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Seiberg–Witten Floer homology and
symplectic forms on S1 � M3

ÇAĞATAY KUTLUHAN

CLIFFORD HENRY TAUBES

Let M be a closed, connected, orientable three-manifold. The purpose of this paper
is to study the Seiberg–Witten Floer homology of M given that S1 �M admits a
symplectic form.

57R17, 57R57

1 Introduction

Suppose M is a closed, connected, orientable three-manifold such that the product
four-manifold S1 �M admits a symplectic form. Let ¨ denote a symplectic form on
S1 �M. Then, one can write ¨ as

¨D dt^ �C�

where dt is a nowhere vanishing 1–form on S1 , � is a section over S1 �M of T�M
and � is a section over S1�M of ^2 T�M. Let d denote the exterior derivative along
M factor of S1 �M. Since ¨ is a closed 2–form, one has @

@t
� D d� and d� D 0.

Thus, � is a closed form on M at any given t 2 S1 . Its cohomology class in H2.MIR/
is denoted by Œ��. As explained momentarily, the class Œ�� is nonzero. To see why
this is the case, first use the Künneth formula to write H2.S1 �MIR/ as the direct sum
Œdt�[H1.MIR/˚H2.MIR/ where Œdt� denotes the cohomology class of the 1–form dt.
Let Œ¨� denote the cohomology class of the symplectic form ¨. This class appears
in the Künneth decomposition as Œdt�[ Œx��C Œ�� where Œx�� is the pushforward from
S1 �M of the 2–form dt^ � . This understood, neither Œx�� nor Œ�� are zero by virtue
of the fact that Œ¨�[ Œ¨� is nonzero.

Our convention is to orient S1 by dt, and S1 �M by ¨^¨. Doing so finds that �^�
is nowhere zero and so orients M at any given t 2 S1 .

Now, fix a t –independent Riemannian metric, g, on M, and let � denote the corre-
sponding Hodge star operator. At each t 2 S1 , the 1–form �� is a nowhere vanishing
1–form on M and so defines a homotopy class of oriented 2–plane fields by its kernel.
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This 2–plane field is denoted in what follows by K�1 . This bundle is oriented by �
and so has a corresponding Euler class which we write as �c1.K/ 2 H2.MIZ/.

Fix a spinc structure on M and let S denote the associated spinor bundle, this a Hermit-
ian C2 –bundle over M. At any t 2 S1 , the eigenbundles for Clifford multiplication by
�� on S split S as a direct sum, SDE˚EK�1 , where E is a complex line bundle over
M. Here, our convention is to write the Ci j�j eigenbundle on the left. The canonical
spinc structure is that with EDC , the trivial complex line bundle. We use det.S/ to
denote the complex line bundle ^2SD E2K�1 over M. Note that the assignment of
c1.E/ 2 H2.MIZ/ to a given spinc structure identifies the set of equivalence classes
of spinc structures over M with H2.MIZ/. This classification of the spinc structures
over M is independent of the choice of t 2 S1 . For any given class e 2 H2.MIZ/, we
use se to denote the corresponding spinc structure. Thus the spinor bundle S for se

splits as E˚EK�1 with c1.E/D e .

P B Kronheimer and T S Mrowka in [4] associate three versions of the Seiberg–Witten
Floer homology to any given spinc structure. With e 2 H2.MIZ/ given, the three
versions of the Seiberg–Witten Floer homology for the spinc structure se are denoted
by Kronheimer and Mrowka and in what follows by HM .M; se/, bHM .M; se/ and
zHM .M; se/. Each of these is a Z=pZ graded module over Z with p the greatest

divisor in H2.MIZ/ of the cohomology class 2e�c1.K/, which is the first Chern class
of the corresponding version of S . Each of these modules is a C1 invariant of M.

The purpose of this paper is to prove the following theorem.

Main Theorem Let M be a closed, connected, orientable three-manifold. Suppose
that S1 �M has the symplectic form ¨D dt^ �C�. Fix a class e 2 H2.MIZ/ with
2e � c1.K/ D œŒ�� in H2.MIR/ for some œ < 0. Let se denote the spinc structure
corresponding to e via the correspondence defined above. Then HM .M; se/ vanishes,
bHM .M; se/Š zHM .M; se/, and the following hold:

� If e D 0, then zHM .M; se/Š Z.

� Suppose e ¤ 0. Then zHM .M; se/ vanishes if the pullback of e by the obvious
projection map from S1 �M onto M has nonpositive pairing with the Poincaré
dual of Œ¨�.

We say that the monotonicity condition is satisfied by a given spinc structure se when
2e� c1.K/D œŒ�� holds in H2.MIR/ for some œ < 0.

As it turns out, our Main Theorem also describes Seiberg–Witten Floer homology for
spinc structures with 2e� c1.K/D œŒ�� in H2.MIR/ for some œ > 0. Here is why:
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Let e 2 H2.MIZ/ be given. Then Proposition 25.5.5 in Kronheimer and Mrowka [4]
describes an isomorphism between Seiberg–Witten Floer homology groups for se and
those for sc1.K/�e . In particular, if 2e�c1.K/DœŒ�� with œ>0, then the monotonicity
condition is satisfied for the spinc structure sc1.K/�e and our Main Theorem applies.

The following remarks are meant to give some context to this theorem. First, the Euler
characteristic of the Seiberg–Witten Floer homology for any given spinc structure
is called the Seiberg–Witten invariant of the spinc structure. Our Main Theorem is
consistent with what the second author [10] claims about Seiberg–Witten invariants
of M.

Second, suppose that M fibers over the circle. Let f W M! S1 denote a locally trivial
fibration. Then, M admits a metric that makes f harmonic. In this case, the pullback,
df , by f of the Euclidean 1–form on S1 D R=2�Z is a harmonic 1–form. Hence,
the 2–form ¨ D dt^ df C�df is symplectic on S1 �M. When the fiber of f has
genus 2 or greater, the monotonicity condition for any e 2 H2.MIZ/ with e D ›Œ�df �

for some › � 0 is satisfied and the conclusions of our Main Theorem are known to be
true.

The third remark concerns the following question: If S1 �M admits a symplectic form,
does M fiber over S1 ? A very recent preprint by S Friedl and S Vidussi [2] asserts an
affirmative answer to this question. Our Main Theorem with Theorem 1 of Y Ni in [7]
(see also Kronheimer and Mrowka [3]) gives a different proof that M fibers over S1 in
the case when M has first Betti number 1 and c1.K/ is not torsion.

Theorem 1.1 Let M be a closed, connected, irreducible, orientable, three-manifold
with first Betti number equal to 1. Let ¨ denote a symplectic form on S1 �M such that
c1.K/ is not torsion. Then M fibers over S1 .

Note that if c1.K/ is not torsion in H2.MIZ/, then c1.K/D œŒ�� in H2.MIR/ with
œ > 0. To see why, let › denote the cup product pairing between c1.K/ and Œ¨�. This
has the same sign as œ. If › < 0, then it follows from Liu [5] or Ohta and Ono [8] that
MD S1 �S2 . On the other hand, if c1.K/ is torsion, then it follows from our Main
Theorem, Proposition 25.5.5 and Theorem 41.5.2 in [4] that M has vanishing Thurston
(semi)-norm. It follows from a theorem of J D McCarthy [6] with G Perelman’s proof
of the Geometrization Conjecture that S1 �M has a symplectic form in the case when
M is reducible if and only if MD S1 �S2 .

Proof of Theorem 1.1 Let S denote the generator of H2.MIZ/ with the property
that hc1.K/;Si > 0. Note that such a class exists by virtue of the fact noted above
that c1.K/D œŒ�� with œ > 0. Let † denote a closed, connected, oriented and genus
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minimizing representative for the class S. Use g to denote the genus of †. It is
a consequence of Corollary 40.1.2 in [4] (the adjunction inequality) that 2g � 2 �

hc1.K/;Si. This is to say that c1.K/ lies in the unit ball as defined by the dual of the
Thurston (semi)-norm on H2.MIZ/=Tor. In fact, c1.K/ is an extremal point in this
ball, which is to say that hc1.K/;Si D 2g� 2. Here is why: our Main Theorem in the
present context says that M

e2H2.MIZ/ W he;Si<0

zHM .M; se/Š f0g;

M
e2H2.MIZ/ W he;SiD0

zHM .M; se/Š Z:

Meanwhile, Proposition 25.5.5 in [4] asserts isomorphisms between the Seiberg–Witten
Floer homology groups for the spinc structure se and those for the spinc structure
sc1.K/�e . Thus, our Main Theorem also finds thatM

e2H2.MIZ/ W he;Si>hc1.K/;Si

zHM .M; se/Š f0g;

M
e2H2.MIZ/ W he;SiDhc1.K/;Si

zHM .M; se/Š Z:
(1-1)

These last results with Theorem 41.5.2 in [4] imply that c1.K/ is an extremal point
of the unit ball as defined by the dual of the Thurston (semi)-norm, that is to say
hc1.K/;Si D 2g� 2. Given (1-1), the assertion made by Theorem 1.1 follows directly
from Theorem 1 in [7].

Acknowledgments The first author would like to thank his thesis advisor Prof. Daniel
Burns for his support throughout the course of this project. He would also like to thank
University of Michigan Mathematics Department for their support during the term of
Winter 2007. The first author dedicates this result to his parents. The second author is
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2 Background on Seiberg–Witten theory

In this section, we present a brief introduction to the theory of Seiberg–Witten in-
variants of three-manifolds and the monopole Floer homology as defined in the book
by Kronheimer and Mrowka [4]. In what follows, M is a given closed, oriented
three-manifold.

