset of points

with distance .c4v C c3v /r
�1=2 or less from 
 . Fix coordinates for T from Part 4 of

Section Aa with � constant and � both constant, real-valued and positive.

The next lemma supplies a particular sort of isomorphism from EjT to the product
bundle T �C .
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Lemma B.10 There exists � > 1 and , given c � � , there exists �c � � with the
following significance: Take r � �cc10 and let .A; D .˛; ˇ// denote a solution
to the .r; �/ version of (1-13) with � a given element in � with P–norm smaller
than 1. Suppose that 
 2

S
p2ƒ.y


C
p [ y


�
p /, that ˛ has zeros at distances less than

�r�1=2 from 
 but no zeros at distance between �r�1=2 and .c4C 3c3/r�1=2 from 
 .
Fix coordinates from Part 4 of Section Aa for the radius .c4 C 3c3/r�1=2 tubular
neighborhood of 
 . There is an isomorphism on the concentric , radius .c4C c3/r�1=2

tubular neighborhood of 
 between E and the product bundle with the properties listed
below:

� The isomorphism writes AD � C aA0dt C 1
2
.Adxz� xAdz/ with jaA0j � � and

jAj � �r1=2 .

� Use m to denote the sum of the local Euler numbers of the zeros of ˛ on
any radius c4r�1=2 transverse disk centered on 
 . The isomorphism writes ˛
as j˛j.z=jzj/m at points with distances between 2�r�1=2 and .c4 C c3/r�1=2

from 
 .

This lemma is proved in a moment.

Take c D cv in Lemma B.10 and use the lemma’s isomorphism between EjT and
T �C to write A˘ as � C a˘ with a˘ being an iR–valued 1–form on T . Write  ˘
as .˛˘; ˇ˘/ and use the isomorphism to view ˛˘ as a C–valued function on T . Use
the isomorphism and the chosen coordinate system to view ˇ˘ as a C–valued function
also. Let m denote the rank of the complex bundle Ker# j
 . The data a˘ , ˛˘ and ˇ˘
are given by what is written on the right-hand side of the respective top, middle and
bottom lines in (A-44).

Proof of Lemma B.10 Let �� denote the version of � that appears in Proposition 2.4.
Fix x > 100 for the moment and then choose c > x�� . Now suppose that there are
no zeros of ˛ with distance to 
 between x��r�1=2 and .c4C 3c3/r�1=2 . The first
observation is that the absolute value of the sum of the local Euler numbers of the
zeros of ˛ with distance at most x��r�1=2 from 
 is bounded by c0�� . The reason
is this: According to the fifth bullet of that Proposition 2.4, the 2–form i

2�
F yA has

compact support in the radius x��r�1=2 tubular neighborhood of 
 if x � c0 . (This
follows from the formula for F yA in (2-14) and from Lemma 2.3.) Meanwhile, the
section ˛=j˛j is ryA–covariantly constant on the boundary of this tubular neighborhood
if x � c0 (this follows from the definition of 
 ). These two facts imply that the integral
of i

2�
F yA on a transverse disk to 
 with its boundary at distance between x��r�1=2
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and .c4C3c3/r�1=2 from 
 computes the sum of the local Euler numbers of the zeros
of ˛ with distance less than x��r�1=2 from 
 . Meanwhile, it follows from Lemma 2.1
that such an integral is bounded by c0x�� .

Lemma 2.3 finds j˛j � 1� 1
100

at distances greater than x��r�1=2 from 
 but less than
.c4C2c3/r�1=2 from 
 if x>c0 . Granted that ˛ ’s local Euler number is m, and granted
this lower bound on j˛j, there exists c1 � c0 and an isomorphism from E on the jzj �
c1x��r�1=2 part of the radius .c4C 2c3/r�1=2 tubular neighborhood of 
 that writes
˛ as j˛j.z=jzj/m . Use this isomorphism to write A as in the first bullet of the lemma.
The isomorphism writes the dt part of rA˛ as .@t j˛jC aA0j˛j/.z=jzj/m . Given that
DA D0, it follows that the dt part of rA˛ is bounded by jrAˇjCc0r�1=2jrA˛j. This
understood, then Lemma 2.1’s bound implies that jaA0j � c0 on the jzj � c1x��r�1=2

part of the radius .c4C 2c3/r�1=2 tubular neighborhood of 
 . The bound for jAj on
this same part of the radius .c4C 2c3/r�1=2 tubular neighborhood of 
 follows from
Lemma 2.1’s bound for jrA˛j.

The isomorphism just described will be modified on the jzj � 7
4
c1x��r�1=2 tubular

neighborhood of 
 to obtain an isomorphism between E and the product bundle on the
whole .c4C2c3/r�1=2 tubular neighborhood of 
 that obeys the first bullet of the lemma.
To this end, note first that there is an isomorphism between Ej
 and 
�C that writes the
pullback of A along 
 as yaA2dt with yaA2 constant with absolute value less than 2�=`
 .
Fix such an isomorphism, and then use parallel transport by A along the rays through the
origin in the constant t slices of the tubular neighborhood to extend this isomorphism
to the jzj � 2c1x��r�1=2 part of the tubular neighborhood. An isomorphism of this
sort writes A as � C aA2dt C 1

2
yA.zdxz � xzdz/, where yA is an R–valued function

defined on the radius 2c1x��r�1=2 tubular neighborhood of 
 . This function obeys
��1 @

@�
.�2yA/ D FA

�
@
@z
; @
@xz

�
with � denoting jzj. Integrate this identity starting at

jzj D 0 using (1-13) to see that �jyAj � c0x��r1=2 . Meanwhile, @
@�
aA2 D FA

�
@
@�
; @
@t

�
because A�� has no d� component. Integrate the latter identity using (1-13) with the
fact j@t � vj � c0jzj to see that jaA2j � c0x�� where jzj � 2c1x��r�1=2 .

The preceding paragraphs describe two isomorphisms between E and the product
bundle that are defined on the c1x��r�1=2 � jzj � 2cx��r�1=2 part of the radius
.c4C2c3/r�1=2 tubular neighborhood of 
 . The corresponding transition function is a
map from this part of the tubular neighborhood to S1 . Use yu to denote this map. The
bounds on aA1 and aA2 imply that

ˇ̌
@
@t
yu
ˇ̌
� c0 and those on A and �jyAj imply thatˇ̌

@
@z
yu
ˇ̌
� c0x��r1=2 . Granted these bounds, the map yu with a cut-off function defined

from � can be used in a straightforward manner to modify the outer isomorphism where
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5
4
c1x��r�1=2< jzj � 7

4
c1x��r�1=2 so that the result agrees with the inner isomorphism

where c1x��r�1=2< jzj< 5
4
c1x��r�1=2 and is such that the norms of the new versions

of aA1 and A are still bounded by c0x�� and c0x��r1=2 , respectively.

Since all of what was said works for x � c0 and since �� � c0 , the statement of
the lemma follows from the preceding observations and constructions with � a priori
bounded by c0 and with a suitable choice for �c .

Part 2 Fix attention on a component of Y � .Y�ƒ[T�ƒ/ whose boundary intersects
the zero locus of ˛ and let 
 again denote the corresponding curve from the setS

p2ƒ.y

C
p [ y


�
p /. Introduce the coordinates from Part 4 of Section Aa for 
 with �

constant and with � constant, real and positive. It follows as a consequence of what is
said in (B-1) that the zero locus of ˛ extends as two properly embedded arcs in the part
of the radius c4v r�1=2 tubular neighborhood of 
 where .c4v�3c3v /r

�1=2�jzj� c4v r�1=2 .
The following lemma describes an extension of these two arcs as the end segments of a
single, properly embedded arc in the radius c4v r�1=2 tubular neighborhood of 
 .

Lemma B.11 There exists � > 1 and , given cv � � , there exists �cv � � with the
following significance: Suppose that r � �cv c10v and suppose that .A; D .˛; ˇ//
is a solution to the .r; �/ version of (1-13) with � a given element in � with P–
norm smaller than 1. Let 
 denote a curve from

S
p2ƒ.y


C
p [ y


�
p / with points at

distance c4v r�1=2 from the zero locus of ˛ . Let T denote the set of points with distance
.c4v C c3v /r

�1=2 or less from 
 . There exists a smooth , properly embedded arc in T
with the properties listed below:

� The arc is the zero locus of ˛ at points with distance cvr�1=2 or more from ˛ .

� The arc lies in the 1� 3 cos2 � > 0 part of T .

� Each point in the arc has distance greater than ��1cvr�1=2 from 
 .

� A unit-length tangent vector to the arc has distance at most �cvr�1=2 from v .

� Fix a closed , transverse disk in T with radius c4v r�1=2 , center point on 
 , and
no zeros of ˛ on its boundary. Let m� denote the intersection number between
this disk and the arc and let m˛ denote the sum of the local Euler numbers of
the zeros of ˛ on the disk. Then m˛ �m� is nonnegative and independent of
the chosen disk.

Proof There are various ways to construct an arc with the desired properties. The
construction that follows is perhaps more complicated than is needed for now, but the
resulting arc has certain extra properties that are exploited later. There are four steps.
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Step 1 Fix m 2 .1; c�10 cv/. If ˛�1.0/\ T has a component whose points all have
distance greater than m�4cvr�1=2 from 
 , then the desired arc is this component of
˛�1.0/\T . Proposition 2.4 guarantees that the conditions of the lemma are met if �
is greater than a purely m –dependent constant. The remaining steps assume that the
components of ˛�1.0/ that intersects the boundary of T have points with distance
m�4cvr�1=2 from 
 . This understood, keep in mind the following consequence of
Proposition 2.4: the zero locus of ˛ in the part of T with distance at least m�4cvr�1=2

from 
 consists of two arcs, one where u is everywhere positive and the other where u
is everywhere negative. These are denoted respectively by �C and �� in what follows.
Note also that the unit tangent vector to either arc has distance at most c0r�1=2 from v .

The subsequent three steps take cos � D 1p
3

on 
 . The construction for the case when
cos � D� 1p

3
on 
 is identical but for certain sign changes and will not be given.

Step 2 Let �� 2 .0; �/ denote the angle that obeys cos �� D 1p
3

. It follows from the
formula for v in (1-3) that any integral curve of v in T can be parametrized as a map
from an interval I �R to .R=.2�Z//�R2 of the form

t 7! .� D�t; uD bx�.t/; � D ��Cy�.t//;

where b D
p
3

2
p
2
eR.x0C 4e

�2R/1=2 and where x� and y� are smooth functions that
obey

(B-35) d

dt
x� D �y�C ex.x�; y�/ and d

dt
y� D �x�C ey.x�; y�/

with �D4
p
6e�R.x0C4e

�2R/1=2 and with the pair ex and ey being smooth functions
of the coordinates .x; y/ on R2 that obey jexjC jey j � c0.x2Cy2/.

This parametrization of integral curves of v in T suggests the introduction of coordi-
nates .x; y/ for T by writing uD bx and yD ��Cy . These coordinates are such that
if m � c0 and if p 2 Œ0; 4/, then the points in T with .x2Cy2/1=2Dm�pcvr�1=2 have
distance less than c0m�pcvr�1=2 from 
 and distance greater than c�10 m�pcvr�1=2

from 
 .

It follows from what is said in Proposition 2.4 that �C can be parametrized as a map
from an interval IC �R to .R=.2�Z//�R2 of the form

(B-36) t 7! .� D�t; uD bxC.t/; � D ��CyC.t//;

where xC and yC obey a modified version of (B-35) that adds respective terms rxC
and ryC of t to the left- and right-hand equations. These are smooth functions of t
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with absolute value bounded by c0r�1=2 . The arc �� can be parametrized in a similar
fashion as a map with domain an interval I� � R by a pair of functions .x�; y�/
that obey a modified version of (B-35) that adds respective terms rx� and ry� to
the right-hand sides of these equations, both being functions of t with absolute value
bounded by c0r�1=2 .

Use S to denote the torus .x2Cy2/1=2 D m�2cvr�1=2 . This torus is intersected trans-
versely in one point by �C and likewise by �� . No generality is lost by parametrizing
IC and I� so these points S \ �C and S \ �� occur at respective parameter values
t D 2� C t˘ and t D�2� � t˘ with t˘ 2 Œ0; 2�/. More is said about IC and I� in a
moment.

Step 3 Introduce coordinates p and q on R2 by the rules p D yCx and q D y�x .
Writing (B-35) or its �C or �� analogs in terms of p and q gives an equation for a
pair of maps t 7! p�.t/ and t 7! q�.t/. Here � denotes either �, C or � as the case
may be. The equation in question has the form

(B-37) d

dt
p� D �p�C ep.p�; q�/C rp� and d

dt
q� D��q�C eq.p�; q�/C rq� ;

where ep and eq are smooth functions of p and q that obey jepjCjeqj � c0.p2Cq2/,
and where rp0 and rq0 are zero (this the case of (B-35)), while rpC , rqC , rp� and rq�
are functions of t with absolute value bounded by c0r�1=2 .

It follows from (B-37) that pC and qC where .p2
C
Cq2
C
/1=2 � cvr�1=2 have the form

(B-38) pC.t/Dp˘Ce�.t�2��t˘/CwpC and qC.t/D q˘Ce
��.t�2��t˘/CwqC;

where p˘C D p.2� C t˘/ and q˘C D q.2� C t˘/, and where wpC and wqC are
functions of t with absolute value bounded by c0r�1=2 where jt j � c0. The t –
derivatives of wpC and wq� for such t are also bounded by c0r�1=2 .

If m>c0 , then the fact that �C intersects the locus where .p2Cq2/1=2Dc0m�4cvr�1=2

leads to the following observations:

(B-39) � Œ�2� � t˘; 2� C t˘�� IC .

� jp˘C�m�2cvr�1=2jCm2jq˘Cj � c0m�4cvr�1=2 .

To see why this is, note first that the torus S is the locus .p2Cq2/1=2D21=2m�2cvr�1=2

and so neither p˘C nor q˘C is greater than 21=2m�2cvr�1=2 . However, p˘C �
2�1=2m�2cvr�1=2 because p�jqj where u>0. Granted that p˘C�2�1=2m�2cvr�1=2

and granted that �C intersects the locus where .p2C q2/1=2 D c0m�4cvr�1=2 , then
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the left-hand identity in (B-37) requires that the parameter t at this intersection is less
than ��1 ln.m�2/C c0 . This gives the top bullet in (B-39) if m > c0 . The fact that t
on IC has values less than ��1 ln.m�2/C c0 with the right-hand identity in (B-38)
finds qC at such values of t greater than q˘Cc0m2 and so m2jqCj must be less than
c0m�4cvr�1=2 . This implies the lower bullet in (B-39).

What was just said about pC and qC has its p� and q� analog. By way of a summary,
these functions can be written as

(B-40) p�.t/D p˘�e�.tC2�Ct˘/Cwp� and q�.t/D q˘�e
��.tC2�Ct˘/Cwq�;

where p˘� D p.� 2� � t˘/ and q˘� D q.�2� � t˘/, and where wp� and wq� are
functions of t with absolute value bounded by c0r�1=2 where jt j � 100� . Their
respective t –derivatives are also bounded by c0r�1=2 for such t . The .p�; q�/ analog
of (B-39) reads:

(B-41) � Œ�2� � t˘; 2� C t˘�� I� .

� m2jp˘�jC jq˘��m�2cvr�1=2j � c0m�4cvr�1=2 .

The proof of (B-41) differs only cosmetically from that of (B-39).

Step 4 The arc � coincides with the t > 2� C t˘ part of �C and the t < �2� � t˘
part of �� . The remaining part of � is parametrized by Œ�2� � t˘; 2� C t˘�. The
definition that follows for this part of � refers to a nonnegative function on R that is
denoted by � and defined by the rule t 7! �.t/D �

�
1� 4

�
t
�
. This function is equal

to 1 where t < �
4

and it is equal to 0 where t > �
2

.

The t 2 Œ�2��t˘; 2�Ct˘� point of � is written as .'D�t; uDbx�.t/; �D��Cy�.t//
with x� and y� being functions on the interval Œ�2�� t˘; 2�C t˘�. The functions x�
and y� are written here as x� D 1

2
.p� � q�/ and y� D 1

2
.p� C q�/ with p� and q�

given by the following rule:

(B-42) � p�.t/D �.�t /.p˘Ce
�.t�2��t˘/CwpC.t//C �.t/p�.t/.

� q�.t/D �.t/.q˘�e
��.2�Ct˘Ct/Cwq�.t//C �.�t /qC.t/.

It is a straightforward matter to check that the arc � has all of the required properties.

Part 3 Use �˘ to denote a constant that is greater than the versions of � that appear in
Lemmas A.2–A.9 and in Lemmas B.10 and B.11. Assume in what follows that cv � �˘
and that r is greater than the c0 D cv lower bounds given in Lemmas A.2–A.9 and the
lower bounds given in Lemmas B.10 and B.11. Fix a component of Y � .Y�ƒ[T�ƒ/
whose boundary has a zero of ˛ . Let 
 denote the nearby curve from

S
p2ƒ.y


C
p [ y


�
p /
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and let T denote the set of points in Y with distance .c4v C c3v /r
�1=2 or less from 
 .

This part of the subsection defines .A˘;  ˘/ on T . The definition has four steps. These
steps use � to denote the arc that is supplied by Lemma B.11. These steps also use

 ’s version of the coordinates .t; z/ from Part 4 of Section Aa for T .

Step 1 Define UT0�T as follows: The jzj � .c4v�2c2v /r
�1=2 part of UT0 consists of

the points in T with distance greater than c2v r�1=2 from � . The jzj< .c4v � 2c2v /r
�1=2

part of UT0 consists of the points with distance greater than c1=4v r�1=2 from � and
with distance greater than c1=4v r�1=2 from 
 . Note that the jzj � c4v r�1=2 part of
UT0 coincides with the Y�ƒ\T part of Section Ba’s set U0 . This understood, fix an
isomorphism over UT0 between E and UT0�C that sends ˛ to j˛j on the part of UT0
where j˛j � 1

2
. Such an isomorphism extends Section Ba’s isomorphism from the

jzj � .c4v � 2c2v /r
�1=2 part of UT0 to the whole of UT0 . This isomorphism identifies

A˘ on UT0 with the product connection and it identifies ˛˘ with the constant 1 2C .
The component ˇ˘ is everywhere zero on UT0 .

What follows is, for now, just a parenthetical remark: Suppose that � and �0 are two
isomorphisms from EjUT0 to UT0 �C that agree where j˛j > 1

2
. Then �0 D eix�

with x being a real-valued function which is 0 where j˛j > 1
2

. That this is so is a
consequence of what is said in Proposition 2.4 about the zero locus of ˛ in T .

Step 2 Let U�� � T denote the subset of points with jzj <
�
c4v �

7
4

c3v
�
r�1=2 and

distance less than 4c1=4v r�1=2 from � . To this end, keep in mind that the jzj �
.c4v � 2c3v /r

�1=2 part of � coincides with this same part of ˛�1.0/ \ T . This un-
derstood, fix coordinates for U�� from Part 4 of Section Aa that coincide on the
jzj � .c4v � 2c3v /r

�1=2 part of U�� with those used in Section Ba. Denote these
coordinates by .t� ; z�/ so as to distinguish them from the coordinates t and z that
are used for T . The restriction of E to the jzj � .c4v � 2c3v /r

�1=2 part of U�� has
its ˛ 7! j˛jz�=jz� j isomorphism with the product bundle. Extend this to the product
bundle so as to give an isomorphism over the whole of U�� between E and the product
bundle. This extension should be such that the corresponding transition function for
Step 1’s isomorphism from EjUT0 to UT0�C sends the constant section 1 of UT0�C

to the section z�=jz� j of U���C on the jz� j � c1=4v r�1=2 part of U�� . The formula
in the next equation defines A˘ and ˛˘ on U�� by viewing them via this isomorphism
as a connection on the product bundle and map to C . This isomorphism with the
coordinates .t� ; z�/ are used to view ˇ˘ as a map to C also.

The upcoming equation uses � yU�� to denote the function of jz� j given by the rule
�.c�1=4v r1=2jz� j � 1/. The equation also uses .�� ; ��/ to denote the .t� ; z�/ version
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3418 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

of the functions � and � from � ’s version of (A-6). This equation once again brings
in the functions ˛0 and a0 from (A-3) and the corresponding versions of y and &
from (A-2).

