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Is Information Risk a Determinant of Asset Returns?

Abstract

In this research we investigate the role of information-based trading in affecting asset
returns.  Our premise is that in a dynamic market asset prices are continually adjusting to new
information.  This evolution dictates that the process by which asset prices become
informationally efficient cannot be separated from the process generating asset returns.  Using
the structure of a sequential trade market microstructure model, we derive an explicit measure of
the probability of information-based trading for an individual stock, and we estimate this
measure using high-frequency data for NYSE-listed stocks for the period 1983-1998.  The
resulting estimates are a time-series of individual stock probabilities of information-based
trading for a very large cross section of stocks.  We investigate whether these information
probabilities affect asset returns by incorporating our estimates into a Fama-French [1992] asset
pricing framework. Our main result is that information does affect asset prices: stocks with
higher probabilities of information-based trading require higher rates of return. Indeed, we find
that a difference of 10 percentage points in the probability of information-based trading between
two stocks leads to a difference in their expected returns of 2.5% per year.  We interpret our
results as providing strong support for the premise that information affects asset pricing
fundamentals.
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Is Information Risk a Determinant of Asset Returns?

1. Introduction

Asset pricing is fundamental to our understanding of the wealth dynamics of an economy.

This central importance has resulted in an extensive literature on asset pricing, much of it

focusing on the economic factors that influence asset prices.  Despite the fact that virtually all

assets trade in markets, one set of factors not typically considered in asset pricing models are the

features of the markets in which the assets trade. Instead, the literature on asset pricing abstracts

from the mechanics of asset price evolution, leaving unsettled the underlying question of how

equilibrium prices are actually attained.

Market microstructure, conversely, focuses on how the mechanics of the trading process

affect the evolution of trading prices.  A major focus of this extensive literature is on the process

by which information is incorporated into prices.  The microstructure literature provides

structural models of how prices become efficient, as well as models of volatility, both issues

clearly of importance for asset pricing.  But of perhaps more importance, microstructure models

can provide explicit estimates of the extent of private information.  The microstructure literature

has demonstrated the important link between this private information and an asset’s bid and ask

trading prices, but it has yet to be demonstrated that such information actually affects asset

pricing fundamentals.

If a stock has a higher probability of private information-based trading, should that have

an effect on its required return?   In traditional asset pricing models, the answer is no.  These

models rely on the notion that if assets are priced “efficiently”, then information is already

incorporated and hence need not be considered.  But this view of efficiency is static, not

dynamic.  If asset prices are continually revised to reflect new information, then efficiency is a

process, and how asset prices become efficient cannot be separated from asset returns at any

point in time.

This issue of information and asset returns has been addressed in various ways in the

literature.  Perhaps the most straightforward approach is that of Amihud and Mendelson [1986]

who consider a variant of this problem by arguing that liquidity should be priced.  Their

argument is that investors maximize expected returns net of trading costs, proxied by the bid-ask
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spread. Therefore, in equilibrium, higher returns are required for stocks with higher spreads.

Amihud and Mendelson [1986; 1989] and Eleswarapu [1997] present empirical evidence

consistent with this liquidity hypothesis.  Supporting evidence using other measures of liquidity

is provided by Amihud, Mendelson and Lauterbach [1998], Amihud [2000], Datar, Naik, and

Radcliffe [1998], Brennan and Subrahmanyam [1996], and Brennan, Chordia and

Subrahmanyam [1998].  But the overall research on this issue is mixed, with Chen and Kan

[1996], Eleswarapu and Reinganum [1993], and Chalmers and Kadlec [1998] concluding that

liquidity is not priced.  Certainly, one might agree with Datar, Naik, and Radcliffe’s observation

that  “whether liquidity affects asset returns or not remains unresolved thus far”.

