Thermal Handprint Analysis for Forensic Identification using Heat-Earth Mover’s Distance

Kun Woo Cho, Feng Lin, Chen Song, Xiaowei Xu, Fuxing Gu, and Wenyao Xu

Presenter: Kun Woo Cho

Department of Computer Science and Engineering, SUNY at Buffalo
Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology
Outline

- Introduction
- Thermal Handprint Recognition System Construction
- Performance Evaluation
- Conclusion
Forensic Analysis

- Scientific method of gathering and examining structured data with regard to incidents of crime.

- **Forensic identification**: determination of individuality of a person

1. Complete/Total identification
 - Exact specification of an individual
2. Incomplete/Partial identification
 - Recording of certain information which will ultimately help complete or total identification

- Need of identification
 - In dead persons
 - In skeletal remains
 - In living persons
Prior Arts in Forensic Analysis

- **DNA fingerprinting**
 - Blood, skin, hair, saliva
 - Length of the strands of the DNA molecules with repeating base pair patterns by restriction fragment length polymorphism (RFLP)

- **Odor analysis**
 - Chemical analysis of perfume components by gas chromatography

- **Voice analysis**
 - Phonetic analysis and signal processing

- **Fingerprint/Handprint analysis**
 - Dactylography: a study of fingerprints as a method of identification
 - Impressions of papillary ridges of the finger tips
 - ABSOLUTE without any change of error
Problems

- DNA fingerprinting
 - Not available in all forensic scenes

- Odor analysis
 - Depends on the type of fabric containing perfume residue

- Voice analysis
 - Overlapping speech and low signal-to-noise ratio
 - Requires an audio recording device

- Fingerprint / handprint analysis
 - Most promising approach and has been adopted
 - However, it can be prevented using glove
Thermography (1/2)

- A new perspective to address problems
- **Fast, safe, and accurate non-contact** measurement of temperature and assignment of colors based on temperature.
 - Surveillance, security, and human-computer interactive systems
- **Advantages**
 - No influence from lubrication or direct contact
 - preservation of scene of investigation
 - Every object emits infrared energy/heat
 - expansion of the target
Thermography (2/2)

- Why thermal handprints?
 - Skin on human handprint contains very rich and unique biometric information
 - Handprint-based verification system (Yan et al)
 - Integrating palm geometry feature and finger-print feature
 - Accuracy of 97.00%
 - Not visible to human vision
 - Less possibility to be intentionally removed
Objectives

- To apply infrared imaging technique in extracting thermal handprints
- **To develop a system that performs a forensic identification using heat-based handprints**
 - Thermal handprint made without the glove
 - Thermal handprint made with the glove
Outline

- Introduction
- **Thermal Handprint Recognition System Construction**
- Performance Evaluation
- Conclusion
Handprint Identification Framework

-target Image X

Rotation and Batch crop

Grayscale

2-D median filter

Sobel detection

PCA rotation

Feature extraction

Transformation

EMD (Fx, Fy)

kNN & LOOCV

Sample 1 Sample 2 ... Sample N

Training Image Y
Experimental Details

<table>
<thead>
<tr>
<th>Imaging and optical data</th>
<th>IRS 75</th>
<th>Function parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal sensitivity/NETD</td>
<td>≤ 0.06°C @ +30°C</td>
<td></td>
</tr>
<tr>
<td>Image frame rate</td>
<td>60Hz</td>
<td></td>
</tr>
<tr>
<td>Focal plane array detector (FPA)/wavelength range</td>
<td>7.5-13 um</td>
<td></td>
</tr>
<tr>
<td>IR resolution</td>
<td>160 X 120 pixels</td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Temperature range</td>
<td>-20°C ~ +650°C</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 2°C or ±2% of reading</td>
<td></td>
</tr>
</tbody>
</table>
Experimental Test

- **Set-up**
 - IRS 75 held by a 350 mm tripod
 - Blow-molded plastic surface
 - Vertical distance is 29.7 inches

- **Participants**
 - 20 subjects (17 males and 3 females)
 - Age range of 18 to 35

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Per 1 subject (#)</th>
<th>Total (#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard-Handprint (SH)</td>
<td>40</td>
<td>800</td>
</tr>
<tr>
<td>Glove-Handprint (GH)</td>
<td>20</td>
<td>400</td>
</tr>
</tbody>
</table>
Experimental Method