(B-43) � A˘ D � C ��� yU��i2
1=2r�r ydt�
�
1
2
.1�� yU��C� yU��r�r a0/.z�1� dz� �xz

�1
� dxz�/;

� ˛˘ D .1�� yU��.1� r�r j˛0j//z�=jz� j,

� ˇ˘ D i�� r�1=2� yU��r�r & .

Step 3 This step defines A˘ , ˛˘ and ˇ˘ on the part of T with jzj � .c4v �2c3v /r
�1=2

where the distance to � is less than 4c2v r�1=2 . To this end, use the ˛ 7! ˛z�=jz� j

isomorphism between E and the product bundle over this part of T to view A˘ as a
connection on the product bundle and ˛˘ as a map to C . Use this same isomorphism
with the coordinates .t� ; z�/ to view ˇ˘ as a map to C also.

Reintroduce �˘˘ to denote the function that appears in (B-2). This function equals 1
where jzj<

�
c4v�

7
4

c3v
�
r�1=2 and it equals 0 where jzj>

�
c4v�

5
4

c3v
�
r�1=2 . The definition

uses � yU�C to denote the function of jz� j given by

.1��˘˘/�.c�2v r1=2jz� j � 1/C�˘˘�.c�1=4v r1=2jz� j � 1/:

This function is equal to (B-35)’s function � yU�� where jzj �
�
c4v �

7
4

c3v
�
r�1=2 and it

is equal to (B-10)’s function � yU where jzj �
�
c4v �

5
4

c3v
�
r�1=2 .

Replace � yU�� in (B-43) with � yU�C to obtain the formulas for A˘ , ˛˘ and ˇ˘ on
the part of T with jzj � .c4v � 2c3v /r

�1=2 and with distance less than 4c2v r�1=2 to � .

Step 4 This last step defines A˘ , ˛˘ and ˇ˘ on the jzj< 3
4

c1=2v r�1=2 part of T . The
definition requires Lemma B.11’s integer m. The definition also requires the choice of
an isomorphism between E on this part of T and the product bundle. A choice for
such an isomorphism should be made subject to the following constraint: The resulting
transition function on the 1

2
c1=2v r�1=2< jzj< 3

4
c1=2v r�1=2 part of T between the product

bundle over jzj < 3
4

c1=2v r�1=2 part of T and the product bundle UT0 �C sends the
latter’s constant section 1 to the former’s section z 7! .z=jzj/m . An isomorphism of
this sort exists because 
 represents the class 0 in H 1.Y IZ/. Moreover, the space of
isomorphisms that obey this constraint is contractible. The chosen isomorphism is used
to view A˘ as a connection on the product bundle over this part of T and ˛˘ here as
a C–valued function. This isomorphism with the coordinates .t; z/ is used to view ˇ˘

as a C–valued function as well.
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In the case mD 0, the transition function is the constant function. In this case, A˘ on
the jzj< 3

4
c1=2v r�1=2 part of T is set equal to the product connection, the function ˛˘

is the constant function 1, and ˇ˘ is zero.

Assume next that m> 0. Introduce ��� to denote the function that is defined by the
rule z 7! �.4c�1=2v r�1=2jzj � 1/. This function equals 1 where jzj � 1

4
c1=2v r�1=2 and

it equals 0 where jzj � 1
2

c1=2v r�1=2 . The definition of A˘ , ˛˘ and ˇ˘ in the next
equation uses ��� , it uses � and � to denote the pair of functions that are given by 
 ’s
version of (A-6), and uses the functions ˛m0 , am0 , ym and &m that appear in (A-44).
What follows defines A˘ , ˛˘ and ˇ˘ on the jzj< 3

4
c1=2v r�1=2 part of T :

(B-44) � A˘D�C����i2
1=2r�r ymdt�

1
2
m.1����C���r�r am0/.z�1dz�xz�1dxz/,

� ˛˘ D .1����.1� r�r j˛m0j//.z=jzj/
m ,

� ˇ˘ D i�r�1=2���r�r &m .

Part 4 The next lemma asserts two important features of the large cv and r versions
of .A˘;  ˘/.

Lemma B.12 There exists � � 100 and , given cv � � , there exists �cv > � with the
following significance: Suppose that r� �cv c10v and suppose that .A; D .˛; ˇ// is
a solution to the .r; �/ version of (1-13) with � a given element in � with P–norm
smaller than 1.

� The corresponding .A˘;  ˘/ does not depend on the coordinates from Part 4 of
Section Aa that are chosen from the various 
 2‚ versions of U
 .

� The corresponding .A˘;  ˘/ satisfies the c0 D cv and z D r versions of Proper-
ties 1–5 in Section Ab.

Proof The fact that .A˘;  ˘/ does not depend on the chosen coordinates from Part 4
of Section Aa follows directly from the fact that .A�;  �/ does not depend on these
choices. The assertion in the second bullet follows from Lemma A.1 if Properties 1, 2, 4
and 5 are obeyed on each component of Y �.Y�ƒ[T�ƒ/. The fact that these properties
are obeyed follows from (3-3) and the fact that ym and &m and their derivatives obey
similar bounds.

Bf A path from .A�;  �/ to .A˘;  ˘/

This subsection derives an .A; /– and r– independent bound for the norm of the
difference between the values of fs at .A�;  �/ and .A˘;  ˘/. The proposition that
follows makes the formal assertion.
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Proposition B.13 There exists � � 100 and , given cv � � , there exists �cv > � with
the following significance: Suppose that r� �cv c10v and suppose that .A; D .˛; ˇ//
is a solution to the .r; �/ version of (1-13) with � a given element in � with P –norm
smaller than 1. Then the norm of the difference between the respective values of fs at
.A�;  �/ and fs at .A˘;  ˘/ is bounded by � .

The proof of this proposition is given in Part 8 of the subsection. The intervening parts
define a certain path in Conn.E/�C1.Y IS/ from .A�;  �/ to .A˘;  ˘/ that is used
in the proof.

Part 1 The path is parametrized by Œ0; 1� and a given � 2 Œ0; 1� member is denoted by
.A˘� ;  ˘� / with � D 0 member .A�;  �/ and � D 1 member .A˘;  ˘/. As defined,
the pairs .A�;  �/ and .A˘;  ˘/ agree on Y�ƒ[T�ƒ and this will be the case for all
pairs along the path between them. The definition of the path f.A˘� ;  ˘� /g�2Œ0;1� on a
given component of Y � .Y�ƒ [ T�ƒ/ is supplied in a moment. The definition uses

 to denote the corresponding curve from the set

S
p2ƒ.y


C
p [ y


�
p /, and it uses T to

denote the set of points with distance .c4v C c3v /r
�1=2 or less from 
 . The definition

also uses 
 ’s version of the coordinates from Part 4 of Section Aa for T that has �
constant and � constant, real and greater than j�j.

By way of an overview of what is to come, the path � 7! .A˘� ;  ˘� / first moves
.A�;  �/jT to a pair with two salient features: it is very close to .A�;  �/ in a large k
version of the C k –topology; and it is constructed from a 1–parameter family of vortex
solutions to (2-8) with the parameter being the points in 
 . The parametrization is
such that the pullback via the scaling map z 7! r1=2z of a given t 2 
 solution to the
vortex equation defines the restriction of the new pair to the constant t slice of T . A
homotopy of this 
 –parametrized family through 
 –parametrized families of solutions
to (2-8) is used to define the second part of the path � 7! .A˘� ;  ˘� /. The end member
of this second part of the path is very close to .A˘;  ˘/ in a large k version of the
C k –topology. The third part of the path moves this end pair to .A˘;  ˘/.

Part 2 Suppose for the moment ˛ has no zeros on the boundary of the closure of a
given transverse disk in T with center on 
 . If this is the case, then the sum of the
local Euler numbers of the zeros of ˛ can be defined, and this sum is a positive integer.
If ˛ has no zeros on T ’s boundary torus, then this sum is the same for all transverse
disks of this sort. If ˛ has zeros on this torus, then there are two values that occur
unless both zeros of ˛ on the boundary of T have the same value of the parameter t .
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These two values differ by 1. In any event, use m˛ to denote the larger of the possible
values for the sum of the local Euler numbers.

Part 3 The construction requires a suitable isomorphism between ET and T �C .
To obtain one, fix an isomorphism between Ej
 and 
 �C that writes the pullback
of A on 
 as � C aA0dt with aA0 being constant and having absolute value less
than 2�=`
 . Use parallel transport by A along the rays from the origin in each
constant t disk to define an isomorphism between EjT and T �C . View A and ˛
using this isomorphism as a pair of a connection on the product bundle and a map
to C , and use the coordinates .t; z/ with this isomorphism to view ˇ likewise as a
map to C . Write A as � C aA0dt C a?A with aA0 being an iR–valued function and
where a?A has the form 1

2
yA.zdxz�xzdz/ with yA being a real-valued function. Use this

isomorphism to view ˛ as a map from T to C . As explained in the next paragraph,
the functions ˛ , aA0 and the 1–form a?A are such that

(B-45)
ˇ̌̌
@

@t
˛
ˇ̌̌
CjaA0jC r�1=2

�
ja?A jC

ˇ̌̌
@

@t
a?A

ˇ̌̌�
� c0c4v :

To justify these bounds, introduce polar coordinates on C by writing z D �ei� . The
pullback of A� � to a given constant t slice of T is a?A . When written using d�
and d� , this iR–valued 1–form appears as a?A D �i yA�

2d� with yA being an R–
valued function. The fact that this pullback of A�� lacks a d� component implies that
@
@�
aA0DFA

�
@
@�
; @
@t

�
, where FA is the curvature 2–form of A. Keeping in mind that @

@t

and v differ on T by no more than c0jzj, integrate this identity using the bounds
in Lemmas 2.1, B.2 and B.7 to obtain the asserted bound for jaA0j. Use this bound
on jaA0j, the aforementioned bound on

ˇ̌
@
@t
� v

ˇ̌
, the fact that j.rA˛/vj � c0 and

jrA˛j � c0r1=2 to see that
ˇ̌
@
@t
˛
ˇ̌

is bounded by c0c4v . The asserted bound on a?A
follows by integrating the curvature identity ��1 @

@�
.�2yA/D FA

�
@
@z
; @
@xz

�
using again

Lemmas 2.1, B.2 and B.7. To obtain the bound for the t –derivative of a?A , first
differentiate the curvature identity @

@�
aA0 D FA

�
@
@�
; @
@t

�
to obtain an equation for

@
@�

�
@
@�
aA0

�
. Meanwhile, a third curvature identity has �2 @

@t
yACi @

@�
aA0D iFA

�
@
@t
; @
@�

�
.

Differentiate this last equation to obtain an equation for @
@�

�
�2 @
@t
yA
�

that involves
derivatives of the components of FA

�
@
@t
; �
�
. Given what was said previously about

@
@t

and v , and, given the bounds in Lemmas 2.1, B.2 and B.7, integration of this last
equation finds

ˇ̌
@
@t
a?A

ˇ̌
� c0c4v r1=2 .

Part 4 This part defines .A˘� ;  ˘� / for � 2
�
0; 1
3

�
. The definition requires a prelimi-

nary lemma, Lemma B.14. To set the notation, reintroduce 'rW C!C , the rescaling
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map given by the rule z 7! r�1=2z , and introduce D� �C to denote the radius c4v disk
with center at the origin.

Lemma B.14 There exists � � 100 and , given m � 1 and cv � � , there exists
�c;m > � with the following significance: Suppose that r � �c;m c10v and suppose that
.A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a given element
in � with P–norm smaller than 1. Use .A; / to define T as above. There exists a
smooth map t 7! c.t/ from 
 to the space of solutions to (2-8) on C with the properties
listed below:

� The integral in (3-1) is finite , independent of t and either m˛ or m˛C 1.

� Any given version of c.t/ has the form .� C A�t ; ˛�t / and , for each t , the
pair .A�t ; ˛�t / on D� differs from .'�r a

?
A ; '

�
r ˛/jt in the C 0–topology by at

most c�mv .

� The assignment t 7! .A�t ; ˛�t / is such that
ˇ̌
@
@t
˛�t

ˇ̌
C
ˇ̌
@
@t

A�t
ˇ̌
� �c4v on D� .

This lemma is proved in Part 5; assume it for now. The � 2
�
0; 1
3

�
version of A˘� on the

jzj � .c4v � 2c3v /r
�1=2 part of T is A˘� D � C .1� 3�/aA0dt Ca?A C 3�.r

�
r A��a?A /.

Meanwhile, the respective E and EK�1 components of  ˘� on this same portion of T
are defined by the rule ˛˘� D˛C3�.r�r ˛��˛/ and ˇ˘� D .1�3�/ˇ . The definition on
the rest of T is given by using the connection �C.1�3�/aA0dtCa?AC3�.r

�
r A��a

?
A /

in lieu of A and the sections ˛C 3�.r�r ˛� � ˛/ and .1� 3�/ˇ in lieu of .˛; ˇ/ to
define the various functions and 1–forms that appear in (B-8)–(B-10). Keep in mind
when doing so that the various isomorphisms between E and the product bundle that
are invoked when writing (B-8)–(B-10) are not the isomorphisms that are used here.

Part 5 This part contains the proof of Part 4’s lemma.

Proof of Lemma B.14 The proof has five steps.

Step 1 Let DT denote the centered, radius c4v C c3v disk in C . Fix t 2 
 and use
Lemma 2.9 with the pair .A; ˛/jt to obtain a solution to (2-8)’s vortex equations on C

that can be written as .� CA1t ; ˛1t / and is such that ˛1t �'�r ˛jt and A1t �'�r a
?
A jt

on DT have C 3mC1–norm bounded by c�3m�1v . The 
 –parametrized family t 7!
.A1t ; ˛1t / need not be continuous, let alone differentiable; nor must it obey the first
bullet’s requirement at any given t 2 
 .

Step 2 To obtain a 
 –parametrized family that obeys the first bullet’s requirements,
consider first the case where ˛ lacks zeros on the boundary of T . In this case, ˛1t
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has m˛ zeros counting multiplicities that lie where jzj � c0 and no zeros where
jzj is greater than c0 and less than c4v C c3v C 1. Let z 7! %t .z/ denote the monic,
degree m˛ polynomial on C whose zeros with their corresponding multiplicity are
those of ˛1t . Write this polynomial as zm˛C�1tzm˛�1C� � �C�m˛t and use the values
of f�qtg1�q�m˛ as the coordinates for an element in the vortex moduli space Cm˛ . Let
ct denote this element. It follows from what is said in Section 2a of [20] that there exists
a purely m –dependent constant cm >1, and, given cv>cm , there exists a purely m – and
cv –dependent constant cm;c with the following significance: if cv>cm and r>cm;c , then
there exists a vortex solution on C that maps to ct which when written as .�CA2t ; ˛2t /
is such that the pair .A2t�'�r a

?
A ; ˛2t�'

�
r ˛/ on D� has C 3m –norm bounded by 2c�3m

v .

Step 3 Consider next the case when ˛ has two zeros on the boundary of T . Let tC and
t� denote the t –values of the points where these zeros occur. One of these zeros will
lie where u> 0 and the other where u< 0. Use .t˛C; zC/ to denote the coordinates of
the former and .t˛�; z�/ to denote those of the latter. Let I˛ � 
 denote the oriented
segment that starts at t˛C and ends at t˛� with I˛ being the single point tC when t˛CD
t˛� . The significance of I˛ is as follows: Fix a transverse disk of radius .c4vCc3v /r

�1=2

with center in the interior of I˛ . Then the sum of the local Euler number of the zeros
of ˛ on such a disk is equal to m˛ �1. Meanwhile, this sum for a transverse disk with
center on 
�I˛ is equal to m˛ . Keeping in mind that the coordinate t is R=`
 –valued,
let tC 2 Œ0; `
 / denote the lift to R of t˛C and introduce t� to denote the lift to R of
t˛� with 1

2
`
 � t�� tC<

3
2
`
 . Introduce pW ŒtC; t��! 
 to denote the projection map.

The inverse image of any given point in 
 �I˛ is empty if t�� tC < `
 and it contains
a single point if t�� tC � `
 . The inverse image of any given point in I˛ has a single
point if t�� tC � `
 and two points otherwise. Fix a smooth map zI W ŒtC; t��!C

with
ˇ̌
@
@t
zI
ˇ̌

constant, with jzI j � c4v C
9
8

c3v for all t , and such that zI .tC/D zC and
zI .t�/D z� . Require in addition that the image of .tC; t�/ lie where jzj> c4v C c3v .

For each t 2 
 , define monic polynomials z 7! %1t .z/ and z 7! %2t .z/ as follows:

(B-46) � Suppose that t … I˛ . The zeros of %1t with their corresponding multiplicity
are those of ˛1t with distance 1 or less from some jzj� c4vCc3v zero of '�r ˛ .
If p�1.t/D∅, then %2t D 1; and %2t D z� zI .p�1.t// if p�1.t/¤∅.

� Suppose that t 2 I˛ . The zeros of %1t with their corresponding multiplicity
are those of ˛1t with distance 1 or less from some jzj � c4v C c3v � 2 zero
of '�r ˛ . Meanwhile, %2t is

Q
t 02p�1.t/.z� zI .t

0//.

For each t 2 
 , use %t to denote the product %1t%2t . This is a monic polynomial
with t –independent degree, either m˛ or m˛C 1. Let m� denote this degree. Use the
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coefficients of %t to specify a point in the vortex moduli space Cm� . The observations
in Section 2a of [20] can be used to derive a purely m –dependent constant cm > 1,
and, given cv > cm , a purely m – and cv–dependent constant cm;c with the following
significance: If cv > cm and if r > cm;c , then there is a solution on C to (2-8) that
maps to %t ’s point in Cm� and can be written as .� CA2t ; ˛2t / with .A2t ; ˛2t / such
that .A2t �'�r a

?
A ; ˛2t �'

�
r ˛/ on D� has C 3m–norm bounded by 2c�3m

v .

Step 4 The map t 7! .A2t ; ˛2t / satisfies the requirements of the first and second
bullets of Lemma B.14, but it need not be smooth and, if smooth, it need not satisfy the
requirements of the third bullet. To remedy this defect, first introduce c� to denote the
integral of the function t 7! �.jt j � 1/ over R. Fix for the moment L� 1 and define
the map from 
 into C1.DT I iT �C˚C/ given by the rule t 7! .ALt ; ˛

L
t /, where

(B-47) .ALt ; ˛
L
t /D c

�1
�

Z
L�.Ljt � sj � 1/.A1s; ˛1s/ ds:

This is a smooth map. What follows are two consequences of (B-47). If L� c3m=2C4
v

then the C 0–norms of ˛Lt �'
�
r ˛jt and ALt �'

�
r a
?
A jt on D� are bounded by c�3m=2

v .
Moreover, the map t 7! .ALt ; ˛

L
t / is such that

ˇ̌
@
@t
˛Lt
ˇ̌
C
ˇ̌
@
@t

ALt
ˇ̌
� c0c4v on D� .

However, any given t version .� CALt ; ˛
L
t / need not obey the vortex equations. Even

so, the pair comes very close to doing so.

Step 5 To obtain a pair that obeys the vortex equation, introduce the .� CALt ; ˛
L
t /

version of (3-4)’s operator # . Denote this operator by #tL . As explained in a moment,
there is a smooth map t 7!ht from 
 to C1.CIC˚C/\L2.CIC˚C/ with the follow-
ing properties: Write ��tLht as .2�1=2e0t ; e1t /. Then .e0t ; e1t / has C 0–norm bounded
by c0c�3m=2

v on D� , its t –derivative on D� has pointwise norm bounded by c0c4�3m=2v

and the pair of connection and map to C given by .�CALt Ce0t dxz�xe0t dz; ˛Lt Ce1t /
obeys the vortex equations on C and defines a point in Cm� . To explain, note that the
vortex equations are obeyed if ht obeys an equation having the schematic form

(B-48) #tL#
�
tLht C .#

�
tLht / # .#�tLht /D qt ;

where qt has C 0– and L2–norm bounded by c0c�3m=2v . (The notation f1 # f2 denotes
a certain bilinear expression in the components of f1 and f2 with norm bounded by
c0jf1jjf2j.) Given (3-6) and this small norm for qt , the contraction mapping theorem
on a suitable Hilbert space can be used to find a smooth solution t 7! ht from 


to C1.CIC ˚ C/ \ L2.CIC ˚ C/ with C 1–norm bounded by c0c�3m=2v . The
contraction mapping theorem construction will guarantee a pointwise norm bound by
c0c4v for the t –derivative of #�tLht on D .
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Granted the preceding, set A�t D ALt C e0t dxz�xe0t dz and set ˛�t D ˛Lt C e1t . The
resulting map t 7! .A�t ; ˛�t / obeys all of the lemma’s requirements.