One difficulty in resolving this issue lies in what exactly is being sought.  Is this higher

return, if it exists, due to a compensation for some exogenous illiquidity that manifests itself in

large spreads?  Or is it a return for bearing the risk of trading with counterparties who have

superior information, a factor that would also induce high spreads?  Illiquidity and information

risk are obviously related issues, but they are not the same. The illiquidity arising from some

exogenous factors (such as limited competition between dealers), is akin to a tax, and its effects

might be reasonably anticipated as a positive link between spreads and returns.  The effects of

private information are more complex, however, because of their link to the dynamic efficiency

of asset prices.  Do traders need compensation to hold a stock that has a greater risk of

information-based trading?

The distinction between these two concepts can be illustrated by a simple example.

Consider an investor choosing between investments in two stocks.  Suppose that the two stocks

are identical in every way except that in one stock all information events are public and in the

other all information events are private.  The stock with private information events will,

according to standard market microstructure models, have a larger spread than the stock with

public information events.  But this is surely only a minor concern for the investor.  Of more

importance is that the stock with private information events is riskier for the uninformed investor

than is the stock in which the events are public.  The uninformed investor must be rewarded in

equilibrium for the risk of holding this stock, and we argue here that it is this information risk

that is priced in asset returns.

Our focus in this paper is on showing empirically that information risk affects cross-

sectional asset returns.  We first present a simple model to provide the intuition for why private
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information affects stock returns.1  We then develop an empirical methodology for estimating

this effect by incorporating an explicit microstructure measure of information-based trading into

an asset-pricing framework.  Our analysis uses a structural market microstructure model to

generate a measure of the probability of information-based trading (PIN) in an individual stock.

We then estimate this measure using high-frequency data for NYSE-listed stocks for the period

1983-1998.  The resulting estimates are a time-series of individual stock probabilities of

information-based trading for a very large cross section of stocks.  We investigate whether these

information probabilities affect cross-sectional asset returns by incorporating our estimates into a

Fama-French [1992] asset-pricing framework.  Our main result is that information does affect

asset prices: stocks with higher probabilities of information-based trading have higher rates of

return. Indeed, we find that a difference of 10 percentage points in PIN between two stocks leads

to a difference in their expected returns of 2.5% per year. The magnitude, and statistical

significance, of this effect provides strong support for the premise that information affects asset-

pricing fundamentals.

Our focus on the role of information in asset pricing is related to several recent papers.  In

a companion theoretical paper, Easley and O’Hara [2000] develop a multi-asset rational

expectations equilibrium model in which stocks have differing levels of public and private

information.  In equilibrium, uninformed traders require compensation to hold stocks with

greater private information, resulting in cross-sectional differences in returns.  The basic intuition

of this model is outlined in the next section, and it forms the basis for our empirical estimation.

Wang [1993] provides an intertemporal asset-pricing model in which traders can invest in a risk-

less asset and a single risky asset.  In this model, the presence of traders with superior

information induces an adverse selection problem, as uninformed traders demand a premium for

the risk of trading with informed traders.  However, trading by the informed investors also makes

prices more informative, thereby reducing uncertainty.  These two effects go in opposite

directions, and their overall effect on asset returns is ambiguous.  Because this model allows only

one risky asset, it is not clear how, if at all, information would affect cross-sectional returns.

Jones and Slezak [1999] also develop a theoretical model allowing for asymmetric information

to affect asset returns.  Their model relies on changes in the variance of news and liquidity

                                                          
1The theoretical case for why information affects asset returns is developed more fully in Easley and O’Hara [2000].
We present in this paper a brief theoretical explanation of why this cross-sectional effect arises.
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shocks over time to differentially affect agents’ portfolio holdings, thereby influencing asset

returns. These theoretical papers suggest that information can affect asset returns, the issue of

interest in this paper.

