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Review of Chemical Equilibrium  
 
 
Equilibrium experiments study how the concentration of reaction products change as a 
function of reactant concentrations and/or reaction conditions. For a typical bimolecular 
equilibrium reaction such as A+B AB, increasing amounts of reactant [A] might be 
titrated against a fixed amount of the reactant [B] and the equilibrium concentration of 
the product [AB] determined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The shape of the equilibrium curve depends upon the reaction mechanism and can be 
used to decide between different equilibrium models. 
 
Equilibrium constants 

 
An equilibrium constant, designated by a upper case K, is the ratio of the equilibrium 
concentrations of reaction products to reactants or vice versa. 
 
For the bimolecular reaction, A+B AB, we can define an equilibrium dissociation 
constant (Kd) or an equilibrium association constant (Ka), which are reciprocally 
related, as shown below: 
 
 
 
 
 
 
 
 
 
For bimolecular reactions, the units of Kd are concentration (M, mM, M, etc.) and the 
units of Ka are concentration -1 (M-1, mM-1, M-1, etc.). 
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For a unimolecular protein folding reaction, U N, we can define an equilibrium 
unfolding constant (Ku) or an equilibrium folding constant (Kf), which are 
reciprocally related: 
 
 
 
 
 
 
 
These equilibrium constants, like all those for unimolecular reactions, are unit less. 
 
For any equilibrium expression, the direction of the reaction (i.e., dissociation vs. 
association; folding vs. unfolding) is defined by going from the molecular species on the 
bottom of the right side of the expression to those on the top. 
 
The equilibrium constants for a reaction such as nA + mB AnBm are: 
 
 
 
 
 
 
 
The value of any equilibrium constant will be c onstant only for a given temperature, 
pressure, etc. Thus, the equilibrium constants for the same reaction at different 
temperatures (e.g., 20 C vs. 37 C) could be very different. 
 
 
Why reactions come to equilibrium 

 
Irrespective of mechanism, all reversible reactions reach an equilibrium distribution of 
reactants and products when the rates of the forward and back reactions become equal. 
Consider the overall rate at which [AB] changes for the reaction A+B AB. 
 
 
 
 
If we initiated the reaction by mixing free A and free B, then the association rate 
(kassn[A][B]) would dominate the reaction and the dissociation rate (-kdiss[AB]) would be 
small because there would be very little AB complex. As more complexes formed, 
however, the association rate would begin to decrease and the dissociation rate would 
increase because the concentrations of [A] and [B] would decrease and that of [AB] 
would increase. At some point the rates of the opposing reactions would become equal 
and the there would no longer be any change in the concentrations of [AB], [A], and [B]. 

d[AB]/dt = kassn[A][B] - kdiss[AB] 
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Under these conditions 
 
 
 
 
 
 
 
This expression shows that the equilibrium concentrations of reactants and products will 
have a constant ratio (Kd) that is equal to the ratio of the reverse and forward rate 
constants. Kd is called an equilibrium dissociation constant. The equilibrium 
concentrations of reactants and products could also be characterized by an equilibrium 
association constant (Ka) which is simply the reciprocal of Kd. 
 
Determining Kd or Ka for bimolecular reactions 

 
To study a bimolecular equilibrium reaction (A+B AB) experimentally, one would 
start by mixing free A and free B, or alternatively by diluting the AB complex, and then 
waiting until there was no further change in the concentrations of [A], [B], and [AB]. The 

ratio of the equilibrium concentrations as shown above then determines the value of Kd or 

Ka. In practice, equilibrium experiments are performed using many different initial 
concentrations to ensure that the equilibrium model is correct and thus that the same 
value of Kd or Ka is measured irrespective of the initial concentrations. Typically, one 

fixes the initial concentration of one reactant (e.g., [B0]) and then, in different 
experiments, adds increasing initial concentrations of the other reaction [A0]. For each set 
of concentrations, one waits until equilibrium is reached and then assays [A], [B], and 
[AB]. There are three common ways to plot equilibrium data of this kind. 
 