Part 6 This part defines the pair .A˘� ;  ˘� / for � 2
�
1
3
; 2
3

�
. To this end, let D denote

a given constant t slice of T , this being a transverse disk with center on 
 and radius
.c4v C c3v /r

�1=2 . If the sum of the local Euler numbers of ˛ on D is defined, then it
is also defined for ˛˘ and these sums are the same. Note that all of the local Euler
numbers of ˛˘ are positive. Let t 2 
 denote the center point of such a disk. Define a
monic polynomial z 7! %˘t .z/ on C using the rules that follow. If ˛ has no zeros on
the boundary of T , then %˘t .z/D zm˛ . If ˛ has zeros on the boundary of T , define %˘t
by using ˛˘t in lieu of ˛1t in (B-46). Meanwhile, let %�t denote the monic polynomial
on C whose roots with their corresponding multiplicity are the zeros of the function ˛�t
from Lemma B.14. Note that all such zeros have positive local Euler number. The
polynomials %˘t and %�t have the same degree. Denote this degree by m� .

Given � 2
�
1
3
; 2
3

�
, set %� t to be the monic polynomial .2�3�/%�t C .3� �1/%˘� . The

resulting 1–parameter family of polynomials interpolates between %�t and %˘t . For
any given pair .�; t/, the coefficients of %� t defines a point in Cm� that varies smoothly
with variations in � and t with the variation in � being real analytic. With � fixed for
the moment, let t 7! c� .t/ denote the corresponding map from 
 to Cm . Lemma B.14
describes a lift of the map t 7! c�D1=3.t/ to a smooth map t 7! .�CA�t ; ˛�t / from 


into the space of solutions to (2-8) on C . The next lemma describes a corresponding
smooth lift of the two-variable map .�; t/ 7! c� .t/ from

�
1
3
; 2
3

�
� 
 to Cm� .

Lemma B.15 There exists � � 100 and , given cv � � , there exists �cv > � with the
following significance: Suppose that r� �cv c10v and suppose that .A; D .˛; ˇ// is
a solution to the .r; �/ version of (1-13) with � a given element in � with P–norm
smaller than 1. Fix a component of the corresponding version of Y � .Y�ƒ [ T�ƒ/
and introduce the latter’s version of the integer m and the map .�; t/ 7! c� .t/ from�
1
3
; 2
3

�
� 
 to Cm . There is a smooth map .�; t/ 7! .A� t ; ˛� t / from

�
1
3
; 2
3

�
� 
 to

C1.CI iT �C˚C/ which is real analytic with respect to variations in � and such that
at each .�; t/ 2

�
1
3
; 2
3

�
� 
 , the pair of connection on the product bundle C �C and

map to C given by .� CA� t ; ˛� t / satisfies (2-8) and projects to c� .t/. In addition ,

�
ˇ̌
@
@t
˛� t

ˇ̌
C
ˇ̌
@
@t

A� t
ˇ̌
� �c4v on D� ;

�
ˇ̌
@
@�
@˛� t

ˇ̌
C
ˇ̌
@
@�

A� t
ˇ̌
� �c4v on D� .
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This lemma is proved in a moment. By way of notation, any given � 2
�
1
3
; 2
3

�
version

of the map t 7! .A� t ; ˛� t / from 
 into C1.CI iT �C˚C/ is denoted in what follows
by .A� ; ˛� /.

The � 2
�
1
3
; 2
3

�
version of the connection A˘� on the jzj � .c4v � 2c3v /r

�1=2 part of T
is A˘� D �C r�r A� and the respective E and EK�1 components of  ˘� on this same
portion of T are defined by the rule ˛˘� D r�r ˛� and ˇ˘� D 0. The definition on the
rest of T is given by using the connection � C r�r A� in lieu of A and the sections
r�r ˛� and 0 in lieu of .˛; ˇ/ to define the various functions and 1–forms that appear
in (B-8)–(B-10). Keep in mind when doing so that the various isomorphisms between
E and the product bundle that are invoked when writing (B-8)–(B-10) are not the
isomorphisms that are used here.

Proof of Lemma B.15 The existence of a lift of the map .�; t/ 7! c� .t/ follows from
what is said in Section 2c of [20]. The existence of a lift with t – and � –derivatives
bounded by c0c4v follows from what is said in this same Section 2c of [20] using (2.5),
(2.11), (2.12) and (2.19) in [20].

Part 7 This part defines .A˘� ;  ˘� / for � 2
�
2
3
; 1
�
. This definition is given below

by (B-49). To set the notation, view A˘ and the pair .˛˘; ˇ˘/ as a respective connection
on T �C and pair of maps from T to C using the same isomorphism of EjT with
T �C that is used to define the � D 2

3
version of .A˘� ;  ˘� /. The definition writes

this depiction of A˘ as � C A0˘ and it writes this depiction of .˛˘; ˇ˘/ as .˛0˘; ˇ
0
˘/.

The connection A
˘�D 2

3
is written below as � C A

˘ 2
3

. Equation (B-49) refers to a map
yuW 
 �C ! S1 that is described below by Lemma B.16. Fix � 2

�
2
3
; 1
�

and what
follows defines .A˘� ;  ˘� / on T :

(B-49) � A˘� D � C .3� � 2/.A
0
˘� yu

�1d yu/C .3� 3�/A
˘ 2
3

.

� ˛˘� D .3� � 2/yu˛
0
˘C .3� 3�/˛˘ 2

3
and ˇ˘� D .3� � 2/yuˇ0˘ .

The map yu is constructed in the proof of Lemma B.16.

Lemma B.16 There exists �� 100 and , given m � 1 and cv � � , there exists �c;m >�

with the following significance: Suppose that r � �c;m c10v and let .A; D .˛; ˇ//
denote a solution to the .r; �/ version of (1-13) with � an element in � with P –norm
less than 1. Use .A; / to define T and the corresponding versions of .A0˘; ˛

0
˘/ and

.A
˘ 2
3
; ˛
˘ 2
3
/. There exists a smooth map yuW T ! S1 such that

r�1=2jA0˘� yu
�1d yu�A

˘ 2
3
jC jyu˛0˘�˛˘ 2

3
j � c�m

v and
ˇ̌̌
A0˘

�
@

@t

�
� yu�1

@

@t
yu
ˇ̌̌
� �c4v :
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Proof The two steps that follow construct yu on the jzj � 1
2

c1=2v r�1=2 portion of T .
But for cosmetic changes, the same construction supplies yu on the rest of T .

Step 1 To define yu where jzj � 1
2

c1=2v r�1=2 , recall from Part 3 that the pullback of

.A˘;  ˘/ to the jzj � 1
4

c1=2v r�1=2 portion of a transverse disk centered on any given
t 2 
 is the solution to the vortex equations in (2-8) given by�

� � 1
2
mr�r am0.z�1dz�xz�1dxz/; r�r ˛m0

�
:

Meanwhile, the pullback of .A
˘�D 2

3
˛
˘�D 2

3
/ to the same part of the transverse disk

centered at t 2 
 is a solution to (2-8) that was written as .� C r�r A 2
3
t ; r
�
r ˛ 2

3
t /. The

two C–valued functions ˛m0 and ˛ 2
3
t have the same zero locus on the jzj � 3

4
c1=2v ,

this being the origin. Moreover, they have the same local degree at 0. What follows is
a consequence: there exists a smooth map, denoted here by u, from the jzj � 9

16
c1=2v

part of 
 �C to S1 such that u˛ 2
3
D j˛ 2

3
jzm .

Fix a positive integer m . Granted the preceding, use what is said in Part 4 of Section 2a
in [20] about solutions to (2-8) to find a purely m –dependent lower bound for cv such
that the subsequent assertion is true when cv exceeds this bound. Introduce d?u to
denote the exterior derivative of u along the constant t slices of 
 �C . For t 2 
 ,
the pairs .A 2

3
t �u

�1d?u; u˛ 2
3
t / and

�
�
1
2
mam0.z�1dz�xz�1dxz/; ˛m0

�
differ by at

most c�3m
v in the C 2m topology on the jzj � 5

8
c1=2v disk in C .

This last conclusion has the following consequence: if cv is greater than a purely m–
dependent lower bound, then the map u1 D u�1.'�r ˛

0
˘/
�1˛m0 , from the jzj � 9

16
c1=2v

part of 
 �C to S1 is such that for any t 2 
 , the pair .A 2
3
t ; ˛ 2

3
t / and the pullback

to ftg �C of the pair .'�r A0˘ � u
�1
1 du1; u1'

�
r ˛
0
˘/ differ by less than c�5m=2

v in the
C 2m –topology on the disk jzj � 5

8
c1=2v .

Step 2 The map u1 can be replaced by a map u2W 
 �C ! S1 such that if cv is
greater than a purely m –dependent constant, then:

(B-50) � For t 2 
 , the pullback to ftg �C of .'�r A0˘ � u
�1
2 du2; u2'

�
r ˛
0
˘/ and

.A 2
3
t ; ˛ 2

3
t / differ pointwise on the jzj � 5

8
c1=2v part of C by at most c�m

v .

�
ˇ̌
A0˘
�
@
@t

�
�u�12

@
@t
u2
ˇ̌
� c0c4v on the jzj � 5

8
c1=2v part of C .

The map yu on the jzj � 5
8

c1=2v r�1=2 part of T is defined to be r�r u2 .

To construct u2 , write u1 as u�1.'�r ˛
0
˘/
�1˛m0 and write u as ei.2�nt=`
Cx/ with n

being an integer and x being a real-valued function on 
�C . The map u2 has the form
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3428 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

ei.2�n=`
Cx2/ with x2 being a real-valued function on 
 �C . The function x2 is the
smoothing of the function x that is given by the rule x2jtDc�1�

R
L�.Ljt�sj�1/xjs ds

with c� being the constant that appears in (B-47) and with LD c5m=4
v . The resulting

map u2 obeys the inequality in the first bullet of (B-50) if cv is greater than a purely
m –dependent constant. This is a direct consequence of the c�5m=2

v bound obtained in
Step 1. Meanwhile,

ˇ̌
@
@t
x2
ˇ̌
� c0c4v , this being a consequence of this same c�5m=2

v bound
and the bound in the top bullet of Lemma B.15. Granted all of this, then Lemma B.16’s
right-most inequality is obeyed if the integer n is such that jnj � c0c4v .

To obtain such a bound for n, fix a constant z circle in T with jzj D 1
4
��1˘ cv and with

distance at least 1
100
��1˘ c1=4v or more from ˛ ’s zero locus. Proposition 2.4 guarantees

the existence of such circles if cv � c0 and if r is greater than a purely cv–dependent
constant. The integral over the chosen circle of �iu�1 @

@t
u is equal to 2�n`�1
 , and

so upper and lower bounds on this integral give a bound for jnj. A suitable bound is
obtained by writing ˛ 2

3
as j˛ 2

3
ju�1zm to derive the identity

(B-51) i.˛ 2
3
/�1

@

@t
˛ 2
3
D 2�n`�1
 C

@

@t
xC i

@

@t
ln.j˛ 2

3
j/:

Integrate both sides of this identity on the given circle. The integral of the right-hand
side is 2�n, and the top bullet in Lemma B.15 bounds the absolute value of the integral
of the left-hand side by c0c4v .

Part 8 The promised proof of Proposition B.13 is given below. By way of a look
ahead, the proof uses the results from Appendix A in much the same way as does the
proof of Proposition B.3. Most of what is said in Appendix A requires Properties 1–5
in Section Ab; the fact that each � 2 Œ0; 1� version of .A˘� ;  ˘� / has these properties
is asserted by the next lemma.

Lemma B.17 There exists � � 100 and , given cv � � , there exists �cv > � with the
following significance: Suppose that r � �cv c10v and suppose that .A; D .˛; ˇ//
is a solution to the .r; �/ version of (1-13) with � a given element in � with P–
norm smaller than 1. Each element in the corresponding path f.A� ;  � /g�2Œ0;1� obeys
Properties 1–5 in Section Ab.

Proof The assertion follows from Lemma A.1 if it is the case that Properties 1–5
hold on Y � .Y�ƒ [ T�ƒ/. To verify that this is indeed the case, focus attention
now on a given component of this set. Let 
 denote the corresponding curve fromS

p2ƒ.y

C
p [y


�
p / and let T denote the radius .c4vCc3v /r

�1=2 tubular neighborhood of 
 .
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The fact that Properties 4 and 5 hold on T when cv � c0 and r is larger than a purely
cv–dependent constant follows from (A-4) and Lemmas B.14–B.16. The fact that
Properties 1 and 2 hold on T follows from (A-4), and Lemmas B.14–B.15 given that
the vectors fields @

@t
and v differ on T by at most c0c4v . The details of the argument

are straightforward and left to the reader but for the remark that the verification of the
second and third bullets of Property 2 require the third bullet of Lemma B.14, the first
bullet of Lemma B.15 and the bound for

ˇ̌
A0˘
�
@
@t

�
� yu�1 @

@t
yu
ˇ̌

in Lemma B.16.

Proof of Proposition B.13 The assertion of the proposition follows if there is a purely
cv–dependent �c � 1 with the following property: Assume that cv � c0 and r � �c .
Fix any interval Œ�; � 0�� Œ0; 1� of length at most ��1c . Then the norm of the difference
between the values of fs at .A˘� ;  ˘� / and at .A˘� 0 ;  ˘� 0/ is bounded by c0 . The
three steps of the proof exhibit a purely c –dependent �c with this property.

Step 1 What is said in Part 1 of the proof of Proposition B.3 applies to the family
fLV�g�2Œ0;1� , where any given � 2 Œ0; 1� member is the .A˘� ;  ˘� / version of the
operator LV that is depicted in (A-26) and (A-27). This being the case, there is
the corresponding set of eigenvalue families f�n�gn2Z;�2Œ0;1� . Keep in mind that
all � 2 Œ0; 1� versions of LV� are identical on Y�ƒ [ T�ƒ . This has the following
consequence: Fix n2Z and an interval in Œ0; 1� where the map � 7!�n� is differentiable.
Let � 7! f.�/ denote the corresponding family of unit L2–norm eigenvectors. Then the
relevant version of (B-20) has the form

(B-52) d

d�
�n� D

Z
Y�.Y�ƒ[T�ƒ/

f
�

.�/

�
d

d�
LV�

�
f.�/:

Fix m > c0 and take cv and r so as to invoke Lemmas B.14 and B.16. If I is either
of the intervals

�
0; 1
3

�
or
�
2
3
; 1
�
, then these lemmas imply that the � 2 I versions

of d
d�

LV . � / is an endomorphism of V with pointwise norm bounded by c0c�mv r1=2 .
This being the case, integrate (B-52) to draw the following conclusion: Fix n 2 Z. If
�n. � / has a zero in I , then j�n� j � c0c�mv r1=2 for all � 2 I.

Suppose in addition that cv and r are such that Lemma B.15 can also be invoked.
Lemma B.15 implies that the � 2

�
1
3
; 2
3

�
version of d

d�
LV . � / has pointwise norm

bounded by c0r1=2 . This understood, fix an interval I �
�
1
3
; 2
3

�
with length at most c�mv .

Integrate (B-52) on the interval I to deduce the analog of what is said at the end of the
preceding paragraph: Fix n 2 Z. If �n. � / has a zero in I, then j�n� j � c0c�mv r1=2 for
all � 2 I.
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Step 2 With m � 1 fixed, take cv and r large enough to invoke the preceding lemmas
in this Appendix B and the c0 D cv versions of the lemmas in Appendix A. Let I now
denote any given interval in Œ0; 1� of length at most c�m

v . If m > c0 , then Lemma A.6
can be invoked to draw the following conclusion: Let n 2 Z be such that �n. � / has a
zero in I. Fix � 2 I and use f.�/ to denote an eigenvector of LV� with eigenvalue �n� .
Then k…� f.�/k � .1� c0c�1v /kf.�/k2 .

Supposing that m � c0 , that cv is greater than a purely m–dependent constant, and
that r is greater than a purely m– and cv–dependent constant, then Lemmas A.7
and A.8 can be invoked to conclude the following: Let I � Œ0; 1� denote an interval of
length c�10 c�m

v . If n 2 Z and �n. � / has a zero in I, then j�n� j � c�m
v for all � 2 I.

Step 3 Let I � Œ0; 1� denote an interval of length at most c�10 c�mv . Write I as Œ�; � 0�.
Granted that the conclusion of the preceding step holds for I, then the argument used
in Part 4 of the proof of Proposition B.3 can be repeated with only notational changes
to see that the norm of the difference between the respective values of fs at .A˘� ;  ˘� /
and at .A˘� 0 ;  ˘� 0/ is at most c0 .

C Paths in Conn.E/�C1.Y IS/ from vortex solutions

This last section of the appendix first constructs a deformation of .A˘;  ˘/ through a
family of pairs in Conn.E/�C1.Y IS/, all made from vortex solutions as in Section Aa
and (A-44) using zD r. The end result is then deformed through a family that is defined
using vortex solutions as done in Section Aa and (A-44) using ever-increasing values
of z. The end result of this deformation is a pair whose resulting version of LV as
defined using z� r can be compared with that of a z DO.1/ version using a strategy
from [21]. These comparisons are used in Section Ce of this appendix to complete the
proof of Proposition 2.6.

Ca Deforming the zero locus of ˛˘

The zero locus of ˛˘ is a disjoint union of two sorts of embedded circles. The first are
curves from the set

S
p2ƒ.y


C
p [ y


�
p /. The remainder consist of a finite set of at most

G embedded circles that look very much like the subset of curves from a generator
of the embedded contact homology chain complex that intersect the f �1.1; 2/ part
of Mı . With this in mind, this subsection constructs a path in Conn.E/�C1.Y IS/
from .A˘;  ˘/ that ends at a pair of connection on E and section of S with the
following property: the section of S when written with respect to the decomposition
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SDE˚EK�1 has E component whose zero locus consists entirely of closed integral
curves of v .

The construction of the desired path occupies the first three parts of the subsection.
The fourth part of the subsection states and then proves a proposition that supplies an
r–independent bound for the absolute value of the difference between fs at .A˘;  ˘/
and at the end member of the path.

Part 1 Given that r � c0 , it follows from Proposition 2.4 and Proposition II.2.7
that there exists a set of closed integral curves of v whose intersection with Mı is
everywhere very close to ˛�1.0/\Mı . This set of curves is denoted here by ‚˛ ; it
is parametrized as in Proposition II.2.7 as ‚˛ D .y�˛; .k˛p /p2ƒ/. The component y�˛

from ‚˛ describes how the curves from ‚˛ intersect Mı , and each p 2 ƒ version
of k˛p is an integer that describes how the curves from ‚˛ intersect Hp . The paragraphs
that follow say more about the significance of the parametrization that is used by [9].

What is denoted by y�˛ signifies a certain set of G segments of integral curves of v in
the f �1.1; 2/ part of Mı , these being integral curves that extend into M as integral
curves of the pseudogradient vector field for f that was used in Section II.1 to define
the geometry of Y . The segments that form y�˛ define a pairing between the index 1
critical points of the incarnation of f as a function on M and the latter’s index 2 critical
points in the following sense: Each arc from this set starts on the boundary of the
radius ı coordinate ball in Mı corresponding to an index 1 critical point of f , and
each ends on the boundary of the radius ı coordinate ball in Mı of an index 2 critical
point of f . Moreover, distinct arcs start on distinct radius ı coordinate balls and end
on distinct radius ı coordinate balls. The section ˛ determines y�˛ in the following
way: The pairing of index 1 critical points of f jM with index 2 critical points that is
determined via ˛ as described in the third bullet of Proposition 2.4 is the same pairing
given by y�˛ . Moreover, the respective components of ˛�1.0/\Mı and y�˛ that pair
the same index 1 and index 2 critical points of f jM are in each other’s radius c�10 ı

tubular neighborhoods.

