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This is the fourth of five papers that construct an isomorphism between the Seiberg—
Witten Floer homology and the Heegaard Floer homology of a given compact, oriented
3—manifold. The isomorphism is given as a composition of three isomorphisms; the
first of these relates a version of embedded contact homology on an auxiliary manifold
to the Heegaard Floer homology on the original. The second isomorphism relates the
relevant version of the embedded contact homology on the auxiliary manifold with
a version of the Seiberg—Witten Floer homology on this same manifold. The third
isomorphism relates the Seiberg—Witten Floer homology on the auxiliary manifold
with the appropriate version of Seiberg—Witten Floer homology on the original
manifold. The paper describes the second of these isomorphisms.
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The existence of an isomorphism between these respective Floer homologies is stated
as the main theorem in [8]. A particular isomorphism is described in [8], which can be
written as the concatenation of three separate isomorphisms which involve an auxiliary
manifold that is obtained from the original by connect summing a certain number
of copies of S x §2. As noted in Section 3 of [8], the middle isomorphism in this
concatenation identifies a version of the Seiberg—Witten Floer homology on the connect
sum manifold with a version of Michael Hutchings’ embedded contact homology [3]
on this same connect sum. The relevant version of this embedded contact homology
is described in Section 2.2 of [8] and in the appendix of [9]. This homology is also
the focus in [10]. The isomorphism between the respective Seiberg—Witten Floer and
embedded contact homologies on the connect sum manifold is asserted by Theorems 3.3
and 3.4 in [8]. The latter reference deduces its Theorem 3.4 from Theorem 3.3; this
paper proves [8, Theorem 3.3]. Section 1.4 explains why the latter theorem is a
consequence of Theorem 1.5 in Section 1.4. Respective proofs are also given below
for [8, Theorems 3.1 and 3.2]. These are seen in Section 1.3 to be consequences of
Propositions 1.1-1.4.

Most of what is done in [9; 10] is not relevant for what follows. Even so, certain
results and constructions from these papers are needed. In particular, the geometry
needed to define the appropriate versions of the Seiberg—Witten Floer homology and the
embedded contact homology is described in [9; 10]. Section 1.1 provides a summary
of this geometry.

The following conventions are used throughout the remainder of this paper: Section
numbers, equation numbers and other references from [8; 9; 10] are distinguished from
those in this paper by the use of the Roman numerals I, II and III as a prefix. For
example, “Section II.1” refers to Section 1 in [9]. Note also that the convention here as
in [9; 10] is to use co to denote a constant in (1, c0) whose value is independent of all
relevant parameters. The value of ¢ can increase between subsequent appearances.
A second convention used here and in [9; 10] concerns a function that is denoted
by yx. The latter is a fixed, nonincreasing function on R that equals 1 on (—oo, 0] and
equals O on [1, 00).

Acknowledgements Kutluhan was supported in part by a National Science Foundation
Postdoctoral Fellowship under Award 1103795. Lee and Taubes are also supported
in part by grants from the National Science Foundation. Lee was supported by Hong
Kong Research Grants Council grants GRF-401913, 14316516, 14305541.

Geometry & Topology, Volume 24 (2020)



HF =HM, IV 3221

1 Embedded contact homology and Seiberg—Witten Floer
homology

Let M denote the given compact, oriented 3—manifold. A self-indexing Morse function
for M and certain auxiliary data are used in [9] to construct a second manifold, Y, as
a connected sum of M with copies of S x §2. The manifold Y has two orientations,
one coming from the part it shares with M and then the opposite orientation. Theorems
3.1-3.4 in [8] compare certain Seiberg—Witten Floer homologies on the M—oriented
version with a certain sort of embedded contact homology on the oppositely oriented
version. These respective homologies need certain geometric data for their definition.
This section starts with a description of the necessary data. It then briefly describes the
relevant version of embedded contact homology and the relevant version of Seiberg—
Witten Floer homology. It ends by restating Theorems 3.1-3.4 from [8].

1.1 The geometry of Y

The construction of Y from M is described in Section II.1. This subsection summarizes
the salient features of Y.

Part1 The construction of Y starts with the choice of a self-indexing Morse function,
f: M — [0, 3] with one index O critical point, one index 3 critical point and some
index 1 and index 2 critical points. The number of index 1 (and thus index 2) critical
points is denoted by G. The manifold Y is diffeomorphic to the connected sum of M
with G + 1 copies of S! x §2. The manifold Y is oriented so that the part from M
has the orientation opposite from M ’s orientation. Note that [8] uses Y to denote this
orientation of the connected sum and uses Y to denote the connected sum with the
orientation induced from M.

Also needed from M is the choice of a class in H%(M;Z), which defines a homo-
morphism from H,(M;Z) to 2Z. This class is denoted in what follows by c1pr. A
Spin® structure will be chosen in a moment, and its first Chern class will play the role
of cjpr. Needed also is a chosen pairing between the set of index 1 critical points of f
and the set of index 2 critical points of f. The resulting set of G pairs is denoted by A.
An element p € A is written as an ordered pair of points with it understood that the
first entry is the index 1 critical point of # and the second entry is the index 2 critical
point of f. Various other Morse-theoretic items from M are needed to construct Y
and its geometry, but these others play minor roles in this paper.
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The definition of Y required the choice of positive numbers which are denoted by §«
and R. This 84 is from (0, 1); it is determined by the chosen function f. Meanwhile,
R has the lower bound —1001n §«. This constant R has no a priori upper bound, and
the freedom to take R as large as needed is exploited in [9; 10] and in the constructions
to come in this article.

The construction of the geometry needed for the embedded contact geometry chain
complex required the choice of two additional positive numbers which are denoted by &
and xg. The trio (8, xg, R) are constrained by the requirements that § < 84 /cg, xo <§>
and R > —coInxg. The choice of § determines an upper bound for xg, and the choice
of xo subject to this upper bound then determines a lower bound for R. Constants 4§,
xo and R that satisfy these bounds are said to be appropriate. The freedom to take &
as small as desired is also exploited in [9; 10] and in what follows.

Part2 The manifold Y is constructed by attaching G + 1 handles to M. In particular,
Y is written as the union of sets Ms U Ho U (Upe A Hp), where the notation is as
follows: First, My is the complement in M of 2(G + 1) disjoint balls about the critical
points of #. What is written as #q is a 1-handle and so diffeomorphic to [—1, 1] x §2.
It intersects Mg near {—1} x S? as an annulus in a ball centered on the index 3 critical
point of £, and it intersects Mg near {1} x S? as an annulus in a ball centered on the
index O critical point of f. Meanwhile, the various p € A version of #, are 1-handles
and so each is diffeomorphic to [—1, 1] x S? also. These are pairwise disjoint and
disjoint from Ho. Any given p € A version of H,, intersects Ms near {—1}xS 2 as an
annulus in a ball centered around p’s index 2 critical point and it intersects Mg near
{1} x S? as an annulus in a ball centered around p’s index 1 critical point.

The handle Ho and those from the set {#,},ea have preferred coordinates, these
denoted by (u, (9, ¢)) where (0, ¢) are spherical coordinates for the S? factor and
where u is the Euclidean coordinate for the closed interval [—R—1n(78+), R +1n(784)].
The function f appears in these coordinates near the v <0 end of Hg as f = 3—e2U+R)
and near the u > 0 end of Ho as f = e~2@=R) Meanwhile, the function f appears

near the respective negative and positive u ends of any given p € A version of H,, as
(1-1) f= 2— e 2WHR) (1 _3c0s20) and f=1+ 2R (1 _3¢0s2 6).

The 3—form dusinf d6 d¢ gives the Y —orientation to each handle. Orient the cross-
sectional spheres in each 1-handle using the 2—form sin 6 d6 d¢.
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Part 3 The definition of the relevant version of Hutchings’ embedded contact ho-
mology uses a pair (w,a) of 2—form and 1-form on Y. The latter define a stable
Hamiltonian structure, which is to say that w is closed, a A w is nowhere zero and
defines Y ’s orientation, and da C Span(w). The vector field that generates the kernel
of w and has pairing 1 with a is denoted by v. The salient features of w, a and v are
listed in the upcoming (1-3). This equation refers to auxiliary functions x, y4, y—, f
and g. These are functions on [—R —In(78«), R + In(78,)] that are defined using the
chosen function y. By way of a reminder, y is a smooth, nonincreasing function on R
that is 1 on (—oo, 0] and equals 0 on [1, c0). The aforementioned five functions are
x =xox(Ju|— R—1né + 12),

(1-2) A+ =x(~u—1R), f=x+2(y42¥ R 4 y_e20+R)

X—= X(M — %R), g= ()(+62(”_R) _ _6—2(u+R))_

What follows is the promised list:

X

(1-3) o On Mg The 2—form w on Mg is nowhere zero on the kernel of the 1-
form df, and v here is a certain pseudogradient vector field for f.

e In the handle #( The 2—form w and the vector field v on Hq are

1 0

w=sindddAndp and v= ST VS T e 3 T

* Inthe handles {#;},ea Fix p € A. The trio a, w and v on H, are
a=(x+g)1—-3cos?6)du— V6fcosBsin? 0 dp + 6gcos O sinb do,
w =6xcos€sin9d9/\du—\/gd{fCOSQSinZqub},
v = Ev_l{f(l —3cos26)dy — V6 x cos 6 d¢p + ' cos Osin O dg}.
Here, ¢, = (x 4+ g)f(1 — 3 cos? 0)2 + 6(xf + gf’) cos? 6 sin § is a positive function
of (u,0).

An additional property of w plays a central role in the story to come. To say more
about this, introduce the direct sum decomposition

(1-4) Hy(Y:Z) = Hy(M:Z) & Hy(Ho: Z) & €D Ha(M,: Z)
peEA

that comes via Mayer—Vietoris by writing ¥ = Mg UHo U (Upe A ’Hp) . The summands
in (1-4) that correspond to the various 1-handles are isomorphic to Z, and any oriented,
cross-sectional sphere is a generator.
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The additional property concerns the cohomology class defined by w. This class is
determined by what follows: Integration of w over closed 2—cycles defines the linear
map from H, (Y ;7Z) to Z that has value 2 on the generator of H,(Ho; Z); it has value
zero on each p € A version of H3(Hy:Z); and it acts on the Hy(M; Z) summand
in (1-4) as the pairing with the chosen class ¢y .

Part4 A particular closed integral curve of the vector field v plays a distinguished
role in the embedded contact homology story. This curve is denoted by y(?0) here and
in the other papers in this series. The curve is disjoint from (J,e o Hp and it crosses Ho
so as to have intersection number 1 with each cross-sectional sphere. Note in this
regard that the convention here and in what follows is to orient the integral curves
of v using v for the oriented unit tangent vector. This curve intersects ¥ = ! (%) in
precisely one point. The latter is denoted by zg.

A pair of additional 1-forms enter the story. These are denoted by v, and a:

(1-5) e The 1-form v, The 1-form v, is closed and is such that v, A w > 0.
Furthermore, ve A w = 0 only where both ¥ =0 and 1—3 cos26 =0
on each p € A version of H,. This 1-form equals df on My, it is given
by e = 2(y4e2@ R 4y ¢=2W+R)y gy on H, and it is given by v, =
d((ye2@ R _y_=2+R)) (] _3¢c0s2 0)) on any given p € A version
of Hy.

The definition @ refers to the function yg that is defined on any given p € A version

of H, by the rule x5 = y(Ju| —R—Ind + 10).

(1-6) o The 1-form @ The 1-form a has pairing 1 with v and is such that
a Aw > 0. This 1-form is equal to v, on Mg U Ho and it is equal to
xsa + (1 — x5)ve on any given p € A version of H,,.

The kernel of the 1-form a defines a 2—plane subbundle in 7Y on which w is
nondegenerate. When oriented by w, the bundle Ker(@) has an Euler class which
evaluates as 2 on the generator of the H,(Ho; Z) summand in (1-4) and evaluates
as —2 on the generator of each p € A summand H>(H,; Z). The vector field v has
pairing 1 with a also.

Various other geometric properties of Y are introduced as needed in what follows.

Part 5 The almost complex geometry of R x Y is defined by an almost complex
structure, this denoted by J. The latter is constrained in various ways; most of the
constraints are given in Part 1 of Section II.3A and Section III.1C. The upcoming (1-7)
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reviews various features of J. We use s to denote the Euclidean coordinate on the
R factorof R x Y.

(1-7) e« J maps the Euclidean tangent vector ds to the R factor of R x Y to v.
e J is not changed by constant translations of the coordinate s on R x Y.

e J preserves the kernel of the 1—form &, and its restriction to this 2—plane
field defines the orientation given by w.

e J on R x%Hp and on any given p € A version of R x H,, is invariant with
respect to constant translations of the R/ (2w Z) coordinate ¢.

It is a consequence of (1-7) that the 2—form @ = ds Ad + w on R x Y is compatible
with J. This is to say that the bilinear form @(-,J(-)) on T(R x Y) defines a
Riemannian metric. Note in particular that this metric has the form ds? 4+ gy with gy
being a metric on 7Y that makes v a unit vector that is orthogonal to the kernel of a.
The corresponding metric on 7*Y gives @ norm 1 and is such that the Hodge star
ofdisw.

These respective metrics on R x ¥ and Y are used implicitly in what follows.

1.2 Embedded contact homology on Y

The appendix in [9] describes the relevant version of embedded contact homology
on Y. More is said about the chain complex and its homology in Sections III.1B
and II1.9. This subsection provides a very brief summary of what is said in these
sections of [9; 10]. The summary here comprises Parts 2—4 of the five parts of this
subsection. The first part of the subsection constitutes a digression that concerns Spin©
structures on M and Y. The final part summarizes some observations from [9; 10] that
are particularly relevant in the subsequent sections of this paper.

Part 1 A Spin® structure on M is chosen whose associated first Chern class is the
chosen class ¢yps. The chosen Spin® structure is fixed for the remainder of this article.
The Spin® structure on M determines in a canonical fashion a corresponding Spin®
structure on Y. This is done using a version of Mayer—Vietoris with the decomposition
of Y as Mg UHoU (Upe A Hp). The first Chern class of the resulting Spin® structure
on Y has pairing 2 with the generator of the H»(#¢;Z) summand in (1-4) and it has
pairing O with each of the p € A labeled summands. The pairing with the H»(M; Z)
summand is that of the first Chern class of the Spin® structure on M, which is to say
that of ¢y . It follows as a consequence that the image in H»(Y; R) of the first Chern
class of the Spin® structure on Y is the class defined by the closed form w.
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The image of Hy(M;Z) in Z given by the pairing with cjs is a subgroup of Z. If
c1Mm 1s not torsion, use pps to denote the largest integer that divides all of its elements.
Note that pjs is in all cases even.

Part 2 The Z-module that serves as the embedded complex homology chain complex
is defined using a certain principal Z-bundle over a set that is denoted by Zech, ps -
The set Zecn,pr is described in Proposition I1.2.8. The principal Z-bundle is denoted
by :S’ech, M and described in Section II.1F and in Part 4 of Section III.1B. The embedded
contact homology chain complex is denoted by Z(éech, M)

By way of a reminder, an element in Z.y ps 1S a set, O, consisting of some number of
closed integral curves of v that lie entirely in the union of the f € (1,2) part of Mjs
and the various p € A versions of ;. In particular, the union of the curves that
constitute such a set ® intersect each p € A version of #,, in at most three components.
There exists in all cases one component of this intersection that lies entirely in the
1 —3cos? 6 > 0 part of H,, as an arc that crosses H,, from the ¥ = —R —In(78x) end
to the u = R +1In(78) end. The locus in H, where both u =0 and 1 —3cos?6 =0
is a disjoint union of two closed integral curves of v, and one or both of these curves
can also appear in ®. The curve with ¥ = 0 and cos 6 = % is denoted by i/\p+ and
the curve where ¥ = 0 and cos 8 = —% by )7; .

If y is used to denote a closed integral curve of v, then [y] is used to denote both the
oriented cycle defined by y and the corresponding element in Hy(Y; Z), where it is
understood that y is oriented by v. Meanwhile, [0®] = Zye@)[V] is used to denote
both a sum of oriented 1—cycles and the corresponding homology class. The latter is
fixed by the chosen Spin®—structure; this class is the same for all elements in Zecp s .

The principal Z-bundle éecm M —> Zech,m 18 defined after choosing a fiducial element
®¢ € Zech,m - The fiber of Z,A’ech, M over a given element © € Z.p, s is identified with
the set of equivalence classes of pairs of the form (®, Z) where Z is a relative cycle
in Hy(Y;[®] —[®¢]). The equivalence relation is defined using the pairing with the
Poincaré dual of the homology class of the closed integral curve y 0 This pairing
defines a homomorphism from the Z-module of closed 2—cycles to Z that is denoted
by [y01Pd(.). The equivalence relation that defines Ze, ps has (O, Z) ~ (0, Z')
if and only if ® = @' and also [y?]P4(Z — Z’) = 0. The principal bundle projection
map sends an equivalence class (®, Z) to ®. The element 1 € Z acts to send (®, Z)
to (®, Z + [So]), where [So] is the u = 0 sphere in Hy.
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The module Z(éech, M) has a relative Z—grading when ¢y is torsion, and it has
a relative Z/pp 7 grading otherwise. The grading rule comes via a corresponding
grading of the generating set Qech, M - The rule for assigning the relative grading of the
generators is given by Hutchings in [3; 2]. The rule is described briefly in Section II1.9A.

Part 3 The appendix in [9] and Sections III.1D and II1.9B explain how the differen-
tial that defines the embedded contact homology is computed using J —holomorphic
submanifolds in R x Y. Keep in mind that a J —holomorphic submanifold is properly
embedded with J—invariant tangent space and such that the integral of w over the
submanifold is finite. The particular J—holomorphic submanifolds that are used to
define the differential form a topological space that is indexed by an ordered pair
from Z,A’ech, M- Let ((:)/ , @) denote such a pair. The corresponding component of this
topological space is denoted by M (@/, @). This space is a finite disjoint union of
connected components, each being homeomorphic to R. In fact, each component has a
free R action that is induced by the constant translations along the R factor of R x Y.

Any given submanifold from Ml((:)/ , @) is characterized in part by the behavior of
its |s| > 1 part. To elaborate, suppose that C is a given submanifold from this space.
There exists sx > 1 such that the |s| > s, portion is a disjoint union of embedded
cylinders where ds is nowhere zero. Each such cylinder is said to be an end of the
given submanifold. These ends have the following properties:

(1-8) e The s > s« ends are in 1-1 correspondence with the integral curves from ©.
This correspondence is such that the set of constant s slices of any given
end converge isotopically in ¥ as s — oo to its partner in ©.

e The s < —s4 ends are in 1-1 correspondence with the integral curves
from ©®'. This correspondence is such that the set of constant s slices of any
given end converge isotopically in Y as s — —oo to its partner in ©’.

Section III.9B associates a sign, either 1 or —1, to each component of M (@’ , @).
This is done in accordance with the rules laid out by Hutchings in [3; 2]. These
signs determine the endomorphism of Z(éech, M) that supplies the embedded contact
homology differential as follows: the relevant endomorphism of this Z-module is
given by its actions on the set of generators by the rule

(1—9) @ = Z N@,’@@/,

where any given O € éech, M version of Ng, g is the sum of the +1°s and —1’s that
are associated to the components of M (0, ®).
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The differential on Z(éech, M) that defines the embedded contact homology decreases
the relative grading by 1.

Part 4 The appendix in [9] and Sections III.1D and III.9C describe a certain action
of Z(U)® A\"(H1(Y;Z)/tors) on the embedded contact homology Z-module. The
endomorphism that generates the Z (U) factor is called the U—map. The latter decreases
the relative degree by 2 and it commutes with the generators of the A\*(H1 (Y ; Z)/tors)
factor. The generators of the latter decrease relative degree by 1. The U-map gen-
erator and those of A\"(H;(Y;Z)/tors) are given by corresponding endomorphisms
of Z(éech, M) . Each such endomorphism is defined by a version of (1-9) with the
set {N@,’@}@,’@ Zonmt determined by certain sets of J—holomorphic submanifolds
according to rules laid out by Hutchings in Section 12 of [5]. See also Section 2.5
of [6] for a discussion of the U-map generator.

An endomorphism of Z(éech’ M) that defines the U-map is defined in Sections
III.1D and III.9C with the help of a chosen point in the handle Ho. With the point
chosen, the set of coefficients in the corresponding version of (1-9) is denoted by
U

PR . U . A/
{/\N@/’@}Q,’ OB " These are such that any given Ng, g 1s nonzero only when ©® Snd

® sit over the selme elen’n\ent in Zech, i - Moreover, there is precisely one nonzero N@/,@
such that both ®" and © sit over any given element in Zcp, s, and the corresponding
Ng/’@ is equal to 1. A single J—holomorphic submanifold is used to compute this
nonzero Ng/’@ 2 if © € Zeen, p 1 the given element, then the corresponding submanifold
is the union of the cylinders from the set {R x y},e@ and {0} x § CR xY with §

being the ¥ = constant sphere in Hg that contains the chosen point.

The endomorphisms of Z(éech, M) that define a set of generators for the action of
/\*(H{(Y;Z)/tors) on the embedded contact homology are defined with the help of a
chosen set of 1—cycles that supply a basis for H1(Y; Z)/tors. Section III.1D took this
set to have the form that is described in a moment. To set the background, introduce
b1(M) to denote the first Betti number of M. Section II.2A describes 1 + b1 (M)
closed integral curves of v in Mg U Hy that have intersection number 1 with each
cross-sectional sphere in Ho. One of these curves is the aforementioned y©@0) . The
curves in this set are labeled by the intersection point with the surface f~! ( %) . This
set of points is denoted by ¥ and the curve that contains a given z € ¥ is denoted
by )/(Z). Pairing with the Poincaré duals of the homology classes of the cycles that
constitute the set {[y®)] — [)/(ZO)]}Z€¥_ZO generates the dual in Hom(H»(Y;Z); 7Z)
of the Hy(M; Z) summand in (1-4).
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The basis used in Section III.1D contains the cycle [y?0)]; in addition it contains a
set of cycles that are labeled {Z(Z)}Ze¥_20, and it is rounded out by a set of G cycles
that are labeled {i,}pca . A given z € ¥ —zo version of @ lies entirely in the Mz,
part of Y. It is homologous to [y#)] —[y(?0)] and it is obtained from the latter by first
truncating the o portions of the curves y® and y(?0) and then reconnecting the
respective endpoints by arcs on the boundary of the radius 76« coordinate balls about
the index 0 and index 3 critical points of f. A given p € A version of i, is disjoint
from the f € [1,2] part of Mg, , and it intersects the rest of M55, and Hg as a smooth
curve that is transverse to the level sets of # in My and the constant u spheres in Hp;
the orientation is such that it has intersection number 1 with the ¥ = 0 sphere in Hp.
Meanwhile, Zp intersects Up/e A Hp as the 6 = 0 arc in H,y; its orientation gives it
intersection number —1 with each u = 0 sphere in #,,.

Suppose that [ is a given cycle from the chosen basis of cycles. As noted above,
the corresponding endomorphism of Z(é’ech, M) has the form given in (1-9). Denote
by {Ni@,,@}@,,@ it the set of coefﬁcieAnts.A Any given Nz@/’@ iAs defined using the
J —holomorphic submanifolds from M;(©®’, ®). I/I\l pzirticular, N‘@/’@ is the value of
a sum that is indexed by the components of M;(®’, ®) whereby the component of
a given submanifold C contributes either +1 or —1 times the algebraic intersection
number between C and R x {. This intersection number is well defined because { is
disjoint from the integral curves of v that come from elements in Z.cy pr. The +1
or —1 used here is the contribution of C’s component to the version of No & that
defines the embedded contact homology differential.

Part 5 This last part of the subsection introduces a certain filtration of the embedded
contact homology chain complex that is preserved by the differential. The filtration is
depicted by (I.2-3). What follows reviews what is involved. To start, invoke Proposition
I1.2.8 or Theorem 1.2.1 to write the set Zech, pr as ZHr X (]—[peA(Z X o)). By way of a
reminder, Zyp denotes a certain set that is defined using data coming strictly from M
and O is the 4—element set {0, 1,—1, {1, —1}}. The Zyp-label of any given element
©® € Z.n,m characterizes the intersection of Uye® y with Mg. Meanwhile, each
p € A factor of Z x O characterizes the intersection of Uye@ y with H,. The integer
component of this label characterizes the segment of (Uye@ )/) N H, that crosses H,
from its ¥ = —R —In(768+) end to its u = R + In(78«) end. The label from the set
{0,1,—1, {1, —1}} signifies which, if any, integral curves from the set {)7;' , )7; } appear
in ®. The +1 signifies )7p+ and the —1 signifies )7,3_ . Use the identification of Zecp, pmr
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with Zyp x (HpGA(Z X O)) to write a given element ® as (U, (¢, Oy)pea ). For each
pe A, use |0p| €{0, 1,2} to denote the sum of the absolute values of the elements in O, .

Associate to each nonnegative integer L the subset Zelgh’ y C Zech,y Whose elements
are such that ZpeA(|EP| + 2|0p|) < L. These sets are such that ZeLCh,M C Zelél,M
when L’ > L, and their union is the whole of Z.ch ar. Let ééh, ) denote the inverse
image of Ze];h y in Zech, M - It follows from Theorem 1.2.3 or Theorem III.1.1 that the
embedded cor{tact homology differential maps the submodule Z(QQLC h, m) C Z(ﬁech, M)
to itself and so the latter defines a subcomplex. The embedded contact homology is the

direct limit of the homology for the filtered sequence of chain subcomplexes
(1-10) e CL(ZLyy) CLEL )

of the chain complex Z(éeoh, M).

1.3 The Seiberg—Witten Floer homology on Y

This subsection describes various versions of the Seiberg—Witten Floer homology on
the manifold Y. The presentation that follows takes for granted the basic constructions
and theorems about Seiberg—Witten Floer homology and focuses almost exclusively
on those parts of the story that are specific to the geometry at hand. The book by
Kronheimer and Mrowka [7] is the recommended textbook for those who are not
familiar with the foundational background. There are nine parts to what follows.

Parts 1-5 introduce various geometric notions that are used in Part 6 to define the chain
complex and differential whose homology groups constitute the desired versions of
Seiberg—Witten Floer homology. These groups are introduced in Part 8. The intervening
Part 7 describes certain canonical endomorphisms of the chain complex that are used to
generate an action of Z[U] ® (/\"(H1(Y;Z)/tors)) on the homology. Part 9 explains
why Theorems 1.3.1 and 1.3.2 are direct consequences of what is said in Parts 6-8.

Part 1 Part 5 in Section 1.1 defined a Riemannian metric on Y, this being a metric
with xw = a and |a| = 1. Use this metric to define the bundle of oriented, orthonormal
frames for Y. The given Spin®—structure on Y determines a lift of this bundle to a
principal U(1)-bundle. The defining action of U(2) on C? supplies an associated
Hermitian C?-bundle. The latter is denoted by S. Use det(S) to denote the complex
line bundle A*S.

There is a canonical homomorphism from 7*Y into End(S), this being the Clifford
multiplication. The homomorphism is denoted by cl; it is characterized as follows: Let
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a and b denote a pair of covectors in a given fiber of 7*Y. Then
(1-11) cl(a)Jr = —cl(a) and cl(a)cl(h) = —{a,b) —cl(x(a A D)),

where (-,-) here denotes the metric inner product and * denotes the metric’s Hodge
dual. This Clifford multiplication map induces two other useful endomorphisms. The
first, denoted by ¢, maps S ® T*Y to S. It is defined so as to send a reducible
element ¥ ® a to cl(a)y. The second is the R—linear homomorphism from S ® S
to T*Y ®g C that is written as 7 ® ¥ — n 'ty and defined by the rule whereby

(a.nfty) =ntcla)y.

Clifford multiplication by a splits S as a direct sum of complex line bundles, this
written as

(1-12) S=E®(EQ®K™).

Here, K~! is isomorphic as a real 2—plane bundle to the oriented bundle Ker(a),
this being the kernel of @ with the orientation defined by w. The convention in what
follows takes the left-most summand as the +i eigenspace of cl(a). The corresponding
component decomposition of a given section of S is written as (o, 8) with a being a
section of E and B being a section of £ ® K~!.

A unitary connection on det(S) with the Levi-Civita connection on 7Y jointly define
a unitary connection on S and thus a covariant derivative, this being a map from
C®(Y;S) to C*®(Y;S ® T*Y). Meanwhile, the Clifford multiplication endomor-
phism defines the endomorphism c: S®T*Y —S. The composition of the covariant
derivative and cl then defines a first-order, elliptic operator from C*°(Y;S) to itself,
this being the Dirac operator.

The Dirac operator is used in a moment to define a canonical connection on K~!. To
do this, introduce /¢ to denote a topologically trivial complex line bundle over Y, and
let S; denote the Spin® structure given by the E = I¢ version of (1-12). Fix a unit
norm section, 1¢, of Ic and view the pair (1¢,0) as a section of S using the splitting
in (1-12). Since det(S;) = K~!, a unitary connection on K~! defines an associated
Dirac operator. The canonical connection on K~! is characterized by the fact that
(1c,0) is annihilated by its associated Dirac operator. This connection on K~! is
denoted by Ag .

Let S be the C2-bundle that comes from the given Spin°—structure. With (1-12)
understood, det(S) = E2K~! and thus any given unitary connection on det(S) can
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be written as Ag + 2A, where A is a connection on E. With A a given connection
on E, the symbol D4 is used in what follows to denote the Dirac operator on sections
of S that is defined using Ag + 24 for the connection on det(S). Use Conn(E) to
denote the Fréchet space of smooth, unitary connections on E.

The Fréchet Lie group C*®(Y; S1) acts smoothly on Conn(E) x C®(Y;S) by the
rule whereby any given map u sends any given pair (4, ) to (4 —u~'du,uy).

Part 2 The Z-module that serves as the chain complex for the Seiberg—Witten Floer
homology is constructed using solutions to certain versions of the Seiberg—Witten
equations. These are equations for pairs (A4, ¥) with ¢ a section of S and A € Conn(FE).
The simplest of the relevant versions constitutes a family of equations whose members
are labeled by a real number greater than 7 and a smooth 1—form on Y. The version
defined by a given r € [1, 00) and 1-form g asks that (A, ¥) obey

Ba—tr(Y Tty —ia) + S By —i *dpu =0,

(1-13) Dy =0,

where the notation is such that B4 = xF4 with F4 being the curvature 2—form of the
connection A. Likewise, B4, denotes the Hodge dual of the curvature 2—form of Ak .

Certain perturbed versions of (1-13) are needed to guarantee that the solutions to
the associated equation and its instanton counterpart are suitably generic. A given
perturbed version of (1-13) is defined using a chosen element in a certain Banach
space of C*®(Y; S1)—invariant functions on Conn(E) x C*®(Y;S) (see Chapter 11
in [7]). This Banach space is denoted by P and its norm is called the P—norm.
The Banach space is such that the differential of a given g € P is a smooth map
from Conn(E) x C®(Y;S) to C®(Y;iT*Y)® C*°(Y;S). With g chosen, write its
differential at a given (A, ¥) as (T(4,y). S(4,y)). this being a pair consisting of an
iR—valued 1-form on Y and a section of S. The 1-form T4 y is in the image of
the operator xd . The g—perturbed version of the Seiberg—Witten equations are

By —1(yTey —id) + 3 Bag — Sy =0.
Day — S 4,4y = 0.
The simplest but nontrivial perturbation has T =i *du and & = 0 with p a smooth

(1-14)

I—-form on Y taken from a certain Banach space of such forms; this perturbation gives
the equation in (1-13). The Banach space is denoted by €2. The norm on this space
is also called the P—norm. The latter is such that the inclusion  — C®(Y;iT*Y)
defines a bounded, compact mapping. The convention in this paper is to use 1-forms

Geometry & Topology, Volume 24 (2020)



HF =HM, IV 3233

@ from € with P—norm less than 1. All of the assertions hold (with the same proofs)
given any a priori upper bound on the P—norm.

When p € €2, then the corresponding version of g is denoted by e, ; it is the function
that assigns to any given (4, ¥) the integral over Y of the 3—form —iF4 A .

If (A, ) is a solution to (1-14), then so is (A —u~'du,uy) forany u € C®(Y;S1).
Use Zsw,r in what follows to denote the C*°(Y ; S')—quotient of the space of solutions
to a given g € P version of (1-14). Note in this regard that the group C*®°(Y; S!) acts
freely on the space of solutions to any given r > 7w and g € P version of (1-14). This
is so because the group acts freely on Conn(E) x (C*®°(Y;S')—0) and no ¢ =0
pair can solve (1-14) because both 21_7'[ (F 4+ % *By K) and w represent the first Chern
class of det(S). Note also that Zsw , is in all cases compact (see Chapter 29 in [7]).
By way of a warning, the notation does not indicate that Zsw , depends on the chosen
perturbation g.

Part 3 The definition of the Z—module for the Seiberg—Witten Floer homology re-
quires the introduction of a subgroup of C*°(Y; S') which is denoted by Gas A A

given map u sits in this subgroup when —5— fy<20) u~! du = 0. Note in this regard

that —s=u~! du has integer periods.

Use ZQ’SW,r to denote the space of Gy, —orbits of solutions to a given r € [1, 00)
and g € P version of (1-14). The space is a principal Z = H,(Ho; Z)-bundle
over Zsw,. The action of k € Z sends the Gy, —equivalence class of (4, ) to

that of (A —u~'du,uy) with u € C®(Y; S') any map with —5- fy(zo) uldu=k.

2w

The geometry of Y supplies certain Z—equivariant maps from Z sw,r to R. The
definition requires the choice of a fiducial connection on E, this denoted by Ag. This
choice is constrained by the requirement that Ag be flat on H¢ and have holonomy 1
around the curve y(ZO). The definition of the Z—equivariant map from z sw,r to R also
requires the choice of a smooth function g: [0, c0) — [0, co) which is nondecreasing,
obeys gp(x) =0 for x < % and p(x) =1 for x > %. It proves convenient to choose g
so that its derivative, g/, is bounded by 210(1 — ga)3/ 4. A function with these properties
can be readily constructed from the function on R that is set equal to O for £ < 0 and
set equal to e~ for t > 0. Fix such a function g.

Given ¢ = (A, ¥) from Conn(E) x C*(Y;S), write ¢ = («, f) and define

(1-15) A=A-Jp(la)|e|?@Via —aVad),
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this being a connection on E. The corresponding equivariant map to R is the map
from (Conn(E) x C*°(Y;S))/Gm, obtained from the Gy, —invariant map from
Conn(E) x C%°(Y;S) to R that sends any given pair ¢ = (A4, {) to

(1-16) X(c)=ﬁ/(z )(X—AE).
Yy 0

A given element ¢ € Conn(E) x C°°(Y;S) is deemed to be holonomy nondegenerate
when X(c) — % is not an integer. The locus where X(c) — % € Z is a codimension 1
submanifold in Conn(E) x C*°(Y;S). The element ¢ is holonomy nondegenerate if
and only if all pairs in its C*®(Y; S!) orbit are holonomy nondegenerate.

Part4 A certain symmetric, first-order elliptic operatoron C°(Y;iT*Y @S®iR) is
associated to each pairin Conn(E)xC°(Y; S). Fix ¢= (4, y) e Conn(E)xC>®(Y;S).
The corresponding operator in the case when g = ¢, sends a section b = (b, 1, ¢) to
the section with respective i T*Y, S and iR components

wdb —dp — 2712012yt 4+ ntoy),
(1-17) Dan+2'2 (b)Y + p),

wd xb — 2712012ty — T,

If g is generic, the operator is obtained from (1-17) by adding (2/ !/ 2(%Sc " rE)r:O

c+r€)r=0 to the middle term with b = ((2/1)Y2b, 7). The
operator in all cases is denoted by £ ;. The pair ¢ is said to be nondegenerate when

to the top term and (%6

£, has trivial kernel. A given pair ¢ is nondegenerate if and only if all pairs in its
C®(Y:S 1) orbit are likewise nondegenerate.

The following statements are analogs of what is asserted in Lemma 3.6 and Proposition
3.11 of [17] for the case when & is a contact 1-form and w = da. The proofs differ
only slightly from those given in [17].

(1-18) o Fix r> 1. Then there is an open, dense set in 2 which is characterized
as follows: if p is from this set, then the corresponding g = ¢, version
of Zsw,r is a finite set of orbits of pairs in Conn(E) x C*°(Y;S) and each
such pair is nondegenerate and holonomy nondegenerate.

¢ There exists a residual set in €2 that is characterized as follows: Fix u from
this set. There is a countable, nonaccumulating set in (77, c0) such that if r
is from its complement, then the corresponding (r, g = ¢, ) version of Zsw ,
is a finite set of C*°(Y; S') orbits in Conn(E) x C*®(Y; S) and each such
orbit contains only nondegenerate and holonomy nondegenerate pairs.
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Suppose now that (r, g) is such that the corresponding Zsw , is a finite set of orbits
and that each orbit contains only nondegenerate and holonomy nondegenerate pairs.
The principal bundle in this case has a canonical Z—equivariant isomorphism

(1-19) Zswe = Zswie X L

that is characterized as follows: the section Zsw, % {0} of the product bundle cor-
responds to the set of the Gy, —orbits of solutions to (1-14) with X(-) € (—1,3).
Granted this identification, use z SZW,r C ésw,r to denote the subset that is identified
via (1-19) to Zsw, x{0,1,2,...} C Zsws X Z.

Part 5 Certain versions of the Seiberg—Witten equations on R x Y play a central role
in the story. As in the case of (1-14), the equations require the choice of r > 1 and
a perturbation g from P. The corresponding equations is viewed here as a system
of differential equations for a map from R to Conn(E) x C*°(Y;S). The equations
demand that s — 0(s) = (A4, ¥)|s obey

A+ Ba—1(Tey —id) + 3 Bay —T(ay) = 0.
a5V + DAY —S(4y) =0.

A solution to (1-19) is said to be an instanton if it has respective s — Foo limits that

(1-20)

obey (1-14). Any constant R translate of an instanton solution to (1-20) is also an
instanton solution.

An instanton is said to be nondegenerate if a certain operator is Fredholm and has
trivial cokernel. The relevant operator maps an L%—Hilbert space completion of the
space of compactly supported elements in C®*(R x Y;iT*Y &S @ iR) to an L?
completion. This operator in the case g = ¢, sends a section (b, 1, ¢) to the section
whose respective iT*Y, S and iR components are

Db xdb—dg—27V20 2 (gl oy + oy,
(1-21) L0+ Dan + 2120V 2(clb)y + $).
aed +xd xb =272 2ty —y Ty,

If g is generic, the operator is obtained from (1-21) by adding (2/r)/ 2(%50 n rE)r:O

to the top term and (%6 to the middle term. The operator in any case is

denoted by D5.

O+r€)r=0

Let 0: R — Conn(E) x C°(Y;S) denote an instanton solution to some (r, g) version
of (1-20). The corresponding version of (1-21) is a Fredholm operator if and only if
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the s — Foo limits of 0 are nondegenerate pairs in Conn(E) x C*°(Y;S). If this is
the case, then D, has a corresponding Fredholm index, this denoted by ¢, .

The assertion made by the upcoming (1-22) is used when considering perturbations.
This fact has an almost verbatim analog stated in Part 5 from Section 3b of [19] for the
case when 4 is a contact 1—form on a given 3—manifold. The argument that proves
(1-22) differs only cosmetically from that given for their [19] analog.

To set the notation for (1-22), suppose that p € P and that ¢ is a given pair from
Conn(E) x C°°(Y;S). Then p is said to vanishes to second order at ¢ if p(c) = 0,
and if both the first and second derivatives at 7 = 0 of the function t — p(c + tb)
are zero for all pairs b € C®°(Y;iT*Y & S). With this term understood, introduce
Pu C P to denote the subset whose members have the following property: if p € Py,
then p = 0 to second order on any solution to (1-14) and p = O to second order at all
points on any path s — 9(s) with ? an (p <2, nondegenerate instanton solution to the
(r, g = ¢y) version of (1-20).

(1-22) Fixr >1 and p such that all solutions to the corresponding g = ¢, version
of (1-14) are nondegenerate. There is a residual set in P, characterized as
follows: if p is a member, then all instanton solutions to the (r, g = ¢, + p)
version of (1-20) are nondegenerate.

Suppose that (r, g) is such that all solutions to (1-14) are nondegenerate and such that
all p < 2 instanton solutions to (1-20) are nondegenerate. If this is the case, then
the set of (; = 0 instanton solutions is the set of constant maps from R to the set
of solutions to (1-14). To say something about the set of (; = 1 instanton solutions
to (1-20), suppose that c— and ¢4 are given solutions to (1-14). Introduce M; (c—, c4)
to denote the set of instanton solutions to (1-20) with s — —oo limit equal to ¢— and
s — oo limit a pair on the orbit of ¢4. This set M (c—, c4+) has the structure of a
smooth 1-dimensional manifold with a finite set of components, each being a copy
of R. Moreover, the group of constant translations of R induces a smooth, free R
action on each component.

Part 6 This part defines chain complexes whose corresponding homology groups are
of central concern here. To this end, fix r > 1 and fix u € Q with P—norm bounded
by 1 and such that all solutions to the (r,¢,) version of (1-14) are nondegenerate
and also holonomy nondegenerate. A Z-module that serves for the chain complex of
interest is the free module generated by the elements in the (r, ¢,) version of QSW,r-
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This module is denoted in what follows by Z(§ sw,r). The action of the generator of
H»(Ho; Z) gives this module a Z[t, 1] structure.

The Z-module Z(ésw,r) has a relative Z/ppsZ—grading which is defined as fol-
lows: Let ¢ and ¢; denote two solutions to the relevant version of (1-14). Introduce
grgw(co) — grgw(c1) to denote the difference between the grading degrees of their
respective Gy, —orbits in st,r. This number is —1 times the spectral flow for the
[0, 1]—parametrized family of operators 7 > £(7) with ¢(0) = ¢o and ¢(1) = ¢;. Those
unfamiliar with the notion of spectral flow can read about it in Chapter 14.2 of [7]
or in [16]. The generator of the Z]t, t_l] action on Z(ésw,r) acts as a degree —2
endomorphism.

The relevant differential is a certain square-zero endomorphism of Z(ésw,r). This
endomorphism is defined by its action on the generators. To say more, introduce by
way of notation [¢] to denote the Gps, —equivalence class of a given pair ¢ = (A4, ¥)
from Conn(E) x C°°(Y;S). Any given endomorphism of Z(st,r) is defined by a
rule

(1-23) [¢] = W, 1en[e']
where each [¢'] version of W[¢ [ is an integer and only finitely many are nonzero.

In the case of the differential, the specification of the coefficient set {W.] [} requires
first the choice of an element p € P with norm much less than 1 such that the conclusions
of (1-22) hold. Any given [c],[¢] € é';SW,r version of W] [ is a sum that is indexed
by the components of the (r,g = ¢, + p) version of M (¢, ¢) with each component
contributing either 41 or —1 to the sum. The sign is obtained by comparing two
orientations for the component, one given by the generator of the R action and the
other using Quillen’s notion of a determinant line bundle for a family of Fredholm
operators. This is done according to the rules given in Chapters 20-22 of [7]; see also
Section 3 of [21].

Proposition 1.1 There exists k > 1 with the following significance: Fix r > x and an
element p € Q with P—norm less than 1 such that all solutions to the (r, 1) version
of (1-13) are nondegenerate. Suppose that p € P, has small P—norm and is described
by (1-22).

e The rules given in [7] for specifying the various [c],[c] € st,r versions
of W[q,[¢] define a square-zero endomorphism of Z(Z SW.r)-
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e Each solution to (1-13) is holonomy nondegenerate and so Z(Z’SZWJ) is well
defined.

e The endomorphism given by the first bullet maps the submodule Z(QSZWJ) to
itself.

This proposition is proved in Section 7.1. Take it on faith for now and use dsw,y to
denote the resulting endomorphism of Z(ésw,r). It follows from the definition that
dsw,y decreases the Z/ ppsZ—grading by 1.

Part 7 This part of the subsection describes endomorphisms of Z(ZA’SWJ) that gen-
erate an action of Z[U] ® ( N (H((Y:Z)/ tors)) on the dsw,y homology. Each such
endomorphism is defined by the coefficients that appear in the relevant version of (1-23).

Consider first the endomorphism that generates the Z[U] factor. Fix [¢] and [¢/] so as
to specify the corresponding version of W []. The specification of these coefficients
requires the choice of a point p € Hg. Reintroduce p € P, from Part 6 and use M5 (c, ¢’)
to denote the set of instanton solutions to the r and g = ¢, +p version of (1-20) with the
corresponding Fredholm index ¢(.y equal to 2, with s — —oo limit equal to ¢ and with
§ — oo limit in the Gpz, —orbit of ¢’. Use M5 ,(c, ¢) to denote the subset of M5 (c, ¢)
that is characterized as follows: a given instanton 0 = (A4, ¥ = («, §)) is a member
if and only if «|s=¢ vanishes at p. The upcoming Proposition 1.2 asserts in part that
Mp,p(c, ) is a finite set if r is large. Granted that this is so, the coefficient Wy ] is
given as a sum that is indexed by the instantons from 9, (¢, ¢’). The contribution
from each such instanton is specified using the rules in Chapter 23 of [7]. Parts 3 and 4
of Section 1b in [23] describe these same rules in the case when & is replaced by a
contact 1-form and w is replaced by the latter’s exterior derivative.

The specification of the various endomorphisms that are meant to generate the action
of A\"(H1(Y:Z)/tors) on the dsw homology requires the reintroduction of the set
of 1—cycles {[y@},ex, {lp}pen from Part 4 of Section 1.2. Each cycle from this
set labels a corresponding endomorphism. Let { denote such a cycle. Use W%c]’[c,]
to denote any given [c], [¢/] coefficient in {’s version of (1-23). This coefficient is a
weighted sum of intersection numbers that are defined using the elements in M (c, ¢’)
whereby the contribution of a given instanton (A4, ¢ = («, 8)) to the sum is either +1
or —1 times the algebraic intersection number between o~!(0) and the locus R x {
in R x Y. The rules for assigning a +1 or —1 weight to the intersection number are
laid out in Chapter 23 of [7]. Part 3 of Section 1b in [23] describe these same rules
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in the case when & is replaced by a contact 1-form and w is replaced by the latter’s
exterior derivative.

Proposition 1.2 There exists k > 1 with the following significance: Fix r > k
and u € Q with P—-norm less than 1 such that all solutions to the (r, ) version
of (1-13) are nondegenerate and holonomy nondegenerate. If p € P has small
‘P—norm and is described by (1-22), then the rules given in [7] for specifying the
coefficients for the just-described endomorphisms of Z(ésw,r) define an action of
Z[U] ® (A\"(H1(Y:Z)/tors)) on the dsw homology. The generator of the action
of the Z[U] factor decreases the relative grading by 2 and those that generate the
action of H{(Y ;Z)/tors decrease the relative grading by 1. In addition, all of these
endomorphisms map the submodule Z(észw,r) to itself.

This proposition is also proved in Section 7.1.

Part 8 The formal adjoint of dsw on the Z-module Hom(Z (st,r), 7)) defines the
differential for what is formally a version of Seiberg—Witten Floer cohomology. This
formal adjoint of dsw is denoted by gy, . The endomorphism 0y, sends a given basis
element [c] in gsw,r to

(1-24) Rwld =Y Wepaldl-

[1€Zsw.s

This endomorphism increases the relative Z/ pas Z—grading by 1 and has square zero.
The resulting 93y, homology groups enjoy an action of Z[U]® ( N (H{(M:7)/ tors))
with the generator of Z[U] now increasing the grading by 2 and the generators of
H{(M;7)/tors increasing the grading by 1. The generators of this action come from
the adjoints of the endomorphisms that are defined in Part 7.

Proposition 1.3 There exists k > 1 with the following significance: Fix r > k and
1 € Q with P—norm less than 1 such that all solutions to the (r, u) version of (1-13)
are nondegenerate. Suppose that p € Py, has small P—norm and is described by (1-22).
Then the expression on the right-hand side in (1-24) defines 0%y, as a square-zero
endomorphism of Z(Z’sw,r). The adjoints of the endomorphism of Z(ésw,r) that
are defined in Part 7 likewise map Z(ésw,r) to itself and so define an action of
Z[U]® N*(H1(Y:Z)/tors) on the homology groups of 9%y, .

Proposition 1.3 is likewise proved in Section 7.1.
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Let 2 S<W,r C ésw,r denote the subset that corresponds via the identification in (1-19)
to Zsw,r x{...,—2,—1}. The endomorphism 93, preserves the submodule Z(Z Sw.r)
as do those that give the generators of the Z[U] ® A*(H1(Y;Z)/tors) action.

Granted what was just said, introduce HSO\‘,’\,J, Hgy, . and HS+W,r to denote the respective
0%y homology on the chain complexes Z(Zswy), Z(Z sw.) and Z(Zswy)/ Z(25<W,r)‘
Each of these homology groups has a relative Z/ pasZ—grading, and each admits an
action of Z[U]® A\*(H1(Y;Z)/tors). Moreover, the latter are intertwined by the long
exact sequence that is induced by the evident short exact sequence.

The next proposition speaks to the r—dependence of these dgy, homology groups.

Proposition 1.4 The versions of « that appear in Propositions 1.2 and 1.3 can be
chosen so that the following is true: Suppose that r1, r, > k, and that (jt1,p1)
and (2, p2) are pairs in Q X P such that @y and p, have P-norm less than 1,
such that p; and p, have P—norm much less than 1, and such that the conclusions
of Propositions 1.1 and 1.2 hold for the data sets (r1, 1,p1) and (ra2, 2, p2). Use
these respective data sets to define the corresponding r = ry and r = rp versions of the

- +
groups Hgy, ., Hy, and Hgy, .

SW,

e There is a canonical isomorphism between the (rq, j41,p1) and (r2, 2, P2)

versions of H. SO\%J that preserves the relative 7./ pps 7. —gradings and intertwines
the respective actions of Z[U]® N*(H1(Y;Z)/tors).

e This canonical isomorphism maps the (r1, t1,p1) version of HS_W,r isomorphi-
cally to the (12, 2, p2) of Hgyy, , version, it induces an isomorphism between
the two versions of HSJFW,r and it intertwines the respective long exact sequence
homomorphisms.

e This canonical isomorphism is induced by a chain complex homomorphism from
the (ry, i1,p1) version of Z(ésw,r) to the (ra, Wa, p2) version of Z(ﬁsw,r)
that maps the (r1, 1, 1) version of Z(é;w’r) to the (12, (L2, p2) version.

This proposition is proved in Section 7.3.

The canonical isomorphisms described by Proposition 1.4 are henceforth used to
identify distinct (r, u,p) versions of HSy, ., Hgy, , and Hs-;v . and so write these
groups respectively as HSY,, Hgy, and Hs+w-

Part 9 This last part of the subsection brings the orientation-reversed version of Y
into the story so as to connect with what is said in [8]. What is said here explains why
Theorems 1.3.1 and 1.3.2 in [8] follow directly from Propositions 1.1-1.4.
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The orientation-reversed twin of Y is denoted here by Y. So as to be clear, the
orientation on Y is defined so that the inclusion map Mg — M is orientation-preserving
and that of My into Y is orientation-reversing. The orientation is such that both of
the inclusion maps M5 — M and Ms — Y are orientation-preserving. As noted in
the introduction, the convention used here for which orientation signifies ¥ and which
signifies Y is opposite the convention used in [8].

As explained below, the groups Hgy,, Hgy, and HSJFW are canonically isomorphic to
certain Seiberg—Witten Floer homology groups on Y, these being the respective groups
HZ®, H; and HJ that are defined at the end of Section 1.3.2. To see the connection,
write the first line of (1-13) as

(1-25) Fa—r(xyT oy —iw) + L F4 = 0.

Now introduce ¥ to denote the Hodge star as defined by the orientation for Y. The
latter is equal to —x. Likewise, introduce cl to denote the Y version of the Clifford
multiplication map. The latter is equal to —cl and, as a consequence, the version
of ity is equal to —1 times the Y version. Granted these last two observations, what
is written in (1-13) is the equation that results when * is applied to both sides of the top
line in (I.3-1). Meanwhile the lower line in (I.3-1) is —1 times the lower line in (1-13).

What was just said canonically identifies ésw,r with a corresponding equivalence class
of solutions to (I.3-1), this denoted in [8] by QSW,YJ. To see about the relation between
8§W and the differential on Z sw,,r» a look at (1-20) leads to the following observation:
Let c— and ¢4 denote solutions to (1-13) and suppose that s — (s) is an instanton
solution on Y with s — —oo limit equal to ¢c— and s — oo limit equal to c¢4. Then
the map s — 0(—s) is an instanton solution to (I.3-3) with s — —oo limit ¢4+ and
s — oo limit ¢_. This last observation implies that the identification just described
between 2 sw,y,r and z sw,r extends in a linear fashion to give an isomorphism between
the chain complex on Y that is used to define the aforementioned groups HS®, H,
and H from Section 1.3.2 and the chain complex Z(Z S<W,r) with the differential dgy, .

The conclusions of the preceding two paragraphs make Theorems 1.3.1 and 1.3.2
immediate consequences of Propositions 1.1-1.4.

1.4 Seiberg—Witten Floer homology and embedded contact homology

This subsection describes the relationship between the Seiberg—Witten Floer chain
complex from Section 1.3 and its 9, homology and the embedded contact homology
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chain complex from Section 1.2. This is the content of Theorem 1.5. This relationship
is the analog of that described by Theorem 4.5 in [19].

Theorem 1.3.3 from [8] follows directly from what is said in Theorem 1.5 and what is
said in Part 9 of the previous subsection.

The upcoming Theorem 1.5 refers to the filtration of fech, M given in (1-10). The
theorem also refers to a certain subset in the various L > 1 versions of what is
denoted in Part 5 of Section 1.2 by ZLh - The subset in question is denoted in
the theorem and in what follows by ZL e and it is defined as follows: Part 4
in Section II.1B defines a principal Z bundle isomorphism Zech, M = ZechoM X L.
This isomorphism sends the equivalence class (®, Z) to the pair (0, k) when Z has
intersection number k with y(Z0) . The subset Z eLch’ ¢ corresponds via this isomorphism
to Zech p X 1—00, ..., —1}.

Theorem 1.5 Let H*, H~ and H' denote finitely generated subgroups of the
respective groups Hgy,, Hgy, and HSJFW Given these subgroups, there exists L™ and
given L > LY there exists L' > L with the following significance: Fix r sufficiently
large, and then fix a pair (i, p) € Q2 X P such that yu has P—-norm less than 1, such
that p has sufficiently small P—norm, and such that Propositions 1.1-1.3 can be in-
voked to define the chain complex (7. (ésw,r), d$w) the subcomplex Z(ZSW .) and the
Z[U]® N*(H1(Y; Z)/tors) action on the homology. There exists an injective principal
Z—bundle map o ZA’BLC/h M ésw,r that defines a Z.—module homomorphism

L" Z(ZE ) > Z(Zsw,r)
with the properties listed below:

e L' reverses the sign of relative grading degrees

e L' induces a monomorph1sm from Z(Z ech, M) to Z(Z SW, .) and another from
Z(Zech M)/Z(Zech M) to Z(ZSW r)/Z(st r)
o L' intertwines decy With 0%y, and it also intertwines the endomorphisms that

define the generators of the respective Z[U]® N\*(H1(Y ; Z)/tors) actions on
the dccn homology and 0%, homology.

e Let Qech denote either Z(ZLh M) Z(Zech ) or Z(Zech M)/Z(Zech M) and
let Q oo denote the L’ version. Use Qsw to denote the corresponding Z(ZSW 1)
Z(ZSW ) or Z(Zsw r)/Z(ZSW .) as the case may be. If ¢ € Q < 1S such that
L*(c) = d&yz for some z € Qgw, then ¢ = dechs’ for some ¢’ € QL

ech
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o The subgroups H®, H~ and H are represented by elements in the respective
. ~ /\L’ ~ /\L’
L' images of Z(ZeLch,M)’ Z(ZCCI:M) and Z(ZeLch’M)/Z(Zecth).

Suppose that distinct choices for (r, jt,p) are suitable for defining Z(égw,r), the
differential d&y, and the subcomplex Z(é;w o). If the respective values of r are large
enough to define I." on Z(ZE ), and, in any event, sufficiently large, then the

ech,
homomorphism from the third bullet of Proposition 1.4 can be chosen to intertwine the

resulting versions of L',
This theorem is proved in Sections 7.4 and 7.6.

1.5 Functions on Conn(E) x C*°(Y;S)

This subsection introduces functions on Conn(E) x C*°(Y'; S) that play essential roles
in the story. In what follows, ¢ = (4, ¥ = («, f)) € Conn(E) x C°(Y;S) is a given
element.

The first function is the Chern—Simons function. Reintroduce the chosen fiducial
connection Ag from Part 3 of Section 1.3 and write A = Ag + a4 with a4 an
iR—valued 1—form. The Chern—Simons function sends A to

(1-26) CS(A)I—/ aq AdaA—Z/ &\A/\(FAE‘F%FAK)-
Y Y

Note that ¢s is invariant only under the action on Conn(E) of the subgroup in
C®(Y;S') of maps u that define classes in Hy(Y; S!) that have cup product pairing
zero with the first Chern class of det(S). This subgroup is denoted by Js.

The second function is
(1-27) w(Ad) =i / aqsAw.
Y
This function is invariant only under the action on Conn(FE) of Gs.

The next function is denoted by a. The critical points of a are the solutions to (1-13).
This function is given by

(1-28) a:cs—rw+eu+r/ AN
Y

The spectral flow function is denoted by f. This function is constant on the components
of the complement in Conn(E)x C®°(Y; S) of the codimension 1 subvariety where the
operator £(.y in (1-17) has nontrivial kernel. It is discontinuous across this subvariety,
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but in any event it is locally bounded. A precise definition can be found in [16]. What
follows defines fy where £(.) has trivial kernel. The definition of fs requires the
choice of a section of S, this denoted by g . This section must be chosen so that the
¢cg = (Ag,¥E) and the r = 1 version of the operator £.); has trivial kernel. The
existence of such a section can be established using the Bochner—Weitzenbock formula
in (A-12) for the square of the operator £(.) .. Now suppose that ¢ is a given pair in
Conn(E) x C*®(Y; S) with the kernel of £, = {0}. Select a smooth map ¢(-) from
[0,1] to Conn(E) x C*°(Y;S) with ¢(0) = c¢g and ¢(1) = ¢ and a smooth map ()
from [0, 1] to [1,r] with (0) = 1 and r(1) = r. The function f; assigns to ¢ the
spectral flow for the [0, 1]—parametrized path of operators {£.(z), () }ze[0,1]- Note that
fs(c) is independent of the chosen maps ¢(-) and r(-). So defined, the function fs is
also constant on the Gg orbit of .

Neither a, ¢s, W nor fy are invariant with respect to the action of C*°(Y; S 1) on
Conn(FE) although all are invariant with respect to the action of the subgroup Gs.
However, the following functions are invariant under the full action of C®(Y; S1):

(1-29) sl = c5—4n2fs, wl = W —2nfs and o =a+ 27 (r — 7)fs.

The last of the functions of interest is denoted by M and it is given by

(1-30) M=r/(1—|a|2).
Y

The question of bounding M on a solution to (1-14) or along the path of an instanton is
a central concern in what follows.

2 Solutions to the Seiberg—Witten equations on Y

The solutions to the large r versions of (1-13) have certain properties that play central
roles in many of the subsequent arguments that supply input to the proofs of the
propositions and theorems in Section 1. These properties are given by the various
lemmas and propositions in the first two subsections that follow. The third subsection
contains the proof of a proposition in the first subsection.

2.1 A priori properties of solutions to (1-13)

The lemmas in the first parts of this subsection consider the pointwise behavior of
solutions to (1-13). The second part of the subsection concerns the locus in Y where the
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curvature 2—form is large. This second part also talks about the function M in (1-30).
The third part of what follows discusses the spectral flow function fs and the final part
discusses the functions W, ¢s and a from Section 1.5.

Part1 The upcoming Lemmas 2.1-2.3 have close analogs in Section 2a of [22], in
Section 6 of [17] and in Section 3 of [18]. When the proof of a given lemma here
differs only slightly from its partner in one of these references, then only the salient
differences (if any) are noted.

The first lemma speaks to the size of the C°°(Y;S) component of a solution.
Lemma 2.1 There exists k > 1 with the following significance: Fix u € 2 with P—

norm less than 1 and r> k. Let (A, ¥ = («, B)) denote a solution to the corresponding
(r, ) version of (1-13). Then:

la| < 14krt.
|ﬁ|2 <kr 1(1— |oz|2) +i3r2,
|VAoz|2 <kr(l— |a|2) + 3.

IVaBP? < k(1= o)+t

In addition, for each g > 1, there exists k4 € (1, 00) which is independent of (A, y), r
and p, and is such that

o |Via|+11/2|VIB| < kqr1/2.

Proof The lemma and its proof differ only in notation from Lemma 2.3 in [22] and
the latter’s proof. |

Given the equation in the top line of (1-13), what follows is an immediate consequence
of the first two bullets in Lemma 2.1:

2-1) |Bal =iHaAxBy)+e

where [¢] < c¢p.

The second lemma addresses the size of the connection A.

Lemma 2.2 There exists k > 1 with the following significance: Fix p € Q with P—

norm less than 1 and r> k. Let (A, ¥ = («, B)) denote a solution to the corresponding
(r, ) version of (1-13). There is a map u € C°°(Y;S) which is homotopic to the
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identity and is such that A —u~'du can be written as Ag + a* + p4, where py is
a harmonic 1—form and @' is coclosed, L?—orthogonal to the space of harmonic
1 —forms, and such that |at| < k(]M|'/312/3 +1).

Proof Given (2-1), the proof is identical to that of Lemma 2.4 in [17]. O

The third lemma in this series extends what is said in Lemma 2.1 with some precise
bounds for the size of 1 — |«|? and the covariant derivatives of « and .

Lemma 2.3 There exists k > 1 with the following significance: Fix pu € Q with
P-norm less than 1 and r > 1. Let (A,¥ = (o, 8)) denote a solution to the (r, i)
version of (1-13). Let Yy C Y denote the subset of points where 1 — |a|?> > k1. Then

!1 — |a|2| < (e_\/fdiS‘("Y*)/" +kr V) where 1 —|a?> > k7L

Proof The manipulations done to prove Proposition 4.4 of [14] can be repeated here
to obtain the desired inequality. a

Part 2 The upcoming Proposition 2.4 describes the zero locus of the o part of a
solution to a given large r version of (1-13) at the points in Y with distances greater
than cor—/ ZAfrom the curves in the set | J,¢ A{)7p+ . ¥y - The proposition refers to the
connection A that is defined from any given pair of connection on E and section of E
in (1-16).

Proposition 2.4 There exists k > 1 with the following significance: Fix r > k and
u € Q with P—norm bounded by 1 and suppose that (A, = («, B)) is a solution to
the corresponding (r, 1) version of (1-13). Let Y C Y denote the set of points with

distance greater than K2r1/2

from the curves in Upe AYp ¥y }- The zero locus of o
in the closure of Y; is transversal and it consists of the disjoint union of at most G
components with each a properly embedded arc or circle. The zero locus of « has the

following additional properties:

12 from v.

e The tangent line to each component has distance at most kr~
o Each component lies where 1 —3cos? 6 > 0.

e The intersection of the zero set with Mg consists of G properly embedded
segments that pair the index 1 and index 2 critical points of the incarnation of f
as a function on M in the sense that distinct segments start on the boundary of
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the radius § coordinate balls about distinct index 1 critical points of # and end
on the boundary of the radius § coordinate balls about distinct index 2 critical
points.

e The absolute value of 1—|a|? is less than k! at all points with distance greater

~1/2 from the zero locus of « in Y, and less than k™" at all points with

1/2

than kr

distance k (Inr)r— "/ or more from the zero locus of @ in Y.

e The 2—form %F 7 has compact support and integral 1 on any disk in Y;
that intersects «~'(0) transversally at its center point, is otherwise disjoint
from o~ (0), and has closure with all boundary points at distance at least xr~/2

from a~1(0).

The proof of Proposition 2.4 is given in Section 2.3. The first assertion of the next
lemma is little more than a corollary to Proposition 2.4. The second assertion refers to
the 1-form v, from (1-5).

Lemma 2.5 There exists k > 1 with the following significance: Fix r > « and p € 2
with P-norm bounded by 1 and suppose that (A, ¥ = («, B)) is a solution to the
corresponding (r, i) version of (1-13).

e Setm=r[,(1- ||?). Then —k <M <« Inr.

o rfylusl?[1—]a?| <k.

Proof The lower bound on M follows directly from Lemma 2.1. To obtain the asserted
upper bound, use Proposition 2.4 to characterize the zero locus of « in Y;. In particular,
Lemma 2.3 with the third bullet of Proposition 2.4 bound 1 — |«|? at distance p in Y;
from a~1(0) NY; by co. It follows from the first bullet of Proposition 2.4 and the
formula for v in (1-3) that the length a~1(0) N Y, is at most cq Inr. These bounds
together imply that the Y; contribution to the integral that defines M is at most cg Inr.
Meanwhile, the volume of ¥ — Y, is at most cor~! and so the ¥ — Y, contribution to
the integral that defines M is at most cg Inr.

To prove the assertion of the second bullet, note that the integral over ¥ of ve A 2’—” Fy
is equal to the pairing between c1(E) and the class in H»(Y;R) that is Poincaré dual
to the class that is defined by the de Rham cohomology by the closed form v, . With
this fact in mind, write ve as god + b, where b annihilates the vector field v. Note in
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particular that what is said in Part 4 of Section 1.1 can be used to see that |vs |? < cogo.
Granted this last point, use the top equation in (1-13) to see that

(2-2) i Hvo A Fq) =1qo(1 —|a]?) +t,

/

where [t| < cor|a||B||ve]|. Given that |ve| < coqi 2 the first and second bullets in

Lemma 2.1 with (2-2) find
(2-3) i {vo A Fa) = 31q0|1 = |a|*] = co.

The lemma’s assertion follows from (2-3) with a second use of the bound ¢, e |? <qe.
O

Part3 The spectral flow function fs plays a central role in the proofs of Proposition 1.4
and Theorem 1.5. The upcoming Proposition 2.6 supplies a crucial bound for its absolute
value. To set the stage for this proposition, reintroduce from Part 4 of Section 1.2 the
set {y®},cy of closed integral curves of v. This set has 1+ b1 (M) elements. Each
curve in this set lies in Mg N Ho and it has distance ¢, ! or more from any segment
of an integral curve of v in the f~!(1,2) part of Mj that starts on the boundary of
the radius § coordinate ball about an index 1 critical point of # in M and ends on the
boundary of the radius § coordinate ball about an index 2 critical point of . Associate
to each z € ¥ the map x2) from Conn(E) to R given by following rule: Let A denote
any given connection on E, write A as A = Ag + d4 and set

2-4 x<Z>A=L/ ay.
(2-4) (4) = A
Use [y®)] in what follows to denote the class in Hy(M; Z)/tors that is defined by a
given z € ¥ loop y(?). The set of such cycles generates the image of the Poincaré dual
of the classes in H?(Y;Z) that annihilate the @peA H(Hy; Z) summand in (1-4)’s
depiction of H»(Y ;7Z). As the first Chern class of det(S) annihilates this summand, the

image of its Poincaré dual in H(M;Z)/tors can be written as ),y Cs, 2 [y@] with
coefficients {Cs ;},c¥ € Z. Use Xg to denote the corresponding map ), .y Cs, ,x@

What follows is a consequence of the fact that the classes from the set {[y(¥]},cy are
linearly independent in Hy(Y;Z)/tors: Let A denote a connection on E. There is a
smooth map u: ¥ — S such that A —u~'du obeys 0 < X¥ (4 —u~'du) < 1 for
each z € ¥. Note that u can be chosen so that A —u~'du — Ag = a4 —u"'du is a
coclosed 1—form.
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Proposition 2.6 There exists k > 1 with the following significance: Suppose that
r > k and that u € Q has P-norm less than 1. Let (A, ¥) denote a nondegenerate
solution to the (r, i) version of (1-13). Then |fs(A, V) — Xs(A4, V)| <«k.

Section Bc extends the function |fs| as a piecewise constant function on the whole of
Conn(E) x C°(Y;S). This understood, the assertion in Proposition 2.6 also holds in
the case when the (A, ¥) version of (1-17) has nontrivial kernel.

The proof of Proposition 2.6 is in the appendix. The placement of the proof in an
appendix is not a reflection of the importance of Proposition 2.6; this proposition is
absolutely crucial with regards to what is said subsequently about instanton solutions
to (1-20). The proof is in the appendix as it is long and as the notions that enter are not
used elsewhere.

Part 4 The proposition that follows supplies a priori bounds for the functions cs
in (1-26), the function W in (1-27) and the function a in (1-28).

Proposition 2.7 There exists k > 1 with the following significance: Fix r > k and
i €  with P-norm bounded by 1 and suppose that (A, ) is a solution to the (r, i)
version of (1-13). Then

o |esf| <k(@®PMm3 4+ M+1),

o |W—M| <k,

o —xr(M+1)<d <«kr.
Proof The assertion in the third bullet about af follows from the assertions about ¢s/
and W' . To prove the asserted bound for cs, use the Green’s function for the operator

d +d* to construct a smooth, coclosed 1-form on ¥ — (|, cy ¥(*) with the following
properties: Let Bg denote this 1—form. Then |Bs| < co ) _,cy dist(-, y@H)~1 and

L P 1 _ o0 .
(2-5) 271/Ya/\(FAE+2FAK) ZCS,Z/V(Z)a—l-zn/YBS/\da

ze¥

with @ being any given 1-form on Y. Granted (2-5), write ¢s(A) as
(2-6) —/ aAAdaA—Z/ Bs Addy + 4w Xs.
Y Y

To bound the integral of Bs Addy4, use the top equation in (1-13) to see that the 2—form
day differs from % B4 by a smooth, bounded form. This understood, use this same
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equation with (2-1) and Lemma 2.1 to bound |ddy4| at distances ¢ 1 or less from any
curve in the set {y‘®},cy by cor(1 — |«|?) + ¢o, and use Lemma 2.3 to bound the
latter by co. The absolute value of the contribution to the integral of Bg A da4 from
the radius ¢ ! tubular neighborhood of any curve from {y(z N, ey is therefore bounded
by c¢o. Meanwhile, the absolute value of the contribution to the integral of Bg A ddy
from the complement in Y of the union of these neighborhoods is less than coM.

To bound the left-most integral in (2-6), note first that both of the integrals over Y
in (2-6) do not change when A is replaced by A —u~'du with u being any map from
Y to S!. This understood, choose a map u so that the L2—orthogonal projection of
a4 —u~Ydu has L?-norm bounded by ¢q. Having done this, use Lemma 2.2 to bound
the left-most integral in (2-6) by cor2/3m*#/3 . Granted these bounds, Proposition 2.7’s
bound of ¢s' follows from (2-6) and Proposition 2.6.

Consider next the assertion made by the second bullet of the proposition. Look at
(1-3) and (1-6) to see that w on the |u| < R + colnd part of any p € A version
of H, can be written as da. As a consequence, the function y can be used with
the Green’s function for the operator xd + d* to construct a smooth 1-form on
Y — (U se¥ y(z)) with the properties listed next. Use By, to denote this 1—form. The
form By, is zero on the |u| < R+coInd part of each p € A version of H,,. In addition,

IBw| < coY ey dist(-,y@)~! and

(2-7) if&m;;:iZcS,Z/ ?H—i/?zAdﬁ—H/ By Ada,
Y ze¥ r® Y Y

with @ being any given 1-form on Y.

Take a in (2-7) to be the 1-form a4 . The left-hand side of the a4 version of (2-7)
is W(A). The term on the right-hand side with the sum indexed by ¥ is 27Xg. Use
the top equation in (1-13) with (1-30) to see that the integral of @ A ddy4 can be written
as —iM + t4 with |tq| < co. Meanwhile, By A ddy4 can be written as By, A Fq4 + q4,
where F4 denotes A’s curvature 2—form and q4 is a 2—form with |q4| < ¢g. Granted
the preceding, the second bullet of the proposition follows with a bound by co on the
absolute value of the integral over Y of the form By, A F4. Such a bound follows from
the second bullet of Lemma 2.5 and Lemma 2.1.

Given what was said in the preceding two paragraphs, the bound for |W/ — M| given in
Proposition 2.7 follows from (2-7) and Proposition 2.6. O
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2.2 The vortex equations, I

The proof of Proposition 2.4 in Section 2.3 invokes various properties of the vortex
equations on C. Properties of these equations are also used to prove Proposition 2.6
and are used elsewhere as well. This section introduces these equations and supplies
what is needed for the proof of Proposition 2.4. More is said about these equations in
Sections 3 and 4.

The vortex equations ask that a pair (Ag, ) of connection on a complex line bundle
over C and section of this bundle obey

fFAO = _l(l - |O[0|2)’
(2-8) da,00 =0,
log] < 1.

The notation here is such that * denotes the Euclidean Hodge dual on C, while Fyq,,
and 5,40 denote the respective curvature 2—form of Ag and the d—bar operator defined
by Ao on the space of sections of the given complex line bundle. The solutions with
1 — |etg|? integrable are discussed at length in Sections 1 and 2 of [20]. Solutions
to (2-8) are also solutions to (4.1) in [22], so what is said in Proposition 4.2 in [22]
applies as well.

Two properties of the solutions to (2-8) are needed for the proof of Proposition 2.4 that
are not stated explicitly in Sections 1 and 2 of [20] or by Proposition 4.1 in [22]. These
are given by:

Lemma 2.8 Let (Ag, o) denote a solution to the vortex equations. Then || cannot
have a local, nonzero minimum. Given ¢ > 0, there exists k > 1 with the following
significance: Suppose that (Ag, o) is a solution to the vortex equations and |ag| < 1—¢
at the origin in C. Then |ag| < ¢ at a point with distance at most k from the origin.

Proof The function |xg| can be written as e* on a set where it is nowhere zero with
u < 0 a smooth function. The top equation in (2-8) requires that —Au = (1 — e?¥),
where A here denotes the Laplacian on R?. This understood, the first assertion of the
lemma follows from the maximum principle. To prove the second assertion, suppose to
the contrary that it is false for some ¢ > 0. The equations in (2-8) are uniformly elliptic,
and thus taking limits with counterexamples for the successive cases x = 1,2, ... finds
a solution (Ag, ®g) with |og| < 1 — ¢ at the origin and with |g| > ¢ on C. Introduce
the function t on [0, c0) whose value at any given s € [0, c0) is the average value

Geometry € Topology, Volume 24 (2020)



3252 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

of —u on the circle in C of radius s. The equation —Au = 1 —e?* implies the equation

535t = b, where h(s) is the integral of 1 —|ag|? over the radius s disk in C centered at

the origin. The fact that 1 —|a|? < ¢ at the origin implies that h > c5'!

1

¢ on [1,00) and
so sdst > cy e on [1,00). This being the case, then t > coe(Ins) — cg. On the other

hand, t < |Ing| if |ag| > & and this bound is violated when Ins > cals_l [In g] +c§. a

The vortex equations enter Proposition 2.4’s proof via the upcoming Lemma 2.9. The
lemma refers to a transverse disk with a given radius through a given point in Y. Such
a disk is the image via the metric’s exponential map of the centered disk of the given
radius in the 2—plane bundle Ker(a) at the given point. There exists ¢o > 100 such that
any transverse disk with radius ¢ 1 is embedded with a priori bounds on the derivatives
to any given order of its extrinsic curvature. In addition, the vector field v along Dy is
everywhere ¢ ! close to the normal vector to Dg. All transverse disks are assumed

1

implicitly to have radius less than ¢ so as to invoke these two properties.