Geometry & Topology, Volume 13 (2009)



Seiberg–Witten Floer homology and symplectic forms on S1 �M3 497

2.1 Algebraic preliminaries

There is a unique connected double cover of the group SO.3/, namely the group
Spin.3/ D SU.2/. The group Spinc.3/ is defined as the quotient of U.1/� Spin.3/
by the diagonal action of Z2 , thus the group U.2/. Fix a Riemannian metric on
M. A spinc structure on M can be viewed as a principal U.2/–bundle zP such that
zP�� SO.3/Š PSO.3/ , the principal SO.3/–bundle associated to the tangent bundle of
M. Here, � denotes the natural projection of U.2/ onto U.2/=U.1/D SO.3/.

A spinc structure on M has an associated Hermitian C2 –bundle, this defined by the
defining representation of U.2/. This bundle is denoted by S and it is called the spinor
bundle. Its sections are called spinors. There exists the Clifford algebra homomorphism
clW ^T�CM! EndC.S/ that gives a representation of the bundle of Clifford algebras.

There is also a map detW U.2/! U.1/ defined by the determinant. This representation
of U.2/ yields a principal U.1/–bundle zP�detU.1/. The complex line bundle associated
to zP�det U.1/ is called the determinant bundle of the spinc structure, which we denote
by det.S/, because this line bundle is the second exterior power of the bundle S .

The existence of spinc structures on M follows immediately from the fact that M is
parallelizable. The set of spinc structures on M form a principle bundle over a point
for the additive group H2.MIZ/. To elaborate, a given cohomology class acts on a
given spinc structure in such a way that the spinor bundle for the new spinc structure is
obtained from that of the original one by tensoring with a complex line bundle whose
first Chern class is the given class in H2.MIZ/.

2.2 Seiberg–Witten Floer homology

Let S denote the set of spinc structures on M. A unitary connection A on det.S/
together with the Levi-Civita connection on the orthonormal frame bundle of M de-
termines a spinc connection A on the spinor bundle S . Then the Seiberg–Witten
monopole equations are

�FA D §
|£§� i%

DA§D 0:
(2-1)

Here, the notation is as follows: First, FA 2�
2.M; iR/ denotes the curvature of the

connection A. Second, § is a section of the spinor bundle S . Third, §|£§ denotes the
section of iT�M which is the metric dual of the homomorphism §|cl.� /§W T�M! iR.
Fourth, DA is the Dirac operator associated to A, which is defined by

�.S/
rA
�! �.T�M˝S/

cl
�! �.S/:
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Finally, % is a fixed smooth co-closed 1-from on M.

The equations (2-1) are the variational equations of a functional defined on the configu-
ration space C D Conn.det.S//�C1.MIS/ as

csd.A; §/D�
1

2

Z
M
.A�AS/^ .FACFAS/� i

Z
M
.A�AS/^�%C

Z
M
§|DA§:

Here, AS is any given connection fixed in advance on det.S/. This is the so-called
Chern–Simons–Dirac functional.

The group of gauge transformations of a spinc structure, namely the gauge group
G D C1.M;S1/, acts on the configuration space as

G � C �! C
.u; .A; §// 7�! .A� 2u�1du;u§/:

The equations (2-1) are invariant under the action of the gauge group. Therefore, one
can define the space of equivalence classes of solutions of these equations under the
action of the gauge group. This is called the moduli space, which we denote by M.
The solutions of the equations (2-1) which are of the form .A; 0/ are called reducible
solutions because the stabilizer under the action of the gauge group is not trivial.
Solutions with nonzero spinor component are called irreducible. We let B D C=G . It is
possible to prove that M is a sequentially compact subset of B . The gauge group G
acts freely on the space of irreducible solutions of the equations (2-1). If % is suitably
generic, then the quotient of this space by G is a finite set of points in B .

To elaborate, let R denote the trivial line bundle over M. Each .A; §/ 2 C has an
associated linear operator L.A;§/ that maps C1.MI iT�M˚S˚ iR/ onto itself. It is
defined as

L.A;§/.b; ¥;g/D

0@ �db� dg� .§|£¥C¥|£§/

DA¥C
1
2
cl.b/§Cg§

�d�b� 1
2
.¥|§�§|¥/

1A :
This operator extends to L2.MI iT�M˚S˚ iR/ as an unbounded, self-adjoint Fred-
holm operator with dense domain L2

1.MI iT�M˚S˚ iR/. It has a discrete spectrum
that is unbounded from above and below. The spectrum has no accumulation points,
and each eigenvalue has finite multiplicity.

An irreducible solution of the equations (2-1) is called nondegenerate if the kernel of
L is trivial. A generic choice for % renders all such solutions nondegenerate. In this
case, irreducible solutions of the equations (2-1) define isolated points in B .

Seiberg–Witten Floer homology is an infinite dimensional version of the Morse homol-
ogy theory where B plays the role of the ambient manifold and the Chern–Simons–Dirac
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functional plays the role of the “Morse” function. As the critical points of the Chern–
Simons–Dirac functional are solutions of the equations (2-1), the latter are used, as in
Morse theory, to label generators of the chain complex. The analog of a nondegenerate
critical point is a solution of the equations (2-1) whose version of L has trivial kernel.
Here, the point is that L is, formally, the Hessian of the Chern–Simons–Dirac functional.

As the Hessian in finite dimensional Morse theory can be used to define the grading
of the Morse complex, it is also the case here that the operator L is used to define a
grading for each generator of the Seiberg–Witten Floer homology chain complex. In
particular, L can be used to associate an integer degree to each nondegenerate solution
of the equations (2-1), in fact, to any given pair in C whose version of L has trivial
kernel. It is enough to say here that this degree involves the notion of spectral flow for
families of self adjoint operators such as L. In general, only the mod.p/ reduction of
this degree is gauge invariant, where p is the greatest integer divisor of c1.det.S//.

The analog in this context of a gradient flow line in finite dimensional Morse theory is
a smooth map s 7! .A.s/; §.s// from R into C that obeys the rule

@

@s
AD��FAC§

|£§� i%

@

@s
§D�DA§:

This can also be written as @
@s
.A; §/ D �rL2csdj.A;§/ where rL2 denotes the L2 –

gradient of csd. An instanton is a solution of these equations on R�M that converges
to a solution of the equations (2-1) on each end as jsj tends to infinity.

The differential on the Seiberg–Witten Floer homology chain complex is defined using
a suitably perturbed version of these instanton equations. As in finite dimensional
Morse theory, a perturbation is in general necessary in order to have a well defined
count of solutions. The perturbed equations can be viewed as defining the analog
of what in finite dimensions would be the equations that define the flow lines of a
pseudo-gradient vector field for the given function. Kronheimer and Mrowka describe
in Chapter III of their book [4] a suitable Banach space, P , of such perturbations.
Kronheimer and Mrowka prove that there is a residual set of such perturbations with
the following properties: Each can be viewed as perturbations of csd, in which case
the resulting version of (2-1) can serve to define generators of the Seiberg–Witten Floer
homology chain complex. Meanwhile, the resulting instanton equations can serve to
define the differential on this chain complex.

Note for future reference that P contains a subspace, �, of 1–forms % for use in (2-1).
The induced norm on � dominates all of the Ck –norms on C1.MIT�M/. In fact, if
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M is assumed to have a real analytic structure, then each % 2� is itself real analytic.
An important point to note later on is that the function csd decreases along any solution
of its gradient flow equations. This is also the case for the just described perturbed
analog of csd and the solutions of the latter’s gradient flow equations.

3 Outline of the proof

Our purpose in this section is to outline our proof of the Main Theorem and in doing so,
state the principle analytic results we will need. The proofs for most of the assertions
made in this section are deferred to the subsequent sections of this article.

Fix t 2 S1 , and let Mt denote the slice Mt D ftg�M. A version of the Seiberg–Witten
equations on Mt can be defined as follows: Let «S be the harmonic 2–form on M
representing the class 2�c1.det.S//. Fix a connection, AS , on det.S/ with curvature
2–form �i«S . Then, any given connection on det.S/ is of the form AS C 2a for
a 2 C1.MI iT�M/.

Now, fix r � 1 and t 2 S1 . We consider the equations

�daD r.§|£§� i ��/C
i

2
�«S

DA§D 0;
(3-1)

where � is the 2–form defined by the symplectic form. Suitably rescaling § , we see
that these are a version of the equations (2-1). These equations are the variational
equations of a functional defined as

(3-2) a.ASC 2a; §/D�
1

2

Z
Mt

a^ .da� i«S/� i r

Z
Mt

a^�C r

Z
Mt

§|DA§;

where a 2 C1.MI iT�M/ and § 2 C1.MIS/.

For future purposes, we introduce a new functional on C . Fix r � 1, t 2 S1 and for
.A; §/ 2 C let

E.A; §/D i

Z
Mt

�^ da:

Our approach is to consider S1 �M as a 1–parameter family of three-dimensional
manifolds, each a copy of M and parametrized by t 2S1 . We use the gauge equivalence
classes of solutions of the equations (3-1) on Mt (when nondegenerate) to define the
generators of the Seiberg–Witten Floer homology. Here it is important to remark that
the solutions of the equations (3-1) can serve this purpose for any r � 1 because we
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assume that c1.det.S//D œŒ�� with œ< 0. For the same reason, (3-1) has no reducible
solutions.

Here, we remark that what is written in (3-1) has period class �Œ�� in the sense of
[4]. The assumption that Œ�� is a negative multiple of c1.det.S// is what is called the
monotone case in [4]. As is explained in Chapter VIII of [4], the results from the case
of exact perturbations carry onto the monotone case almost without any change, and
there are canonical isomorphisms between the Floer homology groups defined here
and the relevant Seiberg–Witten Floer homology groups.