As noted above, the component .k˛p /p2ƒ of ‚˛ consist of a set of integers that are
labeled by the pairs in ƒ. The remainder of Part 1 explains how ˛ determines this
set. To this end, let � denote a component of the zero locus of ˛˘ that intersects Mı

and let y�˛;� � y�˛ denote the subset which corresponds to � \Mı in the sense that
corresponding arcs label the same index 1 and index 2 critical points of f jM . Introduce
ƒ� to denote the subset of p 2ƒ with � \Hp ¤∅ and suppose for the moment that
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kD .kp/p2ƒ� is a given set of integers parametrized by ƒ� . Proposition II.2.7 uses
the sets y�˛;� and k to define a closed integral curve of v . Let �k denote this integral
curve of v . The next paragraph summarizes some facts about �k that follow from
Proposition II.2.7.

The label k makes a significant difference with regards to the behavior of �k on the
various p 2ƒ� versions of Hp . To say more, fix an element p 2ƒ� . Then �k\Hp is
an arc that crosses Hp where 1�3 cos2 � > 0 starting from the u < 0 boundary of Hp

and ending on the u > 0 boundary of Hp . These endpoints have distance at most c�10 ı

from the corresponding endpoints of � \Hp . This understood, define a continuous
and piecewise smooth loop in Hp as follows: Start on the u < 0 boundary point of
�k\Hp and travel along �k\Hp to its u > 0 boundary. Take the short geodesic arc
from this boundary point of �k\Hp to the nearby boundary point of � \Hp . Having
done so, travel in the reverse direction along �\Hp to its boundary point on the u< 0
boundary of Hp . Then take the short geodesic arc to the starting point on �k \Hp .
The result is an oriented, piecewise smooth loop in the 1� 3 cos2 � > 0 part of Hp

and thus a class in the first homology of the 1� 3 cos2 � > 0 part of Hp . Meanwhile,
the first homology of this part of Hp is isomorphic to Z with generator being the
uD 0, cos � D 0 circle. The loop just constructed from �\Hp and �k\Hp defines an
element in this homology class, thus an integer multiple of the generator. This integer
can be written as m�;pC kp with m�;p depending on � \Hp but not on k.

Granted the preceding, any given p 2ƒ� version of the integer k˛p coming from ‚˛

is �m�;p . This is to say that the kp D k˛p version of the loop in Hp described in the
preceding paragraph is null-homotopic.

The subsequent parts of this subsection use �˛ �‚˛ to denote the loop that is defined
by the subsets y�˛;� � y�˛ and components .k˛p /p2ƒ� � .kp/p2ƒ .

Part 2 The introduction promises a path in Conn.E/ � C1.Y IS/ from .A˘;  ˘/

that ends at a pair whose section of SDE˚EK�1 has E component with zero locus
consisting entirely of closed integral curves of v , these being the curves from ‚˛ and
the curves from

S
p2ƒ.y


C
p [y


�
p / that lie in ˛�1˘ .0/. The path in Conn.E/�C1.Y IS/

is parametrized by Œ0; 1� and a given � 2 Œ0; 1� member of this path is denoted in what
follows by .A˘1� ;  ˘1� /. The definition of this element in Conn.E/�C1.Y IS/ is
given in a moment. The lemma that follows directly supplies input for the definition.

Lemma C.1 Fix m � 1. There an m –dependent constant � � 100 and , given cv � � ,
there exists �cv > � with the following significance: Suppose that r � �cv c10v and
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suppose that .A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a
given element in � with P–norm smaller than 1. The parameters � , cv and r are
suitable for use in Lemma B.11 and in particular for constructing .A˘;  ˘ D .˛˘; ˇ˘//
and the corresponding set ‚˛ . Let � denote a component of ˛�1˘ .0/ that intersects Mı

and let �˛ denote the corresponding element in ‚˛ . There exists an isotopy from
Œ0; 1�� � into Y starting from � , ending at �˛ and with the properties listed below.
The list uses �˛� to denote the � 2 Œ0; 1� curve of the isotopy.

� Each point in �˛� has distance at most m�1 from the corresponding point in � .

� Each point in �˛� has distance at least ��1cvr�1=2 from each curve in the setS
p2ƒ.y


C
p [ y


�
p /.

� The unit tangent vector to �˛� has distance at most cvr�1=2 from v , and it has
distance at most �r�1=2 from v at the points where the distance is at least
cvr�1=2 from each curve in

S
p2ƒ.y


C
p [ y


�
p /.

� The pushforward via this isotopy of @
@�

is bounded by �cv .

This lemma is proved in Section Cb.

Part 3 Granted Lemma C.1, fix � 2 Œ1; 2� so as to define .A˘1� ;  ˘1� /. The definition
of this pair is identical to that of .A˘;  ˘/ given in Section Be but for one change and
one added remark. What follows directly is the one change to Section Be’s definition.
Let � denote a given component of the zero locus of ˛˘ that intersects Mı . By way of
a reminder, � ’s intersection with Y�ƒ[T�ƒ is a union of components of ˛ ’s zero locus
in Y�ƒ[T�ƒ , and � ’s intersection with any given component of Y � .Y�ƒ[T�ƒ/ is
described by Lemma B.11. This understood, replace � in the formula that appear in
Section Be with the corresponding curve �˛� that is supplied by Lemma C.1.

The added remark addresses the need to specify an isomorphism between E and the
product bundle over a certain neighborhood of each curve �˛� and over the complement
of the union of a certain smaller neighborhood about

S
�˛2‚˛ �

˛
� and a neighborhood

of the components of the zero locus of ˛˘ from
S

p2ƒ.y

C
p [ y


�
p /. The required

isomorphisms are already specified for the � D 0 case, these being the ones needed to
define .A�;  �/ and .A˘;  ˘/. The three steps that follow describe the � > 0 versions
of these isomorphisms.

Step 1 Let �˛ denote a given component of ‚˛ . The definition of .A˘;  ˘/ referred
to larger and smaller neighborhoods of the corresponding curve � . Each � 2 Œ0; 1�
version of �˛� has its analogous neighborhoods, these denoted by U�;� and U 0�;� .
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The set U�;� is a neighborhood of �˛� that is defined as follows: Its intersection
with Y�ƒ[T�ƒ is the radius 4c2v r�1=2 tubular neighborhood of �˛� . To describe the
remainder of U�;� , fix a component of Y � .Y�ƒ [ T�ƒ/ and let 
 denote for the
moment the corresponding curve from

S
p2ƒ.y


C
p [ y


�
p /. Reintroduce 
 ’s version

of the coordinates .t; z/ that are used on this component to define .A˘;  ˘/. Let T
denote the jzj � .c4v C c3v /r

�1=2 part of the coordinate chart. The set U�;� intersects
the jzj � .c4v � 2c3v /r

�1=2 part of T as the radius 4c2v r�1=2 tubular neighborhood of
this part of �˛� . The intersection of U�;� with the rest of T is the radius 4c1=2v r�1=2

tubular neighborhood of this part of �˛� . The set U 0�;� is defined analogously, but with
the factor of 4 missing.

Introduce for each � 2 Œ0; 1� the neighborhood of �˛� that is defined as follows: This
neighborhood intersects the complement in Y of the radius .c4v � 3c3v /r

�1=2 tubular
neighborhoods of the curves from

S
p2ƒ.y


C
p [ y


�
p / as the tubular neighborhood of �˛�

with radius 8c2v r�1=2 , and it intersects the remaining part of Y as the concentric tubular
neighborhood of �˛� with radius 8c1=2v r�1=2 . This neighborhood is denoted by U�;�� .
The set U�;� is a proper subset of U�;�� .

Step 2 Fix an isomorphism between K�1j� and � �C that gives a version of the
coordinates from Part 4 of Section Aa for � with j�j C j�j � c0 . The pushforward
of d

d�
by the map that defines Lemma C.1’s isotopy gives a vector field along the

image of the isotopy. Parallel transport along the integral curves of this vector field
defines an isomorphism over any given � 2 Œ0; 1� version of �˛� between K�1 and the
product bundle. Use this isomorphism to define a �˛� version of the coordinates from
Part 4 of Section Aa. The associated pair .�; �/ is such that j�jC j�j � c0 , this being
a consequence of the fourth bullet in Lemma C.1.

Fix � 2 Œ0; 1�. The pushforward of d
d�

ˇ̌
�

appears with respect to the �˛� version of the
.t; z/ coordinate chart as a vector that is defined at z D 0. View this vector as a vector
field on U�;�� whose coefficients have no z–dependence. Use the function � to extend
the latter vector field from U�;� to the rest of Y so as to be equal to 0 on the complement
of U�;�� and so that its commutator with @

@z
on U�;�� is bounded by �cv r1=2 with

�cv denoting the constant from Lemma C.1. The existence of an extension with this
property follows from what is said by the fourth bullet of Lemma C.1. This extension
is denoted in what follows by v�;� . Use v˛ to denote the vector field on Œ0; 1�� Y
that is defined by the rule v˛j� D d

d�
C
P
�2‚˛

v�;� .

Define �˛W Œ0; 1� � Y ! Y to be the map that sends any given point .�; p/ to the
point in f0g �Y that lies on the integral curve through p of the vector field v˛ . The
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map �˛ is a surjection that restricts to any � 2 Œ0; 1� version of �˛� as a diffeomorphism
onto � .

Step 3 Let � W Œ0; 1��Y !Y denote the standard projection. The respective pullbacks
of E by � and �˛ are isomorphic. Use '˛W ��E! ��˛E to denote the isomorphism
that is defined by parallel transport along the fibers of �˛ by the connection ��˛A˘1 .
The pullback ��˛˛˘1 defines a section of ��˛E and so '�1˛ .��˛˛˘1/ defines a section
of ��E . This section is denoted by y̨˘ and its restriction, y̨˘j� , to any given constant �
slice is a section of E . The zero locus of the latter is

S
�˛2‚˛ �

˛
� ; it vanishes

transversely with degree 1 on each component curve.

Step 4 Fix � 2 Œ0; 1� and introduce U0;� to denote the f�˛� g�˛2‚˛ version of
the set U0 . This is the complement of

S
�˛2‚˛ U

0
�;� and the union of the radius

c�10 c1=2v r�1=2 tubular neighborhoods of the curves from
S

p2ƒ.y

C
p [ y


�
p / in the zero

locus of ˛˘ . The constructions that define .A˘1� ;  ˘1� / require an isomorphism
over U0;� between E and the product bundle. Use the isomorphism that sends y̨˘j�
to
ˇ̌
y̨˘j�

ˇ̌
� 1.

The constructions that define .A˘1� ;  ˘1� / also require an isomorphism between the
bundle E and the product bundle over each set from the collection fU�;�g�˛2‚˛ . This
isomorphism is defined using the �˛� version of the coordinates .t; z/. The desired
isomorphism sends the section y̨˘j� to

ˇ̌
y̨˘j�

ˇ̌
z=jzj.

Part 4 The next proposition compares fs at .A˘;  ˘/ with fs at .A˘1�D1;  ˘1�D1/.

Proposition C.2 There exists � � 100 and , given cv � � , there exists �cv > �

with the following significance: Suppose that r � �cv c10v and suppose that .A; D
.˛; ˇ// is a solution to the .r; �/ version of (1-13) with � a given element in � with
P–norm smaller than 1. Assume that the parameters � , cv and r are suitable for
use in Lemma B.17 and in particular for constructing the path f.A˘1� ;  ˘1� /g�2Œ0;1� .
Then the norm of the difference between the values of fs at .A˘;  ˘/ and fs at
.A˘1�D1;  ˘1�D1/ is no greater than �cv .

Proof The proof is much like that of Proposition B.13. In any event, there are four
steps.

Step 1 Use the same arguments that prove Proposition B.13 to prove that Proposition
B.13’s assertion also holds for each � 2 Œ0; 1� version of .A˘� ;  ˘� /.
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Step 2 For any given � 2 Œ0; 1�, use LV� for the moment to denote the .A˘1� ;  ˘1� /
version of the operator LV that is depicted in (A-26) and (A-27). This family is not
real analytic, but there are as small as desired perturbations that make it so, and, this
being the case, what is said in Part 1 of the proof of Proposition B.3 can be assumed to
apply. Let f�n�gn2Z;�2Œ0;1� denote the corresponding set of eigenvalue families. The
analog of (B-52) in this case reads

(C-1) d

d�
�n� D

X
�˛2‚˛

Z
U�;�

f
�

.�/

�
d

d�
LV�

�
f.�/;

this because the � –derivative of .A˛1� ;  ˛1� / has support only in
S
�˛2‚˛ U�;� .

Step 3 It follows from what is said in the fourth bullet of Lemma B.11, in Lemma C.1
and in Part 3 that the endomorphism d

d�
LV� of V0˚V1 has pointwise norm bounded

by �c1r1=2 , where �c1 is a constant that is purely cv–dependent. With this in mind,
fix an integer m � 1 and let I � Œ0; 1� denote an interval of length at most m�1 . The
formula in (C-1) implies that �n. � / has a zero on I only if j�n� j � m�1�c1r1=2 for
each � 2 I.

This understood, it follows from the lemmas in Section Aa that if cv � c0 and r is
greater than a purely cv –dependent constant, then there is a second purely cv –dependent
constant �c2 > �c1 with the following significance: Take m > �c2 and suppose that
n2Z is such that �n. � / has a zero in I. Fix � 2 I and use f.�/ to denote an eigenvector
of LV� with eigenvalue �n� . Then k…# f.�/k � .1� c0c�1v /kf.�/k2 .

Granted the preceding, use Lemmas A.2, A.3, A.7 and A.8 with (A-28)–(A-30) to
deduce the following: Suppose that cv � c0 , r is greater than a purely cv–dependent
constant, and that m is greater than yet another purely cv –dependent constant. Suppose
that n 2 Z and �n. � / has a zero on I. Then j�n� j � c�4v for all � 2 I.

Step 4 Take cv , r and m so as to use what is said in Steps 1–3. Fix � 0 > � 2 Œ0; 1�
with � 0� � < m�1 . Since m need only be greater than a purely cv –dependent constant,
assume that it is no greater than this constant plus 1. The argument used in Part 4 of the
proof of Proposition B.3 can be repeated with only notational changes to see that the
norm of the difference between the values of fs at .A˘1� ;  ˘1� / and at .A˘1� 0 ;  ˘1� 0/
is at most �c with �c being a purely cv–dependent constant. This conclusion implies
what is asserted by Proposition C.2 as Œ0; 1� can be covered by 2m intervals of length
less than m � 1.
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Cb The proof of Lemma C.1

The proof has fourteen steps.

Step 1 Fix p 2 ƒ such that � crosses Hp . The curve � crosses the u D RC ln ı
sphere in Hp and quickly intersects the f D 1C ı2 surface in Hp as it continues out
of Hp to cross Mı . Let zpC denote this intersection point. By way of a reminder, the
function f where u � RC ln ı in Hp is given by f D 1C e�2.R�u/.1� 3 cos2 �/.
The point zpC is the starting point of a component of the f 2 .1C ı2; 2� ı2/ part
of � \Mı . The ending point of this component lies on the f D 2� ı2 surface in one
of the handles fHp0gp02ƒ . Let p0 2ƒ denote the relevant pair and let zp0� denote this
ending point on the f D 2� ı2 surface in Hp0 .

By way of a reminder from Part 2 in Section II.1C, the index 1 critical point from
p has an ascending disk in Mı that intersects the Heegaard surface � as a smoothly
embedded circle, this denoted by CpC ; and the index 2 critical point from p0 has a
descending disk in Mı that intersects the Heegaard surface † as a smoothly embedded
circle, this denoted by Cp0� . The segment of � that starts at zpC and ends at zp0�
intersects † at a point with distance c�10 or less from a point in CpC\Cp� . Use z� for
this point in �\† and use z� for the nearby point in CpC\Cp0� . The point z� is well
inside a certain coordinate neighborhood of z� . This neighborhood has coordinates
.'; h/ which are defined where j'j2 C jh j2 is bounded by a constant that depends
only on the geometry of M. The pair .'; h/ is such that z D 'C ih is a holomorphic
coordinate for the neighborhood.

Lie transport by v of the functions .'; h/ along v ’s integral curves defines coordinates
.t; '; h/ for a closed cylinder in Mı with t being the value of f along the integral
curves of v . The coordinate t is restricted to the interval Œ1 C ı2; 2 � ı2�. The
corresponding t D 1C ı2 boundary disk of the cylinder is a disk in the u > RC ln ı
part of Hp . The function ' on this boundary disk is such that d' D d� . The function
h on this disk is the function e�2.R�u/ cos � sin2 � . The t D 2� ı2 boundary disk of
this coordinate cylinder is a disk in the u� �R� ln ı part of Hp0 . The function ' on
this boundary disk is either e�2.RCu/ cos � sin2 � or it is �e�2.RCu/ cos � sin2 � . In
the former case, dh D d� on this boundary disk; and dh D�d� in the latter case.

The segment of � between zpC and zp� is in this coordinate cylinder and as such, it
appears as the graph of the form t 7! .t; z D z�.t//. The function z�. � / solves the
� D 0 version of the � 2 Œ0; 1� family of differential equations depicted in the upcom-
ing (C-2). The depiction of this family introduces a certain C–valued function, x� ,
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on Œ1C ı2; 2� ı2� with norm bounded by c0r�1=2 . A given � 2 Œ0; 1� member of the
family requires a C–valued function of t to obey

(C-2) i

2

d

dt
zC .1� �/x� D 0

for t 2 Œ1C ı2; 2� ı2�. Given z0 2 C with norm bounded by c�10 , integration finds
a unique solution to (C-2) with z.1C ı2/D z0 . There is also a unique solution with
z.2� ı2/D z0 . In either case, the solution obeys jz. � /� z0j � .1� �/c0r�1=2 .

Step 2 Fix "1 2 .0; c�10 /. This section uses c" to denote a purely "1–dependent
constant that is greater than 1 and whose value can be assumed to increase on successive
appearances.

Fix r � c" . Suppose that p 2 ƒ is such that � crosses Hp . Assume in addition that
each point of � has distance "1 or greater from both y
Cp and y
�p . This being the case,
� coincides with a segment in Hp of ˛ ’s zero locus and so its tangent vector here
has distance at most c0r�1=2 from v . Reintroduce zp� to denote the point on � \Hp

where � intersects the e�2.RCu/.1�3 cos2 �/D ı2 surface in Hp and introduce again
zpC to denote the point where � intersects the e�2.R�u/.1� 3 cos2 �/D ı2 surface
in Hp .

Let 
 denote the segment in Hp of the integral curve of v that starts at zp� and lies in the
e�2.R�juj/.1�3 cos2 �/� ı2 part of Hp . Given that � ’s tangent vector differs from v

by at most c0r�1=2 , the e�2.R�juj/.1�3 cos2 �/� ı2 part of � in Hp lies entirely in the
radius c"r�1=2 tubular neighborhood of 
 . The function 1� 3 cos2 � is positive on 

if r� c�1" and the segment 
 ends on the e�2.R�u/.1� 3 cos2 �/D ı2 surface in Hp .
In fact, the radius c�1" tubular neighborhood of 
 lies entirely in the 1� 3 cos2 � > 0
part of Hp and its boundary consists of one disk on the e�2.RCu/.1� 3 cos2 �/D ı2

surface and the other on the e�2.R�u/.1� 3 cos2 �/D ı2 surface. This neighborhood
has coordinates .t; z/ as described in Part 4 of Section Aa with j�j C j�j � c0 and
with the t D 0 point being the e�2.RCu/.1� 3 cos2 �/ point on 
 .

The segment of � in Hp between zp� and zpC appears in these coordinates as the
graph t 7! .t; z D z�.t// where z�.0/ D 0. The function z�. � / is a solution to the
� D 0 member of a � 2 Œ0; 1� family of differential equations for a C–valued function
of t , this being an equation of the form

(C-3) i

2

d

dt
zC �zC�xzC .1� �/x� C e.z/D 0;
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where e is a smooth function on the radius c�10 ball in C centered at the origin with
the property that jej � c0jzj2 and jdej � c0jzj. Meanwhile, x� is a smooth function
of t that obeys jx� j � c0r�1=2 .