Lemma 2.9 uses J to view Ker(a) as a complex line bundle and it uses the Riemannian
metric to define a compatible Hermitian structure on Ker(a). Fix p € Y and an
isometric isomorphism from Ker(a)|, to C. Use ¢ in what follows to denote the map
from C to Y that is obtained by composing first the isomorphism with Ker(a)|, and
then the metric’s exponential map. With r > 1 given, Lemma 2.9 uses ¢; to denote the

composition of first multiplication by r—1/2

on C and then ¢. To finish the notational
preliminaries, suppose next that (A4, ¥ = («, 8)) is a given solution to some r > 1 and

w € Q2 version of (1-13). Use (4, ¥;) to denote ¢ (A, ). Lemma 2.9 writes v,
as (o, Br).

Lemma 2.9 Fix an integer k > 1; there exists k > 1 with the following properties:
Fix r>k and p € Q with P-norm bounded by 1 and suppose that (A, 1) is a solution
to the corresponding (r, ) version of (1-13). Fix a point in Y and use the associated
map ¢; to define the pair (A;, o;) of connection on and section of a complex line bundle
over C. There exists a solution to the vortex equation on C whose restriction to the
radius k disk about the origin in C has C k _distance less than % from (A;, o) on this
same disk.

Proof The argument is essentially identical to that used to prove Lemma 6.1 in [17]. O
2.3 Proof of Proposition 2.4

The proof of the proposition has seven parts. By way of a look ahead, the arguments
are much like those in Section 6.4 of [17].
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Part 1 Let Dy denote a transverse disk in Y with the following properties: First,

—1/2

the disk has radius p > cor . Second, all points in the disk have distance at least

(co + 10%)p from UpeA{)?p"‘, ¥p }- Lie transport by v moves Dy to a new disk. For
t € R, use D; to denote the new disk that is obtained by moving the points in Dg a
distance ¢ along the integral curves of v. The formula for v in (1-3) can be used to
see that t = t; and ¢t = t, versions of D; are disjoint unless t; =1,.

Fix a compactly supported function on D¢ which is equal to 1 on the radius %p

concentric subdisk in Dg and with the absolute value of its derivative bounded by cop~!.

Use yo to denote this function and use y; to denote the time-# Lie transport of yo by v.

Part 2 Fix ko > 1. Fix r > ¢¢ and p € Q2 with P—norm bounded by 1 and suppose
that (A, ¥ = («, B)) is a solution to the (r, ;) version of (1-13). Let D¢ denote a disk
as described in Part 1 with 1 — |a|? > k! at the center point of Dy.

Use f to denote the function on [0, co) that is given by the rule
(2-9) t—f(t) = r/D xe(1—la]?).
t

Note that §(0) > ¢ 1. This lower bound follows from the upper bound on |V4a| given
in Lemma 2.1 with the fact that 1 —|«|? > Ko 1 at the center point of Dy.

The derivative of f is denoted in what follows by f'; it is given by
@-10) F=r [ 2e@aarn + (V)
t

where (V4a), is used here and subsequently to denote the section of E that is obtained
by pairing V4o with the vector field v. As explained in the next paragraph, the norm
of the derivative of § is such that

(2-11) ¥l = Cor/D (13 xe 1181 + (| + [d* xeDlel 1B1),

where the notation uses v and d1y; to denote the orthogonal projections of v
and dy; to the respective tangent and cotangent bundles of D;. Granted (2-11), use
Lemma 2.1 to see that

(2-12) [7(2) = F(O)] < cot.
This last inequality implies that

(2-13) f(t) > co kg when |t] <cgig !
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To prove (2-11), note first that J defines an almost complex structure on the kernel
of a. Equation (1-13) identifies (V4 ), with a constant multiple of the part of V48
that comes from the (1, 0) part of the dual to the kernel of a. Meanwhile, it identifies
(V4B)y with a constant multiple of the part of V4 that comes from the dual to the
(0, 1) part of the kernel of @. Equation (2-11) follows from these observations with an
integration by parts. By way of a warning, these same identifications are used later in
the proof without further comment.

Part 3 This part constitutes a digression of sorts to draw attention to some conse-
quences of the bounds given by Lemma 2.1. The remarks that follow here concern
the integral over disks in Y of the curvature of the connection A given in (1-16) and
the curvatures of analogs of A that are defined using (1-16) with a different version
of the function . In particular, allow in (1-16) any function % on [0, c0) that is
nondecreasing and such that p(x) < cox for x near 0.

Given r > ¢g and pu € Q with P-norm bounded by 1, let (4,y = («, 8)) denote
a solution to the (r, u) version of (1-13). Use the pair (A4,«) to define A. The
corresponding curvature 2—form is denoted by F;; it is given by the formula

(2-14) Fz=(0—-p)Fs— ' (Vald A Vga),

where F4 here denotes the curvature 2—form of the connection A. In the context at
hand, F4 = *B4. What is said in the last paragraph of Part 2 with the bounds provided
by Lemma 2.1 can be used to write

(2-15) Fp=((1-p)(1—a®) + ' |Vaa|* + ep)w +a Aet,

where 5 .
leo] < co((1 =) + o) (|1 = || +177),
et = co((1= ) + ) (/21 = e[ /2 + 1),
This depiction of F; plays an important role in subsequent arguments.
An additional fact about A is used extensively, this concerning the case when g is
chosen to equal 1 on a neighborhood of [1,00) in [0,00): if kg > 1 is such that

o =1on[l—ky!, 00), then A is flat and oo™t is /T—covariantly constant where
1—|af? < KJI.

Part4 Fix ko > 4 and a function g on [0, co) that is zero on [0, 1 —2«; '] and is equal
to 1 on [1—«y 1. 00). Use this version of g to define the connection A. The 2—form
#F 7 represents the first Chern class of £ in the de Rham cohomology of ¥ and so
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it has integral G on the f € [1 48,2 —§] level sets in M. It follows as a consequence
that there are points on any such surface where 1 — |a|? > Ko 1 Meanwhile, it has
integral zero on any level set of # with # not in this range, and it has integral zero on
the u = constant 2—spheres in #q. This last observation implies that 1 — |a|?> must be
O(r~1) on much of Y. The next lemma describes this region.

To set the stage for the lemma, fix g > 1 and let ), denote the set of points in ¥ with
the following property: a point is in Y, if it lies on a segment of an integral curve of v
with length ¢ or less and with one endpoint in Ho. Note that Y, contains Ho, and
it contains both the f <1 and f > 2 parts of Mg if ¢ > co. If ¢ > ¢, then it also
contains a small radius tubular neighborhood of the integral curve segments of v in My
that start on the boundary of the radius § coordinate ball about an index 1 critical point
of # and end on the boundary of the radius § coordinate ball about an index 2 critical
point of £. It also contains much of the 1 — 3 cos? 6 <0 portion of any given p € A
version of H,; the missing part is a small radius tubular neighborhood of )’/}‘" u )7; .

To say more about these last parts of J,, fix ¢ >0 and fix p € A. Let Hy o C H, denote
the subset of points with distance greater than ¢ from )7;' U )7p_ and with (u, 6) coordi-
nates such that either 1 —3cos? 0 < 0 or f(u)|cos 6|sin? 6 > %(xo +4e 2Ry ¢,
By way of a reminder, the function f is given in (1-2). Lemma II.2.2 finds gz > 1 such
that each point in H, . has distance g or less along an integral curve of v from Ho.
For example, H, N Mj is the part of H, where |u| > R +1nd and so a given point in
Hp N Mg is in H, ¢ unless both 1 —3 cos? 6 >0 and |cos 0| < co8~2(xo + €). This
has the following consequence when & < xo. The complement of the radius coxo8 2
tubular neighborhood of the Mg part of the union of the ascending disks from the
index 1 critical points of f and the descending disks from the index 2 critical points
of fisin YV, if ¢ > ¢ge.

Lemma 2.10 Fix ¢>1 and there exists k > 1 with the following significance: Suppose
that r > k and that € Q2 has P-norm less than 1. Let (A,{¥ = («, B)) denote a
solution to the (r, ) version of (1-13). Then 1 — |a|*> < «r™! at all points in Y.

The proof is given in a moment. The lemma that follows directly plays a central role in
the proof of Lemma 2.10.

Lemma 2.11 There exists «k > 1 with the following significance: Fix r > k and
w € Q with P—norm less than 1. Let (A,¥ = («, f)) denote a solution to the
(r, ju) version of (1-13). Then 1 — |a|> < k! on Ho and on the part of Mg where
F<1-28? —k(Inr)r~1/2 or where f > 2+ 282 + k(Inr)r—1/2,
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The proof of Lemma 2.11 and subsequent parts of the proof of Proposition 2.4 use ««
to denote the constant that appears in Lemma 2.3.

Proof of Lemma 2.11 To prove the assertion, let S denote either a constant u sphere
in Ho or a compact, level set of f in Mg with f either less than 1 —282 or greater
than 2 + 26%. Suppose that p € S is a point where 1 — |o¢|2 > 1/<_ It follows

from Lemma 2.1’s bound on [V4«| that the integral of 5—F4 over the disk in S

—1/2 1

centered at this point with radius r is greater than ¢ "k -1 . This understood, use

the formula for B4 in (1-13) with the bounds on || supplied by Lemma 2.1 to see

L1, But this is impossible given

that the integral of ﬁFA over § is larger than ¢
that the 2—form 5 F4 represents the first Chern class of E. Granted this conclusion,
use Lemma 2.3 to conclude that 1—|a|? < cor~! on Hq and on the parts of Mg where

F<1-28? —co(Int)r~/2 and where F>2+28%+ co(Inr)r~1/2, |

Proof of Lemma 2.10 Fix z > 1 to be specified shortly. It is enough to consider the
cases when ¢ = nz~! with n € {0,1,2,...}. Since Lemma 2.11 gives the case for
n = 0, an induction argument will prove the lemma for the general case for a suitable
z = ¢g. This understood, suppose that the lemma holds for a given integer n > 0 and
suppose for the sake of argument that there is a point in ¥ where 1 — |a|?> > %K*
and with distance less than (n + 2)z along a segment of an integral curve of v with

an endpoint from the part of Y that is described in Lemma 2.10. Let Do denote the
transverse disk centered at this point with radius cor~ /2. The function f given in
Part 2 is such that §(0) > ¢, Ly — 1. It follows from (2-11) that the function f(z) is

greater than 1 70 Ly if 2] < Co LIfz< Co 1 this last conclusion violates the induction

1

hypothesis that 1 —|a|? < cor~! on integral curve segments of length nz or less with

1
2+

at all points along an integral curve segment of length less than (n 4+ 2)z~! with one

one endpoint in the set described by Lemma 2.11. Thus, 1 —|«|? must be less than

endpoint in this same set from Lemma 2.11. Granted this fact, then what is said in
Lemma 2.3 completes the proof. a

Part5 Let S C Mj denote a level set of £ with £ € (1+8,2—38). As noted in the first
paragraph of Part 4, there are points on S where 1 — ||? is greater than %K; 1 Let p

denote such a point. It follows from Lemmas 2.8 and 2.9 that there is a point in S with

1/2

distance at most cor~'/“ from p where || < —=. In fact, there is a point in S with

100
distance less than cor~'/2 from p where o = 0. To prove the existence of such an

o = 0 point, define A as in the first paragraph of Part 4 using «¢9 = 2k and a suitable
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1/2 centered

function . It follows from Lemmas 2.8 and 2.9 that a disk of radius cor™
on any point in S where A is not flat must contribute at least Co ! to the integral
of 5 F ~ over S. Use this last observation with (2-15) to see that there can be at most
o pa1rw1se disjoint disks in S where A is not flat. It follows that 1 — la|? < 2K* ~!on
the boundary of the disk centered at p with radius at most cor /2. In particular, the
connection A is flat near the boundary of the latter disk and «/|«| is A —covariantly
constant. As the integral of 5 F over this disk is nonzero, it is a positive integer.
These last two facts require a zero of « in this disk because the integral of EF 7 over
the disk is the sum of the local Euler numbers at the zeros of « in the disk. What
follows summarizes this. There exists z € [1, ¢g] and at most G pairwise disjoint disks

—1/2

in S of radius zr with the following properties:

(2-16) o 1—|a|? is less than l/c; 1 on the complement of the union of these disks.

* The integral of 5 F over each disk is a positive integer, and this integer
for any given d1sk is the sum of the local Euler numbers of the zeros of o
in the disk.

Use the fact that there are at most G such disks to see that there is a set of at most G
disks of radius at most (z +co)r~/2 such that each disk in the set obeys (2-16) and such
that the distance between pairwise distinct disks from the set is greater than ¢, " . U LetN
denote the number of elements in this set. Enumerate this set of disks as {D( )}1<, <N-
For each index i € {1,...,N} and for each t € R, use D(l) to denote the disk in Y
that is obtained from D( ) by moving its points for time ¢ along the integral curves
of v. Let tg denote the value of f on S. If tg +1¢ € (1 +68,2—§), then each D(l)
is a disk in the tg + ¢ level set of £. It follows from (2-15) and from the comment in
the final paragraph of Part 2 that there exists ¢ € (1, co) with the following property:
If ts+1¢€ (1 +8,2—48) and if |t| < ¢y !, then 1 —|a|? < k! on the complement of
U1<l <N S t and the integral of 5— F over any given D( oF is the same as its integral
over D( Meanwhile, the dlameter of Dg)t is bounded by cor ~1/2 and the pairwise
separation between Dg)t and D(l ) when i # 1’ is at least c0

Granted the preceding observations, let ¢ be such that t5 +¢ € [1 —I— 8 2 — 4] and such
that [7] < ¢ =1 Let S’ denote the tg +¢ level set. Define N’ and {DS, }1<i<n as done
above for the case of S. It follows from what was said in the preceding paragraph
that N’ = N and that the set {D s/ }1<,<N can be labeled so that any given D( D has
nonempty intersection with D( ) and has distance at most ¢’ ~1 from any i’ # i version
of D(l) If r > cg, then these facts when applied sequentially to some 2N < ¢q level
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sets of £ starting with X, and then with £ value % +¢; !, then with f value % +2¢571,
and so on lead to the following:

(2-17) o The integer N is independent of the value of f € [1 +6,2—4].
e There is a set of N segments of integral curves of v with the following
properties:

(a) Each segment starts on the f = 14§ level set and ends on the f =2—§
level set.

(b) Distinct segments from the set have pairwise separation no less than ¢’ L

(c) The intersection of each segment with a level set of f has distance at

most cor_l/ 2 from a zero of .

d 1-l|a*>< %K* at the points in the f € (1 + 6,2 — ) part of MU Hog
with distance greater than cgr_l/ 2 from the union of the segments in
this set.

Part 6 explains why N = G and it says more about the start- and endpoints of (2-17)’s
integral curve segments.

Part 6 Fix p € A and & > 0 so as to reintroduce from Part 4 the subset H, o C H;,. By
way of a reminder, this is the subset of points with distance greater than ¢ from )7p+ U ]7p_
and such that either 1 —3cos?26 <0 or f(u)|cos@|sin® 6 > %(XO +4e72Ry 4 g
Lemma 2.9 finds ¢, > 1 such that if r > ¢,, then 1 — |a|? < cor— /2 on UpGA Hpe-
Fix & < x¢ and assume henceforth that r > c,.

Given what was just said, the segments of integral curves of v that arise in (2-17)
intersect the < 1+ 82 part of Mg in the union of the radius 8« coordinate balls about
the index 1 critical points of f and they likewise intersect the f > 2 —§2 part of Mj
in the union of the radius §2 coordinate balls about the index 2 critical points of .
Moreover, each such intersection lies where 1 —3cos? 6 > 0 and |cos 0| < coxo8 2.
This understood, Lemma 2.10 implies that 1 — ||? < cor™!
portion of the |u| > R +1Ind part of #,,.

on the |cos 0] > coxod ™2

Define A as in Part 5. As the integral of %F 7 over any given constant u sphere
in H, is equal to 1, and as A is flat where 1 — la|? < %K* , it follows from what was
just said that the radius 8 coordinate ball about any given index 1 critical point of f
must contain the starting point of one of (2-17)’s integral curve segments. By the same
token, the radius 8« coordinate ball about any given index 2 critical point of f must
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contain the ending point of one of (2-17)’s integral curve segments. This can happen
only if N=G.

Granted that N = G, then the following must also hold: Let D denote an embedded
disk in My that intersects just one of (2-17)’s integral curve segments and is such

—-1/2

that its boundary has distance cor or greater from all of (2-17)’s integral curve

segments. Then the integral of ﬁF 7 over D isequal to 1.

Part7 Let T, denote the set of points with distance ¢ or less from o~ (0). What is
said by Lemma 2.10, by (2-17) and in Part 6 verify all of Proposition 2.4 on Mg U H,
but for the assertion that &~ 1(0) is transversal in ¥ — T, with G components and with
tangent line very close to v. As explained next, these as yet unproved assertions are all
consequences of Lemmas 2.9 and 2.10.

To see about a proof, fix R > ¢ for the moment and let D C Mg U Ho denote a

—1/2 and center on one of 2-17)’s

smoothly embedded, transverse disk of radius 2Rr
integral curve segments. Assume that v is normal to D at its center point. Define
(A;, ;) as in Lemma 2.10 and fix ¢ > 0. According to Lemma 2.10, there is a
constant re that depends only on &’ and is such that if r > r,/, then there is a solution
to (2-8) with C2—distance at most & from (Ay, o) on the disk of radius R centered at

the origin in C. Let (Ao, ®p) denote such a solution.

To say more about (Ag, &g), keep in mind that A is flat and « /o] is /T—covariantly
constant along D at points with distance greater than some fixed multiple of r~1/2 that
is independent of R. Denote this multiple as r and assume that R > r. If ¢’ < ¢ Uit
then follows that 1 — |ag|? < %K; 1 on the radius r disk about the origin in C. It also
follows that the (Ag, o) version of the connection A is flat on the annulus in C with
inner radius r and outer radius R, and is such that ag/|ao| is Ao —covariantly constant
on this same annulus Moreover, the integral of the (Ag, o) version of %F 7 over any
centered disk in C with radius between r and R must equal 1. This understood, then
oo must have at least one zero in the centered, radius r disk. Given that o is 5A0—
holomorphic, there can be at most one such zero and it is necessarily nondegenerate

with local Euler number 1.

Use zg € C to denote this zero. Given the aforementioned holomorphicity, og must
appear near zg as o = ¢ (z—zo)+e¢, where ¢ € C and with ¢ such that |e| <¢’|z—2z¢|?.
Note in this regard || > ¢y Uand |¢’| < co, this being a consequence of the fact that the
equations in (2-8) are elliptic modulo the action of C*°(C; S!) and so any sequence of
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solutions has a subsequence that converges up to this group action in the C*° Fréchet
topology on compact subsets of C. This same sequential compactness property implies
that |ag| > ¢y 'z —zo|/(1 + |z — zo]) in the radius R disk about 0 € C.

These last facts about g have the implications that follow with regards to «. First, if
e < Co 1 then « has a single, transverse zero in D with distance at most cqé’ /2
from D’s center point. To give the second implication, use J as before to define the
(1,0) and (0, 1) parts of the complexification of the 2—plane bundle Ker(a). Introduce
by way of notation dq« to denote the (1,0) part of V4, this being the homomorphism
from the (1,0) part of this complexification to E that is defined by restricting the

1/2 4t this zero of «. Note

domain of V4. It must also be the case that |d4c| > cor
in this regard that the corresponding restriction 94 of Vaa to the (0,1) part of
Ker(a) ®g C is equal to the directional covariant derivative of 8 along v and so
has norm bounded by co. By way of a reminder, the directional covariant derivative
of « along v was denoted by (V4a), and, being a linear combination of covariant

derivatives of §, it too has norm bounded by cg.

What was just said as applied to transverse disks along the various components of
(2-17)’s integral curve segments verifies the claim that =1 (0) is transverse and it

verifies the claim that each component of the radius cor /2

tubular neighborhood of
(2-17)’s integral curve segments contains precisely one component. To see about the
tangent line to a component, parametrize a neighborhood of a given point in a segment
at unit speed by a map from a small interval about the origin in R to Y. Use x to denote
this map. Let d; denote the Euclidean vector field on R. Then x4d; pairs with Vo
to give zero. With this in mind, write x40, at the origin in R as xyv + x(1,0) + X(0,1)»
where x(j ¢y is the projection of x4d; to the (1,0) part of Ker(@) ®g C, and x(g 1) is
the complex conjugate of x(j g). The fact that V4o annihilates x«d; means that

(2-18) X0 (Va@)y + X(1,0)040 + X(0,1) 04 = 0.

Given what is said in the preceding paragraph about the relative sizes of the various
projections of the covariant derivative of «, the equality in (2-18) cannot hold unless

(2-19) r'21x1,0)| < colxl.
This last inequality implies the claim about the tangent vector to a1 (0).

Part 8 What is said by Lemma 2.10 and by (2-17) with what is said in Parts 6 and 7
verify the assertions of Proposition 2.4 for the Mg U Hg part of Y. The upcoming
Lemma 2.12 is used in a moment to extend the domain where these assertions hold
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into UpGA H, . To set the stage for this lemma, fix p € A. Given D > 0, use Hy p to
denote the set of points in H,, with distance at least D from all points in )7;' U )7; .

Lemma 2.12 There exists « > 1 with the following significance: Fix r >« and fix u €
Q with P—norm less than 1. Let (A, ¥ = («, B)) denote a solution to the (r, ) version
of (1-13). If n is a given positive integer, set D(n) = (1 + K_l)”/cr_l/z. Assume that
n is such that the assertions of Proposition 2.4 hold in M5 U Ho U (U,ep Hp,o(m+1))-
Then the assertions of Proposition 2.4 also hold in Ms U Ho U (Uyep Hp.p(m))-

This lemma is proved in a moment.

To finish the proof of Proposition 2.4, introduce x from Lemma 2.12 and let N
denote the least integer such that H, p(x41) C Hp N Mg for all p € A. The asser-
tions of Proposition 2.4 have been verified on Mg U Ho U (UpeA Hp,D(N—i—l))- This
understood, invoke Lemma 2.12 a total of N times to prove sequentially that the
assertions of Proposition 2.4 hold on MgUHo U (UPGA Hp,D(N))’ then on MgUHo U

(UpeA Hp,D(N—])), etc. 0

Proof of Lemma 2.12 Fix L > 1 and set b(n) = (1 + L~1)" Lr=1/2_ Suppose that
the assertions of Proposition 2.4 hold on Mg U Ho U (UpeA Hp,D(n—i—l))- The proof
that they also hold on Mg U HoU (Upe A Hp,D(n)) for a suitable, r—independent choice
of L is given in seven steps.

Step 1 Only the third bullet of Proposition 2.4 needs comment when 1 — |a|? <« !

on Hy nn) — Hp,p(n+1)- In any event, the third bullet restates part of Lemma 2.3 and
so it holds whether or not 1 — ||? < k! on the whole of Hp,p(n) — Hp,p(n+1)-

Step 2 Fix p € A. Given ¢ > ¢, suppose that D¢ denotes an embedded disk in #,,
—1/2 whose points have distance at least (co + 10%)cr='/2 from both
)7;“ and )’/‘p_ . Assume in addition that the vector field v along Dy is at all points ¢, 1

with radius cr

close to the normal vector. For example, a transverse disk has this last property.

Use d«(t) to denote the distance from )7;' U )7p_ to the point at time ¢ along the
integral curve of v that starts at the center point of Dg. Let D; denote the time-¢
flow of D¢ under v. It follows from (1-3)’s formula for v (see equation (II.2-3)) that
there exists A > ¢y’ ! with the following property: either one or both of the inequalities
dx (1) > dx(0)e* and dy(—1) > dx(0)e*! hold if 7 is such that the relevant point at
time 7 on the integral curve is in Hy. The discussion that follows assumes the first of
these conditions and ¢ is assumed implicitly to be nonnegative.
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The rest of this step contains observations on the geometry of D¢ and the t > 0
versions of D;. Assume for all of these that the center point of D; is in H,. Granted
this assumption, then d(¢) can serve as a proxy of sorts for the distance between
any given point in D; and )7p+ U )7; . In particular, all points in D; have distance
at least (1 — cal)d*(t) from )7;' U7, and distance at most (1 + c(;l)d*(t) from
)’/\;r Uy, because the points in Do have distance at least 108¢r~1/2 from )7p+ U¥,
and at most cr~'/2 from each other.

It is also the case that the image in D; of two points in Do with a given distance p
from each other are distance at most pe)” apart in D;. This is to say that the disk D;
is not seriously distorted if ¢ < ¢ 1 Moreover, if t < Co 1 then the normal vector
to D; at all points will be close to v.

There is one other point to keep in mind about Dy, this concerning the number of
intersection points between Do and a given segment in H,, of an integral curve of v.
In particular, D¢ has at most one intersection with any such segment. This is proved
using the formula for v in (1-3) given the assumption that d«(0) is at least co times
Dy’s diameter.

Step 3 Assume in this step that the function f from (2-9) is such that §(0) is
greater than ¢'/3. Given that dy (1) > dy(0)e*, so dx(t) > (1 + L™1)3d,(0) if
t>317"1In(1 +L71). Set t4 = 1004~  In(1 + L~1) and use (2-20) to see that

(2-20) f(ts) = 1072c1/3 — ¢ In(1 + L7Y).

Suppose that Do C Hy, p(n—1) and that ¢ > co(1 +In(1 + L~1))3. If such is the case,
then the inequality in (2-20) is not compatible with the assumption that the assertions
of Proposition 2.4 hold on Mg U Ho U (Upe A HP,D(HH)). It follows as a consequence
that §(0) can be no greater than /3 if ¢ > co(1+1n(1 + L~1))3. Assume this bound
for ¢ in what follows and likewise assume that Do C H;, p(n—1) SO as to guarantee
that §(0) < ¢1/3.

Step 4 Fix R > 2 but less than 06102/3. Since f(0) < ¢!/3, the bounds from
Lemma 2.1 for |V4«| requires a point x € [1, Re'/3] such that 1 —|a|?> < coR™! on

the concentric annulus in Do with inner radius xr—1/2 —1/2

and outer radius (x + 1)r
With this understood, use Lemma 2.3 to deduce the following: if R > cokx, then
1—|af? < %K: ! on such an annulus. Assume in what follows that ¢ > cq is such
that R can be chosen greater than cok«. Reintroduce the connection A from Part 4 as
defined with kg = 2. This connection is flat and or|a |7} is A —covariantly constant

on this annuli in Dy.
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Step 5 Take Dy to be a transverse disk. With x4 denoting as before the constant from
Lemma 2.3, assume in addition that 1 — |a|? > k! at the center point of Dg. This
assumption with Lemmas 2.8 and 2.9 guarantee a point with distance at most cor~1/2
from the origin in Do where 1 — |oz|2 9 . If ¢ > ¢p, then the existence of such a
point implies that the integral of 5 F over the subdisk in Dg of radius (x + 1)r~1/2
is nonzero and positive. Moreover, thrs integral must be a positive integer because A
is flat with a covariantly constant section near the boundary of this subdisk. Use n
in what follows to denote this integer. Keep in mind that « has a zero in this subdisk
with positive local Euler number because the sum of the local Euler numbers of the

zeros of « in the subdisk is equal to this same 7.

Use (1-13) with Lemma 2.1’s bound on |V4 8| to draw the following conclusion: there
exists 7o > ¢y such that 1 —|a|? < %K;l at all times ¢ < o on the image in D; of
the annulus with inner radius xr~'/2 and outer radius (x 4+ 1)r~!/2. This being the
case, the integral of 5 F 7 over the image in D; of the radius (x + 1)r™~ 172 subdisk
in Dy is still equal to ni and « still has at least one zero with positive local Euler
number in the image in D; of the radius (x 4+ 1)r~!/2 subdisk of Dy.

With the preceding understood, remark that if L > cg, then #9 > 4 with t, as defined
in Step 3. Assume that this is the case. Then Dy, CH, p(»+1) and, as a consequence, 11
must equal 1 because Proposition 2.4’s assertions hold on MsgUH U (Upe A Hp oo+ 1)) .

Step 6 Let x € [1, Rc'/ 3] denote the constant from Step 4. It follows from what is

said in Step 3 that there is a zero of @ in Do with local Euler number 1 with distance

~1/2 from the center of Dgo. Use Dy now to denote the transverse disk

1/2

at most cor
through this point with radius (1 — ¢, Dyer=1/2. The conclusions of the preceding
steps hold for this new version of Dy also. In particular, there exists x € [I, R¢!/3]
such that the connection A is flat with covariantly constant section c|a|~! on the
concentric annulus with inner and outer radii xr~/2 and (x+ 1)r_1/ 2 Let D¢ denote

the concentric subdisk in Dg with radius (x + l)r_l/ 2

As before the integral of
F over Do is equal to 1. This value of 1 for the integral of 5 F demands the

followrng.

(2-21) There exists z > 1 that is independent of (A4, @), i and r such that if r > z,
then 1 — |a|? < 3 —1/2

from the origin.

2/( ! on the part of D, with distance greater than zr

What follows explains why (2-21) is true. To start, let p € D, denote a given point
where 1 — |a|? > 1 +!. Use Lemmas 2.8 and 2.9 to find a point p’ in the transverse
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1/2 through p where |a| is less than 107>, Since v is almost normal

disk of radius cor™
to this transverse disk at p” and also to D, there is a point in D on the integral curve
of v through p’ with distance at most cor—'/2 from p’. Let p” denote the latter point.
As noted previously, the Dirac equation in (1-13) identifies the covariant derivative
of « in the direction of v with a linear combination of covariant derivatives of 8. This
understood, then it follows from Lemma 2.1 that || at p” is no greater than 1074,
Given this upper bound for |«|, use Lemma 2.1’s upper bound for |V4«| to see that
the contribution to the integral over D, of F from the radius cor —1/2 {disk in D,
centered at p” is greater than cO . This concluswn has the following consequence:
There can be at most co points in any subset of D, such that the distance between any
two distinct points is greater than cor /2 and 1— la|? > LK at each point.

Now, suppose that p is a point in Do with 1 — |a|?> > SLZK 1

what was just said and from Lemmas 2.1 and 2.3 that there exists an (A4, ¥)—, u—

It follows from

and r—independent constant z; > 10* and a subdisk D, C D, centered at p with

radius z;r~'/2 with the following properties: First, 1 — |a|? < 312K on the annular
neighborhood of the boundary of D, with inner and outer radii equal to lzlr_l/ 2
and z;r~1/2. Second, the 1ntegral of ;= l - F 7 over Dp is at least c_1 This last property

implies that the integral of 5 F over Dp is at least 1 since the connection A is flat
with o/ || Covarlantly constant on the annular boundary neighborhood.

Since the integral of 5 F over the whole of D, is equal to 1, the conclusions of the
preceding paragraph have the following consequence: Any two versions of D, are
certain to overlap. It follows that 1 — |or|? is less than =5« ! at any point in Ds with

32
1/2

distance cor™ */“ or greater from the center point since « is zero at this point. This last

observation verifies Proposition 2.4’s fourth bullet for Ms U o U (U,ea Hp,o(n))-

Step 7 Suppose that ¢ € [0,79]. Use Doy C D; to denote the image of D,. The
definition of #( is such as to guarantee that 1 — |«|? is no greater than %K* on the
image in D; of the set of points in Do with distance at most cor~ /2 from the
origin. This understood, the integral of 5 F ; over Do, is equal to 1. Granted these
last conclusions, an essentially Verbatlm repetition of what is said in Part 7 proves
that the zero locus of « in the cylinder | J, <t<to Dor 1s transverse and consists of a

—-1/2

properly embedded arc whose tangent vector has angle at most cor from v and

whose points have distance at most cor /2

from the integral curve of v through the
center point in Do, . Since Dogy C Hy p(n+1)- this arc smoothly extends the zero locus

of « in Hy p(n+1)- The preceding observations verify Proposition 2.4’s first bullet for
Ms UHo U (Uper Hp.om))- H
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3 The map @' from Z~,  to Zgw,

Fix p € Q with P—norm less than 1 and fix L > 1. The map &Dr: éeLch M g’sw,r for
Theorem 1.5 is a principal Z-bundle covering map over a map from Z CLCh 1INt Zsw ¢
that is denoted in what follows by &'.

The following proposition makes a formal assertion as to the existence of the desired
map P*. It then says something about the form of the solutions to the relevant version
of (1-13) that lie in the C®°(Y; S!) orbits in Conn(E) x C*®°(Y;S) that form ®"’s
image. The proposition uses the isomorphism in (1-19) to identify z sw,r With Zgw xXZ
and it uses the isomorphism described in the paragraph preceding Theorem 1.5 to
identify ZA'eCh, M With Zeep pr X Z and thus ééh a With ZeLch, a X Z. The proposition
also uses the following notation: when y denotes a closed integral curve of v, then £,
denotes its length.

Proposition 3.1 There exists k > m such that given E > 1 and L > kE, there exists
k1, > Kk with the following significance: Fix r> k7, and an element y € €2 with P—norm
less than 1. Use the solutions to the (r, i) version of (1-13) to define Zsw . There
existsa 1-1 map ®": ZeIEh,M — Zsw,r Whose image contains the subset of Zgw ; with
M < E. Moreover, suppose that © € Ze]Zh,M and that ¢ = (A, ¥ = («, B)) is a solution
to the (r, ) version of (1-13) on the C*®(Y; S') orbit defined by ®*(®). Then:

¢ ¢ is nondegenerate and holonomy nondegenerate.
o M(0) <27 oty +x L
e The zero locus of « is a disjoint union of embedded circles whose components

are in 1-1 correspondence with the integral curves of v that constitute ®. This
correspondence is such that:

(1) Any given component of a~'(0) lies in the radius k=2 tubular neigh-
borhood of its partner from ® and it is isotopic in this neighborhood to its
partner.

2 ‘1 — |a|2‘ < k(e VH/k 4 =1y gt points with distance d or more from
Uye@ V-

(3) Let D CY denote an oriented, embedded disk with all boundary points at
distance greater than kr~1/2 from Uye® y and with algebraic intersection
number 1 with | J,cg v - Then zl_n IpFp=1.
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e View ®' as a map from ZeLCh p XZ to Zsw X Z that acts as the identity on the Z,
factor. As such, @' defines a 7 —equivariant covering map ®": Zg'eLCh M ZA'sw,r
via the isomorphisms described above that reverses the sign of the relative 7. or
Z/pmZ degrees.

The map @' is constructed by copying in an almost verbatim fashion some of what is
done in Section 3 of [20] to construct an analogous map in the context where @ is a
contact 1-form and w = %d a. The latter version of @' is the map that is described in
Theorems 4.2 of [19] and Theorem 1.1 of [20]. This contact 1-form incarnation of ®"
is constructed in Section 3 of [20] and its salient properties are stated as Theorem 1.1
in [21] and Theorem 1.1 in [22]. These theorems are proved respectively in Section 2
of [21] and Section 2 of [22]. As explained below, only the simplest case of what is
done in Section 3 of [20], Section 2 of [21] and Section 2 of [22] are needed for what
follows because of certain special features of the closed integral curves of v that arise
from elements in Zech, pr -

By way of a look ahead, Section 3.1 summarizes some basic facts about a particular
subset of solutions to the vortex equations that are used to construct ®'. The proof of
Proposition 3.1 is given in Section 3.2. Section 3.3 has the proof of Lemma 3.2 from
Section 3.1.

3.1 The vortex equations, I1

The proof of Proposition 3.1 makes reference to (2-8)’s vortex equations. Of relevance
here are the solutions which are such that 1 — |og|? is integrable on C. The discussion
of this subset of solutions to (2-8) has four parts. What is said in Parts 1-3 summarize
various observations from Section 2 in [20].

Part 1 As all complex line bundles over C are isomorphic to the product line bundle
C x C, no generality is lost by the focus in what follows on solutions (Ag, ag) with Ag
a connection on this product bundle and & a complex function. Introduce 6y to denote
the product connection on the product line bundle C x C. Write any given connection
on C xC as g +a with @ being an i R—valued 1-form on C. Doing so identifies the
set of solutions to (2-8) with a subset of the space C*°(C;iT*C) x C*°(C; C). This
identification endows the set of solutions with a topology. Meanwhile, there is a free
action of C*°(C; S!) on the space of solutions to (2-8) whereby a given map u sends
a given solution (Ao, o) to (A9 —u~'du, uag). This action is continuous, and so the
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set of C*®(C; S!) equivalence classes of solutions has the induced quotient topology.
The resulting subspace of solutions with 1 — |ag|? being integrable is a disjoint union
of components labeled by the nonnegative integers. The integer m component consists
of the set of equivalence classes of solutions that obey

1 2
G- 3 [0 =laoP) =m
The integer m component is denoted by &, .

The space €, has the structure of a complex manifold that is holomorphically isomor-
phic to C™. The m complex functions {0y }1<4<m defined by

(2) 0 =5 [ #1=loP?

define such an isomorphism. (In (3-2) and in what follows, what is denoted by z is
the complex coordinate for C.) There are no convergence issues with regards to the
integral in (3-2) by virtue of the fact that a solution to (2-8) and (3-1) obeys

(3-3) e |ag| <1, with equality if and only if |ag| =1;
o 1—Jag|? < coe a0 O,

Here, co depends only on the integer m. As it turns out, the zeros of « are the roots

of the polynomial z — p(z) =z + 012" L+ 022" 2 + -+ 0.

Part 2 Let L — C denote a Hermitian line bundle. Suppose for the moment that
(Ap,@p) defines a pair of unitary connection on L and section of L. Define the
operator ¥ on C°°(C, L) by the rule

(3-4) (x,0) (8x+faot BAOL—l—faox)

Here, 0 is the holomorphic derivative on C>°(C; C). The formal L?-adjoint of ¢ is
denoted by 9 and it is given by the rule

(3-5) 9¥(c.6) = (=0 + 505, ~dags + 5%0c).

The corresponding Laplacian 99T can be written as

(3-6) 907(c,¢)=((—39+1|o|?)c, (—5A08A0+%|a0|2)§)+¢i§(8A0&0g, 04,0C).
What follows is an important observation to keep in mind: the right-most term in (3-6)

is zero when (Ag, op) obeys the vortex equations.
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Part 3 Suppose now that (Ag, azg) is a solution to (2-8) and (3-1). The (1, 0)—tangent
space to the orbit of (Ao, ®g) in &, is canonically isomorphic to the vector space of
square-integrable pairs (x,¢) of complex-valued functions that are annihilated by .
This identification is used implicitly in what follows. The vector space of square-
integrable elements annihilated by ¢ is called the kernel of .

Introduce the Hermitian inner product on the kernel of ¢ defined by the rule that sends
an ordered pair (v = (x,t), o’ = (x’, (")) in the kernel of ¥ to

(3-7) (0, 10') =% [C Ex' +70).

This Hermitian inner product is compatible with the complex structure and it defines
a complete Kéhler metric on &,,. In the case m = 1, this is the standard metric on
¢, = C, but such is not the case if m > 1.

Given a real number v and a complex number p, define the function A on €,, by the
following rule: if ¢ = (Ao, ®p), then

(3-8) WO = - fc @)z + 42 + E22)(1  [aol?).

Suppose now that v and pu depend on ¢ € R, so that (3-6) defines a function on R x €, .
The Kéhler metric on &, defines an associated symplectic form, and the latter with the
R —dependent function £ define a corresponding 1-—parameter family of Hamiltonian
vector fields on &,,. An integral curve of this 1—parameter family of vector fields
constitutes a map, ¢ — c(t) € &, from R to €, that obeys the equation

(3-9) Lid +v10 4 =0,

where ¢’ is shorthand for the (1, 0) part of cx %, and where V(10 £ denotes the (1, 0)
part of the gradient of /. Of interest in what follows are the solutions to (3-7) that obey
the condition ¢(t 4+ T') = ¢(¢) for some 7" > 0. Such a solution is said to be a periodic
solution.

Let ¢: S' — &, denote a given map. Associate to ¢ the bundle ¢* T} ¢, — S1. The
pullback of the Riemannian connection on 7'¢,, defines a unitary connection on S!.
The map ¢ is said to be nondegenerate when the operator

(3-10) £ > LV A+ (Ve VO f)c

on C*®°(S Lo* T1,0%,) has trivial kernel. The notation here is such that V; denotes the
covariant derivative of the aforementioned unitary connection. Also, (V;RV(I’O) ")l
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denotes the covariant derivative at ¢ along the vector defined by ¢ in T¢&,,|. of the
vector field V10 f e C®(C; T1,0Cm).

Part4 Let y denote an integral curve of v. The proof of Proposition 3.1 refers to a
certain pair of R—valued and C —valued functions on y that are associated to a given
unitary isomorphism between K~!|, and y x C. To define these functions, fix a
C -linear, unitary isomorphism between K~! |y and y x C. Let z denote the complex
coordinate on C and let ¢ denote an affine parameter for y such that y*g% = %Eyv.
Use the metric’s exponential map along y to give a tubular neighborhood of y in Y
with the coordinates (¢, z) with it understood that these coordinates are only valid
when z is in a small radius disk about the origin in C. Use these coordinates with the
first-order Taylor’s expansion to write w as w = ’5 dzANdzZ -2z +uz)dz Andt —
2(vz4+uz)dz Adt +---, where v and u are respectively R— and C —valued functions
on S, and where the unwritten terms are bounded by co|z|?>. Note that v must be
R—valued because w is closed.

The pair (v, p) is the desired pair. Use this pair to define the function £. This done, fix
a nonnegative integer m and use &, ;) to denote the set of periodic solutions to (3-9)
on &,,.

Lemma 3.2 Suppose that ® € Z., pr and that y is a closed integral curve of v
from ©.

* The space €y, 1) consists of the constant map from S ! to the 0y =0 pointin €.
This is the equivalence of solutions to (2-8) and the m = 1 version of (3-1) with
oy 1(0) = 0. This solution is nondegenerate.

e Suppose that p € A and that y € {y,F,7,"}. Then €,y = & whenm > 1.
The proof of Lemma 3.2 constitutes Section 3.3.

3.2 Proof of Proposition 3.1

The proof differs only cosmetically from that of Theorem 4.2 in [19]. As with the proof
of the latter, there are three parts: Part 1 constructs the map @' and verifies what is
said in the second and third bullets; Part 2 proves what is said in the first and fourth
bullets; and Part 3 verifies that the image of @' contains the M < E subset of Zgw ;.
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Part 1 The map @' is constructed by copying what is done for its namesake in
Theorem 1.1 from Section 1d in [20]. The construction here constitutes what is perhaps
the simplest of cases because only ® € ZeLch’ u and y € © versions of €, 1) are used.
By way of a parenthetical remark, the first step in the construction of ®" uses the data
from @ to build a pair in Conn(E)x C®°(Y'; S) that comes very close to solving (1-14).
This construction is described in the first subsection of the appendix.

The first bullet of Lemma 3.2 guarantees that each map from {{€(,,1)}yc0}0ecz.
is nondegenerate, and so this set can be used as input for Theorem 1.1 in [20]. The
assertions made by the second and third bullets all follow directly from the construction

and from Lemmas 2.1 and 2.3.

Part 2 To see about the first bullet of the proposition, suppose that ® € Z elgh’ a and
that ¢ = (A4, «) is a solution to (1-13) that defines the equivalence class ®"(®). The
assertion that ¢ is nondegenerate can be had by copying almost verbatim the arguments
in Section 2a of [21] that prove the analogous assertion in Theorem 1.1 from [21].
There are no substantive changes to these arguments from [21]. The assertion that ¢ is
holonomy nondegenerate follows from the third and fourth bullets of Proposition 2.4.
To elaborate, these bullets imply that the connection A has a covariantly constant
section on a neighborhood of the curve )/(ZO) . Because of this, the number X(//l\ —AEg)
is necessarily an integer because A g was chosen to have holonomy 1 around y(ZO).

To argue for the fourth bullet, fix ® € Z eI;h, » and suppose that (A4, @) is a solution to
(1-13) that defines the equivalence class ®(®). Fix a 2—cycle Z € H»(M, [@]—[O¢])
that has algebraic intersection number zero with y?0) . The Z—equivariant covering
map @' sends the equivalence class of a pair (0, Z) to the Gy, —orbit of a solution
(A, ) of (1-13) with the property that X(ff — Ag) = 0. With this point understood,
the argument for the third bullet differ only cosmetically from those used [21] to prove
an analogous assertion from Theorem 4.2 in [19]. The latter theorem follows directly
from the relative degree assertion about the namesake @' that appear in Theorem 1.1
in [21]. The proof of this part of [21, Theorem 1.1] constitute Sections 2b and 2c
of [21]. Note in this regard that the assumption that is made in equation (2.56) in [21]
is not needed by virtue of the fact that the map @' is constructed using only elements

from the set {{€(;,1)}ye0 0zt 01 -

Part 3 But for one additional substantive remark, the arguments for Theorem 1.1
in [22] can copied with only notational changes to prove that if L is large, then ®"
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maps Zih, y onto the M < E subset of Zgw, when r is large. The extra remark
concerns the input to Theorem 1.1 of [22] of a set denoted by ¢Z% and a subset
¢zL+ c ¢ZL. Theorem 1.1 in [22] requires ¢ZL+ to be the whole of ¢ZL. As
explained below, €2 in this case is {]_[),e@ (Y and €ZL* in this case

®eze%h.M
is indeed all of ¢ZL .

To define ¢ZL, introduce first Z to denote the set whose typical element consists
of a finite collection of pairs whose first entry is a closed integral curve of v and
whose second entry is a positive integer. Let ® denote such a collection. This set is
constrained in two ways: Distinct pairs from ® contain distinct closed orbits of v. The
second constraint requires [O] =}, e m[y] € H1(Y;Z) to be the class that is
defined by the elements in Zeep ar. The set Zeep s sits in Z, but Z is strictly larger
than Z.p as; this can be seen using the parametrization given next.

Invoke Proposition 11.2.8 or Theorem 1.2.1 to write Z as Zyg X (]_[pe AZx 6)), where
O is the set {0,1,2,...}x{0,1,2,...}. This parametrization is such that the factor
ZHE X (HpeA Z) parametrizes pairs of the form (y, 1) with y C Mg U (UpeA Hp)
crossing each p € A version of H,, once. To explain the factors of 0, fix pe A. The
element {0, 0} in p’s version of O signifies that neither )7p+ nor )7; appears in ©. The
element (m4,0) from O with m > 0 signifies that ® contains ()7p+ ,my) and that ©®
lacks a pair with )7p_ . By the same token, the element (0,m_) from O with m_ >0
signifies that ® contains the pair ()7; ,m_) and that ® lacks a pair with )7p+ . The
element (m4, m—) with both entries positive signifies the appearance in ® of ()7p+ ,My)
and (¥, ,m-). Use 2L to denote the subset of © = (D, &, (M4, Mmp—)pen) € Z with
> pen(tp +2mpq +2mp_) < L.

The set ¢ZL maps to ZL with fiber over any given ® being H(y,m)e@ C(y,m)- The

fiber over ® of €ZL* consists of the elements in [1y.m)yee €(y,m) Whose entries are
nondegenerate.

Granted these definitions, invoke the second bullet in Lemma 3.2 to see that €2 L is in-
deed {]_[y ) Q(y,l)}@ c Z,f Lo This being the case, invoke the first bullet in Lemma 3.2
to see that ¢ 2L+ = ¢zl O

3.3 Proof of Lemma 3.2

To prove the first bullet, view € as C using (3-2)’s coordinate o;. Viewed in this way,
then (3-9) is an equation for a function ¢ + z(¢) from R to C, this being the equation
id

(3-11) 5E2+vz+u220.
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Let z(-) denote a solution, but viewed as a map from R to R?. Then z(27) can be
written as U, z(0), where U, € SL(2;Z) is the linear return map that is described in
Part 3 of Section II.1F. Proposition 2.7 of [9] asserts that all of the relevant integral
curves are hyperbolic, and by definition, this means that U, has real eigenvalues with
neither being 1 or —1. Thus (3-11) has a single solution, this being the constant map
t — 0. The operator (3-10) in this case is the operator that appears on the left side
of (3-11), and so its kernel is trivial.

The proof of the second bullet has ten parts. Parts 1-3 say more about the solutions
to the vortex equation. The remaining parts contain the proof proper. The arguments
in Parts 4-10 focus on the case when y = )7p+ . The arguments when y = )7; are
essentially identical.

Part 1 The lemma that follows supplies three facts that play a central role in the proof
of Lemma 3.2.

Lemma 3.3 Fix m > 1 and suppose that (Ao, ag) is a solution to (2-8) that defines a
point in &, . Then:

o LB —]aol?) +|94020/%) = m.
* 3z Joz(—leol?) = Zm and Tm [¢ 194,00 < 3m.
o (8000l < L2(1—|aol?).

Proof Use A in what follows to denote the Laplacian on C. Meanwhile, let w denote
the function (1 — |ag|?) and use g to denote 4,0 . It follows from (2-8) that

(3-12) —%Aw + %|a|2w = |g|2 and — %VIVAg + %|a|2g = %wg.
Write |ag|> = —w + 1 to write the left-most equation in (3-12) as
(3-13) —tAw+Iw= 1w+ g%

Integrate both sides of this equation and appeal to (3-1) to obtain the first bullet in the
lemma.

The second bullet follows from the first and the third. To elaborate, use the third bullet

of the lemma to see that the integral on the left-hand side of the first bullet is less than

% times the integral of w2. As a consequence, the contribution of the term %wz to

the integral on the left side of the first bullet is no less than %m and so the contribution

.. 2 . 3
to this integral of |g|* is no greater than zm.
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To obtain the third bullet, use the right-hand identity in (3-12) to see that
(3-14) —3Algl+ zla’lgl < Fwlgl.

To exploit (3-14), set x = |g| — “/Tgw. The left-most equation in (3-12) and (3-14)
require

(3-15) —LAx+ LaPx < gl Gw— Llgl) = —Lelx.

Granted (3-15), use the maximum principle to see that x cannot have a positive local
maximum. Given that x is square-integrable, this implies that x < 0, which is what is
asserted by the second bullet of the lemma. a

Part 2 Various additional facts about any given m € {1,2,...} version of &,, are
needed for the proof. The first of these facts concerns an isometric and holomorphic
action of the semidirect product of S! and C on €,,. This action is induced by the
group’s action on C, where S! acts as the group of rotations about the origin and C
acts on itself by translation. The generator of the action of C on &, at the equivalence
class of a solution (Ag, &tp) to (2-8) is the tangent vector that is defined by the element

(3-16) w1 = (75 (1= |aol), d40%)

in the kernel of ©. The action of S! on €, is such that n € S! pulls back (3-2)’s
functions {0y }1<qg<m to {n?04}1<g<m. The action has a unique fixed point in €,
this given by the point where all o, are zero. The latter point is the equivalence class
of the solutions to (2-8) with «~!(0) = 0. The fixed point of the S! action is called
the symmetric vortex.

Part 3 Define (3-4)’s operator ¥ using the solution (Ag, ®9). The absence of the
right-most term in (3-6) and the integrability of 1—|ao|? imply that 99T has a bounded
inverse that maps L2?(C; C x C) to the L2—orthogonal complement of the kernel of ©.

The other Laplacian, 979, can be written as 979 = 99T +¢, where ¢ is a zeroth-order
term that is bounded by co (1 — |g|?). Given this last fact, the Bochner—Weitzenbock
formula for 514 d4 can be used in conjunction with the left-most equation in (3-12)
and the maximum principle to see that any given element in the kernel of ¢ with
L?—norm 1 is bounded pointwise by co(1 — |ag|?). The argument also invokes the
third bullet of Lemma 3.3 and (3-3). Granted the latter as input, the argument differs
little from the argument in Part 1 proving the third bullet in Lemma 3.3. This being the
case, the details are omitted.
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Part4 Use (3-2)’s coordinates {0g}1<g<m for &, so as to view the equation in (3-9)
as an equation for a map, ¢ — (01(¢), 02(2),...,0m(t)), from R to C™. In particular,
the map ¢ — o, (¢) must obey the equation

id 22 _
(3-17) > dr 02+ 2voy +ug =0,
where gﬁ is the norm of do, as defined by the Kédhler metric on &,,. Note that gﬁ

is a strictly positive function on &, . Parts 6-10 explain why
(3-18) 22 > 2|oy).

Meanwhile, Part 5 explains why the functions v and pu in (3-8) and (3-17) can be
assumed constant, with p real and such that p > |[v| + ¢y 1 With the preceding
understood, write 02 as ox + 0y with oy and oy, real-valued functions. Then (3-17)
and (3-18) require —%oy < 0 and so there are no periodic solutions.

Part 5 The functions v and p that appear in (3-8) and (3-17) depend on a chosen
unit-length basis vector for the bundle K1 along the given closed integral curve, this
being )7;' . Even so, the question of existence or not of solutions to the corresponding
version of (3-9) does not depend on the trivialization. This fact is exploited in what
follows to choose a convenient trivialization.

The metric on H,, is invariant with respect to rotations of the coordinate ¢ and as v
is a constant multiple of —% along j7p+ the basis vector for K1 along )7; can be
chosen so as to be covariantly constant along )7p+ . Choosing such a basis vector gives
a pair (v, i) with both being constants. As noted previously, v must be real, and if u
is not real and nonnegative to begin with, a suitable constant rotation of C changes the
coordinates so that the resulting version of w is real and nonnegative.

The assertion u > |v| follows from the fact that )7p+ is hyperbolic. By way of an
explanation, the fact that it and v are constant can be used to solve (3-11) and thus
write the matrix U, and see directly its eigenvalues. These are real and neither 1
nor —1 if and only if u > |v].

By way of a parenthetical remark, Part 2 of Section III.5A introduces the coordinates
(s+, ¢+, 0+, u4) for the product of R with a tubular neighborhood in Y of )7;‘ . These
are such that the locus 64 = 0, u4 = 0 is the cylinder R x )7p+ with s4 being the
Euclidean coordinate for the R factor and ¢4 an R/(27Z)—valued coordinate for )7;‘ .
This understood, the differentials d64 and du4 together define a trivialization of the
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normal bundle of )7; . Given this trivialization, the coefficients that appear in equation
(ITI1.5-1) determine v and w as functions of the constants xo and R that are used in
Section 1.1 to define the geometry of Y. A direct calculation using these coordinates
will also verify the claim that v and p can be assumed constant, with p real and
greater than |v].

Part 6 Suppose that (Ag, «g) is a solution to (2-8) that defines a point in €,,. Let
v = (x, () denote an element in the kernel of the operator #. The (1,0) part of do,
pairs with the tangent vector defined by tv to give

(3-19) R
27'[ C

Since ¥t = 0, the first entry of (3-4) is zero and so the integrand in (3-19) can be
replaced by —+/2z20x. Having done so, integration by parts writes (3-19) as

(3-20) —Q ZX.

T Jc
Note in this regard that such an integration by parts is possible here (and in a subsequent
integration by parts) by virtue of what is said in Part 3 to the effect that |to]| is bounded
by a multiple of 1 —|ag|?, and thus is exponentially small where |z| is large.

The integrand in (3-20) is the same as z(1 — |og|?)x + z&ppx. As P = 0, the
left-hand entry in (3-4) is zero, and so this is the same as z(1 — |ag|?)x — «/EZ&OE)AOL.
Use this fact with a second integration by parts to see that (3-19) is equal to

2 = —
(3-21) —;/«:(%2(1—|a|2)x+za,4m).

Introduce IT to denote the L?—orthogonal projection from L2(C; C @& C) to the kernel
of ¥. This last identity implies that do, acts on the kernel of ¥ as w — 2(I1(Ztvo1), v)
with to; as defined by (3-16). It follows as a consequence that

(3-22) g% = 4{T1(Ewy), T(Fwoy)).
Meanwhile, T1(Zto;) can be written as Zro; + 93 and so
_ — 1
(3-23) (M(Ewy), M(EF1) = — /C |22 (31 = lao|*)? + [340201%) = (975, 975).
With (3-23) in hand, write (3-22) as

2 4
324 = /C |21 (3(1 = lewo|*)? + 184201%) = 4(9 75, 975).
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The comparison of gﬁ with 2|03 | uses (3-24) with the rewriting of 05 as
1
(3-25) 02 = /C (31— leo[*)* + [940@0]%)-
To obtain this last identity, multiply both sides of (3-13) by %22 and integrate the

resulting equation over C. The integral of %ZZAW is zero.

The inequality gﬁ > 2|o,| follows directly from (3-24) and (3-25) if
1

(3-26) . /C 1212 (3(1 = leo*)? + [84020]%) = 2493 9T3) = 0.

The remaining Parts 7-10 supply a proof of this inequality.

Part 7 This step supplies an upper bound for (973, 973). To this end, use (3-6) to see
that 3 = (0, ¢) with ¢ being the L?—solution on C to the equation

(3-27) ~03400405 + 2latol*s = —d, 0.

It follows as a consequence that

1
(3-28) (015,075 = & [ (a5 + SlooPIsP?).

Granted (3-28), it then follows from (3-27) that (873, 973) < L|c2]|04,@0ll2 With
| - |2 denoting here the L?-norm. To see about the L2—norm of ¢, commute derivatives
using the top bullet in (2-2) to write the left-hand side of (3-27) as —8A05A0g + % c.
Take the L? inner product of both sides of the resulting equation with ¢. This leads
to an equality between integrals. An application of Hélder’s inequality to the latter
equality finds %||g||% < llsll2ll04oe0ll2 and so |[s|l2 < 2||d4,c0ll2. This being the
case, then

2
(3-29) (15,975 <= f 94,001
T Jc

Part 8 This part of the proof exploits another identity coming from (3-13),

] 1 20101 _ 1wn 212 2y _ 1 201 — lanl?) —
330 L[PG laoP? + neol) = 5 [ 2P0~ a2,

To derive (3-30), multiply both sides of (3-13) by %|z |2 and then integrate the resulting
equation over C. An integration by parts identifies the integral over C of —%|z|2Aw
with that of —%W. According to (3-1), the latter integral is equal to —2m.

With (3-30) in mind, digress for a moment to consider a certain constrained minimization
problem for a real-valued, measurable function on C. The problem asks for an infimum
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of the functional

] _ 1 2y om—am—L [ 42
(3-31) u|—>5(u)—2ﬂ/(c|z|u 2m 4(m 271[(;“)

subject to the two constraints 0 <u <1 and % Jc u =m. By way of an explanation,
the function u = 1 —|ag|? obeys the constraints, and it follows from (3-13) with the
first bullet of Lemma 3.3 that the value s in this case is no greater than what is written
on the left-hand side of (3-26). As a consequence, (3-26) follows if the infimum of s
is positive.

As explained in a moment, the functional s takes on its minimum with the function, u,
given as follows: Set A = 2m + 4. Then

Uy = 1 if |z|2<A-8,
(3-32) U =g(A—|z>) if A-8<|z> <A,
u*:() if |Z|sz

The value of s on ux is %Az—%—&n = m2—2m—%, and this is positive for all m > 3.

With regards to (3-32), note first that an averaging argument shows that any minimizer
is a function of the radial coordinate on C. Meanwhile, the variational equations
for s assert that a constrained minimizer, u, is such that |z|> + 8|z|ux = A|z| where
0 <us <1. Here, A is the Lagrange multiplier for the constraint that the integral of
%u is equal to m. Thus, the minimizer u has the form that is depicted in (3-32) with
A chosen so that this integral constraint is obeyed. A calculation finds that A =2m + 4

and a second calculation finds that s(uy) = %Az — l—f —6m.

Part 9 The verification of (3-26) when m = 2 requires more care with regards to
the difference between |o7| and the integral of L|z[?(3(1 —|ao|?)? + |94,x0/%). As
explained in Part 10, this difference is no less than 24, where ¢ is the integral of
this same function in the case when (Ag, ap) is a symmetric solution to (2-8) from
the space €;. By way of a reminder, the space €; is diffeomorphic to C with the
diffeomorphism given by the function ;. The symmetric solution is the o; = 0 point,
this the solution with @ ~1(0) = 0. This step proves that g > % Granted the latter, then
(3-24) and what is said in Part 8 find

(3-33) g2 > 2|oa| +4q— & > 2]0s].
To derive the asserted lower bound for ¢, introduce w to denote 1—|ag|? and introduce

g to denote dq,x for a € version of (Ao, o) with a(jl(O) =0. Use p=|z| to
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denote the radial coordinate on C. Then d,w < 0 since w is rotationally symmetric
and has no local maxima. Meanwhile, |0,w| = V2ol gl < /2|g|. What with
Lemma 3.3, this finds [d,w| < %|W| Keeping in mind that w is exponentially small
at large p, integration by parts finds that

o o0 o0
(3-34) 0= / dp(p*w)dp =2 / wopdp + / (0,w)p* dp.
0 0 0

Given what was said about d,w, this last equation implies that

3-35 - 2d Mfoo d=M.
(3-35) /OWp p>ﬁOpr NG

By way of explanation, (3-1) asserts that the integral on the right-hand side is equal
to 1. To continue, use Holder’s inequality with (3-1) to see that the left-hand side
of (3-35) is no less than

[ole) 1/2 00 1/2 00 1/2
(3-36) (/ wp> dp) (/ wp dp) = (/ wp> dp) .
0 0 0

Taken together, (3-35) and (3-36) assert that
o0
(3-37) / wpdp> %,
0
, . . 2
This last equation with (3-30) say that 4 > 5.

Part 10 Suppose now that (Ao, &g) is a solution to (2-8) that defines a point in €5.
This step explains why

1
(3-38) & 1P (0=l + fpagool?) > ol + 24

To this end, note that (3-38) holds if the left-hand side is greater than 2¢ plus the
real part of o, for any u € S!. Therefore, no generality is lost in proving that the
left-hand side of (3-38) is greater than 24 plus the real part of 0. Reintroduce oy to
denote this real part. Let 0: € — (0, 00) denote the function given by the left side
integral in (3-38).

Lemma 3.4 The function 0 — o, does not take on its infimum at any point in €;.
Furthermore, sequences in €, on which o0 — o, converges to its infimum have the
following properties: Fix R > 1; all but a finite number of elements in the sequence are
C®(C; S')—orbits of pairs (Ag, ag) with ag such that its two zeros have distance R
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or greater between them. Moreover, these zeros have distance % or less from the real
z—axis in C.

Granted for the moment Lemma 3.4, write the coordinate z as x 4+ iy with x and y
being real, and then use (3-29) to write

(3-39) o — 0y :l/ y2(1 = |af?) - 2m.

T Jc
It follows from (2-4) in [21] that if R > 1 and (Ag, «g) is as described in Lemma 3.4,
then what is written on the left-hand side of (3-39) differs by at most cg R7! from
twice its value for the case where m = 1 and (Ag, ®p) is the o1 = 0 solution in €.
Meanwhile, the o7 = 0 solution in €; is invariant with respect to the S 1 action on €;

and so the m =1 and o7 = 0 version of (3-38) is equal to g. O

Proof of Lemma 3.4 Fix an element in €, and write the zeros of any corresponding
solution to (2-8) as an unordered pair (z1,z2) € Sym?(C). Fix pairs, (41, 1) and
(A3, az), of m =1 solutions to (2-8) with ozl_l(O) = z7 and with ozz_l(O) =z,. Part4
in Section 2a of [20] writes the given €, element as the C°°(C; S1h—orbit of an m =2
solution to (2-8) that can be written as (A4, &) with

(3-40) A=A1+ A4, + (514 dzZ—oudz) and a=e “ajan

such that u is a smooth, real-valued function on C that obeys |u| < coe™ 4ist @ (0)/eo,
The top line in (2-8) requires u to obey

(3-41) Au=(1—e 2oy [*a2]®) — (1 — |1 [*) — (1 = |z |?).

Were u <0, then the right-hand side of (3-41) would be less than —(1—]a|?)(1—|a2|?)
and thus not positive. This being the case, the maximum principle demands that u > 0.
With this in mind, multiply both sides of (3-41) by y? and then integrate the result
over C. An integration by parts writes the integral of y2Au as twice the integral of u.
In particular, the integral of u is positive, and so

G4 [ 2a-lePrz [ a0l
C C C
Meanwhile, the bound u < coe_diS‘(' a1 (0)/co implies that

643 [ 2a-leP) < [ ya-laP)+ [ 520 laaP)+ e,
C C C

The assertions of Lemma 3.4 follow directly from (3-42) and (3-43). O
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4 Instantons

The purpose of this section is to provide various facts about the solutions to the r and
g = ¢, versions of (1-20), this being the version reproduced below:

DA+ Ba—r(yToy —ia)+ 1Ba —i xdp =0,
wV + Day =0.

These facts assert a priori bounds on various integrals on pointwise norms.

(4-1)

4.1 A priori integral bounds

The analysis of (4-1) concerns the versions with r > 7 and with u € © a given element
with P—norm bounded by 1. Assume in what follows that w is such that all solutions
to (1-13) are nondegenerate.

To set some notation, suppose that 9: R — Conn(E) x C*°(Y';S) is a given instanton
solution to (4-1). The s — —oo limit of ? is denoted by ¢ and the s — oo limit
by c¢4. The latter are solutions to (1-13). The respective Conn(E) and C*°(Y;S)
components of 9 are written as (A, ¥), and ¥ is often written in two-component form
as (o, B). The lemmas that follow use Ay to denote a(c—) —a(cy).

Many of the lemmas here and in the rest of Section 4 have analogs in Section 3 of [22].
Except for one item, the statement of a given lemma here is virtually identical to the
statement of its partner in Section 3 of [22]. Various lemmas in Section 3 of [22] give
the option of assuming the lower bound fg(c4) — fs(c—) > —r2 in lieu of an upper
bound on Ajy. Their partners here do not give such an option. This difference is due
solely to the term 27rfs in (1-29)’s formula for af. The version of af used in Section 3
of [22] has fs appearing only as —272fs while the version here has 27 (r — 7)fs. Of
relevance here is the sign difference when r > 7.

Except for what was just said about fg(c4+) — fs(c—), the proof of almost every lemma
here is virtually identical to that of its partner in Section 3 of [22]. When this is the
case, the reader is referred to Section 3 of [22] for the proofs. The correspondence
between lemmas here and lemmas in Section 3 of [22] are noted below. Be forewarned
however that the lemmas in Section 3 of [22] do not appear in the same order as those
here.

The first lemma below supplies an inequality that relates A, to the change in fy.
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Lemma 4.1 There exists a constant k > 1 with the following significance: Suppose
that r > k and that p € Q with P—-norm less than 1. Suppose that ¢4 and c_ are
solutions to the (r, i) version of (1-13). Then

a(e-) —a(eq) =27 (r— ) (s (c+) —fs(c-)) +or(M(c4) + 1).

Proof Write a(c—)—a(cy) as af(c—) —af(c4) + 27 (r— ) (fs(c4) —fs(c—)) and then
appeal to the third bullet of Proposition 2.7. a

The next lemma refers to a certain i R—valued 1-form that can be associated to a given
(A,¥) € Conn(E) x C°(Y;S). This 1-form is denoted by B (4,y:

4-2) Bay) = Ba—1(WTey —id)—ixdp+ LB,

The upcoming Lemma 4.2 gives an a priori bound for the LZ—norms of %w , a%A,
B(4,y) and Dgy . Lemma 4.2 is partnered with Lemma 3.4 in [22] and its proof is
identical to the latter’s but for notation.

Lemma 4.2 There exists a constant k > 1 with the following significance: Suppose
that r >, that u € Q has P—-norm less than 1 and that (A, v) is an instanton solution
to the (r, u) version of (4-1). Let s’ > s € R. Then

% /[s’s/]xy(‘a_iA)z + |%(A,1/f)|2 + zr(‘a_iwr + |DAW|2)) =a(@[s) —a(@]y).

Moreover,

%/ny(‘%Alz—}— |%(A’w)|2+2r(‘g%w‘2+|DA‘)”|2)) = a(c_) —a(cy).

Lemmas 4.1 and 4.2 with Lemma 2.5 have the following as a corollary: there is a
constant k that is independent of 0, r and p and is such that fg(c4) > fs(c—) —k Inr.

The final lemma in this section speaks to the L?-norms of B4 and the covariant
derivative of ¢ along the constant s slices of R x Y. The latter is denoted by V}(w.

Lemma 4.3 There exists k > w with the following significance: Suppose that r > k
and that | € Q has P-norm less than 1. Let 0 = (A, V) denote an instanton solution
to the (r, 1) version of (4-1) with Ay < r2. Fix a point s € R. Then

R 2 9 % Y. o )
L i 2l o) <
/[s,s+1]xY(|aS |Bal asw | A v )

The proof of Lemma 4.3 is identical to its [22] analog, Lemma 3.3 in [22].
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4.2 A priori bounds on «, f and B4 and ;’—SA

The lemma that follows supplies the first of a series of a priori pointwise bounds on
the size of the components of ¥, B4 and (%A. The bounds in this first lemma are
the fundamental ones from which all else follows. This upcoming Lemma 4.4 is the
analog of Lemma 3.1 in [22] and its proof essentially the same as that of the latter.

Lemma 4.4 There exists k >  with the following significance: Fix r > k and fix
w € Q with P-norm bounded by 1. Suppose that 0 = (A, V) is an instanton solution
to the corresponding (r, ) version of (4-1). Then

o Ja| <14«rl,

o B <kr 11 —|a|?) + k22,

Proof The second line of (4-1) implies that (—% + DA) (—% +D A)np = 0. Taking
the respective £ and E ® K~! summands of this identity and commuting derivatives
where appropriate leads to Laplacian-type equations for & and 8,

4-3) o ViVia+r(ja? =1+ B+ oo+ caVaB+ Bf =0,
o ViVuB+r(al?+1+|B1*)B + c3VaB + caff + csVaa + coa =0,

where ¢, ..., ¢ are endomorphism-valued functions on Y that are independent of r,
A and («, B). They are determined solely by the geometric data for Y and the choice
of 1 and the connection Ag Taking the inner product of the top equation with o and
the lower one with 8 leads to corresponding Laplacian-type differential inequalities
for |a|? (whichis 1 —w) and |B|%. The latter are then used in the manner of their [22]

analogs (equation (3.1) in [22]) to establish the assertions of Lemma 4.4. O

The next set of bounds are for |B4| and ‘%A | Those stated by the next lemma are
the analog of Lemma 3.2 in [22]. The proof of the next lemma is virtually identical to
the proof of the latter with Lemma 4.3 serving as the substitute for Lemma 3.3 in [22].

Lemma 4.5 There exists k > m with the following significance: Suppose that r > k
and that p € 2 has P-norm less than 1. Suppose in addition that 0 = (A, V) is an
instanton solution to the (r, j) version of (4-1) with Ay < 2. Then |B4|+ |8%A‘ < Kr.

The bound supplied by this lemma is used to prove the next one. This upcoming
Lemma 4.6 is the analog of Lemma 3.6 in [22] and its proof is identical with Lemma 4.5
serving as a substitute for Lemma 3.2 in [22].
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The notation used in Lemma 4.6 and subsequently has V4 denoting the covariant
derivative on sections of the pullback of £ over R x Y that is defined by viewing the
connection A as an R—dependent connection on this pullback bundle. By way of an
example, Vg = %w ds + V}(w.

Lemma 4.6 There exists k > w with the following significance: Suppose that r > k
and that p € Q has P—-norm less than 1. Suppose in addition that ® = (A, V) is an
instanton solution to the (r, ;1) version of (4-1) with Ay < 2. Then

L |VA0(|2§KI‘,
o |VaBl*<k.

In addition, for each q > 1, there exists a constant k4 which is independent of 0, i
and r, and is such that when r > « then

o |Via|+11/2|VIB| < kqr?/2.

The upcoming Lemma 4.7 is the analog of Lemma 3.7 in [22]. This lemma and
subsequent lemmas refer to the function M on R that is defined by the rule

(4-4) s > M(s) =rf (1= laf?).

[s—1,s+1]xY

The proof of the upcoming lemma differs little from that of Lemma 3.7 in [22] with
Lemma 4.5 serving in lieu of Lemma 3.2 in [22].

Lemma 4.7 There exists k > m with the following significance: Fix r> k and p €
with P—norm less than 1. Let 0 = (A, {) denote an instanton solution to the (r, i)
version of (4-1) with Ay < r?. Assume in addition that so € R and that K > 1 are such
that supge[s,—2,50+2] M(s) < K. Then

‘(%A _ BA( < (1 +KV2 12y (1 = jaf?) + k

at all points in [so — 1,50 + 1] X Y.

The upcoming Lemma 4.8 is a refinement of Lemma 3.8 in [22] in that it makes no
reference to M. The proof given below works just as well in the context of Lemma 3.8
in [22] and so the assertion of the latter lemma holds also with no reference to M.
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Lemma 4.8 There exists k > m with the following significance: Fix r >k and p € Q
with P—-norm less than 1. Let 0 = (A, ¥) denote an instanton solution to the (r, i)
version of (4-1) with Ay <12. Fix so € R and let X« C [so—2, 50 +2] x Y denote the
set of points where 1 — || < k~1. The bounds stated below hold on X :

o |Vya|? +1|V4B|? < kr(1 —|al?) + 2.
o |Vya? 41| VyB1? <k(@ ! + re-«ﬂdist(-,X*)/K),
o B2 <k(r2 _{_r—le—\ﬁdist(-,X*)/K)'

o 1(1—|af?) < k(1 +re”Vrdistt X /iy

Remark Lemma 3.8 in [22] misstates the bound on r(1 — |«|?) in its second bullet;
the correct bound is of the form given by the fourth bullet in Lemma 4.8 here. The
proof of the second bullet of Lemma 3.8 in [22] has a corresponding misstep. See [24]
for a corrected version of Lemma 3.8 in [22] and its proof.

Proof The proof of the top bullet is the same as the proof of the analog in [14,
Proposition 2.8]. It uses only the bounds from Lemma 4.6 on |B4| and |3%A‘ . The
bounds in the second and third bullets of Lemma 4.8 are derived in the three steps that
follow. See also [24] for a different proof.

Step 1 Mimic what is done in Step 2 of the proof of Proposition 4.4 in [14] to find
positive (A4, 1)— and r—independent constants ¢ > 1 and z; and z, such that the
function y; = (|Vaa|? + z11|V4B|? + z21%| B]?) obeys a differential inequality of the
form

(4-5) d*dy1 + ¢ *ry1 < cor(1 — |a[*)y1 + co.

With regards to the derivation, differentiating the equations in (4-3) and commuting
covariant derivatives leads to second-order, Laplacian-type equations for Vg and V48.
Note that the 2—form F4q = %A Ads+ B4 on R x Y will appear in these equations
because of the covariant derivative commutators. A cor(1 — |a|?) + ¢ bound on the
norm of F4 should be kept in mind; it follows from (4-1) and from the /C = cor version
of Lemma 4.7, which is always available because M is in no event greater than that
version of K. The covariant derivative commutators will also give a term proportional
to either d *Fqa or d*F4f as the case may be. Keep in mind in this regard that d *Fy4
can evaluated using just the top equation of (4-1) because d F4 = 0. Taking the inner
product of the respective second-order, Laplacian-type equations for Vg and V4
with V4o and V48 leads to second-order, elliptic differential inequalities for |V |?
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and |V4B|?. Equation (4-5) is obtained from the latter plus the equation for |8|? that
results from taking the inner product of the second equation in (4-3) with f.