 
 
The first is a simple binding curve in which the fraction of B bound is plotted vs. the 
concentration of free [A] 
 
 
 
 
 
 
 

d[AB]/dt = -d[A]/dt = - d[B]/dt = kassn[A][B] - kdiss[AB] = 0 
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The mathematical relationship between the fraction of B bound and the free concentration 
of [A] is straightforward. 
 
 
 
 
 
 
This is an equation for a rectangular hyperbola and bimolecular binding curves are often 
referred to as hyperbolic binding curves. 
 
The fraction of B bound is often designated Θb, so that 
 
 
 
 
 
It’s easy to see from this expression that if [A] = Kd, then b = 0.5. Thus, half-maximal 
binding of B occurs when the free A concentration is equal to Kd. This makes it simple to 
estimate Kd simply by inspection of the binding curve. The same binding data is shown 
below but plotted against log [A]. 
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For any bimolecular reaction, 10% of B will be bound when [A] = Kd/9 and 90% of B 
will be bound when [A] = 9Kd. Thus, 80% of the binding reaction occurs over a 
concentration range of about 80-fold in [A] centered around the Kd. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, plotting b/[A] as a function of b should give a straight line with a slope of 
-1/Kd. The Scatchard plot shown below is for the same data plotted in the binding curves 
above. 
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Hyperbolic binding curves and linear Scatchard plots are diagnostic of simple 
bimolecular reactions. Later on, we’ll show that higher-order reactions such as 2A+B 
A2B and 3A+B A3B give Scatchard plots that are concave downward and binding 
curves with sigmoid shapes. 
 
 
Unimolecular equilibria 

 
Equilibrium reactions, such as protein folding, that involve a conformational change in a 
single molecule are generally studied by determining the concentrations of reactant and 
product as a function of some environmental change that perturbs the equilibrium. 
Perturbants might include pH, temperature, pressure, chemical denaturants, etc. In the 
example shown below, urea is used as a denaturant to study the unfolding of a 
monomeric protein. 
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Here, equilibrium constants (Ku) for protein unfolding can be calculated for each of the 
urea concentrations from roughly 2 to 4.5 M where appreciable concentrations of both 
folded and unfold protein are present. For example, at 3 M urea, there are equal amounts 
of native and denatured protein and thus Ku = 1. To calculate Ku in the absence of urea or 
at 8 M urea, however, we would need a model for how Ku changed as a function of [urea]. 
Generally, it is found that ln Ku varies linearly with [urea] concentration, allowing 
determination of Ku in the absence of urea. 
 
Common problems in measuring equilibrium constants 

 
There are several common mistakes that can lead to the calculation of incorrect 
equilibrium constants. 
 
(1) Using concentrations of species that are not equilibrium concentrations. Any 
equilibrium experiment has a kinetic component. One waits a certain amount of time after 
initiating the reaction before assaying products. If this time is too short, the 
concentrations of the reactants and products may still be changing. A good test for 
whether a reaction is at equilibrium is to see if the same final state is reached irrespective 
of whether the reaction is started by adding reactants or products. 
 
(2) Using total concentrations not free concentrations in the equilibrium expression. 
 
(3) Using the wrong equilibrium model. The ratio [A][B]/[AB] will only be constant at 
equilibrium for the model A+B AB. 
 
Reactions involving changes in oligomeric form 

 
Oligomeric proteins are very common in biology. Consider a reaction in which two 
molecules of free A combine with B to form an A2B complex without detectable 
intermediates. 
 
 
 
To measure Kd, which has units of M2

 for this reaction, we titrate increasing 
concentrations of [A] against a fixed quantity of [B] and assay the fraction of bound B. 
The equation relating fraction B bound to [A] for this equilibrium model is: 
 
 
 
 
 
The binding curve for this equilibrium model has a sigmoidal or S-shape as shown below. 
 

2A + B A2B         Kd = [A]2[B]/[A2B] 
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Notice also that Kd = [A]2

 when half of the available B is bound. Plotting this data on a 
log scale emphasizes that the binding curve is steeper than for the simple A+B AB 
case. Now 90% of the binding reaction occurs within a 9-fold concentration range of [A] 
centered around half-maximal binding. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Scatchard plot for this reaction is concave downward, which is diagnostic of a 
reaction showing positive cooperativity1. In this case, the cooperativity arises because A 
dimerizes in the bound A2B complex. 
 