Fix � 2 Œ0; 1� and z0 2C in the domain of e with jz0j � c�10 . Then there is a unique
solution to � ’s version of (C-3) that is defined on a neighborhood of 0 with t D 0
value z0 . Let z. � / denote this solution. If jz0j � c�1" , then this z. � / will be defined
for all values of t and it will obey jz. � /j � c"jz0j. The solution depends smoothly
on the data .�; z0/. The solutions to the � D 1 version of (C-3) are the segments of
the integral curves of v in the e�2.R�juj/.1� 3 cos2 �/ � ı2 part of Hp that start at
distances less than c�1" from zp� .

Step 3 The observations in Steps 1 and 2 suggest the lemma that follows.

Lemma C.3 Given " > 0, there exists �" > 1 with the following significance: Fix
r � �" and suppose that .A; D .˛; ˇ// is a solution to the .r; �/ version of (1-13)
with � a given element in � with P –norm smaller than 1. Let � denote a component
of ˛�1.0/ whose points have distance " or more from each curve in

S
p2ƒ.y


C
p [ y


�
p /.

Then � is in the radius �"r�1=2 tubular neighborhood of a closed , integral curve of v .

Proof The proof also uses c" to denote a purely "–dependent constant that is greater
than 1. The value of c" can be assumed to increase between successive appearances.
Fix a point p 2 �\† and use what is said in Steps 1 and 2 to construct a segment of an
integral curve of v that starts at p , ends at a point p0 2† with distance at most c"r�1=2

from p and is such that � lies in its radius c"r�1=2 tubular neighborhood. Let 
p
denote this segment. With this in mind, the arguments used in Step 4 of the proof of
Proposition II.2.7 can be used with only cosmetic modifications to prove that 
p has
distance at most c"r�1=2 from a closed integral curve of v .

What follows directly is a proof of Lemma C.1 in the case when � obeys the assumptions
of Lemma C.3 for a given ". To start, let 
0 denote now the closed integral curve of v
that is supplied by Lemma C.3. If r � c" , then the radius 4�" tubular neighborhood
of 
0 will intersect each p 2ƒ version of Hp only where 1� 3 cos2 � > 0. Keeping
this in mind, use Part 4 of Section Aa to define coordinates .t; z/ for this tubular
neighborhood of 
0 with j�j and j�j bounded by c0 . The curve � appears in these
coordinates as the graph of a map t 7!z.t/ with jzj��"r�1=2 and with

ˇ̌
d
dt
z
ˇ̌
�c0r�1=2 .

Define the family f�˛� g�2Œ0;1� by writing any given member as the graph of the map
t 7! .1� �/z. � /.
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Step 4 Let 
 denote y
Cp . Use �� 2
�
0; �
2

�
in what follows to denote the angle

with cos �� D 1p
3

. Use b to denote 3

2
p
2
eR.x0 C 4e

�2R/1=2 . Fix " 2 .0; c�10 /

with the upper bound chosen so that the R=.2�Z/–valued function � and the pair
.x D b�1u; y D � � ��/ define coordinates on the radius " tubular neighborhood of 
 .
Let pD yCx and qD y�x and fix "0<" so that the locus where .p2Cq2/1=2D "0
lies in the radius " tubular neighborhood of 
 . The notation that follows uses c" to
denote a constant that is greater than 1 and depends solely on "0 . Its value can be
assumed to increase between successive appearances.

Fix "1 and r as in Step 2 with "1 chosen so that p2C q2 � 18"0 on the radius "1
tubular neighborhood of 
 . Suppose that p 2ƒ is such that � \Hp ¤∅ but assume
in this case that � has boundary points on the radius "1 tubular neighborhood of y
Cp .
Much the same argument holds if � has boundary points on y
�p and so the latter case
will not be discussed.

The part of �\Hp where e�2.R�juj/.1�3 cos2 �/�ı2 but not in the .p2Cq2/1=2< 1
2
"0

part of the radius " tubular neighborhood of 
 consists of two segments, these denoted
by �� and �C in what follows. The function u is negative on �� and positive on �C .
Both segments lie in the zero locus of ˛ and have transversal intersection with the
.p2C q2/1=2 D 1

2
"0 locus. The starting point of �� is zp� . Use z� to denote the

point of �� on the .p2C q2/1=2 D "0 surface in 
 ’s radius " tubular neighborhood.

The u < 0 part of the segment of the integral curve of v in Hp that contains z� and
lies where e�2.RCu/.1�3 cos2 �/� ı2 will start on the e�2.RCu/.1�3 cos2 �/D ı2

surface at distance c"r�1=2 or less from zp� and it will intersect the .p2Cq2/1=2D 1
2
"0

surface in the radius " tubular neighborhood of 
 . Introduce 
� to denote the segment
of the u<0 part of this integral curve that runs between its e�2.RCu/.1�3 cos2 �/D ı2

point and its intersection with the .p2C q2/1=2 D 1
2
"0 surface in the radius " tubular

neighborhood of 
 . The part of �� that lies outside the locus where p2 C q2 <
1
2
.1C c"r�1=2/"0 is in the radius c"r�1=2 tubular neighborhood of 
� .

Fix coordinates .t; z/ for the radius c�10 tubular neighborhood of 
� from Part 4 of
Section Aa with the z D 0 locus being 
� and the t D 0 point being z� . Require
in addition that j�j and j�j are bounded by c0 . The intersection of this tubular
neighborhood with the e�2.RCu/.1�3 cos2 �/D ı2 surface is a disk neighborhood of
a boundary point of 
� in this surface. If the radius of this tubular neighborhood is less
than c�1" , then its intersection with the surfaces in the radius " tubular neighborhood
of 
 where .p2C q2/1=2 is constant and between 3

4
"0 and 2"0 are disks that lie in

the u < 0 part of these surfaces.
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The segment �� appears in the coordinates .t; z/ as a graph t 7! .t; z.t// with z.t/
obeying the � D 0 version of a � 2 Œ0; 1� family of equations that has the same form as
that depicted in (C-3). This solution has z.0/D 0 and jz. � /j � c"r�1=2 . Note that the
solutions to the 
� and � D 1 version of (C-3) are integral curves of v .

Solutions to (C-3) for all values of � can readily be found. In particular, there exists
a purely "0–dependent constant, cp" , that is greater than 1 and has the following
significance: Fix � 2 Œ0; 1� and a point z0 in the p2C q2 D "0 surface with distance
less than c�1p" from z� . Use � to denote this distance. There is a unique solution
to the 
� version of (C-3) for the chosen value of � that contains z0 and with norm
bounded for all t by c".�C r�1=2/. Moreover, varying the data .�; z0/ changes the
corresponding solution in a smooth fashion; and the three-parameter family of solutions
so defined is such that the derivative of z. � / with respect to changes of .�; z0/ is
bounded at each t by c" .

Step 5 This step uses the same notation as Step 4. Use zC to denote the point of �C on
the locus .p2Cq2/1=2D "0 . The endpoint of �C is on the e�2.R�u/.1�3 cos2 �/D ı2

surface, this being the point zpC . If r � c" then the segment of the integral curve
of v in Hp that contains zC will intersect the surface .p2 C q2/1=2 D 1

2
"0 where

u > 0 at a point with distance at most c"r�1=2 from the point where �C intersects
this surface. It will also intersect the surface where e�2.R�u/.1 � 3 cos2 �/ D ı2 .
Introduce 
C to denote the segment of this integral curve of v that starts on the
.p2C q2/1=2 D 1

2
"0 surface in the radius " tubular neighborhood of 
 and ends on

the e�2.R�u/.1� 3 cos2 �/D ı2 surface. The radius c�1" tubular neighborhood of 
C
will intersect this surface in a disk, and it will intersect each surface in the radius "
tubular neighborhood of 
 where .p2C q2/1=2 is constant and between 3

4
"0 and 2"0

as a disk in the u > 0 part of the surface in question.

Fix coordinates .t; z/ for the radius c�1" tubular neighborhood of 
 from Part 4 of
Section Aa with j�j and j�j bounded by c0 and with the t D 0 point being the point zC .
The segment �C appears in the coordinates .t; z/ as a graph t 7! .t; z.t// with z.t/
obeying the � D 0 version of a � 2 Œ0; 1� family of equations that has the same form as
that depicted in (C-3). This solution has z.0/D 0 and jz. � /j � c"r�1=2 . The solutions
to the 
C and � D 1 version of (C-3) are integral curves of v .

The constant cp" from Step 4 can be chosen so that there is a 
C analog of what is
said in the final paragraph of Step 4. This is to say that the following is true: Choose
any � 2 Œ0; 1� and a point z0 in the p2C q2 D "0 surface with distance less than c�1p"
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from zC . Use � to denote this distance. There is a unique solution to the 
C version
of (C-3) for the chosen value of � that contains z0 and has norm bounded for all t
by c".�C r�1=2/. Varying the data .�; z0/ changes the corresponding solution in a
smooth fashion and the three-parameter family of solutions so defined is such that the
derivative of z. � / with respect to changes of .�; z0/ is bounded at each t by c" .

Step 6 Fix "2 .0; c�10 / and suppose that � intersects the radius " tubular neighborhood
of either y
Cp or y
�p . What follows considers the case when the curve in question is y
Cp .
As the same analysis holds for the other case modulo some sign changes, the latter case
is not discussed. Use 
 now to denote y
Cp and let �� 2

�
0; �
2

�
denote the angle with

cos �� D 1p
3

, this the value of � on 
 . Coordinates for a neighborhood of 
 are given
by the R=.2�Z/ function � and R–valued functions .x; y/ that are defined by the
rules .uD bx; � D ��Cy/, where b D 3

2
p
2
eR.x0C 4e

�2R/1=2 is the constant that
appears in (B-36) and in Steps 4 and 5. Introduce as in these same steps functions p
and q given by p D yC x and q D y � x .

If � ’s intersection with the radius " tubular neighborhood of 
 lies entirely in ˛ ’s zero
locus, then the part of the curve � where .p2Cq2/1=2 � c�10 " can be parametrized by
an interval I �R as a map t 7! .�D�t; pDp�.t/; qDq�.t//. No generality is lost in
this case by taking I to contain the origin 02R and to take t D 0 to be the uD 0 point
on � . Thus p�.0/D q�.0/. If .p2Cq2/1=2 �m�2cvr�1=2 on �\Hp , then it follows
from what is said in Step 3 of the proof of Lemma B.11 that the part of the curve �
where .p2Cq2/1=2� c�10 " can also be parametrized by an interval I �R containing 0;
this parametrization has again the form t 7! .� D�t; p D p�.t/; q D q�.t//. In this
case the 0 point in I is taken as in Step 2 of the proof of Lemma B.11. It follows from
(B-42) that jp�.0/� q�.0/j � c0m�4cvr�1=2 .

In all cases, the functions p� and q� obey an equation of the form that is depicted
in (B-37). This equation is reproduced below:

(C-4) d

dt
p� D �p� C ep.p� ; q�/C rp� and d

dt
q� D��q� C eq.p� ; q�/C rq� :

By way of a reminder, �D 4
p
6e�R.x0C4e

�2R/1=2 and the functions ep and eq are
smooth and have absolute value bounded by c0.p2C q2/. Meanwhile, rp� and rq�
are smooth functions of t . Their absolute values are bounded at times t 2 I where
�.t/ � ˛�1.0/ by c0r�1=2 ; in particular, this occurs where .p2C q2/1=2 � cvr�1=2 .
In general, their absolute values are bounded by c0cvr�1=2 . A smaller upper bound is
given in the upcoming (C-5).
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What follows says more about rp� and rq� at times t 2 I where their absolute value is
greater than c0r�1=2 . To this end, reintroduce the constant m that is used to define � ,
and reintroduce t˘ 2 Œ0; 2�/ from Step 2 of Lemma B.11. As done in this same
Step 2, take the parametrization for I so that it is only necessary to consider times
t 2 Œ�2� � t˘; 2� C t˘�. The pair p� and q� on this interval are given in (B-42).
Differentiate (B-42) and compare with (C-4) to see that rp� and rq� obey

(C-5) � rp� � c0m�6cvr�1=2 for t 2 Œ0; 2� C t˘� and rp� � c0m�2cvr�1=2 for
t 2 Œ�2� � t˘; 0�;

� rq� ��c0m�6cvr�1=2 for t 2 Œ�2�� t˘; 0� and rq� ��c0m�2cvr�1=2 for
t 2 Œ0; 2� C t˘�;

� rp� ��c0m�6cvr�1=2 and rq� � c0m�6cvr�1=2 for t 2 Œ�2��t˘; 2�Ct˘�.

The constant m is left unspecified for now but ultimately chosen to be less than c0 .
The choice of m determines in part a lower bound for Lemma C.1’s constant � .

To say something about the respective lengths of the t > 0 and t < 0 parts of I,
introduce � to denote the value of .p2� C q

2
�/
1=2 at 0 2 I. Fix "0 2 .0; "/ so that the

coordinate functions p and q are defined where .p2C q2/1=2 < 2"0 . Let tC and t�
denote the respective values of t in I where .p2� C q

2
�/
1=2 D "0 . As explained in

Step 6,

(C-6) jtC��
�1 ln."0��1/j � c0 and jt�C�

�1 ln."0��1/j � c0

if "0 � c�10 . These bounds imply in part that the lengths of the t > 0 and t < 0 parts
of I differ by at most c0 .

Step 7 Introduce Y0 and X0 to denote the value of y D 1
2
.pC q/ and x D 1

2
.p� q/

at the t D 0 point on � . Note that X0 D 0 if p2Cq2 � m�2cvr�1=2 on � ; and (B-39)
and (B-41) imply that jX0j � c0m�6cvr�1=2 otherwise. Meanwhile, Y0 D 2

�1=2� if
p2Cq2�m�2cvr�1=2 on � and jY0�2�1=2m�2cvr�1=2j � c0m�4cvr�1=2 otherwise.

Fix Y 2
�
1
4

Y0; 4Y0
�
. Given � 2 Œ0; 1�, there is a unique map t 7! .pY;� .t/; qY;� .t//

from a maximal interval IY;� �R to R2 that obeys the equation

(C-7)

d

dt
pY;� D �pY;� C ep.pY;� ; qY;� /C .1� �/rp� ;

d

dt
qY;� D��qY;� C eq.pY;� ; qY;� /C .1� �/rq�

with pY;� .0/DYCX0 and qY;� .0/DY�X0 and with .p2Y;�Cq
2
Y;� /

1=2� "0 for t 2 IY;�

with equality only at each boundary point of IY;� . A proof of existence and uniqueness
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can be had using standard techniques from the theory of ordinary differential equations.
Use tY;�C and tY;�� to denote the respective negative and positive endpoints of IY;� .

The first implication of (C-7) concerns the size of qY;� relative to pY;� where t � 0:
As explained in a moment,

(C-8) jqY;� j � c0."0pY;� Cm�2cvr�1=2/

for t 2 Œ0; tY;�C� when "0 � c
�1
0 and m > c0 . To prove this, fix & > 0 and set

w D jqY;� j � & jpY;� j. It follows from (C-5) and (C-7) that

(C-9) d

dt
w � ��w� 2�& jpY;� jC c0"0.jwjC jpY;� j/C c0m�2cvr�1=2:

Let c� denote the version of c0 that appears in this inequality. Take & D 2c���1"0 to
see that d

dt
w � ��.w���1c�"0/C c0m�2cvr�1=2 . (The negative multiple of jpY;� j

in (C-9) dominates the positive multiple for this choice of & .) Moreover, supposing
that "0 is chosen to be less than 1

2
�c�1� (which is greater than c�10 ), this says that

d
dt
w � �1

2
�wC c0m�2cvr�1=2 . Multiply both sides of this last inequality by et=c0

and integrate to obtain (C-8) (keep in mind that � is a fixed positive number so it has a
c0 upper bound and a c�10 lower bound.)

With regards to pY;� , note first that (C-7) with (C-5) imply that pY;� is an increas-
ing function of t when t is positive. To say more about the size of pY;� it proves
useful to introduce the norm on C1.Œ0; t �IR/ for t � tY;�C given by h 7! khkt D
sups2Œ0;t� e

��sjh.s/j. Use (C-8) with (C-5) and the right-hand equation in (C-7) to see
that

(C-10) jpY;� � e
�t .YC X0/j � c0.e

�t
kpY;�k

2
t Cm�6cvr�1=2/:

Given that YC X0 � c"
�1m�2cvr�1=2 , this last equation implies that

(C-11) .1� c0"0/e
�t .YC X0� c0m�6cvr�1=2/

� pY;� .t/

� .1C c0"/e
�t .YC X0C c0m�6cvr�1=2/

for t 2 Œ0; tY;�C� when "0 � c�10 and m � c0 . Note that (C-11) with (C-8) implies that
the function 1� 3 cos2 � is positive along the trajectory t 7! .pY;� .t/; qY;� .t// where
.p2Y;� C q

2
Y;� /

1=2 is greater than c0m�2cvr�1=2 .

The same sort of arguments can be used for t 2 Œ�2� � tD;��; 0� to see that

(C-12) � jpY;� j � c0."0jqY;� jCm�2cvr�1=2/,

Geometry & Topology, Volume 24 (2020)



HFD HM , IV 3445

� .1� c0"0/e
��t .Y� X0� c0m�6cvr�1=2/

� qY;� .t/� .1C c0"/e
��t .Y� X0C c0m�6cvr�1=2/

for t � ŒtY;��; 0� if "0 � c�10 and m � c0 .

These bounds for pY;� and qY;� have the following implication with regards to the
times tY;�C and tY;�� . To say more, let tY;�� denote either tY;�C or �tY;�� . Then

(C-13) jtY;����
�1 ln."0Y�1/j � c0"0C c"�m�6cvr�1=2:

Given that �m�6cvr�1=2�c0m�4, the right-hand side of (C-12) is at most c0"0Cc"m�4.

Step 8 Suppose next that .Y; �/ and .Y 0; � 0/ are as described in Step 7. Introduce P

to denote pY;� �pY0;� 0 and Q to denote qY;� �qY0;� 0 . Subtract their respective versions
of (C-7) to derive equations for P and Q that can be written as

(C-14)

d

dt
PD �PC zppPC zpqQC .� � � 0/rp� ;

d

dt
QD��QC zqpPC zqqQC .� � � 0/rq� ;

where each z�� is a function of t with norm bounded by

c0.jpY;� jC jpY 0;� 0 jC jqY;� jC jqY 0;� 0 j/:

These equations can be analyzed using the same tools used in Step 7 to draw the
conclusions expressed by the following inequalities. The analysis for t � 0 finds

(C-15) � jQj � c0."0jPjC jY� Y0jCm�2cvr�1=2j� � � 0j/.

� jP� e�t .Y� Y0/j

� c0e
�t
��
"0C�jln."�10 �/j

�
jY� Y0jCm�6cvr�1=2j� � � 0j

�
:

Meanwhile, the analysis for t � 0 leads to

(C-16) � jPj � c0."0Qjt CjY� Y0jCm�2cvr�1=2j� � � 0j/,

� jQ� e��t .Y� Y0/j

� c0e
��t

��
"0C�jln."�10 �/j

�
jY� Y0jCm�6cvr�1=2j� � � 0j

�
:

The bounds in (C-10)–(C-13) and (C-15)–(C-16) play central roles in what follows.

Step 9 The bounds in (C-10)–(C-13) and (C-15)–(C-16) can be used to say something
about tY;�C� tY0;� 0C and tY;��� tY0;� 0� . To this end, suppose for the sake of argument
that tY;�C � tY0;� 0C . Write

(C-17) p2Y0;� 0 C q
2
Y0;� 0 D p

2
Y;� C q

2
Y;� � 2.PpY;� C QqY;� /C P2C Q2;
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and set t D tY;� . Use the fact that .p2Y;� C q
2
Y;� /

1=2 D "0 at t D tY;�C with (C-8),
(C-10) and (C-15) to see that p2Y0;� 0 C q

2
Y0;� 0 at t D tY;�C is

(C-18) p2Y0;� 0 C q
2
Y 0;� 0 D "

2
0.1� 2Y�1.Y� Y0/C e/;

where jej � c0."0Y�1jY�Y0jCY�2jY�Y0j2Cm�4j� �� 0j/. This last inequality with
(C-10) and (C-15) allows tY0;� 0C to be written as

(C-19) tY0;� 0C D tY;�CC�
�1Y�1.Y� Y0/C e;

where e has the same absolute value bound as its namesake in (C-18). The same sort of
arguments write tY0;� 0� as tY0;� 0�D tY;�����1Y�1.Y�Y0/C e with e being different
from its namesakes in (C-18) and (C-19) but obeying the same absolute value bound.