There is one more important point to make here: The only t –dependence in (3-1) is
due to the appearance of the 2–form � through the latter’s t –dependence on t 2 S1 . to
define generators of the corresponding Seiberg–Witten Floer homology. Note that the
t –dependence is due entirely to the appearance of the 2–form � and its dependence
on t .

We suppose our Main Theorem is false, and hence that there are at least two generators
of the Seiberg–Witten Floer homology for each t 2 S1 . Note in this regard that there is
at least one generator for the EDC case because the fact that S1 �M is symplectic
implies, via the main theorem in [10], that the Seiberg–Witten invariant for the canonical
spinc structure on S1 �M is equal to 1. If there are at least two generators, then there
are at least two solutions. Our plan is to use the large r behavior of at least one of these
solutions to construct nonsense from the assumed existence of two or more generators.

What follows describes what we would like to do. Given the existence of two or more
nonzero Seiberg–Witten Floer homology classes, we would like to use a variant of
the strategy from [12] and [9] to find, for large enough r � 1 and for each t 2 S1 , a
set ‚t �Mt of the following sort: ‚t is a finite set of pairs of the form .”;m/ with
” � Mt a closed integral curve of the vector field that generates the kernel of �jt ,
and m is a positive integer. These are constrained so that no two pair have the same
integral curve. In addition, with each ” oriented by ��jt , the formal sum †.”;m/2‚t

m”
represents the Poincaré dual to c1.E/ in H1.Mt IZ/. We would also like the graph
t !‚t to sweep out a smooth, oriented surface S� S1 �M whose fundamental class
gives the Poincaré dual to c1.E/ in H2.S1 �MIZ/. Note in this regard that such a
surface is oriented by the vector field @

@t
and by the 1–form � that appears when we

write ¨D dt^ �C�. In particular, ¨jTS is positive and so the integral of ¨ over S is
positive. On the other hand, the integral of ¨ over S must be nonpositive if the cup
product of Œ¨� with c1.E/ is nonpositive. This is the fundamental contradiction.

As it turns out, we cannot guaranteed that ‚t exists for all t 2 S1 , only for most t ,
where “most” has a precise measure-theoretic definition. Even so, we have control over
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enough of S1 to obtain a contradiction which is in the spirit of the one described from
any violation to the assertion of our Main Theorem.

To elaborate, consider first the existence of ‚t . What follows is the key to this existence
question.

Proposition 3.1 Fix a bound on the C3 –norm of �, and fix constants K > 1 and
• > 0. Then, there exists › > 1 with the following significance: Suppose that r � ›,
t 2 S1 and .A; §/ is a solution of the t and r version of the equations (3-1) such that
E.A; §/ � K and such that supM.j�j � j§j

2/ > •. Then there exists a set ‚t of the
sort described above.

The next proposition says something about when we can guarantee Proposition 3.1’s
condition on j§j:

Proposition 3.2 Fix a bound on the C3 –norm of �. Then, there exists › > 1 such
that if r � ›, then the following are true:

� Suppose that SDC˚K�1 . Then, for any t 2 S1 , there exists a unique gauge
equivalence class of solutions .AC; §C/ of the t and r version of the equations
(3-1) with j§Cj � j�j

1=2 � ›�1 . Moreover, these solutions are nondegenerate
with j§Cj � j�j

1=2� ›r�1=2 and E.AC; §C/� ›.

� Suppose that S D E˚ EK�1 with c1.E/ ¤ 0. If .A; §/ is a solution of any
given t 2 S1 version of the equations (3-1), then there exists points in M where
j§j � ›r�1=2 .

Proposition 3.1 raises the following, perhaps obvious, question:

How do we find, other than by Proposition 3.2, solutions with E bounded at large r ?

To say something about this absolutely crucial question, remark that Proposition 3.1 here
has an almost verbatim analog that played a central role in [12] and [9]. These papers
use the analog of (3-1) with �� replaced by a contact 1–form to prove the existence
of Reeb vector fields. The contact 1–form version of E replaces the form � with the
contact 1–form also. The existence of an r –independent bound on the contact 1–form
version of E played a key role in the arguments given in [12] and [9]. The existence of
the desired bound on the contact 1–form version of E exploits the r –dependence of
the functional a.

We obtain the desired r –independent bound on our version of E for most t 2 S1 by
exploiting the t –dependence of a. To say more about this, it proves useful now to
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introduce a spectral flow function, F , for certain configurations in C . There are three
parts to its definition. Here is the first part: Fix a section §E of S so that the .AS; §E/

version of the operator L as defined in Section 2 is nondegenerate. Use LE to denote
the latter operator. The second part introduces the version of L that is relevant to (3-1);
it is obtained from the original by taking into account the rescaling of § . In particular,
it is defined by

(3-3) L.A;§/.b; ¥;g/D

0@ �db� dg� 2�1=2r1=2.§|£¥C¥|£§/

DA¥C 21=2r1=2.cl.b/§Cg§/

�d�b� 2�1=2r1=2.¥|§�§|¥/

1A
for each .b; ¥;g/2C1.MI iT�M˚S˚iR/. Thus, LE is the r D 1 version of (3-3) as
defined using .AS; §E/. To start the third part of the definition, suppose that .A; §/2 C
is nondegenerate in the sense that the operator L.A;§/ as depicted in (3-3) has trivial
kernel. As explained in [12] and [9], there is a well defined spectral flow from the
operator LE to L.A;§/ (see, also Taubes [11]). This integer is the value of F at .A; §/.
Note that F.� / is defined on the complement of a codimension-1 subvariety in C . As
such, it is piecewise constant. In general, only the mod.p/ reduction of F is gauge
invariant where p is the greatest divisor of the class c1.det.S//.

The function a is not invariant under the action of G on C ; and, as just noted, neither
is F when c1.det.S// is nontorsion. However, our assumption that c1.det.S//D œŒ��
in H2.MIR/ implies the following: There exists a constant C independent of r � 1

and t 2 S1 such that
aF D aC rCF

is invariant under the action of G . To say more about the role of aF requires a digression
for two preliminary propositions. They are used to associate a value of aF to each
generator of the Seiberg–Witten Floer homology.

Proposition 3.3 Fix r � 1 and •> 0. Then there exist a t –independent 1–form ¢ 2�

with P norm bounded by • such that the following is true: Replace � by �C d¢ .

� The resulting 2–form ¨D dt^ �C� is symplectic.

� There exists finite sets Tr and Tr
0 in S1 such that if t 2 S1 n Tr , then aF

distinguishes distinct gauge equivalence classes of solutions of the t and r

version of the equations (3-1). On the other hand, if t 2 S1 nTr
0 all solutions of

the t and r version of the equations (3-1) are nondegenerate.

� There exists a countable set Sr 2 S1 that contains Tr [Tr
0 with accumulation

points on the latter such that if t 2 S1 nSr , then the gauge equivalence classes
of solutions of the equations (3-1) can be used to label the generators of the
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Seiberg–Witten Floer complex. In this regard, the degree of any generator can be
taken to be mod.p/ reduction of the negative of the spectral flow function F .

Proof The claim in the first bullet of the proposition is obvious. As for the second
and third bullets, the proof of these two follow directly from the arguments used in
Sections 2a and 2b of [9]. The latter prove the analog of the second and third bullets of
Proposition 3.3 where r varies rather than t . With only notational changes, they also
prove the second and third bullets here.

Suppose now that t 2 S1 nSr and that ™ is a nonzero Seiberg–Witten Floer homology
class. Let n D

P
zici denote a cycle that represents ™ as defined using the t and r

version of the equations (3-1). Here zi 2 Z and ci 2 C=G is a gauge equivalence class
of solutions of the t and r version of the equations (3-1). Let aF ŒnI t � denote the
maximum value of aF on the set of generators fcig with zi ¤ 0. Set aF ™ to denote
the minimal value in the resulting set faF ŒnI t �g.

Proposition 3.4 The various t 2 S1 nSr versions of the Seiberg–Witten Floer homol-
ogy groups can be identified in a degree preserving manner so that if ™ is any given
nonzero class, then the function aF ™.� / on S1 nSr extends to the whole of S1 as a
continuous, Lipschitz function that is smooth on the complement of Tr . Moreover, if
I� S1 nTr is a component, then there exists I0 � S1 containing the closure of I and a
smooth map c™;IW I0! C that solves the corresponding version of the equations (3-1) at
each t 2 I0 and is such that aF ™.t/D aF .c™;I.t// at each t 2 I0 .

Proof The proof is, but for notational changes and two additional remarks, identical
to that of Proposition 2.5 in [9]. To set the stage for the first remark, fix a base point
0 2 S1 nSr . The identifications of the Seiberg–Witten Floer homology groups given
by adapting what is done in [9] may result in the following situation: As t increases
from 0, these identifications results at t D 2� in an automorphism, U, on the t D 0

version of the Seiberg–Witten Floer homology. This automorphism need not obey
aFU™ D aF ™ . If not, then it follows using Proposition 3.3 that the identifications made
at t < 2� to define U can be changed if necessary as t crosses points in Tr so that
the new version of U does obey aFU™ D aF ™ . The second remark concerns the fact
that any given c™;I is unique up to gauge equivalence. This follows from Proposition
3.3’s assertion that the function aF distinguishes the Seiberg–Witten solutions when
t 2 S1 nTr .

When EDC , we need to augment what is said in Proposition 3.4 with the following:
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Proposition 3.5 Suppose that EDC and that there are at least two nonzero Seiberg–
Witten Floer homology classes. Then, the identifications made by Proposition 3.4
between the various t 2 S1 versions of the Seiberg–Witten Floer homology groups can
be assumed to have the following property. There is a nonzero class ™ such that none of
Proposition 3.4’s maps c™;I send the corresponding interval I0 to a solution in the gauge
equivalence class of Proposition 3.2’s solution .AC; §C/.