Step 2 Fix xo € X4« and let do denote the distance from x¢ to the boundary
of X.. There exists co > 1 such that the function x — hg(x) = e~/ dist(x,x0)—do)/2¢
2c 2rhg < 0 when dist(x, xg) < col.
Lemma 4.4 and the top bullet in Lemma 4.8 bound y; by cor in any event, and so

obeys the differential inequality d*dho +

y2 = y1 — co(tho + 1~ 1) is nonpositive where dist(x, xg) > do. Meanwhile (4-5)
implies that d*dy, < 0 if X, is defined to be where 1 — |a|? < Co 1:=2 Granted
this definition, then the maximum principle asserts that y, <0 on X4. In particular,
this is the case at xo and so y1 < co (re‘\ﬁd(’/ 2c 4 r_l). The latter implies the second
and third bullets in Lemma 4.8.

Step 3 Take the inner product of both sides of the top bullet of (4-3) to obtain a
differential inequality for w = 1 — ||? that has the form

(4-6) d*dw + 2rw < 2rw? + co(y1 + 1).

Granted (4-6), and granted the bounds from the second and third bullets of Lemma 4.8,
then Step 2’s maximum principle argument using /¢ can be repeated with only cosmetic
changes to prove the lemma’s fourth bullet. By way of a parenthetical remark with
regards to w, keep in mind that Lemma 4.4 bounds w from below by —cor™!. |

Lemmas 4.9 and 4.10 are the respective analogs of Lemmas 3.9 and 3.10 of [22]. To
set the stage for these lemmas, suppose that x e R x Y and p € 12, Co 1) have
been specified. The lemmas use My ) to denote the integral of r(1 — |at|?) over the
radius p ball in R x ¥ centered at x.

Lemma 4.9 There exists k > 7, and, given data consisting of an open set U C R x Y,
an open subset V. C U with compact closure and K > 1, there exists kx,y,y > 1
with the following significance: Fix r > k and p € 2 with P—norm less than 1. Let
9 = (A, V) denote an instanton solution to the (r, j1) version of (4-1) with Ay < 12.

Assume that 0 is such that sup, ey M(x,1/«) < K. Then

|24+ Ba| (1= aP) +kx0.

‘8 A— BA‘<Y(1—|04| ) + kiU
at all points in V.
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The proof of Lemma 4.9 is very similar to that of its analog in [22], the latter being
very similar to the proof of Proposition 3.4 in [14].

The final lemma in this subsection is a monotonicity result and of a different flavor
from the pointwise bounds given above. It plays a role in the proof of Lemma 4.9.

Lemma 4.10 There exists k > 7, and, given z > 1, there exists k; > 1 with the
following significance: Fix r > k and pu € Q with P—norm less than 1. Let 0 =
(A, ) denote an instanton solution to the (r, ;) version of (4-1) with A, < r? and
SUpger M(s) < r'=YZ Given x e Rx Y and p € (r_l/z,/cz_l), use My ) to denote
the integral of 1(1 — |&|?) over the radius p ball in R x Y centered at x. Then:

e If p; > po are in (r_l/z,/cz_l), then M(x o) > Kz_lpf/p(z) M(x,p0) -

—1/2

s Suppose that || <3 atx.If p e (r k7 1), then My ) > k™ 1p?.

e Suppose that K € (1,r'=Y/%) and suppose that d € (r™'/2, k') and x e Rx Y
are such that My g) < Kd?. If pe (=12, d), then M(y ;) < Kz Kp?.

As with the proof of Lemma 3.10 in [22], the proof of Lemma 4.10 differs little from
the proof of Proposition 3.1 in [14]. This lemma also plays a role in the subsequent
sections.

4.3 Instantons and holomorphic data on C?

The three parts of this section first introduce holomorphic notions on C?2, and then
explain how they model an instanton solution to (4-1) in a radius O(r~'/2) ball.

Part 1 This part introduces the relevant holomorphic data on C2. To this end, intro-
duce complex coordinates (xg, x1) for C2 = R*. Give C? the standard metric with
Kihler form wo = é(dxo AdXo+dx; AdX)). Use PT: N2 T*C2 - N\*T*C2 1o
denote the projection to the self dual subspace and P~ the projection to the anti-self
dual subspace.

Of interest here are pairs (Ao, ®p) on C 2 where Ag is a unitary connection on the

trivial bundle and g is a section of this bundle, and where these are such that
w“n 4020 =0, PV Fgy=—3i(1—|ao*)wo,
ool < 1. |PTFaql < [P Faol <272(1 = o).

Proposition 4.1 in [14] and Proposition 4.2 in [22] describe the pairs (Ag, @) that
satisfy these conditions. Except for the second bullet, the following proposition restates
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Proposition 4.2 in [22]. The proof of the second bullet is the same as that of the second
bullet of this same Proposition 4.2 in [22].

Proposition 4.11 Suppose that (Ag, ag) obeys (4-7).

e If |ag| < 1 somewhere, then |ay)| is strictly less than 1, it has no positive local
minimum and infe2 || = 0. If aal (0) #£ @, then ozal(O) is either all of C?
or a complex analytic subvariety of complex dimension 1.

e There exists ko > 1 that is independent of (Ag, o) and has the following
significance: Let X, C C? denote the set of points where 1 —|ag| > %. Then

1 —|ao| + |Va00] < Koe_diSt("X*)/"O.

e If |ag| < 1 somewhere, and if there exists m > 1 such that the integral of
1 — |ag|? over the ball of any given radius R > 1 centered at the origin is less
than mR2, then:

(a) The locus =1 (0) is a nonempty, complex algebraic subvariety with complex
dimension 1. As such, this locus near any given point is the zero locus of a
holomorphic polynomial.

(b) The order of the latter polynomial has a purely m—dependent upper bound.

If, in addition, the integral over C2 of |P+ Fy,|?> — | P~ Fa,|? is finite, then:

(c) This integral is a nonnegative integer multiple of 4m?2.

(d) If the latter integral is zero, then (Ao, o) is the pullback via a projection

C2 — C of a solution on C to the vortex equations in (1-4) and oy L(0) is
a union of planes.

e The set of gauge equivalence classes of pairs (Ao, o) that obey (4-1) is sequen-
tially compact with respect to convergence on compact subsets of C? in the C®

topology.
The solutions to (4-7) constitute the desired holomorphic data on C2.

Part2 Fix a point p € R xY. A complex Gaussian coordinate system centered at p is
a coordinate chart map from a ball about the origin in C? to a neighborhood of p that
takes the origin to x and defines a Gaussian coordinate chart when written in terms of
the real coordinates for C2. In addition, the almost complex structure J at the point p
must appear in these coordinates as the standard complex structure. The complex
coordinates on C? are written again as (xo, x1). No generality is lost by assuming
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that any given such Gaussian coordinate chart is defined where |xg|? + |x1]? < co 1

with co being independent of p.

Introduce a new coordinate chart by composing the original one with the map from C2

to itself that sends (xo, x1) to (r~1/2 —1/2

on the ball of radius ¢ 1,1/2

X, T x1). The new coordinate chart is defined
centered at the origin in C2. Use ¢, in what follows to

denote this coordinate chart map from the ball of radius ¢, 111/2in C2to Rx Y.

The @.—pullback of the metric from R x Y differs from the standard Euclidean metric
by no more than cor~! on the radius 2* ball. The pullback of the Riemannian curvature
is also bounded in absolute value on this ball by cor™!, and the latter’s derivatives to a

1-k/2

given order k > 1 on this ball have norm bounded by cpr™ with ¢ depending

on k only. Meanwhile, the ¢.—pullback of the almost complex structure on this ball

—1/2

differs from the standard one by at most cor and its derivatives to order k have

norm bounded by ¢;r—(115)/2

Part3 Let 9 = (A4,¥ = (a, B)) denote an instanton solution to (4-1) with Ay < r?
and such that there exists z > 1 such that supger M(s) < =12 Introduce (A, ;) to
denote the g.—pullback of the (A4, ). Use Fy4, to denote the curvature 2—form of the
connection A,. Lemmas 4.4, 4.6 and 4.7 have implications with regards to (A:, o;) that
are described in what follows. To say more, fix R > 1. Given Part 2’s remarks about
the ¢.—pullbacks of the metric and almost complex structure, there exists cg > 1 that
is independent of p and such that if r > cg, then the 9 version of (A, «;) is nearly a
solution to (4-7) on the ball of radius R in C? centered at the origin in the sense that

|5Arar| S CRr_l/zv

| P Fa,+L(1—|eu|*)wo| < crr,

(4-8)
|| < 1+cprt,

|PTEa|<|PT Falerr 22 <272 (o) +epr /22

Moreover, with the ¢.—pullback of B, the pair (A, &) plus ¢ obey an equation on
the radius R ball in C? that gives bounds on the covariant derivatives of o, and Fy,
to any given order that are independent of p, 0 and R. These bounds with (4-8) lead
to the following lemma:

Lemma 4.12 Giveng > 1,R>1,¢e>0, k € {1,2,...} and m > 1, there exists
k > 10R with the following significance: Fix r > k and p € 2 with P—norm less

than 1 and suppose that (A, V) denotes an instanton solution to (4-1) with Ay < 12
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and supger M(s) < r'=1/4  Given p € R x Y, there exists a solution to (4-7) on C2,
this denoted by (Ao, o), such that (A, or) = (Ao + @, a0 + 1) with (a,n) having
C* _norm less than ¢ on the ball of radius R in C? centered at the origin. Moreover,
suppose that the integral of (1 —|«|?) on each radius p € (r='/2, kr='/2) ball centered
on p is less than mp?. Then (Ag, ag) can be chosen so as to obey items (a) and (b) of
the third bullet in Proposition 4.11.

Lemma 4.12 is the analog here of Lemma 4.3 in [22]. As with the latter, the proof
differs little from that of Proposition 4.2 in [14].

5 A priori bounds for the function M: the complement of
A4 A
Upe A (Yp U YP )

Write v as qod + b where the 1-form 6 annihilates v. By way of a reminder, the
function ¢ differs from 1 only in Upe A Hp, it vanishes only on Upe A()7p+ Uy,
and it is such that g, > cgl |us|?. Fix r > co and p € Q with P—norm less than 1 so
as to define (4-1). Suppose that 0 = (4, ¥ = (@, B)) is an instanton solution to this
(r, ) version of (4-1). This section supplies a 90— and r—independent bound for the
function on R given by the rule

(5-1) st =1 [ 48(1 = o).

[s—1,s+1]xY

The proposition that follows makes a formal statement that such a bound exists:

Proposition 5.1 There exists k > w and, given ¢ > 1, there exists k., > 1 with the
following significance: Suppose that r > k and that p € Q has P—-norm less than 1.
Suppose in addition that 0 = (A, ) is an instanton solution to the (r, ;1) version
of (4-1) with Ay < cr. Then the corresponding function Mo obeys —k < Mo < K.

The lower bound follows directly from Lemma 4.4, so it holds without the bound
for Ap. The proof of the upper bound occupies the rest of this section. By way of a
parenthetical remark, the proof looks much like the proof of Lemma 5.8 in [11].

5.1 Preliminary bounds for M, and M

The lemma that follows supplies a preliminary and easy-to-come-by bound for M that
is used in the later subsections to invoke Lemma 4.7.

Lemma 5.2 There exists k >  with the following significance: Fix r >k and p € Q
with P—norm less than 1. Let 0 = (A, {) denote an instanton solution to the (r, i)
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version of (4-1). The corresponding version of M obeys —k < M < k(Ap +1)1/ 2
and the corresponding version of M obeys —k <M < k12/3(1 + A,)1/6.

Proof The lower bounds follow from Lemma 4.4. The first step of what follows
establishes the upper bound for M, and the second step establishes the upper bound
for M. The notation in these steps is that used earlier in the proof of the second bullet
of Lemma 2.5.

Step 1 To prove the upper bound for M,,, take the inner product on Y between v,
and the 1-form on the right-hand side of the top line in (4-1). Integrate the result over
[s — 1,5+ 1] x Y. This integral is, of course, equal to zero. Thus,

(5-2) (u<> A *1A> + / (Vo A %By4)
[s—1,s+1]xY ds [s—1,s+1]xY
=r/ (Vo Ax(Y Tty —id)) +e,
[s—1,s+1]xY

where [¢| < co. Write v, as god + b with b annihilating the vector field v and use
this rewriting for the integrand of the integral on the right-hand side of (5-2). Then, use
the bounds |5| < |ve| and |ve| < coqi/ 2 with Lemma 4.4’s bounds for |B| to see that
this integrand is greater than %|vo|2(l — |a|?) —cor~!. This the case, a bound on the
integral on the left-hand side of (5-2) supplies one for the integral on the right-hand

side of (5-1).

To obtain an upper bound for the left-hand side of (5-2), use Lemma 4.2 to see that
the integral of v, A *(%A that appears on the left-hand side of (5-2) is no greater
than co(1 + Aa)l/ 2 Meanwhile, the integral of ve A *By is independent of A and r
because it computes a pairing with the first Chern class of the bundle E. These last
facts imply that the left-hand side of (5-2) is no greater than co (A +1)1/2,

Step 2 Fix p > 0 and let Y denote for the moment the set of points in ¥ with
distance p or more from the curves in the set | J,e ()7p+ U, ). The integral in (5-1) is
no less than the contribution from Y # and this is no less than ¢ Lo* (M — corp?) —co.
It follows as a consequence that M < co(p~*(Ay +1)'/2 4 rp2). This understood, take
p% =1"13(ay +1)'/° to obtain what is asserted by Lemma 5.2. i

5.2 A vortex-like inequality

This subsection shows how Proposition 5.1 follows from Lemma 5.3. This lemma asserts
an inequality that is reminiscent of the equality asserted by the first bullet of Lemma 3.3.
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Lemma 5.3 refers to a certain function, Q,, on Y which is specified in the next
subsection. For the purposes of the lemma, it is enough to know that Q¢ > ¢ 148
and that |dQs| < co. Given s € R, this lemma uses ys to denote the function
x2|s —(-)|—1) on R. This function is 1 on [s — %,s + %] and it is equal to 0 on
the complement of [s — 1, s + 1].

Lemma 5.3 There exists k > w and, given ¢ > 1, there exists k. > 1 with the following
significance: Fix r > k and p € Q with P-norm less than 1. Let 0 = (A, ) denote
an instanton solution to the (r, i) version of (4-1) with Ay < cr. Then

sup Mo < K, Sup/ Xs Qo (rlar*(1 —|a|?) — |Vaa|?) + &2
seR seER JRxY

This lemma is proved in a moment.

Proof of Proposition 5.1 The proof assumes that Lemma 5.3 is true so as to deduce a
suitable upper bound for M. To deduce such a bound from Lemma 5.3, introduce by
way of notation D4 to denote 8% + Dy, this being an operator on the space of sections
of S over R x Y. Use Djl to denote its formal L2—adjoint. Given that Dgyr = 0,
DleAw is also zero. Projecting the equation DleAw =0 to the £ summand of S
gives an equation of the form

(5-3) ViVaa +ra(jel* = 1) +t=0,

where [v| < co(|a| + |B| + |V4B]). Take the inner product of this equation with « to
find an equation of the form

(5-4) 3d*d(1—|a?) +rla*(1 - |af*) — |Vaa|* + e =0,

where |¢| < co(Ja|?+|B]%+|V4B|?). Multiply both sides of this last equation by y5Q.
and integrate the result over R x Y. Integrate by parts and appeal to Lemma 4.4 and
the bound on |V48|? from Lemma 4.6 to see that the integral that appears on the
right-hand side of Lemma 5.3 has an (A, ¥)— and r—independent upper bound. |

5.3 Proof of Lemma 5.3

The four steps that follow derive Lemma 5.3 from the upcoming Lemma 5.4. The rest
of the subsection supplies a proof of Lemma 5.4.

Step 1 This step specifies the function Q.. To do this, first introduce the function £
that is defined on each p € A version of #, by the rule fi(u,0) = g(u)(1 -3 cos? 0)
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with g as defined in the third line in (1-2). By way of a reminder from (1-5), this
function is such that ve = dfix on H,. Choose a smooth, nondecreasing function
on [0, co) with the properties listed next. This function is denoted by Q. It is such that
Q(t) = 2 fort e (0, %] and Q(¢z) =1 for ¢t > 1. With Q in hand, fix for the moment
g€ (0,1) and use Q, to denote the function Q(¢~2¢.). Let v(Q,) denote the pairing
between v and d Q.. The function Q. is the function Q.q+ + f«v(Q,) for a choice
for ¢ that guarantees it to be greater than ¢ 148 and to have derivative norm bounded

by co. This choice is such that &£ > ¢ L

Step 2 The upcoming equation (5-5) supplies an integral form of the Bochner—
Weitzenbock identity for the operator D4(QoDy4). The formula reintroduces from
(1-11) the Clifford multiplication endomorphism cl(-). This formula is derived us-
ing integration by parts. Suppose for the moment that (A, ) is any given pair in
Conn(E) x C*°(Y;S). What follows is the promised identity:

(5-5) /Y Qo(|Ba + 2|y oy —ia? + 21V y )
— 2ir / Qod A%B4—t / (W' cl(dQo) Day — (Do) cl(d o))
Y Y

+ / Qo (1B + 211 Dav[?) + .
Y

where ¢ obeys |e¢| < co(1 +r). The proof of Lemma 5.3 uses the a priori bounds given
by the next lemma on the first two integrals that appear on the right-hand side of (5-5).
Lemma 4.2 is used to bound the third, right-most integral on the right-hand side of (5-5).

Lemma 5.4 There exists k > m and, given ¢ > 1, there exists k. > 1 with the following
significance: Fix r > k and u € Q with P-norm less than 1. Let 0 = (A, i) denote
an instanton solution to the (r, ;1) version of (4-1) with Ay < cr and supgecgp Mo > 1.
Then

e sup Zr/ Xs (i / Qod A *BA) < ﬁr sup Mo + K1,
RxY Y

seR seER
. supr / 15 (U Qo) Day — (D) cl(dQo)¥)| < 1br sup Mo + ker.
sER RxY sER

This lemma is proved in a moment. The remaining steps use Lemma 5.4 to complete
the argument for Lemma 5.3.

Step 3 Take the Conn(E) x C*°(Y;S) pair (A, ¥) in (5-5) to be the pair given in
the statement of Lemma 5.4 at any given slice of R x ¥ with constant R factor. Add
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the integral over this slice of Qo}a%l//‘z to both sides of (5-5). View the result as an
equality between functions on R. Multiply this equality by ys and integrate over R.
Then use Lemmas 4.2 and 5.4 with (5-5) to see that

(5-6) [ XsQo (1Bal? + 17 (1 — [a|*)? 4+ 2r|Vaa|?) < 7657 SUP Mo + CexT,
RxY seR

where ¢« denotes the version of «, that is given by Lemma 5.4. To make something
of this, mimic what is done in Section 5.4 of [11] by writing

ad . 2 ~
—A=—i(1-0)(l—|a|") +34)a+r+ X,
5 oA =—i(1=0)(r(1 = o) +34)

By =—io((l1—|a|?) +3p)a +1t—X,
where the notation uses o to denote a function on R x Y. The notation has 34 and 3p
denoting functions on R x Y with norms bounded by 1, and it has both vt and X

1/2

annihilating v. Lemma 4.4 finds |v| < co(rl/z}l — |a|2‘ + 1). To say something

more about X, use the top bullet in (4-1) and Lemma 4.7 with Lemma 5.2 to see that
(5-8) 44X+ (1-20)’P(1— o)’ <P+ 21— a]?)? + e,

where ¢, here and in what follows denotes a purely c—dependent constant with value
greater than 1. The notation is such that ¢, increases between subsequent appearances.
This last inequality implies that

(5-9) 1X)? <20 (1—0)(1 —|a|?)? + e/ 2(1 = |a*)? +c..

Use (5-7) to write
2
—A‘ =/ XsQo ((1—0)?2(1—|a|?)? + |X]?) + e,
s RxY

d
/ XsQo
RxY

/ XsQol B4l :/ XsQo (02 (1 = |a*)* +|X]?) + ez,
RxY RxY

(5-10)

where ¢4 and ep are such that |eq| + |ep| < ﬁrsupseR Mo +c,r.

Step4 Let s € R denote a point where the function of M, is greater than % times its

supremum. Following along the lines of what is done in Section 5.4 of [11], consider
two cases: that when

J |2 1 2 22

-11 — A) > 1-

(5-11) /]RXY XsQo s = 100 AXY XsQor™( loe|%)

and otherwise. If (5-11) holds, add 100 times the right-hand integral in (5-11) to
both sides of (5-6) and invoke Lemma 4.2 to bound the resulting contribution to the
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right-hand side. Doing so leads to the inequality

(5-12) / XSQQ(Zr (1—a|?)? + 2r| V4| ) Tl ' Sup Mo + C.I.
RxY seR

Write the left-hand side of this inequality as

(5-13) 2r? /R Yxseo<1—|a|2)+r2 / XsQo (=2]a|*(1 — |a|*)* + 21| Vaa|?).
X

RxY

The left-most integral in (5-13) with the factor of 2 is no less than % sup,cr Mo and
so (5-11) and (5-13) imply what is asserted by Lemma 5.3.

Now suppose that (5-11) is not true. If this is so, then (5-8) and (5-10) imply that

(5-14) [ 2sQolBal? = (1— L) / 15Qo2(1 = [a2)2.
RxY RxY

Use this last inequality in (5-6) with the top bullet in Lemma 3.3 to see that (5-12) still
holds. This being the case, then what is said at the end of the last paragraph can be
repeated so as to complete the proof of Lemma 5.3. O

Proof of Lemma 5.4 The first seven steps in the proof verify the top line and the
eighth step verifies the lower inequality.

Step 1 As noted previously, ve = dfyx on any given p € A version of H,. This
understood, a homologous closed 1—form, denoted by v, is defined to be v, on
Ms UM and to equal d(Qgfx) oneach p € A version of #,. This form can be written
as Ve = Qod + b, with b, annihilating the vector field v. Writing ve = god + b allows
be to be written as Qg6 + £d Q. with d denoting here the orthogonal projection of
the exterior derivative to the annihilator of v in T*Y. Use the fact that |6] < |ve| and

|vo| < coqi/ and that |f«| < cogo to see that |6 < coqll/2

Step 2 Write Qqd as vg — bo. The integral of %ve A *x B4 computes the cup product
pairing between the cohomology class defined by v, and the first Chern class of the
line bundle E. This being the case, the lemma’s top bullet follows given a suitable
bound for the absolute value of the integral of 4, A *B4. To obtain such a bound, use
(5-9) to write this form as 6 A x(t — X). As Lemma 4.4 finds [t| < ¢¢, an appropriate
bound for the integral of r|6 A xX| will suffice.

To obtain the desired bound on |6, A xX]|, first use (5-7) to see that

(5-15) |6 A xX| < corqi1/2(|1 —crll/2 + ccr_l/lz)]l — |oc|2| +c..
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Introduce the set X4 from Lemma 4.8. It follows from this lemma (and Lemma 4.4)
that |1 - |a|2‘ < cor~ ! where the distance to X is greater than cor 2 1Inr. The
right-hand side of (5-15) is therefore less than ¢, where the distance to X is greater

than cor_l/2

Inr. Thus, this part of R x ¥ contributes at most c,r to the absolute value
of any s € R version of the integral over R x Y of 2ry|b6: A *X|. With the preceding
understood, the remainder of the proof of Lemma 5.4 restricts attention (implicitly for
the most part) to the contribution to the integral of the function 2rys |6 A *X| from the
part of R x Y where dist(-, Xx) < cor~ Y2 1nr. To set the notation, let m denote the
particular value of this last incarnation of the number cg, and use Xy to denote the

part of R x ¥ where dist(-, Xx) < mr— /2 1Inr.

To continue exploiting (5-15), fix z > 1 for the moment and use the inequality

(5-16) g8 Pea 21— ja?| < 27181 — a2 4 zea !

11/2 —
/r 1/12

to see that the term with factor ¢, in (5-15) contributes at most z~'rMo +zc.r

to the integral of ryg|6e A xX]|.
Meanwhile, the inequality

5-17) g2 21 =021 = |a?| < 27'¢2* 2|1 = a?]* + 2o (1 — )2 (1 — | ?)?

implies that the term in (5-15) with the factor q})l/ 2|1 —o] 172 contributes at most
(5-18) coz™'r? f 15452 |1 = a2
(RXY)NX s

2
+ cozr? [R Pnx Xs(1—0)2‘1—|0‘|2‘
X ok

to the integral of rys|b: A *xX|. Use (5-7) to see that the right-most integral in (5-18)
is no greater than coz fRX y | a%A ‘2 and therefore no greater than zc.r on account of
Lemma 4.2.

Step 3 The conclusions of Step 2 supply the bound

/ Xsbe N*By
RxY
22/3

_ 2/3  _
<coz er/ Asqs ‘1 — |a|2‘ +z7 Mo + zeor.
(RXY)N X s

5-19) r

This step and the next supply an appropriate upper bound for

2/3
(5-20) r / xsa3?1=1a? .
(RXY)NX s
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To start this task, introduce xx to denote the version of « given by Lemma 4.8. Separate
the domain of integration in (5-20) into two parts: The first part is the set of points
in X, (where 1 —|a|? > k') and the second part is the part in X4« — X4« (which is
the part of X4 where 1 — |a|? <k, !). Noting that q§2/3 = ngi/s, the contribution
to the integral in (5-20) from the 1 — |a|> > k! part of the domain is no greater
than corM.. Because of this, it is enough to bound the integral of (5-20) with the
domain restricted to the subset in [s —2,s +2] x ¥ where 1 — |a|? < k! and which
is in X4« (which is where the distance to Xy is no greater than mr—/2Inr). The
strategy will be to show that the contribution to (5-20) from the part in X s — X is no
greater than co times the contribution from the X, part. The upcoming Step 5 finds a
lower bound for the contribution from X, and then Step 6 considers the contribution

from Xus« — X«. Step 4 supplies some preliminary observations.

Step 4 It follows from Lemma 4.12 and the second bullet of Proposition 4.11 that

—1/2

there is a point where || < % with distance cor or less from each point in X.

With the preceding in mind, let p denote a point where |a| < %

The function ¢, in the radius 2mr~/2 Inr ball centered at p is no less than %qo (p)

~1/21nr from the

and no greater than 2¢.(p) unless p has distance less than comr
zero locus of go, this being (¢ A(77p+ U7, ). The contribution to (5-20) and to rM(s)
from the set of such points is no greater than cor™> because g, near any of these
closed integral curves of v is bounded by cg times the square of the distance to the

1/2

integral curve. If p does indeed have distance greater than comr™ /< Inr from where

—1/2

g 1s zero, then the function g, in the radius mr Inr ball centered at p is bounded

above and below (uniformly) by constant multiples of its value at p. Thus, if B is a
radius p = mr~'/2 Inr ball centered at p, then

1 2/3
(5-21) —qo(p)*?/3 / |1 =1
Co R

xY)NB
< f Xsds " |1— |l
(RxY)NB

2/3
ECOQO(P)22/3/ 1|1 — P,
(RxY)NB

This says, in effect, that the point-to-point variation of g, on B is of no concern with
regards to the derivation of upper or lower bounds for the middle integral in (5-21).

Step 5 Fix n € {1,2,...} which is less than comInr. Let p denote a point in X,
where || < % and where the distance to {J, A()7p+ U9, ) is greater than comlInr.
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It follows from what was is said in Step 4 and from Lemmas 4.10 and 5.2 that the
contribution to tMo (s — 1) + Mo (s 4 1) from the ball of radius nr~—1/2
is no less than cc_lnzqo (p)®. Note that this is a lower bound for the contribution. With

centered at p

the preceding in mind, fix a maximal set L[, C X« obeying the following:
(5-22) e The function || is less than % at all points in L[, .

1/2 centered at the points in L[, cover
—1/2

e The union of the balls of radius 2871~

the subset in X.. with distance 4nr or less from the subset where
loe| < %

o The respective balls of radius nr~'/2 centered at distinct points in £, are
disjoint.

The conditions in the second and third bullets of (5-22) imply that any given point

—1/2

in Xy with distance 28nr or less from where || < % 1s in at most co balls of

—-1/2

radius 28nr centered at the points in .

It follows from what said in this step’s opening paragraph and from the condition in
the third bullet of (5-22) that

(5-23) Mo(s —1) +1Mo(s+ 1) > cc_ln2 Z go(p)°.
yAS1%

Note that this is also asserting a lower bound.

Step 6 Supposing that n € {1,2,...} but less than comr—'/2Inr, let X, for n €
{1,2,...} denote the subset of XN ([s— %, s+ %] X Y) with distance between nr—1/2
and (n —1)r~'/2 from X, and with 1 —|a|? <«;'. Lemma 4.8 with Proposition 4.11
and Lemma 4.12 have the following corollary: given that r > cg, there is a point in X
where |o| < % and with distance less than (1 4 ¢o)r~'/2 from each point in X,.

With the preceding understood, let p denote a point in X where || < % and where
the distance to Upe A(i/\p"‘ U )7; ) is greater than comInr. Use Lemma 4.8 to see that
the contribution to (5-20) from the part of X, that is in the ball of radius (n + co)r_l/ 2
centered at p is no greater than coe™/ cop*qS. This bound and the second bullet
in (5-22) and the lower bound in (5-23) imply the following: the X, contribution to
the integral in (5-20) is less than c.e /ey sup,cr Mo. (Note that a straightforward
inequality is used here: if x > 0, then n*e™"* = (n2e~"*/2)(n2¢~"*/2) which is less

than cox2n2e™"%/2 )

Sum these various n € {1,2, ...} contributions to (5-20) to see that the contribution to
(5-20) from X4 is at most ¢ I Supger Mo .
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Step 7 Being that the integral in (5-20) is no greater than c¢.rsup,cg Mo, the right-
2

£ version

hand side of (5-19) is no greater than c¢.(z!rsup;eg Mo + zr). The z > ¢
of this last bound with what is said at the outset of Step 2 give the top inequality of

Lemma 5.4.

Step 8 This step proves the second inequality of Lemma 5.4. To this end, use
Lemma 4.8 to see that | D 4| < cor'/2((1—|a|?)+cor~1)1/2. Meanwhile, |d(Q¢sqs)| <

/2 >cqy Y1dq.|. These observations have the following consequence:

11/2 1
coqo '~ because g,
the supremum in the second bullet is no greater than co(z ™ 'rsupseg Mo + zr) for any
z>1. Any z > 1000cq version of this last fact gives the assertion of Lemma 5.4’s

second bullet. O

6 A priori bounds for M

Fix r > ¢o and p € Q2 with P—norm less than 1. Suppose that 9 is an instanton solution
to the corresponding (r, i) version of (4-1). This section uses Proposition 5.1’s bound
on M, to derive a 9— and r—independent bound for the function M. The proposition
that follows makes the formal statement that such a bound exists:

Proposition 6.1 There exists k > w and, given ¢ > 1, there exists k., > 1 with the
following significance: Fix r > k and pu € 2 with P—norm less than 1. Suppose that
0 = (A, ¥) is an instanton solution to the (r, ;) version of (4-1) with Ay < cr and
limg—s 00 M(?|s) < ¢. Then the corresponding function M obeys —k <M < k..

But for one extra lemma, the proof of Proposition 6.1 is in Section 6.2. The extra lemma
is proved in Section 6.4. Section 6.1 makes observations that are used in the proof of
Proposition 6.1. Sections 6.1 and 6.2 borrow much from the proof of Lemma 5.2 in [22].
Section 6.3 supply some facts that are used in Section 6.4 and again in Section 7’s proof
of Theorem 1.5. The assertions in Section 6.3 all have analogs in Section 4 of [22].

6.1 Functions E and E

Let 0 = (A4,v¥): R — Conn(E) x C*®°(M;S) denote an instanton solution to the (r, i)
version of (4-1) with Ay < cr and with limg—,oo M(?|s) < ¢. Introduce the function E( -)
on R given by

(6-1) so—>E(s)=i/ an*By,
{s}xY
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and introduce the function E on R given by the rule
(©2) shew) = [ E(-).
[s—1,s+1]xY

This section explains how bounds on E give bounds on M.

To do this, differentiate E and use the top bullet of (4-1) and an integration by parts to

see that

(6-3) iE:i/ da AN (—By +r(1ﬂTIW—i5))+e
ds (s}xY

with |e] < ¢p. The 2—form da is zero on Mg U Ho and it is equal to w where

|u] < R4coIné oneach p € A version of . In particular, dd = w where g, <c, 1

This understood, use Lemma 4.4 with Proposition 5.1 to write (6-3) as

(6-4) iE =—E+ M+ g,
ds

where |tg| < c., with ¢, denoting a purely c—dependent constant. By way of notation,
¢, will henceforth denote a purely c—dependent constant that is greater than 1. Its
value can be assumed to increase between successive appearances.

Integrate (6-4) to see that

(6-5) E(s) =e”* [S e*(M(x) + vg) dx.

—00
It follows from Lemma 5.2 that M(-) > —cg, and thus (6-4) leads to the bound
(6-6) —co <E(s) <e'(E(s+1)+c.) foranyt>0.
It then follows from (6-5) and (6-6) that
(6-7) E(s) <c.+c?E(s+2) and M(s) <c.(E(s +4) + 1).
Thus, a bound on E gives a bound on M. By way of a converse to (6-7), note that
(6-8) E(s) <(1+ c,;r_l/lz)M(s) +c¢, and E(s) <(1+ ccr_l/lz)l\_/[(s) +c.,
this being a consequence of (5-7) and (5-9).

As explained next, the function E is closely related to the function s — w(A|s) with w
as defined in (1-27). The discussion that follows uses w4 (s) to denote w(A|s). To say
more about E and wy4, use (4-1) to see that

(6-9) %WA =—E+M+ty
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where |ty| < co. In particular, a comparison with (6-4) finds that

(6-10) (E—WA)\ <ce

’i
ds
Most of |E—wy4| is accounted for by the restriction of A to Mg U Ho in the sense that
the @ = dy|s version of (2-7) with (5-7), (5-9) and Proposition 5.1 can be used to write

(6-11) wA=E+iZc§,Z/ a4+ e,

ze¥ {shxy@
where {Cs ;};cy are integers and where ty is a function on R with |t«| < c.. A
given z € ¥ version of the integral that appears in (6-11) is the value at A|s of (2-4)’s
function X@). The lemma that follows says more about the ¥ —indexed sum in (6-11).
This lemma writes the s — oo limit of 0 as (A4, ¥+) and writes A4 as Ag +dq, .

Lemma 6.2 There exists k > and, given ¢ > 1, there exists k. > 1 with the following
significance: Fix r >k and p € Q with P—norm less than 1. Let ? = (A, ) denote an
instanton solution to the (r, i) version of (4-1) with Ay < cr and limg—, oo M(0]5) < c.

Then
> cs. (/ 5A) —Y Cs. (/ 5A+)
ze¥ {shxy@ ze¥ y®

<K,

forall s e R.

This lemma is proved in Section 6.4. Accept it as true in the meantime. By way of a
look ahead, Proposition 5.1 plays a key role in the proof of this lemma; it plays no role
otherwise.

6.2 An algebraic inequality for E

The equation that follows asserts the desired algebraic inequality for E:
(6-12) E(s) <ce(1+173 sup [E()|*3).
x>s+1

The derivation of this formula is given in a moment. What follows directly assumes
(6-12) to prove Proposition 6.1.

Proof of Proposition 6.1 The s — oo limit of E is by assumption bounded by ¢. Fix
for the moment 7" > ¢ and let s7 denote the largest value of s with E(s) > T. Let cx
denote the version of ¢, that appears in (6-12). The s = s version of (6-12) reads
T < cx(14+r~1/374/3) This has no solutions for T’ € (2¢x., cylr) if r>28¢8. The

bound E < 2¢4 leads via (6-7) to a purely c—dependent bound for M. |
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The four parts that follow derive the inequality in (6-12).

Part 1 The derivation starts with an inequality that involves the functions a(d[s), E
and M and a function, O, on R that is defined at any given s by

(6-13) o(s):/{} Y(|‘B(A,w)|2+r|DAW|2),

with B4,y as defined in (4-2). The derivation of this first inequality mimics the
derivation of an analogous inequality in Section 5b of [22].

To start, use (1-28) to see that
(6-14) a(d]s) < cs(Als) —rwa(s) + cor'/20(s) /2.
The next part of the derivation talks about the function cs.

Part 2 The formula for cs is given in (1-26) as a sum of two integrals. To say more
about the right-most integral in (1-26), keep in mind that the iR—valued 2—form
2F4, + F4, that appears in this formula is cohomologous to —2miw. This being the
case, their difference is the exterior derivative of a fixed, smooth 1—form, this denoted
by 1. As a consequence, integration by parts equates the right-most integral in (1-26)
with
(6-15) —2/ aA/\(FAEJr%FAK):anAJri/ *Bg A Y.

{s}xY {s}xY
Use Lemma 5.2’s preliminary bound for M in Lemma 4.7 to bound the absolute value
of the right-most integral in (6-15) by ¢.(M + 1).

The remaining term in (1-26) is the integral of d4 A da,. This term can be bounded
by writing a4 = ?zj + q with ?zj a coclosed 1-form that is orthogonal to the space
of harmonic 1-forms on Y. Meanwhile, ¢ is a closed 1-form on Y. (This is just the
Hodge decomposition of the 1—form @4 .) The integral of a4 A ddy is the same as that
of Zij{ Ad cAzjl-. Meanwhile, the norm of cAzjl- Ad aj obeys

(6-16) ’/ agndag| <c(2PM*3 1),
{s}xY

The derivation of the latter bound has two steps.

Step 1 This step bounds |a4| pointwise by ¢.(r2/3M'/3 4 1). This is done with the
help of Lemmas 4.7 and 5.2 and the Green’s function for the Laplacian *d xd — d xd *
acting on 1—forms that are L2—orthogonal to the space of harmonic 1—forms. (The
strategy here mimics what is done in the proof of Lemma 2.4 of [17].) To elaborate:
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Because d&\j( = %(B4— B4,) and d *ﬁj =0, and because Eij‘ is orthogonal to the
harmonic forms, it can be written as *dG(B4 — B4,.), where G is the aforementioned
Green’s function. With G viewed as a homomorphism-valued function on M x M,
it obeys |dG|(p,q) < codist(p, ¢)~2. Given the latter bound, then Lemma 4.7 (with
Lemma 5.2’s preliminary bound for M) can be used to see that |dG(Bgq — B4, )| <
c.(p™>M + pr + 1), where p can be any given number in (0, Co 1), This bound is
obtained by bounding [dG|(p,4) by cop~2 where dist(p,q) > p and bounding |By|
by c¢.r where dist(p, ¢) < p. (This last bound comes from Lemma 4.7 with Lemma 5.2’s
preliminary bound for M.) Taking p = r~'/3m!/3 gives the asserted bound for |ay].

Step 2 Use the bound |@4| < c¢.r?/3M!/3 to obtain a bound c.r2/>M'/3|B4 — B4 .|
for the integrand in (6-16). Then use Lemma 4.7 again with Lemma 5.2’s bound for M
to bound the latter integral by c.(r2/3M*/3 +1).

Use the bound in (6-16) and the bound by ¢.(M+ 1) for the right-most integral in (6-15)
to see that

(6-17) es5(Als) <2mwa + (1 +M+123m*/3).

The next step exploits this inequality for cs.

Part 3 Replacing c¢s in (6-14) with the right-hand side of (6-17) leads to the inequality
(6-18) a(0ls) f—(I‘—JT)WA+CC(M+O+I'+1‘2/3M4/3).

Replace the function w4 in (6-18) by E using Lemma 6.2. Having done so, rearrange
terms to obtain the following inequality for E:

6-19) r—m)E<—a@®|s)—(r—mn) Z Cs.z (/ ?ZAJF) +c.(0 +r+r2/3M4/3).
y @

z€¥
As the function s — a(d|s) is nonincreasing, the right-hand side of (6-19) is no less
than

(6-20) —a(c4)—(r—m) Z Cs.z (/ 5A+) +c(0O+1+ r2/3M4/3)-
(2)

ze¥ 14
Use the A4 versions of (6-11), (6-15) and (6-16) to bound the combined two left-most
terms in (6-20) by co(rM(c4) +r2/ 3M(c+)4/ 3). Using this bound leads to the inequality

(6-21) rE < c.(tM(c4) + r2/3M(c+)4/3 +0+4+r+ r2/3M4/3)
when r > 2. The assumed M(c+) < ¢ bound and (6-21) imply that

rE <c.(0+ r+r2/3M4/3).
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Part4 Let F for the moment denote any given nonnegative function on [—1, 1] and
let F denote its integral over this interval. The measure of the set of points where F is
less than 8F must be greater than %. This being the case, suppose that F’ is a second
nonnegative function. Then there are points in [s — 1, s + 1] where both F and F’ are
less than 8F and 8F/, respectively.

With the preceding in mind, introduce O(s) to denote the integral of O(-) over the
interval [s — 1,5+ 1]. Fix s’ € [s — 1, s + 1] where 0(s") < 80(s) and M(s”) < 8M(s).
The s” version of the inequality rE < ¢.(0 + r + r2/3mM*#/3) implies that

(6-22) rE(s") < c.(0(s) +r+ r2/31\_/l(s)4/3).

As explained next, the inequality in (6-12) follows from (6-20) with three additional
replacements. The first replacement invokes Lemma 4.2 to substitute 2 Ay for O(s).
The second replacement invokes (6-7) to replace M(s) with sup>g E(x).

To explain the final replacement, fix for the moment s” € [s —3, s — 1] and invoke (6-6)
with ¢ = s" —s”. With the first and second replacements made, (6-22) and (6-6) imply
(6-23) rE(s”) < cc(r + Ay +12/3 sup ];:(x)4/3).
x>5

View both sides of (6-23) as functions on [s—3, s —1], with the right-hand side being the
constant function. Integrate both sides over this interval. The integral of the left-hand
side is rE(s —2) and that of the right is twice what is written in (6-23). The resulting
inequality with the assumed Ay < cr bound leads directly to (6-12) when evaluated
at s + 2 rather than s.

6.3 Local convergence to pseudoholomorphic subvarieties

The upcoming Proposition 6.3 describes how certain instanton solutions to (4-1) can
be used to determine pseudoholomorphic subvarieties in bounded subsets of R x Y.
Proposition 6.3 and the subsequent two lemmas about pseudoholomorphic subvari-
eties are used to prove Lemma 6.2 and they are invoked again in Section 7 to prove
Theorem 1.5. Proposition 6.3 is the analog of Proposition 4.1 in [22] and subsequent
two lemmas are the respective analogs of Lemma 4.6 and Corollary 4.7 in [22].

Proposition 6.3 and the two lemmas use Y to denote either Mg U Hg or Y. Their
assertions with regards to Y« = Mg U%H are used in the upcoming proof of Lemma 6.2
and those that concern Y, = Y are used in Section 7.
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Proposition 6.3 introduces the notion of a pseudoholomorphic subvariety in an open set
of R x Y. To define this term, let U C R x Y denote the open set. A subset C C U is
said to be a pseudoholomorphic subvariety in U when the conditions below are met:

(6-24) o C is the intersection between U and a closed subset, C’, of a neighborhood
of U.

e The complement in C’ of a finite set of points is a smoothly embedded
submanifold of this neighborhood with J —invariant tangent space.

e (' has no totally disconnected components.
o The integral of w over C’ is finite.

e There exists an s € R independent upper bound for the integral of ds A a
over the intersection between C’ and [s — 1,5+ 1] x Y.

The subvariety C is said to be irreducible when the complement in C of any finite set
of points is connected.

Proposition 6.3 Fix ¢ > 1 and, in the case Y« = Y, also K > 1. There exists
k. > 1 and, given m > max(k., 100), there exists k., > 7, these having the following
significance: Fix r > k., and fix p €  with P—-norm less than 1. Suppose that
0= (A,v = («, B)) is an instanton solution to the (r, ;1) version of (4-1) with Ay < cr.
If Y, =Y, assume in addition that sup,cg M(s) < K. Let I C R denote an interval of
length 2m. Then each point in I X Y, where || < 1 —K:,}l has distance Kc,mr_l/2 or
less from o= (0). Also, there exists a finite set, ¥, of at most k. elements with each
element having the form (C,m) with C an irreducible, pseudoholomorphic subvariety
in I x Y« and m a positive integer no greater than x.. Distinct pairs trom ¥ have
distinct subvariety components. Furthermore:

* SUPzeUc ey (N xYa) dist(Z, @7 (0)
+5upze(@—10)nrx7.)) dis(Uie mes €. 2) < m
e Let v denote the restriction to I x Yy of a smooth 2—form on R x Y with
[Vlloo =1 and [Vv|loo < m. Then

i
— UVAFz— /
27 /I*XY Z Cﬂ(IXY*

Proof But for one extra remark in the Y, = Mg U H case, the arguments for the
first bullet and items (a) and (b) of the second bullet of Proposition 4.1 in [22] can be
used with only notational changes to prove Proposition 6.3. The extra remark concerns

-1
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the assumption made by Proposition 6.1 for a bound on M(s). The arguments for
Proposition 4.1 in [22] require only a bound on Lemma 4.10°s function My ,) for
p=cy 1 and for all x € R x Y. Such a bound comes from Proposition 5.1°s bound
on M, when Y = Mg UH,. O

The next two lemmas are used to say more about the subvarieties that can arise in the
context of Proposition 6.3. The lemma that follows directly is an analog of Lemma 4.6
in [22]. The notation is such that if s € R and C is a pseudoholomorphic subvariety
that is defined in a neighborhood of {s} x Y, then C|s denotes C N ({s} x Yy).

Lemma 6.4 Given m > 1 and ¢ > 0, there exists k,, > 1 with the following sig-
nificance: Suppose that C is a closed, irreducible, pseudoholomorphic subvariety
in a neighborhood of J := [—4,4] x Y« with [cnsw <« ! and [cnyds nG < m.
Then each point of C|g for |s| < 1 has distance along Y. no greater than ¢ from
a closed integral curve, y, of length less than m + . Moreover, there is a positive
integer g which is bounded by an m and ¢ independent multiple of m, and is such that
if v is a smooth 2—form on [—1, 1] x Yy« with ||U|lecc = 1 and |Vv|eo < &', then

Ucm([—l,l]xy*) v—q f[_l,l]xy v|=<e.

Proof The proof is the same but for notation of Lemma 4.6 in [22]. O

The next lemma is an analog of [22, Corollary 4.7]. Note in this regard that [22,
Corollary 4.7] makes an assumption that is not guaranteed here, this being that all
integral curves of v with an a priori length bound are nondegenerate. The upcoming
Lemma 6.5 is a version of [22, Corollary 4.7] that suffices for the present purposes.

Lemma 6.5 Given m > 1 and ¢ > 0, there exists k,, > 1 with the following sig-
nificance: Let I C R denote an interval of length at least 4, and suppose that C
is an irreducible, pseudoholomorphic subvariety in a neighborhood of I x Y, with
Jenwxyy W <! and [cnqiy,yds NG <m forall intervals I' C T of length 1.
Assume in addition that C has intersection number zero with all submanifolds in R xY
of the form {s} x S with S being a cross-sectional sphere in Ho. Let I C I denote the
subset with distance at least 3 from any boundary point of 1. There exists a finite set ©
consisting of pairs (y,q) with y a closed, integral curve of v and ¢ a positive integer.
The set © is such that no two pairs share the same closed integral curve. Moreover:

e The intersection of y with My is a collection of arcs that begin on the boundary
of radius § coordinate balls about the index 1 critical points of f in M and end
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on the boundary of radius § coordinate balls about the index 2 critical points
of fin M.

b4 Z(y,q)€® qu <m-+te.

e FEach point of C|s for s € I has distance along Y less than ¢ from U(y,q)e@ V.
Conversely, each point in U(y, ¢)c@ ¥ has distance no greater than ¢ from C ls-

e If v isasmooth 2—formon I x Y with ||[U]|eoc = 1 and ||VV||eo < &', then

Joniron™= 2 0
CN(IxY) IxXY

Proof But for one additional remark, the argument in [22] that explains how [22,

<é&.

(v.9)€®

Corollary 4.7] follows from Lemma 4.6 in [22] explains why Lemma 6.5 follows from
Lemma 6.4. The additional remark concerns both the first bullet of the lemma and the
assumption for Corollary 4.7 in [22] of nondegenerate Reeb orbits. The assumption that
C has intersection number zero with submanifolds of the form {s} x .S with S C H,
being a cross-sectional sphere replaces the nondegeneracy assumption in Lemma 4.6
of [22] and it leads directly to the first bullet of Lemma 6.5. To see how this comes
about, note that if S C H is a constant u sphere, then {s} x S is pseudoholomorphic,
so if C|; is close to a closed integral curve of v that crosses Hg, then C will have
positive intersection number with {s} x S. This is ruled out by assumption. Meanwhile,
Section I1.2 finds that the only closed integral curves of v that don’t intersect Hq are
hyperbolic and so nondegenerate. Moreover, those that intersect Mg are described by
the first bullet of Lemma 6.5. d

6.4 Proof of Lemma 6.2

The proof has four parts. These parts use c. to denote a number greater than 1
that depends only on ¢. Its value can be assumed to increase between successive
appearances.

Part 1 The curvature of the version (1-15) that defines A can be written as

9 _
(6-25) Fi= (1—p)(dsA$A+*BA) + o'Vaa A V4
d

with it understood that the ds component of V4o is z-o. The notation here uses
g and g’ to denote the respective functions on 4 x Yy given by ©li=|q2 and
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(%@)’t=|a|2. Use (6-25) to see that w A F; can be written as —iFds ANd AW
with F being

626 i1-p)(54) — i/ ((5e0) (ad — (Va)o (1)),

where (a—as A)v and (V4a), denote the pairing of these 1-forms with the vector field v.

Part2 Let / denote an interval of length 2 and introduce V' to denote the subset of
I x (M x Ho) where |a|? < %. The support of Fz in I x (M x Ho) isin V. Use
(6-25) and (6-26) to see that

i

0 2
(6-27) co/‘—cx‘ > —/ wA Fy
ylos 270 J 1 (M xHo) 4

where vol(V') denotes the volume of the set V. Proposition 5.1 bounds the integral
of r(1 — |a|?) over V by c, and this implies that vol(V) < r~!¢,. Therefore, (6-27)
implies that

i

9
(6-28) cor / ‘— L / wA Fa
IxY asw 27 I xX(M xHgp) 4

This last bound leads directly to the following conclusion: if € € (r"!c,, 1), there are

—co vol(V),

>T

2
| -

at most ¢~ !¢, disjoint intervals in / of the form [s — I, s 4 1] with

i

wAF2
2r ‘/[s—l,s—}—l]x(MxHo) 4

> &

Part 3 Apply the Y. = Mg U #H, version of Proposition 6.3 to intervals of length 200
in R. Use the first bullet of the latter, Lemma 6.5 and the final conclusion in Part 2
to see that there exists a set of at most ¢, points in R with the following property: if
s € R has distance 1 or more from all points in this set, then F; =0 and o/|e| is
A —covariantly constant at points with distance ¢ ! or less from any z € ¥ version of
{s}xy@ . Let Q denote this finite set in R.

Suppose that s € R has distance less than 2 from some point in Q. The fact that Q
has at most ¢, elements implies that there are points in [s — ¢, s + ¢.] with distance at
least 2 from each point in Q. Let s” denote such a point. Use the s and s’ versions
of (6-11) with the derivative bound in (6-10) to conclude that Lemma 6.2 is true for s
if and only if it is true for s'.

Introduce Q4 C R to denote the set of points with distance less than 2 from some point
in Q. Let (s,5") CR denote a connected component of Q. Then |s'—s| < ¢, because
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Q has at most ¢, elements. This understood, use the s and s’ versions of (6-11) with
(6-10) again to see that

) ol
2 o sy ® ; Vispoo

ze¥

(6-29) < K.

Given the conclusions of the preceding two paragraphs, the fact that Q has at most c,
elements implies that Lemma 6.2 holds if (6-29) is also true when s and s’ are any
two elements in the same component of R — Q.

Part 4 To see about (6-29) when s and s’ are in the same component of R — Qy, fix
for the moment a point z € ¥. Write Aas A= 4 E+a 7 and use the R x Y version
of (1-15) with Lemma 4.8 to see that

{s}xy® {s}xy®

when s has distance 2 or more from every point in Q. Note that this inequality also

(6-30) <o

holds with A replaced by A4+ and with A replaced by /Lm this being the s — oo
limit of A.

With (6-30) in mind, suppose that s’ > s are in the same component of R — Q. Use
Stokes’ theorem to see that

(6-31) / aA—/ aA:/ Fx.
@ A Japye A Jsspge 4

The right-hand side of (6-31) is zero, so it follows using the s and s’ versions of (6-30)
that the integral of a4 over {s} x y@ differs by at most ¢o from its integral over
{s'} x )/(Z). Thus, (6-29) does indeed hold for any pair s’ > s in the same component
of R — Q. m

7 Propositions 1.1-1.4 and Theorem 1.5
This last section supplies the proofs for Section 1’s propositions and theorem.

7.1 Proofs of Propositions 1.1-1.3

Leave out for the moment the second and third bullets of Proposition 1.1 and the
assertions of Propositions 1.2 and 1.3 that refer to Z,?SZW .- The remaining assertions

of these propositions, those that refer only to QSZW .» are all special cases of theorems
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from [7]. To elaborate, the essential concern is a compactness theorem for the space
of instanton solutions (1-20). See in particular the discussion at the beginning of
Chapter 29.2 in [7]. The desired compactness theorem is Proposition 29.2.1 in [7].
This is because the r > m versions of (1-14) and (1-20) are defined by what is said
in [7] to be a monotone perturbation.

The second bullet of Proposition 1.1 follows directly from Proposition 2.4. To elaborate:
The bullets in Proposition 2.4 imply that || is nearly 1 along y?9). This being the
case, then (by construction) the section «/|a| is A —covariantly constant along y (%) .
Therefore, the holonomy of Ais1 along y(%9) | which implies that X(A—Ag) is an
integer (because Ag also has holonomy 1 along y(F0)).

The third bullet of Proposition 1.1 and the assertions about ésw,r in Propositions 1.2
and 1.3 follow from a proof that the value of the function X in (1-16) on the s — oo
limit of any relevant instanton is no less than its value on the s — —oo limit if the
instanton contributes to the differential on the chain complex, or to one of the other
homomorphisms. This property of X follows from the upcoming Proposition 7.1
together with Lemmas 2.5, 4.1 and 4.2. Note in this regard that Proposition 7.1 proves
this assertion about X for instanton solutions to (4-1), this being the version of (1-20)
that uses g = ¢, with u € Q having P—norm less than 1. Even so, the fact that
limg— 00 X(0]5) > limg—_so X(0|5) for the instanton solutions to (4-1) implies this
inequality is also true for any instanton solutions to a g = ¢, + p version of (1-20) that
contributes to the differential or the other relevant homomorphisms if p comes from a
certain residual set in P, and has small P—norm. More is said about why this is after
the statement of Proposition 7.1.

To set the stage for Proposition 7.1, let y denote a closed, integral curve of v. Define
the function X, on Conn(E) by the rule that assigns to a connection A on E the
integral over the curve y of the 1-form zl—ﬂ(/f —AEg). The y = y(ZO) version of X, is
the function X in (1-16).

The proposition assumes that y C Mg U H and that y has a tubular neighborhood of
the sort described directly. Let £ denote the length of y and let t € R/(£Z) denote an
affine parameter for . Use z to denote the complex coordinate for C. The operative
assumption is that y has a tubular neighborhood with coordinates (¢, z) that are defined
for |z| less than a positive constant and are such that:

(7-1) o The curve y is the z = 0 locus.
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e The vector field v, the 2—form w and the 1-form a appear as

_ 0
T ot

where the unwritten terms are bounded by a constant multiple of |z|.

v 4o, wzéidz/\df—i—--- and a =dt,

o The vector field v annihilates |z|?.

It follows from the constructions in Sections II.1C and II.1D that each z € ¥ version
of ¥(%) has a tubular neighborhood with coordinates of the sort described by (7-1), and,
in particular, the curve y#0) has such a tubular neighborhood.

Proposition 7.1 There exists k > n and, given ¢ > 1, there exists x, > 1 with
the following significance: Fix r > k and pu € Q with P—norm less than 1 and
suppose that 0 = (A, V) is an instanton solution to the (r, u) version of (4-1) with
Ay < crlnr. Let y denote a closed, integral curve of v that lives entirely in Mg U Hg
and has a tubular neighborhood with coordinates of the sort described by (7-1). Then
limg 500 Xy (Als) > limg s o0 Xy (Als).

Given what is said by the third bullet of Proposition 2.7 and Lemma 4.1, the assumption
Ay < crlnr is satisfied if the difference between the value of f; on the s — co limit
of 0 and the value of s on the s — —oo limit of 0 is no greater than clnr. The
bound Ay < crinr in Proposition 7.1 is used to invoke Lemma 5.2 so as to bound
0’s version of the function M by ¢.r%7. This bound on M is then used to invoke
Lemma 4.7. Lemma 4.7 in turn is used to write %A and B4 as in (5-7). A crucial
point in subsequent arguments is that the function o that appears in (5-7) is constrained
to obey

(7-2) —ca V4 <o <14V where ‘1 — |a|2‘ > 1t1/2g

with ¢ being any number greater than 12. Indeed, this follows from (5-9) because its
left-hand side is nonnegative. (In general, r|o||1 — 1]or|?| and r |1 —|a|| |1 — J|e|?|
are bounded by c,, which is a consequence of Lemma 4.9.)

The proof of Proposition 7.1 is given in Section 7.2. What follows directly explains
how Proposition 7.1 is used to prove the assertions in Propositions 1.1-1.3 that refer
to észw,r' To this end, suppose that the conclusions of Proposition 7.1 hold for instanton
solutions to a given g = ¢, + p version of (1-20) if (r, i) obey its assumptions and if
the perturbation p is in P,. If 0 is an instanton solution to this version of (1-20) and
if it contributes to either the differential or one of the other relevant homomorphisms
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of the Seiberg—Witten chain complex, then the s — oo limit of f5(0|s) is either 1 or 2
more than the s — —oo limit of f5(0|s). Use this observation with Proposition 2.7 and
Lemma 4.1 to see that d obeys Proposition 7.1°s bound A, < crlnr.

Given what was said in the preceding paragraph, the assertions in Propositions 1.1-1.3
hold if the conclusions of Proposition 7.1 hold for instanton solutions to any g =e¢,, +p
version of (1-20) if (r, i) obey its assumptions and if p € P, has small P—norm. To
see why this is so, assume it to be false so as to derive nonsense. Under this contrary
assumption, there is a sequence {p,}n=1,2,... with the following two properties: the
P-norm of each n € {1,2,...} version of p, is less than n~! and the conclusions of
Proposition 7.1 fail for some instanton solution to the g = ¢, + p, version of (1-20)
with Ay < crlnr. Let {0, }n=1,2,... denote a corresponding sequence of recalcitrant
instantons. This sequence can be chosen so that all its constituent members have the
same s — oo limit, and all have the same s — —oo limit. The latter are denoted
respectively by ¢4 and c_. Since the function X takes integer values on the solutions
to (1-13), the operative assumption in what follows is that X(¢4+) < X(c=) — 1.

The function s + a(dyp,|s) + Pn(dp,|s) is a nonincreasing function on R and as
the sequence {py}n=1,2,... is bounded and converges to zero, the fact that the set of
0 = 0y, versions of A; is bounded implies that the sequence {0y, }n=1,2,... has a
subsequence that converges in the sense described in Chapter 16 of [7] to what is
said in Definition 16.1.2 of [7] to be a broken trajectory. In the situation here, such
a trajectory consists of a nonempty, finite, ordered set {0x }x—1,, . n of instanton
solutions to (4-1) with the following property: the s — oo limit of 0y is the s — —o0
limit of dx4 for k < N. In addition, c_ is the s — —oo limit of 9; and c4 is
the s — oo limit of 0. This being the case, X(c4+) — X(c—) can be written as
D k=12..N (lirns_>oo X0k |s)—limg— o0 X (0 |S)) . This sum is nonnegative if each 0y
obeys Ay, =< crinr so as to invoke Proposition 7.1.

To see that this last bound is obeyed, use Lemma 4.2 to see that each 0 =0y, version of A,
is positive, so the desired bound holds if it holds for ) ; _; -y Ao, - Meanwhile, the
fact that the function on R given by the rule s — a(dy, |s) + p;(bpn |s) is nonincreasing
and the fact that {p,},=1,2,.. converges to zero implies that the n — oo limit of
the set of 0 = 0y, versions of A, exists. Moreover, the manner of convergence of
{0, fn=1,2.... 10 {0k }k=1,2,.. as described in Chapter 16 of [7] guarantees that the
limit of the corresponding set of 0 =, versions of A; is no less than ) | ;- n Ao -
In fact, the limit equals the sum if all solutions to the (r, u) version of El—_l?)) are
nondegenerate.
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The conclusion that X(c4+) — X(c—) > 0 violates the assumptions and so constitutes the
desired nonsense.

7.2 Proof of Proposition 7.1

The proof has six parts. By way of notation, ¢, is used in what follows to denote a
constant which is greater than 1 that is determined solely by ¢, y and the geometry
of Y. In particular, ¢, does not depend on 0, nor does it depend on the chosen values
of r or i. The value of ¢, can be assumed to increase between successive appearances.

Part 1 Let ¢+ = (A4+,v¥+) denote the s — oo limit of 9 and let ¢— = (A—, Y¥—)
denote the corresponding s — —oo limit of 9. Both /f+ and A_ are flat with trivial
holonomy on a fixed, but small radius tubular neighborhood of y if r is greater than a
purely y—dependent constant. This fact implies that X, (A4+) — X, (4-) € Z.

With the preceding in mind, fix for the moment a smooth, closed 2—form on Y with
compact support in this tubular neighborhood whose de Rham cohomology class is
the image of the Poincaré dual of the class in H;(Y;Z) that is defined by viewing the
oriented loop y as a 1—cycle. Use v, to denote the chosen 2—form.

Reintroduce A to denote the connection that is defined by A using the formula in (1-15)
with it understood that V4« has ds component equal to 8%0(. The curvature of this
connection is depicted in (6-25). Stokes’ theorem writes X, (A4) — X, (A_) as the

. i .
integral over R x Y of the curvature 2—form 5-F; A vy.

By way of a parenthetical remark, if Ay < cr, then Propositions 5.1 and 6.3 can be
invoked if r is greater than a purely c—dependent constant. Assume this to be the case.
It follows from Proposition 6.3 and what is said in Part 4 of the proof of Lemma 6.2
that the integral of %F 1/\ Uy 1s a weighted, algebraic count with positive weights of
the intersections between the submanifold R x y and a pseudoholomorphic subvariety
that is defined in some neighborhood of R x y. Thus X, (44+) —X,(4-) > 0.

The equality between X, (A4+) — X, (A—) and the integral of ﬁF 7\ Uy does not
depend on the chosen version of v, as long as its support is in a radius ¢, ! tubular
neighborhood of y. This being the case, the remainder of this Part 1 defines a useful
choice. To this end, let 7' denote a radius ¢, ! tubular neighborhood of y with
coordinates of the sort that are described in (7-1). Assume that 7' appears in these
coordinates as R /(£Z)x Do, where Dy is aradius ¢ 1 disk centered at the originin C.
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The desired version of v, is constructed with the help of a nonnegative, nonincreasing
function on [0, co) with support in [0, 2]. The latter is denoted in what follows by ¢
and it has the following properties:

(7-3) * g(x) =1 where x <1 and ¢(x) = 0 where x > 2.
e g(x)= e~ V/@=X) /(] — = 1/A=%) 4 o=1/@=X)) where x €[1,2].

Use ¢ to denote the integral of the function x — 2w x¢(x). With ¢ in hand, fix D so
as to be greater than 100 times the inverse of the radius of Dg. The value of D can be
taken smaller than a constant that is determined ultimately by ¢ and y. With D fixed,
let ¢ denote the function on Dy that is defined by the rule z > {~1D?¢(Dz). Use the
coordinates for 7" in (7-1) to view ¢, as a function on ¥ with compact support in 7.

The desired version of v, is defined to be zero on the complement of 7" and defined
to equal gobw on 7. So defined, the condition in the third bullet of (7-1) guarantees
that vy, is closed. This understood, it follows from the definition that its de Rham
cohomology class is the image in de Rham cohomology of the Poincaré dual of y’s
classin H1(Y;Z).

Part 2 The upcoming Lemma 7.2 refers to certain notions that are defined directly.
The first of these is p;, this used to denote (In r)_4. To define the rest, fix so € R,
to € R/(£Z) and a point zg € D¢ with |z¢| at most half the diameter of Dg. The lemma
uses Q(50:70:20) (o denote the set in R x R/(£Z) x Do whose (s,7,z) coordinates
obey the two conditions |s —so| < 2p; and |t — 9| + |z — zo| < 4p;. The integral of
iF ;A (ds Ad+w) over Q (50:10:20) i5 denoted by A(so,t0,20) - The lemma uses O s .z0)
to denote |, er/(¢z) Q (0:1:20); this is the set whose (s, 7, z) coordinates obey the two
constraints |s —sg| < 2p; and |z — zg| < 4p, with no constraint on ¢.

Lemma 7.2 Given ¢ > 1 there exists k., > 1 with the following significance: Fix
r>k, and p € Q with P-norm less than 1 and suppose that 9 = (A, V) is an instanton
solution to the (r, ) version of (4-1) with Ay < crinr. Fix so € R and zg € D¢ with
|zo| less than half the radius of Do. If sup;er/tz) A(so.t,20) > k.02, then

/ iFzAnw> ICC_IPr sup  Asg z,z0)-
O(s0.20) teR/(LZ)

Step 1 This step states five observations that play central roles in the subsequent steps.
The first observation constitutes the next equation. This writes %A and B4 as in (5-7).
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These equations with (6-25), (4-1) and Lemma 4.6 lead to

*(iFgAw) = (1-p)(1 =)l —|a?) + 29" [(VE D)ol + e,
*(iFgnds AD) = (1= p)or(l—|a*) + 29 [(VE D)1 + e,
with the notation as follows. What is denoted by o is the function that appears in (5-7).
To define (V-9 q)g and (V1-Dq), first introduce V- to denote the 71O (RxY)
part of the covariant derivative of . View the latter as a homomorphism from the (1, 0)

summand in T(R x Y) ® C to E. What is denoted by (V(1:0g), is the restriction
of this homomorphism to the span of % —iv, and what is denoted by (V(:9¢); is

(7-4)

the restriction of V(:0q to the +i eigenspace of J in the K~! ® C summand in
T(R xY)® C. Meanwhile, ¢4 and ep are such that their absolute values are bounded
by co((1 — ) + ’). The 1 — g contribution to the latter bounds follows from the
bounds on 34 and 3p in (5-7), and the g’ contribution follows by using (4-1) to write
the 7! part of V4o as a linear combination of covariant derivatives of 8 and then
invoking Lemma 4.6.

Adding the two equalities in (7-4) leads to the second observation:

(7-5) *(iFp A (dsAad+w)) > %(1 — o)+ 20" |IVE0q 12 ¢,

with ¢ =0 where p = 1 and |¢| < cor™>/?

in any event. By way of an explanation, this
inequality follows from the fact that |a|? < % on the support of 1 — g and from the
fact that p’ < co(1— 50)3/ 4. To elaborate, remember that o < 1 only where |or|? < 1%.
Therefore, summing the two inequalities in (7-4) yields

(7-6) «(iF7 A (ds NG +w)) > &(1—)r + 20 VD] + ey + ep.
Now, ¢4 and ep obey

(7-7) leal + [eB] < co((1—p) + '),

and g’ is nonnegative and it obeys ' < co(1 — p)3/4. The co(1 — ) term in (7-7)
is accounted for by replacing the 17—6(1 — @)r term in (7-6) with %(1 — @)r; that is,
*(FaA(dsnd+w)) > %(1 — ) +20'|[VEDg|2 4 ¢, where |eg| < co(1—p)3/4.
Writing (1 — )34 as r3/8(1 — p)3/4r=3/% and using a standard algebraic inequality
shows that (1 — )34 < ¢o(r'/2(1 — ) +1r73/2). For r greater than co, this implies
that |eg| < %r(l — ) 4+ cor /2.

Fix g € [12, ¢o] to invoke (7-2). The third observation is

(7-8) / iFA\/\ w > _cc(r—l/(q-i-l)A* + r—3/2)'
9]

(s0.20)
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This is a consequence of (7-5), the first bullet of (7-4) and (7-2). (Remember that
(7-2) says that ¢ is at most 1 4 c,r~/2 on the support of (1 —).) The point is that
the expression on the right side of the first bullet in (7-4) is negative only where o is
greater than 1 or the ¢4 term is negative and dominates the others. What with (7-2),
this leads to a —c.((1 — p)rl_l/q +(1— ga)3/4) lower bound for the right-hand side of
the top bullet in (7-4). (Remember that p’ < co(1 — 5@)3/ 4 ) Because of the inequality
(1- 9)3/4 < cort/2(1 - ©) + cor~2/3 from the preceding paragraph, the right-hand
side of the top bullet in (7-4) is in no account less than —c.((1 — p)r' =14 4 1=3/2),
Now, by virtue of (7-5) and the definition of Ay, the integral of r(1 — ) over Qg is
at most ¢ £((Int)* Ay 4+ r~3/2). (Keep in mind here that the length of y in units of p
is at most £(Inr)*.) Therefore, the integral of —c (1 — o)r!=1/9 — ¢,r=3/2 is at most
=14 times ¢ £((Int)*Ax +r~3/2), which is at most —c (r=V/ATD A, 4 r73/2),

The fourth observation is a direct corollary to (7-8):

(7-9) Fixt € R/({Z). If m> 0 and if the integral of i F'; Aw over Q (50:1:20) jg greater
than m + cr~ /@D (A, + 1), then f iFanw>m.
Q(S(),Z()) A

The fifth observation is a tautology that comes by writing i F 3 A (ds Ad + w) as the
sum of iF; Aw and iF g Ads Aa. To set the notation, fix to € R/(£Z) such that
A(so.t0.20) = Ax. Use O to denote Q (50-0,20)

(7-10) If the integral of iF z A w over Q* is less than %A*, then the integral of
i *B;AdsAaover QF is greater than %A*.

This is so because iF/T/\ds/\Ziz i *Bg/\ds/\a.

Step 2 This step outlines the argument that is used to prove Lemma 7.2. Assume that
Ay > ,orz. It follows from (7-9) that the assertion of Lemma 7.2 is true if the integral
of iFz Aw over Q* is greater than ﬁA*, so assume that this is not the case. Use

(7-10) to see that the integral of i *B ; Ads Ad over Q™ is greater than %A*.

The constant (s, ) slices of Q* are disks that lie either in a cross-sectional sphere
of Ho or a level set of # in M. The former are compact surfaces without boundary,
and so are most of the latter. The integral of i B ; over a surface of this sort without
boundary is 27 times the pairing of the first Chern class of E with the homology class
defined by the surface and this no greater than 27G. Thus, the integral of i % B 3 over
such a surface is a priori bounded by 27 G. If the integral of i B ; over a disk in one
of these surfaces is greater than this bound, then there must be other parts of the surface
where the corresponding integral is negative.
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The second bullet in (7-4) and (7-2) imply the following: the pullback of i *B 3 to
such a surface is no smaller than —ccrl_l/ 9 times the area form (which is the pullback
of w). Indeed, when this pullback is written as Bw, then the function B is what is
depicted on the right-hand side of the second bullet of (7-4). Now B is zero where |ot|?
is close to 1 because g = 1 there, so the issue is where 1 — |a|? > cgl. Since g’ is
nonnegative, the function B can be negative only if o < 0 or if the ep term is negative.
Meanwhile, |eg| < co (which is less than =1/ 7) and, as noted in (7-2), o is greater
than —c.,r~ /4 where g # 1. Thus, if B is negative, it is no smaller than —cr' 14,
As explained in a later step, because B is greater than —cr!~1/4, the area where B is
negative cannot be smaller than c:lr_lﬂ/ 4. Now, Lemma 4.7 and (7-2) have a second
implication which is this: the function B is negative at a point only if *(ds A %A A w)
is of order r (because g must be less than 1 and so || < 1 —cal ). As shown in a later
step, this implies that {(%A}Z is of order r> where B < 0. Since the area where this
happens is greater than cc_lr_l"'l/ 7, the integral of ‘%A!z on the surface is therefore
greater than cr' 1174 The extra factor of r'/7 is seen below to lead to a violation of
Lemma 4.2 unless the number A is a priori bounded by c¢.p?.

Step 3 Given (s,7) € RxR/({Z) with |s —so| < 2p; and |t —t9| < 4p;, introduce
by way of notation D ) to denote the slice at (s,7) of Q*, and use E(s, ) to denote
the integral of 2’—]1 *B4 over the disk {(s,7)} x D). Given n € {0,1,2,...}, let
U, CR xR/({Z) denote the set of points with |s —s¢| < 2p; and |t —tp| < 4p, and
with one additional constraint: if n = 0, require that 0 < E(s, ) < G; if n > 1, require
that E(s,?) € [nG, 2nG]. Use v, to denote the measure of Uy .

Suppose for the remainder of this step that y(¢p) is either in o or in the part of Mjy
where £ is either less than 1 — 482, or between 1+ 282 and 2 — 282, or greater than
2 4 482 . This assumption has the following implication: no point in Q* is on a level
set of f that enters a radius § coordinate ball centered on either an index 1 or index 2
critical point of f in M. Keep this fact in mind.

Fix n €{2,...} such that U, # @ and fix (s,7) € U,. The disk {(s,7)} x D ) lies
in a compact surface in R x (Mg U Ho) whose tangent space is annihilated by a. This
surface is either in a component of a level set of # in Mg or a cross-sectional sphere
of Ho. Use S(s,r) to denote this surface. The integral of 2’—ﬂ *B 7 over S(s,p) is equal
to G ifitis an f—level set with f € (1+82,2—82) part of My it is equal to 0 otherwise.

Since E(s,t) > 2G, the integral of 2’—” *B 7 over S(s,1) — D (s,r) must be less than —G
(because the integral of 2’—},{ *B 7 1s at most G). To see what this entails, write the pull-
back of 2’—]1 *B 7 to S(s,r) as Bw; the function B is what appears on the right-hand side
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of (7-4). The latter function is no less than —c.((1 —p)rl_l/‘l +1r73/2) . To explain: The
term (1—g)or(1—|a|?) on the right-hand side of the second bullet of (7-4) is no smaller
than —c.(1—g)r'~1/4 because of (7-2) and the fact that 1 —g is zero unless || is less
than 1—cy 1. The next term, 2’|V |2 is nonnegative because g’ is nonnegative.
Finally, |eg| < c.((1 — ) + '), which is smaller than c.((1 — p)r!=1/4 4 r=3/2)
because g’ < co(1—)3/* and (1 —)3/* < co(r1/2(1 — p) +173/2).

The factor —c,r~3/2 from the bound B > —c,((1 — @)r!~1/4 4+ r=3/2) contributes no

—3/2

more than —c,r to the integral of Bw and this is no more than —107% if r > c,.

Assume this to be the case.

If E(s, 1) > —2G, then it follows from the bound B > —c((1 — p)r' =1/ 4 r=3/2) that
the measure of the setin S5 ;) —Ds,s) Where B is such that (1—g)o <0 is no less than
ctn— 1)or~1*1/4  Noting that |a| < % on this set, it follows from (5-7) (see also
the first bullet in (7-4)) that *(i ds N (%A A w) > c:lr on this same set. This implies in
particular that {%A}Z > ¢~ !r? on a set of measure greater than ¢, ! (n — Der~1+1/a
in S(,s). And, as a consequence, the integral of }%A‘z over (U(s,t)eUn S(s,,)) CRxY

is no less than cc_lrl"'l/‘](n —1)Gvy,.