Step 10 The functions p and q are convenient to use on the radius " tubular neigh-
borhood of 
 , but less so elsewhere on Hp and, in particular, less so near the boundary
of Hp . The function h D f .u/ cos � sin2 � is far more convenient, this in part because
the final arguments for Lemma C.1’s proof are much the same as those used in the
proof of Proposition II.2.7. At distance " or less from 
 , the function h can be readily
written in terms of p and q , and doing so leads to the formula

(C-20) h D 2

3
p
3
.x0C 4e

�2R/C 2p
3
.x0C 4e

�2R/pqC h;

where h obeys jhj � c0.p2C q2/3=2 and
ˇ̌
@
@p
h
ˇ̌
C
ˇ̌
@
@q
h
ˇ̌
� c0.p

2C q2/.

Fix � 2 Œ0; 1� and fix Y as in Step 7 so as to define the interval IY;� and the corresponding
pair of functions pY;� and qY;� on IY;� . Of interest here is the function on IY;�

given by the rule t 7! h.pY;� .t/; qY;� .t//. This function is denoted in what follows
by hY;� . Of particular interest are the values hY;� at the t D tY;�C and at t D tY;�� . In
particular, (C-8) and (C-11) with (C-20) imply that its values at these times differ from
2

3
p
3
.x0C 4e

�2R/ by at most c0"30 .

Consider now the functions hY;� and hY0;� 0 with �; � 0 2 Œ0; 1� and with Y and Y0 as in
Step 8. Of interest is hY;� .t/� hY0;� 0.t

0/ with t and t 0 being tY;�C and tY0;� 0C or else
t and t 0 being tY;�� and tY0;� 0� . Use t� and t 0� to denote either of these pair of values
for t . The absolute value hY;� .t�/� hY0;� 0.t

0
�/ obeys the a priori bound

(C-21) jhY;� .t�/� hY0;� 0.t
0
�/j � c0"

3
0.Y
�1
jY� Y0jCm�4j� � � 0j/I

this follows from (C-20) with (C-8), (C-11)–(C-13), (C-15)–(C-16) and Step 9’s asser-
tions.
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Step 11 The arguments that follow in this step and Steps 12 and 13 focus almost
entirely on the case when � intersects but one p 2ƒ version of Hp . The arguments in
the general case are only outlined as they differ from those used for this simplest case
in a straightforward fashion; and, in any event, they are much the same as those used
for Proposition II.2.7. This step is a guide of sorts for Step 12.

Assume now that � crosses only one handle from the set
S

p2ƒHp . Let p 2ƒ denote
the relevant pair. With an r–independent " > "0 > 0 fixed in advance, it is sufficient
given what is said in Step 3 to consider only the case where � intersects the radius 1

8
"0

tubular neighborhood of either y
Cp or y
�p . The discussion that follows considers only
the case of y
Cp as the arguments for the other case are identical but for some sign
changes and notation. This understood, the notation from Steps 4–9 will be used when
referring to the radius " tubular neighborhood of this curve. In particular, the curve y
Cp
is denoted below as 
 . The constant "0 is chosen so that the locus in the radius "
tubular neighborhood where the coordinates p and q obey .p2Cq2/1=2 � "0 lies well
inside this tubular neighborhood. The portion of � in the radius " tubular neighborhood
of 
 where .p2C q2/1=2 � "0 is parametrized by the interval I �R as described in
Step 6.

Fix � 2 Œ0; 1�. The next step constructs a 2–parameter family of continuous and
piecewise smooth arcs in Mı [Hp that all start and end on the f D 3

2
Heegaard

surface † in Mı . The starting and ending points are both very near � ’s intersection
with this surface. Any given member of this family starts near � ’s intersection point
with † follows � to the u D �R � ln ı sphere in Hp . The arc stays close to �

through Hp so as to exit Hp through its uD RC ln ı sphere in Hp . It then follows
� in Mı so as to end on the surface � . Each arc from the family is the end-to-end
concatenation of five smooth segments. The parameter space for the family of arcs is
Œ.1� R/Y0; .1C R/Y0�� Œ�R; R� with R � 1

4
to be determined ultimately by "0 .

Step 12 Fix � 2 Œ0; 1� and a pair DD .Y; �/ 2 Œ.1� R/Y0; .1C R/Y0�� Œ�R; R�. The
corresponding continuous and piecewise smooth arc in Mı [Hp is denoted by �D;� .
As noted in the previous step, this arc is the end-to-end concatenation of five segments.
It proves useful in this regard to describe the middle segment first, then the second and
fourth segments and, at the end, the first and fifth segments. By way of notation, c" is
used in what follows to denote a purely "0–dependent constant that is greater than 1.
This constant can be assumed to increase between consecutive appearances.

The middle segment The middle segment crosses the .p2C q2/1=2 � "0 portion of
the radius " tubular neighborhood of 
 . This segment is parametrized as the map from
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the interval IY;� given by the rule t 7! .� D �t C �; p D pY;� .t/; q D qY;� .t// with
IY;� and the functions pY;� and qY;� as defined in Step 7. Use what is said in Steps 8
and 9 to see that the tY;�C and tY�� endpoints of this segment on the .p2Cq2/1=2D "0
surface have distance at most c0"0.RCm�4/ from the u > 0 and u < 0 points where
� intersects this surface. Use zD;�� and zD;�C to denote these respective endpoints.

The second and fourth segments Let z� and zC denote the respective u < 0 and
u > 0 points where � intersects the .p2C q2/1=2 D "0 surface in the radius " tubular
neighborhood of 
 . Introduce as in Steps 4 and 5 the segments �� and �C of � . By
way of a reminder, �� starts on the e�2.RCu/.1�3 cos2 �/D ı2 surface in Hp and ends
at z� ; and �C starts at zC and ends on the e�2.R�u/.1�3 cos2 �/D ı2 surface in Hp .

Steps 4 and 5 introduce the segments of integral curves of v , these being 
� and 
C .
The former has u < 0, contains z� and starts on the e�2.RCu/.1� 3 cos2 �/ D ı2

surface in Hp and the latter contains zC and ends on the e�2.R�u/.1�3 cos2 �/D ı2

surface. Steps 4 and 5 describe parametrizations of the respective tubular neighborhoods
of 
� and 
C using coordinates .t; z/ with jzj � c�1" and with the z D 0 locus being

� or 
C as the case may be. The point .0; 0/ is z� in the former case and zC in the
latter. Reintroduce from the final paragraphs of Steps 4 and 5 the constant cp" . Take
R such that R < .c0cp"/

�1 and take m such that m > c0cp" . Granted these bounds,
then the t D tY;�� endpoint zD;�� of the middle segment has distance less than c�1p"

from z� and the t D tY;�C endpoint zD;�C of the middle segment has distance less
than c�1p" from zC . Let �D;�� and �D;�C denote these distances.

Step 4 finds a solution to the .
�; �/ version of (C-3) that is defined for all t 2 
� ,
contains zY;�� and has pointwise norm bounded by c".�D;�� C r�1=2/ This solu-
tion defines a smoothly embedded arc in the u < 0 part of Hp that starts on the
e�2.RCu/.1�3 cos2 �/D ı2 surface. Use zD;�� to denote the segment of this arc that
starts on this surface and ends at zD;�� . This arc is the second segment.

Step 5 finds a solution to the .
C; �/ version of (C-3) that is defined for each t 2 
C ,
contains zY;�C and has pointwise norm bounded by c".�D;�C C r�1=2/. This so-
lution defines a smoothly embedded arc in the u > 0 part of Hp that ends on the
e�2.R�u/.1�3 cos2 �/D ı2 surface. Use zD;�C in what follows to denote the segment
of this arc that starts at zD;�C and ends on the e�2.R�u/.1� 3 cos2 �/D ı2 surface.
This arc is the fourth segment.

The first and fifth segments The starting point of zD;�� on the surface in Hp

where e�2.RCu/.1 � 3 cos2 �/ D ı2 has distance at most c".�D;�� C r�1=2/ from
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� ’s intersection with this surface, the latter denoted in Step 1 by zp� . This being
the case, it has distance at most c".�D;�� C r�1=2/ from the .t D 2 � ı2; z D 0/

point in Step 1’s coordinate cylinder. Meanwhile, the ending point of zD;�C on the
e�2.R�u/.1� 3 cos2 �/D ı2 surface in Hp has distance at most c".�D;�CC r�1=2/
from � ’s intersection point with this same surface, and so this ending point of zD;�C

has distance at most c".�D;��C r�1=2/ from .t D 1C ı2; z D 0/ point in Step 1’s
coordinate cylinder.

With the preceding understood, suppose that R < .c"cp"/
�1 and m > c"cp" . Granted

these bounds, then the starting point of zD;�� will be well inside the tD2�ı2 boundary
disk of Step 1’s coordinate cylinder. Use zD;�� to denote the z–coordinate of this
starting point of zD;�� . Meanwhile, the ending point of zD;�C will be well inside the
t D 1C ı2 boundary disk of Step 1’s coordinate cylinder centered on 
� . Use zD;�C

to denote the z–coordinate of this ending point of zD;�C .

According to Step 1, there is a solution t 7! z.t/ to (C-2) with z.2� ı2/ D zD;�� .
Denote this solution by zMD;�� . The first segment is the t 2

�
3
2
; 2� ı2

�
part of the arc

in Mı given by the graph t 7! .t; zMD;��.t//.

There is also a solution t 7! z.t/ to (C-2) with z.1C ı2/D zD;�C . Denote the latter
solution by zMD;�C . The fifth segment is the t 2

�
1Cı2; 3

2

�
. part of the arc in Mı given

by the graph t 7! .t; zMD;�C/.

Step 13 Introduce �C and �� to denote the � coordinates of the .t D 1C ı2; z D 0/
and .t D 2� ı2; z D 0/ points, respectively, on the two boundary disks of Step 1’s
coordinate cylinder. The � coordinate of the ending point of zD;�C on the surface in Hp

where e�2.R�u/.1�3 cos2 �/D ı2 can be written as �CC'D;�C with j'D;�Cj � c
�1
0 ,

and the � coordinate of the starting point of zD;�� on the e�2.RCu/.1�3 cos2 �/D ı2

surface can be written as ��C'D;�� with j'D;��j � c
�1
0 . Write the respective values

of the function h at these boundary points of zD;�C and zD;�� as hD;�C and hD;�� .

It follows from what is said in Step 1 that the five-segment concatenated arc defined
in Step 12 is a piecewise embedded loop in Mı [Hp if

(C-22) 'D;�C D .�1/
yo.hD;��C .1� �/u1/; hD;�C D .�1/

yo.'D;��C .1� �/u2/;

where the notation is such that yo 2 f0; 1g is determined by the point z� 2 CpC\ Cp0 ,
and where u1 and u2 are the respective real and imaginary parts of

(C-23) �2i

�Z 3=2

1Cı2
x� �

Z 2�ı2

3=2

x�

�
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with x� being the function in (C-2). As is explained next, there exists a smooth map,
D. � /W Œ0; 1� ! ..1 � R/Y0; .1C R/Y0/ � .�R; R/ such that for each � 2 Œ0; 1�, the
DD D.�/ version of (C-22) holds when the following conditions are met:

(C-24) � "0 � c
�1
0 .

� m � c" with c" > 1 being a purely "–dependent constant.

� R � c"m�1 with c" > 1 being a purely "–dependent constant.

� cv � c";m;R with c";m;R > 1 being a constant that depends only on ", m
and R .

� r� �c with �c > 1 being a constant that depends only on cv .

To construct D. � /, take D.0/ to be the pair .Y D Y0; � D 0/ which obeys (C-22)
because the arc defined in Step 12 from .Y D Y0; � D 0/ is the smooth, embedded
circle. The construction of D.�/ for � > 0 requires a rewriting of (C-22). To set the
stage for this, fix D D .Y; �/ 2 Œ.1� R/Y0; .1C R/Y0�� Œ�R; R� and � 2 Œ0; 1�. Use
(C-19) to write the difference between 'D;�C and its .Y0; � D 0/, � D 0 analog as

(C-25) � ���1Y�10 .Y� Y0/C e;

where jej � c0.."0C R/Y�10 jY� Y0j Cm�4/. This last formula and its tY;�� analog
allow (C-22) to be rewritten as

(C-26) � � ���1Y�10 .Y� Y0/� .�1/
yo.hY;� .tY;��/� hY0;0.tY0;0�//C e1 D 0,

� � C��1Y�10 .Y� Y0/� .�1/
yo.hY;� .tY;�C/� hY0;0.tY0;0C//C e2 D 0,

where e1 and e2 are functions of � , Y and � whose absolute values are bounded by
c0.."0CR/Y�10 jY�Y0jCm�4/. The left-hand side of (C-26) defines a smooth map, F ,
from Œ0; 1�� Œ.1� R/Y0; .1C R/Y0�� Œ�R; R� to R2 with the property that F D 0 if
and only if (C-22) is obeyed. What follows is a crucial observation about this map: the
differential of F along the domain’s factor Œ.1�R/Y0; .1CR/Y0��Œ�R; R� is surjective
if (C-24) holds, this being a consequence of (C-21) and what is said about e in (C-25).

Suppose that �0 2 Œ0; 1� is such that D. � / has been defined on Œ0; �0/. To extend D. � /

to a larger interval, use the fact that Œ.1� R/Y0; .1C R/Y0�� Œ�R; R� is compact to see
that there is a � D �0 limit point D.�0/ for fD.�/g�!�0 . It follows from (C-26) that this
limit point is unique, that the extension of D. � / to Œ0; �0� is continuous, and that D.�0/

obeys the � D �0 version of (C-26). Write D.�0/ as .Y; �/. Use (C-19), (C-21) and the
fact that (C-26) is obeyed to conclude that j� jC jY� Y0j � c0m�4 . This implies that
D.�0/ lies in the interior of the parameter space Œ.1�R/Y0; .1CR/Y0�� Œ�R; R� when
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(C-24) holds. Since D.�0/ is not a boundary point of Œ.1� R/Y0; .1C R/Y0�� Œ�R; R�,
the fact that F has surjective differential along the Œ.1� R/Y0; .1C R/Y0�� Œ�R; R�

factor of its domain implies via the inverse function theorem that D. � / has a smooth
extension to an open interval in Œ0; 1� that contains Œ0; �0�.

Step 14 Fix � 2 Œ0; 1�. Let �˛�� denote the continuous, piecewise smooth loop that is
defined in Step 12 by the data set D.�/ from the previous step. The loop �˛�� is smooth
on the interior of each of its five concatenating segments. The implicit function theorem
construction implies that the assignment of � 2 Œ0; 1� to each of the five concatenating
segments defines a smoothly varying arc in Mı[Hp . Moreover, the assertions made by
the four bullets in Lemma C.1 hold for each of these five Œ0; 1�–parametrized families
of arcs. This follows directly from the implicit function theorem construction given
what is said at the very end of Steps 4 and 5; and given (C-15)–(C-16), the bound for e
in (C-19) and the bound in (C-21).

The loop �˛�� for � 2 .0; 1/ is continuous, but its derivative may be discontinuous at
four points, these being the loop’s intersection points with the boundary spheres of the
juj � RC ln ı part of Hp and the .p2C q2/1=2 D "0 surface in the radius " tubular
neighborhood of 
 . Even so, the two concatenating segments near these points are
smooth up to their endpoints on the relevant surface, and the corresponding tangent
vectors differ by at most c0r�1=2 at these endpoints. This is because the tangent vector
to each segment near these junctions differs from v by at most c0r�1=2 . The preceding
fact implies that the loop �˛�� can be smoothed near the junctions of segments so that
the result is a smoothly embedded loop that obeys the first three bullets of Lemma C.1.
Moreover, it is a straightforward task to define this smoothing without changing the
already smooth � D 0 and � D 1 versions so that the resulting Œ0; 1�–parameter family
of smooth loops is smoothly parametrized and obeys the assertion of Lemma C.1’s
fourth bullet at each point. The details of this are straightforward and thus omitted.

Use f�˛� g�2Œ0;1� to denote the resulting Œ0; 1�–parametrized family of smooth loops.
This family obeys all of the requirements for Lemma C.1.

Cc Increasing r

This part takes Proposition C.2’s pair .A˘11;  ˘11/ as the starting point of a path
in Conn.E/ � C1.Y IS/ whose end member is constructed from the same vortex
solutions and loops in Y that are used to construct .A˘11;  ˘11/ but with the given
choice of r replaced by a far larger choice. A result from [21] is brought to bear in the
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next section; it requires the larger value of r. This larger value of r is denoted by R .
There is no upper bound to the value chosen but a lower bound R > c0c4v r is imposed.

The path is parametrized by Œ0; 1�, and a given � 2 Œ0; 1� member denoted by .A�� ;  �� /.
The definition of .A�� ;  �� / is identical to that of .A˘11;  ˘11/ given in Section Ca
but for the replacement of r with r.�/D .1� �/rC �R .

Keep in mind in what follows that the zero locus of the E summand of any � 2 Œ0; 1�
version of  �� is identical to that of ˛˘11 as is the degree of vanishing along any
transverse disk centered on the zero locus. By way of a reminder, the zero locus of ˛˘11
consists solely of closed integral curves of v in Mı [

�S
p2ƒHp

�
, these coming from

two sets. The first set consisted of curves that intersect Mı ; this set was denoted by ‚˛ .
The second set is a subset of

S
p2ƒ.y


C
p [ y


�
p /.

Of interest is the spectral flow between the c D .A�0;  �0/ D .A˘11;  ˘11/ version
of Lc;r and the cD .˛�1;  �1/ version of Lc;R . Note in particular that the latter operator
is defined using R rather than r. The proposition that follows asserts that there is an a
priori upper bound for the norm of the spectral flow between these two operators that
is independent of the original pair .A; / and r and also R . This proposition uses c.�/

to denote the pair .A�� ;  �� /.

Proposition C.4 There exists � � 100 and , given cv � � , there exists �cv > � with
the following significance: Suppose that r� �cv c10v and suppose that .A; D .˛; ˇ//
is a solution to the .r; �/ version of (1-13) with � a given element in � with P –norm
smaller than 1. The values of � , cv and r are suitable for defining .A˘11;  ˘11/ and
any R � �c6v r version of the family f.A�� ;  �� /g�2Œ0;1� . The norm of the spectral flow
between the end members of the corresponding family fLc.�/;r.�/g�2Œ0;1� is bounded
by � .

Proof It is assumed in what follows that � , cv and r are large enough to invoke the
various results in the preceding subsections of Appendix C and those in Appendices A
and B. The proof that follows has five parts.

Part 1 As explained directly, each member of the family f.A�� ;  �� /g�2Œ0;1� obeys a
version of Properties 1–5 in Section Ab. The proof that such is the case distinguishes
between values of � near 0 and larger values. To elaborate, note first that the various
properties require the specification of constants c0 and z. It is a straightforward matter
to check that Properties 1, 2, 4 and 5 are obeyed using cv in lieu of c0 and r.�/ in
lieu of z. It is also a straightforward matter to verify the third and fourth bullets of
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Property 3. Meanwhile, items (a) and (b) of the second bullet of Property 3 follow
directly by virtue of the fact that the zero locus of the E summand of  �� is a union of
integral curves of v . The story with regards to the first bullet and items (c) and (d) of
the second bullet of Property 3 is not so straightforward, the point being that Y �Y˘z

is the union of tubular neighborhoods of the curves from the set
S

p2ƒ.y

C
p [ y


�
p /

with radius proportional to z�1=2 . If a component of the zero locus of ˛˘11 from ‚˛

intersect the z D r version of Y � Y˘z , then the first bullet and items (c) and (d) of
the second bullet of Property 3 will not hold when zD r.�/ for values of � in certain
subsets of Œ0; 1�.