Proof At any given t 2 S1 , there is a class ™ with c™;I not gauge equivalent to
.AC; §C/. It then follows from Proposition 3.3 that such is the case for any t 2 S1nTr .
This understood, Proposition 3.4’s isomorphisms can be changed as t crosses a point in
Tr while increasing from t D 0 to insure that no version of c™;I gives the same gauge
equivalence class as .AC; §C/.

Let I denote a component of S1 nTr . The assignment of t 2 I0 to E.c™;I.� // associates
to ™ a smooth function on I0 . View this function on I as the restriction from S1 nTr

of a function, E™ . Note that the latter need not extend to S1 as a continuous function.

With the function aF ™ understood, we come to the heart of the matter, which is the
formula for the derivative for this function on any given interval I� S1 nTr : Let c™;I
be as described in Proposition 3.4. Then

(3-4)
d
dt

aF .c™;I.t//D�i r

Z
Mt

�^ daD�rE™:

To explain, keep in mind that cI is a critical point of aF and so the chain rule for the
derivative of aF .c™;I.� // yields

(3-5)
d
dt

aF .c™;I.t//D�i r

Z
Mt

a^
@

@t
�I

and this is the same as (3-4) because ¨ is a closed form. Indeed, write ¨D dt^ �C�
to see that the equation d¨D 0 requires @

@t
�D d� . This understood, an integration by

parts equates (3-5) to (3-4).

We get bounds on E™ after integrating (3-4) around S1 . Given that aF ™ is continuous,
integration of the left-hand side over S1 gives zero. Thus, we conclude that

(3-6)
Z

S1

E™ D 0:

This formula tells us that E™ is bounded at some points in S1 . To say more, we use the
fact that ¨^¨ > 0 to prove:
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Lemma 3.6 There exists a constant › > 1 with the following significance: Suppose
that r �›, t 2S1 , and .A; §/ is a solution of the corresponding version of the equations
(3-1). Then, E.A; §/� �›.

Granted this lower bound on E , the next result follows as a corollary:

Lemma 3.7 There exists a constant › > 1 with the following significance: Fix r � ›

so as to define the set Sr �S1 . Let ™ denote a nonzero Seiberg–Witten Floer homology
class. Let n denote a positive integer.Then, the measure of the set in S1 nSr where
E™ � 2n is less than ›2�n .

Proof Given the lower bound from Lemma 3.6, this follows easily from (3-6).

Given what has been said so far, we have the desired sets ‚t �Mt for points t in
the complement of a closed set with nonempty interior in S1 . On the face of it, this
is far from what we need, which is a surface S � S1 �M that is swept out by such
points. As we show below, we can make due with what we have. In particular, we first
change our point of view and interpret integration of ¨ over a surface in S1 �M as
integration over S1 �M of the product of ¨ and a closed 2–form ˆ that represents
the Poincaré dual of the surface. We then construct a 2–form ˆ on S1 �M that is
localized near the surface swept out by ™t on most of S1 �M. This partial localization
is enough to prove that

R
S1�M ¨^ˆ> 0 when this integral should be zero or negative.

The existence of such a form gives the nonsense that proves the Main Theorem.

The construction of ˆ requires first some elaboration on what is said in Proposition
3.1. To set the stage, suppose that .A; §/ is a solution of some t 2 S1 version of the
equations (3-1). We will write the section § of SD E˚EK�1 with respect to the
splitting defined by ��jt as §D .’; “/ where ’ is a section of E and “ is a section of
EK�1 .

Proposition 3.8 Fix a bound on the C3 –norm of �, and fix constants K > 1 and
• > 0. There exists › > 1 with the following significance: Suppose that r � ›, t 2 S1 ,
and .AD A0C 2A; §D .’; “// is a solution of the equations (3-1) with E.A; §/�K
and with supM.j�j � j§j

2/ > •. Then,

� There exists a finite set ‚t whose typical element is a pair .”;m/ with ” �
Mt a closed integral curve tangent to the kernel of �, and with m a positive
integer. Distinct pairs in ‚t have distinct curves, and †.”;m/2‚t

m” generates
the Poincaré dual to c1.E/ in H1.Mt IZ/.

� Each point where j’j2 < j�j � • has distance ›r�1=2 or less from a curve in ‚t ,
and also from some point in ’�1.0/.
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� Fix .”;m/ 2‚t . Let D� C denote the closed unit disk centered at the origin
and ®W D!Mt denote a smooth embedding such that all the points in ®.@D/
have distance ›r�1=2 or more from any loop in ‚t . Assume in addition that
®.D/ has intersection 1 with ” . Fix a trivialization of the bundle ®�E over D so
as to view ®�’ as a smooth map from D into C . The resulting map is nonzero
on @D and has degree m as a map from @D into C n f0g.

We now fix r very large so as to define the set Tr D ftigiD1;::;Nr
. We set tNrC1 D t1

and take the index i to increase in accordance with the orientation of S1 . For each i,
we use Proposition 3.4 and Proposition 3.5 to provide c™;Œti;tiC1� which we write as
.Ai;iC1; §i;iC1/. We view the connection Ai;iC1 as defining a connection on the line
bundle det.S/ over I0 �M where I0 2 S1 is some open neighborhood of Œti; tiC1�. We
also view the t 2 Œti; tiC1� versions of Proposition 3.2’s connection AC as a connection
on the bundle K�1 over Œti; tiC1��M. Note in this regard that K�1 is the determinant
line bundle for the canonical spinc structure with spinor bundle S0 DC˚K�1 .

With r large and • > 0 very small, we define ˆ on the product ŒtiC •; tiC1� •��M to
be i

2�
.FAi;iC1 �FAC /. This done, we have yet the task of describing ˆ on the part of

S1 �M where t 2 Œti� •; tiC •�. We do this as follows: If • > 0 is sufficiently small,
then Proposition 3.8 asserts that c™;Œti;tiC1� is defined on the interval Œti�•; tiC1C•�, and
likewise c™;Œti�1;ti� is defined on the interval Œti�1�•; tiC•�. This understood, we find a
suitable gauge transformations so as to write Ai�1;iDASC2ai�1;i and Ai;iC1DASC

2ai;iC1 on Œti�•; tiC•��M. In particular, these gauge transformations are chosen so that
the spectral flow between the respective .Ai�1;i; §i�1;i/ and .Ai;iC1; §i;iC1/ versions of
(3-3) is zero. We then interpolate between ai�1;i and ai;iC1 on Œti�•; tiC•��M using a
smooth bump function, v so as to define a connection AiDASC2.1�v/ai�1;iC2vai;iC1

on det.S/ over Œti � •; tiC •��M. With this connection in hand, we define ˆ to be
i

2�
.FAi � FAC / on Œti � •; tiC •��M. The continuity of the function t ! aF ™.t/ is

then used to prove the following:

Proposition 3.9 Fix a bound on the C3 –norm of �. There exists › > 1 such that if
r � › and if • > 0 is sufficiently small, then:

� ˆ is twice the first Chern class of a bundle of the form E˝L where c1.L/ has
zero cup product with Œ¨�.

�
R

S1�M ¨^ˆ> 0.

What is claimed by Proposition 3.9 is not possible given that the first Chern class of E
is assumed to have nonpositive cup product with the class defined by ¨. Thus there
can be no counter example to the claim made by our Main Theorem.
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4 Analytic estimates

This section contains proofs of Proposition 3.1 and Proposition 3.2 as well as the proof
of Lemma 3.6.

Many of the following arguments in this section exploit two fundamental a priori
bounds for solutions of the large r versions of (3-1). To start with, write a section §
of SD E˚EK�1 as §D .’; “/ where ’ is a section of E and “ is a section of EK�1 .
Then, the next lemma supplies the fundamental estimates on the norms of ’ and “.

Lemma 4.1 Fix a bound on the C3 –norm of �. Then, there are constants c; c0 > 0

with the following significance: Suppose that .A; §D .’; “// is a solution of a given
t 2 S1 and r � 1 version of the equations (3-1). Then:

� j’j � j�j1=2C c r�1 .
� j“j2 � c0 r�1.j�j � j’j2/C c r�2:

Proof This lemma is the same as Lemma 2.2 in [12] except for the inevitable appear-
ance of j�j. We will give the proof in this new context.

Since DA§D 0, one has DA
2§D 0 as well. Then, the Weitzenböck formula for DA

2

yields

(4-1) DA
2§Dr|

r§C
1

4
R §�

1

2
cl.�FA/§D 0

where R denotes the scalar curvature of the Riemannian metric. Contract this equation
with § to see that

(4-2)
1

2
d�dj§j2Cjr§j2C

r

2
j§j2

�
j§j2� j�j �

c0

r

�
� 0:

where c0 > 0 is a constant depending only on the supremum of j«Sj and the infimum
of the scalar curvature.

Now, introduce §D j�j1=2 §0 , therefore ’D j�j1=2 ’0 and “D j�j1=2 “0 . Then, one
can rewrite (4-2) as follows:

j�j

2
d�dj§0j2� hdj�j; dj§0j2iC

1

2
j§0j2d�dj�j

C
r

2
j�k§0j2

�
j�jj§0j2� j�j �

c0

r

�
� 0

(4-3)

Manipulating (4-3), one obtains

(4-4)
1

2
d�dj§0j2�

1

j�j
hdj�j; dj§0j2iC

r

2
j�k§0j2

�
j§0j2� 1�

c1

r

�
� 0
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where c1 > 0 is a constant depending on c0 . An application of the maximum principle
to (4-4) yields

(4-5) j§0j2 � 1C
c1

r

from which the first bullet of Lemma 4.1 follows immediately.