Step 4 Suppose that £(y(tp)) is between 1—482 and 1+ 282 or else between 2 — 252
and 2 + 482, Fix (s,1) € R x R/({Z) with |s — so| < 2p, and |t — to| < 4p,. If
t > 1o, use T(s ) to denote the set of points in R x 7" that have coordinates (s, 7, z)
with 7 € [t, 9o + 83] and with z such that |z — zg| + |t —to| < 4p;. If t < t¢, define
T(s,5) C R X T to be the set that have coordinates (s, z,z) with © € [fop — 85, ] and
with z as in the 7 > 7o case. In either case, T(,;) is a manifold with corners. In
the 7 > 7o case, there are three codimension 1 faces of T, ;). These are the disks
D s,r) and Dy 4,+8s), and third is the cylinder consisting of the points (s, 7, z) with
T €[t,85 +to] and |z — zg| + |t — to| = 4p;. There is a similar story when t < ty: the
cylinder face of 7{s ) in this case is the set of points (s, 7, z) with 7 € [-85 +1¢, 7] and
with z as in the ¢ > 7 case. In either case, let C, ;) denote the cylindrical face of Ty ).

Use Stokes’ theorem to see that the absolute value of the difference between the integral
of i % B 7 over the two disk faces of 7, 1s equal to the absolute value of the integral of
i *B 7 over C(s,y). This integral involves only the t— X part of (5-7)’s depiction of By.
Meanwhile, the contribution from the term proportional to g’ in (6-25) is bounded by
cop/(|(V(1’°)a)0| (V0 g) | + 1). With these last facts in mind, introduce by way
of notation

(7-11) N= fg ( /C ((1—p)(m+|t|)+p’(|(v<1’°)a)o||(v<1’°>a>1|+1))) dsndt,
(s.1)
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where the outer integral is over J = {(s,7) | |s — so| < 2p; and |t — 19| < 4p;}. Let
0° denote either Q$0:00188.20) o (50.00=88.20) What was said above about Stokes’

theorem implies that
(7-12) Q=‘/Q*(i*BgAds/\Zl\)—/Qo(i*Bg/\dS/\Zi) < CcoN.

Use T* to denote the union of the ¢ € [t — 88, 1o + 85] versions of Q(0:20) Fix for
the moment e > 1. Change variables in the integration that defines N and use (5-8)
with the fact that o > —c.r~ /4 and (1-o0)> —c.r~ 14 1o see that N is no greater
than
(7-13) et dsnaniFp+ cce/ iFgAw+ca VDA,

T* T*
The left-most integral in (7-13) is no greater than cop. !Ax and so the left-most
term in (7-13) is no greater than coe™!p ! A,. Therefore, if ¢ = 1000copr~! and if
Q> 1(1)_0A*’ then

(7-14) / iFynw>c. ' pAs

when r > ¢.. If (7-14) holds with r > c,, then what is said by Lemma 7.2 is true, this
being a consequence of (7-8).

Assume that (7-14) does not hold. Then Q < ?&)A* when r > ¢, and so a repetition
of Step 2 with (sg, fo, zo) replaced by either (so, to + 86, zg) or with (s, 2o — 86, zp)
supplies a lower bound for the integral of ‘%A!Z over (U(s,l)eUn S(S’,)) CRxY for
eachnef2,...}.

Step 5 Sum the bounds from Step 3 or Step 4 for the integral of ’%AP over
(U(s,t)eUn S(s,t)) CRxY forn=2,3,... tosee that the integral over RxY of !%A}Z
is no less than (cc_lA* — 2GV)r1+1/ 9, where V is the upper bound for the various
(s, t) versions of the sum vg 4 V;. Since V is at most 16ﬂpr2, this implies that

2
(7-15) / ‘aiA‘ > (7 AL - coGprz)rHl/(zq).
Rxy !0S

What with Lemma 7.2’s assumption about Ay, this last inequality runs afoul of what is
asserted by Lemma 4.2 if Ay > ¢.p? and r > c,.

Part 3 The next lemma is an analog of Lemma 7.2 for pairs (sg, zg) € R x Dg whose
corresponding A is small. Lemma 7.3 uses the following notation: Given x € R and
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pE (=12, cal), the lemma uses 1\71(,6”0) to denote the integral of i F z A (ds A a+w)
over the ball of radius p in R x ¥ centered at x. The lemma also introduces Ty, )
to denote the radius p; tubular neighborhood of the s = 5o and z = z¢ slice of R x T,
this being the set of points of the form (s,¢,z) with (s —s0)? + |z — zo|?> < p? and
with t e R/({Z).

Lemma 7.3 Given ¢ > 1 there exists k. > 1 with the following significance: Fix
r>«, and u € Q with P—norm less than 1 and let 0 = (A, ) denote an instanton
solution to the (r, i) version of (4-1) with Ay < crinr. Fix (so,t0) € RxR/({Z) and
a point zg € Do with |z¢| less than one fourth the radius of Dyg. If M((s,.t0.20).p) 7 0>
then there exists s1 € R and z1 € Do with |s1 — so| < 8pr and |z1 — zg| < 8p; with
fT(Squl) iFzAnw >kt pf

The proof of Lemma 7.3 invokes an A analog of Lemma 4.10, this being:

Lemma 7.4 There exists k > 7, and, given q > 1, there exists k; > 1 with the
following significance: Fix r > k and p € 2 with P—norm less than 1. Let 0 =
(A, V) denote an instanton solution to the (r, ju) version of (4-1) with Ay < 1> and
SUpger M(s) < r1=1/4  Suppose that x € R x Y is a point where |a| < %.

e If p1 > po are in (qu_l/z,/cq_l), then My o) = k7' 07/ P5M(x,00) -

2 1,2

e Ifpe (qu_l/ ,Kq_l), then My ) > k' p*.

It follows from Lemmas 2.5, 4.1 and 5.2 that the assumptions of Lemma 7.3 are met
using g > 6.

Proof of Lemma 7.4 Given Lemma 4.4 and the first bullet of Lemma 4.8 and the
formula in (6-25) for F;, the proof of Proposition 3.1 in [14] can be used with only
cosmetic changes to prove the assertions. A second proof deduces Lemma 7.4 from
Lemmas 4.8, 4.10 and 4.12 by proving the following assertion:

(7-16) There is a purely g—dependent constant, ¢, which is greater than 1 and is
such that if x € R x Y is a point where || < % and p € (r~1/2, cq_l), then
g M(x,p) < M(x,p) < CqM(a,p)-

What follows is a sketch of the argument for (7-16). To start, fix m > 100 and use

Lemma 4.12 with Proposition 4.11 to see that the contribution to M(y ;) from the set

of points where |a| > 1 —m™! is greater than Cq 1 if r is greater than a purely m— and
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g—dependent constant. This proves the upper bound in (7-16). To prove the lower
bound, use Lemma 4.12 and Proposition 4.11 to see that the contribution to My, ,) from
this same set is no less than c,,,qli\/[(x’p) if r > ¢, with ¢,,, > 1 being a constant that
depends only on m and g. Meanwhile, the assertions in the second and fourth bullets
of Lemma 4.8 can be used to prove the following: if m > ¢4, then the contribution

1

to M(y ) from the complement of the set where || < 1—m™" is no greater than c,,,

times the contribution to M(y ,) from the set where |a| > 1 — mL. a

The assertion of the second bullet of Lemma 7.3 follows from Lemma 4.12 and
Proposition 4.11 as they imply that || < % onaballin RxY of radius at least ¢, 1-1/2

with distance at most cor~ /2 from x.

Part4 This part of Proposition 7.1’s proof supplies a proof of Lemma 7.3. By way of
notation, the proof uses My to denote sup,cg /(L) M((so.£.20).p,) - The proof uses the
same conventions about ¢, that are used in Lemma 7.2’s proof; and it introduces one
additional convention of the same sort: Given m > 1, the proof uses c.,, to denote a
number that is greater than 1 and depends only on m, ¢, y and the geometry of Y.
In particular, this number does not depend on 9 nor on r. The value of ¢, can be
assumed to increase between successive appearances.

Proof of Lemma 7.3 The proof has five steps.

Step 1 There exists N <co and a setof N points {(sk, Zx)}k=1,2... ;v With the follow-
ing properties: First, |so—si | <8pr and |zo—zx | <8p; foreach k € {1, ..., N}. Second,
the union of the sets {7, 7;)}k=0,1,..,n contains Q (s, z,)- This understood, invoke
Lemma 7.2 to see that Lemma 7.3’s assertion holds unless sup;cr /¢z) A(so.t,z0) < (:C,or2 .
Indeed, if this isn’t the case, then the integral of i F 7\ w over at least one k €
{0,1,..., N} version of T, ,,) will be greater than cc_lp?.

Let 1o € R/(£Z) denote a point with M((s, ¢,z0),p,) > 0- If such is the case, then there
must be a point in the radius p; ball centered at (so, to, zo) Where g < 1 and so a point in
this ball where |o| < %. Let (s1,11,z1) denote such a point. The operative assumption

2 : ' 2
that sup;er ¢z) A(so.t,20) < Ccfr requires that sup;er /¢z) M((sy,t1,21),0) < CcPr also.
This being the case, it is enough to prove the following assertion:

(7-17)  If m> 10, there is ¢, > 1 such that if r > ¢,y and sup; e /(¢z) M((s1,11,21),0) €
(0, mp?), then /T(s] Ly iFanw> e lof.

The remaining steps prove (7-17).

Geometry & Topology, Volume 24 (2020)



HF =HM, IV 3321

Step 2 Let Ty/4 C T(s,,7,) denote the set of points whose (s, z)—coordinates are such
that |s —s1)2 + |z —z1|% < % prz. The assertion below summarizes the content of this
step:

(7-18) If r > ¢, then either (7-17) holds or F/T =0on Ty/4 NHo.

The proof of (7-18) is given after a digression that follows directly. The proof invokes
two key facts that are supplied by this digression.

To start the digression, let x” denote the point with (s, 7, z) coordinates (s’,¢’, z") with
s" and z’ constrained so that |s’ —s1|? 4 |z —z1|* < % p?. The operative assumption
in (7-17) requires that My’ , /2) < mp?. Assume in addition that |o| < % at x". The
first bullet of Lemma 7.4 requires the bound My ) < comp? forall p € (cr1/2, ch)
if r>c.. Fix r>m*, e (0,m*) and k € {10, 11, ...} to invoke Lemma 4.12 with
the given g and value of m. As will be apparent in the proof of (7-18), choices for r, €
and k that depend only on ¢ and m are sufficient. In any event, with r, ¢ and k chosen,
Lemma 4.12 with the given bound on M, p) Will be invoked with it understood that
r is greater than a constant that depends only on m, ¢ and the chosen values for r, ¢
and k. Of particular interest here is the fact that the corresponding solution (Ao, o)
of (4-7) is described by items (a) and (b) of the third bullet of Proposition 4.11. The
assertions of these two items imply the following:

Fact 1 There are zeros of « with distance less than c,, from the origin in C2 and

—1/2

so there are zeros of o with distance less than c,r from x'.

Fact 2 Each zero of «, with distance less than r from the origin has distance less
than c.,e from a zero of aq, and each zero of «(0) with distance less than r from the
origin has distance less than c,e from a zero of «;.

With regards to Fact 1, the assertion about the distance from origin of zeros of o
follows from three facts: the equations in (4-7) are elliptic modulo the action of
C>®(C?; S); the polynomial that defines the zero locus of «q has a priori bounded
degree; and |ao(0)| < % + & because | (0)] < %. Fact 2 follows from the a priori
degree bound for the polynomial that defines the zeros of «g. In particular, this fact has
the following consequences: All but at most a finite set of affine lines in C? intersect
ay 1(0) in a finite set of points. Those that do not have this property are irreducible
components of o 1(0). Moreover, if a line intersects oy 1(0) in a finite set of points,
then the local degree of each intersection point is positive and their sum is bounded by
a purely m—dependent constant. Given that these zeros have positive local degree, each
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such intersection point must have distance less than c¢.,¢ from an o = 0 point on the
affine line if all points on the line at distance r from the origin have distance c.,er or
more from all zeros of «.

With the digression now over, what follows is the proof of (7-18). To start the argument,
suppose that x € Ty/4 NHo and that F;z# 0 at x. As p <1 at x, s0 |a] < % at x. It

follows from Fact 1 that the integral of i F ;A (ds Ad+w) over the radius Comt™ /2 ball

centered at x is greater than ¢ ™!

is greater than cc_m1 ,orz. If the integral of iF ; A w over the radius % pr ball centered

and so it follows from Lemma 7.4 that I(\/I(x, 00/4)

at x is greater than 2M(x, p./4)» then the conclusions of Lemma 7.3 follow because the
integral of i F g Aw over Ty, xq) 18 no less than —Comr'/4 m?p?2.

Granted what was just said, assume that the integral of i F'; Aw over the radius % pr ball
centered at x is less than %ﬁx, pi/4- It then follows that the integral of iF ; A (ds A a)
over this same ball is greater than cc_m1 o2,

Let (sx,?x,zyx) denote the (s,t,z) coordinates of x. Introduce Q% to denote the
subset of R x R/(£Z) x Do whose (s,t,z) coordinates obey |s — sx| < 2p; and
|t —tx| + |z — zx| < 4pr. Given (s,t) with |s — x| < 2p; and |t — tx| < 4p;, use
D s,1) to denote the constant (s,7) slice of O and use E(s,?) to denote the integral
of 2’—n *B 7 over D). What follows is a direct consequence of Lemma 4.12 and
Facts 1 and 2:

(7-19) If E(s, t) is greater than ¢ &, then E(s, ¢) is greater than 1 — ¢ ,é.

Given n € {1,...}, let U, C R x R/({Z) denote the set where the conditions
|s —sx| <2p;, It —tx| <4p; and E(s,7) € [n—%, n+ %) hold. Use Uy to denote the set
of points with (s, ¢) such that E(s,7) € [O, %) Use v, to denote the measure of U, .

Given (s,1) as just defined, let S, ;) denote the slice of Ho N M containing Dy ;).
This is a J —holomorphic 2—sphere that has pairing 0 with the first Chern class of E.
In particular, the integral of 2’—n *B 7 over Sy r) is zero. This being the case, an almost
verbatim copy of the arguments from Step 3 of the proof of Lemma 7.2 prove that
the integral of | A‘ over U(s 1)eU, S(s,r) 1s no smaller than ¢; ~1pl+1/4y,  What
with (7-19), an almost verbatim repeat of the arguments in Step 5 of the proof of
Lemma 7.2 proves that

(7-20) / | 0 A‘ > (c, —ccme)przrl’”/(zq).
RxY

This runs afoul of Lemma 4.2 if ¢ < c_, 1 and the latter happens if € < ¢, and 1 > ¢.
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Step 3 This step states two observations that are used in the subsequent steps. To set
the stage, fix 7t € [% %] and introduce 77 to denote the subset of points in T, )
whose (s, z) coordinates are such that |s—s1|?+|z—z1|> < t2p?. The first observation
here is that

c

(7-21) c1p? < / iF;A(dsAa+w) < ccmpr.
T.

By way of an explanation, the lower bound follows from the version of the top bullet of

1/2

Lemma 7.4 that takes x = (s1,¢1,z1) and po =c.~ '/~ and p; = %pr. Meanwhile, the

upper bound follows from the bound M. < mp? and the fact that T} /4 can be covered
by cop; ! balls of radius %6 pr with centers in T 4.

The second observation concerns the integral of i F ; A w. To say more, let U denote
a given open subset of T /4. Then

(7-22) / iFz AW > —compr'/4,
U

Given the upper bound in (7-21), this follows from the fact that the function 1 — o that
appears in (5-7) is no less than —c V4,

Step 4 Assume for this and the remaining steps that ;=0 on 77,4 NHo. This being
the case, the R/(£Z) parameter ¢ on T4 can be lifted to an R—valued parameter on
a neighborhood of the support of | F 7| and nothing is lost by assuming that the now
R—valued parameter ¢ is constrained to an interval I C R of the form [—cg, co] at
points in 77 /4 with distance 1 or less from the support of | F 7. Meanwhile, it follows
from (7-1) that the 2—forms ds Ad and w on R x I x D can be written as

(7-23) dsAna=d(—tds) and w=£d(2d3—§dz+---),

where the unwritten terms in the formula for w have no ds component and are bounded
in absolute value by |z|2.

Fix T € [%, %] and use Stokes’ theorem with (7-21) to see that

(7-24) / iFg/\dS/\ﬁ=/ i *BgNAtds.
T: AIXY)NT,

Look at (6-25) and (5-7) to see that the absolute value of the right-hand side of (7-24)
is no greater than

(7-25) / (1= p)(1X] + [t]) + 0’ (1(VEDa)o || (VD) | +1)).
I XY)NT,
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Fix e > 64 to be determined shortly and use (7-24) and (7-25) with (5-7) and (5-9) and
the bound on M to see that

(7-26) (/ iFI;f/\ds/\Zl\)dT
T1/4—T1/8 T

§coe/ iFg/\w—{—e_I/ iFg/\dS/\a—}—cor_
T1/4—T/8 T1/4—T/8

This last inequality is the input for the final step in the proof of (7-17).

1/2

Step 5 There are two cases to consider with regards to (7-26). The first is that when
the integral on the left-hand side of (7-26) is less than

(7-27) e_1/4[ (/ iFg/\(ds/\Zi—i-w)) dr.
T1/4—Ty/8 T

If this is the case, then there exists 7 € [%, %] such that

(7-28) /TriFg/\w>%/TtiFg/\(ds/\Zi+w).

Use the lower bound in (7-21) to see that the integral on the left-hand side of (7-28)
is no less than ¢y 1 p?. Thus th iFzAw>> ¢y 1p?. This with the bound in (7-22)
implies what is asserted by (7-17).

The other case to consider is that where the left-hand side of (7-26) is greater than
what is written in (7-28). It follows from the lower bound in (7-21) that what is
written in (7-27) is greater than coe!p?. Meanwhile, the term on the right-hand
side of (7-26) that is proportional to the integral of iF 3 A ds A d is bounded by
coe ! fT1/4 iF; A (ds Ad+ w). The upper bound in (7-21) implies that this last
expression is no greater than coe™!mp;. Granted all of this, then (7-26) implies that

(7-29) A . iFg/\w >cale_5/4pr2—coe_2m,or.
1/4—11/8

If ¢ = p; °/°, then the right-hand side of (7-29) is greater than cop*. This with (7-22)
implies what is asserted in (7-17). O

Part 5 Fix (so, fo, zo) where the function g, from Part 1 is nonzero and reintroduce
Lemma 7.2°s set Q,.1,) SO as to consider the integral

(7-30) / iF7 A gow.
Q(S(),l())

The assertion that follows summarizes what is said here about (7-30):
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(7-31) Assume that r is greater than a constant that depends only on D, ¢, y and

the geometry of Y. Then the integral in (7-30) is nonnegative if ¢p(z9) >
C()e_(ln r)z/c() .

To explain (7-31), note first that the integral in (7-30) is zero if SUPseR/(£Z) A(s0,t,20)
is zero, so assume that this is not the case. Use Ay to denote this supremum. Write gy
as qp(zo) + q with q(zo) = 0. The integral in (7-30) has the corresponding decompo-
sition as

(7-32) qD(ZO)/ iFg/\w+/ iFzAqu.
0

(s0.10) Q(So,t())
To see about the right-most term in (7-32), let Q— C Q.+, denote the set of points
where i F z A w is a negative multiple of the volume form. The inequality in (7-22) has

its QO (s0,z0) analog, this being the lower bound

(7-33) / iFznw>—cepy ' Ax.

The proof of (7-33) is identical to that of (7-22) with it understood that the Qs +.)
version of the upper bound in (7-21) replaces the integration domain with Q (s, z,)
and replaces the term cmp; on the far right-hand side of (7-21) with c.p7 ' Ax.
Granted (7-33), write QO (5,.10) a8 (Q (s0,10) — @) U O— and then use Taylor’s theorem

with remainder to see that
) Or / iFzAw
o

(sg.t0)

. 5
(7-34) lFX/\qwz—( sup }‘5%

D (s9.10) {zllz—zo0l<4p:
—cc( sup ’aiqD‘)r_l/qA*.
{zllz—z0l<4p:}' OF
Introduce ¢(zp) to denote

)(pr + Ccr_l/q)'

0
(7-35) g (z0) — sup b
({z||z—zO|<4pr}‘ dz

If ¢(zg) is positive, then Lemmas 7.2 and 7.3 with (7-32) and (7-34) find

(7-36) / iF 3z A gow > g(z0)e, ' p? Ax,
0

(So,lo)

which is positive. A look at (7-2) finds ¢(zg) to be negative only in the case that
(7-37) 2—Dlzo| < cop}/?.

in which case g, is less than coe_(lnr)z/ €0 because p; = (Inr)*.
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Part 6 Define the function § on R by the rule

I
(7-38) s > f(s) =/ —F:Aquw.
[s—2p;,5+20,]xY 27 A4 o
It follows from what is said in (7-31) that f(s) > —coe_(l“r)z/ €0, Note here and for
future reference that the function on [0, 1] given by the rule x e~(n)?/c0 js bounded
from above by cex "k for any k > 0 with ¢ being a purely k—dependent constant.

With the lower bound on § in mind, define the subset W C R by the following rule: a
point s € W if and only if f(s) is negative. The set W is open. More to the point, the
fact that X, (A4) — Xy (A-) is an integer implies that X, (44) — X, (A—) is negative
only if the measure of WV is greater than ¢ Le(nn)?/co The paragraphs that follow
explain why W is nowhere near this large.

Let I C R denote a closed interval of length 1 where the total change in the function
s a(d|s) across the interval is less than r~!. Invoke Lemma 4.2 to see that

(7-39) /IXY(‘%A)Z B al? + 2r(‘%w(2 + |DAw|2)) <l

This fact is used in a moment.

If W has total length greater than r#, then it can be covered by no fewer than Co 1p4

closed intervals of length 1 with center at a point in W and such that no more than
Co ! of these intervals contain any given point. Given that the total change along R of
the function s + a(0[s) is bounded by crinr, there are at least ¢ 114 intervals in the
cover where (7-39) holds. Let I denote one of the latter and let so € VW denote I’s

center point.

By assumption, f(s) is negative, and so there exists zo € Do with sup;cr /(¢z) A (s0..20)
greater than zero. It then follows from Lemmas 7.2 and 7.3 that the integral of
iFzAw over Qs zo) 18 greater than c:l,or2 SUP;eR/(£Z) D (s0,t,20) - Given the formula
in (6-25) and the bounds in Lemma 4.8 for |V4 8], this can occur only if the integral of
!%A‘z + |a%1/f|2 over Q(so,z) 18 likewise greater than ¢! o7 sup;cr /(02 A(so.t,70) -

Since the latter is in any event greater than c:lp;‘, it follows that the integral of

!(%A‘Z + ‘%W‘z over Q(s,,zo) 18 greater than c ot
asserted by (7-39).

This runs afoul of what is

7.3 The proof of Proposition 1.4

The subsequent argument for Proposition 1.4 differs little from those used in [19] to
prove corresponding assertions that concern the analogs of (1-14) and (1-20) in the
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case when @ is replaced by a contact 1-form and w is replaced by the latter’s exterior
derivative.

Use D; to denote the data (rq, i1,p1) and use D, to denote the corresponding set
(r2, pt2, p2). Fix a smooth map, s + r(5), from R to [r1, rz] which is equal to ry for
s < —1 and equal to rp for s > 1. Fix a smooth map, s = (), that is equal to 1
for s « —1 and equal to p, for s > 1. Finally, fix a smooth map from R to P of
the form s > p(5) such that p) = py for s < —1 and p(;) = p2 for s > 1. The
data (r(s), i(s). P(s)) can be used to define a version of (1-20), this being a system of
equations that requires a map from R to Conn(E) x C*°(Y;S) to obey

DA+ By—ryWity —ia) + LBy, — 1)

(A, ¢
b] (4.9) _

where r(.) is the function s + r(,) and T() and &) at any given s € R are the
gradients of ¢, (5) + P(s) along the respective Conn(E) and C*°(Y;S) factors of
Conn(E)xC°°(Y;S). Of interest are the solutions to (7-40) with s — —o0 and s — 0o
limits that are solutions to the respective (r1, t1) and (r2, p2) versions of (1-13). Such

)y =0,
(7-40)

a solution is called an instanton.

As explained in Chapter 25 of [7], if the map p(.) is chosen from a suitable residual
set, then there will be but a finite number of instantons of the form s +— 0|; with
limg— 00 fs(0]s) —limg——oo f5s(9]s) = 0. Chapters 25 and 23 of [7] explains how to use
the latter set to define a homomorphism between the (r1, ;1) version of z sw,r to the
(r2, (o) version of ZA’SW,r that preserves the relative Z / pps Z—gradings and intertwines
the endomorphisms that define the respective D1 and D5 differentials. This chapter
also explains why the homomorphism intertwines the endomorphisms that define the
actions of Z[U] ® ( N (H((Y:Z)/ tors)) on the respective D1 and D, homologies.

The relevant homomorphism is defined by its action on the set of generators of the
(r1, 1) version of gsw,r- As such, it has the form

(7-41) [c] = W ale].

where the sum is indexed by the elements in the (r3, i2) version of ZzA’SW,r with any
given coefficient W [ being an integer. Only a finite set of these are nonzero. In
particular, Wi, ] is nonzero only if fs(c) = fs(c). In the latter case, Chapter 23 in [7]
defines W [ to be a certain £1 weighted count of the instanton solutions to (7-40)
with s > —oo limit equal to ¢ and with s — oo limit equal to ¢’.

Geometry € Topology, Volume 24 (2020)



3328 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

What is said in Chapter 23 in [7] proves that the homomorphism in (7-41) induces an
isomorphism between the corresponding D; and D, versions of H;@V’r. Chapter 23.1
in [7] asserts that the respective isomorphisms that are defined by any two such R—
parametrized families are identical. The fact that any two such isomorphism are identical
leads directly to the conclusion that there is a canonical isomorphism between the Dy

: o0
and D, versions of st’r.

The proof of the assertions in Proposition 1.4 that concern Hgy, ., H SJFW .» and the long
exact sequence that relates the latter with Hgy, ., has two parts.

Part1 Letr, = %(rl +13). Fix s € Q with P-norm less than 1 and such that all
instanton solutions to the (rx, (t«) version of (1-13) are nondegenerate. Fix in addition
an element p, € P with small norm that obeys the (rs, u«) version of (1-22). Use
the data set (r«, i, p«) to define the corresponding versions of Z(ésw,r), Z(Z S<W’r)
and Z(é’;SW,r)/ Z(é;w,r), the operator dgy, and then Hgy, ., Hgy . and HSJ{NJ. Let
L4 denote a homomorphism of the sort described above from the (r, tt1) version
of Z(ésw,r) to the (r«, w«) version, and let Lo+« denote a homomorphism of this sort

from the (r«, w+) version to the (ra, i) version.

Assume that L; maps the (rq, ;1) version of Z(Z S<W,r) to the (r«, tt«) version and that
Lo« maps the (r«, it«) version to the (ra, i2) version; then the composition Lo« L1
will map the (r1, 1) version of Z(Hgy, ) to the (r2, pu2) version of Hgy, - and will
map the (r1, 1) version of Hgy,  toits (r2, 2) counterpart, and likewise define a
homomorphism between the respective version of HSJ(NJ. These homomorphisms will
necessarily intertwine the homomorphisms in the two exact sequences.

Chapter 26 in [7] explains why the composition L;«[L4; induces the canonical isomor-
phism from the (r1, 1) version of Hgy | to the (r2, f12) version. This understood, it
follows as a consequence of what was said in the preceding paragraph that the canonical
isomorphism from the (r1, p41) version of Hgy, . to the (r2, u2) version induces respec-
tive homomorphisms from the (ry, @) versions of HSJ(,VJ and Hgy, | to their (r2, 12)
counterparts that intertwine the associated long exact sequence homomorphisms.

Part 2 Given the conclusions of Part 1, the assertions in Proposition 1.4 that concern
Hgy . and HS+W,r and the long exact sequence relating Hso\?v,r’ Hgy . and HS+W,r follow
as corollaries of the following lemma:

Lemma 7.5 The versions of k in Propositions 1.1-1.3 can be chosen so that what is
said below is also true. Fix R > k ; there exists kg > k with the following significance:
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Fix r1 € (k,R) and an element wq € Q with P—norm less than 1 such that all solutions
to the (ry, 1) version of (1-13) are nondegenerate. Fix ry > r; with |r] — 12| < ICR_I
and fix up € Q with P—norm less than 1 such that all solutions to the (r3, jt2) version
of (1-13) are also nondegenerate. Require in addition that jt» — 1 have P—norm
less than k! . Fix respective elements p1 and p, in P with small norm that obey the
Q=1 and = uy versions of (1-22). There are homomorphisms of the sort described
at the outset from the (ry, 1, p1) version of Z(ésw,r) to the (ra, (2, p2) version that

maps the (r1, i1, p1) version of Z(ZA’S<WJ) to the (ra, (42, p2) version of Z(ZA’;WJ).

Proof Suppose that no such «y exists so as to derive nonsense. Given this contrar-
ian assumption, there exist sequences (rn1, Un1,Pn1) and (ry2, Un2, Pr2) that obey
the assumptions of the lemma but not the conclusions with |1, — 12| < n~1, with
|ttn1 — fin2| < n~' and with the P—norms of p,; and p,2 being less than n~!. For
each n, fix a corresponding R —parametrized data set (r, (), tn (), pn(-)) that gives a
version of (7-40) with instanton solutions that can be used to define the homomorphism
between the respective (rp1, in1, Pn1) and (t,2, Un2, Pn2) versions of Z(ésw,r) in the
manner described in the paragraph that surrounds (7-41). Such a path can and should be
chosen so that |p,,(.)—pn1| < n~! and such that Pn(.) has P—norm less than n—1. The
resulting index n homomorphism will map the (1,1, in1,Pn1) version of Z(§S<W,r) to
the (rn2, in2, Pn2) version if the following is true: Let 0 denote an instanton solution
to the index n version of (7-40) with equal s — co and s — —oo limits of f4(0y).
Then the s — oo limit of X(?[s) is no less than the s > —oo limit of X(?|s).

Granted this point, there is for each n an instanton solution to be denoted by 9, with
equal s — oo and s — —oo limits of f5(9,) and with

§—>00 §—>00

An almost verbatim repetition of the final three paragraphs of Section 7.1 generates
nonsense via Proposition 7.1 from the existence of the sequence {0, },=1,2,.... |

7.4 Proof of Theorem 1.5, 1

This subsection gives a proof of the first and second bullets of Theorem 1.5 and explains
how the third bullet follows from an auxiliary proposition that is proved in the next
subsection.

To start, fix r large and define Theorem 1.5°s map @' to be the L’ version of the map
supplied by Proposition 3.1. What is said by Proposition 3.1 implies that the resulting
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version of I." defines a Z-module monomorphism from Z(ﬁeLc/h y) to Z(Z:A’sw,r)
obeying the first and second bullets of Theorem 1.5.

The upcoming Proposition 7.6 is used to prove Theorem 1.5’s third bullet. To give
some background for item (c) of the third bullet in this proposition, suppose for the
moment that ¢ and ¢’ are nondegenerate solutions to some (r, ) version of (1-13),
and suppose that 0 is a nondegenerate instanton solution to the corresponding version
of (4-1) with s — —oo limit ¢ and s — oo limit ¢. The corresponding operator
in (1-21) is Fredholm, and this being the case, suppose that its index is 1 and that it
has trivial cokernel. These properties are all that is needed to compute the =1 weight
that  would contribute to the coefficient W [ in (1-24) were the pair (r, g = ¢;,)
suitable for defining the 9§, homology. This point is important for the following
reason: if (r, g = ¢, + p) with p from P, is suitable for defining the 9, homology,
then the (r, ;) instanton 9 contributes to the (r, g = ¢, + p) version of W[ [, and
its contribution to the (r, g = ¢, + p) version of W] [ is this same £1.

Proposition 7.6 refers to notation that is used in Section 1 to describe the endomorphisms
that generate the respective actions of Z[U]® /A\* Hi(Y;Z)/tors action on the decp
homology and on the 9§, homology. By way of a reminder, from Part 4 of Section 1.2,
the endomorphism of Z(éech, M) that defines the action of U on the dec, homology

is defined as in (1-9) by a set of integers, {Ng/ @}@, , these being either 0

séeéech,M
or 1. Part 7 of Section 1.3 describes an analogous set of integers, {WE/]’[C]}[ LIS sw .
that appear in the version of (1-24) for the endomorphism that gives the action of U
on the 93y, homology. Part 4 of Section 1.2 defines the set {yON, ey, {Tp}pen
this being a set of 1—cycles that give a basis for Hq(Y;Z)/tors. Let ¢ denote a cycle
from this set. This same Part 4 of Section 1.2 defines the endomorphism that gives
the action of 7 on the dec, homology. This endomorphism is a version of (1-9) whose
coefficients are denoted by {NZ@,’ @}@,,@ Bonnt” Meanwhile, Part 7 of Section 1.3
defines the endomorphism that gives i’s action on the 95, homology by a version
of (1-24) with the coefficients denoted by {W‘[c,]’[c]}[ CLIdeBsw s

Proposition 7.6 Given © € Z. p, there exists kg > 1 with the following signifi-
cance: Fix r > kg and an element y € 2 with P—norm less than 1. Suppose that

O € Zeen pr is a lift of ©.

e The element O is in the domain of ®'. Use ¢ to denote its image in ésw,p

o Ifd e ésw,r is such that My (¢, ¢) # &, then ¢’ is in the image of Pr.
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e IfO € éech,M is such that Ml((:)’, 0) # &, then @’ is in the domain of ®*.
Granted that such is the case, use ¢’ to denote ().

(a) The space M (¢, ¢) has only nondegenerate instantons.

(b) There exists a smooth, R —equivariant, 1-1, onto map ¥": M (@’, @) —
My (c,¢).

(c) The x1 weight that any given element in M (0, @) contributes to the
coefficient No & in (1-9)’s formula for Bech@) is the same as the weight that
its W' —image would contribute to the coefficient W[y [¢] in (1-24)’s formula
for 9%y,c¢.

(d) Let T denote a cycle from the set {{[y(z)]}ze¥, {Zp}peA}. The contribution
of any given element in M1 (®’, ®) to the coefficient N‘@/ 5 is the same as

s

that of its W' image to the coefficient ch,] [

o Ifde ZA'sw,r is such that M p(¢’, ) # &, then ¢/ = &Jr(@’) with @’ € Zg'ech,M
being the unique element that contributes to the U —map coefficient N g, 6 The
corresponding space M, ,(¢’, ¢) contains a single instanton which is nohdegen—

U U

(LI is 1, this being N%x .

erate and the contribution of the latter to W &6

This proposition is proved in the next subsection. Accept it as true until then. What
follows directly uses Proposition 7.6 to prove the third bullet of Theorem 1.5.

Fix L’ The corresponding set ZeLcl; ) contains but a finite number of elements. This
understood, introduce k7s to denote the largest of the ® € ZeLCI; ) Vversions of the
constant kg supplied by Proposition 7.6. Fix r > k7 and fix an element pu € Q with
P-norm less than 1 and such that all solutions to the (r, x) version of (1-13) are
nondegenerate. Use these solutions to define the set Zsw , and to define the Z-module
Z(ésw,r). Fix an element p € P, with small P—norm that can be used to define a;w’ .

The assertion of the third bullet in Theorem 1.5 to the effect that " 0ccn a7 = 0%y, " fol-
lows directly from what is said by the second and third bullets of Proposition 7.6. Indeed,
as elements in P, vanish to second order on the images in Conn(E) x C*°(Y;S) of
nondegenerate instantons with 1.y = 1, the second bullet of Proposition 7.6 with items
(a) and (b) of the third bullet of Proposition 7.6 imply that any instanton that is used to
compute the action of 95, on the image of @' is in the image of some version of W".
Granted that such is the case, item (c) of the third bullet of Proposition 7.6 guarantees
that the contribution of such an instanton to 93y, is the same as the contribution of its
WT—inverse image to Oech .
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The fact that IL" intertwines the endomorphisms that define the respective actions
of Z[U] ® H1(Y;Z)/tors action on the dep, homology and on the 93y, homology
follows directly from the preceding paragraph with item (d) of the third bullet of
Proposition 7.6 and the fourth bullet of Proposition 7.6.

7.5 Proof of Proposition 7.6
The proof of the proposition has seven parts.

Part 1 The first bullet of the proposition follows from Proposition 3.1. It is also the
case that if r is large and © is such that M;(©®’, ®) # @, then @’ is also in the
domain of ® when r is large, the reason being that there are but a finite number of
such @’ in Z,A’ech, M » this a fact that is explained in Section II.A2.

The second bullet of Proposition 7.6 follows from Propositions 3.1 and 6.1, as does
the assertion in the fourth bullet to the effect that if r is large, and if ¢’ is such that
M, p(c/ ,¢) # &, then ¢ is in the image of ®". To explain how this comes about,
introduce the function M on Conn(E) x C*°(Y;S) from (1-30). Proposition 3.1
bounds M(c4+) by a multiple of Z},e@ {,,. Suppose that ¢’ is a solution to the (r, i)
version of (1-13) and is such that M; (', c) # & or My (¢, ¢) # &. Let  denote an
instanton in either one of these spaces. Use Lemma 4.1 to see that Ay < cor(M(c) + 1)
and thus it is bounded by cor(zye@ Ly + 1) . Granted this bound, use Proposition 6.1 to
conclude that 9’s version of the function M is bounded by cg with cg > 1 determined
solely by ®. It follows as a consequence that the s — —oo limit of ?’s version of M
is bounded by c@ and so M(¢') < cg. This being the case, Proposition 3.1 asserts that
¢’ is in the image of P if r is larger than a purely ®—dependent constant.

Part 2 Keep in mind for what follows that the almost complex structure J is such
that any (©’, ©) version of M; (', ©) has a finite set of R orbits and the Fredholm
operator associated to each such orbit has trivial cokernel. The next remark is also
important for what follows: Given k € Z, use @k for the moment to denote the translate
of ® by the action of k on éech, M that comes about by viewing éech’ M as a principal
Z-bundle over the set Zeep pr . Fix @ e éech’ M - The respective sets of component
subvarieties of M1 (©’, ©) and of M1 (0, ©) are identical.

Granted these last facts, the construction that is described in Sections 4—7 of [20] can
be employed with only minor alterations if r is large to construct an R—equivariant,
injective map from any given O e éech, M version of My (@/ , @) to the corresponding
space M (¢, ¢). Denote this map by W'. The arguments in Section 2b of [23] can
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be used to construct W' to have the following property: Let C denote any given
component subvariety in Ml(@’ , @) Write the instanton W'(C) as (4, ¥ = («a, B)).
If i e {{[y(z)]}ze¥, {Zp}peA}, then the intersections between C and R x{ enjoy a 1-1
correspondence between those of «~!(0) and R x { and this correspondence is such
that partnered intersections have the same local intersection number. Note in this regard
that J is such that C’s intersections with R x [ are finite in number and transversal.
This is also the case for the intersections of &~!(0) and R x . Note in addition that
the distance between any given point in C N (R x ) and its corresponding partner in
a~1(0) N (R x7) is bounded by a ®—dependent multiple of r—1/2.

What follows is a parenthetical remark with regards to the use here of the constructions
in Sections 4-7 of [20] and in Section 2b of [23]. The constructions here use the
simplest versions of those in the latter references by virtue of three facts, the first being
that all integral curves of v from all elements Z.c, ps are hyperbolic. The second is
implied by the first: All subvarieties from any @, 0c¢c Qech, M version of My (@’ , @)
have the following property: Let C denote an element in ./\/11((:)/ , @). If |s| > 1,
then distinct components of the any constant s slice of C are in small radius tubular
neighborhoods of distinct integral curves of v, and each such component is isotopic in
this neighborhood to its core integral curve. The final fact constitutes what is asserted
by Lemma 3.2.

Part 3 The arguments in Section 3 of [21] can be used with only very minor changes
when r is large to prove the following: Fix O e éech’ M with My (@/ , @) # . The map
W' restricts to each component of M (@’ , @) as an R—equivariant diffeomorphism
onto a smooth component of 2 (¢, ¢) with only nondegenerate instantons. Moreover,
the contribution of any given component of M ((:)’ , @) to the coefficient No & is the
same as that of its W' image to W[ []. Note in this regard that the assumptions in
equation (1.14) of [21] are not needed, this being a consequence of the three facts that
are stated in the final paragraph of Part 2.

Given what was said in Part 1 about intersections with € {{[y(z)]}ze¥, {Tp}pe A}
versions of R x 7, the conclusions of the preceding paragraph lead directly to the
following: if 7 € {{[y®]},ex. {lp}pea |, then the contribution of any given component
of M1(©',0) to Ni@,’@ is identical to that of its W" image to Wi[c,]’[c].

Part 4 Suppose that O e Z\ech, M is such that Ng, 6 # . If r is large, then con-
structions in Sections 4—7 of [20] with those in Sections 2d and 4 of [23] construct
a component of M, ,(c, ¢) that contains a single instanton which is nondegenerate
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and suitable for use in the definition of the coefficient WE,]’[C] and contributes +1 to
this integer. Note again that only the simplest versions of what is done in [20; 22] are
needed because only the J—holomorphic subvariety (]_[y co(R x )/)) U ({0} x S) is
used, and this is the union of disjoint product cylinders and a compact submanifold.
Note also that there is no need to introduce the notion of a (8, L) approximation to use
the constructions in [22], this being yet another consequence of the three facts stated at
the end of Part 2.

Part 5 It remains to prove that W' maps any given version of M (@’ , @) onto the
corresponding version of M (c, ¢’) and to prove that M, ,(c’, ¢) has just the one com-
ponent that is described in Part 4. The proofs that these assertions are true uses almost
verbatim versions of arguments in Sections 4—7 of [22] and in Section 4e of [23]. Only
the simplest cases of the arguments from [22; 23] are needed, this also a consequence
of the three facts stated in the final paragraph of Part 2. What follows directly and in
Parts 6 and 7 say more about the analogs here of the relevant parts of [22; 23].

Let ¢’ denote a solution to the (r, ) version of (1-13) with either M (¢/, ¢) or M, (¢, ¢)
nonempty. Let 9 denote an instanton in one or the other of these spaces. The applications
of the arguments from [22] require as input the bound M < c¢g from Part 1 on ?’s
version of the function M. Keep in mind that such a bound exists.

Suppose that there exists for each n € {1, 2, ...} a pair r, > n and an element p, in Q
with P-norm less than 1 such that the (r;, i, ) version of the map W' is not onto. If this
is the case, there exists ez eLc/h a and, for each n, either an instanton solution to the
(tn, pn) version of (4-1) in the corresponding version Mj (¢, ¢) that is not in the image
of the relevant version of W', or an instanton in %, , (¢, ¢) that is not the one from
Part 4. Use 0, to denote this instanton. The latter is written when needed as (A, ¥y).

The rest of Part 5 and Parts 6 and 7 assume that the sequence {9, },=1,2,... contains
an infinite subset from the corresponding version of M (¢, ¢). Granted that this is the
case, Lemma 6.1 in [22] has the following analog:

Lemma 7.7 There is an element C C M;(0_, ®4), a subsequence of {d,}n=12,...
(hence renumbered consecutively from 1) and a corresponding sequence of constant
translations along the R factor of R x Y, all with the following property: For each n,
write the translated version of V,, as a pair (at,, Bn). The sequence whose n™ element
is

sup dist(z, (x;l (0)) + sup dist(C,z)

zeC zea; 1(0)
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converges with limit zero. In addition, if I C R is an interval of length 1 and v is a
2—form on R x Y with |[u||eo = 1 and support on I x Y, then the sequence whose n'

. o . ..
element is 5 foY VA F i, fC v also converges with limit zero.

The proof of this lemma is given in Part 6; assume it to be true in the meantime.
Lemma 7.7 leads to the analog of Lemma 6.2 in [22]; this has the identical assumptions
and adds the following conclusion:
(7-42) lim r}/2( sup dist(z, 0, 1(0)) + sup dist(C,z)) = 0.

n—00 zeC z€a; 1(0)
The proof of (7-42) is almost identical to that of Lemma 6.2 in [22] and so the reader
is referred to Section 7 of [22] for the proof of the latter’s Lemma 6.2. By way of a
guide to the proof of Lemma 6.2 of [22], much of what is done in Section 7 of [22]
is of no concern to (7-42) because of the three facts listed at the end of Part 2. In
particular, the integer m that enters in Lemmas 7.2-7.5 and Lemma 7.7 of [22] can be
set equal to 1. Moreover, most of the delicate estimates in Section 7d of [22] are not
needed because distinct s > 1 slices, or distinct s < —1 slices, of any given subvariety
from M (@’ , @) are in tubular neighborhoods of distinct integral curves of v and are
isotopic in these neighborhoods to the core integral curve.

Given Lemma 7.7 and (7-42), the argument to prove that W' is onto is an almost
verbatim copy of the arguments in Sections 6b—6e of [22]. Only the simplest cases of
these arguments are needed by virtue of the facts listed in the final paragraph of Part 2.
In any event, the modifications of the arguments in Sections 6b—6e of [22] are minimal
and so nothing more will be said.

Part 6 The proof of Lemma 7.7 invokes an analog of Proposition 5.5 in [22], this
constituting the lemma that follows:

Lemma 7.8 Given ¢ > 1, there exists k > 1, and, given m > «, there exists k,, > 1
which, with « , has the following significance: Fix r > k,, and p € Q2 with P—norm
less than 1. Suppose that 0 = (A, ¥ = («, B)) is an instanton solution to (4-1) with
Ay < cr and with limg— 0o M(0]s) < c.

e Each point in R x Y where |a| <1—«~! has distance at most kr—/2 from
where o = 0.
e Moreover, there exists:

(a) A positive integer N < k and a cover of R as UlsksN Iy by connected

open sets of length at least %m These are such that I N Iy = @ if
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|k —k’| > 1. In addition, if |k —k’| =1, then I} N I}, has length between
ngm and &m.

(b) Foreachk e{l,2,...,N},aset ¥y whose typical element is a pair (C,m),
where m is a positive integer and where C C R x Y is an irreducible,
pseudoholomorphic subvariety. No two pairs from v}, contain the same
subvariety component and )¢ myes, M Jo W < K.

In addition, these sets {Uy }x=1,... n are such that:

(1) SupZ € U(C.m)Eﬂk C and S(Z) € Ik diSt(Z’ O{_l (0))
+SUP, ¢ o1 (0) and s(2) e 1, B Ucmyen, C-2) <m™.
(2) Let k €{l,...,N}, Iet I' C I} denote an interval of length 1, and let v

denote the restriction to I’ x Y of a 2—form on R x Y with ||v]ec = 1 and
1

i _

”VU”oofm Then‘EfI/XYU/\FA‘—Z(C’m)Eﬁme U‘fm .

The arguments for this lemma are given in a moment. Assume it to be true for the
subsequent proof of Lemma 7.7.

Proof of Lemma 7.8 The proof has three steps.

Step 1 Pass to a subsequence of {(r,, i4n), On}n=1,2,... and renumber from 1 with the
subsequence chosen so that Lemma 7.8 can be invoked with m = n for each index .
Lemma 7.8 provides a corresponding sequence {0 ,}k—1,.. N, With each Ny, a priori
bounded by Lemma 7.8’s constant . Since the sequence {N,},=1,2,... is bounded,
the sequence {(r,, itn), On}n=1,2,... can be assumed to have the property that N, = N
for all n.

A subsequence of {(rs, 4n).On}n=1,2,.. can be chosen and renumbered from 1 so

that the sequence {{Dk n}k=1,2,..N}, =1
pseudoholomorphic subvariety. This is a collection {¥ jx—1 2, n’ of sets with the

converges to what is said to be a broken

properties that are listed next. First, each 1, is a finite set of pairs with each pair having
the form (C,m) with C € R x Y being an irreducible pseudoholomorphic subvariety
and with m being a positive integer. Moreover, if N’ > 1, then each % contains at
least one pair whose subvariety is not R—invariant.

The second property concerns the large s limits of the elements in each 9. In
particular, the s — oo limit of the constant s slices of ¥, determine a finite set,
denoted by O, whose elements are pairs of the form (y, ¢) with y being a closed
integral curve of v and ¢ being a positive integer. The manner by which ¥ determines
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O, + is as follows: For s € R, let C|s C Y denote the constant s slice of C. View
U(C’m)eﬂk mC|s as a current. This current converges as s — oo and the limit is the
current (¢, yyeo,,. 4 - BY the same token, the s — —oo limit of (¢ myes, mCls
determines a second set, ® _, this having the same form as ®y . The collection
{(®k,—, Ok 4+)}k=1,2,.. N are constrained by the requirement

(7-43) ©1_ =0,  Op4=0py_ fork=1,....N' =1, Oy 4=0.

Here and in what follows, ® denotes the image of ©’ via the projection to Zech,p -
The convergence of {{ﬁk,n}kzl,Z,...,N}n=1,2,m to {9 }k=12... N’ is analogous to
that described in the paragraph surrounding equation (5.38) in [22], with the only
salient modification being the replacement of da in this equation in [22] with w.

Step 2 The constraints on the first Chern class of E, what is said in (7-43) and
what is said in Section II.3 about pseudoholomorphic subvarieties in R x Y place
extra constraints on the pairs from {#; }x—; . n’. The first constraint involves the
integer components of these pairs: if (C,m) € Uk:l,..., N’ Uk, then m = 1 unless
either C is compact or all components of its constant s slices converge as |s| — oo to
closed integral curves of v in | J,ep Hp. The remaining constraints involve the sets

UOk— Ori g e

(7-44) o If y comes from a pair in (J;_; n/(Or— U©Og,), then y is disjoint
from Ho and as a consequence, y lies entirely in the union of the £ € (1,2)
part of My with (J,ep Hp-

* Each (y,q) € Ug=y,. N/(Ok—UBry) has ¢ = 1 unless y C UpeA Hyp .

e Fix k € {l,..., N’} and let O , denote either ®; _ or O ;. Then
(U(%l)e@k, y) M Mg consists of G arcs that pair the index 1 and index 2
critical points of # in M in the sense that distinct arcs start on the respective
boundaries of the radius § coordinate balls about distinct index 1 critical
points of # and end on the respective boundaries of the radius § coordinate
balls about distinct index 2 critical points of f.

The proof given below that these constraints must be satisfied uses the following
observation: if ® is any element from the set {O _,®f 4 }x—1 .. N/, then the
homology class [®] = >, )ece q[y] is Poincaré dual to the first Chern class of E.
This is proved using backwards induction on the integer k, starting from k = N'. Tt
holds in this case because Oy’ + = ©. Supposing that it holds for any ® ., then it

Geometry € Topology, Volume 24 (2020)



3338 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

holds for the corresponding ® _ because © _ and ®  are homologous. (The class
[Ok,+] —[Of ] is the pushforward to Y via the projection from R x Y of the relative
homology class (¢ m)es, M[C].) And, it holds for ©f_; 4 if it holds for O
because these two sets are identical.

The proof that the constraints in (7-41) are obeyed uses backwards induction on k also.
Start with @y to see that the constraints on the integer components of its pairs are
forced by the condition that ® - 4 = ©. The constraints on © - _ are then forced by
the first Chern class considerations and what is said in Section I1.2 about the closed,
integral curves of v. For example, a loop y from a pair in ® 5/ _ cannot intersect Hg
because, as explained in Section IL.3, it would then have positive intersection number
with any cross-sectional 2—sphere in H¢. This would mean that the first Chern class
of E has positive pairing with such spheres, which is not the case by assumption. The
fact that (y,q) € N’ — has g =1 unless y € Upe A Hp follows for a similar reason: If
g > 1 and y is not entirely in some p € A version of H,, then the class [© - _] would
have intersection number at least ¢ with a cross-sectional sphere in some p € A version
of Hyp. (According to Section IL.2, all integral curves of v intersecting H, have positive
intersection number with such spheres except y; and y,".) This can’t happen because
the first Chern class of E has pairing 1 with each such cross-sectional sphere. The
condition in the third bullet of (7-41) must hold because the first Chern class of E has
pairing G with the f = % level set in M (and because of what Section I1.3 says about
the integral curves of v in the My part of ¥ being arcs on which f is monotonic).

The constraints on © y/_1 4 are obeyed because this is the same set as ® y- _. Then,
exactly the same considerations (except with N changed to N’ —1) as in the preceding
paragraph shows that the constraints in (7-41) must hold for ®x-_; _. Continuing in
this vein proves that the constraints hold for all of the ®; 1 and O _.

Step 3 Fix k € {1,..., N’} and use Zj to denote the 2—cycle in Y given by the
pushforward via the projection of Z(C,m)eﬁk m[C] with [C] here denoting the non-
compact cycle in Y that is carried by the fundamental class of C. The boundary of Zj

is the 1—cycle Z(y,q)e®k,+ qlyl— Z(y,q)e@,{,_ qly].

Definition 2.14 in [2] uses [Z}] to define the embedded contact homology index, this be-
ing an integer that is denoted here by I(®f_, O, Zy). Let Z denote Zlgka’ Zy -
Given Remark 2.16 in [2], what is said by (7-43) implies that

(7-45) 10.0,2)= Y 1O .0, Zp).
1<k<N’
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The argument in Part 2 of the proof of Lemma 6.1 in [22] for the nontorsion case can
be copied here with only minor changes to see that /(®’, ®, Z) = 1. This argument
uses what is said in Lemma 7.8 about the large n versions of «,; 1(0) and the fact that
the instanton 9, is in the (ry, iy) version of M (¢, ¢).

It follows from Hutchings’ Definition 2.14 in [2], from the description in Propositions
I1.3.1-11.3.4 of the pseudoholomorphic subvarieties in R x Y, and from (7-41) that
I(®',0,Z) =1 if and only if N’ = 1, in which case ©; defines an element in
My ((:)/ , @). The argument for this uses the inherently positive intersection numbers
between pseudoholomorphic subvarieties in much the same way as used in the proof
of Lemma II1.8.3 to more than offset negative contributions to the sum in (7-45) that
come from any given pair (C,m) € | J k=1....N’ Uk - This is illustrated in the proof of
Lemma III.8.3 by the formula (I11.8-6). O

Proof of Lemma 7.7 Given that N’ =1 and that ¢#; defines an elementin M/ (@’ , (:)),
then what is said in Lemma 7.7 follows directly from the conclusions of Lemma 7.8. O

Part7 This part contains the:

Proof of Lemma 7.8 The arguments are much like the simplest versions of those
used to prove Proposition 5.5 in [22]. The six steps that follow describe what is needed
from [22] and what parts of these arguments need more than purely cosmetic changes.

Step 1 Given the bound in Proposition 6.1 on M, Proposition 4.5 in [22] has a
simpler analog here also. This analog is a slightly weaker version of Lemma 7.8 that
differs from Lemma 7.8 only to the extent that it does not make the claim that the
pseudoholomorphic subvarieties in any given k € {1,..., N} version of ¥ are defined
on the whole of R x Y. The weaker version claims instead that the J; subvarieties are
defined on a neighborhood of I x Y.

The argument that derives Lemma 7.8 from its weak version amounts to little more
than a standard application of a local form of the Gromov compactness theorem for
pseudoholomorphic subvarieties. This argument differs little from the compactness
theorems in [1]. Given the a priori bound on M from Proposition 6.1, the derivation of
Lemma 7.8 from its weak analog differs only in notation from what is said in [22] to
deduce Proposition 5.5 in [22] from Proposition 5.1 in [22].

Step 2 What follows here and in the subsequent steps proves the weak version of
Lemma 7.8 using a modified version of the argument for Proposition 4.5 in [22]. The
modified version of this proposition is stated by the next lemma:
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Lemma 7.9 Given ¢ > 1, there exists « > 1, and, given m > k, there exists k,, > 1
which, with k , has the following significance: Fix r> k,, and u € Q with P—norm less
than 1. Suppose that 0 = (A, ¥ = («, B)) is an instanton solution to (4-1) with Ay < cr
and with limg_so M(0|s) < ¢. Let I C R denote an interval of length at least 2m.

—1/2

e Each pointin I x Y where |a| <1 —«~! has distance kr or less from a

zero of «.

o There exists a finite set, ¥, whose components are pairs of the form (C, m) where
C is a closed, irreducible pseudoholomorphic subvariety in a neighborhood of
the closure of I x Y and where m is a positive integer. Moreover, no two pairs
in ¥ share the same subvariety component. This set is such that:

@ SUP,e, ey Cosiorer dist(z.a71(0)
+ SUP,ca—1(0). s(z)el diSt(U(C,m)eﬂ C.z)<m™ .
(b) Let v denote a smooth 2—form on I x Y with compact support, with
lvllco =1 and with |Vv|co < m. Then

I
— VA F~— m/v
27r/1><Y 4 Z C

(C,m)ev

< mL.

() Z(C,m)eﬂ m fC w=<KkK.

The proof of this lemma is given in a moment. The next lemma plays a central role in
the proof, and in subsequent arguments in this section:

Lemma 7.10 Given ¢ > 1, there exists k. > 1 with the following significance: Fix
r >k, and p € Q with P—norm less than 1. Suppose that 0 = (A, ¥ = (@, B)) is
an instanton solution to (4-1) with Ay < cr and with limg_,oo M(0|s) < c. Let I CR
denote an open interval. Then —Kﬁr_1/3 < fle iFZ AW <K,.

Proof of Lemma 7.9 Given the bound in Proposition 6.1 on M, what is asserted by
Lemma 7.9 follows directly from the Y, = Y version of Proposition 6.3 with the
help of Lemma 7.10. The latter is needed to deduce item (c) of the second bullet of
Lemma 7.9 from the second bullet of Proposition 6.3. a

Proof of Lemma 7.10 Invoke Proposition 6.1 to bound M by ¢, with ¢, denoting
here and in what follows a purely c—dependent constant which is greater than 1. Its
value can be assumed to increase between successive appearances.

Consider first the upper bound. To this end, write I as (s1,s2). Fix s € (0, 1) and
suppose that m > 0 is such that the integral of iF; A w over [s; —s,52 + 5] X Y is
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bounded from above by m. As explained directly, this implies that the integral of
i F 3 Aw over the smaller region / XY is bounded from above by m+c.x~!. To see why
this is, use the bound on M to invoke Lemma 4.9. The depiction of %A + B4 by this
lemma implies that the function o in (5-7) must obey 1 —o > —c r~!. With this bound
available, then use the top bullet in (7-4) to see that x(( F ;A w) > —c(1 —50)3/ 4. (Keep
in mind that |eq| < c.((1 — ) + ') and that p’ < co(1 — )3/*.) Since p < 1 only
where ||? is less than %, putting a factor of (1 —|«|?) here (and making c, bigger)
gives the bound *(iF; Aw) > —c (1 — |a|?). Therefore, the integral of *(iF g Aw)
over the domain in question is no smaller than that of —c.(1 —|a|?). Meanwhile, the
integral of r(1 — ||?) over [s; —s,s1] x Y is at most M (which is less than c,), and
likewise the integral over [s2, 52 +s]x Y ; and so the integral of *(i F ; Aw) over either
of these domains is no smaller than —c.r~!. Thus, the integral of *(i F 7\ w) over
I xY is at most m+c.r~! because its integral over the larger domain [s; —s, s +5]xY
is bounded by m (by assumption).

Since M is bounded by c,, there exists s € (0, 1) such that M(3|s,—s) and M(D|s,+5)
are both bounded by ¢.. Given what is said in the preceding paragraph, it is sufficient to
bound the integral of i F g Aw over [s1 —s, 52 + 5] x Y. This is done by comparing this
integral to the integral of i F4 Aw over [s; —s, s2 + 5] x Y. The comparison is made in a
moment. What follows directly studies the integral of i F4 Aw over [s] —s, 52+ S| X Y.

Write A = Ag + a4 and integrate by parts to see that

(7-46) / iFA/\wzi/ aAAw—i/ aqAw.
[s1—s,50+s]xY {s2+s}xY {s1—s}xY

Meanwhile, use (1-26)—(1-28) and the fact that 2’—n (Fay + 2 Fa,) can be written as
w + db to see that

(7-47) 1 H(a@|s,—s) — a@]5o—s))

:(1—2r_1)(i/ aA/\w—i/ ZiA/\w)+e,
{s2+s}xY {s1+s}xY

where ¢ has absolute value bounded by ca /3 To see why this is, note first that ¢ is
bounded by ¢ times a sum of two terms. The first is itself a sum,

/ sy —i—r_l‘/ b Adis
{s2+s}xY {s2+s}xY

41! / WA By
{s2+s}xY

(7-48) !

+r7!

’

/ D4y
{s2+s}xY
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and the second has the same form but for the replacement of s, +s with s1—s. The terms
in (7-48) are bounded as follows: starting from left to right, the integral of a4 Aday is
bounded as in (6-16), thus by r2/3m*/3  (In this paragraph, M =M(?| so+s).) Thus, with

1/3 or less to ¢. The

the extra r—! factor, the left-most term in (7-48) contributes c.r™
two middle terms contribute at most ¢,r~'M to ¢, which is to say at most rlc,. This
is because *ddy = B4 — B4, and because Lemma 4.7 (with Lemma 5.2) bounds the
norm of By by co(r|1—|e|?|+1). Finally, the right-most term in (7-48) is bounded by
co(M'/2+41r71/2) and thus by c.. (This bound follows from the top bullet of Lemma 4.8

and Lemma 4.4 since |¢TD4y| is no greater than co(|Vaa| + |VaB| + |8]).)

To finish the story on (7-46), note that a(d|s, —s) —a(d|s,—s) is nonnegative and, in any
event, no greater than A,, and thus no greater than rc. Therefore, because ¢ < ¢, the
right-hand side of (7-46) is likewise less than c,.

Write A as Ag +4a 7 and use integration by parts to write the A analog of the formula
in (7-46). The latter has the integral of iF; A w over [s; —s,52 + 5] X Y on the
left-hand side and has the same right-hand side as the original, A version but for the
replacement of @4 by a ;. This being the case, (1-15) with the bounds in the top bullet
of Lemma 4.8 for |V | can be used to see that the absolute value of the difference
between right-hand sides of the respective a4 and a i versions of (7-46) is at most
CC(MI/Z + r_l/z). This is less than ¢, because M < c,.

To prove Lemma 7.10’s lower bound assertion, remember from what was said previously
that (i F g Aw) > —c (1 — |ae|?). Since the integral of r(1 — |«|?) over an interval of
length 2 (centered at any given s € R) is bounded by M(s) (which is less than ¢, by
assumption), it follows that the integral of *(i F ;Aw) over I XY is no less than —cr!
when 7 has length 2 or less. This understood, assume henceforth that the length of 7/
is greater than 2. Write I = [s1, s2] and suppose that s € (0, 1) and m > 0 are such
that the integral of iF; A w over [s1 + 5,52 —s] X Y is greater than —m. Then, the
integral of i F z A w over the larger domain [s1,52] X ¥ is no less than —(m + cor 1)
because the extra regions tacked on are of the form 7’ x Y with length I’ = s which is
less than 1 (and, as just established, the integral of *(i F ; A w) over such domains is
not less than —c.r~1.) With the preceding understood, use the fact that M is bounded
by c. to choose s so that both M(dy,+5) and M(d5,—s) are bounded by c¢.. The plan
is to compare the integral of i F ; A w over [s1 + 5,52 —s] x ¥ with thatof iFg Aw
over [s; +s,52 —s] x Y. Use (7-46)—(7-48) with s replaced by —s to see that the latter
integral is no less than —c.r~ /3 Meanwhile, the right-hand side of this —s version
of (7-46) differs from the right-hand side of its A counterpart by at most ccr_l/ 2. The
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argument for this is identical but for the change s +— —s as that given in the preceding
paragraph.

Step 3 The Y, =Y versions of Lemmas 6.4 and 6.5 play the role here of that played
by Lemma 4.6 in [22] and Corollary 4.7 in [22]. The next lemma is a replacement for
Lemma 4.8 in [22]:

Lemma 7.11 Given m > 1, there exists k,, > 1, and, given ¢ > 0, there exists Rg > 16;
and these have the following significance: Let I C R denote an interval of length at
least 2R, and suppose that C is a closed, irreducible, pseudoholomorphic subvariety
in a neighborhood of T XY with [¢npyyw <&, and [cnrxyyds AG < m for
all intervals I’ C T of length 1. Assume in addition that C has intersection number
zero with all submanifolds in R x Y of the form {s} x S with S being a cross-sectional
sphere in Ho. Let I C I denote the subset with distance at least R, from any boundary
point of 1. There exists a finite set ® consisting of pairs (y,q) with y a closed,
integral curve of v and q a positive integer. The set ©® is such that no two pairs share
the same closed integral curve. Moreover:

* Lgeedly <m.

e Each point of C|g for s € I has distance along Y less than ¢ from U(y,q)e@ Y.
Conversely, each point in U(y, ¢)eo v has distance no greater than ¢ from C |s-

e If v isasmooth 2—formon I x Y with |[U]lecc =1 and |Vv||co < &1, then

v— q/ v
/CH(IXY) Z Ixy

(r,9)€0

<é.

Proof The proof of Lemma 4.8 in [22] can be copied with only the replacement of M
with Y and with the references to Corollary 4.7 in [22] replaced by references to
Lemma 6.5. |

The lower bound in Lemma 7.10 for integrals of i F'; A w serves as a replacement for
Lemma 4.9 in [22].

Step 4 The remaining arguments for the weak version of Lemma 7.8 are similar in
most respects, and simpler, than those given in Parts 4 and 5 of Section 4d in [22] to
prove Proposition 4.5 in [22].

To complete the proof of the weak version of Lemma 7.8, fix ¢/ > 0 and define the
subset Z C Z by the rule that places a given integer k in Z if and only if the integral
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of iFz Aw over [k,k + 1] x Y is greater than &’. It follows from the asserted upper
bound from Lemma 7.10 in the case / = R and from the lower bound as applied
to the components of R — (U xezlk.k + 1]) that T is a finite set with the number of
components bounded by a constant that depends solely on ¢ and ¢". Use ng to denote
this number.

Introduce the number R,/ from Lemma 7.11. There is a set, 1V, of at most n,/ intervals
in R and a pair of numbers, ¢, , and ¢, , with the properties listed below:

(7-49) o c¢p,,, and ¢y, are determined solely by ngs and m. In any event, ¢, >
Cmyr > 1000

e Usey I contains (Jy 7k, k +1].

e Suppose that [ € V.
(a) [ has length greater than c¢,,, (m + Re) but less than ¢, (m +Rgr).
(b) I contains at least one k € Z version of [k, k + 1].
¢ INn (UkeI[k’ k + 1]) has distance at least 10R, from [ ’s boundary.

e If 7 and I’ are distinct intervals from V' with nonempty intersection, then
I NI’ has length greater than ﬁm.

e Each component of R — (|7 ¢, /) has length greater than 4.

1
64
any boundary point of /. The assertion of the weak version of Lemma 7.8 follows

Given I C V, use I, C I to denote the set of points with distance -;m or greater from
directly by using Step 2’s analog of Proposition 4.5 in [22] (ie Lemma 7.9) for its
interval I taken in turn to be the intervals from V and using Lemma 7.11 for each
component of R — (U 1ev ! *) with the constant in both replaced by &’ and with the
latter being a suitable function of . |

7.6 Proof of Theorem 1.5, I1

The five parts of this subsection complete the proof of Theorem 1.5. Part 1 proves the
assertion at the very end of the theorem about the versions of I that are defined by
distinct data sets. Part 2 of the subsection talks about some points in the proof given in
Part 1 that are used implicitly in Parts 3-5. Parts 3 and 4 of the subsection prove the
fifth bullet of Theorem 1.5, and Part 5 uses what is done in Parts 3 and 4 to prove the
fourth bullet of Theorem 1.5.
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Part 1 A proof is given in a moment for the final assertion of Theorem 1.5. What
follows directly spells out what need proving. Fix L” > 1 and suppose that (r, i, p)
and (r, i/, p’) are data sets that satisfy the conditions demanded by Theorem 1.5. This
is to say that the solutions to the respective (r, ) and (r/, u") versions of (1-13) are
nondegenerate and holonomy nondegenerate, and that the respective instanton solutions
tothe (r,g=-¢, +p) and (', g = e;L +p’) versions of (1-20) are also nondegener-
ate. Granted these assumptions, the pair (r, #) can be used to define Z(Zsw,) and
Z(Z?’;WJ), and (r, t, p) can be used to define the endomorphism 93, . By the same
token, (', it’) can be used to define Z(Zsw ) and Z(ZA’S<W’ ), and with p’ they define
the corresponding version of dg,,. As noted in Proposition 1.4, there is a canonical
homomorphism between HSO\‘,’VJ, Hgy, . and HSJ(,VJ and the corresponding primed triad
that intertwines the respective long exact sequences. Now suppose in addition that r
and r’ are such that Proposition 3.1 can be used to define the @' and ®" on ZCLC;I M-
Theorem 1.5 asserts that this canonical homomorphism between homology groups can
be lifted to a chain complex homomorphism between the respective Z(ésw,r) and
Z(ésw,r/) which has the properties demanded by Proposition 1.4 and also intertwines
the two versions of L'.

To prove this assertion of Theorem 1.5, return for the moment to Section 7.3. The
existence of a lift of Proposition 1.4’s canonical homology homomorphism to a homo-
morphism from Z(ésw,r) to Z(ésw,r/) that satisfied Proposition 1.4’s requirements
is proved in Section 7.3. In particular, it follows from what is said in Section 7.3 that
such a lift can be found that factors as iy oly—1 0---oly with {; mapping the (r, i, p)
version of Z(Z,A’ sw.r) toan (ry, i1, p1) version, with I, mapping the latter version to an
(r2, 2, p2) version, and so on, and with i mapping an (r,—1, tn—1, PN—1) version
to the (r/, w',p’) version. These various data sets are such that each k € {1,..., N —1}
version of |rg41 —1g| is very small as are the P—norms of jtg41 — g and pgiq — Pk
Likewise, both |r; —r| and |’ —r,—1| are small, as are the P—norms of pu; — u
and p; —p, and also ' —puy—1 and p’ —py—1. Note that “small” here means as small
as desired (but not zero) at the expense of increasing N.

Of particular import is that the sequence {rg jx—12,... can be chosen so that each element
obeys the requirements set forth by Proposition 3.1 to define the corresponding version
of &) on é’ech, M - According to Proposition 3.1, each such version of o) maps
to nondegenerate and holonomy nondegenerate solutions to the appropriate version
of (1-13). It is also the case that each element can be assumed to obey the conditions
set forth in Proposition 7.6 for all pairs (0, ®’) € Zelg; s - Proposition 7.6 supplies for
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each such pair a corresponding map W) and of particular import is that the image
of the latter consists of nondegenerate solutions to (4-1). Granted these last remarks,
the final assertion of Theorem 1.5 follows from what is said in Parts 3—5 of Section 3h
in [19]. Part 2 of this subsection says more about these parts of [19].

Part2 The appeal to Parts 3-5 of Section 3h in [19] uses only the fact that sufficiently
large versions of o) map to Gy, —orbits of nondegenerate solutions to the relevant
version of (1-13). What follows elaborates on what nondegeneracy implies. Let ¢
denote a nondegenerate solution to a given (r, i) version of (1-13). The nondegeneracy
assumption is used in two related ways. The first uses ¢’s nondegeneracy with the
implicit function theorem to build a smooth map from a neighborhood of r in (77, 0c0) x 2
into Conn(E) x C*°(Y; S) with two salient properties: The map sends (r, i) to ¢ and
it maps any (r’, u’) in its domain to a solution to the (r/, u’) version of (1-13). In
addition, if ¢ is a solution to the (', ) version of (1-13) and if the C°(Y; S') orbit
of ¢ is sufficiently close to ¢, then the image of (r’, 1) via the map lies on this orbit.
This map is denoted by ¢, in what follows.

The second use of the nondegeneracy assumption concerns instanton solutions to (7-40).
To say more, suppose that (r, ) and (r', u’) are very close in (7, 00) X €, and that
p € P, and p’ € P, are likewise very near each other in 7. Consider (7-40) when the
data set (r(.y, f(.), P(.)) has s — —oo limit given by (r, i, p) and s — oo limit given
by (', i/, p’), and when it is such that (r(.y, it(.), p(.)) is nearly constant as s varies
in R. Because ¢ is nondegenerate, standard perturbative techniques will prove the
following: There is a unique instanton solution to (7-40) with Fredholm index equal
to 0 whose s — —oo limit is ¢. This instanton is very close to ¢ at each s € R and its
s — oo limit is a solution to the (r/, u’) version of (1-13) that is very close to ¢. In
particular, this limit is the translate of ¢.(r’, /) by a map from Y to S! that is very
close to the constant map to 1 € S'. Let ¢/ denote this limit.

Looking ahead to Parts 35, the fact that the map from ¥ to S is almost the constant
map has the following implications: The values on ¢’ of the functions ¢s and W
in (1-26) and (1-27) are identical to their values on (r/, u"). Likewise, the value on ¢/
of the (1/, u’) version of (1-28)’s function a is the same as its value on (r’, u’). The 1’
version of the function M automatically has the same values on ¢’ and ¢ (', ).

Part 3 The proof of the fifth bullet of Theorem 1.5 is given here and in Part 4. To
start the proof, note that the residual set that is described by the second bullet in (1-18)
can be chosen so as to have the properties listed below:
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There is a countable, nonaccumulating bad set in (7, 00) such that if r avoids it, then:
(7-50) e The corresponding (r, g =r¢,,) version of Zsw is a finite set of C*®(Y; S!)
orbits in Conn(E) x C*°(Y;S).
¢ Each solution to (1-13) is nondegenerate and holonomy nondegenerate.
e If ¢ and ¢ are solutions to (1-13) in distinct C®°(Y; S!) orbits, then
al(c) # d(¢).
The arguments in Sections 7.2 and 7.3 of [17] can be used almost verbatim to prove
this.

Fix an element p € Q with P—norm less than 1 that is described by (7-47). The latter
describes a certain countable, nonaccumulating subset of (7, 00). Denote this set by /.
If r > 7 and is not in U, then the solutions to the (r, i) version of (1-13) are suitable
for defining the Z—module Z(é’sw,r). Fix r >  in the complement of ¢/ and choose
a suitably generic element p € P, to define the differential 0%y, on Z(ésw,r). Let1
denote a given class in either H*®, H™ or H™. The class I is then represented by a
d$w cycle in Z(z% sw,r). This is to say that any given representative of I can be written
as

(7-51) 3= Y.zl
[J€Zsw.r
where each 7| € Z and where only finitely many of these integers are nonzero.
Associate to such a representative cocycle the number
(7-52) dfsr]= _inf  {d[c]},
[c(l€Zsw v, 2 F#0

and associate to the class I the number
(7-53) af[r] =sup{a'[3,1] | 5 € Z(ésw,r) represents 1}.

There are but a finite number of C*°(Y; §1)—equivalence classes of solutions to (1-13)
and so there is at least one cycle in Z(é’sw,r) that represents 1 with af[-, 1] equal
to af[r]. Proposition 2.7 finds af[r] < cor and Proposition 2.7 with Lemma 2.5 find

af[r] > —corlinr.