- **Leave-one-out-cross-validation** is used to estimate how accurately a predictive model will perform in practice.
 - Each 800 SH images
 - Each 400 GH images

- **Classification with k nearest neighbors**
 - HEMD is a distance function
 - K equals 5
Feature Extraction

- Thermal Input
- Grayscale
- Noise filtering
- Sobel edge detection
- PCA rotation
- Contour detection
Pre-Processing

- Thermal Input
- Grayscale
- Noise filtering
- Sobel edge detection
- PCA rotation
- Contour detection
Heat-Earth Mover’s Distance (1/3)
Earth Mover’s Distance

- A method to evaluate dissimilarity between two distributions
 - a minimal cost paid to transform one distribution into another.
 - Several supplier with each a given amount of goods supply several consumers each with a given limited capacity.

- Advantages:
 - Allows for image matching that deals with occlusions and clutter.
 - Is a true metric than other distance metrics if the total weights of two signatures are equal.
Heat-Earth Mover’s Distance (2/3)

- For each target-training pair, the cost of transporting a single point is given and is defined by Euclidean distance.

\[\text{Target } X = \{(x_1, w_{x_1}) \ldots (x_m, w_{x_m})\}, \ 1 \leq i \leq m \]
\[\text{Training } Y = \{(y_1, w_{y_1}) \ldots (y_n, w_{y_n})\}, \ 1 \leq j \leq n \]

Ground distance \(D = [d_{ij}] \)
Flow \(F = [f_{ij}] \)

- Our task is to find a least expensive flow of points from the target to the training that satisfies the training’s demand with subject to:

1. Allows moving points from \(X \) to \(Y \) but not from \(X \) to \(Y \)
2. Overall weight of points in \(X \) equals the overall weight of points in \(Y \)
 - Weight normalization is not required
3. Limits the clusters in \(X \) from sending points more than their weight
4. Limits the clusters in \(Y \) from receiving points more than their weight
5. Total Flow - forcefully move the maximum amount of points

\[HEMD(X, Y, F) = \min \left(\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} d_{ij} \right) \]
\[f_{ij} \geq 0; \ 1 \leq i \leq m, \ 1 \leq j \leq n \]
\[\sum_{i=1}^{m} w_{x_i} = \sum_{j=1}^{n} w_{y_j} \]
\[\sum_{j=1}^{n} f_{ij} \leq w_{x_i}; \ 1 \leq i \leq m \]
\[\sum_{i=1}^{m} f_{ij} \leq w_{y_j}; \ 1 \leq j \leq n \]
\[\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min \left(\sum_{i=1}^{m} w_{x_i}, \sum_{j=1}^{n} w_{y_j} \right) \]
Heat-Earth Mover’s Distance (3/3)
Outline

- Introduction
- Thermal Handprint Recognition System Construction
- Performance Evaluation
- Conclusion
Experimental Results

- **Accuracy (ACC)**
 \[
 \frac{TP + TN}{TP + FP + TN + FN}
 \]

- **Balance accuracy metric (BAC)**
 \[
 \frac{0.5 \times TP}{TP + FN} \times \frac{0.5 \times TN}{TN + FP}
 \]
 Arithmetic mean of sensitivity and specificity

- **F-measure accuracy measure (F1)**
 \[
 \frac{Precision \times Recall}{Precision + Recall} \times 2
 \]
 Harmonic mean of precision and recall

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>ACC (%)</th>
<th>BAC (%)</th>
<th>F1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>94.13</td>
<td>94.49±8.59</td>
<td>94.49</td>
</tr>
<tr>
<td>GH</td>
<td>92.00</td>
<td>92.50±9.09</td>
<td>92.50</td>
</tr>
</tbody>
</table>
F-1 Measure: Confusion Matrix

Subject	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	Recall (%)
Left Table (SH)	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Right Table (GH)	0	38	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	95.0

Subject	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	Recall (%)
Left Table (SH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Right Table (GH)	0	0	34	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	95.0

Subject	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	Recall (%)
Left Table (SH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Right Table (GH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100

Subject	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	Recall (%)
Left Table (SH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Right Table (GH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100