Two recent empirical papers related to our analysis are Brennan and Subrahmanyam

[1996] and Amihud [2000].  These authors investigate how the slope of the relation between

trade volume and price changes affects asset returns.  This measure of illiquidity relies on the

price impact of trade, and it seems reasonable to believe that stocks with a large illiquidity

measure are less attractive to investors. Brennan and Subrahmanyam find support for this notion

using 2 years of transactions data to estimate the slope coefficient λ, while Amihud establishes a

similar finding using daily data. What economic factors underlie this result is not clear.  Because

λ is derived from price changes, factors such as the impact of price volatility on daily returns, or

inventory concerns by the market maker could influence this variable, as could adverse

selection.2 Neither analyses addresses whether their illiquidity measure is proxying for spreads,

or for the more fundamental information risk we address.  Our analysis here focuses directly on

private information by deriving a trade-based measure of information risk.  This PIN measure

has been shown in previous work (see Easley, Kiefer, and O'Hara [1996; 1997a; 1997b], Easley,

Kiefer, O'Hara and Paperman [1996], and Easley, O'Hara and Paperman [1998]) to explain a

number of information-based regularities, providing the link to private information we need to

investigate cross-sectional asset pricing returns.

The PIN variable is correlated with other variables that we do not include in our return

estimation.  In particular, as would be expected with an information measure, PIN is correlated

with spreads.  It is also correlated with the variability of returns and with volume or turnover.

One might suspect that the probability of information based trade only seems to be priced

because it serves as a proxy for these omitted variables.  We show, however, that this is not the

case.  We show that over our sample period, spreads do not affect asset returns but PIN does.

When spreads or the variability of returns are included with PIN in the return regressions, the

                                                          
2 The Kyle λ has not been tested as to its actual linkage with private information.  While it seems reasonable to us
that such a theoretical linkage would exist, there are a number of reasons why this empirical measure is problematic.
For example, the actual Kyle model assumes a call market structure in which orders are aggregated and it is only the
net imbalance that affects the price.  Actual markets do not have this structure, so in practice λ is estimated on a
trade-by-trade basis (as in BS), or is a time series change in price per volume over some interval (as in Amihud).
Either approach may introduce noise in the specification.  Moreover, because the λ calculation also involves both
price and the quantity of the trade its actual value may be affected by factors such as the size of the book , tick size
consideration, and market maker inventory.
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probability of information based trade remains highly significant, and its effect on returns is

changed only slightly.  Volume remains a factor in asset pricing, but it does not remove the

influence of PIN.  We view these results as strong evidence that the probability of information

based trade is priced in asset returns.

The paper is organized as follows.  Section 2 provides the theoretical intuition for our

analysis by outlining a rational expectation model in which traders receive both public and

private information signals about a number of stocks.  This model demonstrates that private

information affects asset returns because it skews the portfolio holdings of informed and

uninformed traders in equilibrium.  We then turn in Section 3 to the empirical testing

methodology.  We set out a basic microstructure model and we demonstrate how the probability

of information-based trading is derived for a particular stock.  Estimation of the model involves

maximum likelihood, and we show how to derive these estimating equations. In Section 4 we

present our estimates.  We examine the cross-sectional distribution of our estimated parameters,

and we examine their temporal stability. A simple check on the reasonableness of our estimates

of information-based trading is to examine their relation to opening spreads.  We find that our

model does a very good job of explaining spreads, and we find the independently interesting

result that spreads experienced a structural shift following the 1987 crash.  Section 5 then puts

our estimates into an asset pricing framework.  We use the cross-sectional approach of Fama-

French [1992] to investigate expected asset returns.  In this section we present our results, and

we investigate their robustness.  We also investigate the differential ability of spreads, variability

of returns, turnover, and our information measure to affect returns.  The paper’s last section

summarizes our results and discusses their implications for asset pricing research.

2. Information and Asset Prices

To show why trading based on private information should affect asset returns, we

construct a simple rational expectations equilibrium asset-pricing model.  We use this analysis

only to motivate our empirical search for information effects so we keep the exposition here as

simple as possible. A complete model deriving the rational expectations equilibrium and

investigating the specific effects of public and private information on asset prices is found in a

companion theoretical paper Easley and O'Hara [2000].



8

We consider a two-period model: today when investors choose portfolios and tomorrow

when the assets in these portfolios payoff.  There is one risk free asset, money, which has a

constant price of 1.  There are K risky stocks indexed by k=1,…,K.  The future value, kv , of

stock k is random with distribution ),( 1−
kkvN ρ .  We let pk denote the price today of a share of

stock k.  There are signals that some or all investors will receive today about the future values of

these stocks.  For stock k, Ik signals are drawn independently from the distribution ),( 1−
kkvN γ .