As for the claimed estimate on the norm of “, start by contracting (4-1) first with .’; 0/
and then with .0; “/ to get

1

2
d�dj’j2Cjr’j2C

r

2
j’j2.j’j2Cj“j2� j�j/C ›1j’j

2
C ›2.’; “/

C ›3.’;r’/C ›4.’;r“/D 0

1

2
d�dj“j2Cjr“j2C

r

2
j“j2.j’j2Cj“j2Cj�j/C ›1

0.“; ’/C ›2
0
j“j2

C ›3
0.“;r’/C ›4

0.“;r“/D 0

(4-6)

where ›i ’s and ›i
0 ’s depend only on the Riemannian metric. Then, the equations (4-6)

yield the following equations in terms of ’0 and “0 :

1

2
d�dj’0j2Cjr’0j2C

r

2
j�jj’0j2.j’0j2Cj“0j2� 1/Cœ1j’

0
j
2

Cœ2.’
0; “0/Cœ3.’

0;r’0/Cœ4.’
0;r“0/D 0

1

2
d�dj“0j2Cjr“0j2C

r

2
j�jj“0j2.j’0j2Cj“0j2C 1/Cœ1

0.“0; ’0/

Cœ2
0
j“0j2Cœ3

0.“0;r’0/Cœ4
0.“0;r“0/D 0

(4-7)

where œi ’s and œi
0 ’s depend only on the Riemannian metric.

Now, introduce wD 1� j’0j2 . Then, the top equation in (4-7) can be rewritten as

�
1

2
d�dwCjr’0j2�

r

2
j�jj’0j2wC

r

2
j�jj’0j2j“0j2

Cœ1j’
0
j
2
Cœ2.’

0; “0/Cœ3.’
0;r’0/Cœ4.’

0;r“0/D 0:

(4-8)

Using the estimate in (4-5), manipulating the lower order terms and maximizing positive
valued functions that do not depend on the value of r or the particular solution .’; “/,
the bottom equation in (4-7) and the equation (4-8) yield the following inequalities:

(4-9)
�

1

2
d�dwC —0jr’0j2�

r

2
j�jj’0j2w� —1C —2jr“0j2

1

2
d�dj“0j2C˜0jr“

0
j
2
C

r

2
˜1j�jj“

0
j
2
C

r

2
j�jj’0j2j“0j2 �

˜2

r
C
˜3

r
jr’0j2

Geometry & Topology, Volume 13 (2009)
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where —i ’s and ˜i ’s are positive constants depending only on the Riemannian metric
and the constant c0 .

Multiplying the top inequality in (4-9) by k
r

where k is a positive constant large enough
to satisfy

� k—0 � ˜3 ,

� ˜0 � k—2 ,

and adding the resulting inequality to the bottom inequality in (4-9), we deduce that
there are positive constants c2 and c3 that depend only on the Riemannian metric and
the constant c0 such that

(4-10) d�d
�
j“0j2�

c2

r
w�

c3

r2

�
C r j�jj’0j2

�
j“0j2�

c2

r
w�

c3

r2

�
� 0:

Then, an application of the maximum principle to (4-10) yields

j“0j2 �
c2

r
.1� j’0j2/C

c3

r2

which, eventually, gives rise to the second bullet of Lemma 4.1 after multiplying both
sides of the inequality by j�j.

Given Lemma 4.1, the next lemma finds a priori bounds on the derivatives of ’ and “.

Lemma 4.2 Fix a bound on the C3 –norm of �. Given r � 1 and t 2 S1 , let .A; §D
.’; “// denote a solution of the t and r version of the equations (3-1). Then, for each
integer n� 1 there exists a constant cn � 1, which is independent of the value of t 2 S1 ,
the value of r � 1 and the solution .A; §D .’; “//, with the following significance:

� jrn’j � cnrn=2 ,

� jrn“j � cnr .n�1/=2:

The following is also true: Fix – > 0. There exists • > 0 and › > 1 such that if r > ›

and if j’j � j�j1=2�• in any given ball of radius 2›r�1=2 in Mt , then jrn’j � –cnrn=2

for n � 1 and jrn“j � –cnr .n�1/=2 for all n � 0 in the concentric ball with radius
›r�1=2 .

Proof The proof is essentially identical to that of Lemma 2.3 in [12]. This is to say
that the proof is local in nature: Fix a Gaussian coordinate chart centered at any given
point in M so as to view the equations (3-1) as equations on a small ball in R3 . Then
rescale coordinates by writing x D r�1=2y so that the resulting equations are on a ball
of radius O.r1=2/ in R3 . The r –dependence of these rescaled equations is such that
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standard elliptic regularity techniques provide uniform bounds on the rescaled versions
of “ and the derivatives of the rescaled ’ and “ in the unit radius ball about the origin.
Rescaling back to the original coordinates will give what is claimed by the lemma.

One of the key implications of Lemma 4.1 is a priori bounds on the values of E . First,
note that since �^� > 0 at each t 2 S1 , it follows that

(4-11) �D �
q
j�j
�C¤

where qD< �;�� > j�j�1 is a positive valued function on Mt at each t 2 S1 , and
¤^�D 0. We use (4-11) in the following proof of Lemma 3.6.

Proof of Lemma 3.6 Fix r � 1 and t 2 S1 . Let .A; §/ be a solution of the t and r

version of the equations (3-1). Write ADASC 2a and §D .’; “/. Then, by (4-11)
we can write

E.A; §/D i

Z
M
�^ daD r

Z
M

q.j�j � j’j2/C i

Z
M
¤^ da:

Now, it follows from (3-1) and Lemma 4.1 that

E.A; §/�
1

2
r

Z
M

q.j�j � j’j2/� c4 � �c5

where c4; c5 > 0 are constants depending only on the Riemannian metric.

Proof of Propositions 3.1 and 3.8 Proposition 3.1 follows directly from Proposition
3.8. Given Lemma 4.1, the proof of the latter is identical but for minor changes to the
proof of Theorem 2.1 given in Section 6 of [12]. The proof of the second bullet is
proved just as in Lemma 6.5 in [12].

Proof of Proposition 3.2 In the case when c1.E/¤ 0, the claim about j§j follows
from Lemma 4.1 given that ’ is a section of E. This understood, we now assume that
ED C . To start, let 1C denote a unit length trivializing section of the C summand.
There exists a unique connection A0 on K�1 such that the section §0 D .1C; 0/ of
S0 DC˚K�1 obeys DA0

§0 D 0. Now, we look for a solution of the equations (3-1)
of the form

.A; §/D .A0C 2.2r/1=2b; j�j1=2§0C¥/
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with .b; ¥/ 2 C1.MI iT�M ˚ S/. Then, .A; §/ will solve the equations (3-1) if
bD .b; ¥;g/ 2 C1.MI iT�M˚S˚ iR/ solves the following system of equations:

�db� dg� 2�1=2r1=2Œj�j1=2.§0
|£¥C¥|£§0/C¥

|£¥�

D�2�3=2r�1=2
�FA0

DA0
¥C 21=2r1=2Œj�j1=2.cl.b/§0Cg§0/C .cl.b/¥Cg¥/�

D�cl.dj�j1=2/§0

�d�b� 2�1=2
j�j1=2r1=2.¥|§0�§0

|¥/D 0:

(4-12)

For notational convenience, we denote by L0 the operator L.A0;j�j1=2§0/
as defined in

(3-3). Then, the equations (4-12) can be rewritten as

(4-13) L0.b; ¥;g/C r1=2

0@ �2�1=2¥|£¥

21=2.cl.b/¥Cg¥/

0

1AD
0@ �2�3=2r�1=2 �FA0

�cl.dj�j1=2/§0

0

1A :
Now, for bD .b; ¥;g/ and b0 D .b0; ¥0;g0/ in C1.MI iT�M˚S˚ iR/, let .b; b0/ 7!
b� b0 be the bilinear map defined by

b� b0 D
1

2

0@ �2�1=2.¥|£¥0C¥0|£¥/

21=2.cl.b/¥0Cg¥0C cl.b0/¥Cg0¥/

0

1A ;
and let u denote the section defined by .�2�3=2r�1=2 � FA0 ;�cl.dj�j1=2/§0; 0/ of
iT�M˚S˚ iR. Then, (4-13) has the schematic form

(4-14) L0bC r1=2b� bD u:

Our plan is to use the contraction mapping theorem to solve (4-14) in a manner much
like what is done in the proof of Proposition 2.8 of [9]. To set the stage for this, we
first introduce the Hilbert space H as the completion of C1.MI iT�M˚S˚ iR/ with
respect to the norm whose square is:

jjŸjjH
2
D

Z
M
jr0Ÿj

2
C

1

4
r

Z
M
jŸj2;

where r0 denotes the covariant derivative on sections of iT�M˚ S˚ iR that acts
as the Levi-Civita covariant derivative on sections of iT�M, the covariant derivative
defined by A0 on sections of S , and that defined by the exterior derivative on sections
of iR.
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Lemma 4.3 There exists ›� 1 such that:

� jjŸjj6 � ›jjŸjjH and jjŸjj4 � ›r�1=8jjŸjjH for all Ÿ 2H .

� If r � ›, then ›�1jjŸjjH � jjL0Ÿjj2 � ›jjŸjjH for all Ÿ 2H .