Results Table

<table>
<thead>
<tr>
<th></th>
<th>Average Precision (%)</th>
<th>Average Recall (%)</th>
<th>F1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Table (SH)</td>
<td>94.85</td>
<td>94.13</td>
<td>94.49</td>
</tr>
<tr>
<td>Right Table (GH)</td>
<td>93.00</td>
<td>92.00</td>
<td>92.50</td>
</tr>
</tbody>
</table>
Receiver operating characteristic (ROC)

- Plot of **TPR vs. FPR** for different thresholds
 - Visual representation of how the classifier performs in the region of high sensitivity and high specificity
 - The closer the curve follows the left-top portion of the graph, more accurate the test is
 - **Area under the ROC curve (AUC)** determines how well a parameter can distinguish a targeted subject

<table>
<thead>
<tr>
<th></th>
<th>AUC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>95.69 ± 6.91</td>
</tr>
<tr>
<td>GH</td>
<td>98.50 ± 2.40</td>
</tr>
</tbody>
</table>

TPR: True Positive Rate, FPR: False Positive Rate
Equal error rate (EER)

- Rate at which both acceptance error (FPR) and rejection error (FNR) are equal.
- Lower the EER value, the higher the accuracy of the system
- EER of SH < EER of GH
 - Handprint without the glove is more stable and distinguishable
Discussion on Results (1/3)

- Limitation of our approach

1. **Surface material**: effect of emissivity on the clarity of raw thermal images and contour points of handprint

<table>
<thead>
<tr>
<th>Common Surface Material</th>
<th>Emissivity Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Foil</td>
<td>0.05</td>
</tr>
<tr>
<td>Paper, white</td>
<td>0.68</td>
</tr>
<tr>
<td>Cardboard, white</td>
<td>0.81</td>
</tr>
<tr>
<td>Plastic</td>
<td>0.94</td>
</tr>
<tr>
<td>Concrete, dry white</td>
<td>0.95</td>
</tr>
</tbody>
</table>

2. **Permanence**: effect of surface material on the rate of cooling for 1 minute: (a) paper (b) cardboard (c) plastic with latex glove (d) plastic (e) concrete wall

![Thermal Images](image-url)
Limitation of our approach

3. Non-flat surface: Our previous methods used the handprints made in a flat surface while a distortion of the shape of handprints may reduce an accuracy of HEMD.

1. Boiling pot

2. Box

3. Chair
Discussion on Results (3/3)

- Potential solution

1. **Surface material**
 - Unless the material is a metal, clarity of the handprint is not very sensitive to the surface materials.

2. **Permanence**
 - Motion based infrared recording technology
 - Can obtain the most original form of thermal handprints
 - Determination of time of the incident

3. **Non-flat surface**
 - Partial matching of the thermal palm geometry feature and thermal finger-print feature (Yan et al)
 - Segmentation of each features in the handprint
 - Coarse level identification ➔ fine level identification
Outline

- Introduction
- Thermal Handprint Recognition System Construction
- Performance Evaluation
- Conclusion
Conclusion

- Our system has accurately classified the data regardless of prevention. Comprehensive experiments are conducted and achieved the accuracy of 94.13%. For handprint with latex glove, the average accuracy is 92.00%. The performance results indicate that HEMD is secure and feasible biometric system.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>ACC (%)</th>
<th>BAC (%)</th>
<th>F1 (%)</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>AUC (%)</th>
<th>EER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>94.13</td>
<td>94.49±8.59</td>
<td>94.49</td>
<td>94.85</td>
<td>94.13</td>
<td>95.69 ± 6.91</td>
<td>1.07 ± 0.94</td>
</tr>
<tr>
<td>GH</td>
<td>92.00</td>
<td>92.50±9.09</td>
<td>92.50</td>
<td>93.00</td>
<td>92.00</td>
<td>98.50 ± 2.40</td>
<td>3.29 ± 2.49</td>
</tr>
</tbody>
</table>
Acknowledgement

- **Advisor**
 - Dr. Wenyao Xu

- **Laboratory**
 - Kun Woo Cho
 - Dr. Feng Lin
 - Dr. Chen Song
 - Dr. Xiaowei Xu
 - Dr. Fuxing Gu

- **Department of Computer Science and Engineering, SUNY at Buffalo**

- **Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology**

- **External sponsor**
 - National Science Foundation CNS-1423061