To deal with this issue, fix � 2 Œ0; 1�. The c0 D cv and zD r.�/ version of Property 3
can fail if there exists a curve from ‚˛ and a curve from

S
p2ƒ.y


C
p [ y


�
p / with the

following property: Let �˛ denote the curve from ‚˛ and let 
 denote the curve
from

S
p2ƒ.y


C
p [ y


�
p /. Then the minimum distance between the points in �˛ and 


is no less than .c4v � 3c3v /r.�/
�1=2 and no greater than .c4v C 3c3v /r.�/

�1=2 . This last
observation has two immediate consequences, the first being that Property 3 can fail
only in the case when r.�/� c0c6v r and thus only if � � c0c6v r=R . This is so because the
minimum distance between �˛ and 
 is in any event greater than c�10 cvr�1=2 . To state
the second consequence, introduce c1 D cv � 2c�1v . If the distance between �˛ and 

is no less than .c4v � 3c3v /r.�/

�1=2 , then it is greater than .c41 C 3c31 /r.�/
1=2 if cv � c0 .

Given what was just said, it is a straightforward task to use the pointwise bounds
given in Section Aa for the absolute values of ˛0 , a0 , y and & to verify the following
assertion: if cv � c0 , then .A�� ;  �� / obeys the c0 D cv � c0c�1v and zD r.�/ version
of Properties 1–5 if it does not obey the c0 D cv version.

Part 2 A suitable bound for the absolute value of the spectral flow is obtained by study-
ing the variation with � of the spectrum of the family of operators fLc.�/;r.�/g�2Œ0;1� .
This part of the subsection considers the values of � when some closed integral curve
of v from ‚˛ and some curve from

S
p2ƒ.y


C
p [ y


�
p / have minimum distance at most

.c40C3c30 /r.�/
�1=2 , where it is understood that c0 2 .cv�c0c�1v ; cv� and that .A�� ;  �� /

obeys the c0 and zD r.�/ version of Properties 1–5 in Section Ab. As noted in Part 1,
this condition can hold only if � � c0c6v r=R and so r.�/ � c0c6v r. This understood,
suppose in what follows that this minimum distance condition holds for � � c0c6v r=R

and that this minimum distance condition does not hold for � � c0c6v r=R .

An almost verbatim repetition of the arguments used to prove Proposition C.2 finds an
.A; /– and r–independent bound for the absolute value of the spectral flow for the
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� � c0c6v r=R part of the family fLc.�/;r.�/g�2Œ0;1� . The bound for the absolute value
of the spectral flow does, however, depend on the choice for cv . The only salient
changes to the arguments from the proof of Proposition C.2 involve Steps 1 and 2.
Step 1 is replaced by Part 1 above. The change to Step 2 adds extra terms to the
right-hand side of (C-1) to account for the fact that relevant version of d

d�
LV� is

nonzero on the radius c�10 cvr�1=2 tubular neighborhood of certain curves from the setS
p2ƒ.y


C
p [ y


�
p /. In any event, the absolute value of the homomorphism d

d�
LV� is

bounded by �c1r1=2.R=r/. Steps 3 and 4 can be repeated with the only change being
that the interval Œ0; 1� is replaced by Œ0; c0c6v r=R� and the latter is divided into some
m � c0c6v�c segments of length at most ��1c r=R .

Part 3 Assume that �0 2 Œ0; 1� is such that the following is true: Let �˛ denote a
component of the zero locus of ˛˘11 from ‚˛ . Then �˛ has distance greater than
.c40 C 3c30 /r.�/

1=2 from all curves from
S

p2ƒ.y

C
p [ y


�
p / with c0 2 .cv � c0c�1v ; cv�.

Part 4 of the proof derives an .A; /–, r– and R–independent upper bound for the
absolute value of the spectral flow along the Œ�0; 1� part of the 1-parameter family
of operators fLV�g�2Œ0;1� under the assumption that cv � c0 and r� �c with �c � 1

denoting a purely cv –dependent constant. This bound with the bound in Part 2 implies
the assertions of Proposition C.4.

The arguments in Part 4 invoke the following auxiliary lemma:

Lemma C.5 There exists � > 1 with the following significance: Let � 2 Y denote
a closed , integral curve of v that lies entirely in Mı [

�S
p2ƒHp

�
. Fix coordinates

from Part 4 of Section Aa for a tubular neighborhood of � . The corresponding version
of the operator � 7! i

2
d
dt
�C ��C�x� on C1.
;C/ has no eigenvalue between ���1

and ��1 .

This lemma is proved in Part 5.

The arguments in Part 4 require a second auxiliary observation, this concerning the
spectrum of operators that are associated to components of the zero locus of ˛˘1 from
the set

S
p2ƒ.y


C
p [ y


�
p /. These operators are versions of those depicted in (3-10) with

the pair .�; �/ in (3-8) being that from any 
 2
S

p2ƒ.y

C
p [ y


�
p / version of (A-6) with

both functions constant, and � real and greater than j�j. With a positive integer, m,
chosen, the relevant equivalence class from Cm is that defined by the solution to (2-8)
and (3-1) with ˛0 D j˛0j.z=jzj/m . This operator is denoted by Lm . What follows is
the second observation:
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(C-27) Given m� � 1 there exists � > 1 such that if m�m�, then the operator Lm
has no eigenvalues with absolute value in the interval .0; ��1�.

Such � exists because there are only m� versions of (3-10) involved and each has
discrete spectrum with no accumulation points. By way of a parenthetical remark, it
is likely that these versions of (3-10) have trivial kernel and so lack eigenvalues in
Œ���1; ��1�.

Part 4 This part assumes Lemma C.5 to complete the proof of Proposition C.4. This
is done in the four steps that follow. These steps use cc to denote a constant that is
greater than 1 and depends only on cv . Its value can increase between successive
appearances. These steps also use �� to denote the smaller of the versions of � that
appear in Lemma C.5 and in (C-27).

Step 1 Lemmas A.8 and A.9 can be invoked if cv � c0 and r � cc because the
integer m that appears in Lemma A.9 is a priori bounded by c0 . This understood, what
follows is a direct consequence of what is said by Lemmas A.6, A.8 and A.9, and then
Lemmas B.5 and B.6: If cv � c0 and r� cv , then the number of linearly independent
eigenvalues of any � 2 Œ0; 1� version of Lc.�/;r.�/ with eigenvalue between � 1

100
��1�

and 1
100
��1� is bounded by c0 .

Step 2 As in the proof of Proposition C.2, no generality is lost by assuming that the
parametrization of the family fLc.�/;r.�/g�2Œ0;1� is real analytic so as to apply what is
said in Part 1 of the proof of Proposition B.3. This understood, let f�n�gn2Z;�2Œ0;1�

denote the corresponding family of eigenvalues. Let c1 denote the dimension bound
given in Step 1. Given what is said in Step 1, the absolute value of the spectral
flow for the Œ�0; 1� part of the family fLc.�/;r.�/g�2Œ0;1� is no greater than c1 unless
some � 2 Œ�0; 1� version of Lc.�/;r.�/ has an eigenvalue between 1

100
��1� and 1

50
��1� .

Suppose for the sake of argument that such is the case. Let f denote the corresponding
eigenfunction and � its eigenvalue.

Let �˛ denote a given component of the zero locus of ˛˘ from ‚˛ and let � denote
the section of the 
 D �˛ version of the line bundle Ker# j
 ! 
 that is described in
Lemma A.8. Lemmas A.8 and C.5 are not mutually compatible if the L2–norm of �
is greater than c0c�1v kfk2 .

Step 3 Let 
 2
S

p2ƒ.y

C
p [ y


�
p / denote a component of the zero locus of ˛˘1 and

let � denote the section of the bundle Ker# j
 ! 
 that is described in Lemma A.9.
Use m to denote the integer for 
 ’s version of Lemma A.9. Note in particular that
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m� c0 . Introduce �� to denote the L2–orthogonal projection of � onto the span of the
eigenvalues of Lm with eigenvalue 0 or less, and use �C to denote the L2–orthogonal
projection of � onto the span of the eigenvalues of Lm with eigenvalue greater than ��1� .
Note that � D ��C �C . Lemma A.9 and (C-27) are not mutually compatible if the
L2–norm of either �� or �C is greater than c0c�1v kfk2 .

Step 4 It follows from what is said in Steps 2 and 3 that k…# fk2 � c0cvkf k2 . But
if cv � c0 , then this last conclusion is incompatible with what is said by Lemma A.6
if f is not identically zero.

Part 5 This last part of the subsection contains the proof of Lemma C.5.

Proof Let L� denote the operator in question. Proposition II.2.7 asserts that 
 is
hyperbolic and such is the case if and only if L� has trivial kernel. This understood,
the only issue is that of the size of the neighborhood of 0 that lacks eigenvalues. The
six steps that follow in a moment prove that such a neighborhood contains an interval
of the form .�c�10 ; c0/.

Keep in mind when reading the proof that L� is defined by the pair .�; �/ and that
the latter are defined by the choice of a unitary frame for K�1j� . This last fact has the
following implication: Any two versions of .�; �/ that arise from � ’s version of (A-6)
give isospectral versions of L� . This being the case, no generality is lost by choosing
the coordinates so that j�jC j�j � c0 .

Step 1 Fix " > 0 so that the radius " tubular neighborhood of any given curve in the
set

S
p2ƒ.y


C
p [ y


�
p / has coordinates .�; x; y/ with x D b�1u and y D ��C � with

b denoting 2

3
p
3
eR.x0C 4e

�2R/1=2 and with �� such that cos �� D˙ 1p
3

as the case
may be. These are the coordinates used in Step 4 and the subsequent steps of the proof
of Lemma C.1. Set p D yC x and q D y � x . Fix "0 2 .0; c�10 "/ so that the surface
.p2C q2/1=2 D "0 lies well inside the radius " tubular neighborhood.

Suppose that � enters the .p2Cq2/1=2< 1
2
"0 part of the radius " tubular neighborhood

about a given 
 2
S

p2ƒ.y

C
p [y


�
p /. The discussion that follows considers only the case

when 
 ’s version of cos �� is equal to 1p
3

as the discussion for the other case is identical
but for some sign changes. Use � to denote 4

p
6e�R.x0C 4e

�2R/1=2 . The part of �
in the p2C q2 � "0 part of the radius " tubular neighborhood of 
 can be written in
terms of the coordinates .�; p; q/ as the image of a map t 7! .� D�t; p�.t/; q�.t//

with the domain being an interval I� � R containing the origin and with the pair
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.p� ; q�/ obeying the version of (C-4) with rp� D rq� D 0. They also obey analogs
of (C-8), (C-11) and (C-12) with no terms proportional to r�1=2 and with X0 D 0.

As in the proof of Lemma C.1, no generality is lost by taking the t D 0 point so that
p� D q� at t D 0, this being the point where � crosses the uD 0 sphere. With this
choice understood, write I� as Œt�; tC�. The pair t� and tC obey (C-6) with � denoting
the value of .p2�Cq

2
�/
1=2 at t D 0, this being the minimal value of .p2Cq2/1=2 on 
 .

Step 2 Fix T > 1 and let � denote an eigenvector of L� whose eigenvalue has
absolute value no greater than T �1�. The eigenvalue equation for � on the part of �
in the radius " tubular neighborhood of 
 where .p2C q2/1=2 � "0 can be written
as an equation for a pair of R–valued functions t 7! .�1.t/; �2.t// on the interval I� .
This equation has the form

(C-28) d

dt
�1 D ��1C e11�1C e12�2 and d

dt
�2 D���2C e21�1C e22�2;

where the eij are smooth functions on I� that are bounded by c0."0CT �1�/. The
fact that j�jC j�j � c0 implies that c�10 j�j

2 � j�1j
2Cj�2j

2 � c0j�j
2 .

Step 3 The same argument that proves (C-8) can be used with (C-28) to prove
that j�2j � c0."0C T �1�/j�1j where t � 0, and it can be used to prove that j�1j �
c0."0CT

�1�/j�2j where t � 0. Granted these bounds, multiply the left-hand equation
by �1 and the right-hand by �2 . Integrate the resulting equalities to see that j�1j2Cj�2j2

at tC and t� are at most .�C c0."0CT �1�//k�k2 . It then follows from (C-28) that

(C-29) .j�1j
2
Cj�2j

2/.t/� c0k�k2.e
��.tC�t/=c0 C e��.jt�jCt/=c0/

at each t 2 I� .

Fix L � 1 and suppose that both tC and jt�j are greater than c0��12L . If such is the
case, then (C-29) implies that

(C-30) .j�1j
2
Cj�2j

2/.t/� c0k�k2e
�L

at times t 2 I with distance L or more from t� and tC .

Step 4 Use � to construct a smooth, nonnegative function on 
 that is equal to 1
except at points in I� with distance L or less from either t� or tC . This function
should equal 0 at points on I� with distance greater than LC 1 from both t� and tC ,
and its absolute value should be bounded by 4. Use �
;L to denote this function. What
follows is a consequence of (C-30):

(C-31) k�
;L�k2 � .1� c0e
�L/k�k2 and kL�.�
;L�/k2 � T

�1�k�
;L�k2:
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The function �
;L can be defined for each 
 2
S

p2ƒ.y

C
p [ y


�
p / of the sort under

consideration. Multiply � by all such functions and the result is a section of K�1j�
with compact support on the part of � with distance greater than c�10 "0e

�c0L from
all curves in the set

S
p2ƒ.y


C
p [ y


�
p /. This section is denoted by �";L . What is said

by (C-31) implies that kL��";Lk2 � T �1�k�";Lk2 .

Step 5 Use �";L to denote the part of � with distance c�10 "0e
�c0L or more from all

curves in the set
S

p2ƒ.y

C
p [ y


�
p /. It follows from what is said in Step 2 that �";L has

length at most c0.LCjln "0j/. The fact that L� is a first-order operator, the fact that its
coefficients are bounded by c0 , and the fact that �";L has length at most c0.LCjln "0j/
has the following consequence: Let � denote a section of K�1j� with compact support
on �";L . Then kL��k2 � c�1";Lk�k2 with c";L being a constant that is greater than 1
and depends only on "0 and L , but not on � .

This last bound on kL��k2 runs afoul of the inequality kL��";Lk2 � T �1�k�";Lk2
unless T is less than c0c";L�.

Step 6 Choose "1� c�10 "0e
�c0L . Suppose that � is a closed, integral curve of v

whose points have distance "1 or more from all curves in the set
S

p2ƒ.y

C
p [ y


�
p /. It

follows as a consequence that � ’s version of L� has no eigenvalues between �c�11"
and c�11" with c1"�1 depending only on "1 . Such a constant exists because L� has triv-
ial kernel, and because there is but a finite set of closed orbits of v in Mı[

�S
p2ƒHp

�
that have distance "1 from

S
p2ƒ.y


C
p [ y


�
p /.

The bound in Step 5 and the bound in the preceding paragraph give a � –independent,
strictly positive lower bound to the absolute value of any eigenvalue of L� .

Cd Decreasing r

A unique set of closed integral curves of v are defined by three properties, the first three
following directly. By way of notation, the set in question is denoted here by ‚0 . The
first property requires that all curves from ‚0 lie in Mı [

�S
p2ƒHp

�
and that none

are from
S

p2ƒ.y

C
p [ y


�
p /. The second property requires that the union of the curves

from ‚0 intersects Mı as G segments that give the same pairing of the index 1 and
index 2 critical points of f as that given by the third bullet of Proposition 2.4 using
the zero locus of ˛ .

The statement of the third property requires introducing notation from Proposition II.2.7.
This proposition characterizes a segment of an integral curve of v in a version of Hp that
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starts on the u<0 boundary and ends on the u>0 boundary. Proposition II.2.7 charac-
terizes such a segment by an integer, denoted by kp . This kp is such that the total change
in the � angle along the segment in Hp can be written as � C 2�kp with � 2 Œ0; 2�/.

The first two properties imply that the union of the curves from ‚0 intersect each
p 2ƒ version of Hp as a single segment of the sort just described. This understood,
the third property requires that each of the corresponding p 2ƒ versions of kp be 0.

Let ‚1 denote the subset of pairs of the form .
;m/ where 
 2
S

p2ƒ.y

C
p [ y


�
p /

is a component of the zero locus of ˛˘11 and m is the integer that is used to define
.A˘11;  ˘11/ near 
 via (A-44).

Part 1 of what follows uses the sets ‚0 and ‚1 and a real number z> c0 to specify
a pair in Conn.E/�C1.Y IS/. This pair is denoted in what follows by c.z/. Each
such pair has its corresponding operator Lc.z/;z . Part 2 of this subsection states and
then proves two lemmas that supply an a priori upper bound for the absolute value of
the spectral flow between any zD z0 and zD z1 version of Lc.z/;z . Part 3 states and
then proves a proposition that compares the absolute value of the spectral flow between
any of the latter versions of Lc.z/;z and the version that is defined by taking R very
large, zD R and c to be .˛�1;  �1/ as defined using the chosen value for R .

Part 1 This part of the subsection defines the pair c.z/ 2 Conn.E/�C1.Y IS/ for a
given z>c0 . The definition of c.z/ on the radius .c4vC3c3v /z

�1=2 tubular neighborhood
of any given curve from ‚1 is given by (A-44) with the integer m coming from the
relevant pair in ‚1 .

The four steps that follow define c.z/ on the complement in Y of the union of the
radius c4vz�1=2 tubular neighborhoods of the curves from ‚1 . By way of a look ahead,
Section Aa’s construction is used to define c.z/ on this part of Y .

Step 1 Let cv denote the constant that is used to define .A˘11;  ˘11/. Take z � c0
and introduce Y�ƒ to denote the complement in Y of the union of the radius c4vz�1=2

tubular neighborhoods of the curves from the set
S

p2ƒ.y

C
p [ y


�
p /. Define T�ƒ to

be the subset of Y �Y�ƒ that consists of the components that do not contain curves
from ‚1 . The data consisting of cv , �� D c2vz�1=2 , T�ƒ and ‚D‚0 supply most
but not all of what is needed in Section Aa to define a pair consisting of a Hermitian
connection on EjY�ƒ[T�ƒ and a section of S over Y�ƒ[T�ƒ .

The definitions in Section Aa requires the specification of coordinates from Part 4 of
Section Aa for each curve in ‚0 . The latter are defined from a chosen isometric isomor-
phism over each such curve between K�1 and the product bundle. Make these choices.
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Section Aa also requires isomorphisms between E and the product bundle over certain
subsets of Y�ƒ[T�ƒ . These isomorphisms are defined in Step 4. Steps 2 and 3 supply
necessary input for the definition in Step 4.

The pair c.z/ on Y�ƒ[T�ƒ is the pair that is supplied by Section Aa using the data
cv , �� D c2vz�1=2 , T�ƒ , ‚ D ‚0 , the chosen isomorphisms over the curves in ‚0

between K�1 and the product bundle, and the promised isomorphisms between E and
the product bundle over the relevant subsets of Y�ƒ[T�ƒ .

Step 2 Section Aa introduces an open cover of Y�ƒ[T�ƒ consisting of a set U0 and
a collection of sets fU
g
2‚0 . The set U0 is the complement of the union of the radius
c2vz�1=2 tubular neighborhoods of the curves in ‚0 . Meanwhile, each 
 2‚0 version
of U
 is the radius 4c2vz�1=2 tubular neighborhood of 
 . The construction of c.z/ re-
quires an isomorphism between E and the product bundle over U0 and an isomorphism
between E and the product bundle over each set from the collection fU
g
2‚0 .

Fix 
 2 ‚0 to define the isomorphism between E and the product bundle over U
 .
To do this, note that the sets ‚0 and ‚˛ enjoy a 1–1 correspondence with partnered
elements being homotopic in Mı [

�S
p2ƒHp

�
. Moreover, the partners intersect Mı

as arcs that are isotopic via an isotopy that moves points a distance at most c0ı , this
being a consequence of Lemma II.2.5. Let �˛ denote 
 ’s partner from ‚˛ .