Some of these signals are public and some are private.  The fraction of the Ik signals about the

value of stock k that are private is denoted αk; the fraction of signals that are public is 1- αk.  All

investors receive any public signals before trade begins.  Only informed traders receive any

private signals.  We let µk be the fraction of traders who receive the private signals about stock k.

Finally the aggregate supply of shares of stock k is random with distribution ),( 1−
kkxN η with

0>kx .  All random variables are independent, and their distributions are known to the

investors.

There are K+1 assets, hence K relative prices, and many sources of uncertainty: signals

about the future value of the stocks and the random supply of each stock.  We view the random

supply of stocks as a simple proxy for noise trade, but it is important.  Without the high

dimensional information space there would be a fully revealing rational expectations equilibrium

in which the uninformed investors could completely infer the informed investors' information

from equilibrium asset prices.  It would then not matter whether information was public or

private.

There are J investors indexed by j=1,…, J.  These investors all have CARA utility with

coefficient of risk aversion δ.  Investors are endowed with money; m j > 0 .  These investors must

in equilibrium hold the available supply of money and stocks.  Markets are incomplete, so stocks

are risky even for informed investors.  Because the investors are risk averse, and the stocks are

risky, the risk will be priced in equilibrium.  The question that we are interested in is how the

distribution of information affects asset prices and thus expected returns.

The budget constraint today for typical investor j is j

k

j
kk

j mzpm =+ ∑ , where j
kz is the

number of shares of stock k he purchases and jm is the amount of money he holds.  His wealth
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tomorrow is the random variable j

k

j
kk

j mzvw += ∑ .  Suppose that conditional on all of investor

j’s information his predicted distribution of vk is ))(,( 1−j
k

j
kvN ρ .  Then his optimal demand for

stock k is given by

(1)
1)( −

−
=

j
k

k
j

kj
k

pv
z

ρδ
.

Thus the equilibrium price of stock k is

(2)
∑

∑ −
=

j

j
k

k
j

j
k

j
k

k

xv

p
ρ

δρ
.

Computation of equilibrium prices requires showing that for both informed and

uninformed investors conditional distributions are Normal.  This is trivial for informed investors.

It is less trivial for uninformed investors because of the inferences that they draw from

equilibrium prices, but it is nonetheless true in at least one linear equilibrium (see Easley and

O’Hara [2000] for derivation).  In this rational expectations equilibrium the (prior) expected

excess return on stock k is

(3)
kkkkkkkk

k
kk II

x
pvE

θαµγαρ
δ

)1()1(
][

−+−+
=− ,

where [ ] 112112 )()(
−−−−− += kkkkkkk I γδηαγµθ  is the precision of the uninformed traders’ posterior

distribution on the value of stock k.

Equation (3) provides the rationale for why private information affects equilibrium asset

prices.  If agents are risk averse (δ>0), and if stock k is in positive net supply on average

( 0>kx ), then its price must on average be less than its expected future value.  This is because in

equilibrium risk averse investors must be compensated for holding the positive supply of the

stock.  Information affects this return because it affects the risk of holding the asset.  If there is

perfect prior information ( ∞=kρ ) or perfect signals ( ∞=kγ ) then all traders know the asset’s

true value, so it is risk free and its price is its expected future value.  In a risk free or fully

revealing equilibrium all traders hold the same portfolio of assets.  Otherwise, in equilibrium the

informed hold more of the good news stocks and less of the bad news stocks, necessitating a risk
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premium to induce the uninformed to hold the risky assets.  Calculation shows that if private

signals are truly private (µk<1), then the expected excess return is increasing in αk, the fraction of

the signals about stock k that are private.

This result provides our main hypothesis: in comparing two stocks that are otherwise

identical, the stock with more private and less public information will have a larger expected

excess return.  This occurs because when information is private, rather than public, uninformed

investors cannot perfectly infer it from prices, and they consequently view the stock as being

more risky.