Propositions 4.7 and 4.8 in [19] have the following analog:

Lemma 7.12 Choose p € Q2 with P—norm less than 1 and described by (7-47).
Denote by U C (i, 00) the bad set. Given r € (7,00) —U, use the solutions to the
(r, ) version of (1-13) to define Z(ésw,r). There is a smooth map, r + p;, from
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(r, 00) —U to P such that:

e Foreach r e (r,00)—U, the element p, vanishes to second order on all solutions
to the (r, u) version of (1-13).

e The pair (r,g = ¢, + p;) is suitable for defining 03y, on Z(ésw,r) if re
(7w, 00) —U is chosen from the complement of a discrete set, V), that accumulates
only on the points in U .

e Proposition 1.4’s canonical isomorphism between the various r € (7, c0)—(UUUV)
versions of the 9%y, homology groups HSO\C,’VJ, Hgy, . and HSJFW,r is such that
following is true: if 1 is any given nonzero homology class in Hgy,, Hgy
or HSJ(,V, then the assignment r+— a{ [r] as defined above for r € (7, 0c0) — (U U V)
is the restriction of a continuous and piecewise differentiable function on (7, 00).

Proof But for notation and interchanging min with max, the proof mimics the ar-
guments for Proposition 2.5 in [18] and for Proposition 4.2 in [17]. Note in this
regard that the arguments in these papers use a homomorphism between the (r, &, pr)
and (', u, py) versions of the 93, homology that is not obviously the canonical
isomorphism. Even so, what is said in Part 2 of this subsection with arguments much
like those in Section 7.3 can be used with the arguments in [18; 17] to obtain a proof
of Lemma 7.12’s assertion about the canonical isomorphism. See also Proposition 10.7
in [4] and its proof. O

Let I denote a given class in either Hgy,, Hgy, or H, SJFW. The function ai is important

only to the extent that it can be used to analyze a second function of r, this denoted
by M;(-). To define the latter, fix p(.) as in Lemma 7.12 so as to define dg,, on
Z(ésw,r) when r € (77, 00) — (4 U V). Given such a value for r, let 3 denote a 95y,
cycle that represents 1. Write 3 as in (7-47) and define M[3,1] = SUDP[]e B 1, 70 M(c).
Define

(7-54) M([r] = inf{M[z,1] | 3 € Z(é’sw,r) represents I and o/ [z, 1] = af}.

It follows from what is said in Part 2 of this section that M; is a priori a smooth function
on (m,00)— (UUYV).

Part4 Theorem 1.5’s fifth bullet follows from Proposition 3.1 if the following assertion
is true:

(7-55) Fixaclass Iin Hgy,, Hgy, or HSJFW. Then the corresponding function M;(-) is
bounded.
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Of course, (7-55) makes sense only when p is described by (7-47); but Theorem 1.5
follows in any event using the fact that the set described in (7-47) is dense in €2 and
what is said in Part 2 of this subsection.

To see about (7-55), fix an interval component of (7, 00) — (/ U V) and differentiate
the expression in (1-28) on this interval to see that

(7-56) —(——al) = lzcsf(c),
r

with ¢ a particular solution to (1-13) whose equivalence class has nonzero coefficient in
some representative cycle for T with af[-,1] = ai. Use Lemma 2.5 and Proposition 2.7
to see that the right-hand side of (7-56) is no greater than cor~#/3(Inr)#/3. This being
the case, integrate (7-56) on the components of (7, c0) — (1 U V) and use the fact that
al[-] is continuous to see that —al[r] < ¢;r + r'/3(Inr)*/3 with ¢, being a constant
that depends on T but is independent of r. This last bound plus the bound implied by
Lemma 2.5 and Proposition 2.7 for |csf| requires Wi[¢] < ¢; +r~2/3(Inr)*/3 with ¢
being a particular solution to (1-13) whose equivalence class has nonzero coefficient
in some representative cycle for 1 with al[-,1] = af. Thus, Wi[c] is bounded by an
r—independent constant determined by the class 1. This understood, (7-55) follows

directly from the second bullet of Proposition 2.7.

Part 5 This part proves the fourth bullet of Theorem 1.5 in four steps.

Step 1 Fix p from the set described by the second bullet of (1-18) and use U to
denote the corresponding countable, nonaccumulating set in (7, 00). Suppose that
r € (mw, 00) —U is sufficiently large. In particular, require that r with p and a suitably
generic, small-normed element p from P can be used to define L' on Zelgh’ M SO asto
satisfy the first three bullets of Theorem 1.5 and the fifth bullet. Require in addition that
the final assertion of Theorem 1.5 hold for (r, i, p) and data sets (r, w, p’) with ' >r.

Step 2 Introduce QeLch to denote either

SL 5L, 5L 5L,
Z (Zech,M)’ Z(ZechTM) or Z (Zech,M)/Z(ZechTM)

and let Qgw denote the corresponding Z(Zsw.r). Z(ZA'S<WJ) or Z(Zsw.)/ Z(ZA’;WJ).
Let ¢ denote an element in QeLCh such that L'¢ = d§,3 with 3 being an element
in Qgw . If the fourth bullet of Theorem 1.5 holds for ¢, then it holds for ¢ + dechg’ for
any ¢’ €Q g‘ch, this being a consequence of the second and third bullets of Theorem 1.5

and the fact that " is a monomorphism.
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Since (8§W)2 = 0, the second and third bullets of Theorem 1.5 require dech, s = 0.
Granted this, then ¢ defines a class in the homology of the chain complex (QeLch, Oech) -
Use I¢ to denote this class. What is said in the preceding paragraph implies that the
question of whether the fourth bullet of Theorem 1.5 holds for a given element ¢
depends only on the class I..

L

ech’

the (Qsw, dgy) homology. The conclusions of Step 2 mean that the fourth bullet of

Step 3 The map L' induces a homomorphism from the (QZ, , dech) homology to
Theorem 1.5 is asking about the kernel of this map. Let K7 denote this kernel. As
explained next, the Z-module K;, does not depend on the value of r if sufficiently large.

To start the explanation, suppose that I € Kz . This is to say that L'¢ = 0%y, with
3 € Qsw. As dechc = 0, the chain L ¢ is annihilated by the (r’, u,p’) version of OSw
when ' > r is disjoint from /. It follows as a consequence that ILr/g defines a class

in either HXS HE

sw.» Hgw v or HSJFWJ, as the case may be. It therefore defines a class in

HS"\?V, Hgy, or HSJ(,V. Given what is said in the last assertion of Theorem 1.5, this class
in HSO\?V,r/’ Hs_w,r/ or H;rw’r/ corresponds to the class in HSO\?VJ, HS_W,r or HSJFW’r that

is defined by L'¢.
The homology of (QZL. | d..y) is finitely generated, and so K, is finitely generated.

ech’
This understood, the assertion made by the fourth bullet of Theorem 1.5 holds for all ¢
with [L'¢ C Image(dgyy) if it holds for a judiciously chosen finite set of such elements.
Therefore, the fourth bullet of Theorem 1.5 holds if the following assertion is true:
(7-57) Fixg € QeLCh with L*(¢) = 9§y 3 for some 3 € Qsw. There exists L’ > L such
L/
ech*

that ¢ = dechg’ for some ¢’ € Q
The proof of this assertion is given in Step 4.

Step 4 Arguments much like those that prove Lemma 7.12 prove the following:

Lemma 7.13 Choose p € Q2 with P—-norm less than 1 and described by (7-47).
Denote by U C (1, 00) the associated accumulation set. Given r € (7,00) —U, use
the solutions to the (r, ) version of (1-13) to define the Z(ésw,r). There is a smooth
map, 1+ p;, from (7,00) —U to P such that:

e Foreachr e (i, 00)—U, the element p, vanishes to second order on all solutions
to the (r, ;) version of (1-13).

o The data (r,g = ¢, + p;) is suitable for defining dg,, on Z(Z,A’SWJ) if r €
(7, 00) —U is chosen from the complement of a discrete set, V, with accumu-
lation only at points in U .
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e The assignment t +—> afg [r] as defined above for r € (7,00) — (U U V) is the
restriction of a continuous and piecewise differentiable function on (7, 00).

Fix p(.y as in Lemma 7.13 so as to define dg,, when r € (7, 00) — (/ UV)). Given such
a value for r, let 3 denote an element which is in either Z(§ Sw,r) Or Z(Z’;W,r), with
3 in the latter when Qe{éh is Z(ZA’CLCfM). Assume that 3 obeys 0%y = L'¢ in Qgw.
Write 3 as in (7-51) and set M[3,1] = SUD[(]e Bow 1, 2 £0 M(c). Now define

(7-58) M [r] = inf{M][3,1] | 3 is such that 3%y 3 = L'¢ in Qsw and a'[3,1] = afg }.

An almost verbatim copy of the argument in Part 4 of this subsection proves that M [1]
is bounded. This being the case, (7-57) follows from what is said in Proposition 3.1
about the map P, m|

Appendix The proof of Proposition 2.6

This appendix supplies a proof for Proposition 2.6. Much of what is done here mirrors
similar constructions in Section 3 of [20] and Section 2 of [21]. Even so, the reworking
can be justified for two reasons. First, the spectral flow function is not invariant under
the action on Conn(E) x C*°(Y;S) of the whole of the group C*°(Y;S), and so care
must be taken so as to not introduce a spurious gauge transformation in any given step
of the proof. Care must also be taken so as not to introduce spurious factors of Inr in
any given step. Such factors are easy to come by because there are solutions to (1-13)
with (1-30)’s function M being greater than ¢ UInr. The need to avoid spurious gauge
transformations and spurious factors of Inr accounts for the much of the length of the
proof.

This appendix has three sections.

A The eigenvalue equation £.,b = Ab

This section of the appendix supplies some necessary background for the proof of
Proposition 2.6. Much of what is done here borrows heavily from Sections 3a—3c
of [20] and Section 2a in [21].

Aa Pairs in Conn(E) x C*°(Y;S) and solutions to the vortex equation

This subsection uses solutions to (2-8) to construct pairs of connection on E and
section of S over the complement in Y of tubular neighborhoods of a chosen subset of
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curves from | J,e A()7p+ U7, ). These constructions mimic those in Section 3 of [20].
There are six parts to what follows.

Part1 The input from the vortex equations includes first a pair (4g, «g) that obeys (2-8)
and is such that %(1 — |ap]?) is integrable. As noted in (3-1), the integral of this
function is a nonnegative integer and of interest here is the case when the integer
in question is 1. This is to say that (Ag, ) define a point in the vortex moduli
space €. Use the pair (Ao, ®p) to construct the square-integrable solution ¢ to (3-27).
Meanwhile, let y denote the square-integrable, real-valued function on C that solves
the equation

(A-1) —39y + Lao2y = —27V2(1 — |ao|?).

The pair (v, ¢) can be written explicitly in terms of ¢« and its covariant derivative in
the given case when (Ao, «9) determine an element in €. For example, if oy L)=o,
then

(A-2) ¢ =—2@y, ' (1—|aol>) and y=2Y2zay'94,00.

In general, if m > 1 and if (Ag, o) defines a point in &,,, then there is a unique
square-integrable solution to (A-1) and a unique, square-integrable solution to (3-27).
This pair (, <) obeys |y] + |c| < cme 4520 0)/eo,

Suppose that (Ao, ag) defines an element in ¢ and is such that o 1(0) is the origin
in C. Any two such solutions differ by the action of C*°(C; S!) as they correspond
to a single point in € ; this is the point with o1 in (3-2) equal to zero. This point in €
is called the symmetric vortex as it is the unique fixed point in €1 of the action by S
that is induced by the latter’s action on C as the group of rotations about the origin.
There is a unique solution to (2-8) that maps to the symmetric vortex in €; and is such
that

(A-3) Ao=00—ap-1(z7'dz—77'dZ) and ag= |a0||§—|,
where the notation has 6y denoting the product flat connection on the product line
bundle over C and g9 denoting a real-valued function on C. Lemma 3.3 can be used
to prove that gp and |ag| obey

(A-4) I1—ao| <co(l—lao|?) and 1—]ag| < coe17!/eo0,
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Note that if m > 1, then the point in €, with (3-2)’s coordinate functions all zero
also corresponds to solutions (Ag, ctg) with oy 1(0) = 0. There is in this case a unique
solution with a5 !(0) = 0 that has ag = |ao|(z/|z])™.

Part 2 This part of the subsection defines various terms and notions that are employed
in the subsequent parts.

The constructions that are described below require the a priori choice of constants
o > 10°, 2> ¢8 and psx > ¢2z7'/2. The lower bound for ¢, is increased to some
co > 10 in the applications to follow. The constants ¢, and psx are also constrained

L times the maximum

so that ¢2p« < cg! and, in particular, cZp4 is smaller than 155

allowed radius of any transverse disk.

Proposition 3.1°’s map @' uses the pairs constructed below with z = r, with ¢, on the
order of 1, with p4 constrained to be greater than /248 for some fixed § > 0. The
proof of Proposition 2.6 uses versions of the constants with z € (¢, 1), with ¢, = ¢y,

—1/2 g

and with ps no larger than coz" /2 (but psx here is still greater than 2z
required in the preceding paragraph). Thus, different versions of ps are used by these

propositions:

Let Y, denote the subset of ¥ with distance at least ¢2p, from Upea " U 7).
Given that ¢Zps <cy'!, this subset Yy, is a smooth manifold with boundary whose
boundary components are tori and whose complement is a disjoint union of solid tori
tubular neighborhoods of the curves from the set {)7; U¥p tpen-

Part 3 A union of components of ¥ — Y,A must be specified in advance before
starting the construction. This can be the empty set. The chosen subset of ¥ — Yy 5 is
denoted in what follows by Txa The constructions that follow define a connection on
E’s restriction to Yxp U Tx A and a section of S over Yxp U Tk . Proposition 3.1°s
map @' uses only the case when Txp =Y — YA . The proof of Proposition 2.6 uses
all possible versions of Ty .

The construction of a connection and section of S over Y, U Txp requires the choice
of a finite set ® whose elements are described below:

(A-5) e Each element in O is either a curve from {)7p+ U )7; Jpea that lies in Typ
or a properly embedded, 1-dimensional, oriented submanifold in Y44 . The
curves from ® are distinct.

e The Tyxp boundary components of ¥ — Y, are disjoint from the Yip
curves from ®. Any other boundary component of Y. contains no more
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than two endpoints of arcs from ®, and if two, then one has u# < 0 while
the other has u > 0.

e Suppose that y is a curve from © in Yix .

(a) The unit-length, oriented tangent vector to y has distance at most cpz /2
from v.

(b) The curve y intersects any p € A version of H, where 1—3 cos? 6 > 0.

(c) If y is disjoint from a given boundary torus of Yy, then it has distance
greater than 3¢, ps« from this torus.

(d) If y intersects a boundary torus of Yy, then it does so only at its
endpoints. These intersections are transversal. Moreover, one endpoint
of y lies where u < 0 on some boundary component of Y, and the
other where u# > 0 on some boundary component of Y4 .

» The intersection of | J,cg ¥ with Mj sits inthe £~ (1,2) part of Ms. This
intersection consists of G properly embedded segments that pair the index 1
and index 2 critical points of f in the sense that distinct segments start on
the boundary of the radius § coordinate balls about distinct index 1 critical
points of # and end on the boundary of the radius § coordinate balls about
distinct index 2 critical points.

The proof of Proposition 2.6 uses only versions of ® that lack curves from the set
Upe A(?p‘" U )7; ). Versions with curves from this set are needed to define Proposition
3.1’s map P,.

Let y denote a 1-manifold in Y4, from an element in ®. Introduce U, to denote
the union of the radius 4p. transverse disks centered at the points in y. Use U); cu,
to denote the union of the radius ps transverse disks centered at the points in y. If y
isa e A()7p+ U, ) curve from ©, use Uy to denote the union of the radius 4pxa
transverse disks centered on y and use U), C Uy to denote the union of the concentric
radius p«p transverse disks. Keep in mind the following consequence of the formula
in Section 1.1 for v: If ¢, > ¢p, and if y C Y4 is from ®, then U, is an open solid
torus with y the core circle. Moreover, if y and y’ are in Y, and come from distinct
elements in ®, then U, N U, = &. It is assumed in what follows that ¢, is such as to
guarantee this.

Part 4 This part of the subsection describes a certain set of preferred coordinates
for the various versions of U, . Each element in this set is determined in a canonical
fashion by an isometric isomorphism from K~1|, to y x C.
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To define these coordinates, introduce T) to denote the union of the transverse disks
of radius ¢y ! centered at the points of y. Choose this radius so that the union of
the transverse disks with centers on any length less than ¢, 1 segment of y is a
solid, embedded cylinder with the segment as the core arc. The desired coordinates
for U, obtained by restricting the domain of a set of functions on 7, that define local
coordinates on each such solid cylinder.

Let ¢, denote the length of y. The first of these functions is a parameter, denoted
by ¢, with values in R/(¢,Z) when y is a closed loop and with values in an interval
of length £,, otherwise. The coordinate ¢ is constant along each transverse disk in 7,
with center on y. The other coordinate is denoted by z; it is a C—valued function that
identifies each transverse disk with the radius ¢y ! disk in C centered at the origin.
The coordinate identification is such that the origin in C corresponds to y.

Definition Fix a C-linear isomorphism between K~!|, and y x C. This defines
an orthonormal, oriented frame for the kernel of a along y. Use this isomorphism
with the metric’s exponential map to identify a tubular neighborhood of y with y x C.
Use ¢ to denote an affine coordinate long y with the property that the corresponding
tangent vector field has unit length and positive pairing with a. The coordinate ¢ and
the standard complex coordinate z for C are the desired coordinate functions.

These coordinates are such that the z = 0 locus is y and 9, along y is in the kernel

1/2

of a and has norm 27%/=. The first-order Taylor’s expansion writes » and w as

(A-6) v:a%+2i(vz+u3—xy)(%—2i(v3+ﬁz—)?y)6%+---,

w=5dz NdZ—(vz+ Pz —xy)dz —(VZ + iz —xy)dz Adt -,
where v is a real-valued function of ¢ while u and x, are C—valued functions of ¢
with x, such that |xy,| < ¢ z=1/2 The unwritten terms are bounded by

co(|v] + |1Dz] 2 + |z))

with co here dependent on v and w. Note that v must be real so as to have dw = 0.
What is said in item (a) of the third bullet of (A-5) leads to the asserted bound on [x,|.

Changing the isomorphism between K1, and y x C writes z as z = u(¢)z’ with

u being a smooth map from the domain of 7 to S!. The resulting version of (A-6)

replaces v with v/ = v + %u_l%u, it replaces p with i/ = u~2yu and it has Xy

replaced by x;, = ulx,.
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As is explained in a moment, this last observation has the following important conse-
quence: coordinates of the sort just described can be found with the property that the
functions v and p in (A-6) obey |v|+ || < co. To see why this is, fix a point p in the
interior of y and a unitary frame for K~!| p - Parallel transport this frame along a small
length interval in y containing p. Use the latter frame with the exponential map to
define the coordinates (¢, z) for a solid cylinder with this interval as the core arc. Use
T}, to denote this cylinder. The Lie derivative of w by d/9Z is bounded by cq at p
because the covariant derivative of d/0zZ is zero at p. Use the (¢, z) version of (A-6)
to see that this Lie derivative at p is —vdz Adt —udz Adt. This implies in particular
that || < cg at p. The fact that |u| is independent of the chosen orthonormal frame
for K~1|,, implies that |i| < co along the whole of y no matter what frame is used to
define the coordinates. Meanwhile, the freedom to change v to v — %u_l %u can be
exploited to obtain a version of the coordinates with the function v such that |v]| is
also bounded along y. Indeed, if y is not closed, then this equation can be integrated
so as to obtain a version with v = 0. If y is closed, then a version can be found with
v constant and less than coﬁ;l.

Unless told otherwise, assume in here and in Appendices B and C that any chosen
coordinate system of the sort described above has |v|+ || < co. A second convention
with regards to these coordinates concerns the case when y is an integral curve from
the set {,e A()7p+ U, ). As explained in Part 5 of Section 3.3 there is a version of
these coordinates with both v and p constant, with w real and such that u > |v| These
constant values for v and w are denoted at times by vg and pg. This (vo, o) version
of the coordinates should be assumed in what follows when y € (U, A()7p+ U¥y)-

A coordinate system of the sort described above should be chosen for each set from
the collection {U, },c@. These chosen coordinate systems are used in what follows.

Part 5 Fix a set ® as described in Part 3. The corresponding pair of connection and
spinor is defined with the help of the open cover of Yip U Txa that consists of the
collection {Uy, NYy},ce and the set Up = (Ysp U Typ) — (Uye@(U}; N Y*A)). Use
il to denote the collection of sets consisting of Up and {Uy },e@. For each U € i,
an isometric isomorphism must first be chosen to identify E|y with U x C. The
bundle E can be reconstructed from these isomorphisms using the corresponding
transition functions.

The pair (A, ¥) on any given set U from the cover is written using the isomorphism
between E|y and U x C as A = 6y + ay, where 6y denotes the product connection
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on U x C and where ay is an iR-valued 1-form on U. Meanwhile, 1 is written
as (ay, Bu), where oy and By denote a respective C —valued function and section
of K~ on U. With regards to the section By, the U # Uy versions of K~!|yy come
with an isomorphism K~!|y = U x C that is defined using the chosen coordinates
for U. This isomorphism is defined so that its inverse maps the constant section 1 of
U x C to the section that can written as (1 4+ t)(d; + q) with t being real and q being
orthogonal to d,. Moreover, |t| 4 |q| < co|z|. Granted this isomorphism, the U # Uy
versions of By are also viewed as functions on U.

What follows specifies the various U € 4 versions of (ay, (o, By)) on the comple-
ment in U of Uyrey—qpy UNU’.

(A-7) o When U =Uy Fixanisomorphism E |y, =UyxC. Setay, =0, ay, =1
and By, = 0.

The definition of (ay, (ay, fv)) for U € U —{Uy} requires first the introduction of
the rescaling map from C to itself that multiplies the coordinates by z!/2. The latter
map is denoted here by r,. The definition refers to the functions y and ¢ on C that
are depicted in (A-2) and the function g9 on C given in (A-3).

(A-8) » When U =U, Fixanisomorphismbetween E|y and U xC. Use Part 4’s
coordinates to identify U with the product of either S! or the appropriate
interval with the radius psx concentric disk in Dg. Use (Ao, op) to denote
the symmetric solution to (2-8) from ¢; with ag = |ag|z/|z]. Set ay =

1/2fz*5‘-

i21/2vrz*y dt—%rz*ag(z_ldz—f_ldf), oy =ragand By =ipnz”
Part 6 This part describes each U € il version of (ay, (a¢y, fy)) on the intersec-
tion between U and |Jy/ (U NU’). The transition function between a given set
U e d—{Up} and Uy are as follows:

(A-9) e Suppose that y C Yxa . The transition function for Ug N U, identifies the

constant section 1 of the bundle Uy x C with the section z/|z| of the bundle
U, xC.

* Suppose that y € [J,e A()7p+ U ¥, ). The transition function for Up N Uy
on the part where |z| < 2¢,p« maps the section 1 of Uy x C to the section
z/|z| of U, xC.

What is said in (A-9) is all that is needed for Proposition 3.1’s map " because the
latter has no cases where three sets from the cover intersect.
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Suppose that U € 3 —{Up}. Use U to denote the part of U N Uy that is considered
in (A-9). The definition of (ay, (¢y, By)) on U follows. The definition introduces Xo
to denote y(p;'|z|—1).
(A-10) o ay =vypi2'/2rrydt—L(1—yp + xgrfao)(z"1dz—z71d7).

o oy =(1— sl —rflaol)z/|z].

o Bu=inz 2y xs.
Items (A-7)—-(A-10) together define a smooth pair of connection on E’s restriction to

Up U (Uy€® Uy) and section of S over this same set. In particular, they define a pair
of connections on E’s restriction to Y, U Txa and section of S over Yip U Txa -

Ab Constraints

The operator in (1-17) will be analyzed in the case where the relevant version of (A4, )
is assumed to have five properties that are given in a moment. In particular, these
properties are satisfied by solutions to a given (r, i) version of (1-13). The upcoming
Lemma A.1 asserts that these properties are also satisfied by the pairs that are constructed
in Section Aa.

The upcoming properties refer to constants ¢y > 100 and z > ¢}?, These lower bounds
are increased in subsequent subsections. The properties refer to a given pair (4, ) €
Conn(E) x C*°(Y;S). By way of a look ahead, a pair (A, ) with these properties
looks much like a solution to the r = z and p version of (1-13) with & € 2 having
P-norm bounded by 1. The properties listed below are such that (A4, 1) resembles
such a solution inasmuch as

(A-11) 27 Y2|By—2(y T oy — &)+ |Dav| < %22 + «o.

The list of properties follows directly:

Property 1 The section v = («, ) is such that:
o la| <1+4cz ' and |B| < coz7/2.
o |Vjal? < co(z|1 — |05|2} + 1).
* [VaBl=c.
The second property introduces the following notation: the section Dy of S is written

as ([DaV]o. [Day]1) with respect to the splitting S = E @ EK™!. As always, the
Hodge dual of the curvature 2—form of A is denoted by Byg.
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Property 2 The 1-form B4 and the section D4y of S are such that:

(3. Ba) +iz(1—|o]?)| < 522+ .
o |aABal < 212|102 +
o |[Davlol <<§.

o |Davhil <5022 + qo.

Note for future reference that the third bullets of Properties 1 and 2 have the following
consequence: Let (V4a), denote the section of E that is obtained by pairing V4«
with ». The norm of this section (V4), is bounded by cgco because [Dg¥]o is the
sum of i(V4a), with a linear combination of covariant derivatives of f3.

The third property introduces Yo, to denote the subset of ¥ with distance at least

c(‘)‘z_l/2 from y € UpeA(J?er U ¥, ). This subset Yo, is a smooth manifold with
boundary whose boundary components are tori. The third property also refers to the

(A, ) version of the connection A that is defined in (1-15).

Property 3 The zero locus of « in Y, is transversal and it consists of the disjoint
union of at most G components with each a properly embedded arc or circle. The zero
locus of « in Y, has the following additional properties:

e Any given boundary component of Y., contains either zero or two endpoints of
the arc components of «’s zero locus in Y., . If two, then the distance between
them is at least IOOng_l/z. Moreover, u < 0 on one and u > 0 on the other.

e Suppose that y is a component of the zero locus of « in Yo;.

(a) The unit-length, oriented tangent vector to y has distance at most coz 12
from v.

(b) The curve y intersects any given p € A version of ‘H, where 13 cos? 6 >0.

(c) If y is disjoint from a given boundary torus of Y,,, then it has distance
greater than 3c3z_1/ 2 from this torus.

(d) If y intersects a boundary torus of Y., then it does so only at its endpoints
and these intersections are transversal.

e The intersection of o ’s zero locus with My lies in the f~1(1,2) part of Mj.
This intersection consists of G properly embedded segments that pair the index 1
and index 2 critical points of f in the sense that distinct segments start on the
boundary of the radius § coordinate balls about distinct index 1 critical points
of f and end on the boundary of the radius § coordinate balls about distinct
index 2 critical points.
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e The 2—form %F 1 has compact support and integral 1 on any transverse disk

—-1/2

in Y with radius cypz and center at a zeroof o in Ys,.

The fourth property constrains « away from its zero locus.

Property 4 The absolute value of 1—|a|? is less than [ 10 a¢ all points with distance

—1/2

greater than cyz from the zero locus of @ in Y.

The final property is not strictly speaking required; it is imposed solely to avoid some
extra effort. To set the notation, let p € Y denote a given point. Fix a C —linear isometry
between C and the kernel of a at p. With z given, use ¢,: C — Y to denote the
composition of first multiplication on C = Ker(a) by z~1/2 followed by the metric’s
exponential map. With (A4, ¥ = («, B)) € Conn(E) x C*°(Y;S) given, use (A4, ®;)
to denote the pullback of (A, «) using ¢,.

Property 5 Fix p € Y. The pair (A,, ;) has distance at most co_lo in the C*—
topology from a solution to the vortex equations when restricted to the disk of radius cgy
with center at the origin in C.

To see an example of a pair with these properties, fix r > cg and u € Q2 with P—
norm bounded by 1. Every solution to the corresponding (r, i) version of (1-13) has
Properties 1-5 if z is set equal to r with r large, and if ¢y is chosen less than rl/6
and chosen to avoid at most G intervals of a priori bounded length. By way of an
explanation why this is so, the top three bullets in Property 1 are asserted by Lemma 2.1
and the fourth bullet has zero on its right-hand side. Meanwhile (1-13) guarantees
Property 2, Lemma 2.3 guarantees Property 4 and Lemma 2.9 guarantees Property 5.
The first bullet of Proposition 2.4 gives item (a) of the second bullet of Property 3, its
second bullet guarantees item (b) of Property 3, its third bullet guarantees the third
bullet of Property 3 and its fifth bullet guarantees the fourth bullet of Property 3. If the
first bullet of Property 3 or items (c) or (d) of the second bullet of Property 3 are not
obeyed for a given choice of ¢y, then at most G replacements of the form ¢y — co + co
will satisfy all of them. That this is so follows directly from the first three bullets of
Proposition 2.4 and the formula for v in (1-3). This is explained in the next paragraph.

To elaborate on the last assertion: Fix p € A and consider the boundary of Y, near
the circle )7p+ . This circle is the locus in H, where the coordinate ¥ = 0 and the

coordinate 6 is such that cos 6 = % The “outside” of this boundary torus is a solid
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torus neighborhood of )7;' . Now, the key point is that the unit tangent vector to y differs

by at most oz /2

from ». This implies two key facts: First, if v has inner product
greater than coz~'/2 with the normal vector to a given intersection point between y
and the boundary torus, then y will be transversal to the boundary torus at that point.
It also implies that y will have distance at most ¢y cg z~! inside the corresponding
solid torus from the integral curve of v through that boundary point. (Note that since

7> c&o, this distance is at most cg coz_1/2

.) Because of these facts about y and v’s
integral curves, conclusions about y’s intersections with the boundary torus follow

from properties of »’s integral curves.

Keeping the preceding in mind, here are three facts that follow from (1-3)’s depiction
of v: First, v is transversal to the boundary torus except at the two ¥ = 0 loci on this
torus (one where cos? 6 < % and the other where cos? 6 > %) These loci are circles
that are ¢—invariant. Second, »’s inner product with the normal vector to the boundary

—1/2

torus has norm greater than cyz where the distance to these u = 0 circles is greater

than cocy 1 Third, the distance from the u = 0 loci where an integral curve of v enters
the solid torus is the same as where it exits the solid torus.

Granted these facts, then there exists cx (With cx < c¢g) with the following significance:

the conditions in the second bullet of Property 3 and in items (c) and (d) of the third

bullet are guaranteed to be satisfied if y’s distance from the ¥ = 0 points on the

1/2

boundary torus is greater than c cgz_ if ¢p is large and z is very much greater

than ¢g.

With the last paragraph understood, suppose for the sake of argument that the distance
between y and the u = 0 points on the boundary torus is less than 100c cgz_l/ 2,
Fix ¢ > 0 for the moment and consider a bigger solid torus neighborhood of )7; , one
with radius (co + e)4z_1/ 2. Then, the distance between y and the u = 0 points on
this torus will be greater than (coe — 100cx)(co 4 ¢)3z71/2

3(co+¢)3z 12 if e > ¢p.

, which will be greater than

The lemma that follows asserts that certain versions of the pairs (A4, 1) that are
described in Section Aa also have the five properties listed above.

Lemma A.1 There exists k > 100 with the following significance: Fix parameters
¢ >k and z > KCI}O, and then set py = 052—1/2. Fix a set T« and then a set ©® as
described by (A-5) which obeys the first and second bullets of the (z, co = ¢,) version

of Property 3. Suppose that (A, ¥) € Conn(E) x C*°(Y;S) is given by the (z, ¢y, px)
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version of (A-7)—(A-10) on Yxp U Ty a and that the (z, co = ¢,) version of Properties
1,2,4and 5holdon Y — (Yep U Txp). Then (A, ) obeys the (z, co = cy) version of
Properties 1-5 on the whole of Y.

Proof This is a straightforward calculation given what is said in Section 3.3 and (3-3)
about solutions to (2-8). Much the same calculation is done in Sections 2e and 2f
of [15]. The specifics of the calculation are omitted. O

Ac Bounds on eigenvectors

Suppose in what follows that ¢ = (A4, V) satisfies Properties 1-5 in the previous
subsection. The two lemmas in this subsection give some preliminary information
about eigenvectors of the associated version of the operator £, ,, this being the z=r
version of the operator that is depicted in (1-17). The notation is such that Vb is used to
denote the covariant derivative of a given b € C°(Y;iT*Y @& S @ iR) that is defined
by the Levi-Civita covariant derivative on the i 7*Y summand, the covariant derivative
on sections of S that is defined by the Levi-Civita connection with the connection A4,
and the exterior derivative on the sections of iR. These lemmas also use || - |2 to
denote the L?-norm on Y.

Lemma A.2 There exists k > 100 and, given co > «, there exists k., > k with the fol-
lowing significance: Fix z> Kcocéo and suppose that ¢= (A, ) € Conn(E)xC*°(Y;S)
obeys the (cp, z) version of Properties 1 and 2 in Section Ab.

e Let b= (b,n,¢) denote an eigenvector of £ ,. Use A to denote the correspond-
ing eigenvalue. Then ||Vb|2 < k(A + coz!/?)||b]|2.

* Suppose in addition that ¢ obeys Property 4 in Section Ab and that |A| < ¢;® zV/2.
Fix m > 2¢cq. The L?—norm of b over the subset in Y with distance greater than
mz~ Y2 from «~1(0) is no greater than km='.

To set the notation for the next lemma suppose that b = (b, 1, ¢) is a section of
iT*Y &S @ iR. The lemma writes b as b = boa + b1, where b+ annihilates v, and
it writes 1 with respect to the splitting S = E @ EK~! as n = (19, 71). Lemma A.3
also uses (Vb1), and (V410), to denote the directional covariant derivatives along
the vector field v.

Lemma A.3 There exists k > 100, and, given cp, there exists k., > k with the
following significance: Fix z > K, céo and let ¢ = (A,¥) € Conn(E) x C*(Y;S)
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denote a pair that obeys the (co, z) version of Properties 1—4 in Section Ab. Suppose
that b = (b, n, $) is an eigenvector of £, with L?>-norm equal to 1, and use A to
denote b’s eigenvalue. Assume that |A| < co_"zl/z.

e The L?-norms of by, 1 and ¢ are bounded by cgz_l/2 and the L% -norms of
their covariant derivatives are bounded by «, .

e The L%-norms of (Vb1), and (Vno), are bounded by i, + k|A|.

The proofs of Lemmas A.2 and A.3 are given in a moment. A Bochner—Weitzenbock
formula for ch’r plays the central role in the arguments for these lemmas. To state
this formula, fix z > 1 and let ¢ = (A, ¥) denote a pair in Conn(E) x C*°(Y;S) and
let £, denote the corresponding version of (1-17). The respective i7*Y, S and iR
components of Sizb are:
(A-12) o VIVh 427y |2h —2V/221/2(Vy Ty —nTvy)
+27 122 2(Dy) ey + 0T eDY) + Rie(h),
o« Din+eAWn—n'y)y —a@ o+’ y)y] =232 2. Vy)
212212 (cl(b) + ¢) Dy,
o dVdg + 220y P +271222((Dy) =T DY),
To explain the notation, Ric(-) denotes the endomorphism of 7*Y defined by the Ricci
tensor. Meanwhile, ( , ) is defined as follows: Let V' — Y denote any given vector

bundle. Given V, then ( , ) is the homomorphism from the bundle 7*Y @ (V Q T*Y)
to V' that is defined by the Riemannian metric.

Proof of Lemma A.2 To prove the first bullet, take the inner product between b and
Sf’zb and integrate the result over Y. Use (A-11) and (A-12) with an integration by
parts to obtain the asserted bound. Note in this regard that the bounds on || by ¢
and on |Vy/| by coz!/2 are needed.

To prepare the stage for the proof of the second bullet, let ¢ € Conn(E) x C°(Y;S)
denote any given element. What is written in (A-12) can be depicted schematically as

(A-13) £2,6=VTVb+22b +e(b),

where the endomorphism ¢ obeys |e| < co(|B4|+z'/2|V|+co). If b is an eigenvector
of £, with eigenvalue A, then (A-13) leads to the inequality

(A-14) dTd|b| +2z|b| — |e||b] < A?|b].
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Now suppose that b is as described in Lemma A.2’s second bullet. The assumption that
A=<cy 121/2 and what is said in Properties 1, 2 and 4 in Section Ab have the following
consequence: the inequality in (A-14) implies the more straightforward inequality

(A-15) did|b] +z|b] <0

172 or more from o~1(0). To exploit this inequality, let

at points with distance cgz™
Aq(+) denote for a moment the function dist( -, ~1(0)). Given m > 2¢y, convolve the
function y(2—2m~1z'/2A4(+)) with a suitably chosen smoothing kernel to construct
a nonnegative function on Y with the following properties: Let g,, denote this function.

Then g,, = 1 where the distance to oz ~1(0) is greater than mz /2

and g,, = 0 where
the distance to Y is less than %mz_l/ 2 Furthermore, |dg,,| < com™1z'/2. Multiply
both sides of (A-15) by g2|b| and integrate by parts. The resulting inequality implies
the bound z||g b2 < com™'z||b||>. Divide both sides of this by z to obtain what is

asserted by Lemma A.2. O

Proof of Lemma A.3 The bounds in the second bullet follow from those in the
first from the form of £.,. Indeed, the relevant version of the equation £ ,b = Ab
equates (Vb1), and (Vno), with linear combinations of the following: first, covariant
derivatives of bg, 11 and ¢ ; second, linear combinations of z1/2by, 7'/ 2n; and z/ 2¢
times factors of « or its complex conjugate; third, linear combinations of factors of
z1/2pL and 2!/ 2o times factors of B or its complex conjugate; finally, components
of Ab. This property of £, is directly evident from its depiction in the upcoming
(A-16) and (A-17).

The proof of the first bullet has six steps.

Step 1 The asserted bounds are proved with the help of (A-12). The bounds for ¢ will
use the formula in (A-12) for the iR component of £, ,b. Those for by are obtained
with the help of the formula in (A-12) for the i 7*Y component of Sg’ ,b by projecting
the latter onto the span of a. Those for 11 are obtained using the formula in (A-12)
for the S component of £ ,b by projecting the latter onto the EK~! summand of S.
In this regard, the projection of the i7*Y component of £ ,b to the span of a can be
written as

(A-16)  dYdbo + 220y [2bo — 21722 2((Vy) I — 0T (Vy).)
+ 2712 2((Dy) T cl(@)n + T cl(B) DY) + Ro(Vh) + (4, Ric(h)),

where (V), denotes the directional covariant derivative along » and where JRg
denotes a linear form on 7*Y ® T*Y that is defined by the covariant derivatives of 4.
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In particular, the latter is bounded in absolute value by co. Meanwhile, the projection
of the S component of ,Scz, ,b to the EK~! summand of S can be written as

(A-17)  VIVani +i(a, Ba)ym +2z(la|? + |B1%)m + cl(Bi)no —2%/22/2(b, V)
—212212[(c1(b) 4 ¢) DY ]y 4+ 91 (V) + 1 (),

where the notation use Bi- to denote B4 — a(a, B4), it uses [-]; to denote the EK ™!
component of the given section of S, and it uses Y31 and t; to denote endomorphisms
that depend only on the Riemannian metric.

Step 2 The notation that follows uses £ to denote (bg, 71, ¢) and it uses VE to denote
the 3—tuple whose first and third entries are dby and d¢, and whose second entry
is V4n1. Fix a constant m 5 > 8c(‘,t to be determined shortly. Suppose in this step that

—1/2

the L2—norm of £ over the part of Y, with distance greater than m sz from the

boundary of Y, is less than mj_\l/4||$||2.

Introduce 0, to denote the characteristic function for the set of points in Y., with
distance at least m Az_l/ 2 from the boundary of Y,,. Meanwhile, use the function y
to construct a smooth, nonnegative function which is 1 where the distance to Y — Y, is

less than 2mAZ_1/2 —1/2

and zero where the distance to this set is greater than 4mpz
Use ya to denote this function. The function ya can and should be constructed so
that its differential obeys |dya| < 16mxlzl/ 2. Note that |dya| has support where

O isequal to 1.

Take the L? inner product of the components of )(ié with the relevant parts of the
eigenvalue equation Sizb = Ab. Use the third bullet of (A-12), (A-16) and (A-17)
with an integration by parts to derive the inequality

(A-18)  [[V(xaE)|3 < cor®[ xakll3 + com3>2z]|0a &I
+co((cg 2+ o)l xa €3 + §z' 2 x a& 2 1lbll2 + 6]13).

The rest of this step explains how the various terms in this inequality come about.

The term |V (ya€) ||§ on the left-hand side and the term comI_\ZZHHAE ||§ on the right-
hand side arise from the integration by parts that rewrites the L? inner product between
X%f and VTVE as the square of the L2—norm of V(yA&) and a term with derivatives
of ya . The former accounts for the term on the left-hand side of (A-18) and the latter
accounts for the appearance of comxzz” O3 on the right-hand side of (A-18). These
two terms with the term co||b]|3 on the right-hand side of (A-18) also account for
the L? inner product between Xf\é and the $Ro(Vb) and R1(Vb) terms in (A-12)
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and (A-13). The term AZ| yaf ||§ comes from the L? inner product between Xié
and A.

The terms (co_loz + co) | xa€ll5 and cgz1/2||)(A“§||2||b||2 and 6|3 on the right-hand
side of (A-18) account for the L2 inner product between components of )(ié and the
various terms in the third bullet of (A-12), (A-16) and (A-17) that lack covariant deriva-
tives of components of . To elaborate, there are, first of all, the terms that have 2z|v|?
multiplying ¢ in (A-12) and bg in (A-16). These are discarded when writing (A-18)
as they contribute nonpositive terms to the right-hand side of (A-18). There is also a
nonpositive contribution to the right-hand side of (A-18) from the 2z(|a|? + |B8|*)m
term in (A-17) and from i (a, B4)n1. Properties 1 and 2 are used to rewrite this last
term as z(1 —|«|?)n; plus a remainder term that is bounded by (cy'%2 + co)|n1]. The
remainder term is accounted for by a part of the (¢; '°z + ¢o)| xa£]|5 term on the
right-hand side of (A-18).

The other terms without covariant derivatives of £ in the third bullet of (A-12), (A-16)
and (A-17) are bounded by either

(A-19)  col[DayhllEl or co(IBF|+1(V¥)o| + VB + [[Davol +1)[b].

With (A-19) understood, what follows is a consequence of Properties 1 and 2: The terms
without covariant derivatives of £ that are bounded by co|[DgV¥]1||€| are accounted
for by the term (¢ 197 + co) | x A& on the right-hand side of (A-18). Meanwhile, the
terms without covariant derivatives of £ that are bounded by the right-most expression
in (A-19) are accounted for by the term cgzl/2||)(A"g‘||2||b||2 + [|6]|3) in (A-18). Note
in this regard that Properties 1 and 2 imply the bound |(V),| < co cg. This is stated
explicitly with regards to (Vf),; and (Vq),| < cocg because [D4V]o is a sum of
i(V4a), and linear combinations of covariant derivatives of S.

Step 3 Fix ma = 100¢; and use the assumption [|6x&||2 < mzl/4||§||2 to see that

the right-hand expression in (A-18) is at most co(A + ¢; 1°2) | a3 + c(])‘ with k <cy.

Meanwhile, the left-hand side of (A-18) is no less than ComK22|| xAE|2. Indeed, this
follows from a standard Dirichlet eigenvalue inequality given that |y o &| has compact
support in the radius (. + ¢f)z /2 tubular neighborhood of Upea " UPy). These
upper and lower bounds find ||E||% < coc(lfz_1 if cg>coand A < caszl/z. This gives

the first assertion of the first bullet of Lemma A.3.

Step4 Fix mp = 100c3 so as to invoke the conclusions of Step 2. With m 5 fixed,
use y to construct a smooth, nonnegative function on ¥ which is equal to 1 at distances
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greater than m Az_l/ 2 from Y — Y, and equal to zero on Y — Y,,,. This function is

denoted by yo,. The function y, can be constructed so that |dyo,| < 32m}, 12172,

Fix a second constant m € (¢, ¢ 0). This step makes the following two assumptions:

(A-20) o The L2—norm of & over the part of Y, with distance greater than m 5 z~1/2
from the boundary of Y, is not less than mxl/4||§ 2.
e The L%2—norm of y.,£ over the part of Y,,, with distance mz~1/2 or more

from the zero locus of « is greater than m =4 || yo,€|l2.

Use y once more, now to define a smooth, nonnegative function which is 1 where

1/2 and zero where the distance is less

the distance to o~ 1(0) is greater than mz~
than %mz_l/ 2. Let xm, denote this function. Given that m < cg, what is said by
the first bullet of Property 3 and what is said by item (c) of the second bullet of
Property 3 imply that the function y,, can be constructed so that its differential obeys
|dym| < 16m~1z1/2 This bound is assumed in what follows. Introduce 6,, to denote
the characteristic function for the support of |dy,,| and 8, to denote the characteristic

function for the support of |d xo|.

Take the L? inner product of () x+,)>€ with the eigenvalue equation Sizb = Ab and
use either the third bullet of (A-12) or (A-16) or (A-17) with an integration by parts
and (A-11) to derive from these integrals the inequality

(A21)  [V(tmxo3 + 1zl xm xo:k 13
< ol xmxoE |3 + coz(m™2(0mE |13 + mA200,£113)

+coc§z' 2 kmxock 2.
This proof of this inequality invokes Property 4, the bounds for the norms of the
components of B4 and D4 that are asserted in Property 2 and the bound for |V4 |
that is asserted by Property 1. As noted previously, these imply that [(V¥),| < co cg.

To make something of (A-21), use the first bullet in (A-20) to conclude that ||0.,&||2 <
m}\/4||)(ozé||2 and then use the second to see that [|0¢,&|2 < (mmA)1/4||)(m)(<>Z§||2.
Use this bound in (A-21) to conclude that

(A22) 3zl xmxoskll3

< oA | m xor€ I3+ cotmy *m™* 4 m4m 3 *)z)|8 )3 + cock,

with k < ¢p. By assumption, m < mp and so ml/“mf’/4 < ﬁ.
1/4 m=3/4 < —= 1f m > ¢o cg/ Assume this to be the case. If it is also the case

that A=<c, -1 1/2 , then (A-18) finds || ym xo:€ll2 < coco —1/2 with k' < ¢o. This last

Meanwhile,
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bound with (A-20) gives the bound ||£[2 by cock”z=1/2 with k” < c if m = coci’>
and if A < calzl/z.

Step 5 This step assumes that the top bullet in (A-20) is satisfied but that the lower
bullet is violated. Use y yet again, this time to construct a smooth, nonnegative function

—1/2 and 1 where the

which is 0 where the distance to o ~1(0) is greater than 2mz
distance is less than mz~1/2. Denote this function by x5, Given that m < cg, the
function y¢, can and should be constructed so that |dx§,| < 32m~1z1/2 Use 05, to

denote the characteristic function for the support of dys, .

Take the L? inner product of (xS, xo,)%& with the two sides of the equation in either the
third bullet of (A-12) or (A-16) or (A-17) and use an integration by parts with (A-11)
to see from these integrals that

(A-23) [IV(xmxorm)ll3 < coA® + i 2 | X xodb 5 +m 220167 X0k |12

a2l 0028 13 + ez 21 A5 2 ock |-
The problematic terms on the right-hand side of (A-23) are those with |6.,&]|2> and
|05 xo2€ll2. The former is dealt with as follows: The top bullet in (A-20) asserts
that ||0o,6]2 < m}(4|| XozE|l2. Hold on to this for the moment. The triangle in-
equality finds [|xoz§ll2 < lxmxoezEllz + (1 — xp) xoz6l2, and thus [[xo 6]z <
26, x02Ell2 +m 4| xo,&|l2 because the lower bullet in (A-20) is violated. Thus
Ixorll2 < 2075 xost 2 and so the bound [6o&ll2 < my *||xeskll2 implies that
10622 < 2mi\/4 | x5, X022 . Meanwhile, the problematic term |65, xo.£|2 is bounded
by com™1/4|| Xs, X oz&||2 because the lower bullet in (A-20) is violated.

Insert the bounds in the preceding paragraph for |0s,§|2 and [|65, xo.&|2 in (A-23)
and use the fact that mp = 10063 and m = ¢ cg /3 to see that

(A24) [ V(xixorbm)ll3 < coll + @27 + 65 * +m™>"2)2) | g 10 rmll + cocs

with k < ¢¢. Consider now the left-hand side of (A-24). To this end, let D C

Ys, denote a transverse disk centered at a point in o~ (0) with radius 2mz 12,

The points in the support of x§, xo, have distance at most 2mz~ Y2 from a~1(0),
and so the Dirichlet inequality implies that the L?—norm of |V (xS, xozEm)| over

1

D is no less than ¢, m~1z1/2 times that of Xy XozEm over D. This being the

case, (A-24) has the following consequence: Assume that A < cj Un=1z1/2 Then
Co Ym=2z) x5, xorémll3 < co ck. This last bound leads directly to the desired upper

bound on ||&]|>.
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Step 6 Steps 2-5 established Lemma A.3’s claim about the L?—norms of ¢, by and 7 .
Granted this claim, take the L2 inner product of both sides of the eigenvalue equation
£L,,6=Ab with £ and use the third bullet of (A-12), (A-16) and (A-17) with the bounds
in Properties 1 and 2 to derive the bound || VE[|3 < A%| |15 + coc(’)c (z||€]|13 + 1) with
k < co. This last bound implies what Lemma A.3 asserts about the L2—norm of V£. O

Ad The vortex operator

This subsection constitutes a digression to supply various observations that are used
subsequently to say more about eigenvectors of £, near the zero locus of «. The
discussion here is given in four parts.

Part 1 Assume in what follows that (A, ¥ = (&, f)) obeys the constraints given
in Section Ab. Fix a point p € Y on the zero locus of « in Y,, or on one of the
curves from the set |, ¢ A()’/}:r U7, ) in a component of ¥ — Y., that contains zeros
of «. In the former case, set ¢ = 20¢y and in the latter case, set ¢; = cg . Fix an
isometric, C-linear identification between Ker(a)|, and C. With this identification
understood, let ¢, denote the map from C to Y that is obtained by composing first

multiplication by z71/2

and then the metric’s exponential map. Use (A, o;) to denote
the ¢,—pullback of (A4,«). Use ¥, in what follows to denote the (A,, «,) version
of (3-4)’s operator . Of particular interest is this operator on concentric disks about

the origin in C with radius ¢; or less.

The analysis of ¥, uses the following consequence of Properties 1 and 2 in Section Ab:
The pair (A, @;) comes close to solving (2-8)’s vortex equations on the radius ¢; disk
centered at the origin in C in the sense that

(A-25) % Fa, +i(1— e |®)| + 104,00] < oo |1 —low|?| + ¢ *°).

The ramifications with regards to @, stem from the fact that the right-most term in (3-6)

1 on a disk about the origin of radius up to 20¢; if z > céo. The

is bounded by cocy
essential point here is that |5Alozz| is relatively small on a large radius disk about the
origin. This suggests in particular that 19119; is uniformly positive in a suitable sense
because the remaining terms in the formula for 15‘219; have the form of a covariant
Laplacian plus a zero-order, nonnegative term. The constructions that follow are used
to make a precise statement to this effect. These constructions assume that z > «, c&o

with «, larger than the versions of «,, that appear in Lemmas A.2 and A.3.
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Part 2 Suppose that k € {0, 1,...,7} and that o lacks zeros in the open, concentric
annulus in the transverse disk centered at p with respective inner and outer radii
equal to (¢ + kco)z~/2 and (¢; + (k + 3)co)z~ /2. Zeros of « on the transverse

disk through p with radius cz /2

correspond via ¢, to the zeros of «, on the
corresponding radius ¢; disk about the origin in C. In any event, use A C C to
denote the concentric annulus with inner radius ¢; + (kK + 1)¢p and outer radius

a+&k+2)c.

It is a consequence of Property 4 that |a,| > 1 — ¢ 10 in A. This being the case, there
is an isomorphism over A between ¢ E and A x C that maps «, to || with the
latter viewed at any given point as a complex number with zero imaginary part. Let
0+« denote the product connection on the trivial line bundle A x C. This isomorphism
pulls back A, as 6 + a,, where a, is an i R—valued 1-form on .A. The second bullet
of Property 1 with Property 4 imply that |a,| < co(cy® + z71/2),

Fix a nonnegative, radial function on C which is equal to 1 where the distance to the
origin is less than ¢; + (k + %)co and equal to zero where the distance to the origin is
greater than ¢; + (k + %) co. Choose a function whose derivative is bounded in absolute
value by 10¢y 1. Denote the chosen function by y..

Define a complex hermitian line bundle E, — C by identifying it with £ on the
radius ¢ + (k + %)co disk about the origin in C and with the product bundle on
the complement of the radius ¢; + (k + 1)¢p disk about the origin in C. Use the
isomorphism between ¢ E|4 and A x C to define the necessary clutching function.
A unitary connection, A,«, is defined on E, by setting A,« = A, on the disk about
the origin in C with radius ¢; + (k + %)co and by setting A,« = 0« + y+a, on the
complement of the disk about the origin with radius ¢; + (kK + 1)¢p. Use o« to denote
the section of E, given by « over the radius ¢; + (k + %) co disk centered at the origin
and given by (1 — y«) + ys«|oz| over the complement of the radius ¢; + (k 4 1) ¢ disk.
The connection A,y is flat and o4 has norm 1 and is also A «—covariantly constant on
the complement of the radius ¢; + %co disk about the origin in C. The pair (Az«, ®z«)
also comes close to solving the vortex equations on the whole of C in the sense that
(A-25) still holds.

Part 3 Use 74 to denote the integral of 5 F4,, over C. This is equal to 1 if the
point p isin Yo, but can be greater than 1 if p € (¢ A(77p+ U7, ). It follows from
(A-25) with Properties 1 and 2 that n, is a positive integer.
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The local Euler number of the zeros of «,« sum to n4 because ¢, has norm 1 and is
Az« —covariantly constant on the complement of a compact set in C. The following
lemma says more about these zeros:

Lemma A.4 There exists k > 100 such that if ¢y > k and z > kci®, then ny < /ccg.
Moreover there exists an open set in C with the following three properties:

e The set can be covered by ny disks of radius 4.

o o, > P

on its complement.
e The sum of the local Euler numbers of the zeros of «, in each component of this

set is nonzero and positive.

Proof The bound on 74 follows from Properties 3 and 4, and the other bullets follow
from Property 5 using Lemma 2.9. |

Fix a setin C that obeys the three bullets of Lemma A.4. Denote the set of components
of this set by Z,. Given U € Z,, use my € {1,2,...,n4} to denote the sum of the
local Euler numbers of o, on U.

Part4 Use ,« to denote the (A «, @z«) version of (3-4)’s operator . The upcoming
Lemma A.5 lists some salient features of ¥,«. This lemma uses L?(C;C & E,) to
denote the completion of the vector space of smooth and compactly supported sections
of the bundle C x (C & E;) using the norm whose square sends a given compactly
supported section 3 = (x, ) to the integral of |3|2. This norm is denoted by | - ||2. Use
V3 to denote (dx, V4,1). Lemma A.5 uses L%((C; C & E,) to denote the completion
of this same space using the inner product whose square sends the given element 3 to
the integral over C of |V3|? + |3|2. This defining norm for L3(C;C ® E,) is denoted

by [[-ll2.1-

Lemma A.5 There exists k > 100 such that what follows is true if ¢y > k and

szc(}oz

e The operator ¥, extends as a bounded, Fredholm operator from L%(C; CoE,)
to L?(C;C @ E,) with index equal to n, and with trivial cokernel.

e If3€L3(C;C@®E,), then ||19ZT*3||2 > k7 |3]l2.1, and if 3 is L?—orthogonal
to the kernel of ¥, then ||¥,3]| >« 1|3]l2.1-

e Square-integrable elements in the kernel of 1,4 are smooth and in L%(C; CeE,).
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e Ifzisan L*>(C;C & E,) and in the kernel of ¥« , then

|5| <k Z mUe—dist(-,U)/Z.
UeZz,

Moreover, if U € Z), is a component with distance greater than « from the others
and such that my = 1, then the Lz((C; C & E,)—kernel of 1,4 has a nonzero
element with the properties listed below. The list uses 3y to denote this element.

@ |3u| < ke U224,

(b) Any L?(C;C@E,) element in the kernel of ¥4 can be written as x3y +3'
with x € C and with 3’ such that |3'| <} ez, —qu3 myre st U)/2

Proof The fact that ¥, defines a bounded map from L%(C; C@E,) to L>(C;C®E,)
follows from the appearance of the L2?—norm of the covariant derivative in the definition
of L%((C ; C @ E,). To prove it Fredholm, it is necessary to prove that the kernel in
L%((C; C & E,) is finite-dimensional, that the range is closed and that the cokernel
is finite-dimensional. The finite-dimensional kernel and the closed range follow as a
consequence of the Rellich lemma with the verification of the following:

There exists ¢ > 0 and R > 1 such that ||9,«3||2 > ¢€||3||2 if the support of 3 has
compact support in the complement of the radius R disk in C about the origin.

This follows by virtue of the fact that 191* Do (x, 1) = ((—35—1— %)x, (—3AZ*5AZ* + %)L),
where A is flat, and o, has norm 1 and is also A,«—covariantly constant.

The fact that the range is closed implies that the cokernel is isomorphic to the kernel of
the adjoint. Standard elliptic regularity identifies the latter with the kernel of z?ZT*. The
fact that the latter is trivial can be seen using the (A,«, &z«) version of (3-6). This is
done by invoking the bounds in (A-25) after commuting covariant derivatives to equate
5A08A0 and 3AZ*5AZ* + % + ¢ with |e| < coco_l(|l — |ozz*|2| + 1).

The fact that the dimension of the kernel is 7 can be seen by comparing ¥,4« with
the version of ¥ that is defined by a pair (Ao, @) that obeys (2-8)’s vortex equations
and is such that 1 — |ag|? is integrable and with integral equal to 27n. Such a
comparison can be made by using what is said in Section 2a of [20] to construct a
[0, 1]—parametrized path of pairs in Conn(E,) x C°°(C; E,) that starts at (A,«, 0zx),
ends at such a solution to (2-8) and is such that each member of the family defines a
Fredholm version of . The construction of such a path amounts to little more than an
exercise with cut-off functions and so no more will be said.

Geometry & Topology, Volume 24 (2020)



HF =HM, IV 3373

Granted the first bullet, the assertions of the second bullet are straightforward conse-
quences of two facts, the first being that 9, is Fredholm with trivial cokernel and
the second being (3-6). As for the third bullet, standard elliptic regularity arguments
prove that the elements in the kernel of #,« are smooth. Meanwhile, the fact that the
L?%kernel of ¥+ coincides with its L%—kernel follows from what was said above

about 19;* U, Where A, is flat, a4 has norm 1 and o, is A,«—covariantly constant.

The assertions of the fourth bullet can be proved using the same sorts of arguments as in
Part 5 from Section 2a in [20]. The modifications to these arguments are straightforward
given that the properties listed in Section Ab imply that (A,«, &t;«) looks very much
like a solution to the vortex equations with 1 —|ag|? integrable and with integral equal
to 2mn,. Note in particular what is said by (A-25). Note that Part 5 of Section 2a
of [20] states a stronger version of what is asserted by the fourth bullet for the version
of ¥ that is defined using just such a solution to the vortex equations. As nothing
fundamentally new is needed for the arguments in the case of .4, the details of the
proof of the fourth bullet are omitted. |

Ae The definition of Kery and Il

Assume here that ¢ = (A4, ) from Conn(E) x C*°(Y;S) obeys Properties 1-5 in
Section Ab as defined with parameters ¢y and z, with ¢y and z chosen so as to satisfy
the requirements of Lemmas A.2—A.5. Parts 1 and 2 of this subsection use versions
of ¥,4 to construct a complex line bundle over each component of a~1(0) and a
complex vector bundle over the sets that form an open cover of certain components
of Upe A()7p+ U ¥, ). This bundle is denoted in each case by Kery. Part 3 defines a
C -linear homomorphism from the space of sections of K @ E — Y to the space of
sections of each version of Kery, this denoted by ITy(-). Part 4 defines a norm on the
direct sum of these spaces of sections. This map is used to say more about eigenvectors
of the operator £ ;.

The construction of the associated complex line bundle and the associated homomor-
phism from C*(Y; K@ E) for a component of &~!(0) in Y., mimics constructions in
Section 3 of [20]. The construction for a curve in (J,ep ()7; U, ) mimics constructions
in Section 5 of [20]. The definition of the norm also mimics what is done in Section 5
of [20].

Part 1 Use y to denote a component of the zero locus of « in Y,,. Given p € y,
define the pair (A, o,«) on C. The L?—kernel of the corresponding operator ¥,
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is 1-dimensional since the integral of 2’—nF 7 over the radius ¢; 712

transverse disk
with center p is equal to 1. (The number ¢; is defined in Part 1 of Section Ad; it is
20¢o for this version of y.) The association to each point in y of the L2—kernel of the
corresponding version of 9,4 defines a complex line bundle over y, this being Kery .

Part2 Use y now to denote an element in | J,¢ A()7p+ U, ). Consider first the case
when there are no zeros of « on the nearby boundary component of Y,,. The associated
version of Kery is the zero-dimensional bundle if the corresponding component of
Y — Y., has no zeros of «. Suppose next that this component has zeros of «. It
follows from item (c) of the second bullet of Property 3 that any given p € y version
of the pair (A,«, ¢z«) can be defined using k = 0. This understood, let n, denote the
integral over C of 2‘—71 times the curvature 2—form of A,4. This positive integer does
not depend on the chosen point in y. Lemma A.5 asserts that any given p € y version
of ¥,+« has L%Z—kernel dimension equal to ns. As p varies in y, these L% kernels
define a rank n, complex vector bundle over y. This is the bundle Kery .

Suppose next that y € Upe A(i/\p"‘ u )7; ) and that the nearby boundary component
of Yo, has zeros of «. Fix p € y and let Do C Y denote for the moment the transverse
disk centered at p with radius (cg + lOco)z_l/ 2. Granted that ¢y > ¢, use the second
bullet of Property 3 with the formula for » in (1-3) to find k € {0,1,...,7} such
that the following is true: the concentric, closed annulus in D¢ with inner radius
(¢ +kco)z="/2 and with outer radius (¢t + (k +3)co)z /2 has no zeros of &. To say
more about why this is so, suppose that v is a connected, closed segment of an integral
curve of » with each endpoint having distance either ¢tz='/2 or (¢t + 10¢9)z /2
from y. The formula in (1-3) implies that the ¢ angle changes monotonically on v
with total change being much less than 27 if ¢, > ¢g.

If peyandif k € {0,1,...,7} and there are no zeros of « in the transverse disk
centered at p with distance from p between (cg—l-k c0)z~ /2 and (cg+(k+3) o)z~ 12,
then such is the case for any transverse disk centered at all points in some open
neighborhood of p in y. This being the case, y can be written as the union of 8 open
sets, {Vk }k=o,1,...,7, Where the y; corresponds to the subset of points in y where k
has the property just described. The formula for » in (1-3) implies that y; will have at
most two components.

Fix k € {0,...,7} and p € y;. Use the chosen value for k to construct the pair
(A,x, azx) and the operator ¥, . The association to a point p € y; of the corresponding
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L?—kernel of 9,4 defines a finite-rank, complex vector bundle over yi . This bundle
is Kery .

Part 3 Let y. denote either a component in Yo, of the zero locus of o or else a
given y € UpeA(J?er Uy, ) and k €{0,..., 7} version of yx. The associated C-linear
map [1y: C°(Y; K ® E) - C®(yx; Kery) is defined as follows: Fix p € yx and
reintroduce the map ¢, and the function y. from Part 2 of Section Ad that is used to
define the corresponding pair (A, ). If o is a section of K @ E, then y ¢ (fo)
defines an element in C*®°(C;C @ E,«) with compact support. The LZ—orthogonal
projection of y«@}(fo) to the L?—kernel of ¥, is the value of the section Iy (fo)

at p.

Introduce ®, to denote the set whose elements are the components of «’s zero locus
in Y, and the various y € UpeA(J?p—i_ Uy, ) and k €{0,1,...,7} version of y; with
it understood in the latter case that y = yr—¢ and y; = @ for k > 0 if the nearby
boundary component of Y., lacks zeros of «. The map ITy is viewed in what follows
as a C—linear map from C®(Y; K @ E) to D,.co. CP(r« Kerp).

Part 4 In this last part of the subsection, we define a version of the L2—norm on
@y*eg* C®°(y«; Kery). To this end, let g denote an element in this vector space. The
corresponding norm is denoted by ||q||2. The definition that follows writes a given
¥+ € O, component of q as qy, and it writes the integral over yx of |qy, | as [|qy, [|3.

Granted this notation, [[q[3 =", ce, lay. 13-

Af Rewriting £.)

What follows in this subsection is used subsequently to bring what is said by Sections
Ad and Ae into the £, story. It is necessary to start by introducing some new notation.
The annihilator of » in T*Y is defined to be the 2—dimensional subbundle of T*Y
that is orthogonal to the 1-form a. This subbundle is dual to Ker(a). The almost
complex structure J splits its complexification as K @ K with it understood that K
annihilates the —i eigenbundle of J’s action on the complexification of the kernel
of a.

Introduce I¢ to denote the product bundle Y x C. Write the complexification of the
direct sum of the line Ra C T*Y with Ig as Ic @ Ic with it understood that the
projection to the I¢ factor of a point (bga, p) € Rad Ig is —bg +i¢.
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Introduce Vo to denote K @ E and V; to denote Ic @ EK~!. Define an R-linear
isomorphism from i T*Y &S @®ilg to Vo® V; as follows: Let (b, 1, ¢) denote a given
pointin iT*Y &S @ ilg. Write b as boa + b~ and use ¢ to denote the orthogonal
projection of b™- to the subbundle K of the complexification of the annihilator of .
Use p to denote (—bg +i¢) Write n as (1o, n1) using the identification of S with
E @ EK™!. The desired isomorphism sends (b, 1, ¢) to ((¢,70), (p.11)) € Vo & V;.
This isomorphism is used in what follows to write any given section of i 7*Y @R ®ilg
as a section of Vy @ V; and vice versa.

To continue setting notation, suppose that g is a section of K. Use oK g to denote the
projection of the covariant derivative of ¢ to the K ® K summand in K ® (T*Y)c.
Meanwhile, use (V¢q), to denote the corresponding projection to the K ® (Ca) sum-
mand. When p denotes a section of I, use oK p and (Vp), to denote the respective
projections of d p to the K and C & summands of (T*Y)c. When 1= (19, 71) denotes
a section of S = E @ EK 1, write the directional covariant derivatives of no and 1
along v as (V4no), and (V4n1),, write the K part of the covariant derivative of ng
as §f no and write the K part of the covariant derivative of n; as 8f n1.

With this notation understood, the operator £, can be viewed as an operator mapping
C®(Y; Vo & Vy) to itself in the manner of (3.13) and (3.14) in [20]. Viewed in this
light, the operator is denoted by £y . Let f denote a given section of C*°(Y; Vo @ Vy).
To write Ly, first write the Vo = K @ E component of f as (g, 7o) and the V; =
Ic ® EK™! component as (p,n1). The K and E summands of the Vo component
of Lyf are
(A26) o i(Vq),—2i(—9Kp+ %Zl/z&nl) —V2iz' %708 + 1049,

* i(Vano)o—2i(=0fm + 52" 2ap) = V2i2'2qB + tonm:
and the respective /¢ and K~!E summands of the V; component of £y f are
(A27) o —i(Vp)o +2i (0% g+ J52'2an0) = V212" 271 B + 109 + t1,p.

o —i(Vun1)w+ 21'(51{1(770 + \/Lizl/zaq) + ﬁizl/zﬁﬁ + tipNo.

Here, each s denotes an R-linear homomorphism between summands of Vo @ V;
that depends only on the metric and has norm bounded by cq.

The description of the Vi component of £y§ given in (A-27) proves sufficient for what
is to come. The description in (A-26) of the Vo component requires some additional
rewriting. To begin this task, use Y now to denote a small length open segment of «’s
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zero locus in Yo, or a curve from Upe A()7p+ U )7p_ ) whose corresponding component
of Y —Y,, has a zero of «. Fix a point p € y and use the coordinates from Part 4 of
Section Aa to parametrize a neighborhood of y in Y . This neighborhood is denoted
for now by T. Nothing is lost by taking the t = 0 point to be the value of y’s affine
parameter at p. The segment y is assumed in what follows to be parametrized by
t € (—p, p) with p a constant that will be specified in the applications to come. This
constant p in any event obeys p € (coz~'/2, Co .

Each constant ¢ slice of (—p, p) is the intersection between the transverse disk through
the corresponding point in y and the tubular neighborhood of y. An identification
of E|r with E’s restriction to the ¢ = 0 slice of 7" writes the directional covariant
derivative along d; of A as (Va)y, = 0; +aso where ayg is an iR—valued function
on T'. With an identification of this sort chosen, then the terms (Vgq), and (V4n9), in
(A-26) can be written using (A-6) as
(A-28) o a%q—i—Zi(v(z—xy)—i—u(E—)_cy))%q—2i(U(E—)?,,)—i—ﬁ(z—xy))%q—i-tq dq,

o Lo+ adono +2i(v(z —xy) + w(E —y))dato B

—2i(v(Z—Xy) + i(z — xy))94n0 + ty - Vagq,
where the notation is such that d4 is the covariant version of % and 5,4 is the covariant
version of 3%. What are denoted by t, and t; obey |vy| + || < colz|(z7V?% + |z]).
Meanwhile, the terms just to the right of (Vg), and (V4no)v in (A-26) can be written
as
((_aK 1 1/25.\ _ _~:(_39 1 1/2=

(A-29) o —2i(—0%p+ ok / ani) =—=2i(-dp+ Wk / any) +eq-Vp,

o —2i(—0%n + %zl/zap) = —2i(—04m1 + %zl/zap) + e+ Van,
where [eg| + [en| < co |z|?. The remaining terms in (A-26) can be written as
(A-30) o —/2iz!/27B +2vq+2ug+10-4q,

o —V2iz"%GB + togm,

where || < co|z| and toy < co.
Ag The operator £y and Il

The next lemma hints at the role played by [T as it talks about the Iy of the Vj part of
an eigenvector of £y . This lemma and subsequent discussions abuse notation to some
extent by using Il to denote two maps to @y* <o, Kery. The firstis Section Ae’s map
from C°(Y; Vp) and the second is the map from C*°(Y; Vo & Vi) that is obtained
from Section Ae’s map by first projecting to the Vo summand.
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Lemma A.6 There exists k > 1 and, given cy > «, there exists k., > k with the fol-
lowing significance: Fix z > k,, c(}o. Suppose that ¢ = (A, ) obeys the corresponding
version of Properties 1-5 in Section Ab. The assumptions of Lemmas A.2—A.5 are
satisfied, and, this understood, let { denote an eigenvector of the operator £y with

eigenvalue bounded in absolute value by c(j"zl/z. Then ||ITsf]2 > (1 —Kco_l)||f||2.

Proof Choose ¢p and z so that Lemmas A.2—A.5 can be invoked. Write | as (fo, f1).
Lemma A.3 finds ||f1]2 < coc(lfz_l/2||f||2 with k < ¢g, so fo accounts for most of the
L?-norm of f. Meanwhile, the second bullet of Lemma A.2 asserts that the L?—norm

—1/2 or more from ! (0) is bounded by

of | on the set of points with distance 2¢pz
cocy YIfll2. As a consequence, the bulk of the L?—norm of fy is accounted for by
its L?—norm on the radius 2¢q 1,71/2 wubular neighborhood of «’s zero locus. The

contribution to the Z2—norm from this part of Y is analyzed in the four steps that follow.

Step 1 Reintroduce the set ®, from Part 3 of Section Ae and let yx denote a given
element in ®,. This is to say that y is either a component of «’s zero locus in Y,
or some y € L_JpeA()'/‘pJr U9, ) and k € {0,...,7} version of yx. Each p € yx has
an associated version of the map ¢, and function y. on C as described in Part 2 of
Section Ad. In particular, the assignment to each point in yx of the LZ—norm over C
of the corresponding version of y«¢. (fo) defines a function on y. The second bullet
of Lemma A.2 implies that

(A-31) S lxxerGoll3 = (1= cocp HIfl2.
Vx €Oy Vx
This inequality is exploited in Step 4.
Step 2 Fix y« € O,. If y is a component of «’s zero locus in Y, set ¢; = ¢, and if
not, set ¢; = cg' , this being the definition of ¢; that is used in Part 2 of Section Ad to con-

struct the versions of ¥, that are associated to the points in y«. Use T),, in what follows
to denote the union of the radius (¢; + 10c0)z_1/ 2 transverse disks with centers on yy.

Write fo = (g, 7o) and assign to each p € yx the element ((¢; 1)*()«))fo, this being
a section of Vg over the transverse disk through p whose components are written as
(g%, mox) . These sections define a smooth section of Vg over T),, and they are viewed
in this way. Use (A-27) with Lemma A.3 and Property 1 to see that

(A-32) |85 gt 52" @m0 |+ [ (05 nox + J52' e |5 <032+ D) 713

with it understood that the Z2—norms on the right-hand side denote integrals over Ty, .
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Step 3 Use 3« in what follows to denote any given p € y version of xx¢, (fo). The
operator 1,4 enters the story by virtue of the fact that

(A-33) Opie =2V 20F (0K g + %21/26710*,55770* + %zl/zaq*) +e,

where ¢ has compact support in the radius ¢; + (k + 2)¢p disk about the origin in C
and |e| is no greater than the g,—pullback of co(coz™!|Vfo| + ¢; ' [fol). The argument
to prove (A-33) is identical but for notation to that used in [20] to derive the latter’s
(3.14) and (3.15).

Step 4 By definition, ITgf at points on y, is the L2—orthogonal projection of 3 to
the L2—kernel of ¥,«. This understood, write 3x = ITyf + 3. As the point in ys
varies, so 33 varies and, this understood, view |33 |2 as a function on yx. Lemma A.5
asserts that |9,35 |2 > co! 32 ]l2. This bound with Lemma A.2’s first bullet and
(A-32) and (A-33) imply that

(A34)  (I—coqg V) | lxxerGo)l3— | ITs(Go)ll3 <oz~ + g 2)IflI3
Vx Vx

when ¢9 > ¢o and z > ¢, with the latter constant depending only on ¢ .

The inequalities in (A-31) and (A-34) imply that ||[Tsfl|3 > (1 —cocy V)[Ifl13 if it is
the case that ¢y > co and |A| fco_lcglzl/z. m|

Ah The equation Il £yf = All3fonY -Y,,

What is asserted by Lemma A.6 implies that ITyf determines § for the most part if | is
an eigenvector of £y whose corresponding eigenvalue is greater than —c 1 o 171/2
but less than ¢y ! o 121/2  This fact lies behind the focus in this subsection and the
next on the [Ty projection of the eigenvalue equation £yf = Af. By way of a look at
what is to come, (A-26) with (A-28)—(A-30) are used here to rewrite a given yy € Oy

component of the projected equation ITy(Lvyf) = AIlyf as
(A-35) 59:(ILpf) + R- Mg + e(f) = ATp,

where R is an R-linear section of the bundle of endomorphisms of Kery|,, and where
¢ is an R-linear functional of § that has small norm when f has L2-norm equal to 1.
An equation of this sort appears because the ITy—image of the right-hand side of (A-29)
at any given ¢ € yx can be written schematically as 19;, 3+, where 3 depends on (p, 1)
and v is small in a suitable sense. Meanwhile, z?ZT, 3 projects to 0 in Kery|; and so the
lack of an a priori small bound for the norm of 19;,3 is of no concern.