Proof The first bullet follows using a standard Sobolev inequality with the fact that
jdjŸjj � jr0Ÿj. The right hand inequality in the second bullet follows by simply from
the appearance of only first derivatives in L0 . To obtain the left hand inequality of the
second bullet, use the Bochner-type formula for the operator L0

2 (see (5.21) in [9]).
To elaborate, let f be any given function on M. Write a section Ÿ of iT�M˚S˚ iR
as .b; ¥;g/. Then, L.A0;f§0/

2.b; ¥;g/ has respective iT�M, S and iR components

r
|
rbC 2r f2bC r1=2V1.Ÿ/

rA0
|
rA0¥C 2r f2¥C r1=2V2.Ÿ/(4-15)

d�dgC 2r f2gC r1=2V3.Ÿ/;

where Vi are 0–th order endomorphisms with absolute value bounded by an r –
independent constant. In the case at hand, fD j�j1=2 is strictly bounded away from
zero. This last point understood, then the left hand inequality in the second bullet of the
lemma follows by first taking the L2 inner product of L0

2Ÿ with Ÿ and then integrating
by parts to rewrite the resulting integral.

It follows from Lemma 4.3 that the operator L0 is invertible when r is large. This
understood, write yD L0

�1u.

Lemma 4.4 There exists ›� 1 for use in Lemma 4.3 such that when r � ›, then the
corresponding yD L0

�1u obeys jyj � c0r�1=2 .

Proof Let � denote the operator that is obtained from what is written in the fDj�j1=2

version of (4-15) by setting Vi all equal to zero. The latter has Green’s function G, a
positive, symmetric function on M�M with pole along the diagonal. Moreover, there
exists an r –independent constant c > 1 such that if x; y 2M, then

G.x; y/�
c

dist.x; y/
e�
p

r
dist.x;y/

c ;

jdGj.x; y/� c
� 1

dist.x; y/2
C

p
r

dist.x; y/

�
e�
p

r
dist.x;y/

c :

(4-16)

Both of these bounds follow by using the maximum principle with a standard parametrix
for G near the diagonal in M�M.
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Now write (4-15) as �ŸC r1=2VŸ, and then use G, the fact that L0
2yD L0u, and

the uniform bounds on the terms Vi to see that

jyj.x/� c0
Z

M
G.x; � /.1C r1=2.1Cjyj//;

where c0 is independent of r . This last equation together with (4-16) yields

jyj.x/� c00r�1=2.1C supMjyj/;

where c00 is also independent of r . The lemma follows from this bound.

With y in hand, it follows that Ÿ2H is a solution of the equations (4-14) if zŸD Ÿ�y is
a solution of the equation L0

zŸC r1=2.zŸ�zŸC 2y�zŸ/D�r1=2y� y. To find a solution
zŸ of the latter equation, introduce the map T W H!H defined by

T W zŸ 7! �r1=2L0
�1.y� yCzŸ�zŸC 2y�zŸ/:

Note in this regard that Sobolev inequalities in Lemma 4.3 guarantee that T does
indeed define a smooth map from H onto itself when r is larger than some fixed
constant. Our goal now is to show that the map T has a unique fixed point with small
norm. Given R� 1, we let BR 2H denote the ball of radius r�1=2R centered at the
origin. We next invoke:

Lemma 4.5 There exists › > 1, and given R� ›, there exists ›R such that if r � ›R ,
then T maps BR onto itself as a contraction mapping.

Proof Let R > 1 be such that jjyjj1 � .1=210/r�1=2R1=2 . We first show that if r

is large, then T maps BR into itself. Indeed, this follows from Lemma 4.3 using the
following chain of inequalities:

jjT
�
zŸ
�
jjH � jj� r1=2y� y� r1=2

�
zŸ�zŸC 2y�zŸ

�
jj2

� r1=2
jjy� yjj2C r1=2

jjzŸ�zŸC 2y�zŸjj2

�
1

4
r�1=2RC r1=2

�
jjzŸ�zŸjj2C 2jjy�zŸjj2

�
�

1

4
r�1=2RC r1=2

�
jjzŸjj4

2
C 2jjyjj4jjzŸjj4

�
�

1

4
r�1=2RC r1=2

�
›r�1=4

jjzŸjjH
2
C r�1=2R1=2›r�1=8

jjzŸjjH
�

�
1

4
r�1=2RC r1=2

�
›r�1=4r�1R2

C r�1=2R1=2›r�1=8r�1=2R
�

� r�1=2R
�1

4
C 2›Rr�1=8

�
:

(4-17)
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Next, using similar arguments, we show that T jBR is a contraction mapping. In this
regard, let zŸ1; zŸ2 2 BR , then

jjT .zŸ1/�T .zŸ2/jjH � jj� r1=2.zŸ1 �
zŸ1C 2y�zŸ1/C r1=2.zŸ2 �

zŸ2C 2y�zŸ2/jj2

� r1=2
�
jj.zŸ1 �

zŸ1�
zŸ2 �
zŸ2/jj2C 2jjy�zŸ1� y�zŸ2jj2

�
� r1=2

�
jj.zŸ1C

zŸ2/� .zŸ1�
zŸ2/jj2Cjjy� .zŸ1�

zŸ2/jj2
�

� r1=2
�
jjzŸ1C

zŸ2jj4jj
zŸ1�
zŸ2jj4C 2jjyjj4jjzŸ1�

zŸ2jj4

�
� r1=2

�
jjzŸ1jj4Cjj

zŸ2jj4C 2jjyjj4
�
jjzŸ1�

zŸ2jj4

� r1=2.2›r�1=8r�1=2RC r�1=2R1=2/›r�1=8
jjzŸ1�

zŸ2jjH

� 3›2Rr�1=8
jjzŸ1�

zŸ2jjH:

Therefore, by the contraction mapping theorem, there exists a unique fixed point of the
map T in the ball BR . Moreover, by standard elliptic regularity arguments, it follows
that the fixed point is smooth, therefore it is an element of C1.MI iT�M˚S˚ iR/.

We next find an r –independent constant › and prove that the norm of §Dj�j1=2§0C¥

is bounded from below by j�j1=2�›r�1=2 . To this end, note that zŸ obeys the equation

�zŸC r1=2VzŸD�r1=2L0.y� yCzŸ�zŸC 2y�zŸ/:

What with (4-16) and the bound jyj � 2r�1=2R this last equation implies is

(4-18) jzŸj.x/� c0r�1=2

C c0r1=2

Z
M

�
1

dist.x; � /2
C

p
r

dist.x; � /

�
e�
p

r dist.x; � /
c .jzŸj2C r�1=2

jzŸj/

where c0 is independent of x and r . Bound the term r�1=2jzŸj in the integral by
jzŸj2C r�1 . The contribution to the right hand side of (4-18) of the resulting term with
r�1 factor is bounded by c1r�1=2 where c1 is independent of r . To say something
about the term with jzŸj2 , note that the function

1

dist.x; � /
jzŸj

is square integrable with L2 –norm bounded by an x–independent multiple of the L2
1 –

norm of jzŸj; and thus by c2jj
zŸjjH with c2 independent of r and zŸ. This understood,

the term in the integral with jzŸj2 contributes at most c3.r
1=2jjzŸjjH

2
C r jjzŸjj2jjzŸjjH/

with c3 independent of r and zŸ. The latter is bounded by an r –independent multiple
of r�1=2 . Thus, we see that jzŸj � c4r�1=2 which proves our claim that j§j � j�j1=2�
›r�1=2 .
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We now turn to the claim about uniqueness. To this end, let • 2 .0; infMj�j=2/ and
let .A; §/ be a solution of some t 2 S1 and r � 1 version of the equations (3-1) with
the property that j§j � j�j1=2 � • at each point in M. Granted such is the case, it
follows from Lemma 4.1 that j’j � j�j1=2� •� ›r�1=2 at each point in M, with C0

independent of r . We now make use of Lemma 4.2 to see the following: Given – > 0,
there exists •– > 0 such that if • < •– , then

(4-19)

j�j1=2� –� j’j � j�j1=2C – and j“j � –r�1=2;

jr’j � –r1=2 and jr“j � –;

jr
2’j � –r and jr

2“j � –r1=2:

Since ’ is nowhere zero for sufficiently large r > 1, one has u D x’=j’j 2 G . Now,
change .A; §/ to a new gauge by u, and denote the resulting pair of gauge and spinor
fields again by .A; §/. Since u’D j’j1C , one has AD A0C 2ia where

(4-20) aD�
i

2
.’�1
r’�x’�1

rx’/:

Then, (4-19) and (4-20) imply

r�1=2
jajC r�1

jraj � c0–:

We now change .A; §/ to yet another gauge so as to write the resulting pair of
connection and spinor as .A0C2.2r/1=2b; j�j1=2§0C¥/ where .b; ¥; 0/ obey (4-12).
This gauge transformation is written eix where xW M!R. Thus, the pair .b; ¥/ is

bD i.2r/�1=2.a� dx/

¥D eix§� j�j1=2§0:
(4-21)

Equation (4-12) is obeyed if and only if x obeys the equation

(4-22) d�dxC 2j�j1=2r j’j sin xD d�b:

We can now proceed along the lines of what is done in [9] to solve an analogous
equation, namely (2.16) in [9]. In particular, the arguments in [9] can be used with only
small modifications to find an r –independent constant › such that if the constant – in
(4-19) is bounded by ›�1 and r � ›, then (4-22) has a unique solution, x, with

(4-23) jxjC r1=2
jdxj � ›–:

Granted this, it follows that bD .b; ¥; 0/ with .b; ¥/ as in (4-21) obeys (4-14) and that

jbj � c–
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with c > 0 a constant that is independent of – and r . Then, hD b� y obeys L0hD

r1=2.y� yC h� hC 2y� h/ and jjhjj1 � c0– where c0 is independent of .A; §/ and
r . This understood, it follows from Lemma 4.3 that

jjhjjH �
1

4
Ryr�1=2

C c1r1=2
jjhjj1jjhjj2 �

1

4
Ryr�1=2

C c2r1=2–jjhjj2;

where Ry is an r independent constant such that jjyjj1 � .1=210/r�1=2Ry and
c1; c2 > 0 are constants which are both independent of .A; §/ and r . This last
inequality implies that jjhjjH < Ryr�1=2 when – < c4 with c4 an r and .A; §/
independent constant. This understood, it follows from Lemma 4.5 that .A; §/ is
gauge equivalent to the solution of (3-1) that was constructed from Lemma 4.5’s fixed
point of the map T when r is larger than some fixed constant. This then proves the
uniqueness assertion made by Proposition 3.2.