 
 
 
1

 For a reaction such as 2A+B A2B, positive cooperativity means that potential intermediates in the 
reaction (e.g., A2 or AB) are poorly populated relative to the end states at equilibrium. 
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For the general case, where n molecules of A combine with one molecule of B to form a 
complex: 
 
 
 
If intermediates are not populated, then: 
 
 
 
 
Thus, for a fully cooperative reaction, as the number of subunits (n) increases, the plot of 
fraction B bound vs. [A] becomes steeper and steeper. The graph below shows plots for 
n=1, n=2, and n=6 subunits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nA + B AnB          Kd = [A]n[B]/[AnB] 
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Binding in cooperative systems with large changes in oligomeric state can be 
extraordinarily sensitive to small changes in ligand concentration. 
 
Intermediates in Equilibrium Reactions 

 
Complexes containing three molecules or more are unlikely to form in a single step in 
which all of the molecules collide simultaneously. Such reactions are much more likely to 
proceed by successive bimolecular reactions. For the 2A+B A2B reaction, A might 
dimerize first and then bind to B. Alternatively, a single molecule of A could bind to B in 
reactions would be written as: 
 
 
 
 
 
 
and are shown schematically for a DNA binding protein in the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Either assembly pathway consists of two coupled equilibria. In any set of coupled 
reactions, one step affects the adjacent step only by changing the concentration of a 
common participant through mass action. If we consider the top K1K2 pathway, then the 
coupled reactions are: 
 
 
 
 

2A + B A2 + B A2B 
 
2A + B AB + B A2B 

2A + B AB + A      K1 = [A][B]/[AB] 
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AB is the common species in the K1 and K2 equilibria. Thus, increasing the 
concentrations of free [A] or [B] in the K1 reaction would lead to an increased 
concentration of [AB]. This, in turn, would result in a higher concentration of A2B in the 
K2 reaction. As shown below, A2 is the common molecular species in the K3 and K4 
reactions. 
 
 
 
 
 
Notice that product of the equilibrium constants for the K1 and K2 steps is equal to the 
product of the equilibrium constants for the K3 and K4 steps and that both products give 
the equilibrium constant for the overall reaction. 
 
 
 
This is always true in coupled equilibria because the concentration of the common 
species drops out when the equilibrium constants for each step are multiplied. 
 
In coupled equilibrium reactions, one question is whether the intermediate species will be 
significantly populated relative to the end states. The answer will depend on the relative 
values of the equilibrium constants for each step. If both steps are bimolecular, then 
intermediate species would not be expected to be significantly populated if the first 
equilibrium dissociation constant is significantly larger than the second equilibrium 
dissociation constant and vice versa. 
 
For the case described above, assume that the reaction proceeds by the K1K2 pathway 
with K1 = 5•10-7 M and K2 = 5•10-11 M. Thus, binding of the second A is much stronger 
than binding of the first. Intuitively, any concentration of [A] where [AB] would be 
expected to form would be far in excess of the concentration required for binding of the 
second A. Thus, the [AB] intermediate would not be expected to be significantly 
populated. We can also show this mathematically. When [A] = 5•10-9 M, 
 
 
 
Thus, the concentration of [AB] will only be 1% of the concentration of either [A2B] or 
[B] and this intermediate is poorly populated relative to the end states. 
 
When intermediates are present at low levels compared to end-states, they can effectively 
be ignored for purposes of calculating the equilibrium constant for the overall reaction. In 
the case discussed, this is equivalent to making the approximations: 
 
 

AB + A A2B       K2 = [AB][A]/[A2B] 

2A + B A2 + B   K3 = [A]2/[A2] 
 
A2 + B A2B     K4 = [A2][B]/A2B] 

K1K2 = K3K4 = Kd = [A]2[B]/[A2B] 

[AB] = [A][B]/K1 = 0.01•[B] and [A2B] = [A]2[B]/K1K2 = [B] 

[B]total = [B] + [AB] + [A2B] [B] + [A2B] 
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which is clearly justified if K1 >> K2 
 
What would happen if K1 = K2 = 5•10-9 M. Now, when [A] = 5•10-9 M, 
 
 
 
 
[AB] and [A2B] are now present at the same concentration and the presence of the 
intermediate could not be ignored in equilibrium calculations. In such a case, if one had 
an assay that could distinguish AB from A2B (perhaps a gel-shift or footprinting assay), 
then values of K1 and K2 could be calculated directly. 
 