Geometry € Topology, Volume 24 (2020)



3380 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

This subsection uses (A-26) with (A-28)—(A-30) to say more about (A-35) when the
given element Y, € O is some y € UpeA()?p"' Uy, ) and k € {0,1,...,7} version
of i . The salient points are summarized by Lemma A.7. The first two parts of this
subsection set up the background for Lemma A.7; the third part contains the lemma
and its proof.

Part 1 To set the notation for what is to come, introduce «, and k.o to denote the
larger of the respective versions of k and «, that are supplied by Lemmas A.2—-A.6.
Fix cg > ko and z > k.o C&o for use in Section Ab. Let (A4, ¥ = («, B)) denote a pair
that satisfies Properties 1-5 in Section Ab using the given values of ¢y and z. Define
the set ® as in Section Ae, and focus attention on a given element in ®, that has the
form y; with y € UPGA(J?; U7, ) and integer k € {0, ..., 7}. If this element is the
whole of y, write y as the union of two open sets of length %Ky with distance %Ey
between their respective midpoints. These sets are denoted in what follows by y4
and y_. Introduce y« to denote y4 or yi if yr = y and to denote yy if yi # y.

Let T C Y denote the radius ¢ 1 tubular neighborhood of y with radius chosen so
as to use y’s version of the coordinates from Part 4 of Section Aa for 7" with v and
(1 constant and real, and with p greater than |v|. To spare notation, suppose that the
t =0 point is in y«. Use Ty C T to denote the set of points with coordinate ¢ € s
and |z| < 253' . Fix once and for all an isomorphism between E’s restriction to the
transverse disk in 7" through the ¢ = 0 point and the product bundle over this same
disk. Parallel transport along the constant z € C slices of Ty from the ¢ = O transverse
disk defines an isomorphism between E |7, and Ty x C. This isomorphism writes A
on Ty as

(A-36) A=0p+i(adz—Rdz)

with A being a C—valued function on T%. This isomorphism makes o a C—valued
function.

Part2 Given ¢ € y4, use ¥, to denote the z =r version of Section Ad’s operator ¥},
that is defined by the restriction of (A4, ®) to the transverse disk through ¢. The
isomorphism between E|7, and Ty x C writes the family {%,, };e), as a smooth,
1 —parameter family of operators on C and it identifies the bundle Kery|,, with a
subbundle of the product bundle y. x C*°(C; C @ C). In particular, this isomorphism
writes any given section of Kery over y. as a map from yx to C°(C; CpC). Viewed
in this way, the L?—orthogonal projection on L?(C;C @ C) induces a covariant
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derivative on sections of Kery|,, as follows: Let = { = (x;,(;) denote a smooth
map from y, to C°(C;C & C) such that ¢ at each ¢ € y, is a square-integrable
element in the kernel of 9, . The covariant derivative of this section is denoted by D¢
and it is defined at any given z € ¥ by the rule

d
(A-37) Dy =+ 3w,
where @ is the square-integrable solution to the equation
(A-38) 9,9 w + (a%zszt); —0.

Note in this regard that %ﬁzt is an endomorphism of the product bundle C x (C & C)
whose coefficients are defined by the #—derivative of the function A and the correspond-

1/2 transverse

ing covariant derivative of « on the union of the radius (c;1 4+ 10¢y)z™
disks in Ty with centers at the points in yx. This covariant derivative on Kery|,, is
metric compatible with it understood that the metric on this bundle is that induced by

the L? inner product on the space of square-integrable maps from C to C & C.

Let m denote the rank of Kery|,, , this being the dimension of the L?—kernel of any
t € y« version of ¥, . Fix an L?—orthonormal basis for Kery|,, at = 0. Parallel
transport this basis along y« using the connection defined by (A-37) and (A-38) to
define an isomorphism from Kery |y, to yx x C™. This isomorphism is used in the
upcoming Lemma A.7 to view a section of Kery|,, as a map from yx to C™”.

Part 3 The stage is now set for Lemma A.7:

Lemma A.7 There exists kK > k. and, given co > &, there exists k., > k.o with the
following significance: Fix co > k and z > K, céo. Suppose that ¢ = (A, ) obeys the
corresponding version of Properties 1-5 in Section Ab. Let § denote an eigenvector
of the operator £y with eigenvalue bounded in absolute value by ¢y * z1/2 . Define v«
as in Part 1 and view both T1yf and Tl (L£vyf) along y« as maps from ys to C™ as
instructed in Part 2. Viewed in this way, the equation I1y(Lvf) = AIlyf has the form

L (Tg) + () = ATTp]

with the endomorphism t being an R —linear functional of § that obeys fy* [e(P)| <

g IIfll2-

Proof Use (-,-) to denote the Kery|,, inner product at a given ¢ € yx. With
Kery|y,, viewed as y, x C™, this is just the Hermitian inner product on C™; and with
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Kery |y, viewed as a subbundle of y, x C*°(C;C @ C), this same Hermitian inner
product is the L2 inner product on the subspace of square-integrable maps from C to
C @ C. Let ¢ denote a covariantly constant section of Kery|,, with unit L?—norm.
Use the two views of (-,-) with (A-26) and (A-28)—(A-30) to write (¢, [Ty Lvf) as
5 I (Z Iyf) + vy (F) + t,(f) where the function ¢ — vy (f)|; comes from the inner
product of ¢ with the ITy—images of all but the term %fo = (E q, 5771) in (A-28),
and with the ITy—images of all of the terms in (A-29) and (A-30). Meanwhile, the
function 7 > v (f)|; is the right-most term in the identity

w3 [ et (fn) =5 [ Crerto-§ [(5¢) vt

The term vy (f) is such that

(A-40) / ( /C |w(f)|2) < cock I3
Y

with k < ¢¢. This can be seen by using the first bullet of Lemma A.2 to bound
the contributions from (A-28), by using (A-33) with Lemma A.3 to bound those
from (A-29), and by using Property 1 in Section Ab to bound the contribution to the
terms with § in (A-30). Note with regards to (A-28) that the function a4¢ is zero
because there is no d¢ component on the right-hand side of (A-36).

To obtain the desired bound on the term v, (f), use (A-37) to rewrite this term as
(A-41) 5 | @l o

Use the Minkowski inequality to bound (A-41) by the product of the L?—norm of ﬁ;rt w
on C and that of y«¢(fo). The latter norm is bounded by a uniform multiple of the
L?-norm of § over the transverse disk centered at the given point on yx. Use (A-38)
with Lemma A.6 to bound the L?—norm on C of z?ZT, w by a multiple of the L?—norm
on C of |-2,,||¢|. This in turn is bounded by

(A-42) Co sup ( 1/2‘ 5 ‘ + ‘aia’)
{(t,z)ey*xC:|z|<cg+IOco} ! t

because ¢ has unit L?-norm.

To say something about the size of (A- 42) note first that —oz is the covariant derivative
of « along the coordinate vector field 5 because Part 1 s isomorphism between E
over Ty writes A as depicted in (A- 36). Meanwhile this covariant derivative differs
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from (V4), by at most cg cg 27V 2|VAoz| because the vector fields % and v differ

on Ty by at most co cg 2712 This being the case, use Properties 1 and 2 in Section Ab
to see that the derivative of « in (A-42) is no greater than cg cg . Meanwhile, %%A

is the dt dz component of the curvature 2—form of A because of the lack of a term
in (A-36) that is proportional to dz. Use this fact with the aforementioned bound on
}3% — | and Property 2 in Section Ab to see that the term z~!/ 2}%A‘ in (A-42) is
likewise no greater than cocS. a

Ai Lemma A.1 and the equation 1y Cvy = AIly¥

The lemma that follows talks about (A-35) in the case when (A, ¥) is described by
Lemma A.1. This lemma refers to the functions v and p that appear in a given version
of (A-6) for the case when the relevant curve from ® lies in Y4 . Choose a coordinate
system of the sort described in Part 4 of Section Aa for each such curve from ® with a
bound by ¢ on the corresponding versions of |v| and |@|. Such a choice is assumed
implicitly in the lemma.

Lemma A.8 There exists k > 100 and, given ¢, > k, there exists k., > k, both
greater than their incarnations in Lemmas A.1-A.6 and with the following additional
property: Fix z > i, c}® and a pair (A, ) € Conn(E) x C*®°(Y;S) that is described
by Lemma A.1 using the chosen value of ¢,. Let y denote a curve from © in Yy .
Suppose that A is an eigenvalue of the corresponding version of £y with |[A| <c;* z1/2
and let f denote the corresponding eigenvector. Use ¢ to denote the section of the line
bundle Kery|, — y given by (I1f)|, . There is an isomorphism of Kery |, with y xC
that writes Tl3f as a map {: y — C and the 1y —image along y of the eigenvalue
equation £yf = Af as

(A-43) LD vE o uE = AL+ e,

where ¢(f) is an R —linear functional of § that has L2 -norm bounded by k¢, ! |f]|2.

Proof Use (A-28)-(A-30) with the conclusions of Lemmas A.2—A.6 as input for the
arguments that are used in Steps 9 and 10 from Section 2a in [21]. These arguments
with one addition give a proof. Steps 9 and 10 in Section 2a of [21] prove the latter’s
Lemma 2.1, which is the analog of Lemma A.8 for the case where 4 is replaced by a
contact 1-form. The one addition concerns the terms in (A-28) that involve x, . To say
more about these terms, note first that they appear only when y € Y,,. The relevant
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vortex solution defines the centered solution in €; and if (Ag, o) denotes such a
solution, then the L?—kernel of the corresponding version of ¢ is 1-dimensional and
spanned by ﬁ (%(1 — |ag]?). 0 AOOlo)- This fact with an integration by parts shows
that the x, terms contribute only to the ¢(f) term in the statement of the lemma. O

The next lemma states a stronger version of what is asserted by Lemma A.7 for
cases when (A4, ) on a given component of ¥ — (Yxp U Ty p) is also given by the
constructions in Section Aa using px = ¢, 4. To set the stage for the lemma, introduce y
to denote the curve from ez (f/\p‘" U¥, ) in the given component of ¥ —(YxA UTxA)-
Assume that the curves in Vx5 from © have distance at least (¢ +3¢2)z~'/2 from y.
Use T here to denote the set of points with distance less than (¢ 4 ¢2)z~1/2 from y.
Coordinates for T are given by y ’s version of the coordinates from Part 4 of Section Aa
with v and u constant and real with u > |v].

The definition of (A,v) on T refers to a function, yoc, of the radial coordinate
|z| on T. This function is nonnegative, it is equal to 1 where |z| is less than
(c;l — %cﬁ)z_l/z, it is equal to zero where |z| is greater than (¢} — cf)z_l/z, and
the norm of its derivative has absolute value bounded by 32¢, 32172 Note in particular
that the function y.. is equal to zero on 7 N Y4 . Such a function can be readily

constructed using the function .

Let m denote a given positive integer. There is a unique solution to (2-8) with (3-1)
equal to m and having the following properties: Write this solution as (A0, %mo) -
Then a0 = |mol|(z/|2])™ . Meanwhile, Ao can be written in terms of the product
connection 6y as A0 = Qo—am()%(z_l dz—z"1dZ). Note that both |gy0| and ||
are functions only of the radial distance to the origin in C. The m = 1 version of a0 is
denoted by ag in (A-3). Any given m > 1 version of a,,¢ obeys the analog of the m =1
bound in (A-4), this being |1 — 0| < co(1 — |@mol|). The pair (Ao, tmo) defines the
point in the space €, from Part 1 of Section 3.1 that maps via the coordinates in (3-2)
to the origin in C™. Let y,, and ¢, denote the (A0, ®mo) versions of the functions
y and ¢ that are described in Section Aa.

Fix an isomorphism between E|7 and T x C and use this isomorphism to view A as
a connection on 7 x C and the component « of ¥ as a complex-valued function on 7.
Use this isomorphism with the coordinates from Part 4 of Section Aa to view f as a
complex-valued function also. With this view understood, the connection A is written
as 8 +ay, where ay is an iR—valued 1-form on 7. The 1-form ay, @ and B are
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defined as follows:
ay = vXOQiZI/er*ym dt — %m(l — Yoo + Xoorz*amo)(z_ldz —z1 dz),

(A44) oy = (1= ool = lamol) ()
1/

IBU :i/“LZ_ 2X<><>rz*§m'

Let ¢;n: S — @, denote the constant map to the point given by (A4,,0,®mo). The

upcoming lemma also refers to the (Ao, omo) version of the linear operator that is
depicted in (3-10).

Lemma A.9 Fix m > 1; there exists « > 100 and, given co > k, there exists k., > k,
both greater than their incarnations in Lemmas A.1-A.6 and with the following signifi-
cance: Fix z > K, c(}o. Set ¢, = co and then set pyx = ng—l/z. Fix a set Ty A and then
a set ® as described by (A-5) which obeys the first and second bullets of the (z, cp)
version of Property 3.

e Suppose (A, ) € Conn(E) x C°°(Y;S) is given by the (z, cp, px = ng—l/z)
version of (A-7)—(A-10) on Yxp U Txp . Fix a component of Y — (Yup U Tkp)
and suppose that (A, V) is given by (A-44) on this component. Assume that
Properties 1, 2, 4 and 5 hold on the rest of Y — (YxA — T« ). Then (A, ) obeys
Properties 1-5 on the whole of Y.

e Suppose that A is an eigenvalue of the corresponding version of £y with |A| <

Co “z1/2 and let f denote the corresponding eigenvector. Let y denote the
curve from UpeA(i/\p‘F U ¥, ) in the given component of ¥ — (Yxa U Txp).
Use ¢ to denote the section of the line bundle Kery|, — y given by (Ilf)|, .
There is an isomorphism of Kery|, with y x C that writes I1yf as a map
¢: vy« — C and the [1y—image along y of the eigenvalue equation £yf = Af as
E > SVE+ (Ve VIO, + ¢(§), where e(f) is an R-linear functional of f

that has L*-norm bounded by ¢y !||f|>.

Proof The proof of the first bullet is a version of what is done in Sections 2e and 2f
of [15]. The proof of the second bullet is a version of what is done in Steps 9 and 10 in
Section 2a of [21]. O

B Vortex equation solutions and (A, ¥)

This section of the appendix supplies additional material for the proof of Proposition 2.6.
To give a look ahead, suppose that (A, ¢ = («, B)) is a solution to a given (r, i)
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version of (1-13) with u being a 1-form from 2 whose P-norm is less than 1. The
replacement of (A4, 1) with a pair made from vortex solutions facilitates the upcoming
analysis of the r—dependence of the spectrum of £v. By way of a reminder, the value
of fs at (A, ) requires comparing the spectrum of the (z =r, (4, ¥)) version of
Ly with that of a version defined using z = 1. If the z = r version of the operator
Ly is defined not by (A, ¥) but by a pair made from vortex solutions, then Lemmas
A.8 and A.9 can used to analyze the spectrum of £y . The inputs from these lemmas
are used in Appendix C to study the spectral flow for the versions of £y along 1-—
parameter family that is defined by the value of z and a corresponding z—dependent
pair in Conn(E) x C*°(Y;S) that is built from vortex solutions.

The constructions that follow in this appendix use (A, ¥) to construct a new pair
in Conn(E) x C*°(Y;S) that is defined on all of Y using solutions to the vortex
equations in (2-8). This new pair is denoted by (Ao, ¥c). The norm of the difference
between the values of fy as defined using the (z = r, (A4, v)) version of £y and
using the (z =1, (Ao, Y¥o)) version of £y is shown to be bounded by an (A4, ¥)— and
r—independent constant. It proves convenient to construct the desired pair (Ao, ¥o) in
two stages. The first stage constructs a pair that is denoted by (Ax, ¥x). This pair is
defined on most, but not all of ¥ using solutions to the vortex equations in (2-8). In
particular, the definition does not use vortex solutions near certain curves from the set
Upe A()7p+ U, ). The second stage modifies (A, ¥x) near these curves to obtain the
desired pair (Ao, Vo).

Ba The construction of (A., ¥.)

This subsection constructs the desired pair (A, ¥x) from data supplied by the given
solution to (1-13). The first four parts of this subsection construct (Ax, V). The fifth
part of the subsection explains why (A, ¥«) does not depend on the coordinates from
Part 4 of Section Aa that are chosen in Part 2. The sixth and final part of the subsection
constructs a path in Conn(E) x C°(Y;S) between (A, ¥«) and the given solution
to (1-13).

Part 1 The constructions in Section Aa are used to define (A, ¥x) over most of Y.
These constructions require as input the specification of parameters ¢,, z and px. The
parameter ¢, is chosen in a two-step process as follows: A preliminary step chooses
a parameter ¢,; so as to be larger than the various incarnations of the constant «
that are given by Proposition 2.4 and Lemmas A.1-A.9. With ¢,; chosen, let «,
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denote the largest of the various ¢y € [cy1,2¢y1] versions of the constant k,, that are

220y, c;{) and suppose that

given by these same Lemmas A.1-A.9. Assume that r >
(A, ¥ = (o, B)) is a solution to the (r, ) version of (1-13) with u a given element
in 2 with P—norm smaller than 1. The second step to choosing ¢, depends specifically
on the form of the zero locus of o and thus on the chosen solution (4, ¥) of (1-13).
The constant ¢, should be chosen from the interval [cy1, 2¢y1] SO as to satisfy certain
conditions that are stated in a moment. These conditions refer to the subset Yoo of Y
that consists of those points with distance at least (cf} — 3c3)r‘1/ 2 from each curve in
the set ,ea (7,7 U7,)-
(B-1) e If a component of «’s zero locus in Y. is disjoint from a given boundary
torus of Y., then all of its points have distance greater than 6c3r_1/ 2 from
this torus.

e If a component of a’s zero locus in Y. intersects a boundary torus of Yo,
then this intersection point is an endpoint of the component and it is a
transversal intersection. One endpoint of such a component lies where
u < 0 on some boundary component of Y. and the other where u > 0 on
some boundary component of Y. . If a given boundary component of Y.
intersects the zero locus of «, then it does so at two points. The distance

—1/2

between these points is at least 100c2r , and one lies where ¥ < 0 and

the other where u > 0.

Use Proposition 2.4 with the formula for v in (1-3) to see that (B-1) will hold if ¢, is
chosen from the complement of at most G intervals of length ¢g in [cy1,2¢y1]. These
intervals are determined by « and thus by the chosen (A, V).

Take z=r and p« = cfr_l/ 2 to complete the specification of Section Aa’s required

parameters.

Part 2 With the choices just made, use Yxp C Yoo to denote the set of points with

distance at least ¢ /2

from each curve in the set Up cA ()7p+ U¥, ). The constructions
in Section Aa require as additional input the choice of a union of components of ¥ —Y 7,
this denoted by Txp . Define Txp as follows: a component of ¥ — Yyp isin Txp if

and only if the component lacks zeros of «.

Having specified Txp , the next order of business is to specify a set ® that consists of
embedded 1-manifolds in Y4 U Ty . These are the components of ol 0)NYgp. In
particular, © has no curves from |, A()7p+ U7, ). The constraint in (B-1) guarantees
that the requirements of bullets two and three of (A-5) and bullets one and two of
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Property 3 of Section Ab are met by the curves in ®. That such is the case can be seen
using Proposition 2.4 with the formula for v in (1-3).

Having specified the T4 version of ®, Part 3 of Section Aa introduces a set denoted
by Up and sets {Uy },e@. The collection of {Up} U{U, },ce is denoted by . Keep
in mind that the union of the sets from 4l contains Y. U Tk . The constructions in
Section Aa require choosing coordinates of the sort described in Part 4 of Section Aa
for each U,,. Make such a choice once and for all.

Section Aa also requires isomorphisms between the various U € 4 versions of E|y
and U x C. Consider first the case of Uy. The chosen lower bound for r implies
that || is nearly 1 on Up and in particular |o| > %. This being the case, there is an
isomorphism between E |y and U x C that sends « to the map from Uy to C given
by |a|. This is the isomorphism to use for Ug. Consider next the case for U, with y
a given curve from ®. The chosen coordinates for U, supply an isomorphism from
E|y, to Uy x C that makes « appear as the map from U, to C given by |x|z/|z].
Use this isomorphism for U, .

Part 3 Section Aa uses the data supplied by Parts 1 and 2 to construct a pair of a con-
nection on E and section of E over Uy U (Uye@ U,,). The desired (Ax, ¥«) is defined
so as to equal this pair from Section Aa over Y, U Tk . This understood, this part of
the subsection and Part 4 define (A, ¥«) over the components of ¥ — (Yia U Txa).

Reintroduce the set Yo from Part 1, this being the subset of ¥ whose points have
distance at least (¢ —3¢2)r~'/2 from the curves in Upea (]7p+ U9, ). Fix a component
of Y —(YxaUT4n) and use T to denote the radius (cf + cg)r_l/ 2 tubular neighborhood
of the corresponding curve from the set (J, A()7p+ U, ). This set T is open and the
given component is an open subset of 7' with compact closure.

The definition to come of (Ax, ¥«) on T uses the coordinates from Part 4 of Section Aa
that are defined by 7"’s curve from | ¢ A()?,j‘ U7, ). The definition also refers to the
function, y.., that was introduced in the discussions just prior to Lemma A.9. By
way of a reminder, this is a nonnegative function of the radial coordinate |z| on 7" that

4

is equal to 1 where |z| is less than (c — %cﬁ)r‘l/z, and equal to zero where |z| is

[
greater than (¢} — 2¢2)r~!/2. The norm of its derivative has absolute value bounded
by 32cv_3r1/2. This function ye isequalto 1 on 7 — (T N Yeo) and it is equal to O

on T NYxp.

The definition of (Ax, ¥«) over T when « lacks zeros on 7' N Y. occupies the remain-
der of Part 3. To start the definition in this case, define (A, ¥«) over T — (T N Yoo)
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to be (A, ¥)’s restriction to this same subset of 7. To define (A«, ¥«) on the rest of T,
use the first bullet of (B-1) and Proposition 2.4 to conclude that all points in 7' N Yo

have distance at least 2c3r_1/ 2

from a zero of «o if ¢, > c¢¢. This last observation
has two immediate and not unrelated consequences, the first being that 7' N Yy is
contained in Section Aa’s open set Up. The second consequence comes via Lemma 2.3,
which guarantees that || > 1 — e=% on T N Yoo if ¢y > co. Granted these facts,
Part 2’s isomorphism from E|y, to Uy x C sending « to || extends over TN Yoo
using this same rule to identify E|7ny,., with (T N Yee) x C. This isomorphism
depicts A on T N Yo as a connection on (7 N Yeo) X C, and, viewed as such, A can
be written as A = 6y + a4,y,, where 6y denotes the product connection and where
aq,u, is an iR—valued 1-form on 7' N Y4 . Use the isomorphism to write (e, B) as

(||, Bu,) with By, being a section over T N Yoo of the bundle K~1.

Write ¥« as (o« B+) With respect to the E @ EK ! splitting of S. Granted this nota-
tion, use the isomorphism from the preceding paragraph to define (A«, ¥« = (ttx, Bx))
over T'N Yso by declaring

(B-2)  Ax =00+ fooaa,uy. x =(1—foo) + yoola| and Py = xooPu,-

The definition given in (B-2) smoothly extends (Ax, ¥«) from Uy to Uy U T because
the pair (Ax, ¥«) on Uy is defined in Section Aa using Part 2’s isomorphism between
Elyynt and (UpNT)x C as (Ax = bp, ¥ = (1,0)).

Part 4 This part assumes that « has zeros in 7' N Yo . The definition in this case
also sets (Ax, ¥«) equal to (4,%) on T — (T N Yeso). Four steps are used to define
(A*, w*) onTnN YQ(}.

Step 1 To set the stage for the definition on 7' N Y4, use (B-1), Proposition 2.4 and
the depiction of v in (1-3) to see that «’s zero locus in the Yo closure of 7' N Yoo
consists of two embedded, closed arcs, each with one endpoint on the boundary torus
of the closure of 7" and the other on Y, s boundary torus in 7. Moreover:

(B-3) ¢ The oriented unit tangent vector to each arc differs from v by at most cor /2,
e Each arc has transversal intersections with the level sets of |z].

e One arc sits where ¥ < 0 and the other where ¥ > 0 and both where
1—3cos26 > 0.

¢ The distance between any given point in one arc from any given point in
the other is at least 100c2r~1/2,
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Each arc from (B-3) extends a curve from the set ® into Yy, U(T NYso) S0 as to move
a boundary point on 7"’s boundary component of Y, to T ’s boundary component
of Yoo. Let y denote such an extended curve. The open set U, from Section Aa
likewise extends into 7" with the same definition as the union of the radius 4c3r_1/ 2
transverse disks centered on the extension of y. This is an open solid torus with core
circle y. The open set Uy also extends into 7 N Y4 as the complement of the union

of the radius cgr_l/ 2 disks centered on the relevant two arcs from (B-3).

Step 2 Granted what is said in Step 1, then Section Aa’s definitions can be used
to extend (Ax, Vx) into T N Yeo. The extended pair over T N Yoo is denoted by
(AxT, ¥«7). By way of a reminder, the extension over the complement of the radius
3c5r‘1/ 2 tubular neighborhoods of (B-3)’s arcs is written using the isomorphism of E
with the product C-bundle that sends « to |¢|. Meanwhile, (A«7, ¥«7) is written
over the radius 4c3r‘1/ 2 tubular neighborhood of either of (B-3)’s arcs using the
coordinates from Part 4 of Section Aa and the isomorphism of E with the product
C -bundle that sends « to |«|. The respective formula on these sets are given below.
These formulas write ¥.7 in two-component form with respect to the splitting of S
as £ @ EK~'. The formulas use 6 to denote the product connection on the product
C -bundle:

(B-4) o A.7 =060 and Y7 = (1,0).
1
° A*T=90+i21/2v7}*yd[—Err*ao(z_ldz—z_ldf),

Var = (e, iprV21740).

By way of comparison, the isomorphism used in (B-4) writes (A, ¥) over the comple-

—1/2

ment of the radius 3c§r tubular neighborhoods of (B-3)’s arcs and over the radius

4c5r_1/ 2 tubular neighborhood of either arc as
(B'S) e A= 90 +aA,U() and W = (|0l|, ﬁU())’
* A=bo+asy, and ¥ = (la|z/|z]. Bu,).

where a4y, and aq,y, are iR-valued 1-forms. Keep in mind that

z

2]

(B-6) aau, =aau, +2(z7'dz—-z7'dz) and By, = Bu,

on the intersection of the respective domains of definition.

The pair (A«7, ¥«7) is not the desired extension of (A, ¥«) because it is observedly
not the same as (A4, ¥) near the boundary torus in 7" of Y.
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Step 3 Let y € ® denote a component with it understood that y extends into Y.
Let U)ﬁ € U, denote the radius cfr_l/ 2 tubular neighborhood of y. This step defines
a smooth map u,: U, — S ! which is used to define

_ z
(B-7) ag,y =aau, —uylduy, oy = |a|u,,m and B, =uypBy,.

The map uy, is constructed so as to obey uy, =1 on Uy — UJ;. This being the case,
then the pair (6 +ay,y, (@y, By)) is gauge equivalent to (A4, ¥) on U, and it extends
as (A4, ¥) to the whole of Up.

The definition of u, requires the introduction of a function y, which is given on
the Y. part of U, by the rule z > )((2cv_2r1/2 |z| —1). The function y, on the
Yoo — Yipa part of U, is the product of the function z )((2cv_2r1/2 |z| — 1) with
a second nonnegative function. The latter is also constructed using y and it has the
following properties: It is a function of the distance to the nearby component of
Upe A()7p+ U, ). This second function equals 1 where the distance to these curves is
greater than ¢} — %cg and it equals 0 where the distance is less than ¢} — 14—1c§. The
derivative of this second function should have absolute value no greater than 100¢, 2r'/2.
Note in particular that this definition of y, makes it zero on U, ’s intersection with a

neighborhood of the boundary of Y.

With y,, in hand write aq,y, as aq,u, = aqodt + %(Ad?— Adz) with A being a
C—valued function on C and a4¢ being an i R—valued function on C. The map u,, is
defined by the rule

1
(B-8) u, =€, where 0y(t,2) = )(,,%/0 (ZA —zA)|(1,52) ds.

By way of explanation, the map u,, is designed in part so that the 1-form a, annihilates
the radial vector field Z% + E% where y, = 1. Note in addition that u, extends
to the whole of Y as a smooth map to S! that is equal to 1 on the complement of a
compact set in Uy, .

Step 4 The desired pair (Ax, Vx) is written below using the isomorphisms of E with
the product bundle that are used in (B-4) and (B-5). The formula over the complement
of the radius 3cgr_1/ 2 tubular neighborhoods of (B-3)’s arcs is

(B-9) Ax =0 + XooQA Uy and Y« = ((1 = oo) + Yoolal, X<><>,3U0)-

—1/2

Meanwhile, Ax and ¢, are written over the radius 4c5r tubular neighborhood of

the extension to Yoo NT of anarc y € ® as Ay = O« +ax and Y, = (a«, Bx), where:
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(B-10) * s = footay + (1= roo)[xgi2"/?vr¥ydt
—%(1—){0—i—)(ﬁrr*ao)(z_ldz—f_ldf)].
o o= (1= foo) (1= x5 (1= r¥lao]))z/|z] + xootty.
o Br= (1= Yoo) (2 xg51*s) + xooBy-

(The function yp was defined just prior to (A-10) in Section Aa using x and the
transverse coordinate z; it is y(p; !|z| —1).) The formulas in (B-6)—(B-8) guarantee
that (B-9) and (B-10) define a smooth connection on E and section of S over Y N T
because z/|z| is the transition function between the relevant product C—bundles.

Part 5 This part of the subsection explains why (A«, ¥«) does not depend on the
choices made in Part 2 of coordinate charts from Part 4 of Section Aa. What follows
is the short explanation: A change in the coordinate chart for any given y € ® also
changes the product structure for the bundle E over the corresponding set U, . The
change in the product structure must be taken into account when comparing versions
of (Ax, ¥«) that are defined by two different choices from Part 4 of Section Aa. The
changed product structure compensates for the apparent coordinate dependence in the
formula for (A«, ¥«). The next two paragraphs say somewhat more about how this
comes about.

Recall that a change in the coordinate chart writes the coordinate z on U, as u(t)z’
with u being a smooth map from y to S!. To see the effect, consider first the formula
in the second bullet of (B-4) that depicts (Ax, ¥x) on U); N YiA . Write the pullback
of the expressions on the right-hand side of the equations in the lower bullet of (B-4)
via the map (¢,z") + (¢t,z = u(t)z’) in terms of v/ = v + %M_I%u and /' =u"2p.
Use (A-2) to write y = —271/2(1 — gy) and use the formula for ¢ in (A-2) to see that
the (z,z") — (¢, u(t)z’) pullback of the expression for A47 in the lower bullet of (B-4)
is obtained from the (z’,v’, ") version of the expression by subtracting (™! %u) dt.
Meanwhile, the pullback of the formula for ¥ .7 in the lower bullet of (B-4) is obtained
from the (z/,v’, ') version by multiplying the latter by u. These changes are precisely

offset by the change in the product structure.

The invariance of (B-10) with respect to coordinate change can be seen by writing
aq,u, as %(a‘lvAa —a 'Vya) - %(z‘1 dz —z71dZ) so as to compare aq,u, with
its pullback via the map (¢,z’) — (¢, u(?)z’).

Part 6 Part 3 defined various y € ® versions of amap u, to S ! from the corresponding
Yoo extension of U, . As noted at the end of Part 3, such a map extends to the whole
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of Y as a smooth map that sends the complement of Uy, to 1. Let u denote the product
of these extended maps; this a smooth map from Y to S!. This part of the subsection
describes a path in Conn(E) x C®(Y;S) between (A —u~'du,uyr) and (Ax, ¥«).
This path is parametrized by 7 € [0, 1] with the 7 = 0 member being (A —u = du, uyr)
and the 7 = 1 member being (A«, ¥x). The 7 € [0, 1] member of this path is denoted
in what follows by (Ax«z, Yxr) and Y. is written as (oxr, Bxr) With respect to the
splitting of S as E @ E~!. The pair (Asz, ¥+z) on Y — Yo, is defined to be (A4, ).
The pair (Axz, Yxr) on the Yip part of Up— (U, cg Uy) is defined using the o > ||
isomorphism from E|y, to Up x C by the rules

(B-11) Axr =060+ (1-1)as,u,, s =7+ =7)|a| and Pz =(1-17)By,.

Meanwhile, the definition on any given Yoo N T part of Up — (Uy O Uy) is obtained
from the formula in (B-9) by replacing yoo Wwith (1 —1) 4 7xoo. The pair (Asr, Vsr)
on the Y, part of any given y € © version of U, is defined using the o — |a|z/|z|
isomorphism from E|y, to Uy x C by the rules

(B-12) o Az =00+ (i27V2vr¥ydt —ir*a0(z71dz —271dZ)) + (1 —1)aa,,

o axr=1rag+ (1 —1)ay and Bsxr = (1 —17)B) + ri,ur_l/zrr*g.

The definition over any given Yo, NT part of U, is obtained from the formula in (B-10)
by replacing yoo with (1 — 1) 4+ Tyoo and replacing Xo by txg-

By way of a parenthetical remark, this path in Conn(E) x C°°(Y; S) does not depend
on the chosen coordinates from Part 4 of Section Aa.

Bb (A., ¥.) and Properties 1-5

The upcoming Lemma B.1 asserts that (A, {¥x) and each t € [0, 1] member of the
path T — (Axr, ¥«r) have all five of the properties that are listed in Section Ab. This
lemma is proved using the a priori bounds on the various components of (4, ) and
(A, ¥4) that are supplied by Lemma B.2.

Lemma B.1 There exists k > 1 and, given ¢, > k, there exists k., > « with the
following significance: Suppose that r > k., c!® and suppose that (A, ¥ = (a, B)) is
a solution to the (r, i) version of (1-13) with p a given element in 2 with P—norm
smaller than 1. Then the corresponding (A, V) satisfies the ¢ = ¢y and z =r
version of Properties 1-5 in Section Ab as do all t € [0, 1] members of the path

T (Axe, Usr).

The proof of this lemma is given in a moment.
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Lemma B.2 talks about various components of (A4, ) on the Y, extensions of Uy
and the various y € ® versions of U,. To set the stage for this lemma, use the
o — |a| isomorphism between E|y, and Uy x C to write (4, («,B)) on Uy as
(0 + aq,u,, (||, Bu,)- The lemma also uses (a4,y,)v to denote the pairing of the
1—-form with v.

With y € ® fixed, Lemma B.2 uses the coordinates from Part 4 of Section Aa
for U,. Lemma B.2 uses the coordinates from Part 4 of Section Aa, the map u,,
from (B-8) and the o + ||z /|z| isomorphism between E|y, and U, x C to write
(A- u;l duy, (uya,uyf)) as (0 +aa,y, (ay, By)), and it writes ay,, as ago,, dt +
%(Ay dz — Ay dz). Lemma B.2 also borrows the functions gy and «g from (A-3).

Lemma B.2 Fix m > 1. There exists an m—dependent k > 1 and, given ¢, > «k,
there exists k., > k with the following significance: Take r > k., c!® and suppose that
(A, ¥ = (a, B)) is a solution to the (r, ) version of (1-13) with y a given element
in  with P—norm smaller than 1. Define (Ax, V) as instructed in Section Ba. Then:

o Y2a4 pol + 1(@auy)ol + |1 e +1Y2|By,| < ¢;™ on the Yoo extension
of U().

o 1 Y2|A, —r¥Ao| + |y — rfag| < €™ and |ago,y| < kc2 on the part of the
Yoo extension of any given U, where the distance to Upe A()7p+ U )7; ) is greater
than (¢t —2c2)r~1/2,

The proof of Lemma B.1 assumes that Lemma B.2 is true.

Proof of Lemma B.1 The two steps that follow verify the five properties. These steps
use k. to denote a constant whose value is greater than 1 and depends only on an upper
bound for Lemma B.2’s constant m and ¢, , but not on the particulars of (A4, ) nor
on r. This constant can be assumed to increase between subsequent appearances.

Step 1 Given the definition of ®, what is said in Proposition 2.4 implies Property 3.
The other properties hold where the distance to (¢ A()7p+ U7, ) is less than ¢ —2c2
if they hold for (A4, 1), which is the case when ¢, > ¢¢ and r > k..

The remainder of this step verifies Properties 1, 2, 4 and 5 on Uy — (Uy€® U,,).
Consider first the Y. part of this set. The inequality asserted by the first bullet of
Property 1 and by the first two bullets of Property 2 follow directly from Lemmas 2.1
and 2.3. Lemma 2.3 also leads directly to Property 4 and Lemma 2.9 to Property 5. To
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verify the remaining parts of Properties 1 and 2, take m > 100 and use Lemma B.2’s
bound |a4,y,| < cv_mrl/2 and the bound |(a4,u,)v| < ¢~™ with Lemmas 2.1 and 2.3
to see that r_1/2|VA*ra*,| and both |(V4,, a«7)y| and |V4, B« are bounded by co
on the Y. part of Uy — (Uye@) Uy). The latter set of bounds lead directly to the
bounds on the Y, part of Uy — (Uy c® Uy) that are stated by the second and third
bullets of Property 1 and by the third and fourth bullets of Property 2 on Y4 .

Given (B-9) and its (Ax¢, ¥x) analog, the arguments from the preceding paragraph
with but one additional comment establish Properties 1, 2,4 and 5 on the Yoo —Yi A part
of Up — (Uye@ Uy). The additional comment concerns the function y.. that appears
in (B-9), this being the fact that |(yoo)y < co cS on this part of Y. Indeed, such a
bound follows because yoo is independent of ¢ and because (1-3) finds ’v — 8%’ <
1/2 172 or less from Upea " UP5).

cocgr1/2 at all points with distance cjr™

Step 2 This step verifies Properties 1, 2, 4 and 5 on any y € ® version of U,,. To
start, take m > 100 in the second bullet of Lemma B.2. Its assertions about A, and «y,
imply directly the first bullet of Property 1 and Properties 4 and 5. Introduce Vj—*r to
denote the A4;—covariant derivative along the constant ¢ slices of U,,. This same part
of Lemma B.2 implies that

(B-13) VA (ot — )] < cocy 12 (1= Jary )% + co.

Lemma 2.1 and Lemma B.2’s assertions about A, give the bound |VAL* . Byl < co and
they imply that (A-2)’s function ¢ is such that r—/ 2|VAL*T (r*¢)| < co. These bounds
with (B-13) imply part of what is required by the second and third bullets of Property 1
and part of what is required by Property 2. The remaining parts of Properties 1 and 2
follow directly from Lemma B.2’s bound on |a4o,, | given that the absolute value of the
directional derivative of y.. along v is bounded by cg cS and that of yp is bounded
by co cﬁ, the latter being a consequence of what is asserted in the first bullet of (B-3). O

Proof of Lemma B.2 The proof has four steps. The proof also uses k. to denote a
constant greater than 1 that depends only on a given upper bound for m and ¢,.

Step 1 This step proves the first bullet of Lemma B.2. The bounds for 1 — |«| and
for r/ zﬁUO come directly from Lemmas 2.1 and 2.3 as they bound both by e~ if
¢y > co and r > k.. To obtain the other bounds, write V4o on Uy as d|a| +aa,u,|o|.
Given that a4y, || is iR—-valued, Lemmas 2.1 and 2.3 imply that |agq,y,| < e~ rl/2

if ¢, > co and r > k.. Meanwhile, these same lemmas together with the vanishing
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of the EK~1 component of D4y imply the bound |(a4,u,)v| < e~ . These bounds
lead directly to what is asserted by the first bullet.

Step 2 To start the proof of the second bullet of Lemma B.2, use Proposition 2.4 and
Lemma 2.9 to see that

||

(B-14) —1<e™™

| ool
on U, when ¢, > co and r > k.. Keeping this in mind, use the isomorphism between £
over U, and the product bundle that sends « to |t|z/|z| to write o over Uy as |x|z/|z].
Having done so, (B-14) implies that | —r*g| is bounded by e~ on U, . Use the same
isomorphism to write A over U, as A =6p+a A,U, » and use the coordinates from Part 4
of Section Aa on Uy to again write a4,u, as aq,u, = dqod! + %(Ad?— Adz). The
bound in (B-14) together with Lemma 2.9 have the following additional consequence:
Write Ao as done in (A-3) using the function ag. For any given ¢, the (r;)~!—pullback
of (A, @)|; to the radius 4¢2 ball about the origin in C differs from (apZ !, o) in the
C ®—topology by less than cf,‘ e~ if ¢, > co and r > k.. Note in this regard that oz~
is smooth near the origin although the notation suggests otherwise. (In any event, the
left-hand inequality in (A-4) implies that ag is O(|z|?) near z = 0.)

The function gy has to be a function of |z|? because (Ag, 2g) gives the symmetric
vortex in €; and o = |op|z/|z|. It follows from this that ZA — zA must be very small.
(The point is that A is very close to apz~! and Z(apz~!) is real.) This understood, the
fact that |z|2ap — (~!)*A has small C®—norm implies that the ! —pullback of the
function O, in (B-8) from any given constant ¢ slice of U, has C®-norm bounded

by coc;t on the ball of radius 4c2 centered at the origin in C.

The preceding observation about O, has the following consequence: Write the 1-form
a4,y NOW as dqg,, dt + %(Ay dZ—A,dz). For any given ¢, the () ! —pullback of the
%, o)

in the C%—topology by less than ¢ if ¢, > co and r > k.. These bounds lead directly

pair (A, a,)|; to the radius 4¢2 ball about the origin in C differs from (ap|z

to Lemma B.2’s assertions about A, and o, .

Step 3 The bound on ay4¢,, requires first a bound on a49,, on the |z| > /2 part
of U,. By way of a parenthetical remark, (6o + a4,,, (@y, By)) are used in (B-10)
and (B-12) in lieu of (6 +a4,u, . (l¢|, Bu,)) in part because no bound of the form
lago| < co cg has been found for the whole of U, . As explained below, a bound of this
sort does exist on the complement of any given radius tubular neighborhood of y and
the latter bound is needed to derive the desired bound for |a4o,y|.
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To bound |a4|, use the depiction of A on U, as A =6y +agodt + (AdZ —Adz)
and that of « as |«|z/|z| to write the A—covariant derivative of o along % as

d
(B-15) (Vaa)yjar = (glal + aAoIOll)é—l-

Since ayg is i R—valued, the norm of this directional covariant derivative is greater than
la4o||a|. Meanwhile,

v— %‘ < cocpr /2 on Uy, and as |(Vqa)y| < cp it follows

from the bound in Lemma 2.1 that |a4o|a < coey. Thus, |age| < cocy|z|™! at any

z # 0 point on U, .

Use d1ayg to denote the differential of a4q along the constant ¢ slices of U, . The
identity in (B-15) is used next to obtain a bound by coc, (r'/2+|z|~1)|z|™! on |dLay|.
To get this bound, first write (V4a)/5; as (Vaa)y + R+ Vo, where R is an endo-

morphism with norm bounded by cor—1/2

and with derivative bounded by cg. Use the
EK~1 component of the equation D4y = 0 to write (V4a), as a linear combination
of covariant derivatives of 8. Meanwhile, (B-15) finds a4 = im(a~1(V4a); /o:) and

SO

(B-16) |d*aol
< coloe| 7 (|| [Vael [(Va)ayar| + |VRI|Vaa| + [R] V3| + V3BI).

The desired bound for |dLay4e| follows from (B-16) and Lemma 2.1.

Step 4 The bounds for |a40| and |d+a4| in Step 3 are used first to bound la40,y| on
the |z| > r~ /2 part of U, under the henceforth implicit assumption that the distance
to UpeA()7pJr Uy, ) is greater than ¢} —2¢2. To this end, note first that |a4,y| <
lago| +|0:Oy| and so what is needed is a suitable bound on |3,0, |. To obtain one, use
(B-8) to see that |d;0, | < co|z||d;A|. Meanwhile, [3;A| < co(|dLaaol + }FA((%, ).
where F4 denotes the curvature 2—form of A. Use the top bullet in (1-13) with the
fact that % is very close to v to see that ‘FA(%, )} is bounded by corl/zou on Uy.
What with Step 3’s bound for |d a4, the latter bound implies that |3 +0y| <coc2 on
the |z| = r~1/2 part of U, . This with Step 3’s bound for |a4¢| leads directly to the

desired |a40,y| < coc2 bound on the |z| > 1~ Y/2 part of Uy.

—1/2

To obtain the desired bound for |a49,,| on the |z| <1 part of Uy, fix z with

|z| = r~1/2 and, for any given p € [0, 4c3r_1/2], write
(B-17) aAO,ylpz = aAO,ylz _/ ds (aAO,y|sz) ds.
[or=1/2,1]
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Meanwhile, the function 0, was chosen specifically so as to guarantee that the 1-form
%(Ay dZ — Ay dz) annihilates the radial vector field on C, and this implies the identity
(B-18) s(@soylss) = —Fa( 5
’ dt’ d|z|
As noted in the preceding paragraph, the norm of the right-hand side of (B-18) is
bounded by cgcyr'/2. Use this bound for |9 (a40,ylsz/)z))| in (B-17) to obtain the
bound for |a4o,,| by c()cg on the |z| < r1/2 part of U, when ¢, > co andr> k.. O

A4

Bc The difference between 5 at (A, ¥) and at (A., ¥.)

Both the (A4, ¥) and the (A«, ¥x) version of L .), might have nontrivial kernel. What
follows first defines what is meant by the norm of the spectral flow difference if this is
the case. The subsequent Proposition B.3 asserts that this difference is bounded by a
purely ¢, —dependent constant.

Let ¢p and ¢ denote a given pair in Conn(E) x C*°(Y;S). Fix zg,z; > 1 and
introduce £9 and £; to denote the respective (co,zo) and (c1,z1) versions of £.y.
The norm of the spectral flow between £¢ and £; is denoted here by |fs; — fso| and it
is defined as follows: Fix ¢ > 0 and introduce Cpe C (Conn(E) x C*°(Y;S)) x (0, 00)
to denote the set of pairs (¢, z') such that ¢/ has C?—distance less than & from ¢y and
|z —zg| < &. Require in addition that the (¢, z") version of £.) have trivial kernel.
Define C; likewise using (c1,z1). Granted this notation, define

(B-19) st —Fsol = lim supflfs (¢}, 74)—Fs (¢, 70)| : (h 7) € Cor and (], 74) €C1e}.

Perturbation theory can by used to prove that the lim-sup on the right in (B-19) is finite,
and that it is equal to the norm of the honest spectral flow difference when both the
(c1,21) and (c2,z2) versions of £(.) have trivial kernel. The limit in (B-19) is said in
what follows to be the norm of the difference between the values .

Proposition B.3 There exists k > 100, and, given ¢, > k2, there exists k., > k with
the following significance: Suppose that r > k.cl® and that u € Q has P-norm
bounded by 1. Let (A, ) denote a solution to the (r, u) version of (1-13). Use (A, )
as directed in Section Ba to construct the pair (A«, ¥«). The norm of the difference
between the values of {5 at (A, V) and at (A, V¥«) is bounded by « .

Proof The v = 0 point on the path 7 > (A, ¥sz) is (A —u~'du,uyr), where
u: Y — S is a homotopically trivial map. This being the case, it is sufficient to exhibit
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an r— and (A4, ¥)-independent bound for the absolute value of the difference between
fs at (A—u"'du,uv) and at (A, ¥«). Such a bound is derived in the subsequent
four parts of the proof.

Part 1 Suppose that IL is a given Hilbert space and that £ is an unbounded, self-
adjoint operator on L. Assume that £ has pure point spectrum with no accumulation
points and such that each eigenvalue has finite multiplicity. Let ¢ denote a bounded,
self-adjoint operator on I and suppose that {e;}¢[o,1] is a real analytic family of
bounded, self-adjoint operators on . with ¢g =0 and ¢; = e. Section 2 of [19] explains
how to label the eigenvalues of each 7 € [0, 1] version of £ + e by the integers so that
the following is true: Given an integer n, let {A,:}.¢[o,1] denote the corresponding
1—parameter family of eigenvalues. Then the map from [0, 1] to R given by the rule
T > Ap¢ is continuous and piecewise real analytic. Moreover, the corresponding 1—
parameter family of eigenvectors varies in a real analytic fashion where A,(.) does. Let
{f(x)}zef0,1] denote a corresponding 1—parameter family of unit-length eigenvectors.
The map 7 > f(;) can be assumed real analytic on the open subsets in [0, 1] where
An(.) is real analytic. As noted in [19], the derivative of A,(.) where it is real analytic
is given by

(B-20) Lne = (i (e )ico),

where ( , )1 denotes here the inner product on L.

Part 2 Let L denote the Hilbert space L?(Y; Vo @ Vy), let £ denote the z =r and
(Ao, ¥x0) version of the operator £y (from (A-26) and (A-27)) and let £ + ¢ denote
the corresponding (A4, ¥«) version of this operator. The next lemma implies in part
that what is said in Part 1 can be invoked for this version of I, £ and e. This lemma
uses ko to denote a number that is greater than the versions of the constant « that
appear in Lemmas A.1-A.8 and B.1-B.2.

Lemma B.4 Fix m > k.. There exists an m—dependent k > 1 and, given ¢, > k,
there exists k., > k with the following significance: Suppose that r > k., ¢} and
suppose that (A, ¥ = (a, B)) is a solution to the (r, ;) version of (1-13) with u a
given element in 2 with P—norm smaller than 1. Construct the family of operators
{Lv,2}refo0,1] for the path {(Axr, V«1)}relo,1] (see Lemma B.1 and Part 1 above). Fix
n € Z and let {A,:}e0,1] denote the corresponding family of eigenvalues. Then

|[Anz| =0 for some t € [0, 1] only if |Apy| <kc;™ forall v’ €0, 1].

Lemma B.4 is proved in the upcoming Section Bd of this appendix.

Geometry € Topology, Volume 24 (2020)



3400 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Let ko now denote a constant that is greater than the various versions of « that
appear in Lemmas A.2—A.8 and Lemmas B.1-B.2 and B.4. Fix ¢, and r so that the
assumptions of these lemmas are met. Let A denote the dimension of the span of the
eigenvectors of £y 1 with eigenvalue between —ko ¢, Vand ko ¢yt Ttis a consequence
of Lemma B.4 that the norm of the spectral flow difference between (A«g, ¥xo) and
(A, ¥y) is no greater than A. This being the case, Proposition B.3 follows if A has
an r— and (A, ¥)—independent bound given a suitable r— and (A, ¥)—independent
choice of m and then ¢,. A choice for ¢, that yields such a bound A is derived in
Parts 4 and 5 of the proof. The subsequent Part 3 of the proof supplies two observations
in the form of lemmas that are used in the derivation.

Part 3 To set the stage for the first lemma, use koo to denote the version of k given
by Proposition 2.4. Fix r > k¢, and p € Q with P—norm bounded by 1. Let (A4, )
denote a solution to the corresponding (r, 1) version of (1-13). Let y C Y denote
a closed, connected segment in «’s zero locus whose points have distance at least
100k2,r~1/2 from all curves in Upe A()7p+ U7, ). Use the coordinates from Part 4
of Section Aa to define the functions v and u on y and having done so, use L, to
denote the operator on C*°(y; C) that is defined by the rule ¢ %%{ + ¢+ pul.
This operator defines a function on C*°(y; C) by the rule { — || Ly |2, where || - ||2
denotes here the LZ-norm on C*(y; C). This function can be restricted to any given
linear subspace in C*°(y; C). Given T > 0, there is always an integer that is greater
than or equal to the dimension of any linear subspace in C°°(y; C) on which the
function £ — [[Z,£[l> obeys |1Ly¢ll2 < TI¢ 2.

The upcoming Lemma B.5 concerns L, and a least upper bound of the sort just
described. By way of a parenthetical remark, the versions of L, that appear in
Lemma A.8 are of particular interest with regards to the proof of Proposition B.3.

Lemma B.5 There exists k > ko, with the following significance: Fix r > « and
€ Q2 with P-norm bounded by 1. Suppose that (A, ¥ = («, B)) is a solution to the
corresponding (r, &) version of (1-13). Let y denote a closed, connected segment of
the zero locus of a whose points have distance at least IOOKQQr_l/ 2 from all of the
curves in the set | ez ()7p+ U¥, ). Use Ay to denote the least upper bound for the
dimensions of the linear subspaces in C*°(y; C) on which the function { — || Ly {||2
obeys ||Ly¢|l2 <« 1||¢||2. This least upper bound obeys A, <.

The argument for this lemma would be straightforward were there an r—independent
upper bound on y’s length, but such a bound does not exist. In any event, the proof
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is given in a moment. The next lemma states an analog of Lemma B.5 with the
straightforward argument for its proof. This lemma enters the proof of Proposition B.3
in conjunction with Lemma A.7. Lemma B.6 also plays a role in Lemma B.5’s proof.

Lemma B.6 Fix R > 0 and E > 0. The least upper bound for the dimension over C
of the linear subspaces in C*°([0,R]; C) on which the function { — H %{”2 obeys
|42, <Ell¢|l> is bounded by 2 + 7~ 'RE.

Proof The subset of elements in C°°([0, R]; C) that vanish at both endpoints has
complex codimension 2. This understood, the least upper bound in question is no

greater than 2 plus the number of linearly independent eigenvectors for the operator
2

_da-
dt2
This number is 7 " !RE. O

on C°°([0,R]; C) that vanish at both endpoints and have eigenvalue less than E.

Proof of Lemma B.5 The four steps that follow constitute the proof.

Step 1 The lemma is proved by cutting y into a concatenation of cq closed, connected
segments, and then bounding a version of A(.y on each segment. To explain why such
a cutting strategy works, suppose for the moment that o C y is a closed, connected
segment. Fix T > 0 and introduce A, to denote the least upper bound for the
dimensions of the linear subspaces in C*°(yp; C) on which the function [|L,(-)]|>2 is
bounded by T1|| - |2 with || - |2 denoting here the LZ—norm on C > (yp; C). Suppose
that y1 and y, are two such segments that share at least one endpoint. Then Ay uy,,r <
44 Ay, v+ Ay, r. This is because the subspace in C°°(y;C) that vanishes at the
common endpoints of y; and y» has codimension 2 if they share one endpoint and
codimension 4 if they share two endpoints.

With the preceding understood, suppose that y is written as the concatenation of N
segments {V}1<k<n- Iterate the bound given in the previous paragraph to see that
Ay, is no greater than 4N+ ) ¢ Ay 1.

Step 2 Fix ¢ > 0 and let y® C y denote the part of y with distance at least ¢ from the
curves in the set UpeA()?p"' U7, ). As explained directly, Aye,r < co(1 + T2)|lnel.

To see why this bound holds, keep in mind that L, is defined by the pair (v, i) and
the latter are defined by the chosen coordinates from Part 4 of Section Aa. Granted that
such is the case, any version of L, can be obtained from a given version by conjugating
the given version with a map from y to S!. This implies, in particular, that Aye ¢ does
not depend on the choice of coordinates. This being the case, choose the coordinates
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from Part 4 of Section Aa so that the resulting pair v and p are such that |v|+ x| <co.
Use B to denote to denote an upper bound for |v| and |u| on y&.

Let L denote the length of y°. Let V C C*°(y?;C) denote a linear subspace of
the sort under consideration. If y® has no endpoints, then the dimension of V is no
greater than the dimension of the span of the eigenvectors of —j—tzz with eigenvalue no
greater than (B + T~ 1)2. As noted in the proof of Lemma B.6, if y® has endpoints,
then V’s dimension is at most 4 more than the span of the Dirichlet eigenvectors
of —j—; with eigenvalue no greater than (B + T~1)2. In both cases, there are at
most co(1 4+ B + T~ 1)L linearly independent eigenvectors with this eigenvalue bound.
Meanwhile, Proposition 2.4 with Proposition I1.2.7 and Lemma I1.2.2 imply among
other things that the length of y¢ is no greater than co|ln €|, and that both |v| and |u|

are bounded by cg.

Step 3 Let ¥ € U,e A()”/\; U7, ) denote a given curve. As explained in Part 4 of
Section 1.1, there is a version of the coordinates from Part 4 of Section Aa for ¥ with
both v and u constant, with w real and such that @ > |v|. This version is assumed
in what follows. The corresponding constant values for v and p are denoted by vg
and wo.

Fix & > 0 such that the radius ¢ tubular neighborhood of ¥ is well inside the coordinate
chart just described. Let T denote such a tubular neighborhood, and suppose that
v C T is aclosed, connected segment in 7' of an integral curve of v. Taylor’s theorem
with remainder can be used with the formulas in (A-3) to see that v has a tubular
neighborhood with coordinates from Part 4 of Section Aa with |v—vo|+ | — ol < coe.

Reintroduce from Proposition 2.4 the subset Y, C Y. By way of a reminder, the points
in 7 N Y, have distance no less than cor~ /2 from 7. Let yT denote a properly
embedded, connected component of «’s zero locus in the closure of 7' N Y;. Thus, yT
has two boundary points, either both on the boundary of the closure of 7', or one on
the latter and one on Y;’s boundary torus in 7.

Step 4 Define the operator Lo on C*°(R; C) by the rule { ’5%5 +v0¢ + 1ol . Fix
£ > 0 and restrict L% to the subspace of elements in C°°([0, £]; C) that vanish at the
boundary points. The corresponding Dirichlet eigenvalues of L% on this domain are of
the form K2 + v% + u% +2v0(K? + po)? with K = 7(2k4£ +1)/(4£) for k € Z. Note
in particular that the smallest eigenvalue is greater than (g — vg)? when jo > Vo,

thus greater than ¢ L
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Let L, denote the restriction of Ly to C (T C). What was said in the preceding
paragraph and what was said in the final paragraph of Step 3 have the following
implication: Let £ € C®°(yT; C) denote an element that vanishes at both boundary
points of y7. Then [Ly,7¢ll2 = ((o —vo) —co8)[[¢]|2. Thus, if & < ¢y !, then

(B-21) IL,7¢ll2 = 3 (o —vo)l¢|2.

and this implies that A, 7, _,..)/2 < 4. Note that (B-21) and the preceding bound
on A,7 (y0—pe)/2 hold even if the pair (v, 1) that define L along yT are not e—close
to (vo, (o). This is because any two versions of (v, i) that arise from different choices
for coordinates from Part 4 of Section Aa define corresponding versions of L that are
obtained from each other by conjugating with a map from y to S!.

Lemma B.5 follows from the Ay (,,—40)/2 < 4 bound and those given in Step 2. O

Part4 Fix m and then ¢, and r so as to invoke the conclusions of Lemmas A.2—-A.8
and Lemmas B.4-B.6. Sum Lemma B.5’s integers {A,},c@ and use Ag to denote
the result. Let «, denote the largest of the versions of the constant « that appears in
Lemmas A.4, A.7 and B.5. Let N denote the number of components of ¥ — Y. with
zeros of «. Each such component has the same length, this denoted by £,. Lemma A.7

associates an integer m to each such component. As noted in Part 3 of Section Ad, no

4
M

version of m is greater than k,¢
Use N to denote the number of linearly independent eigenvectors of £y ; with
eigenvalue between —c, ! and o 1 As is explained in the subsequent paragraphs, N
is no greater than 10*(Ag + Nicxcir (1 + Lykacy®)) if ¢y > co and r is larger than a

constant that depends only on ¢, .

To see why this bound holds, suppose in what follows that N is larger than what is
claimed, so as to generate nonsense. If N is larger than the asserted bound, then there
exists a section, f, of Vo @ V; with four properties that are described next. Lemmas B.5
and B.6 guarantee that the third and fourth properties can be satisfied. First, { is a linear
combination of an orthonormal set of eigenvectors of £y ; with eigenvalue between
—c; ! and ¢;!. Second, f has unit L2—norm. The third property concerns the curves
in ®. Let y denote such a curve. Let {, denote y’s component of ITyf. The function
¢+ ||Ly¢|2 from Lemma B.5 is such that ||Ly ¢y |2 > k.1 ||&y |2 The final property
concerns the components of ¥ — Y, that contain zeros of a. Let y € ¢ A()7p+ Upp)
denote a curve from such a component. Part 1 of Section Ah describes a cover of y by

open sets {Vk fo<k<7 Or by open sets y+ and y—. Let yx denote a component of this
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cover. Denote by m the rank of Kery|,, . Use the isomorphism between Kery|,, and

Y+ x C™ in Lemma A.7 to view the component of ITyf in Kerg|,, as a map from y.
: id

to C™. Let ¢, denote this map. Then H 575y«

, is greater than 2, e 18y |-

What with the third and fourth properties, Lemmas A.7 and A.8 imply |1y Ly 1f|2 >
;7 |TIpfll2. This being the case, Lemma A.6 finds [Ty Ly 1fll2 > %K._1||f||2 if
¢y > co and if r is greater than a purely ¢, —dependent constant. Meanwhile, it follows
from the definitions that ||qf2 > ¢y Y TI3qll2 for any given section q of Vo & Vj.
Take q to be £y 1f to see that || Ly 1f|l2 > (coke) ! |fll2. Even so, the first property
listed in the preceding paragraph requires the bound | Ly ifl2 < ¢;![|f]2 and so
o 1'> (cok.)™! unless § is identically zero, and f # 0 because of the second of the
listed properties.

This (A, ¥)— and r—independent lower bound for ¢, 1 is the required nonsense because
¢y has no a priori upper bound. |

Bd Proof of Lemma B.4
The proof of Lemma B.4 has three parts.

Part 1 This part of the proof states an auxiliary lemma that augments what is said
by Lemma B.2. By way of a reminder, Lemma B.2 concerns the Y, extension of
a given y € O version of U,. With coordinates from Part 4 of Section Aa chosen,
Lemma B.2 uses the o +— |a|z/|z| isomorphism from E|y, to Uy x C to write
(A—u;1 duy, (uya,uyf)) as (0+ay,y, (ay, By)) with the map u,: Uy, — S defined
in (B-8). It goes on to write the i R—valued 1—form ay,, as a4o,y dH—%(Ay dz—A,dz).
Whereas Lemma B.2 talks about the functions A and «, , the upcoming Lemma B.7
talks about the functions a4o,, and B, . This lemma brings in the functions ¢ and y
on C from (A-2), and it uses u to denote the function of the radial coordinate |z| on C
that is given by integrating the function 1— |ag|? along any ray from the origin starting
at distance |z| from the origin. Thus

(B-22) u(lz)) = /| (1=l

The lemma also invokes the coordinates from Part 4 of Section Aa to bring in the
corresponding version of the function ¢ — x,, (7).

Lemma B.7 Fix m > 1. There exists an m—dependent k > 1 and, given ¢, > k,
there exists k., > « with the following significance: Take r > k,, cl}o and suppose that
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(A, ¥ = (a, B)) is a solution to the (r, u) version of (1-13) with u a given element
in Q with P-norm smaller than 1. Use (A, V) as directed in Section Ba to construct
the pair (A«, V¥«). Let y denote a component of «’s zero locus in Yy .

" at all points in the Yy« part of Uy, .

o 2By —iprsl< ¢
* l|aao,y —iv2 2%y £ir(xyZ/|z| + Xy z/|z)rFu| < ¢;™ at all points in the Yy p

partof Uy .

Proof The proof has six steps. The first four prove the top bullet and the last two
prove the lower bullet. As in the proofs of Lemmas B.1 and B.2, what is denoted by «.
is a constant with value greater than 1 that depends only on m and ¢, ; in particular, it
has no r— and (A4, ¥)—dependence.

Step1 The EK~! component of the equation Dflw = ( (with a factor of % in front)
can be written in the schematic form —%((VA)U)Zﬁ — 04048 + %r|a|2ﬁ =—pdqo+t
where [t| < co. This equation is used in what follows on the extension of U, into Yso
with the coordinates from Part 4 of Section Aa. The section 8 of EK™! is viewed
as a C—valued function on U, using these coordinates and the chosen isomorphism
on U, between E and U, x C. This function is denoted by B, . Meanwhile, the
connection A — u;l du, is written as A, = ago,, dt + %(Aydf— Aydz). Use the
derivative bounds for 8 given by Lemma 2.1 to replace the derivative (V4), with 9;
so as to obtain from (A-36) the equation

(B-23) —1928, — 04048y + Arla?B, = —pdacy +

with v different and now such that |t| < ¢g cg when ¢, > cg and r > k.. The notation
here uses d4 = % + %Ay and it uses d4 for the complex conjugate operator. (With

regards to replacing (Vy4), by d;, this leads to a small error because the vector fields
9 2. —1/2
ar Y

because they are equal on the central arc inside U, and because the radius of the

and v are nearly the same on U, . Indeed, their difference is at most cqc;

transverse disks in U, is 4px, which is 4c2r~1/2)

Reintroduce the section B from Part 5 of Section Aa. Of particular interest here is S«
on Uy, where it can be written (see (A-8)) as i ur“l/ 2 ¢ . It follows from (3-27) that
the section B, obeys an (A, @) analog of (B-23):

(B-24) —102Bs — 04,04, Bx + Arlo [P By = —pda, o+,

with ¢ here different from its (B-23) incarnation but such that |t < g cf. With regards
to (B-24): This equation is very nearly the pullback of (3-27) via r.. This is because
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the r*¢ factor in B4 is independent of the #—coordinate (so its 7 —derivatives are zero)
whereas the norms of the ¢—derivatives of the p factor in B4 (which can depend on ¢
are O(1). Granted these facts, then the —%8? B term on the left-hand side of (B-24)
is small, and it is canceled by a part of what is denoted by t on the right-hand side
of (B-24).

Step 2 Use Ay to denote Ay — Ax and use Ay to denote o, — ax. Their absolute
values on U, are such that 7 Y2|Ay] + |Ag| < 1'/2¢7® when ¢, > k and 1 > k..
Write the connection Ax as A, — A4, and write o as oy — Ay. Write A, as A and
oy as o (to stem the proliferation of subscripts), and rewrite (B-24) as

(B-25) —%8?/3* — 0404+ %r|a|2,3* =—piqa+uoqAy —[,LAS’O)Aa —R-Bi+r,

where the notation uses AS’O) to denote the (1,0) part of A,. Meanwhile, what is
written as R - B« is linear in B4« and can be written as

B-26) (@aA)Bu+ AL 4B + APV G B —100(Au, Aa)Bix + 1101 (Ag) B,

where |1vg,1| < co and with t different but still obeying |t| < coc2.

Let Ag = B — B«. The two equations (B-23) and (B-25) imply that Ag obeys
(B-27) —102A5 — 840405 + Lrlal?Ap = —pdaha +pA VA + R B+,

where t is again a term with absolute value bounded by coc2. Use o g to denote the
function 1 CAAY: |2. Take the Hermitian inner product of both sides of (B-27) with A B
and commute covariant derivatives of A to obtain an equation for og, this being the
next equation. This upcoming equation uses Vj‘ to denote the covariant derivative
along the constant ¢ slices of U, and it uses Re[-] to denote the real part of the
indicated expression. What follows is the promised equation for og:

(B-28) —10%05 —0dog + Lr(1 + |a|*)og
= —310:8p1” = §IVi Al
+ Re[—ngaAAa + /LZﬂ Aill’o)Aa + Z'B%ﬂ*] +t.
What is denoted by t here signifies a term with absolute value bounded by coc2.

Step 3 Let p = (¢, z) denote a given point in R x C and introduce G,(-) to denote
the Green’s function for the operator — (3% + 499) +2r on R x C with pole at p. This
Green’s function is positive and is such that

(B-29) G,<co e~ Vilr=Ol |de|§co(

b — Vilp—()
7=l +J) ’

lp— ()P
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where d here denotes the full exterior derivative on R x C. Introduce y. to denote the
function on the Y extended U, that is defined as follows: Take yo = Xg on YA and
take itequal to y 5 (1— xo0) on Uy s intersection with a given component of Yoo —YxA .
Thus, y has compact support on the interior of U, and it is equal to 1 at the points
in Y. with distance cgr_l/ 2 or less from y. Take p to be a point in Uy where yp is
equal to 1. Multiply both sides of (B-29) by ()+)>G and then integrate both sides to
obtain an equality between two integrals. The left-hand side integral is denoted by I7,
and the right-hand side by /g. As explained in the next step of the proof, the equality
I, = IR leads directly to the bound |Ag| < cor™1/2¢l%~%/2 at p. This proves the
assertion of the top bullet of Lemma B.7 at points in U, N Y, with distance cgr_l/ 2
or less from y if ¢, > ¢co and r > k.. Meanwhile, Lemmas 2.1 and 2.2 with (3-3)
imply what is asserted by the top bullet of Lemma B.7 on the points in U, N YA with

2 —1/2

distances greater than c;’r

from y if ¢, > co and r > k..
Step 4 The asserted bound on /7, is derived by integrating by parts twice in the

relevant integral. The result can be written as
1 2
IL=§|Aﬂ| (x) +e,

where ¢ is a function with |e| < cor_le_% /€0 By way of explanation, the function
¢ comes from an integral whose integrand has a term that is bounded in absolute
value by co|Ag 12(ldxs|? + |dTdyo|)Gx and one that is bounded in absolute value
by colAg |2|dxx||dGx|. Since these terms are supported at distances no less than
(1+cg1)e2r™1/2 from x, and since |Ag| < |B| + |B«| < cor™/ in any event, the
claim about /7, is a consequence of the exponential factors in (B-29).

Meanwhile, the integral /g is bounded by cor_lcgoe_‘:v. By way of explanation,

some judiciously chosen applications of integration by parts will remove derivatives
along the C factor of R x C from A, and A4 and replace them with terms that have
derivatives of either Gy or y. or covariant derivatives of B«. A covariant derivative
of B« is bounded by co(|VjA5| 4+ |V48]). Lemma 2.1 has |V48]| < c¢o and this with
(B-29) together with the bounds from Step 2 for |A4| and |Ay| can be used in a

straightforward fashion to bound the integrals that result by cor—! 2%~

Step 5 This step begins the proof of the lower bullet of Lemma B.7. As is explained
in this step and Step 6, the second bullet’s assertion is a consequence of the identity
in (B-18) and what is asserted by a version of Lemma B.7’s top bullet that uses a suitable
m’ > m. To exploit (B-18), first write d/d|z| as (z/|z|)d/dz + (z/|z])9/dZ. Next
write d/0z as %(21 —iép) +t;0/0t + tp, where {e1, e} is an oriented, orthonormal

Geometry € Topology, Volume 24 (2020)



3408 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

frame for the kernel of @, where |t;| < co|z|, and where |t3| < co|z|?. Doing so writes
d/d|z| in terms of {e1, e2}. Use this depiction in (A-6). Meanwhile, use (A-6) to write
d/0dt in terms of v. The result of all of this rewriting replaces the curvature component
on the right-hand side of (B-18) by

(B-30) —|z[7!(z1 Fa(v.&1) + 22 Fa(v. &2)
+ 2v|z|? + pz? + 1z® —xyZ — X, z2) Fa(61,82)) + 1,
where the notation is such that z; and z, denote the respective real and imaginary

parts of z, and where t denotes a term with absolute value bounded by |z|?| Fy4|.

Since the 2—form Fj4 is the Hodge dual of By, the equation in (1-13) can be invoked
to replace (B-30) with

(B-31) —rlz| @Bz —afz +iQ@v|z|* + uz® + iz? —x, 7 =Xy 2) (1 — |[?)) + v/,

where t/ has norm obeying |r'| < cq coe~VTlZl/0 | this due to Lemmas 2.1 and 2.2. A

—1/2rr*§

plus a term with small norm. Make this substitution and then invoke the formula for ¢
in (A-2) to write (B-31) as

further rewriting uses the top bullet in Lemma B.4 to replace 8 in (B-31) by iur

z

(B-32) —ir(2v|z| —xyé—fym

)a—la?) +".

where [t/| < co(c207'11/2 4 cp)eVrlzl/eo

Step 6 Granted (B-32), use the formula for y in (A-2) and the formula for Ag in (A-3)
to write y = —21/2(gy —1). Keeping in mind that aq is real and a function of |z|?,
use the formula in (A-3) and the top bullet in (2-8) to see that ﬁao = |z|(1 = |ao|?).

This understood, it follows from (B-18) and (B-32) that
(B-33)  O5(anoy —iv2"2r*y)|ss = ir(xyé +)?y|§—|)(1 —|r*aol?) + 1.

To exploit (B-33), first look again at what is said in the first paragraph from Step 4
of the proof of Lemma B.2 to see that |a4¢,,| < cocge_‘mZ'/CO, where |z| > r—1/2
on Uy, N Yy . Given (3-3), such a bound also holds for *y. These bounds imply
what is asserted by the second bullet of Lemma B.7 at the points in U, N Y4 with

distance greater than cgr_l/ 2

from y. Given this last observation, integrate both sides
12 with a choice for m’ > 2m + 100 to

obtain the second bullet’s assertion on the part of Uy N Y4 at points with distance

of (B-33) from a given value of s to cgr_

less than cgr_l/ 2 from y when ¢, > ¢p and r > k.. O
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Part 2 The next lemma writes the various versions of £y ; as £y 1 + e; and gives a
bound for the norm of the t—derivative of e;.

Lemma B.8 Fix m > 1. There exists m—dependent k > 1 and, given ¢, > k,
there exists k., > k with the following significance: Take r > k., c&o and suppose
that (A,v = (a,B)) is a solution to the (r, ) version of (1-13) with p a given
element in 2 with P—norm smaller than 1. Define {(Axz, ¥«t)}ze[o0,1] as instructed
in Section Ba. Given t € [0, 1], let £y . denote the (Ax¢, Vx¢) and z =r version
of the operator £y . Write £y ; as £y 1 + e;. Then the resulting map t > e; from
[0,1] to C*°(Y; Vo & V) is real analytic with derivative bound }%er‘ <2 at
all points in Y.

Proof Given Lemmas B.2 and B.7, the assertion is a direct consequence of the formula
for (Axz, ¥«) in Section Ba and the formula for £y in (A-26) and (A-27).

The lemma that follows uses the }%%} <¢ m1/2 bound from Lemma B.8 to give a
version of Lemma B.4 with an r—dependent eigenvalue bound.

Lemma B.9 Fix m > 1. There exists m—dependent « > 1 and, given ¢, > «, there
exists k., > k with the following significance: Suppose that r > k,, c&o and that
(A, ¥ = (a, B)) is a solution to the (r, ;) version of (1-13) with p a given element in
Q with P—norm smaller than 1. Construct as in Lemma B.8 the family of operators
{Lv,2}ref0,1] and introduce {Anz}.efo,1] to denote the resulting family of eigenvalues.
If |Ayz| =0 for some t € [0, 1] then |A, | < cv_mrl/2 forall v/ €10,1].

Proof Return for a moment to the context in Part 1. Let T denote sup.¢g 1] H %e, H .
It follows from (B-20) that any n € Z version of the map 7 + A, is such that
[Anzr — Ane| < T for any pair 7,7’ € [0, 1]. This implies in particular that |A,;| > 0
for all 7 if |A,/| > T for any 7’ € [0, 1]. Given Lemma B.8, this last observation
leads directly to the assertion in Lemma B.9 when applied to the family {£v ¢ }re[o,1]
with T = ¢;7r!/2, O

Part 3 The three steps that follow complete the proof of Lemma B.4.