We introduce .AC; §C/ to denote the solution that is obtained from Lemma 4.5’s fixed
point. This solution is of the form .A0C 2.2r/1=2b; j�j1=2§0C ¥/. Our final task
is to prove that the .AC; §C/ version of the operator in (3-3) has trivial kernel. To
see that such is the case, remember that .b; ¥/ has norm bounded by c0r�1=2 with
c0 independent of r . This being the case, the operator in question differs from the
operator L0 by a 0–th order term with bound independent of r . As a consequence,
there is a constant c > 0 which is independent of r and such that

(4-24) jjL.AC;§C/Ÿjj2 � cjjŸjjH

for all Ÿ2H when r is large. This understood, the fact that .AC; §C/ is nondegenerate
when r is large follows from Lemma 4.3.

5 Proof of the Main Theorem

We prove Proposition 3.9 in this section and thus complete the proof of our Main
Theorem. The proof that follows has nine parts.

Part 1 Here we say more about the solution of each t 2 S1 version of the equations
(3-1) provided by Proposition 3.2. We denote this solution as .AC; §C/ and write
it at times as .AC D AS0

C 2AC; §C D .’C; “C// where AS0
is a t –independent

connection on the line bundle K�1D det.S0/ with harmonic curvature form, and where
AC is a connection on the trivial bundle C . Since each t 2S1 version of these solutions
is nondegenerate, the family parametrized by t 2 S1 can be changed by t –dependent
gauge transformations to define a smooth map from the universal cover, R, of S1 into
C . Moreover, because ’C is nowhere zero, a further gauge transformation can be
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applied if necessary to obtain a 2� –periodic map from R into C and thus a map from
S1 into C . This understood, we can view AC as a connection on the trivial bundle over
S1 �M. We write its curvature form as

FAC D FAC jt C dt^ PAC:

where FAC jt denotes the component long Mt . Note that the integral of i
2�
¨^dt^ PAC

over S1 �M is zero since .AC; §C/ is a 1–parameter family of solutions of the
equations (3-1). To see this, use an integration by parts, the fact that d�D P� and the
Equation (3-4) to get

i

2�

Z
S1�M

¨^ dt^ PAC D

Z
S1
.

Z
M

PAC ^�/dt

D�
i

2�

Z
S1
.

Z
M
�^ dAC/dt

D
2�

r

Z
S1

d
dt

aF .AC; §C/dtD 0:

Therefore,

(5-1)
i

2�

Z
S1�M

¨^FAC D
i

2�

Z
S1�M

¨^FAC jt :

We also note that the left hand side in (5-1) is equal to zero since AC is a connection
on the trivial bundle.

Part 2 Fix r � 1 large in order to define Tr as in Proposition 3.3. Let Tr D

ftigiD1;::;N�r . Given •> 0 very small we shall use Ii to denote the interval Œti�•; tiC•�
and we shall use Ji;iC1 to denote the interval ŒtiC •; tiC1� •�. We write the connection
Ai;iC1 as Ai;iC1DAS0

C2Ai;iC1 where Ai;iC1 is viewed as a connection on the bundle
E over .Ii[ Ji;iC1[ IiC1/�M. The curvature of Ai;iC1 over Ji;iC1 �M is given by

FAi;iC1 D FAi;iC1jt C dt^ PAi;iC1:

We now write the integral of i
2�
¨^ .FAi;iC1 �FAC jt / over Ji;iC1 �M as

(5-2)
i

2�

Z
Ji;iC1�M

dt^ �^ .FAi;iC1jt �FAC jt /C
i

2�

Z
Ji;iC1�M

�^ dt^ PAi;iC1:

We will first examine the left most integral in (5-2) and then the right most integral.
Moreover, in order to consider the left most integral, we fix an integer n to define
Ji;iC1In to be the set of t 2 Ji;iC1 where E™.t/ < 2n . We then consider separately the
contribution to the left most integral from .Ji;iC1 n Ji;iC1In/�M and from Ji;iC1In �M.
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Part 3 Little can be said about the contribution from .Ji;iC1 n Ji;iC1In/�M to the left
most integral in (5-2) except what is implied by Lemma 4.1. In particular, it follows
from the latter using (4-11) that if t 2 Ji;iC1 n Ji;iC1In , then

(5-3)
i

2�

Z
Mt

�^ .FAi;iC1jt �FAC jt /� c0
�1E™.t/� c0

where c0 > 0 is independent of n, the index i, t , and also r . Note in particular that
(5-3) is positive if 2n > c0

2 .

As we show momentarily, there is a positive lower bound for the contribution to the
left most integral in (5-2) from Ji;iC1In �M. To this end, we exhibit constants c� > 0

and rn > 1 with the former independent of n, both independent of r and the index i;
and such that

(5-4)
i

2�

Z
Mt

�^ .FAi;iC1jt �FAC jt /� c�

at each fixed t 2 Ji;iC1In when r � rn . What follows is an outline of how this is done.
We first appeal to Proposition 3.8 to find rn such that if r > rn , then each point of
’i;iC1

�1.0/ has distance c0r�1=2 or less from a curve of the vector field that generates
the kernel of �. We then split the integral in (5-4) so as to write it as a sum of two
integrals, one whose integration domain consists of points with distance O.r�1=2/ or
less from the loops in Mt , and the other whose integration domain is complementary
part in Mt . We show that the contribution to the former is bounded away from zero
by some constant L> 0 which is essentially the length of the shortest closed integral
curve of this same vector field. We then show that the contribution from the rest of Mt

is much smaller than this when r is large.

Part 4 Fix t 2 Ji;iC1In . Given – > 0, Proposition 3.8 finds a constant rn;– , and if
r > rn;– , a collection ‚t of pairs .”;m/ with various properties of which the most
salient for the present purposes are that ” is a closed integral curve of the vector field
that generates the kernel of �jt such that jj’i;iC1j� j�j

1=2j< – at points with distance
c–r
�1=2 from any loop in ‚t . Here, c– � 1 depends on – but not on r , t , or the

index i. This understood, fix some very small – and let Mt;– �Mt denote the set of
points with distance 27c–r

�1=2 or greater from all loops in ‚t .

To consider the contribution to (5-4) from Mt nMt;– , we write the 1–form � as in
(4-11). Then, by Lemma 4.1, it follows that

(5-5)
i

2�

Z
MtnMt;–

j¤^ .FAi;iC1jt �FAC jt /j � c–r
�1=2Lt ;

where Lt D†.”;m/m � length.”/.
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To see about the rest of the Mt nMt;– contribution, note that Lemma 6.1 in [12] has a
verbatim analogue in the present context. In particular, the latter implies that

i

2�
� .��^FAi;iC1jt /�

1

8�
r j�j.j�j � j’i;iC1j

2/

at all points in Mt nMt;– if r is large. It follows from this, the third item in Proposition
3.8 and (5-5) that

i

2�

Z
MtnMt;–

�^ .FAi;iC1jt �FAC jt /� c0Lt ;

when r is larger than some constant that depends only on – and n. Here, c0 > 0 is
independent of r , t , n, – and the index i.

Part 5 Turn now to the contribution to (5-4) from Mt;– . By Lemma 4.2, no generality
is lost by taking rn;– so that

(5-6)
jj�j1=2� j’i;iC1jj< – and jrAi;iC1

k’i;iC1j � –r
k=2 for k D 1; 2I

jrAi;iC1
k“i;iC1j � –r

.k�1/=2 for k D 0; 1; 2

at all points in Mt with distance c–r
�1=2 or more from any loop in ‚t . Let M0 denote

the latter set. Note in this regard that Mt;– is the set of points with distance 27c–r
�1=2

or more from any loop in ‚t , so Mt;–�M0 . Meanwhile, we can also assume that (5-6)
holds at all points in Mt when .Ai;iC1; .’i;iC1;“i;iC1// is replaced by .AC; .’C; “C//.
Granted these last observations, we change the gauge for .Ai;iC1; §i;iC1/ on M0 so that
’i;iC1 D h’C where h is a real and positive valued function. Having done so, we write
Ai;iC1 on M0 as Ai;iC1 D ACC .2r/1=2b with b a smooth imaginary valued 1–form.
This understood, then the contribution to (5-4) from Mt;– is no greater than

(5-7) c1

Z
Mt;–

jdbj

where c1 depends only on ¨. Our task now is to show that (5-7) is small if r is
sufficiently large.

To start this task, we note that with our choice of gauge, it follows from (5-6) and its
.AC; §C/ analogue that

j’i;iC1�’CjC jbj � c0–

on M0 . Here, c0 is independent of – and r .

Introduce M00 �M0 to denote the set of points with distance 26c–r
�1=2 or more from

any loop in ‚t . We now see how to find a function xW M! R with the following
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properties: First, bD .b� i.2r/�1=2dx; eix§�§C; 0/ obeys the equation

(5-8) L.AC;§C/bC r1=2b� bD 0

on M00 . Second, jbj � z– where z> 0 is independent of r and –.