If, however, intermediates are substantially populated and the assay can not distinguish 

AB from A2B, then both species would have to be included in calculating b, the fraction 
of bound B. 
 
 
 
 
 
 
 
Equilibria involving buffer components 

 
It is common to assay the binding of two macromolecules or the binding of a small ligand 
to a macromolecule in a buffer that contains components that, in principle, might 
participate in the reaction. Assume, for example, that 2 chloride ions bind at a dimer 
interface and are required for stable dimerization. 
. 
 
 
 
Intuitively, increasing the chloride concentration should result in more complex 
formation. The proper equilibrium expression for this reaction is: 
 
 
 
In such circumstances, however, an apparent equilibrium constant for dimerization would 
often be written without explicit consideration of the chloride. 
 
 
 
 

[A]total = [A] + [AB] + 2[A2B] [A] + 2[A2B] 

[AB] = [A][B]/K1 = [B] and [A2B] = [A]2[B]/K1K2 = [B] 

(A•Cl)2 2A + 2Cl 

Kd = [A]2[Cl]2/[(A•Cl)2] 

Kapp = [A]2/[A2] 
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A bit of algebra yields 
 
 
 
 
 
 
Thus, if Kapp were measured in buffers with different concentrations of NaCl, one would 
expect a plot of log (Kapp) vs. log [Cl] to be linear with a slope of -2. Experiments of this 
type can be very useful in detecting the participation and stoichiometry of buffer 
components in a reaction. 
 
 
 
 
 
 
 
 
 
 
 
 
Note, however, that because chloride ion and sodium ion increase together when we 
increase the NaCl concentration, the experiment shown above does not show that 
chloride rather than sodium is the buffer component involved in the reaction. Control 
experiments examining dimerization in buffers with different concentrations of KCl, KF, 
NaF, Na2SO4, Na2PO4, etc. could be performed to test whether the anion or cation is 
important and whether the reaction is specific for a particular anion or cation. 
 
Proteins contain numerous ionizable groups and protons or hydrogen ions are frequently 
involved in folding reactions, conformational change reactions, and binding reactions. 
Thus, it is common for Kapp for a reaction to change as a function of [H+] concentration. 
pH is just -log[H+] and thus plotting log Kapp against pH should reveal whether one or 
more protons is required for the reaction. Sometimes, however, a bound proton is not 
absolutely required for the reaction but its presence does change the equilibrium constant. 
We might write this set of reactions as follows: 
 
 
 
 
 
 
 
 
 

Kapp = Kd/[Cl]2 
 
 
log (Kapp) = ln (Kd) - 2•log [Cl] 



14 
 

 
 
 
 
 
 
 
 
 
 
Imagine that we assay A binding to B at low pH where all species are protonated and find 
that [AH+][B]/[AH+B] = 10-9 M. This gives us an estimate of K4. Now we repeat the 
experiment at high pH where all the species are unprotonated and get [A][B]/[AB] = 10-7 
M. Thus, protonation of A makes the binding of B 100-fold stronger. Because K1K2 = 
K3K4, we know that K3 = 100•K2 (this simply says that the proton binds more tightly to 
the AB complex than to free A). 
 
We now measure Kapp at a series of different pH’s. Because we don’t distinguish 
protonated from unprotonated species in our binding assay, 
 
 
 
 
 
To get Kapp as a function of [H+], we substitute [A][[H+]/K3 for AH+

 and substitute 
[AB][H+]/K2 for AH+B. Rearranging and some more substitution gives: 
 
 
 
 
 
The data in the plot below was generated using K3 = 10-6 M (pKa = 6) which might be 
expected for a histidine side chain. 
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If this were experimental data, we could fit it to get pKa’s for proton binding to the free 
protein (pKa = -log (K3) = 6) and to the complex (pKa = -log (K2) = 8). 
 