Uninformed investors could avoid this risk, but they chose not to do so. To completely

avoid this risk the uninformed traders would have to hold only money, but this is not optimal;

they receive higher utility by holding some of the risky stocks. They are rational, so they hold an

optimally diversified portfolio, but no matter how they diversify they are taken advantage of by

the informed traders who know better which stocks to hold.  Although the model has only one

trading period, it is easy to see that uninformed investors also would not chose to avoid this risk

by buying and holding a fixed portfolio over time.  In each trading period in an inter-temporal

model uninformed investors reevaluate their portfolios.  As prices change, they optimally change

their holdings.

The model demonstrates that the extent of private versus public information affects

equilibrium asset returns, but testing it requires a mechanism for measuring information-based

trading.3  This measure can be derived from a market microstructure model, and it is to this

derivation that we now turn.

3. Microstructure and Asset Prices

Consider what we know from the microstructure literature (see O’Hara [1995] for a

discussion and derivation of microstructure models).  Microstructure models can be viewed as

learning models in which market makers watch market data and draw inferences about the

underlying true value of an asset.  Crucial to this inference problem is their estimate of the

probability of trade based on private information about the stock.  Market makers watch trades,

                                                          
3 If a stock has more private information and an unchanged amount of public information its equilibrium expected
return falls.  This occurs because risk is reduced.  Here we keep the underlying information structure fixed and vary
the split of this information between public and private.
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update their beliefs about this private information, and set trading prices.  Over time, the process

of trading, and learning from trading, results in prices converging to full information levels.

As an example, consider the simple sequential trade tree diagram given in Figure 1.

Microstructure models depict trading as a game between the market maker and traders that is

repeated over trading days i=1,…,I.  First, nature chooses whether there is new information at the

beginning of the trading day, these events occur with probability α.  The new information is a

signal regarding the underlying asset value, where good news is that the asset is worth Vi, and

bad news is that it is worth Vi. Good news occurs with probability (1-δ) and bad news occurs

with the remaining probability, δ. Trading for day i then begins with traders arriving according to

Poisson processes throughout the day.  The market maker sets prices to buy or sell at each time t

in [0,T] during the day, and then executes orders as they arrive.  Orders from informed traders

arrive at rate µ (on information event days), orders from uninformed buyers arrive at rate εb and

orders from uninformed sellers arrive at rate εs.  Informed traders buy if they have seen good

news and sell if they have seen bad news. If an order arrives at time t, the market maker observes

the trade (either a buy or a sale), and he uses this information to update his beliefs.  New prices

are set, trades evolve, and the price process moves in response to the market maker’s changing

beliefs.  This process is captured in Figure 1.

Now suppose we view this problem from the perspective of an econometrician.  If we,

like the market maker, observed a particular sequence of trades, what could we discover about

the underlying structural parameters and how would we expect prices to evolve?  This is the

intuition behind a series of papers by Easley, Kiefer, and O’Hara (1996; 1997a; 1997b) who

demonstrate how to use a structural model to work backwards to provide specific estimates of

the risks of information-based trading in a stock.   They show that these structural models can be

estimated via maximum likelihood, providing a method for determining the probability of

information-based trading in a given stock.   In particular, the likelihood function induced by this

simple model of the trade process for a single trading day is
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where B and S represent total buy trades and sell trades for the day respectively, and

θ = (α, µ,  εΒ, εS, γ) is the parameter vector.  This likelihood is a mixture of distributions where

the trade outcomes are weighted by the probability of it being a "good news day" α(1−δ), a "bad

news day" (αδ), and a "no-news day" (1−α).

Imposing sufficient independence conditions across trading days gives the likelihood

function across I days

(5) ),|()|(
1

ii

I

i

SBLMLV θθ ∏
=

==

where (Bi, Si) is trade data for day i = 1,…,I and M=((B1,S1), …,(BI,SI)) is the data set.4

Maximizing (5) over θ given the data M thus provides a way to determine estimates for the

underlying structural parameters of the model ( i.e. α, µ, εΒ, εS, δ).   