Step 1 If m > c¢p, then Lemma B.9 can be invoked. With m so chosen, suppose
that 7 € [0, 1] and that A, = 0. Let {f(;)}+ ¢[0,1] denote the corresponding family of
eigenvectors. Fix 7/ € [0, 1]. If ¢, > ko and if r is greater than a purely ¢, —dependent
constant, then Lemma B.9’s bound on |A,;| implies that the assumptions of Lemmas
A.2, A.3 and A.6 are met with z =r, with (A, ¥xy/) used in lieu of (A4, ¥), with
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A = Apy, and with § = fr). In particular, what is asserted by the first bullet of
Lemma A.3 holds using ¢, in lieu of co. This is to say that when § is written in
terms of its Vo and V; components as (fo, 1), then the component f; has L?-norm
bounded by ¢ c{fr‘l/ 2 with k <c¢p.

Step 2 Assume that ¢, and r are chosen so that the assumptions of Lemmas B.1-B.2
and B.7-B.9 are met. Suppose that 7’ € [0, 1] is a point where the map A, .y is real
analytic. Let a), denote the endomorphism of S given by the derivative (% V4, (4))1)
at the point 7’. It follows from Lemmas B.2 and B.7 that |a"v| < coc, ™. Write /«(.)
as (x(.), Px(-)) and let B’ denote the derivative %,3*(.) at 7. Lemma B.7 implies
that || < cocv_mr_l/z. Meanwhile, Lemma B.8 has ‘%e(.ﬂ < cocv_mrl/z.

Step 3 Look at (A-26) and (A-27) to see that the absolute value of the inner product
between § and (% e(.))

o f at any given point in Y is no greater than
(B-34) coey ™2 [fol 71| + collay, | + 121 BDIF.

The integral of the expression in (B-34) over Y is no less than ‘%An(.)‘ at 7/, this
being a consequence of (B-20). Meanwhile, what is said by Steps 1 and 2 imply that

the integral of the expression in (B-34) is no greater than coc, m+k

Use m’ to denote m — k. The argument used in the proof of Lemma B.9 proves
that the bound by cocv_m’ on ‘%kn(.)} implies that |A,.| = 0 for some 7 only if
[Any| < cocy m for all T/ € [0,1]. Since m’ can be any positive number greater
than k., this last bound implies what is asserted by Lemma B.4. a

Be The pair (4., ¥.)

This subsection modifies (Ax, ¥x) on the components of ¥ — (Yixp U Tk ) so that the
resulting pair is given on these components by solutions to the vortex equations. The
five parts of this subsection describe this modification.

Part 1 This first part describes the modification in the simplest case. To this end,
fix attention on a component of ¥ — (YxA U TxA) whose boundary is disjoint from
the zero locus of «. This is the simplifying assumption. Let y denote the curve in
this component from Upe A(i/\p"‘ U )7p_ ) and let T C Y denote the subset of points
with distance (cf + cS)r_l/ 2 or less from y. Fix coordinates for 7 from Part 4 of
Section Aa with v constant and @ both constant, real-valued and positive.

The next lemma supplies a particular sort of isomorphism from E|7 to the product
bundle 7' x C.
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Lemma B.10 There exists k > 1 and, given ¢ > k, there exists k. > k with the
following significance: Take r > k.c'® and let (A,v¥ = (a,B)) denote a solution
to the (r, ) version of (1-13) with u a given element in Q with P—norm smaller
than 1. Suppose that y € |,c A()7p+ U9y ), that a has zeros at distances less than
kr~1/2 from y but no zeros at distance between k112 and (c* 4 3c3)r~Y/2 from V.
Fix coordinates from Part 4 of Section Aa for the radius (c* + 3¢3)r~ /2 tubular
neighborhood of y . There is an isomorphism on the concentric, radius (c* 4 ¢3)r=1/2
tubular neighborhood of y between E and the product bundle with the properties listed
below:

o The isomorphism writes A = 6 + agodt + %(AdE—Kdz) with |ago| < k and
|A| < kr'/2,

e Use m to denote the sum of the local Euler numbers of the zeros of « on
any radius ¢*r~1/2 ransverse disk centered on y. The isomorphism writes o
as |a|(z/|z|)™ at points with distances between 2«kr~/2 and (c* + 3)r~1/2
from y.

This lemma is proved in a moment.

Take ¢ = ¢, in Lemma B.10 and use the lemma’s isomorphism between E|7 and
T x C to write A, as 0 + a¢ with a, being an i R—valued 1-form on 7. Write v
as (@o, Bo) and use the isomorphism to view «, as a C—valued function on 7. Use
the isomorphism and the chosen coordinate system to view B as a C—valued function
also. Let m denote the rank of the complex bundle Kery|, . The data a., oo and B
are given by what is written on the right-hand side of the respective top, middle and
bottom lines in (A-44).

Proof of Lemma B.10 Let «, denote the version of « that appears in Proposition 2.4.
Fix x > 100 for the moment and then choose ¢ > x««. Now suppose that there are
no zeros of o with distance to y between xkr— /2 and (c¢* + 3¢3)r~1/2. The first
observation is that the absolute value of the sum of the local Euler numbers of the
zeros of o with distance at most xx*r_l/ 2

is this: According to the fifth bullet of that Proposition 2.4, the 2—form ﬁF 7 has
—-1/2

from y is bounded by cgkx«. The reason
compact support in the radius xk«r tubular neighborhood of y if x > ¢g. (This
follows from the formula for F 1 in (2-14) and from Lemma 2.3.) Meanwhile, the
section o/ |a| is Vz—covariantly constant on the boundary of this tubular neighborhood
if x > co (this follows from the definition of y). These two facts imply that the integral

of ﬁF 7 on a transverse disk to y with its boundary at distance between XKy~ 1/2
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and (c* +3¢3)r~1/2 from y computes the sum of the local Euler numbers of the zeros
of & with distance less than xksr~'/2 from y. Meanwhile, it follows from Lemma 2.1
that such an integral is bounded by coxk«.

—1/2 from y but less than

Lemma 2.3 finds |a|>1— ﬁ at distances greater than x.r
(c*4+2c3)r 12 from y if x > ¢o. Granted that o ’s local Euler number is m, and granted
this lower bound on ||, there exists ¢; < co and an isomorphism from E on the |z| >
c1xksr /2 part of the radius (c* + 2c3)r_1/ 2 tubular neighborhood of y that writes
o as |a|(z/|z])™. Use this isomorphism to write A as in the first bullet of the lemma.
The isomorphism writes the dt¢ part of Vg as (0|«| + a40le|)(z/|z])™. Given that
D4y =0, it follows that the dt part of V4« is bounded by |V4f8|+cor™'/2|V a|. This
understood, then Lemma 2.1°s bound implies that |ao| < co on the |z| > ¢jxk4r™1/2
part of the radius (c* 4+ 2¢3)r~!/2 tubular neighborhood of y. The bound for |A| on
this same part of the radius (c* + 2¢3)r~'/2 tubular neighborhood of y follows from
Lemma 2.1’s bound for |V «].

1/2 tybular

The isomorphism just described will be modified on the |z| < %clxx*r_
neighborhood of y to obtain an isomorphism between E and the product bundle on the
whole (c*+2¢3)r~1/2 tubular neighborhood of y that obeys the first bullet of the lemma.
To this end, note first that there is an isomorphism between E|, and yxC that writes the
pullback of A along y as a4 dt with a4, constant with absolute value less than 277 /£, .
Fix such an isomorphism, and then use parallel transport by A along the rays through the
origin in the constant ¢ slices of the tubular neighborhood to extend this isomorphism
to the |z| > 2¢qxksr~1/2 part of the tubular neighborhood. An isomorphism of this
sort writes A as 0 + a4odt + %K(z dzZ —zdz), where A is an R—valued function
defined on the radius 2(:1x1(*r_1/ 2

p_l%(ng) = FA(%, a%) with p denoting |z|. Integrate this identity starting at

tubular neighborhood of y. This function obeys

|z| = 0 using (1-13) to see that p|A| < coxkxr'/2. Meanwhile, a%aAz = FA(%, %)
because A — 6 has no dp component. Integrate the latter identity using (1-13) with the

fact |9, — v| < co|z| to see that |az| < coxks where |z| <2c¢ixkyr /2.

The preceding paragraphs describe two isomorphisms between E and the product

/2 < 7] < 2cxker™1/2

bundle that are defined on the cjxkxr part of the radius
(c* +2¢3)r~ /2 tubular neighborhood of y. The corresponding transition function is a
map from this part of the tubular neighborhood to S'. Use i to denote this map. The
bounds on a4; and a4, imply that |%ﬁ ‘ < co and those on A and p|A| imply that
|a%ﬁ ‘ < cox/(*rl/ 2 Granted these bounds, the map # with a cut-off function defined

from y can be used in a straightforward manner to modify the outer isomorphism where
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5

—1
ch)CK*r

12 <)z| < %cl)wc*r_l/ 2 so that the result agrees with the inner isomorphism

1/2 1/2 and is such that the norms of the new versions

1/2

where c1xksr™ /= < |z] < %clx/c*r_

of agq and A are still bounded by coxks« and coxk«r"/~, respectively.

Since all of what was said works for x < c¢¢ and since xx < cg, the statement of
the lemma follows from the preceding observations and constructions with « a priori
bounded by ¢ and with a suitable choice for «,. O

Part 2 Fix attention on a component of ¥ — (Yxa U Txa) whose boundary intersects
the zero locus of o and let y again denote the corresponding curve from the set
Upe A()7p+ U, ). Introduce the coordinates from Part 4 of Section Aa for y with v
constant and with y constant, real and positive. It follows as a consequence of what is
said in (B-1) that the zero locus of « extends as two properly embedded arcs in the part
of the radius cf}r_l/z tubular neighborhood of y where (c3—3c3)r_1/2 <lz| < cﬂr_l/z.
The following lemma describes an extension of these two arcs as the end segments of a

1/2

single, properly embedded arc in the radius ¢jr~1/2 tubular neighborhood of y .

Lemma B.11 There exists k > 1 and, given ¢, > «, there exists k., > k with the
following significance: Suppose that r > k., cl® and suppose that (A,v¥ = (o, B))
is a solution to the (r, ) version of (1-13) with yu a given element in Q with P—
norm smaller than 1. Let y denote a curve from | ¢ A()’/}f U ¥, ) with points at
distance c}t=1/2 from the zero locus of «. Let T denote the set of points with distance
(c)+¢c )r_l/ 2 or less from y. There exists a smooth, properly embedded arc in T
with the properties listed below:

1/2

e The arc is the zero locus of « at points with distance ¢,r™ "/~ or more from « .

e The arc lies in the 1 —3 cos? > 0 part of T.
e Each point in the arc has distance greater than k! cor~/2 from Y.

e A unit-length tangent vector to the arc has distance at most k c,r~'/2 from v.

4.-1/2
v

no zeros of « on its boundary. Let m,. denote the intersection number between
this disk and the arc and let m,, denote the sum of the local Euler numbers of

e Fix a closed, transverse disk in T with radius ¢t~ /<, center point on y, and

the zeros of « on the disk. Then my — my is nonnegative and independent of
the chosen disk.

Proof There are various ways to construct an arc with the desired properties. The
construction that follows is perhaps more complicated than is needed for now, but the
resulting arc has certain extra properties that are exploited later. There are four steps.
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Step1 Fix m e (1,¢, Y¢y). If «=1(0) N T has a component whose points all have

distance greater than m™%¢, /2

from y, then the desired arc is this component of
a~1(0) N T. Proposition 2.4 guarantees that the conditions of the lemma are met if
is greater than a purely m—dependent constant. The remaining steps assume that the
components of o~ 1(0) that intersects the boundary of T have points with distance
m~*c,r1/2 from y. This understood, keep in mind the following consequence of
Proposition 2.4: the zero locus of « in the part of 7' with distance at least m 4, r /2
from y consists of two arcs, one where u is everywhere positive and the other where u
is everywhere negative. These are denoted respectively by v4+ and v—_ in what follows.

1/2

Note also that the unit tangent vector to either arc has distance at most cor~ /< from v.

The subsequent three steps take cos 6 = % on y. The construction for the case when

cosf = —% on y is identical but for certain sign changes and will not be given.

Step 2 Let 6. € (0, w) denote the angle that obeys cos 4 = \/Lg It follows from the
formula for v in (1-3) that any integral curve of v in 7' can be parametrized as a map
from an interval / C R to (R/(27Z)) x R? of the form

1> (¢ =—1,u=>bxa(r),0="0x+ya()),

where b = %eR(xo + 4e_2R)1/ 2 and where xa and ya are smooth functions that
obey

d d
(B-35) 77 A =Ayatex(xa.ya) and  —oya =Axa +ey(Xa.ya)

with A = 4v/6e~ R (xq+4e~2R)1/2 and with the pair ¢, and ¢y being smooth functions
of the coordinates (x, y) on R? that obey |ex|+ |ey| < co(x? + y?).

This parametrization of integral curves of v in 7' suggests the introduction of coordi-
nates (x, y) for T by writing ¥ = bx and y = 0« + y. These coordinates are such that
if m> co and if p €[0,4), then the points in 7 with (x2+ y2)"/2 = m P ¢,r~1/2 have

1/2 1/2

distance less than com™? ¢y~ from y and distance greater than ¢, L =P 1™

from y.

It follows from what is said in Proposition 2.4 that v can be parametrized as a map
from an interval /4 C R to (R/(27Z)) x R? of the form

(B-36) t=>(p=—t,u=bx4(t),0 =0+ y+(2)),

where x4 and y4 obey a modified version of (B-35) that adds respective terms vyt
and ty4 of 7 to the left- and right-hand equations. These are smooth functions of ¢
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with absolute value bounded by cor~1/2

. The arc v_ can be parametrized in a similar
fashion as a map with domain an interval /— C R by a pair of functions (x_, y—)
that obey a modified version of (B-35) that adds respective terms tx— and t,_ to
the right-hand sides of these equations, both being functions of ¢ with absolute value

bounded by cor—1/2.

Use S to denote the torus (x2 + yz)l/ 2 — 1 2¢,r~ Y2 This torus is intersected trans-
versely in one point by vy and likewise by v_. No generality is lost by parametrizing
I+ and I_ so these points S N vy and S Nv_ occur at respective parameter values
t =2m +1t, and t = =27 —t, with to € [0, 27r). More is said about /4 and /_ ina
moment.

Step 3 Introduce coordinates p and ¢ on R? by therules p =y +x and ¢ = y —x.
Writing (B-35) or its v4 or v— analogs in terms of p and g gives an equation for a
pair of maps ¢ > px«(¢) and ¢ > g«(¢). Here * denotes either A, 4+ or — as the case
may be. The equation in question has the form

(B-37) %p* = Apx + ¢p(Px,qx) +tp, and %q* = —Aqx + eq(Px. qx) + tq,.

where ¢, and ¢, are smooth functions of p and ¢ that obey |ep|+ |eg| < co(p? +¢?),

and where tp0 and t4q are zero (this the case of (B-35)), while t5 4, t44, tp— and t4—

are functions of ¢ with absolute value bounded by cor—1/2.

1/2 1/2

It follows from (B-37) that p4+ and g+ where ( p_2|_ + qi) < g1 */“ have the form

(B-38) pi(t) = pore™ 2 fiopr and 4 (1) = Gore TP oy

where pot = p(2m +1,) and go = q(27 +t,), and where ;1 and o, are

functions of ¢ with absolute value bounded by cor~ /2 where |t| < c0. The ¢-

derivatives of 1,4+ and to,_ for such ¢ are also bounded by cor~'/2.

If m > cg, then the fact that v intersects the locus where (p2+¢2)1/2 =com *cyr—1/2

leads to the following observations:

(B-39) e [2m—to,2m+1s] C I+

* |po+— m_zcvr_1/2| + m?|qot| < com™*eur71/2,

To see why this is, note first that the torus S is the locus (p%+¢2) 12 _p1/24=2, —1/2

1/2

and so neither po4+ nor go4 is greater than 21/ 2m=2¢,r /2. However, Dot =

271272, r"1/2 because p > |g| where u >0. Granted that po, >271/2m=2¢r1/2
2)1/2

and granted that v intersects the locus where (p? + ¢ = com*c,r"1/2 then
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the left-hand identity in (B-37) requires that the parameter ¢ at this intersection is less
than A~ In(m~2) + cq. This gives the top bullet in (B-39) if m > co. The fact that ¢
on I has values less than A ™1 In(m™2) 4 ¢ with the right-hand identity in (B-38)
finds g at such values of ¢ greater than g com? and so m?|g | must be less than
co m_4cvr_1/ 2. This implies the lower bullet in (B-39).

What was just said about p4 and g4+ hasits p— and g— analog. By way of a summary,
these functions can be written as

(B-40) p_(t) — po_el(t+27'[+l‘o) +mp— and q_(t) :qo_e—l(l+2ﬂ+lo) +mq_’

where po— = p(—2m — 1) and go— = q(—27 —1,), and where tv,_ and o, are
functions of ¢ with absolute value bounded by cor~'/2 where |f| < 1007. Their
respective t—derivatives are also bounded by cor~ /2 for such ¢. The (p—,q—) analog
of (B-39) reads:

(B-41) i [—27T —lo, 2w + to] cl_.

2 1/2

o m*|po|+Igo——m" Cvr_1/2| <com 4eyr

The proof of (B-41) differs only cosmetically from that of (B-39).

Step 4 The arc v coincides with the ¢t > 2 + ¢, part of v4+ and the 1 < —27m — 1,
part of v—. The remaining part of v is parametrized by [-27 — t,, 27 + to]. The
definition that follows for this part of v refers to a nonnegative function on R that is
denoted by ¢ and defined by the rule ¢ — o (¢) = )((1 — %t). This function is equal

to 1 where ¢t < % and it is equal to 0 where 7 > 7.
The t €[—2m—to, 2 +1,] point of v is written as (¢ =—t, u =bxy(¢), 0 =0+ yy (7))
with x,, and y, being functions on the interval [-27w —t.,, 27 +¢,]. The functions x,,
and y, are written here as x, = %(pv —qy) and y, = %(Pu + qv) with py and g,

given by the following rule:
(B-42) o py(t) = 0(=1)(pote?72771) 410, (1)) + 0(1) p—(1).
o qu(t) =0(0)(qo—e PCTHTD L uy (1)) +0(—1)g+(1).

It is a straightforward matter to check that the arc v has all of the required properties. O

Part 3 Use x. to denote a constant that is greater than the versions of « that appear in
Lemmas A.2-A.9 and in Lemmas B.10 and B.11. Assume in what follows that ¢, > k¢
and that r is greater than the ¢p = ¢, lower bounds given in Lemmas A.2—-A.9 and the
lower bounds given in Lemmas B.10 and B.11. Fix a component of ¥ — (Y U Tk p)
whose boundary has a zero of «. Let y denote the nearby curve from |, A()7p+ U¥y)
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and let 7" denote the set of points in ¥ with distance (53 + cS)r_l/ 2 or less from y.
This part of the subsection defines (Ao, ¥) on T. The definition has four steps. These
steps use v to denote the arc that is supplied by Lemma B.11. These steps also use
y’s version of the coordinates (¢, z) from Part 4 of Section Aa for 7.

Step1 Define Urg C T as follows: The |z| > (c3—2c5)r_1/2 part of Ut consists of
the points in 7' with distance greater than ¢2r~/2 from v. The |z| < (¢} —2¢2)r~1/2

/4:=1/2 from v and

part of Ut consists of the points with distance greater than (;3
with distance greater than cy/*r=1/2 from y. Note that the |z| > c*r~1/2 part of
Ut coincides with the Y,.p N T part of Section Ba’s set Uy. This understood, fix an
isomorphism over Urq between E and UroxC that sends « to |«| on the part of Uz
where |o| > % Such an isomorphism extends Section Ba’s isomorphism from the
lz| > (c} — 203)r_1/2 part of Urq to the whole of Urq. This isomorphism identifies
Ao on Urg with the product connection and it identifies ¢z, with the constant 1 € C.

The component B, is everywhere zero on Ury.

What follows is, for now, just a parenthetical remark: Suppose that A and A’ are two
isomorphisms from E |y, to Urg x C that agree where |or| > % Then A’ = e* A
with x being a real-valued function which is 0 where || > % That this is so is a
consequence of what is said in Proposition 2.4 about the zero locus of « in T.

Step 2 Let Uy— C T denote the subset of points with |z| < (c4 — %cg)r_l/ 2 and

(%
distance less than 403/ 412

from v. To this end, keep in mind that the |z| >
(ch — 263)1'_1/ 2 part of v coincides with this same part of «~1(0) N 7. This un-
derstood, fix coordinates for U,— from Part 4 of Section Aa that coincide on the
lz| > (c} — 2c3)r_1/ 2 part of U,_ with those used in Section Ba. Denote these
coordinates by (¢, zy) so as to distinguish them from the coordinates ¢ and z that
are used for 7. The restriction of E to the |z| > (c* —2¢2)r™1/2 part of Uy,— has
its o = |a|zy /|zy | isomorphism with the product bundle. Extend this to the product
bundle so as to give an isomorphism over the whole of U,,— between E and the product
bundle. This extension should be such that the corresponding transition function for
Step 1’s isomorphism from E|y,., to UroxC sends the constant section 1 of UrgxC
5/4r_1/2 part of Uy—. The formula

in the next equation defines A, and o on U,— by viewing them via this isomorphism

to the section zy,/|zy| of Uy— x C on the |z,,| > ¢

as a connection on the product bundle and map to C. This isomorphism with the
coordinates (#y, zy) are used to view B, as a map to C also.

The upcoming equation uses xg,,_ to denote the function of |zy| given by the rule
)((cv_l/4r1/2|zu| —1). The equation also uses (vy, i4y) to denote the (¢, z,) version
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of the functions v and p from v’s version of (A-6). This equation once again brings
in the functions o and agp from (A-3) and the corresponding versions of y and ¢
from (A-2).

(B-43) o Ao=0+vyyp, i2"2ydt,
— 3= xpo_+ Xpy_ria0)(zy dzy — 2, dZy),

o do=(1—yg,_(0—rFlaoD)zv/|zvl,

1/2 *

o Bo=iput™ Fxp, 1S

Step 3 This step defines Ao, @ and Bo on the part of T with |z| > (¢t —2¢3)r™1/2

where the distance to v is less than 4¢2r~'/2

. To this end, use the o > oz, /|zy]
isomorphism between E and the product bundle over this part of T to view A, as a
connection on the product bundle and «. as a map to C. Use this same isomorphism

with the coordinates (¢, zy) to view B¢ as a map to C also.

Reintroduce yoo to denote the function that appears in (B-2). This function equals 1

where |z| < (c;‘—%cg)r_l/z and it equals 0 where |z| > (c;‘—%cg)r_l/z. The definition

uses X, to denote the function of |zy| given by

(1= foo) 1 (621 2|2y | = 1) + oo x(cy /4r1/2| 2, | = 1).

This function is equal to (B-35)’s function g, where |z] < (c,‘)1 — %cg)r_l/z and it

is equal to (B-10)’s function z where |z| > (cf — 2¢3)r™1/2.

Replace yg,,_ in (B-43) with yg, . to obtain the formulas for As, oo and Bo on
the part of 7' with |z| > (¢} — 2c3)r_1/2 and with distance less than 4c5r_1/2 to v.

Step 4 This last step defines Ao, @o and B on the |z| < %ci/zr_l/z part of T. The
definition requires Lemma B.11’s integer m. The definition also requires the choice of
an isomorphism between E on this part of 7' and the product bundle. A choice for

such an isomorphism should be made subject to the following constraint: The resulting

. : 1/2 1/2
transition function on the %cv/ /2 %c,,/ /2

bundle over |z| < %cg/zr_l/z

<|z| < part of 7" between the product
part of T and the product bundle Uty x C sends the
latter’s constant section 1 to the former’s section z + (z/|z|)"*. An isomorphism of
this sort exists because y represents the class 0 in H!(Y;Z). Moreover, the space of
isomorphisms that obey this constraint is contractible. The chosen isomorphism is used
to view A, as a connection on the product bundle over this part of T and o, here as
a C—valued function. This isomorphism with the coordinates (¢, z) is used to view S

as a C—valued function as well.
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In the case m = 0, the transition function is the constant function. In this case, A, on

3 —1/2

the |z| < ZCT} /2 part of T is set equal to the product connection, the function o

is the constant function 1, and S, is zero.

Assume next that m > 0. Introduce y«x to denote the function that is defined by the

_1/21'_1/2|Z|—

rule z = y(4¢ 1). This function equals 1 where |z| < %03/21.—1/2 and

it equals O where |z| > %cg/zr_l/z. The definition of A., @ and B in the next
equation uses yxx, it uses v and u to denote the pair of functions that are given by y’s
version of (A-6), and uses the functions a0, amo, Ym and ¢, that appear in (A-44).

What follows defines Ao, ao and S, on the |z]| < %cs/zr_l/z part of T:

(B-44) o Ao=04vyuxi 2/ 25* y dt—3m(1= Yuox+ fuu 1 amo) (' dz—271 d7),
o o= (1= yax(l =7 lamo)(z/]z)™,
* Bo= i/j,r_l/z)(**rr*gm.

Part4 The next lemma asserts two important features of the large ¢, and r versions
Of (Ao s WQ) .

Lemma B.12 There exists k > 100 and, given ¢, > k, there exists k., > « with the
following significance: Suppose that t > ., ¢} and suppose that (A, ¥ = (a, B)) is
a solution to the (r, ) version of (1-13) with u a given element in Q2 with P —norm
smaller than 1.

e The corresponding (A, V) does not depend on the coordinates from Part 4 of
Section Aa that are chosen from the various y € ® versions of U, .

e The corresponding (A, V) satisfies the co = ¢, and z = r versions of Proper-
ties 1-5 in Section Ab.

Proof The fact that (Ao, ¥) does not depend on the chosen coordinates from Part 4
of Section Aa follows directly from the fact that (A, V) does not depend on these
choices. The assertion in the second bullet follows from Lemma A.1 if Properties 1, 2, 4
and 5 are obeyed on each component of ¥ — (Y, UTxp). The fact that these properties
are obeyed follows from (3-3) and the fact that y,, and ¢;, and their derivatives obey
similar bounds. O

Bf A path from (4., v.) to (A.,¥,)

This subsection derives an (A4, ¥)— and r— independent bound for the norm of the
difference between the values of fg at (Ax, ¥x) and (A¢, Vo). The proposition that
follows makes the formal assertion.
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Proposition B.13 There exists k > 100 and, given ¢, > k, there exists k., > k with
the following significance: Suppose that r > k., ¢} and suppose that (A, = (a, B))
is a solution to the (r, i) version of (1-13) with p a given element in 2 with P —norm
smaller than 1. Then the norm of the difference between the respective values of fs at
(A, ¥x) and fs at (Ao, Vo) is bounded by « .

The proof of this proposition is given in Part 8 of the subsection. The intervening parts
define a certain path in Conn(E) x C*°(Y;S) from (Ax, ¥«) to (As, Vo) that is used
in the proof.

Part 1 The path is parametrized by [0, 1] and a given 7 € [0, 1] member is denoted by
(Aor, Yor) with T =0 member (Ax, ¥s«) and T = 1 member (Ao, Vo). As defined,
the pairs (Ax, ¥«) and (Ao, ¥o) agree on Yyep U Ty p and this will be the case for all
pairs along the path between them. The definition of the path {(A¢z, Yor)}re[o,1] ON @
given component of ¥ — (Yxp U Txp) is supplied in a moment. The definition uses
y to denote the corresponding curve from the set (e A()?;r U, ), andituses T to

denote the set of points with distance (cf + cg)r_l/ 2

or less from y. The definition
also uses y’s version of the coordinates from Part 4 of Section Aa for 7 that has v

constant and u constant, real and greater than |v]|.

By way of an overview of what is to come, the path 7 > (Aor, Yor) first moves
(Ax, ¥s)|T to a pair with two salient features: it is very close to (Ax, ¥x) in a large k
version of the C¥ —topology; and it is constructed from a 1—parameter family of vortex
solutions to (2-8) with the parameter being the points in y. The parametrization is

such that the pullback via the scaling map z rl/2

z of a given ¢ € y solution to the
vortex equation defines the restriction of the new pair to the constant ¢ slice of 7. A
homotopy of this y—parametrized family through y —parametrized families of solutions
to (2-8) is used to define the second part of the path 7+ (Asr, Yor). The end member
of this second part of the path is very close to (4., ¥) in a large k version of the

Ck _topology. The third part of the path moves this end pair to (A, ¥o).

Part 2 Suppose for the moment o has no zeros on the boundary of the closure of a
given transverse disk in 7" with center on y. If this is the case, then the sum of the
local Euler numbers of the zeros of « can be defined, and this sum is a positive integer.
If o has no zeros on T ’s boundary torus, then this sum is the same for all transverse
disks of this sort. If o has zeros on this torus, then there are two values that occur
unless both zeros of o on the boundary of 7" have the same value of the parameter ¢.
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These two values differ by 1. In any event, use m to denote the larger of the possible
values for the sum of the local Euler numbers.

Part 3 The construction requires a suitable isomorphism between E7 and T x C.
To obtain one, fix an isomorphism between E|, and y x C that writes the pullback
of A on y as 6 + aygodt with ago being constant and having absolute value less
than 27 /{,. Use parallel transport by A along the rays from the origin in each
constant ¢ disk to define an isomorphism between E|7r and T x C. View A and «
using this isomorphism as a pair of a connection on the product bundle and a map
to C, and use the coordinates (¢, z) with this isomorphism to view B likewise as a
map to C. Write A as 0 +agodt + aj- with a49 being an i R—valued function and
where aj has the form %K(z dZ —Zdz) with A being a real-valued function. Use this
isomorphism to view « as a map from 7T to C. As explained in the next paragraph,

the functions o, a4 and the 1-form aj— are such that

(B-45) ‘(%oz’ + |ao| +r_1/2(|aA|+’ D < coct.

To justify these bounds, introduce polar coordinates on C by writing z = pe’®. The
pullback of A — 6 to a given constant ¢ slice of T is aj—. When written using dp
and do, this iR-valued 1-form appears as ay = —iAp?do with A being an R—
valued function. The fact that this pullback of A —0 lacks a dp component implies that
ai)aAO FA( 3 t) where Fj4 is the curvature 2—form of A. Keeping in mind that %
and v differ on T by no more than cg|z|, integrate this identity using the bounds
in Lemmas 2.1, B.2 and B.7 to obtain the asserted bound for |a4¢|. Use this bound
, the fact that [(Vqa)y| < ¢o and

|Vaa| < corl/2 to see that ‘ala‘ is bounded by coc . The asserted bound on aj(

on |a4pl|, the aforementioned bound on !at

follows by integrating the curvature identity ,o_1 0 (p A) = FA( 35 %) usmg again
Lemmas 2.1, B.2 and B.7. To obtam the bound for the 7—derivative of at 1> first
differentiate the curvature 1dent1ty 95440 = FA(ap W) to obtam an equatlon for
82) ( 8?7 aAo) Meanwhile, a third curvature identity has ,o2 AN =A+i aa ago=1F, A( 3% 8(27)
Differentiate this last equation to obtain an equation for ai(,o Bat ) that involves
derivatives of the components of F, A(a 7 ) Given what was said previously about
aat and v, and, given the bounds in Lemmas 2.1, B.2 and B.7, integration of this last

equation finds |§ 1| < coctrl/2,

Part 4 This part defines (Aoz, Yor) for 7 € [O, %] The definition requires a prelimi-
nary lemma, Lemma B.14. To set the notation, reintroduce ¢;: C — C, the rescaling
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map given by the rule z — r~1/2z  and introduce D C C to denote the radius c;‘ disk
with center at the origin.

Lemma B.14 There exists k > 100 and, given m > 1 and ¢, > «, there exists
Ke.m > k with the following significance: Suppose that r > k. ,ci? and suppose that
(A, ¥ = («, B)) is a solution to the (r, t) version of (1-13) with p a given element
in Q with P—-norm smaller than 1. Use (A, V) to define T as above. There exists a
smooth map t +— c(t) from y to the space of solutions to (2-8) on C with the properties
listed below:

e The integral in (3-1) is finite, independent of t and either my or mgy + 1.

e Any given version of ¢(¢t) has the form (6 + A« , o) and, for each t, the

*
T

pair (Ax;, as) on Dy differs from (¢ aj—, @*a)|; in the C°—topology by at

—m
most ¢, ™.

e The assignment t +—> (Ays, A4 ) is such that |%a*,} + }a%ﬂl*,‘ < ch on Dy.

This lemma is proved in Part 5; assume it for now. The t € [O, l] version of A; on the
lz] < (c} —253)r_1/2 partof T is Aor =0 + (1 —37)as0dt —i—aj‘ +37(r* 4« —ajl-).
Meanwhile, the respective £ and EK~! components of ¥+, on this same portion of T
are defined by the rule oo =@ +37(r s —a) and Bor = (1—37)B. The definition on
the rest of T is given by using the connection 8+ (1—37)aqodt +aj +37(r* Ax —aj—)
in lieu of A4 and the sections « + 37(r*as« —«) and (1 —37)p in lieu of («, B) to
define the various functions and 1-forms that appear in (B-8)—(B-10). Keep in mind
when doing so that the various isomorphisms between E and the product bundle that
are invoked when writing (B-8)—(B-10) are not the isomorphisms that are used here.

Part 5 This part contains the proof of Part 4’s lemma.

Proof of Lemma B.14 The proof has five steps.

Step 1 Let Dy denote the centered, radius ¢ + ¢2 disk in C. Fix 7 € y and use
Lemma 2.9 with the pair (A, «)|; to obtain a solution to (2-8)’s vortex equations on C
that can be written as (6 + 4, «1;) and is such that oy, — ¢ |, and 4;; — <pr*ajl-|t
on D7 have C3"*!_norm bounded by ¢;>"~!. The y-parametrized family ¢
(A1, @1¢) need not be continuous, let alone differentiable; nor must it obey the first
bullet’s requirement at any given ¢ € .

Step 2 To obtain a y—parametrized family that obeys the first bullet’s requirements,
consider first the case where « lacks zeros on the boundary of 7. In this case, o
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has my zeros counting multiplicities that lie where |z| < co and no zeros where
|z| is greater than ¢ and less than ¢} + ¢ + 1. Let z — o;(z) denote the monic,
degree m, polynomial on C whose zeros with their corresponding multiplicity are
those of a1y. Write this polynomial as z™« +oppzMe 4. -+ 0m,: and use the values
of {041} 1<q<m, as the coordinates for an element in the vortex moduli space &, . Let
¢; denote this element. It follows from what is said in Section 2a of [20] that there exists
a purely m—dependent constant ¢, > 1, and, given ¢, > c,,, there exists a purely m— and
cy—dependent constant ¢, . with the following significance: if ¢, > ¢,, and r> ¢, ., then
there exists a vortex solution on C that maps to ¢; which when written as (6 4+ 4a;, a2;)
is such that the pair (A, —(pr*aj(, a2 —@Fa) on Dy has C3™—norm bounded by 2¢, ™.

Step 3 Consider next the case when « has two zeros on the boundary of 7. Let ¢4 and
t_ denote the ¢ —values of the points where these zeros occur. One of these zeros will
lie where u > 0 and the other where u# < 0. Use (¢y4+.z+) to denote the coordinates of
the former and (¢,—, z—) to denote those of the latter. Let I, C y denote the oriented
segment that starts at 7+ and ends at 7, with I, being the single point 7 when 744+ =
ta—. The significance of I, is as follows: Fix a transverse disk of radius (¢ + ¢3)r=1/2
with center in the interior of I, . Then the sum of the local Euler number of the zeros
of @ on such a disk is equal to my — 1. Meanwhile, this sum for a transverse disk with
center on y — I is equal to mg . Keeping in mind that the coordinate ¢ is R/{, —valued,
let 4 €[0,£,) denote the lift to R of 744 and introduce 7_ to denote the lift to R of
ty— with %ﬁy <t_—t4< %EV. Introduce p: [t4+,7—] — y to denote the projection map.
The inverse image of any given point in y — I is empty if z_ —t4 < £, and it contains
a single point if 7~ —t4 > £,,. The inverse image of any given point in /, has a single
point if 7~ —74 < {, and two points otherwise. Fix a smooth map z;: [t ,7-] - C
with !a%zl} constant, with |z7| < ¢} + %cg for all ¢, and such that z7(f4+) = z4+ and
zy(t—) = z_. Require in addition that the image of (74,7—) lie where |z| > ¢} + ¢3.

For each ¢ € y, define monic polynomials z — 91;(z) and z + g2/(z) as follows:

(B-46) ¢ Suppose that ¢ ¢ I,. The zeros of o1, with their corresponding multiplicity
are those of a1, with distance 1 or less from some |z| < ¢ +¢3 zero of g*a.
If p~'(t) = @, then 0z, = 1;and 02y =z —z7 (p~1 (1)) if p~1 (1) # @.

e Suppose that 7 € 1. The zeros of p; with their corresponding multiplicity

are those of a1, with distance 1 or less from some |z| < ¢} + ¢ —2 zero
of . Meanwhile, 02; is [ [, ep—1()(z — 21 ().

For each ¢ € y, use o; to denote the product g1;02;. This is a monic polynomial

with #—independent degree, either m, or my + 1. Let m denote this degree. Use the
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coefficients of g; to specify a point in the vortex moduli space &, . The observations
in Section 2a of [20] can be used to derive a purely m—dependent constant ¢,, > 1,
and, given ¢, > ¢,,, a purely m— and ¢,—dependent constant c,, . with the following
significance: If ¢, > ¢, and if r > ¢, ., then there is a solution on C to (2-8) that
maps to g;’s point in €, and can be written as (68 + ¢, a2;) with (Ao, @2) such
that (4p; — gor*ajf, o —@Fa) on Dy has C3™—norm bounded by 2cv_3’”.

Step 4 The map ¢ — (A, ap;) satisfies the requirements of the first and second
bullets of Lemma B.14, but it need not be smooth and, if smooth, it need not satisfy the
requirements of the third bullet. To remedy this defect, first introduce ¢, to denote the
integral of the function 7 — y(|t| — 1) over R. Fix for the moment L > 1 and define
the map from y into C*°(D7;iT*C & C) given by the rule 7 — (ﬂtL, oetL), where

(B-47) (at.ab) =t [ La(Ll=s1= D) ds.

3m/2+4
Cy

then the C%-norms of af —p*a|; and AL —¢Fay|; on D, are bounded by "2

Moreover, the map ¢ — (4L, al) is such that }a%ozﬂ + |%ﬂlﬂ < coct on Dy.
However, any given ¢ version (6 + ﬂltL , atL ) need not obey the vortex equations. Even

This is a smooth map. What follows are two consequences of (B-47). If L <

s0, the pair comes very close to doing so.

Step 5 To obtain a pair that obeys the vortex equation, introduce the (9 + 4%, k)
version of (3-4)’s operator ¥. Denote this operator by t,7,. As explained in a moment,
there is a smooth map ¢+ h; from y to C®(C; CeC)NL2(C; CC) with the follow-
ing properties: Write QZL[)t as (2_1/2e0t, e1z). Then (eg;z, e17) has C°%—norm bounded
b —3m/2 —3m/2

Y Coty
and the pair of connection and map to C given by (6 + ﬂltL +eprdz—"eprdz, oetL +e1¢)

on D, its t —derivative on D has pointwise norm bounded by cg cf,'

obeys the vortex equations on C and defines a point in €, . To explain, note that the
vortex equations are obeyed if h; obeys an equation having the schematic form

(B-48) S0 b+ @5 ) #OT 0 = a1,

where q; has C 0_and L?-norm bounded by cocy 3m/ 2 (The notation f; #§, denotes

a certain bilinear expression in the components of f; and f, with norm bounded by
colf1]|f2|-) Given (3-6) and this small norm for g, the contraction mapping theorem
on a suitable Hilbert space can be used to find a smooth solution ¢ +— h; from y
to C®(C;C @ C) N L%(C;C & C) with C!-norm bounded by cocv_3m/2. The
contraction mapping theorem construction will guarantee a pointwise norm bound by
cocy for the 7—derivative of z?tT b on D.
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Granted the preceding, set Ay; = ﬂtL + egr dZ —ep; dz and set gy = oth + e1z. The
resulting map ¢ — (A4xs, 0tx¢) obeys all of the lemma’s requirements. |

Part 6 This part defines the pair (Ao, Yor) for T € [% %] To this end, let D denote
a given constant ¢ slice of T, this being a transverse disk with center on y and radius
(¢t 4 ¢2)r~1/2 If the sum of the local Euler numbers of & on D is defined, then it
is also defined for o, and these sums are the same. Note that all of the local Euler
numbers of a, are positive. Let ¢ € y denote the center point of such a disk. Define a
monic polynomial z — g;(z) on C using the rules that follow. If & has no zeros on
the boundary of T, then go;(z) = z™«. If o has zeros on the boundary of T, define oo
by using ao; in lieu of oy, in (B-46). Meanwhile, let o«; denote the monic polynomial
on C whose roots with their corresponding multiplicity are the zeros of the function o
from Lemma B.14. Note that all such zeros have positive local Euler number. The
polynomials go; and g«; have the same degree. Denote this degree by mi.

Given 7 €[, 2], set g to be the monic polynomial (2—37)g« + (37 — 1)@or. The

resulting 1—parameter family of polynomials interpolates between g«; and g.;. For
any given pair (z, ¢), the coefficients of o,; defines a point in &,,, that varies smoothly
with variations in 7 and ¢ with the variation in t being real analytic. With 7 fixed for
the moment, let ¢ — ¢, (¢) denote the corresponding map from y to €,,. Lemma B.14
describes a lift of the map ¢ + ¢;—1,3(¢) to a smooth map 7 > (6 + A, atxs) from y
into the space of solutions to (2-8) on C. The next lemma describes a corresponding
smooth lift of the two-variable map (z,?) — ¢;(¢) from [%, %] Xy to €y, .

Lemma B.15 There exists k > 100 and, given ¢, > k, there exists k., > « with the
following significance: Suppose that t > k., c.® and suppose that (A, ¥ = («, B)) is
a solution to the (r, u) version of (1-13) with u a given element in 2 with P—norm
smaller than 1. Fix a component of the corresponding version of ¥ — (Yap U Txp)
and introduce the latter’s version of the integer m and the map (t,t) — ¢ (t) from
[%, %] Xy to &, . There is a smooth map (t,t) — (A¢s,0ry) from [%, %] Xy to
C®(C;iT*C @ C) which is real analytic with respect to variations in T and such that
at each (t,t) € [% %] x y, the pair of connection on the product bundle C x C and

map to C given by (0 + 4, a¢¢) satisfies (2-8) and projects to ¢, (t). In addition,
o ‘%an| + |3%ﬁln‘ fkcl‘} on Dy;

. ‘%80{U| + |%ﬁlﬂ} <kc} on Dy.
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This lemma is proved in a moment. By way of notation, any given 1 € [§ 5] version
of the map ¢ > (4¢¢, a¢¢) from y into C*°(C;iT*C & C) is denoted in what follows

by ('q'f’ Olr) .

The t € [%, %] version of the connection A, on the |z| < (¢} — 253)r_1/2 partof T
is Aor = 60+ 14, and the respective £ and EK -1 components of ¥, on this same
portion of 7" are defined by the rule oo = 7"ty and Bor = 0. The definition on the
rest of T is given by using the connection 6 + r* A, in lieu of 4 and the sections
r*a; and 0 in lieu of (o, B) to define the various functions and 1-forms that appear
in (B-8)—(B-10). Keep in mind when doing so that the various isomorphisms between
E and the product bundle that are invoked when writing (B-8)—(B-10) are not the
isomorphisms that are used here.

Proof of Lemma B.15 The existence of a lift of the map (z,?) — ¢, (¢) follows from
what is said in Section 2c of [20]. The existence of a lift with f— and 7 —derivatives
bounded by ¢ cff follows from what is said in this same Section 2¢ of [20] using (2.5),
(2.11), (2.12) and (2.19) in [20]. m]

Part 7 This part defines (Ao, Yor) for T € [3,1]. This definition is given below
by (B-49). To set the notation, view A, and the pair (o, Bo) as a respective connection
on T x C and pair of maps from T to C using the same isomorphism of E|r with
T x C that is used to define the T = % version of (Aer, Yor). The definition writes
this depiction of A, as 6 + A/, and it writes this depiction of (&, Bo) as (o, f5)-
The connection A, __> is written below as 6 + A 2 Equation (B-49) refers to a map
:yxC — S! that 135 described below by Lemma B.16. Fix t € [ ] and what
follows defines (Aor, Yor) on T:

(B-49) o Ao =0+ Br—-2)(A, -t 'di)+ (3— 3‘E)Ao%.
e Aor = (Bt —2)ua, + (33— 3r)o¢0% and Bor = (31 —2)upy.

The map # is constructed in the proof of Lemma B.16.

Lemma B.16 There exists k > 100 and, given m > 1 and ov > K, there exists K¢, > K
with the following significance: Suppose that t > k. ,cl® and let (A, ¢ = (a, B))
denote a solution to the (r, i) version of (1-13) with j an element in Q with P-norm
less than 1. Use (A, ) to define T and the corresponding versions of (A, ) and
(AO% , aO%). There exists a smooth map ii: T — S such that

_ ~] g~ ~ — 0 1 0 A
r 1/2|A£>—u 1du—A0%|+|uaﬁ>—on%|§cvm and Ag(g)—u lgu)flcc;‘.
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Proof The two steps that follow construct # on the |z| < —1/2 portion of 7.

But for cosmetic changes, the same construction supplies # on the rest of 7.

i cl/2:=1/2  recall from Part 3 that the pullback of

(Ao, ¥o) tothe |z] < 7 cU 27172 portlon of a transverse disk centered on any given

Step 1 To define u where |z] <

t € y is the solution to the vortex equations in (2-8) given by
(9 — —mr *amo(z " Ydz -2 1a’z) amo)

Meanwhile, the pullback of (A4, =2% t_2) to the same part of the transverse disk

centered at ¢ € y is a solution to (2- 8) that was written as (0 + 7, ﬂlzt, O‘2t) The

1 2
two C—valued functions o0 and @z, have the same zero locus on the |z| < 3 /

>

this being the origin. Moreover, they have the same local degree at 0. What follows is
a consequence: there exists a smooth map, denoted here by u, from the |z| < 7% c,% /2

part of y x C to S such that uey = |oe%|zm

Fix a positive integer m. Granted the preceding, use what is said in Part 4 of Section 2a
in [20] about solutions to (2-8) to find a purely m—dependent lower bound for ¢, such
that the subsequent assertion is true when ¢, exceeds this bound. Introduce d+u to

denote the exterior derivative of u along the constant ¢ slices of y xC. For t € y,
the palrs (/‘2[2 —uvdty, uazt) and (— 1mam0(z_1dz—2_1d3),ozmo) differ by at

most ¢, 1n the C2™ topology onthe |z| <2 /2 disk in C.

This last conclusion has the following consequence: if ¢, is greater than a purely m—
1/2
16 %!
part of y x C to S is such that for any ¢ € y, the pair (/‘let,ozzt) and the pullback
5m/2

dependent lower bound, then the map u; = u~ ! (¢*al) " amo, from the |z| < =

to {t} x C of the pair (¢ A, — “1 Vduq,urpral) differ by less than ¢, in the

2m : /2
C“"—topology on the disk |z| < 8 .
Step 2 The map u; can be replaced by a map us: y x C — S! such that if ¢, is
greater than a purely m—dependent constant, then:

(B-50) e« For ¢ € y, the pullback to {r} x C of (p}*Al —uy dus,urp}al,) and

(ﬂzt, @z ;) differ pointwise on the |z| < cé /2 part of C by at most ¢, ™

2
AL (L) —uzt Euz| < coc on the |2 < Scy’

part of C.
The map % on the |z| < %C;/Zr—uz part of 7' is defined to be r*us.

To construct u,, write uq as u_l((pr*ag)_lamo and write u as @71/t +X) with n
being an integer and x being a real-valued function on y x C. The map u» has the form
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e (@7n/ty+x2) with x, being a real-valued function on y x C . The function x, is the
smoothing of the function x thatis given by the rule x|, =c¢;, Y[ Ly(L|t—s|—1)x|s ds

S5m/4

with ¢, being the constant that appears in (B-47) and w1th L = ¢, . The resulting

map u, obeys the inequality in the first bullet of (B-50) if ¢, is greater than a purely

~5m/2 bound obtained in

m—dependent constant. This is a direct consequence of the ¢,
Step 1. Meanwhile, |§xz‘ <co cv , this being a consequence of this same ¢, Sm/2 bound
and the bound in the top bullet of Lemma B.15. Granted all of this, then Lemma B.16’s
right-most inequality is obeyed if the integer n is such that |n| < cocj.
1

To obtain such a bound for 7, fix a constant z circle in 7 with |z| = lKg ¢y and with

1
1/4 .
distance at least m/c<> lcv/ or more from «’s zero locus. Proposition 2.4 guarantees

the existence of such circles if ¢, > co and if r is greater than a purely ¢, —dependent
constant. The integral over the chosen circle of —iu™! aatu is equal to 2wnf; 1, and
so upper and lower bounds on this integral give a bound for |n|. A suitable bound is

obtained by writing « 3 as |o 2 |u~1z™ to derive the identity

(B-51) l(Olz) —ocz =2mnd, ! 8ax+z 1n(|o¢z|)
Integrate both sides of this identity on the given circle. The integral of the right-hand
side is 2z n, and the top bullet in Lemma B.15 bounds the absolute value of the integral

of the left-hand side by cg cl‘} . m|

Part 8 The promised proof of Proposition B.13 is given below. By way of a look
ahead, the proof uses the results from Appendix A in much the same way as does the
proof of Proposition B.3. Most of what is said in Appendix A requires Properties 1-5
in Section Ab; the fact that each 7 € [0, 1] version of (A, o) has these properties
is asserted by the next lemma.

Lemma B.17 There exists « > 100 and, given ¢, > k, there exists k., > « with the
following significance: Suppose that r > k,, cl® and suppose that (A, = (a, B))
is a solution to the (r, ) version of (1-13) with pu a given element in Q with P—
norm smaller than 1. Each element in the corresponding path {(A<, V<) }<e[0,1] obeys
Properties 1-5 in Section Ab.

Proof The assertion follows from Lemma A.1 if it is the case that Properties 1-5
hold on Y — (Y«a U Txp). To verify that this is indeed the case, focus attention
now on a given component of this set. Let y denote the corresponding curve from
Upe A(y+ pr ) and let T denote the radius (¢4 ¢3)r~ 1/2 tybular neighborhood of y .
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The fact that Properties 4 and 5 hold on 7" when ¢, > ¢¢ and r is larger than a purely
cy—dependent constant follows from (A-4) and Lemmas B.14-B.16. The fact that
Properties 1 and 2 hold on T follows from (A-4), and Lemmas B.14-B.15 given that
the vectors fields 3% and v differ on T by at most ¢y 53 . The details of the argument
are straightforward and left to the reader but for the remark that the verification of the
second and third bullets of Property 2 require the third bullet of Lemma B.14, the first
bullet of Lemma B.15 and the bound for |A/, () —#~' 24| in Lemma B.16. i

Proof of Proposition B.13 The assertion of the proposition follows if there is a purely
cy—dependent k. > 1 with the following property: Assume that ¢, > co and r > k..
Fix any interval [z, t’] C [0, 1] of length at most 1. Then the norm of the difference
between the values of fg at (Aor, Yor) and at (Ao, Yorr) is bounded by co. The

three steps of the proof exhibit a purely c—dependent «, with this property.

Step 1 What is said in Part 1 of the proof of Proposition B.3 applies to the family
{L£v<}refo,1], Where any given 7 € [0, 1] member is the (Ar, Yor) version of the
operator £y that is depicted in (A-26) and (A-27). This being the case, there is
the corresponding set of eigenvalue families {A,:},ez,c¢[0,1]- Keep in mind that
all 7 € [0, 1] versions of £y, are identical on Yy,p U Tk . This has the following
consequence: Fix n € Z and an interval in [0, 1] where the map 7 +— A, is differentiable.
Let T f(7) denote the corresponding family of unit L?—norm eigenvectors. Then the
relevant version of (B-20) has the form

d . t(d
®3 377y Tz ove o

Fix m > co and take ¢, and r so as to invoke Lemmas B.14 and B.16. If [ is either
of the intervals [O, %] or [%, 1], then these lemmas imply that the 7 € I versions
of %EV(.) is an endomorphism of V with pointwise norm bounded by coc, mel/2
This being the case, integrate (B-52) to draw the following conclusion: Fix n € Z. If

An(.) has a zero in I, then [Aj;| < cocv_mrl/2 forall T € I.

Suppose in addition that ¢, and r are such that Lemma B.15 can also be invoked.
Lemma B.15 implies that the t € [%, %] version of %SV(.) has pointwise norm
bounded by cor'/2 . This understood, fix an interval I C [%, %] with length at most ¢, .
Integrate (B-52) on the interval I to deduce the analog of what is said at the end of the
preceding paragraph: Fix n € Z. If A,,(.) has a zero in I, then |A,;| < cocv_mrl/2 for
all T e I.
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Step 2 With m > 1 fixed, take ¢, and r large enough to invoke the preceding lemmas
in this Appendix B and the co = ¢, versions of the lemmas in Appendix A. Let I now
denote any given interval in [0, 1] of length at most ¢, ™. If m > co, then Lemma A.6
can be invoked to draw the following conclusion: Let n € Z be such that A,(.) has a
zeroin I. Fix T € I and use f(;) to denote an eigenvector of Ly, with eigenvalue A, .
Then || Mgfeyll = (1—cocy Dlf)ll2-

Supposing that m > ¢g, that ¢, is greater than a purely m—dependent constant, and
that r is greater than a purely m— and ¢,—dependent constant, then Lemmas A.7
and A.8 can be invoked to conclude the following: Let I C [0, 1] denote an interval of
length calcv_’”. If n € Z and A,(.) has a zero in I, then |A¢| < ¢,™ forall 7 € I.

Step 3 Let I C [0, 1] denote an interval of length at most ¢, Leom . Write 1 as [z, 7/].
Granted that the conclusion of the preceding step holds for I, then the argument used
in Part 4 of the proof of Proposition B.3 can be repeated with only notational changes
to see that the norm of the difference between the respective values of fs at (Aer, Yor)
and at (Aer/, Yorr) is at most cq. O

C Pathsin Conn(E) x C*(Y;S) from vortex solutions

This last section of the appendix first constructs a deformation of (A4, V) through a
family of pairs in Conn(E)xC*°(Y;S), all made from vortex solutions as in Section Aa
and (A-44) using z =r. The end result is then deformed through a family that is defined
using vortex solutions as done in Section Aa and (A-44) using ever-increasing values
of z. The end result of this deformation is a pair whose resulting version of £y as
defined using z >> r can be compared with that of a z = O(1) version using a strategy
from [21]. These comparisons are used in Section Ce of this appendix to complete the
proof of Proposition 2.6.

Ca Deforming the zero locus of «,

The zero locus of «. is a disjoint union of two sorts of embedded circles. The first are
curves from the set | J,ep ()7;' U7, ). The remainder consist of a finite set of at most
G embedded circles that look very much like the subset of curves from a generator
of the embedded contact homology chain complex that intersect the f~!(1,2) part
of M§. With this in mind, this subsection constructs a path in Conn(E) x C*°(Y;S)
from (Ao, V) that ends at a pair of connection on E and section of S with the
following property: the section of S when written with respect to the decomposition
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S=E@EK™! has E component whose zero locus consists entirely of closed integral
curves of v.

The construction of the desired path occupies the first three parts of the subsection.
The fourth part of the subsection states and then proves a proposition that supplies an
r—independent bound for the absolute value of the difference between f; at (Ao, Vo)
and at the end member of the path.

Part 1 Given that r > ¢, it follows from Proposition 2.4 and Proposition 11.2.7
that there exists a set of closed integral curves of v whose intersection with My is
everywhere very close to a~1(0) N Mj. This set of curves is denoted here by ®%; it
is parametrized as in Proposition I1.2.7 as % = (0%, (¢))pea). The component U*
from ®% describes how the curves from ®% intersect Mg, and each p € A version
of Eg is an integer that describes how the curves from ®% intersect H,. The paragraphs
that follow say more about the significance of the parametrization that is used by [9].

What is denoted by 0% signifies a certain set of G segments of integral curves of v in
the #~1(1,2) part of Mg, these being integral curves that extend into M as integral
curves of the pseudogradient vector field for # that was used in Section II.1 to define
the geometry of Y. The segments that form 0% define a pairing between the index 1
critical points of the incarnation of # as a function on M and the latter’s index 2 critical
points in the following sense: Each arc from this set starts on the boundary of the
radius § coordinate ball in Mg corresponding to an index 1 critical point of £, and
each ends on the boundary of the radius § coordinate ball in M of an index 2 critical
point of f. Moreover, distinct arcs start on distinct radius 6 coordinate balls and end
on distinct radius § coordinate balls. The section o determines U% in the following
way: The pairing of index 1 critical points of f|3s with index 2 critical points that is
determined via o as described in the third bullet of Proposition 2.4 is the same pairing
given by 0%. Moreover, the respective components of &~ (0) N Mg and 0% that pair
the same index 1 and index 2 critical points of f|js are in each other’s radius ¢, 1§
tubular neighborhoods.

As noted above, the component (£7)yea of ©% consist of a set of integers that are
labeled by the pairs in A. The remainder of Part 1 explains how « determines this
set. To this end, let v denote a component of the zero locus of «. that intersects Mg
and let 0%V C U% denote the subset which corresponds to v N My in the sense that
corresponding arcs label the same index 1 and index 2 critical points of £z . Introduce
Ay to denote the subset of p € A with v NH, # & and suppose for the moment that
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€ = (8)pen, is a given set of integers parametrized by A, . Proposition I1.2.7 uses
the sets 0%V and £ to define a closed integral curve of v. Let vt denote this integral
curve of v. The next paragraph summarizes some facts about v® that follow from
Proposition 11.2.7.

The label £ makes a significant difference with regards to the behavior of vt on the
various p € Ay versions of H. To say more, fix an element p € Ay,. Then vin Hyp is
an arc that crosses H, where 1—3 cos? @ > 0 starting from the u < 0 boundary of Hy
and ending on the u > 0 boundary of #,. These endpoints have distance at most ¢, 1§
from the corresponding endpoints of v N H,. This understood, define a continuous
and piecewise smooth loop in H,, as follows: Start on the u < 0 boundary point of
vin H, and travel along viN Hp toits u > 0 boundary. Take the short geodesic arc
from this boundary point of v N H, to the nearby boundary point of v N #H,,. Having
done so, travel in the reverse direction along v N H,, to its boundary point on the u <0
boundary of H,,. Then take the short geodesic arc to the starting point on vin Hp.
The result is an oriented, piecewise smooth loop in the 1 — 3 cos? 6 > 0 part of Hp
and thus a class in the first homology of the 1 — 3 cos? @ > 0 part of H,. Meanwhile,
the first homology of this part of H, is isomorphic to Z with generator being the
u =0, cos & =0 circle. The loop just constructed from v NH, and vin H,, defines an
element in this homology class, thus an integer multiple of the generator. This integer
can be written as my,, + €, with m,,, depending on v NH, but not on ¢.

Granted the preceding, any given p € Ay version of the integer €& coming from %
is —my . This is to say that the ¢, = € version of the loop in H; described in the
preceding paragraph is null-homotopic.

The subsequent parts of this subsection use v¥ C ®% to denote the loop that is defined
by the subsets 0%V C U% and components (¢£)peA, C (Ep)peA -

Part 2 The introduction promises a path in Conn(E) x C°(Y;S) from (A, Vo)
that ends at a pair whose section of S = E @ EK~! has E component with zero locus
consisting entirely of closed integral curves of v, these being the curves from ©®% and
the curves from UpeA()?er Uy, ) that lie in a5 1(0). The path in Conn(E)xC>®(Y;S)
is parametrized by [0, 1] and a given 7 € [0, 1] member of this path is denoted in what
follows by (Aes1z, Yo1z). The definition of this element in Conn(E) x C*°(Y;S) is
given in a moment. The lemma that follows directly supplies input for the definition.

Lemma C.1 Fix m > 1. There an m—dependent constant k > 100 and, given ¢, > «,

there exists k., > k with the following significance: Suppose that r > k., cl}o and
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suppose that (A, = («, B)) is a solution to the (r, i) version of (1-13) with pu a
given element in Q with P—norm smaller than 1. The parameters «, ¢, and r are
suitable for use in Lemma B.11 and in particular for constructing (Ao, Vo = (o, Bo))
and the corresponding set % . Let v denote a component of o ! (0) that intersects M
and let v* denote the corresponding element in ®%. There exists an isotopy from
[0,1] x v into Y starting from v, ending at v* and with the properties listed below.
The list uses v¥ to denote the T € [0, 1] curve of the isotopy.

e Each point in v¥ has distance at most m~ 1 from the corresponding point in v .
e Each point in v has distance at least k1 o,,r_l/ 2 from each curve in the set
A+ A—
UpeA(yp Uy, )-

e The unit tangent vector to v¥ has distance at most c,r
-1/2

12 from v, and it has

distance at most kr from v at the points where the distance is at least
et~ Y2 from each curve in UpeA(?’;F U%,)-

e The pushforward via this isotopy of a% is bounded by «., .
This lemma is proved in Section Cb.

Part3 Granted Lemma C.1, fix 7 € [1, 2] so as to define (Ao1¢, Yo17). The definition
of this pair is identical to that of (4., ¥c) given in Section Be but for one change and
one added remark. What follows directly is the one change to Section Be’s definition.
Let v denote a given component of the zero locus of o that intersects Mg. By way of
areminder, v’s intersection with Y4 U Ty is a union of components of «’s zero locus
in Yup UTkp, and v’s intersection with any given component of ¥ — (Yxp U Ty p) is
described by Lemma B.11. This understood, replace v in the formula that appear in
Section Be with the corresponding curve v that is supplied by Lemma C.1.

The added remark addresses the need to specify an isomorphism between E and the
product bundle over a certain neighborhood of each curve v¥ and over the complement
of the union of a certain smaller neighborhood about | J,«cge V¥ and a neighborhood
of the components of the zero locus of a from Upe A()7p+ U, ). The required
isomorphisms are already specified for the T = 0 case, these being the ones needed to
define (A, ¥«) and (Ao, Vo). The three steps that follow describe the T > 0 versions
of these isomorphisms.

Step 1 Let v* denote a given component of ®%. The definition of (Ao, ¥.) referred
to larger and smaller neighborhoods of the corresponding curve v. Each t € [0, 1]
version of v¥ has its analogous neighborhoods, these denoted by U, . and U{J,r.
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The set Uy,; is a neighborhood of v that is defined as follows: Its intersection
with YA U Tk is the radius 4c3r_1/ 2 tubular neighborhood of v¥. To describe the
remainder of Uy ¢, fix a component of ¥ — (Yxp U Tixa) and let y denote for the
moment the corresponding curve from Upe A(i/\p"' U )7p_ ). Reintroduce y’s version
of the coordinates (z, z) that are used on this component to define (Ao, V). Let T
denote the |z| < (c;‘ + cS)r‘l/ 2 part of the coordinate chart. The set U, ; intersects
the |z| > (¢ — 2c3)r_1/ 2 part of T as the radius 4c5r_1/ 2 tubular neighborhood of
this part of v¥. The intersection of Uy, ; with the rest of T is the radius 403/ 2-1/2
tubular neighborhood of this part of v¢. The set Uy, . is defined analogously, but with
the factor of 4 missing.

Introduce for each t € [0, 1] the neighborhood of v that is defined as follows: This
neighborhood intersects the complement in Y of the radius (cl‘)t — 3c3)r_1/ 2 tubular
neighborhoods of the curves from (J, A()’/\;’ U7, ) as the tubular neighborhood of v

with radius 8¢2

r~1/2 and it intersects the remaining part of Y as the concentric tubular
neighborhood of v¢ with radius 8c1} /2=1/2  This neighborhood is denoted by Uy 7« .

The set Uy, ¢ is a proper subset of Uy ¢x.

Step 2 Fix an isomorphism between K~!|,, and v x C that gives a version of the
coordinates from Part 4 of Section Aa for v with |v| + || < ¢o. The pushforward
of % by the map that defines Lemma C.1’s isotopy gives a vector field along the
image of the isotopy. Parallel transport along the integral curves of this vector field
defines an isomorphism over any given € [0, 1] version of V¥ between K~! and the
product bundle. Use this isomorphism to define a v¥ version of the coordinates from
Part 4 of Section Aa. The associated pair (v, i) is such that |v| + || < co, this being
a consequence of the fourth bullet in Lemma C.1.

Fix 7 € [0, 1]. The pushforward of % ‘T appears with respect to the v¥ version of the
(z, z) coordinate chart as a vector that is defined at z = 0. View this vector as a vector
field on Uy, ¢« whose coefficients have no z—dependence. Use the function y to extend
the latter vector field from Uy, . to the rest of ¥ so as to be equal to O on the complement
of Uy ¢+ and so that its commutator with % on Uy, ¢« is bounded by KCUI'I/ 2 with
k., denoting the constant from Lemma C.1. The existence of an extension with this
property follows from what is said by the fourth bullet of Lemma C.1. This extension
is denoted in what follows by v, . Use v* to denote the vector field on [0, 1] x Y
that is defined by the rule vy|; = % + ZUE% Vu,z-

Define my: [0,1] X Y — Y to be the map that sends any given point (z, p) to the
point in {0} x Y that lies on the integral curve through p of the vector field v*. The
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map 7 is a surjection that restricts to any t € [0, 1] version of v as a diffeomorphism
onto v.

Step3 Let w: [0, 1]xY — Y denote the standard projection. The respective pullbacks
of E by m and 7y are isomorphic. Use ¢y: n*E — 75 E to denote the isomorphism
that is defined by parallel transport along the fibers of 7, by the connection 7y Ao1.
The pullback 7} defines a section of 7} E and so ¢, (7 }ao1) defines a section
of #* E. This section is denoted by &, and its restriction, &s|, to any given constant 7
slice is a section of E. The zero locus of the latter is | J,ecge VY; it vanishes
transversely with degree 1 on each component curve.

Step 4 Fix 7 € [0,1] and introduce Up . to denote the {vZ},ac@x version of
the set Up. This is the complement of (J,«cga Uy, and the union of the radius
co ! e /2:=1/2 yybular neighborhoods of the curves from | J,¢ A()’/\;r U7, ) in the zero
locus of & . The constructions that define (Ac¢17, Yo17) require an isomorphism
over Up,; between E and the product bundle. Use the isomorphism that sends & |,

to |6l\0|-[‘1

The constructions that define (As17, Yo1) also require an isomorphism between the
bundle E and the product bundle over each set from the collection {Uy ¢ }yec@e . This
isomorphism is defined using the v version of the coordinates (7, z). The desired
isomorphism sends the section &o|; to ‘&o|f|z/|z|.

Part 4 The next proposition compares fs at (Ao, Yo) with fg at (Ao1r=1, Yo1r=1)-

Proposition C.2 There exists k > 100 and, given ¢, > «, there exists k., > k
with the following significance: Suppose that r > k., cl® and suppose that (A, =
(e, B)) is a solution to the (r, ;) version of (1-13) with w a given element in 2 with
P—norm smaller than 1. Assume that the parameters k, ¢, and r are suitable for
use in Lemma B.17 and in particular for constructing the path {(Ac1z, Vo11)}zef0,1]-
Then the norm of the difference between the values of fs at (Ao, Vo) and fs at

(Ao1z=1, ¥o1r=1) Is no greater than k., .

Proof The proof is much like that of Proposition B.13. In any event, there are four
steps.

Step 1 Use the same arguments that prove Proposition B.13 to prove that Proposition
B.13’s assertion also holds for each 7 € [0, 1] version of (Asr, Yor).
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Step 2 For any given 7 € [0, 1], use £y, for the moment to denote the (Ao17, Yoi7)
version of the operator £y that is depicted in (A-26) and (A-27). This family is not
real analytic, but there are as small as desired perturbations that make it so, and, this
being the case, what is said in Part 1 of the proof of Proposition B.3 can be assumed to
apply. Let {Anz}nez,e[0,1] denote the corresponding set of eigenvalue families. The
analog of (B-52) in this case reads

1 b= [ il (feeve)io

v¥e@

this because the t—derivative of (Aq1z, Ya17) has support only in | J,ecge Uv,z-

Step 3 It follows from what is said in the fourth bullet of Lemma B.11, in Lemma C.1
and in Part 3 that the endomorphism %SV, of Vo @ V; has pointwise norm bounded

by /cclrl/2

, where k.1 is a constant that is purely ¢,—dependent. With this in mind,
fix an integer m > 1 and let I C [0, 1] denote an interval of length at most m~!. The
formula in (C-1) implies that A,.) has a zero on I only if |A,;| < mLic,qr1/2 for

each t e l.

This understood, it follows from the lemmas in Section Aa that if ¢, > c¢ and r is
greater than a purely ¢, —dependent constant, then there is a second purely ¢, —dependent
constant k., > k.1 with the following significance: Take m > k., and suppose that
n € Z is such that A,,(.y has a zero in /. Fix v € I and use f(;) to denote an eigenvector
of £y, with eigenvalue A;. Then [Ty | > (1 —coc;1)||f(t)||2.

Granted the preceding, use Lemmas A.2, A.3, A.7 and A.8 with (A-28)—(A-30) to
deduce the following: Suppose that ¢, > cg, r is greater than a purely ¢,—dependent
constant, and that m is greater than yet another purely ¢, —dependent constant. Suppose
that n € Z and A,.) has a zero on /. Then [A;| < ¢4 forall T el

Step 4 Take ¢, r and m so as to use what is said in Steps 1-3. Fix 7/ > 7 € [0, 1]
with 7/ —7 < m~ 1. Since m need only be greater than a purely ¢, —~dependent constant,
assume that it is no greater than this constant plus 1. The argument used in Part 4 of the
proof of Proposition B.3 can be repeated with only notational changes to see that the
norm of the difference between the values of fs at (Ao17, Yo17) and at (Ao17/, Vo11)
is at most «, with «, being a purely ¢,—dependent constant. This conclusion implies
what is asserted by Proposition C.2 as [0, 1] can be covered by 2m intervals of length
less than m —1.
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Cb The proof of Lemma C.1

The proof has fourteen steps.

Step 1 Fix p € A such that v crosses H;,. The curve v crosses the u = R +1In{
sphere in H, and quickly intersects the f = 1+ &2 surface in H,, as it continues out
of H, to cross Ms. Let zp+ denote this intersection point. By way of a reminder, the
function f where u > R 4 Iné in H, is given by f =1+ e 2(R=u) (] _3¢0s2 ).
The point zp4 is the starting point of a component of the f € (1 + 82,2 — §2) part
of v N Mg. The ending point of this component lies on the = 2 —§? surface in one
of the handles {H;}y’en . Let p’ € A denote the relevant pair and let z,/— denote this
ending point on the f = 2 — §2 surface in Hy

By way of a reminder from Part 2 in Section II.1C, the index 1 critical point from
p has an ascending disk in M} that intersects the Heegaard surface o as a smoothly
embedded circle, this denoted by C,; and the index 2 critical point from p’ has a
descending disk in My that intersects the Heegaard surface ¥ as a smoothly embedded
circle, this denoted by C,/—. The segment of v that starts at z,+ and ends at z/—
intersects X at a point with distance ¢, 1 or less from a point in Cp+NCp—. Use zy, for
this pointin vN X and use z4 for the nearby point in C,4 NCp/—. The point zy, is well
inside a certain coordinate neighborhood of z,. This neighborhood has coordinates
(¢, h) which are defined where |@|? + |£|? is bounded by a constant that depends
only on the geometry of M. The pair (¢, £) is such that z = ¢ + i £ is a holomorphic
coordinate for the neighborhood.

Lie transport by v of the functions (¢, £) along v’s integral curves defines coordinates
(t, ¢, h) for a closed cylinder in Mg with ¢ being the value of f along the integral
curves of v. The coordinate ¢ is restricted to the interval [I + 62,2 — §2]. The
corresponding ¢ = 1 + §2 boundary disk of the cylinder is a disk in the ¥ > R +1n§
part of H,. The function ¢ on this boundary disk is such that d¢ = d¢. The function
A on this disk is the function e=2(B=%) cos § sin? 6. The t = 2 — 82 boundary disk of
this coordinate cylinder is a disk in the ¥ < —R —1In§ part of H,. The function ¢ on
this boundary disk is either e 2B+ cos 0 sin? 0 or it is —e 2(R+%) cos O sin? 0. In
the former case, df = d¢ on this boundary disk; and df = —d¢ in the latter case.

The segment of v between z,4+ and z,— is in this coordinate cylinder and as such, it
appears as the graph of the form ¢ > (¢,z = z(¢)). The function z,(-) solves the
7 = 0 version of the t € [0, 1] family of differential equations depicted in the upcom-
ing (C-2). The depiction of this family introduces a certain C—valued function, X,
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on [1 4 82,2 — §2] with norm bounded by cor~'/2. A given 7 € [0, 1] member of the
family requires a C—valued function of ¢ to obey
(C-2) Ld -y =0

2dt
for t € [1+§%,2—§2]. Given zg € C with norm bounded by ¢y !, integration finds
a unique solution to (C-2) with z(1 + §2) = zq. There is also a unique solution with
z(2 —8%) = zq. In either case, the solution obeys |z(-) —zo| < (1 — 7)cor /2.
Step 2 Fix e1 € (0,¢y 1), This section uses ¢, to denote a purely £;—dependent
constant that is greater than 1 and whose value can be assumed to increase on successive

appearances.

Fix r > ¢.. Suppose that p € A is such that v crosses H,. Assume in addition that
each point of v has distance 1 or greater from both )7p+ and )7p_ . This being the case,
v coincides with a segment in H, of «’s zero locus and so its tangent vector here
has distance at most cor—'/2 from v. Reintroduce zp— to denote the point on v N H,,
where v intersects the e “2(R¥%) (1 -3 cos? 0) = §2 surface in H,, and introduce again
zp+ to denote the point where v intersects the e 2(R=u)(1 — 3 cos? §) = §2 surface
in Hy.

Let y denote the segment in H, of the integral curve of v that starts at z,— and lies in the
e 2(R—uD (1 —3 cos2 ) < §2 part of H, . Given that v’s tangent vector differs from v
by at most cor~ /2, the e =2(R=1uD (1 -3 cos? §) < §2 partof v in H,, lies entirely in the
radius c,r~1/2 tubular neighborhood of y. The function 1 — 3 cos? @ is positive on y
if r > ¢! and the segment y ends on the e 2(R=u) (1 — 3 ¢cos? ) = §2 surface in Hp .
In fact, the radius ¢! tubular neighborhood of y lies entirely in the 1 —3cos? 6 > 0
part of 7, and its boundary consists of one disk on the e 2(R+1) (] _3¢0s2 ) = §2
surface and the other on the e 2(R=%) (1 — 3 cos? §) = §2 surface. This neighborhood
has coordinates (¢, z) as described in Part 4 of Section Aa with |v| + || < co and

with the 7 = 0 point being the e~ 2B+4) (1 — 3 cos2 §) point on y.

The segment of v in H, between z,— and zp4 appears in these coordinates as the
graph ¢ — (t,z = z,,(¢)) where z,,(0) = 0. The function z,(-) is a solution to the
7 = 0 member of a 7 € [0, 1] family of differential equations for a C—valued function
of t, this being an equation of the form

id

(C-3) 5di° Fvz4+puz4+ (1 —1)xy +e(z) =0,
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where ¢ is a smooth function on the radius ¢ ! ball in C centered at the origin with
the property that |¢| < co|z|? and |de| < co|z|. Meanwhile, x,, is a smooth function

of ¢ that obeys |x,| < cor~1/2.