To explain our final destination, fix a smooth, nonincreasing function ¦W Œ0;1/! Œ0; 1�

with value 0 on Œ0; 3
4
� and with value 1 on Œ1;1/. Set ¦–0 to denote the function on

M given by
¦–
0
D ¦.dist.�;[.”;m/2‚t

”/=27c–r
�1=2/:

Let b0 D ¦–
0b. This function has compact support in M00 and it obeys the equation

(5-9) L.AC;§C/b
0
C r1=2b� b0 D h;

where jhj � c0zjd¦–0j– where c0 is independent of r , t , – and the index i. Note in
particular that the L2 –norm of h is bounded by c1zLt– where c1 is also independent
of the same parameters. This understood, it follows from (4-24) that

(5-10) jjb0jjH � c2z–r1=2
jjb0jj2C c1z–Lt :

Equation (5-10) gives the bound jjb0jjH � 2c1z–Lt when – < 1
4
.c2z/�1 . As a final

consequence, (5-7) is seen to be no greater than c3z–Lt with c3 again independent of
r , t , – and the index i.

To find the desired function x, introduce again the function ¦, and define ¦–W M! Œ0; 1�

by replacing 27c–r
�1=2 in (5-8) by 26c–r

�1=2 . Equation (5-9) is then satisfied on M00

if x obeys the equation

(5-11) d�dxC 2j�j1=2r j’i;iC1j sin xD ¦–d�b:

This equation has the same form as that in (4-15). In particular, the arguments in
[9] that find a solution of the equation (2.16) in [9] can be applied only with minor
modifications to find a solution, x, of the Equation (5-11) that obeys the bounds in
(4-23). This being the case, the resulting bD .b� i.2r/�1=2dx; eix§�§C; 0/ is such
that jbj � z–.

Part 6 It follows from what is said in Parts 4 and 5 that there exists c� > 0 and rn � 1

such that if r � rn , then (5-4) holds. Moreover, c� is independent of n because it is
larger than some fixed fraction of the shortest closed integral curve of any given t 2 S1

version of the kernel of �. With (5-3), this implies that the left most integral in (5-2)
obeys

(5-12)
i

2�

Z
Ji;iC1�M

dt^ �^ .FAi;iC1jt �FAC jt /� c��length.Ji;iC1/;
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where c�� is also independent of n and r which are both very large.

To say something about the right most integral in (5-2), we write Ai;iC1 D AEC ai;iC1

where AE is the t –independent connection on E with harmonic curvature form chosen
so that ASDAS0

C2AE . We then use the fact that the equations (3-1) are the variational
equations of the functional a as in (3-2) to write

(5-13)
i

2�

Z
M
�^ Pai;iC1 D�

1

4�r

Z
M

ai;iC1 ^ dai;iC1:

Here, we use the fact that DAi;iC1§i;iC1 D 0 to dispense with the derivative of the right
most integral in (3-2) with respect to t . Granted (5-13), we identify the right most
integral in (5-2) with

(5-14)
1

4�r

�
�

Z
M
.ai;iC1^.dai;iC1�i«S//jtiC1�•C

Z
M
.ai;iC1^.dai;iC1�i«S//jtiC•

�
:

Equations (5-12) and (5-14) summarize what we say for now about (5-2).

Part 7 Recall that Ii D Œti� •; tiC •�. We now review how we define the connection
Ai on E over Ii �M. This is done using a “bump” function, vW Ii ! Œ0; 1�. This
function is nondecreasing, it is equal to 0 near ti � • and equal to 1 near ti C •.
Meanwhile, we chose gauges for Ai�1;i and Ai;iC1 so that there is no spectral flow
between the respective .Ai�1;i; §i�1;i/ and .Ai;iC1; §i;iC1/ versions of (3-3). Having
done so, we write Ai�1;i D AEC ai�1;i and Ai;iC1 D AEC ai;iC1 . We then defined
Ai DASC 2.1� v/ai�1;iC 2vai;iC1 and we used the latter to define ˆ on Ii �M by

i
2�
.FAi �FAC /.

In order to say something about

(5-15)
Z

Ii�M
¨^

i

2�
.FAi �FAC /

we write FAi �FAC jt as

(5-16)
v .FAi;iC1jt �FAC jt /C .1� v/.FAi�1;ijt �FAC jt /

C dt^
@

@t
.vai;iC1/C dt^

@

@t
..1� v/ai�1;i/:

As we saw in Parts 4 and 5 above, the two left most terms in (5-16) give positive
contribution to the integral in (5-15). The contribution of the two right most terms are

(5-17)
i

2�

Z
Ii�M

.dt^�^
@

@t
.vai;iC1//C

i

2�

Z
Ii�M

.dt^�^
@

@t
..1� v/ai�1;i//:
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We analyze (5-17) using an integration by parts to write it as the sum of

(5-18) �
i

2�

Z
Ii�M

.dt^ d�^ vai;iC1C .1� v/ai�1;i/;

and

(5-19)
i

2�

Z
M
.�^ ai;iC1/jtiC•�

i

2�

Z
M
.�^ ai�1;i/jti�•:

Our only remark about the term in (5-18) is that it is bounded below by �K•, where
K is a constant that is independent of •. This is all we need to know. Meanwhile, we
use (3-2) to write (5-19) as the sum of the two terms:

(5-20) �
1

2�r

�
a.c™;Œti;tiC1�/jtiC•� a.c™;Œti�1;ti�/jti�•

�
and

(5-21)
1

4�r

�Z
M
.ai�1;i^ .dai�1;i� i«S//jti�•�

Z
M
.ai;iC1^ .dai;iC1� i«S//jtiC•

�
:

To say something about (5-20), recall that we choose the gauges when defining ai�1;i

and ai;iC1 on Ii�M so that the spectral flow F take the same value on .Ai�1;i; §i�1;i/

and .Ai;iC1; §i;iC1/. As a consequence,

(5-22)
�

1

2�r
.a.c™;Œti;tiC1�/jtiC•� a.c™;Œti�1;ti�/jti�•/

D�
1

2�r
.aF ™.tiC•/� aF ™.ti�•//:

Because the function aF ™ is continuous and piecewise differentiable, what appears on
the right hand side of (5-22) is bounded below by �K•, with K again a constant that
is independent of •.

We comment on (5-21) in Part 8.

Part 8 The terms in (5-21) are fully gauge invariant. This understood, we observe that
the term with integral of ai;iC1 ^ dai;iC1 is identical but for its sign to the right most
term in (5-14). As the signs are, in fact, opposite, these two terms cancel. Meanwhile,
the term with ai�1;i^ dai�1;i is identical but for the opposite sign, to the left most term
in the version of (5-14) over the interval Ji�1;iI• . Thus, it cancels the latter term. This
understood, the sum of the various fJi;iC1giD1;::;Nr

version of (5-14) is exactly minus
the sum of the various fIigiD1;::;Nr

versions of (5-21). Thus, they cancel when we sum
up the various contributions to

R
S1�M ¨^ˆ. This we now do. In particular, we find
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from (5-10) and from what is said above and in Part 7 thatZ
S1�M

¨^ˆ� 4�c���NrK•

where K is a constant that is independent of •. Thus, if we take • > 0 sufficiently
small, we see that

(5-23)
Z

S1�M
¨^ˆ> 0:

Part 9 With (5-23) understood, our proof of Proposition 3.9 is complete with a suitable
identification of the class defined by ˆ in H2.MIZ/. To this end, remark that it follows
from our definition of each Ai;iC1 and each Ai , that ˆ can be written as i

2�
.FA�FAC /

where A can be written as AS0
C2A where A is a connection on a line bundle E0 over

S1 �M whose first Chern class restricts to each Mt as that of E. Indeed, A is defined
first on each of fJi;iC1 �MgiD1;::;Nr

as fAi;iC1 D AS0
C 2Ai;iC1giD1;::;Nr

, and then
on each of fIi �MgiD1;::;Nr

as fAi DAS0
C 2AEC 2.1� v/ai�1;iC 2vai;iC1giD1;::;Nr

.
These various connections were then glued on the overlaps using maps from M into S1 .

We write E0 as E˝L. Let 0 2 S1 denote any chosen point. Given what was just said,
L over Œ0; 2�/�M is isomorphic to the trivial bundle. As such, it is obtained from the
trivial bundle over Œ0; 2���M by identifying the fiber over f2�g�M with that over
f0g �M using a map uW M! U.1/. To say more about L, we define for each t 2 S1 ,
a section §jt of S as follows: For any given index i 2 f1; ::;Nr g, define §jt D §i;iC1

on Ji;iC1�M. We then define § at t 2 Ii to be v§i;iC1C .1� v/§i�1;i using the same
gauge choices that are used above to define Ai . This done, the pair .ADAS0

C2A; §/
defines a pair of connection over S1 �M for the line bundle det.S/˝L2 and section
of the spinor bundle S˝L. We now trivialize L over Œ0; 2�/�M so as to view the
restrictions to any given Mt of .A; §/ as defining a smooth map from Œ0; 2�/ into C .
There is then the corresponding 1–parameter family of operators whose t 2 Œ0; 2�/

member is the .A; §/jt version of (3-3). This family has zero spectral flow. Indeed, this
is the case because A was defined over Ii by interpolating between Ai�1;i and Ai;iC1

in gauges where there is zero spectral flow between the respective .Ai�1;i; §i�1;i/ and
.Ai�1;i; §i�1;i/ versions of (3-3).

Because .A; §/j2� D .Aj0� 2u�1du;u§j0/ and there is no spectral flow between the
respective .A; §/j0 and .A; §/j2� versions of (3-3), it follows from [1] that the cup
product of c1.L/ with c1.det.S// is zero.

Keeping this last point in mind, and given that L restricts as the trivial bundle to each
Mt , we use the Künneth formula to see that the cup product of c1.L/ with the class
defined by ¨ is the same as that between c1.L/ and the class defined by �j0 . By
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assumption, the latter class is proportional to c1.det.S//. Thus, c1.L/ has zero cup
product with Œ¨�.
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