Choose a smoothly embedded, oriented surface in Œ0; 1��Y with the properties listed
below:

(C-32) � The surface intersects Œ0; c�10 /�Y as Œ0; c�10 /� �˛ .
� The surface intersects .c�10 ; 1��Y as .c�10 ; 1�� 
 .
� The surface intersects Œ0; 1��Mı as an embedded rectangle of width less

than c0ı that intersects each constant f surface transversely as a single arc.
� The surface intersects the boundary of any radius ı coordinate ball in Mı

transversely as a single arc.
� The projection of the surface to Y intersects only the p2ƒ versions of Hp

that are crossed by �˛ and 
 , and its projection in any such Hp is disjoint
from y
Cp and y
�p .

Such a surface can be constructed by mimicking what is done in Step 3 of the proof of
Lemma II.5.3 to construct the latter’s surface ZC . Use S
 to denote the chosen surface.

Fix R > c0c6v r suitable for defining the path f.A�� ;  �� /g�2Œ0;1� and in any event such
that all points in S
 have distance at least .c4v C 3c3v /R

�1=2 from each curve in the
set

S
p2ƒ.y


C
p [ y


�
p /. Let US � Œ0; 1� � Y denote a tubular neighborhood of S
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that intersects f0g � Y as the radius 4c2vR1=2 tubular neighborhood of �˛ and that
it intersects f1g � Y as U
 . Require in addition that points in US have distance
.c4v C 3c3v /R

�1=2 from y
Cp and y
�p .

Step 3 Let � W Œ0; 1�� Y ! Y denote the projection to the Y factor. As explained
in the subsequent paragraphs, the section ˛˘11 extends over Œ0; 1�� Y as a section
of ��E with zero locus

�S

2‚0 S


�
[
�S

.
;m/2‚1 Œ0; 1�� 

�

and with transversal
zeros along each S
 .

The explanation starts with the 1–cycle
P
�˛2‚˛ Œ�

˛�C
P
.
;m/2‚1 mŒ
�, where Œ � �

denotes the cycle defined by the fundamental class of the indicated loop. This sum is
the weighted sum of the components of the zero locus of ˛˘11 with the weight of a
component being the degree of vanishing of ˛˘11 on a small radius transverse disk
centered on the given component. The class of this cycle in H1.Y IZ/ is Poincaré dual
to the first Chern class of E because ˛˘11 is a section of E .

The first Chern class of E is also Poincaré dual to the class defined by the 1–cycleP

2‚0 Œ
�C

P
.
;m/2‚1 mŒ
�, and, as a consequence, the class of the relative 2–cycleP


2‚0 ŒS
 �C
P
.
;m/2‚1 mŒŒ0; 1��
� on Œ0; 1��Y is Poincaré dual to the first Chern

class of ��E . This being the case, there is a section of ��E whose zero locus defines
this same relative 2–cycle. Moreover, there exists such a section with transverse zeros
along each S
 and the same local behavior as ˛˘11 near the origin of any transverse
disk in f0g �Y with center on a curve from ‚1 . Use y̨ to denote such a section and
use y̨j0 to denote its restriction to f0g �Y . The latter can be written as u �˛˘11 with
u being a smooth map from the complement in Y of

�S
�˛2‚˛ �

˛
�
[
�S

.
;m/2‚1 

�

to C�f0g. The section ˛˘11 has the desired extension if u extends as a map to C�f0g

from the complement Œ0; 1��Y of
�S


2‚0 S

�
[
�S

.
;m/2‚1 Œ0; 1�� 

�
.

Let Y ˛ denote the complement in Y of
�S

�˛2‚˛ �
˛
�
[
�S

.
;m/2‚1 

�

and let X˛

denote the complement in Œ0; 1�� Y of
�S


2‚0 S

�
[
�S

.
;m/2‚1 Œ0; 1�� 

�
. The

map u will extend if the restriction homomorphism from H 1.X˛IZ/ to H 1.Y ˛IZ/

is surjective; and this is the case if the inclusion homomorphism from H1.Y
˛IZ/=tors

to H1.X˛IZ/=tors is injective. To prove that this is so, note that its composition with
the inclusion homomorphism H1.X

˛IZ/ to H1.Œ0; 1��Y IZ/ is the same as the com-
position of the homomorphism from H1.Y

˛IZ/ to H1.Y IZ/ with the isomorphism
given by the pushforward of � . This understood, the claimed injectivity follows from
the fact that the kernel of the inclusion homomorphism from H1.Y

˛IZ/ to H1.Y IZ/
is generated by the linking circles of the transverse disks centered on the various curves
from ‚1 .
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Step 4 Let y̨ now denote an extension of ˛˘11 to a section of ��E with zero locus�S

2‚0 S


�
[
�S

.
;m/2‚1 Œ0; 1�� 

�

that vanishes transversely along each S
 and is
equal to ��˛˘11 near each curve from ‚1 . The restriction of this section to f1g �Y
is denoted in what follows by y̨j1 . This is a section of E . The required isomorphism
over U0 between E and U0 �C sends y̨j1 to its absolute value,

ˇ̌
y̨j1

ˇ̌
.

Fix a curve 
 2‚0 . The definition of the required isomorphism between EjU
 and
U
 �C uses the chosen isomorphism between K�1j
 and 
 �C to define the coor-
dinates .t; z/ on U
 from Part 4 of Section Aa. Granted these coordinates, the desired
isomorphism over U
 between E and the product bundle takes y̨j1 to

ˇ̌
y̨j1

ˇ̌
z=jzj.

Part 2 This part of the subsection supplies two lemmas that summarize some salient
features of the pairs defined in Part 1.

Lemma C.6 There exists � >1 and , given cv>� , there exists �cv >� with the follow-
ing significance: Suppose that r��cv c10v and suppose that .A; D .˛; ˇ// is a solution
to the .r; �/ version of (1-13) with � a given element in � with P–norm smaller
than 1. These values of cv and r are suitable for defining c.z/ for z � �cv given an
isometric isomorphism between K�1 and the product bundle over each curve from ‚0 ,
and given also a surface of the sort described by (C-32) for each curve from ‚0 .

� The resulting c.z/ does not depend on the chosen set of isometric isomorphisms.

� The resulting c.z/ depends on the chosen surface and then the extension y̨ as
follows:
(a) Respective versions of c.z/ that are defined by different sets of surfaces and

extensions differ by the action of a map from Y to S1 .

(b) The homology class of this map defines a class in H 1.Y IZ/ that is Poincaré
dual to a class from the

L
p2ƒH2.HpIZ/ summand in (1-4).

This lemma is proved in a moment.

The next lemma supplies an a priori bound for the absolute value of the spectral flow
between versions of Lc.z/;z that are defined by distinct choices for z.

Lemma C.7 There exists � >1 and , given cv>� , there exists �cv >� with the follow-
ing significance: Suppose that r��cv c10v and suppose that .A; D .˛; ˇ// is a solution
to the .r; �/ version of (1-13) with � a given element in � with P–norm smaller
than 1. Use the data from ˛ to define c.z/ for z��cv . The absolute value of the spectral
flow between the zD �cv and any zD z1 � �cv version of Lc.z/;z is bounded by � .
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The proof of this lemma is given directly. The proof assumes that the first bullet of
Lemma C.6 is true.

Proof of Lemma C.7 Except for one added remark, the proof is identical to that
used to prove Proposition C.4. The added remark concerns the use of Lemma A.8
in the proof. In particular, the bounds given for the term e.f / in this lemma depend
implicitly on bounds for the functions � and �. Meanwhile, the latter are defined by
the coordinates from Part 4 of Section Aa and thus by the chosen isomorphism over the
curve in question between K�1 and the product bundle. As Lemma C.6 asserts that
c.z/ does not depend on the chosen isomorphism, choose one with j�jC j�j � c0 .

Proof of Lemma C.6 To prove the first bullet, assume that a choice of surfaces has
been made for each curve from ‚0 . Fix 
 2‚0 and choose an isometric isomorphism
between K�1j
 and 
 �C to define c.z/ on U
 . The formulas for c.z/ are given
in (A-8) and (A-9). Granted these formulas, the observations made in the first two
paragraphs of Part 5 in Section Ba apply and prove that c.z/ does not change when
the isomorphism changes.

To see about the second bullet, suppose that fS
g
2‚0 and fS 0
g
2‚0 are two sets
of surfaces of the sort described in (C-32). Let '0 and '00 denote the corresponding
isomorphism between E and the product bundle over U0 . Write '00 as u0'0 with u0
being a map from U0 to S1 . Fix a coordinates from Part 4 of Section Aa for each
curve in ‚0 . Given 
 2‚0 , let '
 and '0
 denote the corresponding isomorphisms
between E and the product bundle over U
 . Write '0
 as u
'
 .

The respective primed and unprimed transition maps from U0\U
 to S1 that identify
the product structure for E over U0 with that over U
 are identical because the same
coordinates for U
 are used for the two cases. Use this fact with the formulas in
Section Aa to conclude that u0Du
 on U0[U
 . This being the case, the collection of
maps consisting of u0 and fu
g
2‚0 define a smooth map from Y to S1 that relates
the primed and unprimed versions of c.z/. Let uW Y ! S1 denote this map.

Consider now the class defined by u in H 1.Y IZ/. This class is determined by the
integral of � i

2�
u�1du over a basis of cycles in Y that generate the free Z–module

H1.Y IZ/=tors. Part 4 of Section 1.2 describes the set f
 .z/gz2U of 1Cb1.M/ integral
curves of v in Mı [H0 with the following property: the integral of � i

2�
u�1du

over these cycles detects the image in the summand H2.M IZ/ ˚ H2.H0IZ/ of
the Poincaré dual in H2.Y IZ/ of u’s cohomology class. To prove that this image
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is zero, introduce y̨ and y̨0 to denote the corresponding fS
g
2‚0 and fS 0
g
2‚0
extensions of ˛˘11 . Both y̨ and y̨0 are nonzero on the product of Œ0; 1� with the
complement in Mı [H0 of the union of the radius c0ı tubular neighborhoods of
the component segments of

S

2‚0.
 \Mı/. Let T denote this small radius tubular

neighborhood of
S

2‚0.
\Mı/. Keep in mind that this set T is disjoint from the setS

z2U.Œ0; 1�� 

.z//. This fact can be used to exhibit a homotopy on a neighborhood

of
S
z2U 
.z/ between u and the constant map to 1 2 S1 : the desired homotopy is

parametrized by Œ0; 1� with the � 2 Œ0; 1� member of the homotopy being the restriction
to f�g � ..Mı [H0/�T / of .y̨=jy̨j/.y̨0=jy̨0j/�1 .

Part 3 This part of the subsection concerns the spectral flow difference between very
large R versions of Lc;R as defined using cD .A�1;  �1/ and the corresponding zD R

version of the operator Lc.z/;z . The proposition that follows says what is needed about
this difference.

Proposition C.8 There exists � � 100, and , given cv � � , there exists �cv > � with
the following significance: Suppose that r� �cv c10v and suppose that .A; D .˛; ˇ//
is a solution to the .r; �/ version of (1-13) with � a given element in � with P –norm
smaller than 1. The values of � , cv and r are suitable for defining .A˘11;  ˘11/ and
any R� �c6v r version of .A�1;  �1/. Fix any sufficiently large R and use it to define the
pair .A�1;  �1/. Define the zD R version of c.z/ using any chosen set of isomorphisms
between K�1 and the product bundle over the curves from ‚0 , and using any chosen
set of surfaces of the sort described in (C-32) for the curves in ‚0 . The norm of the
difference between the respective values of the spectral flow function fs at .A�1;  �1/
and at the zD R version of c.z/ is bounded by � .

By way of a parenthetical remark, what is said in the second bullet of Lemma C.6 is
consistent with what is said in Proposition C.8. This follows from three facts. Here is
the first: The function fs is invariant under the action on Conn.E/�C1.Y IS/ of the
subgroup of maps from Y to S1 whose corresponding class in H 1.Y IZ/ has zero cup
product with the first Chern class of the line bundle det.S/. The second fact concerns
the cup product pairing between this first Chern class and a given class � 2H 1.Y IZ/:
this is the same as the pairing between the first Chern class of det.S/ and the Poincaré
dual of � in H2.Y IZ/. Here is the final fact: the first Chern class of det.S/ annihilates
the

L
p2ƒH

2.HpIZ/ summand of H2.Y IZ/.

Proof of Proposition C.8 If R is sufficiently large, then the arguments from Section 2b
of [21] with only notational changes can be imported to prove the proposition.
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Ce Proof of Proposition 2.6

This section gives the proof of Proposition 2.6. The argument has five steps.

Step 1 It is convenient to choose a finite set of surrogates for the pair .AE ;  E /. This
set of surrogates is indexed by the set of all possible pairs of the form .‚0; ‚1/ that
can arise in the previous subsection from large r and .r; �/ versions of (1-13). This
indexing set is denoted by ZHF �Z1 .

By way of a precise definition, the set ZHF has distinct elements of the following sort:
Let ‚0 denote a given element. This set ‚0 consists of at most G distinct, closed
integral curves of v . All curves in the set ‚0 lie in Mı[

�S
p2ƒHp

�
and none are fromS

p2ƒ.y

C
p [ y


�
p /. The union of the curves from ‚0 intersects Mı as G segments that

give the same pairing of the index 1 and index 2 critical points of f . Finally, the union of
the integral curves in v intersects each p2ƒ version of Hp as a single segment that runs
from the u<0 boundary of Hp to the u>0 boundary. The intersection is characterized
by an integer, kp , as in Proposition II.2.7, and the segment in question has kp D 0.

As explained in [8; 9], the set ZHF determines a set of generators for the Heegaard
Floer homology on M. In any event, ZHF has finitely many elements.

The set Z1 consists of elements of the following sort: Let ‚1 denote a given element.
This set ‚1 consists of pairs of the form .
;m/ where 
 2

S
p2ƒ.y


C
p [y


�
p / and where

m is a positive integer. No two pairs share the same integral curve component. The
integer m is bounded by c0c3v . The set ‚1 is also finite.

Take each ‚0 in ZHF and assign once and for all an isometric isomorphism between
K�1 and the product bundle over each curve from ‚0 . Let �c� denote the larger of the
versions of �cv that appear in Lemmas C.6 and C.7. Fix z0 D �2c� and assign once and
for all a product structure for E over the radius 4c2vz�1=20 tubular neighborhood of each
curve from ‚0 . Fix once and for all a product structure for E over the complement
in Y of the union of the radius c4vz�1=20 tubular neighborhoods of the curves from ‚0 .

Take each pair yOD .‚0; ‚1/ 2ZHF�Z1 and use the data cv , zD z0 with the product
structures chosen in the preceding paragraph to construct the corresponding version of
the pair c.zD z0/ as instructed in Step 1 of Part 1 of Section Cd. Denote this pair by cyO .
Write this pair as .AyO;  yO/ and use ˛yO to denote the E summand component of  yO .

Since ZHF � Z1 is a finite set, there exists a purely cv–dependent �c > 1 with the
following property: Fix yO 2 ZHF �Z1 . Then the connection AyO can be written as
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AECyayO with yayO being an iR–valued 1–form with jyayOj � �c . In addition, the norm of
the difference between the respective values of fs at .AE ;  E / and cyO is bounded by �c .

Step 2 Fix cv � c0 and r � �cc10v with �c being a purely cv–dependent constant.
Assume that cv and �c are suitable for invoking the results in Appendices A and B and
the previous subsections of this Appendix C. Suppose that .A; D .˛; ˇ// is a solution
to the .r; �/ version of (1-13) with � a given element in � with P–norm smaller
than 1. Assume in addition that jXS.A/j � c0 . By assumption, the values of cv and r
are suitable for defining from .A; / the pair .A˘11;  ˘11/ and any given R � �c6v r
version of .A�1;  �1/. Fix any sufficiently large R and use it define both .A�1;  �1/
and the z2 .�c�; R� versions of c.z/. Use c.A; /.z/ to denote such a version. Write the
pair c.A; /.z/ as .Az;  z/ and write the E summand of  z as ˛z . Use yO 2 ZHF�Z1

in what follows to denote the element .‚0; ‚1/ that is used to define c.A; /.z/. This
element is determined by .A; /.

Step 3 Let T denote the union of the radius c0ı tubular neighborhoods of the
intersection between Mı and the curves from ‚0 . This set T has distance at least c�10
from the curves in the set f
.z/gz2U . Moreover, it contains the Mı part of the zero
locus of ˛ and the Mı part of the zero locus of ˛yO . With this understood, the section ˛
on .Mı[H0/�T can be written as ˛Dj˛ju˛yO with u being a map from .Mı[H0/�T
to S1 . Write rA˛ on .Mı [H0/�T as .d j˛jC .u�1duC yaA� yayO/j˛j/˛yO .

Lemma 2.1 asserts that 1�j˛j � c0r�1 and that jrA˛j � c0 on .Mı[H0/�T . Given
that AD AE C yaA and AyO D AE C yayO , it follows that ju�1duC yaA � yayOj � �c on
.Mı [H0/�T with �c � 1 being a purely cv–dependent constant. The latter bound
has the following consequence: the absolute value of the integral of � i

2�
u�1du over

any curve from the set f
 .z/gz2U is bounded by �c , with �c again denoting a purely
cv–dependent constant.

Fix z 2 .�c�; R/. The zero locus of ˛z in Mı also lies in T . This understood, write ˛z

on .Mı[H0/�T as ˛zDuzj˛j
�1˛ with uz being a smooth map to S1 . It follows from

what is said by Step 4 of Part 3 in Section Ca and by Step 4 of Part 1 in Section Cd that the
integral of the 1–form � i

2�
u�1z duz is zero over any curve from the set f
 .z/gz2U . In

fact, the extension y̨ used in Step 4 of Part 1 in Section 1.3 can be chosen so that uzD 1.

Step 4 The zero locus of ˛z and that of ˛yO are identical, it being the union of the curves
from ‚0 and ‚1 . The latter fact implies that ˛z can be written on the complement of
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this zero locus as ˛zDj˛zjj˛yOj
�1yuz˛yO with yuz being a smooth map to S1 from the com-

plement in Y of the union of the curves from ‚0 and ‚1 . It follows from what was said
in Step 3 that the integral of � i

2�
yu�1z d yuz is zero over any curve from the set f
 .z/gz2U .

Take zD z0 now, this being the value of z that is used to define .AyO;  yO/. It follows
from the first bullet of Lemma C.6 that the z D z0 version of yuz extends to define
a smooth map from the whole of Y to S1 and that the z D z0 version of the pair
.Az;  z/ can be written as .Az0 D AyO � yu

�1
z0 d yuz0;  z0 D yuz0 yO/ on the whole of Y .

Step 5 The integral of � i
2�
yu�1z0 d yuz0 over the curves from f
 .z/gz2U is zero, and

this implies that the Poincaré dual in H2.Y IZ/ of the class in H 1.Y IZ/ defined
by yuz0 lies in the

L
p2ƒH2.HpIZ/ summand of H2.Y IZ/. As noted previously,

this summand has zero pairing with the first Chern class of det.S/. It follows as a
consequence that the spectral flow function fs has the same value on c.A; /.z0/ as
it has on cyO . This being so, the absolute value of fs on c.A; /.z0/ is bounded by �c ,
with �c being a purely cv–dependent constant.

Lemma C.7 asserts that the norm of the difference between the values of fs at c.A; /.z0/
and at c.A; /.zD R/ is bounded by a purely cv –dependent constant, and so the absolute
value of fs at c.A; /.zD R/ is also bounded by such a constant. Proposition C.8 asserts
that the norm of the difference between values of fs at c.A; /.zD R/ and .A�1;  �1/
is also bounded by a purely cv–dependent constant. Proposition C.4 asserts that such
is also the case for the norm of the difference between the values of fs at .A�1;  �1/
and .A˘11;  ˘11/. Proposition C.2 says the same thing for the norm of the difference
between values of fs at .A˘11;  ˘11/ and at .A˘;  ˘/. Proposition B.13 says this
about the norm of the difference between values of fs at .A˘;  ˘/ and .A�;  �/, and
Proposition B.3 says this about the norm of the difference between the values of fs at
.A; / and at .A�;  �/.

Adding all of these absolute value bounds verifies that the absolute value of fs at .A; /
is bounded by a purely cv–dependent constant.
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