Fix 7 € [0,1] and z¢ € C in the domain of ¢ with |zo| < ¢y 1. Then there is a unique
solution to t’s version of (C-3) that is defined on a neighborhood of 0 with r =0
value zo. Let z(-) denote this solution. If |zo| < ¢!, then this z(-) will be defined
for all values of ¢ and it will obey |z(-)| < c¢|zo|. The solution depends smoothly
on the data (t, zg). The solutions to the T = 1 version of (C-3) are the segments of
the integral curves of v in the e 2(R=1#D(] —3cos2 §) > §2 part of M, that start at
distances less than ¢, ! from z,_.

Step 3 The observations in Steps 1 and 2 suggest the lemma that follows.

Lemma C.3 Given ¢ > 0, there exists kg > 1 with the following significance: Fix
r > k¢ and suppose that (A,v¥ = («, B)) is a solution to the (r, i) version of (1-13)
with | a given element in €2 with P—norm smaller than 1. Let v denote a component
of a~1(0) whose points have distance & or more from each curve in Upe A()7p+ U )7p_ ).
Then v is in the radius ker~'/2 tubular neighborhood of a closed, integral curve of v.

Proof The proof also uses ¢, to denote a purely e—dependent constant that is greater
than 1. The value of ¢, can be assumed to increase between successive appearances.
Fix a point p € vN X and use what is said in Steps 1 and 2 to construct a segment of an

integral curve of v that starts at p, ends at a point p’ € ¥ with distance at most cer /2

from p and is such that v lies in its radius cer /2

tubular neighborhood. Let y,
denote this segment. With this in mind, the arguments used in Step 4 of the proof of
Proposition 11.2.7 can be used with only cosmetic modifications to prove that y, has

1/2

distance at most c,r~ */“ from a closed integral curve of v. O

What follows directly is a proof of Lemma C.1 in the case when v obeys the assumptions
of Lemma C.3 for a given . To start, let Y9 denote now the closed integral curve of v
that is supplied by Lemma C.3. If r > ¢, then the radius 4k, tubular neighborhood
of yo will intersect each p € A version of #H,, only where 1 —3 cos? 6 > 0. Keeping
this in mind, use Part 4 of Section Aa to define coordinates (z,z) for this tubular
neighborhood of y¢ with |v| and || bounded by c¢. The curve v appears in these
coordinates as the graph of amap ¢+ z (¢) with |z| < ker~ /2 and with |%Z| <cor /2,
Define the family {v¢}¢[o,1] by writing any given member as the graph of the map
t>(1—1)z(-).
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Step 4 Let y denote )7;' . Use 64 € (0.%) in what follows to denote the angle
with cos 0, = % Use b to denote ﬁeR(xo + 4e72R)1/2 Fix ¢ € (0, cgl)
with the upper bound chosen so that the R /(27 7Z)-valued function ¢ and the pair
(x =b~lu, y = 6 — ) define coordinates on the radius & tubular neighborhood of y.
Let p=y+x and ¢ = y —x and fix g9 < & so that the locus where (p? +q2)1/2 =¢p
lies in the radius € tubular neighborhood of y. The notation that follows uses ¢, to
denote a constant that is greater than 1 and depends solely on g¢. Its value can be

assumed to increase between successive appearances.

Fix ¢; and r as in Step 2 with &; chosen so that p2 + q2 < 18¢¢ on the radius &1
tubular neighborhood of y. Suppose that p € A is such that v NH,, # & but assume
in this case that v has boundary points on the radius &; tubular neighborhood of )7p+ .
Much the same argument holds if v has boundary points on )7p_ and so the latter case
will not be discussed.

The part of UNH,, where e ~2(R=I#D(1-3 cos? §) <52 but not in the (p2+¢2)!/2 < 1&g
part of the radius ¢ tubular neighborhood of y consists of two segments, these denoted
by v— and v4 in what follows. The function u is negative on v_ and positive on v4.
Both segments lie in the zero locus of o and have transversal intersection with the
(p? + qz)l/2 = %80 locus. The starting point of v_ is z,—. Use z_ to denote the
2)1/2

point of v_ on the (p% +¢ = go surface in y’s radius ¢ tubular neighborhood.

The u < 0 part of the segment of the integral curve of v in H, that contains z_ and
lies where e ~2(R+4) (] —3 cos? 0) < §2 will start on the e ~2(R+%) (] —3 cos2 9) = §2
surface at distance cgr_l/ 2 2)1/ 2= %80
surface in the radius & tubular neighborhood of y. Introduce y— to denote the segment
of the u < 0 part of this integral curve that runs between its e ~2(R+%) (13 cos? ) = §2
point and its intersection with the (p? + qz)l/ 2 = %80 surface in the radius ¢ tubular
neighborhood of y. The part of v_ that lies outside the locus where p? + g2 <
—-1/2

or less from z,_ and it will intersect the ( p2+q

%(1 + cer1/2)gq is in the radius c,r tubular neighborhood of y_.

Fix coordinates (7, z) for the radius ¢y 1 tubular neighborhood of y_ from Part 4 of
Section Aa with the z = 0 locus being y— and the ¢t = 0 point being z_. Require
in addition that |v| and |u| are bounded by co. The intersection of this tubular
neighborhood with the e "2(R+%) (1 —3 cos? §) = §2 surface is a disk neighborhood of
a boundary point of y_ in this surface. If the radius of this tubular neighborhood is less

than ¢ 1 then its intersection with the surfaces in the radius & tubular neighborhood

2)1/2 3

is constant and between 3¢9 and 2¢q are disks that lie in

of y where (p? +¢
the u < 0 part of these surfaces.
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The segment v_ appears in the coordinates (¢, z) as a graph ¢ + (¢, z(¢)) with z(z)
obeying the = 0 version of a t € [0, 1] family of equations that has the same form as
that depicted in (C-3). This solution has z(0) = 0 and |z(-)| < c,r~ /2. Note that the
solutions to the y_ and 7 = 1 version of (C-3) are integral curves of v.

Solutions to (C-3) for all values of t can readily be found. In particular, there exists
a purely ggo—dependent constant, cp., that is greater than 1 and has the following
significance: Fix 7 € [0, 1] and a point zg in the p? + g2 = g¢ surface with distance
less than cp_g1 from z_. Use A to denote this distance. There is a unique solution
to the y_ version of (C-3) for the chosen value of t that contains zg and with norm
bounded for all ¢ by c.(A + r~1/2). Moreover, varying the data (7, zg) changes the
corresponding solution in a smooth fashion; and the three-parameter family of solutions
so defined is such that the derivative of z(-) with respect to changes of (z,zg) is

bounded at each ¢ by c;.

Step 5 This step uses the same notation as Step 4. Use z4 to denote the point of vy on
the locus (p2+4¢2)1/2 = ¢y. The endpoint of v, is on the e =2(B=%) (] -3 cos? ) = §2
surface, this being the point z, 4. If r > ¢, then the segment of the integral curve

2)1/2 — %80 where

of v in H, that contains z4 will intersect the surface (p*+¢q
u > 0 at a point with distance at most cer /2 from the point where v intersects
this surface. It will also intersect the surface where e 2(R=%) (1 — 3 cos2 §) = §2.
Introduce y4 to denote the segment of this integral curve of v that starts on the
(p*+ qz)l/ 2 = %80 surface in the radius ¢ tubular neighborhood of y and ends on
the e=2(R=1) (1 —3 cos? 0) = §2 surface. The radius c¢;’! tubular neighborhood of y4+
will intersect this surface in a disk, and it will intersect each surface in the radius ¢
2)1/2

tubular neighborhood of y where (p? + ¢ is constant and between %80 and 2¢gg

as a disk in the u > 0 part of the surface in question.

Fix coordinates (¢, z) for the radius ¢, ! tubular neighborhood of y from Part 4 of
Section Aa with |v| and || bounded by co and with the ¢ = 0 point being the point z .
The segment vy appears in the coordinates (¢, z) as a graph ¢ +— (¢, z(¢)) with z(¢)
obeying the 7 = 0 version of a t € [0, 1] family of equations that has the same form as
that depicted in (C-3). This solution has z(0) = 0 and |z(-)| < cer~'/2. The solutions
to the y+ and v = 1 version of (C-3) are integral curves of v.

The constant ¢, from Step 4 can be chosen so that there is a y4 analog of what is

said in the final paragraph of Step 4. This is to say that the following is true: Choose
-1

any 7 € [0, 1] and a point zg in the p? 4 g2 = g¢ surface with distance less than Cpe
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from z4. Use A to denote this distance. There is a unique solution to the y4 version
of (C-3) for the chosen value of t that contains zg and has norm bounded for all ¢
by cs(A +17'/2). Varying the data (t, z9) changes the corresponding solution in a
smooth fashion and the three-parameter family of solutions so defined is such that the
derivative of z(-) with respect to changes of (z, zg) is bounded at each ¢ by c,.

Step6 Fix e€(0, ¢y 1) and suppose that v intersects the radius & tubular neighborhood
of either )7p+ or ¥, . What follows considers the case when the curve in question is )7;‘ .
As the same analysis holds for the other case modulo some sign changes, the latter case
is not discussed. Use y now to denote 7, and let 6« € (0, %) denote the angle with
cos by = %, this the value of 6 on y. Coordinates for a neighborhood of y are given
by the R/(27xZ) function ¢ and R—valued functions (x, y) that are defined by the
rules (u = bx,0 = 0« +y), where b = ﬁieR(xo + 4¢72R)1/2 ig the constant that
appears in (B-36) and in Steps 4 and 5. Introduce as in these same steps functions p
and g givenby p=y+xandg=y —x.

If v’s intersection with the radius € tubular neighborhood of y lies entirely in «’s zero
locus, then the part of the curve v where (p? 4 ¢2) 1/2 < Co e can be parametrized by
aninterval / CR asamap t — (¢ =—1, p = py(t),q =g (t)). No generality is lost in
this case by taking / to contain the origin 0 € R and to take # =0 to be the ¥ = 0 point
on v. Thus py(0) =g, (0). If (p2+¢>)V2 <m 212 on v N?Hy, then it follows
from what is said in Step 3 of the proof of Lemma B.11 that the part of the curve v
where (p2+¢?) 1/2 < Co Le can also be parametrized by an interval / C R containing 0;
this parametrization has again the form ¢ — (¢ = —t, p = py(t),q = qv(¢)). In this
case the O point in [ is taken as in Step 2 of the proof of Lemma B.11. It follows from
(B-42) that [ py(0) — gu(0)] < com™*cpr™"/2.

In all cases, the functions p,, and g, obey an equation of the form that is depicted
in (B-37). This equation is reproduced below:

d d
(C-4) EPU = Apy + ep(Pvsquv) +tpy  and EQU =—Aqu + ¢qg(pv.qu) +tqu.

By way of a reminder, A = 4+/6e™ R (xq + 4¢72R)1/2 and the functions ¢p and ¢, are
smooth and have absolute value bounded by co(p? + g2). Meanwhile, tpy and tgy
are smooth functions of ¢. Their absolute values are bounded at times # € I where
v(t) C 2~ 1(0) by cor /2 in particular, this occurs where (p? + qz)l/2 —1/2
—-1/2

>l
In general, their absolute values are bounded by cocyr . A smaller upper bound is

given in the upcoming (C-5).

Geometry & Topology, Volume 24 (2020)



HF =HM, IV 3443

What follows says more about t,,, and tgy at times ¢ € I where their absolute value is

~1/2 To this end, reintroduce the constant m that is used to define v,

greater than cor
and reintroduce ¢, € [0,27) from Step 2 of Lemma B.11. As done in this same
Step 2, take the parametrization for I so that it is only necessary to consider times
t € [-2m —to,27w + to]. The pair p, and g, on this interval are given in (B-42).

Differentiate (B-42) and compare with (C-4) to see that t,, and tg4, obey
(C-5) o tpy < com ey V/2 for t € [0,27 + to] and tpy < com 2c,r /2 for
t€[-2m—1t,,0];
o tyy>—com e V/2 for t € [-21 —to,0] and tgy > —com ™ 2cyr /2 for
t €[0,2m +to];

°* Ty > —com Oc,r /2 and tqu < com Cc,r V2 fort e [27m —to, 2 +16].

The constant m is left unspecified for now but ultimately chosen to be less than cg.
The choice of m determines in part a lower bound for Lemma C.1’s constant « .

To say something about the respective lengths of the # > 0 and ¢ < O parts of I,
introduce A to denote the value of (p2 + qg)l/ 2 at 0 € 1. Fix g9 € (0, €) so that the
coordinate functions p and ¢ are defined where (p? + qz)l/ 2 <2¢p. Let ¢4 and ¢_
denote the respective values of 7 in I where (p2 + qlz,)l/ 2 = gp. As explained in

Step 6,
(C-6) Ity —A 'In(egA™ Y| <co and |t~ + A" In(ggA™Y)| < co

if g9 <cy ! These bounds imply in part that the lengths of the > 0 and ¢ < 0 parts
of I differ by at most cg.

Step 7 Introduce Yo and Xo to denote the value of y = %( p+gq)and x = %( P—q)
at the ¢ = 0 point on v. Note that Xo = 0 if p% +¢% > m~2c,r~1/2 on v; and (B-39)
and (B-41) imply that |Xo| < com™®c,r~1/2 otherwise. Meanwhile, Yo = 27 1/2A if
p2 —|—q2 > m_zcvlr_l/2 on v and |Y0—2_1/2m_20,,r_1/2| < C()m_4cvr_l/2 otherwise.
Fix Y € (§Yo.4Yo). Given 7 € [0, 1], there is a unique map ¢ — (py, (1), gy,c(¢))

from a maximal interval Iy ; C R to R? that obeys the equation

d
EPY,I = APY,t + ep(PY,rs (IY,r) + (1 - T)tpva
(C-7)

d
ECIY,T = _AQY,r + eq(pY,r» C]Y,r) +(1- T)tqv
with py £(0) = Y+X¢ and gv,r(0) = Y—X¢ and with (p%gr—i—q%’r)l/z <egpfortely:

with equality only at each boundary point of Iy ;. A proof of existence and uniqueness
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can be had using standard techniques from the theory of ordinary differential equations.
Use tv,z+ and fy ;— to denote the respective negative and positive endpoints of Iy ;.

The first implication of (C-7) concerns the size of gy . relative to py ; where > 0:
As explained in a moment,

(C-8) |gv,c| < coleopy,c +m 2epr™1/?)

for t € [0,ty,:4+] when g9 < co_1 and m > c¢g. To prove this, fix ¢ > 0 and set
W = |qy,z| — | py,z|. It follows from (C-5) and (C-7) that

(C-9) %w < —Aw —2A¢|py,c| + cogo(|w| + | py.<]) + com 2 epr /2,

Let ¢, denote the version of cq that appears in this inequality. Take ¢ = 2c«A " 'eg to
see that %w < —A(w —A"Yeyeg) 4+ com2e,r /2. (The negative multiple of | Py,
in (C-9) dominates the positive multiple for this choice of ¢.) Moreover, supposing
that g¢ is chosen to be less than %kc; 1 (which is greater than ¢ 1), this says that
%w < —3Aw + com™2¢,r1/2. Multiply both sides of this last inequality by e’/
and integrate to obtain (C-8) (keep in mind that A is a fixed positive number so it has a

co upper bound and a ¢ ! Jower bound.)

With regards to py,r, note first that (C-7) with (C-5) imply that py . is an increas-
ing function of ¢ when ¢ is positive. To say more about the size of py ; it proves
useful to introduce the norm on C*°([0,¢];R) for t <ty 4+ given by h — ||h|; =
SUPge[0,1] e~5|h(s)|. Use (C-8) with (C-5) and the right-hand equation in (C-7) to see
that

(C-10) |Pv.e = (Y +X0)| < coe | prelF + m ™0™,
Given that Y 4+ Xo > ce ™' m—2c,r~1/2 this last equation implies that

(C-11) (1 —coeg)e™ (Y + X — com ey 1/2)
< py,(t)
< (1+coe)e™ (Y + Xo + com™Ccpr™1/2)

for 1 €[0,ty,;+] when g9 < ¢y Iand m > ¢q. Note that (C-11) with (C-8) implies that

the function 1 — 3 cos? § is positive along the trajectory ¢ — (py ¢(f), gv.c(f)) where

(P + qﬁzm)l/2 is greater than com™2¢,r~1/2.

The same sort of arguments can be used for ¢t € [-27 —p ., 0] to see that

(C-12) ¢ |py.| <co(eolgy,c| +m2er™1/?),
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« (I- cogo)e (Y —Xo — Com_chr_l/z)
< qv,(t) < (14 coe)e ™ (Y —Xo + com Scpr'/?)

for t <[ty.—.,0] if gg < cgl and m > cp.
These bounds for py ; and gv r have the following implication with regards to the
times fy r+ and fy —. To say more, let fy ¢« denote either fy ;4 or —ty —. Then

(C-13) lty.ox — A" In(eoY V)| < cog0 4 ce Am O cur/2,

Given that Am ¢, /2 < com ™%, the right-hand side of (C-12) is at most cggo+cg m—4,

Step 8 Suppose next that (Y, 7) and (Y’, ') are as described in Step 7. Introduce P
to denote py,:— py/,rv and Q to denote gy, — gy’ 7. Subtract their respective versions
of (C-7) to derive equations for P and Q that can be written as

d
T AP+ 3ppP +3pgQ + (T = T)tpu,
(C-14) p
EQ = _)LQ + 3qpp + 5qu + (T — T/)tqv,

where each 3., is a function of ¢ with norm bounded by

co(|py,«| + |py | + lay,| + gy’ «']).

These equations can be analyzed using the same tools used in Step 7 to draw the
conclusions expressed by the following inequalities. The analysis for ¢ > 0 finds

(C-15) = || < coleolP| + [Y = Y| + m 2y~ /2T —7')).

o [pP—eM(y—Y))
< coe™ (0 + Alln(eg P A)) Y — Y| + mCepr™ 2| — '),

Meanwhile, the analysis for ¢ < 0 leads to
(C-16) « |P| <co(eoQls + [Y = Y|+ m2eyr™ /2 [r —1')),

. |Q_e—kt(Y_Y/)|
< coe_)”((so + A|1H(80_1A)|)|Y —Y'| + 111_60Ur_1/2|1’ — r/|).

The bounds in (C-10)—(C-13) and (C-15)—(C-16) play central roles in what follows.

Step 9 The bounds in (C-10)—(C-13) and (C-15)—(C-16) can be used to say something
about ty ;4 —ty/ /4 and ty — —ty’ . To this end, suppose for the sake of argument
that ty ;4 >ty 4. Write

(C-17) Pyt ay v =Pyt ay.—2@®pyc +Qqv,c) + P>+ Q7
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and set ¢ = ty ;. Use the fact that (p\z(’r + q\%’r)l/2 =go at t = ty 4+ with (C-8),

(C-10) and (C-15) to see that p%, ot q%, ,att =ty 4 is

T
(C-18) Pyw+ay o =e5(1=2Y (Y =Y) + ),

where |¢| < co(eoY Y =Y'|+ Y 2|Y—Y/|> 4+ m~#|t —7'|). This last inequality with
(C-10) and (C-15) allows ty/ /4 to be written as

(C-19) tyop =ty FATY (Y=Y e,

where ¢ has the same absolute value bound as its namesake in (C-18). The same sort of
arguments write ¢y /— as ty/ y— = ty,— —A"1Y (Y —Y) + ¢ with ¢ being different
from its namesakes in (C-18) and (C-19) but obeying the same absolute value bound.

Step 10 The functions p and g are convenient to use on the radius & tubular neigh-
borhood of y, but less so elsewhere on H, and, in particular, less so near the boundary
of H,. The function £ = f(u)cos 0 sin? @ is far more convenient, this in part because
the final arguments for Lemma C.1’s proof are much the same as those used in the
proof of Proposition I1.2.7. At distance ¢ or less from y, the function A can be readily
written in terms of p and ¢, and doing so leads to the formula

(C-20) fi= 2= (xo +4e72K) + To(xo +4e ) pg + 1,

where h obeys [h| < co(p? +¢2)3/? and ’%h‘ + ‘%h‘ <co(p* +4?).

Fix 7 €[0, 1] and fix Y as in Step 7 so as to define the interval Iy ; and the corresponding
pair of functions py: and ¢y on Iy . Of interest here is the function on /v .
given by the rule ¢ — A(py,c(t),qy,(¢)). This function is denoted in what follows
by fiy,z. Of particular interest are the values fiy ; atthe t =#y 4 andat t =ty .—. In
particular, (C-8) and (C-11) with (C-20) imply that its values at these times differ from
ﬁg(xo + 4¢72R) by at most 6088.

Consider now the functions fiy ; and fiyr o+ with 7, 7’ € [0, 1] and with Y and Y’ as in
Step 8. Of interest is fiy ¢ (t) — Ay’ r/(¢) with ¢ and ¢’ being ty 4+ and ty/ /4 or else
t and ¢’ being ty,— and ty/ /—. Use tx and 7, to denote either of these pair of values
for 7. The absolute value fy ¢ (fx) — fiyr 1/ (t}) obeys the a priori bound

(C-21) |y 2 (ts) — Ay v (t2)] < coeg(Y MY = Y'| + m™4r —7'|);

this follows from (C-20) with (C-8), (C-11)—(C-13), (C-15)—(C-16) and Step 9’s asser-
tions.
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Step 11 The arguments that follow in this step and Steps 12 and 13 focus almost
entirely on the case when v intersects but one p € A version of H,. The arguments in
the general case are only outlined as they differ from those used for this simplest case
in a straightforward fashion; and, in any event, they are much the same as those used
for Proposition I1.2.7. This step is a guide of sorts for Step 12.

Assume now that v crosses only one handle from the set Upe A Hp. Let p € A denote
the relevant pair. With an r—independent ¢ > g9 > 0 fixed in advance, it is sufficient
given what is said in Step 3 to consider only the case where v intersects the radius %80
tubular neighborhood of either j7p+ or )7; . The discussion that follows considers only
the case of )7p+ as the arguments for the other case are identical but for some sign
changes and notation. This understood, the notation from Steps 4-9 will be used when
referring to the radius ¢ tubular neighborhood of this curve. In particular, the curve )7;'
is denoted below as y. The constant g¢ is chosen so that the locus in the radius &
tubular neighborhood where the coordinates p and ¢ obey (p? +¢?) 1/2 < ¢4 lies well
inside this tubular neighborhood. The portion of v in the radius ¢ tubular neighborhood
of y where (p2 + ¢2)1/2
Step 6.

< go is parametrized by the interval / C R as described in

Fix 7 € [0,1]. The next step constructs a 2—parameter family of continuous and
piecewise smooth arcs in Ms U #H, that all start and end on the f = % Heegaard
surface ¥ in Mg. The starting and ending points are both very near v’s intersection
with this surface. Any given member of this family starts near v’s intersection point
with ¥ follows v to the ¥ = —R —1In§ sphere in #H,. The arc stays close to v
through #, so as to exit #H, through its ¥ = R +1In§ sphere in #,,. It then follows
v in My so as to end on the surface o. Each arc from the family is the end-to-end
concatenation of five smooth segments. The parameter space for the family of arcs is
[(1=R)Yo, (1 +R)Yq] X [-R,R] with R < % to be determined ultimately by &g .

Step 12 Fix 7 €0, 1] and a pair D = (Y,0) € [(1 —R) Yo, (1 + R)Yo] X [-R,R]. The
corresponding continuous and piecewise smooth arc in Mg U H,, is denoted by vp ;.
As noted in the previous step, this arc is the end-to-end concatenation of five segments.
It proves useful in this regard to describe the middle segment first, then the second and
fourth segments and, at the end, the first and fifth segments. By way of notation, ¢, is
used in what follows to denote a purely ggp—dependent constant that is greater than 1.
This constant can be assumed to increase between consecutive appearances.

The middle segment The middle segment crosses the (p2 + qz)l/ 2 < g¢ portion of
the radius ¢ tubular neighborhood of y. This segment is parametrized as the map from
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the interval Iy ; given by the rule # > (¢ = —t + 0, p = py,«(t). g = qv,(t)) with
Iy ¢ and the functions pvy  and gy, as defined in Step 7. Use what is said in Steps 8
and 9 to see that the #v 4 and fy;— endpoints of this segment on the ( P> +4q?) 1/2 — g,
surface have distance at most coeq(R + m~#) from the u > 0 and u < 0 points where

v intersects this surface. Use zp ;— and zp 4 to denote these respective endpoints.

The second and fourth segments Let z_ and z4 denote the respective u < 0 and
u > 0 points where v intersects the (p2 + ¢2)1/2 = &¢ surface in the radius ¢ tubular
neighborhood of y. Introduce as in Steps 4 and 5 the segments v— and v4 of v. By
way of a reminder, v_ starts on the e 2R+ (1 -3 cos2 9) = §2 surface in Hy and ends

at z_; and U4 starts at z4 and ends on the e "2(B=%) (1 -3 cos2 §) = §2 surface in Hyp .

Steps 4 and 5 introduce the segments of integral curves of v, these being y_ and y.
The former has u < 0, contains z_ and starts on the e~2(R+#) (] —3¢cos2 9) = §2
surface in H,, and the latter contains z1 and ends on the e 2(R=u)(1 —3¢cos2? 0) = §2
surface. Steps 4 and 5 describe parametrizations of the respective tubular neighborhoods
of y_ and y4 using coordinates (¢, z) with |z| < ¢! and with the z = 0 locus being
y_ or y4 as the case may be. The point (0, 0) is z_ in the former case and z in the
latter. Reintroduce from the final paragraphs of Steps 4 and 5 the constant ¢y, . Take

R such that R < (cocpg)_l and take m such that m > cocpe. Granted these bounds,
-1
pe

from z_ and the ¢ =ty 4 endpoint zp ;+ of the middle segment has distance less

then the f = fy ;— endpoint zp ;— of the middle segment has distance less than ¢

than cp_g1 from z4 . Let Ap — and Ap .4+ denote these distances.

Step 4 finds a solution to the (y—, t) version of (C-3) that is defined for all ¢ € y_,
contains zy .— and has pointwise norm bounded by cg(Ap — + Y 2) This solu-
tion defines a smoothly embedded arc in the u < O part of H, that starts on the
e 2(R+u) (1 _3¢os2 §) = §2 surface. Use Zp,7— to denote the segment of this arc that
starts on this surface and ends at zp ;. This arc is the second segment.

Step 5 finds a solution to the (y4, t) version of (C-3) that is defined for each ¢ € y4,
contains zy 4+ and has pointwise norm bounded by c¢(Ap, 4+ + Y 2). This so-
lution defines a smoothly embedded arc in the u > 0O part of H, that ends on the
e 2(R=4) (1 —3 cos? ) = 62 surface. Use zp o in what follows to denote the segment
of this arc that starts at zp ;+ and ends on the e~ 2(R=u)(1 — 3 cos2 f) = §2 surface.
This arc is the fourth segment.

The first and fifth segments The starting point of zp ;- on the surface in H,
where e 2(R+1)(1 —3¢0s2 0) = §2 has distance at most ce(Ap,r— + r—Y/2) from
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v’s intersection with this surface, the latter denoted in Step 1 by z,—. This being
the case, it has distance at most ¢z (Ap — + r~/2) from the (t = 2 — 6%,z = 0)
point in Step 1’s coordinate cylinder. Meanwhile, the ending point of zp ;4 on the
e 2(R=u)(1 — 3 cos? §) = §2 surface in Hp has distance at most cg(Ap,z+ + r~1/2)
from v’s intersection point with this same surface, and so this ending point of zp ¢ 4
has distance at most cg(Ap — + r_l/z) from (t =1+ 6%,z =0) point in Step 1’s
coordinate cylinder.

With the preceding understood, suppose that R < (cgcpg)_1 and m > cgcpe. Granted
these bounds, then the starting point of zj, ,— will be well inside the  =2—§2 boundary
disk of Step 1’s coordinate cylinder. Use zp ;— to denote the z—coordinate of this
starting point of zp ;. Meanwhile, the ending point of zp, .+ will be well inside the
t = 1+ 82 boundary disk of Step 1’s coordinate cylinder centered on yx. Use zp ¢+
to denote the z—coordinate of this ending point of zp, ¢4 .

According to Step 1, there is a solution ¢ > z(¢) to (C-2) with z(2 —§2) = zp ,—.
Denote this solution by Zg’lt_. The first segment is the 7 € [% 2— 82] part of the arc
in Mg given by the graph ¢ — (¢, zé‘{r_ (1)).

There is also a solution ¢ > z(¢) to (C-2) with z(1 4+ §2) = zp ;4. Denote the latter
solution by Zg’,lr - The fifth segment is the 7 € [1 + 82, %] part of the arc in My given
by the graph ¢ — (¢, Zg,lt-q-)-

Step 13 Introduce ¢+ and ¢_ to denote the ¢ coordinates of the (t = 1 + 82,z = 0)
and (t = 2— 82,z = 0) points, respectively, on the two boundary disks of Step 1’s
coordinate cylinder. The ¢ coordinate of the ending point of zp ;4 on the surface in H,,
where e ~2(R=4) (1 —3 cos2 §) = §2 can be written as ¢4 + @p,z+ With |¢p 74| < cO_1 ,
and the ¢ coordinate of the starting point of z;, — on the e 2(R+1) (] _3¢cos2 9) = 2
surface can be written as ¢— + ¢p — with [gp —| < ¢y 1 Write the respective values
of the function £ at these boundary points of zp r+ and zp — as Ap 4+ and fip o—.

It follows from what is said in Step 1 that the five-segment concatenated arc defined
in Step 12 is a piecewise embedded loop in Mg U H,, if

(C22) gt =(=1)°(pr—+(1=Dm), finer = (=1)°(ppr— + (1= Dw2),

where the notation is such that 0 € {0, 1} is determined by the point zx € Cp4 N Cpr,
and where u; and u, are the respective real and imaginary parts of

3/2 2—-§2
(C-23) —2i (/ Xu —/ xv)
1+82 3/2
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with x, being the function in (C-2). As is explained next, there exists a smooth map,
D(-): [0,1] = ((1 —R)Yp, (1 + R)Yg) X (—R,R) such that for each t € [0, 1], the
D = D(t) version of (C-22) holds when the following conditions are met:
(C24) o go=<cy'.

e m>c, with ¢ > 1 being a purely e—dependent constant.

e R <cgm ! with ¢, > 1 being a purely e—dependent constant.

® ¢y > Cempr With ¢ r > 1 being a constant that depends only on €, m
and R.

e 1>k, with k. > 1 being a constant that depends only on ¢, .

To construct D(-), take D(0) to be the pair (Y = Yg,0 = 0) which obeys (C-22)
because the arc defined in Step 12 from (Y = Yg,0 = 0) is the smooth, embedded
circle. The construction of D(t) for t > 0 requires a rewriting of (C-22). To set the
stage for this, fix D = (Y,0) € [(1 —=R)Yp, (1 +R)Yo] X [-R,R] and 7 € [0, 1]. Use
(C-19) to write the difference between ¢p 4+ and its (Yo,0 = 0), v = 0 analog as

(C-25) o —A"Iygl (Y —Yo) +e,

where [e| < co((g0 + R)Yy!|Y — Yo| + m™*). This last formula and its ¢y, analog
allow (C-22) to be rewritten as

(C-26)  o— A_IY()_I (Y—Yo)— (_l)a(ﬁY,t(tY,r—) — hiyo,0(tvg,0-)) +¢1 =0,
e o+ A_lYo_l(Y —Yo) — (_1)6(ﬁY,T(IY,‘E+) — hyg,0(tyy,0+)) +e2 =0,

where ¢ and ¢ are functions of 7, Y and 0 whose absolute values are bounded by
co((s0+R)Yy ' [Y—Yo|+ m™*). The left-hand side of (C-26) defines a smooth map, ¥,
from [0, 1] x [(1 =R) Yo, (1 +R)Yo] x [-R,R] to R? with the property that F = 0 if
and only if (C-22) is obeyed. What follows is a crucial observation about this map: the
differential of ¥ along the domain’s factor [(1—R)Ygq, (1+R)Yo]x[—R, R] is surjective
if (C-24) holds, this being a consequence of (C-21) and what is said about ¢ in (C-25).

Suppose that 1o € [0, 1] is such that D(-) has been defined on [0, 7). To extend D(-)
to a larger interval, use the fact that [(1 —R)Yp, (1 +R)Yg] X [-R, R] is compact to see
that there is a T = 7o limit point D(7p) for {D(7)}¢—,. It follows from (C-26) that this
limit point is unique, that the extension of D(-) to [0, 7g] is continuous, and that D(zg)
obeys the t = t¢ version of (C-26). Write D(7p) as (Y, o). Use (C-19), (C-21) and the
fact that (C-26) is obeyed to conclude that |o| 4+ |Y — Yo| < com™*. This implies that
D(7p) lies in the interior of the parameter space [(1 —R) Yo, (1 +R)Yo] X [—R, R] when
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(C-24) holds. Since D(7p) is not a boundary point of [(1 —R)Yg, (1 +R)Y¢] X [-R, R],
the fact that ¥ has surjective differential along the [(1 —R)Yp, (1 + R)Yg] X [-R, R]
factor of its domain implies via the inverse function theorem that D(-) has a smooth
extension to an open interval in [0, 1] that contains [0, to].

Step 14 Fix 7 € [0, 1]. Let vZ, denote the continuous, piecewise smooth loop that is
defined in Step 12 by the data set D(7) from the previous step. The loop v, is smooth
on the interior of each of its five concatenating segments. The implicit function theorem
construction implies that the assignment of 7 € [0, 1] to each of the five concatenating
segments defines a smoothly varying arc in Mg UH, . Moreover, the assertions made by
the four bullets in Lemma C.1 hold for each of these five [0, 1]—parametrized families
of arcs. This follows directly from the implicit function theorem construction given
what is said at the very end of Steps 4 and 5; and given (C-15)—(C-16), the bound for ¢
in (C-19) and the bound in (C-21).

The loop v¥, for t € (0, 1) is continuous, but its derivative may be discontinuous at
four points, these being the loop’s intersection points with the boundary spheres of the
lu| < R +1Iné part of H, and the (p? + q?)'/? = g, surface in the radius & tubular
neighborhood of y. Even so, the two concatenating segments near these points are
smooth up to their endpoints on the relevant surface, and the corresponding tangent

—1/2

vectors differ by at most cor at these endpoints. This is because the tangent vector

to each segment near these junctions differs from v by at most cor /2

. The preceding
fact implies that the loop v¥, can be smoothed near the junctions of segments so that
the result is a smoothly embedded loop that obeys the first three bullets of Lemma C.1.
Moreover, it is a straightforward task to define this smoothing without changing the
already smooth t = 0 and t = 1 versions so that the resulting [0, 1]—parameter family
of smooth loops is smoothly parametrized and obeys the assertion of Lemma C.1’s

fourth bullet at each point. The details of this are straightforward and thus omitted.
Use {v¥}re[o,1] to denote the resulting [0, 1]—parametrized family of smooth loops.

This family obeys all of the requirements for Lemma C.1. o

Cc Increasing r

This part takes Proposition C.2’s pair (A¢11, Wo11) as the starting point of a path
in Conn(E) x C*(Y;S) whose end member is constructed from the same vortex
solutions and loops in Y that are used to construct (As11, Yo11) but with the given
choice of r replaced by a far larger choice. A result from [21] is brought to bear in the
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next section; it requires the larger value of r. This larger value of r is denoted by R.
There is no upper bound to the value chosen but a lower bound R > cocir is imposed.

The path is parametrized by [0, 1], and a given 7 € [0, 1] member denoted by (Aez, Yer).
The definition of (A,.r, ¥e;) is identical to that of (A¢11, Yo11) given in Section Ca
but for the replacement of r with r(z) = (1 — 7)r 4 tR.

Keep in mind in what follows that the zero locus of the £ summand of any 7 € [0, 1]
version of ., is identical to that of a1 as is the degree of vanishing along any
transverse disk centered on the zero locus. By way of a reminder, the zero locus of ao11
consists solely of closed integral curves of v in Mg U (Upe A ’Hp) , these coming from
two sets. The first set consisted of curves that intersect Mj ; this set was denoted by ©%.
The second set is a subset of | ,¢ A()7p+ U%y)-

Of interest is the spectral flow between the ¢ = (4.0, Ye0) = (Ao11, Yo11) Version
of £ and the ¢ = (a1, Y¥41) version of £, r. Note in particular that the latter operator
is defined using R rather than r. The proposition that follows asserts that there is an a
priori upper bound for the norm of the spectral flow between these two operators that
is independent of the original pair (A, ¥) and r and also R. This proposition uses ¢(7)
to denote the pair (Aez, Ver)-

Proposition C.4 There exists k > 100 and, given ¢, > k, there exists k., > k with
the following significance: Suppose that r > k., ¢} and suppose that (A, = («, B))
is a solution to the (r, i) version of (1-13) with p a given element in 2 with P —norm
smaller than 1. The values of «k, ¢, and r are suitable for defining (As11, ¥o11) and
any R > kc8r version of the family {(A.r, Ver)}zelo,1]- The norm of the spectral flow
between the end members of the corresponding family {£(r) r(r)}ze[0,1] 1S bounded

by k.

Proof It is assumed in what follows that k, ¢, and r are large enough to invoke the
various results in the preceding subsections of Appendix C and those in Appendices A
and B. The proof that follows has five parts.

Part 1 As explained directly, each member of the family {(Asz, Ver)}re[o,1] ObEYs a
version of Properties 1-5 in Section Ab. The proof that such is the case distinguishes
between values of t near O and larger values. To elaborate, note first that the various
properties require the specification of constants ¢y and z. It is a straightforward matter
to check that Properties 1, 2, 4 and 5 are obeyed using ¢, in lieu of ¢y and r(7) in
lieu of z. It is also a straightforward matter to verify the third and fourth bullets of
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Property 3. Meanwhile, items (a) and (b) of the second bullet of Property 3 follow
directly by virtue of the fact that the zero locus of the £ summand of v, is a union of
integral curves of v. The story with regards to the first bullet and items (c) and (d) of
the second bullet of Property 3 is not so straightforward, the point being that ¥ — Y,
is the union of tubular neighborhoods of the curves from the set | J,¢ A()’/\;' Uvp)
with radius proportional to z~'/2. If a component of the zero locus of @11 from %
intersect the z = r version of ¥ — Y., then the first bullet and items (c) and (d) of
the second bullet of Property 3 will not hold when z = r(z) for values of 7 in certain
subsets of [0, 1].

To deal with this issue, fix T € [0, 1]. The ¢ = ¢, and z = r(t) version of Property 3
can fail if there exists a curve from ® and a curve from J, A()7p+ Uy, ) with the
following property: Let v® denote the curve from ®% and let y denote the curve
from (e A()7p+ U7, ). Then the minimum distance between the points in v* and y
is no less than (cl‘,‘ — 3c5)r(r)_1/2 and no greater than (c{,‘ + 3c3)r(r)_1/2. This last
observation has two immediate consequences, the first being that Property 3 can fail
only in the case when r(t) < cocSr and thus only if T < cocSr/R. This is so because the
minimum distance between v% and y is in any event greater than ¢, Leyr= 12 To state
the second consequence, introduce ¢; = ¢, —2¢,, L If the distance between v* and y
is no less than (cjf — 3c3)r(r)_1/2, then it is greater than (cf + 3ci°’)r(r)1/2 if ¢y > co.

Given what was just said, it is a straightforward task to use the pointwise bounds
given in Section Aa for the absolute values of g, ap, y and ¢ to verify the following
assertion: if ¢, > cq, then (Aqz, Yer) Obeys the co = ¢ —cocv_1 and z = r(t) version

of Properties 1-5 if it does not obey the ¢y = ¢, version.

Part2 A suitable bound for the absolute value of the spectral flow is obtained by study-
ing the variation with 7 of the spectrum of the family of operators {£(z) r(r)}ze[0,1]-
This part of the subsection considers the values of T when some closed integral curve
of v from ©®% and some curve from [, A()7p+ U7, ) have minimum distance at most
(cg—l—?acg)r(r)_l/z, where it is understood that ¢y € (¢, —co cv_l, cy] and that (Aez, Ver)
obeys the ¢y and z = r(t) version of Properties 1-5 in Section Ab. As noted in Part 1,
this condition can hold only if 7 < cocSr/R and so r(tr) < cocdr. This understood,
suppose in what follows that this minimum distance condition holds for t < ccr/R
and that this minimum distance condition does not hold for t > cocfr/R.

An almost verbatim repetition of the arguments used to prove Proposition C.2 finds an
(A, ¥)— and r—independent bound for the absolute value of the spectral flow for the
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T < coclr/R part of the family {£¢(2),1(x) S zefo,1]- The bound for the absolute value
of the spectral flow does, however, depend on the choice for ¢,. The only salient
changes to the arguments from the proof of Proposition C.2 involve Steps 1 and 2.
Step 1 is replaced by Part 1 above. The change to Step 2 adds extra terms to the
right-hand side of (C-1) to account for the fact that relevant version of %SV, is
nonzero on the radius ¢y Lepr=1/2 tubular neighborhood of certain curves from the set
Upe A(j7p+ U#¥, ). In any event, the absolute value of the homomorphism %Svr is
bounded by «.1r'/2(R/r). Steps 3 and 4 can be repeated with the only change being
that the interval [0, 1] is replaced by [0, cocSr/R] and the latter is divided into some
m=<co Cch segments of length at most K:lr/R.

Part 3 Assume that 79 € [0, 1] is such that the following is true: Let v® denote a
component of the zero locus of 11 from ®%. Then v* has distance greater than
(c§ + 3c3)r(r)1/2 from all curves from UpeA(ﬁp"' Uy, ) with ¢ € (ey — cocy b, o).
Part 4 of the proof derives an (A4, ¥)—, r— and R—independent upper bound for the
absolute value of the spectral flow along the [tg, 1] part of the 1-parameter family
of operators {£v¢};e[o,1] under the assumption that ¢, > co and r > k. with k. > 1
denoting a purely ¢,—dependent constant. This bound with the bound in Part 2 implies
the assertions of Proposition C.4.

The arguments in Part 4 invoke the following auxiliary lemma:

Lemma C.5 There exists « > 1 with the following significance: Let v € Y denote
a closed, integral curve of v that lies entirely in Ms U (U,ep Hyp)- Fix coordinates
from Part 4 of Section Aa for a tubular neighborhood of v. The corresponding version
of the operator n — %%n + v+ uf on C*®(y, C) has no eigenvalue between —k ~!

and k™1,

This lemma is proved in Part 5.

The arguments in Part 4 require a second auxiliary observation, this concerning the
spectrum of operators that are associated to components of the zero locus of o, from
the set U,e A()’/\;' U, ). These operators are versions of those depicted in (3-10) with
the pair (v, u) in (3-8) being that from any y € Upe A()?p"' U )7p_ ) version of (A-6) with
both functions constant, and p real and greater than |v|. With a positive integer, m,
chosen, the relevant equivalence class from &, is that defined by the solution to (2-8)
and (3-1) with «g = |o|(z/|z|)™. This operator is denoted by L,,. What follows is
the second observation:
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(C-27) Given my > 1 there exists k > 1 such that if m < m, then the operator £,
has no eigenvalues with absolute value in the interval (0, x~!].

Such k exists because there are only m, versions of (3-10) involved and each has
discrete spectrum with no accumulation points. By way of a parenthetical remark, it
is likely that these versions of (3-10) have trivial kernel and so lack eigenvalues in
B

Part4 This part assumes Lemma C.5 to complete the proof of Proposition C.4. This
is done in the four steps that follow. These steps use ¢, to denote a constant that is
greater than 1 and depends only on ¢,. Its value can increase between successive
appearances. These steps also use ki to denote the smaller of the versions of « that
appear in Lemma C.5 and in (C-27).

Step 1 Lemmas A.8 and A.9 can be invoked if ¢, > ¢¢ and r > ¢, because the
integer m that appears in Lemma A.9 is a priori bounded by cq. This understood, what
follows is a direct consequence of what is said by Lemmas A.6, A.8 and A.9, and then

Lemmas B.5 and B.6: If ¢, > ¢ and r > ¢, then the number of linearly independent
1,1

eigenvalues of any 7 € [0, 1] version of £() () With eigenvalue between — 15545

and 10%0";1 is bounded by cq.

Step 2 As in the proof of Proposition C.2, no generality is lost by assuming that the
parametrization of the family {£(¢) r(r)}zefo,1] 18 real analytic so as to apply what is
said in Part 1 of the proof of Proposition B.3. This understood, let {A,+},e7,1€[0,1]
denote the corresponding family of eigenvalues. Let ¢; denote the dimension bound
given in Step 1. Given what is said in Step 1, the absolute value of the spectral
flow for the [7o, 1] part of the family {£ () r(r)}re[0,1] 1 nO greater than ¢y unless
some 7 € [19, 1] version of £(;) (r) has an eigenvalue between 1(1)_0’(; I and %K: 1
Suppose for the sake of argument that such is the case. Let { denote the corresponding

eigenfunction and A its eigenvalue.

Let v denote a given component of the zero locus of a, from ©% and let ¢ denote
the section of the y = v version of the line bundle Kery|, — y that is described in
Lemma A.8. Lemmas A.8 and C.5 are not mutually compatible if the L2-norm of ¢
is greater than coc; !||f|2-

Step3 Lety € U,e A()7p+ U7, ) denote a component of the zero locus of o and
let ¢ denote the section of the bundle Kery|, — y that is described in Lemma A.9.
Use m to denote the integer for y’s version of Lemma A.9. Note in particular that
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m < cg. Introduce {_ to denote the L?—orthogonal projection of ¢ onto the span of the
eigenvalues of £,, with eigenvalue 0 or less, and use {4 to denote the L2—orthogonal
projection of ¢ onto the span of the eigenvalues of £, with eigenvalue greater than k1.
Note that { = {_ + (4. Lemma A.9 and (C-27) are not mutually compatible if the

L?-norm of either {_ or {4 is greater than cocy ! [|f]2.

Step 4 It follows from what is said in Steps 2 and 3 that ||[Tyf|l2 < cocy| f]2. But
if ¢y > co, then this last conclusion is incompatible with what is said by Lemma A.6
if § is not identically zero.

Part 5 This last part of the subsection contains the proof of Lemma C.5.

Proof Let L, denote the operator in question. Proposition I1.2.7 asserts that y is
hyperbolic and such is the case if and only if L, has trivial kernel. This understood,
the only issue is that of the size of the neighborhood of O that lacks eigenvalues. The
six steps that follow in a moment prove that such a neighborhood contains an interval
of the form (—co_l, o).

Keep in mind when reading the proof that L, is defined by the pair (v, ) and that
the latter are defined by the choice of a unitary frame for K ~1|,,. This last fact has the
following implication: Any two versions of (v, u) that arise from v’s version of (A-6)
give isospectral versions of L, . This being the case, no generality is lost by choosing
the coordinates so that |v| + |u| < ¢o.

Step 1 Fix & > 0 so that the radius ¢ tubular neighborhood of any given curve in the
set UpeA()?;L U7, ) has coordinates (¢, x, y) with x = b~ and y = 0, + 6 with

~2R)1/2 and with A, such that cos A = £-L as the case

b denoting ﬁgeR(xo +4de
may be. These are the coordinates used in Step 4 and the subsequent steps of the proof
of Lemma C.1. Set p =y +x and g = y —x. Fix g € (0, cale) so that the surface

(p* + qz)l/ 2 = g¢ lies well inside the radius & tubular neighborhood.

Suppose that v enters the (p? +q2)1/ 2 < %80 part of the radius ¢ tubular neighborhood
about a given y € e ()7p+ U, ). The discussion that follows considers only the case
when y’s version of cos 0y is equal to % as the discussion for the other case is identical
but for some sign changes. Use A to denote 4+/6e ™R (xo + 4e72R)1/2 The part of v
in the p? + g% < gq part of the radius ¢ tubular neighborhood of y can be written in
terms of the coordinates (¢, p, q) as the image of a map ¢ — (¢ = —t, py (), gu(?))

with the domain being an interval [, C R containing the origin and with the pair
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(pv,qv) obeying the version of (C-4) with t,, = tgy = 0. They also obey analogs
of (C-8), (C-11) and (C-12) with no terms proportional to /2 and with Xo =0.

As in the proof of Lemma C.1, no generality is lost by taking the = 0 point so that
Pv = ¢v at t =0, this being the point where v crosses the u = 0 sphere. With this
choice understood, write 7, as [f—,4]. The pair 71— and 7+ obey (C-6) with A denoting
2)1/2

the value of (p2 —|—c]12,)1/2 at t = 0, this being the minimal value of (p%+¢ ony.

Step 2 Fix T > 1 and let { denote an eigenvector of L, whose eigenvalue has
absolute value no greater than T~!1. The eigenvalue equation for ¢ on the part of v
in the radius ¢ tubular neighborhood of y where (p? + qz)l/ 2 < go can be written
as an equation for a pair of R—valued functions ¢ + (¢1(¢), {2(¢)) on the interval I, .
This equation has the form

%52 = —Al + e2181 + 2202,

where the ¢;; are smooth functions on Iy, that are bounded by co(go + T~!1). The
fact that |v| + || < co implies that 651|§|2 <|&1)? + 22| < colC)?.

(C-28) %51 = Al +e1181 +e1282  and

Step 3 The same argument that proves (C-8) can be used with (C-28) to prove
that |{3] < co(eo + T714)|¢1| where ¢ > 0, and it can be used to prove that [{1] <
co(e0+T~11)|¢2| where ¢ <0. Granted these bounds, multiply the left-hand equation
by ¢; and the right-hand by ¢, . Integrate the resulting equalities to see that |£1|% +|¢2|?
at 4 and 7_ are at most (A + co(eo + T11))||¢]|2. It then follows from (C-28) that

(C-29) (1617 +1621)(2) < collg]la(eHE+D/c0 4 =Allr=l+n)/co)
ateach r € I,.

Fix L > 1 and suppose that both 74 and |¢_| are greater than coA™!2L. If such is the
case, then (C-29) implies that

(C-30) (611 + 18217 () < colltll2e™

at times ¢ € I with distance L or more from 7_ and 7.

Step 4 Use y to construct a smooth, nonnegative function on y that is equal to 1
except at points in [,, with distance L or less from either 7_ or 4. This function
should equal 0 at points on [,, with distance greater than L 4 1 from both 7_ and 7,
and its absolute value should be bounded by 4. Use y,,;. to denote this function. What
follows is a consequence of (C-30):

(C3D)  Napatllz= (A —coe™lI¢ll2 and  [LoGrynd)ll2 < T A xyatll2.
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The function yy,. can be defined for each y € (J,¢ A()7p+ U7, ) of the sort under
consideration. Multiply ¢ by all such functions and the result is a section of K~1],,
with compact support on the part of v with distance greater than ¢ lege™¢0% from
all curves in the set (¢ A()7p+ U, ). This section is denoted by {e,.. What is said
by (C-31) implies that | LyZerllz < T AZs,0ll2-

Step 5 Use v, to denote the part of v with distance ¢ Lepe ™% or more from all
curves in the set (e A()7p+ U, ). It follows from what is said in Step 2 that vg,, has
length at most co(L 4 [Ingg|). The fact that L., is a first-order operator, the fact that its
coefficients are bounded by cq, and the fact that v, ; has length at most co(L + |Ingg|)
has the following consequence: Let 1 denote a section of K~!|,, with compact support
on vgp. Then ||[Lynl2 > cs_L1 lIn]l2 with ¢, being a constant that is greater than 1
and depends only on ¢ and L, but not on v.

This last bound on || Ly |2 runs afoul of the inequality ||LyCerllz < T Le.Lll2
unless 7 is less than cocg,pA.

Step 6 Choose 1 < ¢, Lgge™€0L. Suppose that v is a closed, integral curve of v
whose points have distance 1 or more from all curves in the set | ,e ()7';" Uy, ). It
follows as a consequence that v’s version of L, has no eigenvalues between —cigl
and cl_s1 with ¢1. > 1 depending only on &1 . Such a constant exists because L,, has triv-
ial kernel, and because there is but a finite set of closed orbits of v in MsU (U’ge AMy)

that have distance &1 from | J,c (7,7 U7, ).

The bound in Step 5 and the bound in the preceding paragraph give a v—independent,
strictly positive lower bound to the absolute value of any eigenvalue of L. a

Cd Decreasing r

A unique set of closed integral curves of v are defined by three properties, the first three
following directly. By way of notation, the set in question is denoted here by ©°. The
first property requires that all curves from @9 lie in Mz U (Upe A Hp) and that none
are from Up cA ()7;' U i/\p_ ). The second property requires that the union of the curves
from ®° intersects Mg as G segments that give the same pairing of the index 1 and
index 2 critical points of f as that given by the third bullet of Proposition 2.4 using
the zero locus of «.

The statement of the third property requires introducing notation from Proposition I1.2.7.
This proposition characterizes a segment of an integral curve of v in a version of H,, that
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starts on the ¥ < 0 boundary and ends on the u > 0 boundary. Proposition I1.2.7 charac-
terizes such a segment by an integer, denoted by €,. This €, is such that the total change
in the ¢ angle along the segment in #, can be written as o + 27, with o € [0, 27).

The first two properties imply that the union of the curves from ©° intersect each
p € A version of H,, as a single segment of the sort just described. This understood,
the third property requires that each of the corresponding p € A versions of £, be 0.

Let ©! denote the subset of pairs of the form (y,m) where y € Upe A()?er Uvp)
is a component of the zero locus of 11 and m is the integer that is used to define
(As11,¥o11) near y via (A-44).

Part 1 of what follows uses the sets ®° and ®! and a real number z > ¢q to specify
a pair in Conn(E) x C*°(Y;S). This pair is denoted in what follows by ¢(z). Each
such pair has its corresponding operator £.(,) ,. Part 2 of this subsection states and
then proves two lemmas that supply an a priori upper bound for the absolute value of
the spectral flow between any z = z¢ and z = z; version of £, ,. Part 3 states and
then proves a proposition that compares the absolute value of the spectral flow between
any of the latter versions of £, , and the version that is defined by taking R very
large, z =R and ¢ to be (61, Y1) as defined using the chosen value for R.

Part 1 This part of the subsection defines the pair ¢(z) € Conn(E) x C°(Y;S) for a
given z > co. The definition of ¢(z) on the radius (cf +3¢2 )z~ 1/2 tubular neighborhood
of any given curve from ©! is given by (A-44) with the integer m coming from the
relevant pair in ®1.

The four steps that follow define ¢(z) on the complement in ¥ of the union of the

1/2

radius cl‘,‘ z~1/2 tubular neighborhoods of the curves from ©!. By way of a look ahead,

Section Aa’s construction is used to define ¢(z) on this part of Y.

Step 1 Let ¢, denote the constant that is used to define (411, Yo11). Take z > ¢o
and introduce YA to denote the complement in ¥ of the union of the radius ¢z ~1/2
tubular neighborhoods of the curves from the set (,e A()7p+ U7, ). Define Ty to
be the subset of ¥ — Y, A that consists of the components that do not contain curves
from ®!. The data consisting of ¢,, px = cﬁz_l/ 2 Tya and © = O supply most
but not all of what is needed in Section Aa to define a pair consisting of a Hermitian
connection on Ely, ,urt,, and a section of S over Yip U Tyx .

The definitions in Section Aa requires the specification of coordinates from Part 4 of
Section Aa for each curve in ©°. The latter are defined from a chosen isometric isomor-
phism over each such curve between K~! and the product bundle. Make these choices.

Geometry € Topology, Volume 24 (2020)



3460 Cagatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Section Aa also requires isomorphisms between E and the product bundle over certain
subsets of Yy U Ty« . These isomorphisms are defined in Step 4. Steps 2 and 3 supply
necessary input for the definition in Step 4.

The pair ¢(z) on Yxp U Ty p is the pair that is supplied by Section Aa using the data
v, P = 052_1/2, Tepn, ©® = ©9, the chosen isomorphisms over the curves in ON
between K~! and the product bundle, and the promised isomorphisms between E and
the product bundle over the relevant subsets of Yz U TxA .

Step 2 Section Aa introduces an open cover of Yi.p U Ty consisting of a set Uy and
a collection of sets {Uy },,cgo - The set Uy is the complement of the union of the radius
¢2z71/2 tubular neighborhoods of the curves in ®°. Meanwhile, each y € @° version
of Uy is the radius 4c§z‘1/ 2 tubular neighborhood of y. The construction of ¢(z) re-
quires an isomorphism between E and the product bundle over Uy and an isomorphism
between E and the product bundle over each set from the collection {Uy }, c@o-

Fix y € @0 to define the isomorphism between E and the product bundle over Uy .
To do this, note that the sets ®° and ©% enjoy a 1-1 correspondence with partnered
elements being homotopic in Mg U (Upe A ’Hp). Moreover, the partners intersect Mg
as arcs that are isotopic via an isotopy that moves points a distance at most ¢o8, this
being a consequence of Lemma I1.2.5. Let v* denote y’s partner from ®%.

Choose a smoothly embedded, oriented surface in [0, 1] x ¥ with the properties listed
below:

(C-32)

The surface intersects [0, ¢ HxY as [0,c51) x v¥.
* The surface intersects (¢, L1l xY as (co L) xy.
e The surface intersects [0, 1] x M as an embedded rectangle of width less
than cod that intersects each constant f surface transversely as a single arc.
e The surface intersects the boundary of any radius § coordinate ball in Mg
transversely as a single arc.
» The projection of the surface to Y intersects only the p € A versions of H,
that are crossed by v¥ and y, and its projection in any such #,, is disjoint
from )7p+ and y, .
Such a surface can be constructed by mimicking what is done in Step 3 of the proof of
Lemma I1.5.3 to construct the latter’s surface Z . Use S, to denote the chosen surface.

Fix R > cocSr suitable for defining the path {(A.r, Ver)}zefo,1] and in any event such
that all points in S;, have distance at least (cl‘)t + 3c3 )R_l/ 2 from each curve in the
set (Upe A()7p+ U, ). Let Us C [0,1] x Y denote a tubular neighborhood of Sy
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that intersects {0} x Y as the radius 405R1/ 2 tubular neighborhood of v* and that
it intersects {1} x Y as U,. Require in addition that points in Us have distance
(¢t +3c)R™Y/2 from V,F and 7.

Step 3 Let 7: [0,1] x Y — Y denote the projection to the Y factor. As explained
in the subsequent paragraphs, the section o117 extends over [0, 1] X Y as a section
of 7* E with zero locus (U, ego S¥) U (U(y.myce110. 1] x ¥) and with transversal
zeros along each S, .

The explanation starts with the 1—cycle },aecge [V*] + 2_(,.m)ce1 M[y], Where [-]
denotes the cycle defined by the fundamental class of the indicated loop. This sum is
the weighted sum of the components of the zero locus of o117 with the weight of a
component being the degree of vanishing of 17 on a small radius transverse disk
centered on the given component. The class of this cycle in Hy (Y ; Z) is Poincaré dual
to the first Chern class of E because o171 is a section of E .

The first Chern class of E is also Poincaré dual to the class defined by the 1-cycle
> yeeolV]+ 2 .mycot mly], and, as a consequence, the class of the relative 2—cycle
Zye®o [Sy]+ Z(y’m)e®1 m[[0, 1] x y] on [0, 1] x Y is Poincaré dual to the first Chern
class of 7* E. This being the case, there is a section of 7* E whose zero locus defines
this same relative 2—cycle. Moreover, there exists such a section with transverse zeros
along each §;, and the same local behavior as 11 near the origin of any transverse
disk in {0} x Y with center on a curve from ®!. Use & to denote such a section and
use &g to denote its restriction to {0} x Y. The latter can be written as u - o117 With
u being a smooth map from the complement in ¥ of (Uyaecge v*) U (U(ymycot ¥)
to C—{0}. The section 11 has the desired extension if u extends as a map to C —{0}
from the complement [0, 1] x ¥ of (U, cg0 Sy) U (Uy.meco1 [0 11X 7).

Let Y denote the complement in ¥ of (,ecga v*) U (U(y.mecer ¥) and let X¢
denote the complement in [0,1]x ¥ of (U, cgo Sy) U (Uqymyeco1[0. 11 x ¥). The
map u will extend if the restriction homomorphism from H'(X%;Z) to H (Y%;Z)
is surjective; and this is the case if the inclusion homomorphism from H{ (Y %;Z)/tors
to H1(X%;Z)/tors is injective. To prove that this is so, note that its composition with
the inclusion homomorphism H{(X%;Z) to H1([0, 1] x Y ;Z) is the same as the com-
position of the homomorphism from H,(Y%;Z) to Hi(Y;Z) with the isomorphism
given by the pushforward of sr. This understood, the claimed injectivity follows from
the fact that the kernel of the inclusion homomorphism from Hy(Y%;Z) to H{(Y;Z)
is generated by the linking circles of the transverse disks centered on the various curves
from @1,
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Step 4 Let @ now denote an extension of ae11 to a section of 7*E with zero locus
(Uye@o Sy) U (U(y,m)e(,)l [0,1] x )/) that vanishes transversely along each S, and is
equal to 7 *a,11 near each curve from ®!. The restriction of this section to {1} x Y
is denoted in what follows by &|;. This is a section of E. The required isomorphism
over Uy between E and Uy x C sends &|; to its absolute value,

ah|.
Fix a curve y € ®°. The definition of the required isomorphism between E lu, and
U, x C uses the chosen isomorphism between K ~!|,, and y x C to define the coor-

dinates (¢, z) on U, from Part 4 of Section Aa. Granted these coordinates, the desired
isomorphism over U, between E and the product bundle takes &[; to ‘& |1 ‘Z /lz|.

Part 2 This part of the subsection supplies two lemmas that summarize some salient
features of the pairs defined in Part 1.

Lemma C.6 There exists k > 1 and, given ¢, > k, there exists k., > k with the follow-
ing significance: Suppose that r> k., ¢} and suppose that (A, ¥ = («, B)) is a solution
to the (r, ) version of (1-13) with u a given element in Q with P-norm smaller
than 1. These values of ¢, and r are suitable for defining ¢(z) for z > k., given an
isometric isomorphism between K~ and the product bundle over each curve from @°,
and given also a surface of the sort described by (C-32) for each curve from ©°.

e The resulting ¢(z) does not depend on the chosen set of isometric isomorphisms.

e The resulting c¢(z) depends on the chosen surface and then the extension & as
follows:
(a) Respective versions of ¢(z) that are defined by different sets of surfaces and
extensions differ by the action of a map from Y to S!.
(b) The homology class of this map defines a class in H' (Y ; Z) that is Poincaré
dual to a class from the @peA H>(Hy: Z) summand in (1-4).

This lemma is proved in a moment.

The next lemma supplies an a priori bound for the absolute value of the spectral flow
between versions of £.(,) , that are defined by distinct choices for z.

Lemma C.7 There exists k > 1 and, given ¢, > k, there exists k., > k with the follow-
ing significance: Suppose that >k, ¢} and suppose that (A, ¥ = («, B)) is a solution
to the (r, ) version of (1-13) with u a given element in 2 with P—norm smaller
than 1. Use the data from o to define ¢(z) for z> k., . The absolute value of the spectral
flow between the z = k., and any z = z1 > k., version of £ , is bounded by .
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The proof of this lemma is given directly. The proof assumes that the first bullet of
Lemma C.6 is true.

Proof of Lemma C.7 Except for one added remark, the proof is identical to that
used to prove Proposition C.4. The added remark concerns the use of Lemma A.8
in the proof. In particular, the bounds given for the term ¢( f) in this lemma depend
implicitly on bounds for the functions v and . Meanwhile, the latter are defined by
the coordinates from Part 4 of Section Aa and thus by the chosen isomorphism over the
curve in question between K ! and the product bundle. As Lemma C.6 asserts that
¢(z) does not depend on the chosen isomorphism, choose one with |v| + || < co. O

Proof of Lemma C.6 To prove the first bullet, assume that a choice of surfaces has
been made for each curve from ©°. Fix y € ©° and choose an isometric isomorphism
between K _1|y and y x C to define ¢(z) on U, . The formulas for ¢(z) are given
in (A-8) and (A-9). Granted these formulas, the observations made in the first two
paragraphs of Part 5 in Section Ba apply and prove that ¢(z) does not change when
the isomorphism changes.

To see about the second bullet, suppose that {Sy }, cgo and {S;}ye@o are two sets
of surfaces of the sort described in (C-32). Let ¢p and (p6 denote the corresponding
isomorphism between E and the product bundle over Uy. Write ¢ as uo@o with ug
being a map from Uy to S!. Fix a coordinates from Part 4 of Section Aa for each
curve in ®°. Given y € ®9, let ¢y and (p;, denote the corresponding isomorphisms
between E and the product bundle over U, . Write (p;, as uyQy .

The respective primed and unprimed transition maps from Up N U,, to § ! that identify
the product structure for £ over Uy with that over U, are identical because the same
coordinates for U, are used for the two cases. Use this fact with the formulas in
Section Aa to conclude that ug =u, on Uy UU,, . This being the case, the collection of
maps consisting of ug and {uy },cgo define a smooth map from Y to S1 that relates
the primed and unprimed versions of ¢(z). Let u: ¥ — S! denote this map.

Consider now the class defined by u in H!(Y;Z). This class is determined by the
integral of —ﬁu_l du over a basis of cycles in Y that generate the free Z-module
H,\(Y;Z)/tors. Part 4 of Section 1.2 describes the set {y(?)},cy of 14+b;(M) integral
curves of v in Mg U Ho with the following property: the integral of —%u_l du
over these cycles detects the image in the summand H>(M;Z) & Hy(Ho;Z) of
the Poincaré dual in H>(Y;7Z) of u’s cohomology class. To prove that this image
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is zero, introduce @ and @' to denote the corresponding {Sy},c@o and {S}},cgo
extensions of ae11. Both & and & are nonzero on the product of [0, 1] with the
complement in Mg U Ho of the union of the radius cod tubular neighborhoods of
the component segments of Uye®o(y N Ms). Let T denote this small radius tubular
neighborhood of Uye®0 (y N Ms). Keep in mind that this set 7" is disjoint from the set
U,ex ([0, 1] x y@)). This fact can be used to exhibit a homotopy on a neighborhood
of | J,cy ¥(2) between u and the constant map to 1 € S 1. the desired homotopy is
parametrized by [0, 1] with the 7 € [0, 1] member of the homotopy being the restriction
to {t} x (Ms UHo) —T) of (@/la)@'/la’h~". O

Part 3 This part of the subsection concerns the spectral flow difference between very
large R versions of £ as defined using ¢ = (441, ¥e1) and the corresponding z = R
version of the operator £,(,) ,. The proposition that follows says what is needed about
this difference.

Proposition C.8 There exists « > 100, and, given ¢, > k, there exists k., > k with
the following significance: Suppose that t > k., c}° and suppose that (A, ¥ = (, B))
is a solution to the (r, ;) version of (1-13) with p a given element in 2 with P—norm
smaller than 1. The values of k, ¢, and r are suitable for defining (As11, ¥o11) and

6

any R > k ¢yt version of (A.1, ¥e1). Fix any sufficiently large R and use it to define the

v
pair (Ae1, Ve1). Define the z=R version of ¢(z) using any chosen set of isomorphisms
between K~ and the product bundle over the curves from ®°, and using any chosen
set of surfaces of the sort described in (C-32) for the curves in ®°. The norm of the
difference between the respective values of the spectral flow function fs at (Ae1, Ve1)

and at the z = R version of ¢(z) is bounded by k.

By way of a parenthetical remark, what is said in the second bullet of Lemma C.6 is
consistent with what is said in Proposition C.8. This follows from three facts. Here is
the first: The function fy is invariant under the action on Conn(E) x C*°(Y;S) of the
subgroup of maps from Y to S! whose corresponding class in H!(Y; Z) has zero cup
product with the first Chern class of the line bundle det(S). The second fact concerns
the cup product pairing between this first Chern class and a given class 0 € H(Y;Z):
this is the same as the pairing between the first Chern class of det(S) and the Poincaré
dual of 0 in Hy(Y; Z). Here is the final fact: the first Chern class of det(S) annihilates
the Dyen H?(Hy; Z) summand of Hy(Y;Z).

Proof of Proposition C.8 If R is sufficiently large, then the arguments from Section 2b
of [21] with only notational changes can be imported to prove the proposition. |
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Ce Proof of Proposition 2.6

This section gives the proof of Proposition 2.6. The argument has five steps.

Step 1 It is convenient to choose a finite set of surrogates for the pair (Ag, ¥g). This
set of surrogates is indexed by the set of all possible pairs of the form (®°, ®!) that
can arise in the previous subsection from large r and (r, i) versions of (1-13). This
indexing set is denoted by Zyg x Z1.

By way of a precise definition, the set Zyr has distinct elements of the following sort:
Let ®° denote a given element. This set ®° consists of at most G distinct, closed
integral curves of v. All curves in the set ©° lie in MsU (U, Hy) and none are from
Upe A()’?;' U ¥y ). The union of the curves from OO intersects Mg as G segments that
give the same pairing of the index 1 and index 2 critical points of #. Finally, the union of
the integral curves in v intersects each p € A version of #,, as a single segment that runs
from the v <0 boundary of H, to the u > 0 boundary. The intersection is characterized
by an integer, £, as in Proposition I1.2.7, and the segment in question has ¢, = 0.

As explained in [8; 9], the set Zyr determines a set of generators for the Heegaard
Floer homology on M. In any event, Zyr has finitely many elements.

The set Z! consists of elements of the following sort: Let ®! denote a given element.
This set ©! consists of pairs of the form (y, m) where y € Upe A()?;r U7, ) and where
m is a positive integer. No two pairs share the same integral curve component. The
integer m is bounded by coc2. The set ©! is also finite.

Take each ®° in Zyp and assign once and for all an isometric isomorphism between
K1 and the product bundle over each curve from OY. Let k.« denote the larger of the
versions of i, that appear in Lemmas C.6 and C.7. Fix zg = «2, and assign once and

1/

for all a product structure for E over the radius 4¢3z, ? tubular neighborhood of each

curve from ®°. Fix once and for all a product structure for E over the complement

4. -1/

in Y of the union of the radius ¢,z > tubular neighborhoods of the curves from ©°.

Take each pair 0 = (0%, ©!) € Zyr x 2! and use the data ¢, z = zy with the product
structures chosen in the preceding paragraph to construct the corresponding version of
the pair ¢(z = zp) as instructed in Step 1 of Part 1 of Section Cd. Denote this pair by c;5.
Write this pair as (Ag, ¥5) and use ag to denote the £ summand component of /5.

Since Zur x Z! is a finite set, there exists a purely ¢,—dependent «, > 1 with the
following property: Fix O € Zgr x Z!. Then the connection Ag can be written as
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AE +ag with dg being an i R-valued 1-form with |ag| < k.. In addition, the norm of
the difference between the respective values of fs at (Ag, ¥ g) and cg is bounded by «..

Step 2 Fix ¢, > co and r > KEC;O with «, being a purely ¢,—dependent constant.
Assume that ¢, and k. are suitable for invoking the results in Appendices A and B and
the previous subsections of this Appendix C. Suppose that (A4, ¥ = («, B)) is a solution
to the (r, ) version of (1-13) with p a given element in  with P—norm smaller
than 1. Assume in addition that |Xg(A)| < co. By assumption, the values of ¢, and r

are suitable for defining from (A4, ) the pair (Ao11. ¥o11) and any given R > kc®

ASY

version of (A,.1, ¥e1). Fix any sufficiently large R and use it define both (Ae1, Ve1)
and the z € (k.«, R] versions of ¢(z). Use ¢(4,y)(z) to denote such a version. Write the
pair ¢(4,4)(z) as (A, ¥,) and write the £ summand of ¥, as o,. Use 0 € Zypx 2!
in what follows to denote the element (®°, ®1) that is used to define ¢(4,4)(2). This
element is determined by (A4, V).

Step 3 Let 7 denote the union of the radius codé tubular neighborhoods of the
intersection between Mj and the curves from ©°. This set 7' has distance at least Co 1
from the curves in the set {y(z)},cy. Moreover, it contains the Mg part of the zero
locus of « and the Mg part of the zero locus of «g. With this understood, the section o
on (MsU%Hp)—T canbe written as o = |t |uag with u being a map from (MsUHo)—T
to S'. Write Vg on (MsUHo) —T as (d|a| + ™' du +aq —ag)|a|)ag.

Lemma 2.1 asserts that 1 — || < cor~! and that |V a| <co on (MsU%Hg)—T . Given
that A = Ag +du4 and A5 = Ag + ag, it follows that |[u™'du + d4 —ag| < k. on
(MsUHo)—T with k. > 1 being a purely ¢,—dependent constant. The latter bound
has the following consequence: the absolute value of the integral of —%u_l du over
any curve from the set {y(®)},cy is bounded by ., with k. again denoting a purely
¢y —dependent constant.

Fix z € (k.«,R). The zero locus of o, in My also lies in 7". This understood, write o,
on (MsUHo)—T as o, =u,|a| Lo with u, being a smooth mapto S!. It follows from
what is said by Step 4 of Part 3 in Section Ca and by Step 4 of Part 1 in Section Cd that the
integral of the 1-form —ﬁu;l du, is zero over any curve from the set {y(¥},cy. In
fact, the extension & used in Step 4 of Part 1 in Section 1.3 can be chosen so that u, = 1.

Step4 The zero locus of o, and that of «g are identical, it being the union of the curves
from ©° and ®!. The latter fact implies that o, can be written on the complement of
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this zero locus as o, = |, | |ag| ™ #,a5 with i, being a smooth map to S from the com-
plementin Y of the union of the curves from ®° and ®!. It follows from what was said
in Step 3 that the integral of —5_1 1 d1i, is zero over any curve from the set {y (¥}, cy.

Take z = zp now, this being the value of z that is used to define (Ag, ¥5). It follows
from the first bullet of Lemma C.6 that the z = zy version of %, extends to define
a smooth map from the whole of ¥ to S! and that the z = zy version of the pair
(A2, ¥,) can be written as (A, = Ag— ﬁz_ol dilz0, W0 = U0¥g) on the whole of Y.

Step 5 The integral of —%ﬁz_ol dii,o over the curves from {y®},cy is zero, and
this implies that the Poincaré dual in H,(Y;Z) of the class in H'(Y;Z) defined
by 1,0 lies in the @pe A H2(Hp: Z) summand of H»>(Y;Z). As noted previously,
this summand has zero pairing with the first Chern class of det(S). It follows as a
consequence that the spectral flow function f has the same value on ¢4 4)(zo) as
it has on ¢g. This being so, the absolute value of fs on ¢(4,y)(zo) is bounded by «.,
with «, being a purely ¢,—dependent constant.

Lemma C.7 asserts that the norm of the difference between the values of fs at ¢(4,y)(2o)
and at ¢(4,y)(z=R) is bounded by a purely ¢, —dependent constant, and so the absolute
value of fs at ¢(4,4)(z=R) is also bounded by such a constant. Proposition C.8 asserts
that the norm of the difference between values of fs at ¢(4,4)(z =R) and (A1, Ve1)
is also bounded by a purely ¢, —dependent constant. Proposition C.4 asserts that such
is also the case for the norm of the difference between the values of fs at (Ae1, Ve1)
and (Ao11,Vo11). Proposition C.2 says the same thing for the norm of the difference
between values of fg at (Ao11, Vo11) and at (Ao, Yo ). Proposition B.13 says this
about the norm of the difference between values of fs at (Ao, Vo) and (Ax, ¥«), and
Proposition B.3 says this about the norm of the difference between the values of f at
(A,v) and at (Ax, ¥«).

Adding all of these absolute value bounds verifies that the absolute value of f at (A4, )
is bounded by a purely ¢, —dependent constant. a
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