This model allows us to use observable data on the number of buys and sells per day to

make inferences about unobservable information events and the division of trade between the

informed and uninformed.  In effect, the model interprets the normal level of buys and sells in a

stock as uninformed trade, and it uses this data to identify εΒ and εS.  Abnormal buy or sell

volume is interpreted as information-based trade, and it is used to identify µ.  The number of

days in which there is abnormal buy or sell volume is used to identify α and δ.  Of course, the

maximum likelihood actually does all of this simultaneously.  For example, consider a stock that

always has 40 buys and 40 sells per day.  For this stock, εΒ and εS would be identified as 40

(where the parameters are daily arrival rates), α would be identified as 0, and δ and µ would be

                                                          
4 The independence assumptions essentially require that information events are independent across days.  Easley,
Kiefer, and O’Hara [1997b] do extensive testing of this assumption and are unable to reject the independence of
days.
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unidentified.  Suppose, instead, that on 20% of the days there are 90 buys and 40 sells; and, on

20% of the days there are 40 buys and 90 sells.  The remaining 60% of the days continue to have

40 buys and 40 sells.  The parameters in this example would be identified as  εΒ = εS=40, µ=50,

α=0.4 and δ=0.5.

One might conjecture that this trade imbalance statistic is too simplistic to capture the

actual influence of informed trading.  In particular, because trading volume naturally fluctuates,

perhaps these trade imbalance deviations are merely natural artifacts of random market

influences, and are not linked to information-based trade as argued here.  However, it is possible

to test for this alternative by restricting the weights on the mixture of distributions to be the same

across all days.  This "random volume" model is soundly rejected in favor of information-

mixture derive above (see Easley, Kiefer, and O’Hara [1997b] for procedure and estimation

results). A second concern is that the model uses only patterns in the number of trades, and not

patterns in volume, to identify the structural parameters.5  It is possible to add trade size to the

underlying approach, in which case the sufficient statistic for the trade process is the four-tuple

(#large buys, #large sells, #small buys, and #small sales).   This greatly increases the

computational complexity, but as shown in Easley, Kiefer, and O’Hara [1997a], there appears to

be little gain in doing so as the trade size variables do not generally reveal differential

information content.  Given the extensive estimation required in this project, we have chosen to

use the simple model derived above; to the extent that this omits important factors, we would

expect the ability of our estimates to predict asset pricing returns to be reduced.

We now turn to the economic use of our structural parameters.  The estimates of the

model’s structural parameters can be used to construct the theoretical opening bid and ask

prices.6  As is standard in microstructure models, a market maker sets trading prices such that his

expected losses to informed traders just offset his expected gains from trading with uninformed

traders.  This balancing of gains and losses is what gives rise to the “spread” between bid and ask

prices.  As demonstrated in the Appendix, for the five parameter model analyzed here, the model

predicts the percentage opening spread on day i to be

                                                          
5 This number of trades approach is consistent with the findings of Jones, Kaul and Lipson [1994], who argue that
volume does not provide information beyond number of trades.
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where V*i is the unconditional expected value of the asset given by V*i = δVi + (1-δ)Vi, and σv is

the standard deviation of the daily percentage price change.  Intuitively, this equation yields

some natural, and economically reasonable, comparative statics: the higher the fraction of

informed traders (µ) or the more likely are information events (α), the greater is the spread; the

greater the arrival rates of uninformed orders (εΒ  and εS ) the smaller is the spread.  The standard

deviation enters because the market maker’s expected losses are higher the greater the

divergence in potential asset prices.  An important feature to note is that the absence of new

information (α) or traders informed of it (µ), results in a zero spread.  This reflects the fact that

only asymmetric information affects spreads when market makers are risk neutral.

The opening spread is easiest to interpret if we express it explicitly in terms of this

information-based trading.  It is straightforward to show that the probability that the opening

trade is information-based, PIN, is

(7)
BS

PIN
εεαµ

αµ
++

=

where αµ + εS+ εB is the arrival rate for all orders and αµ is the arrival rate for information-

based orders.  The ratio is thus the fraction of orders that arise from informed traders or the

probability that the opening trade is information-based.   In the economically sensible case in

which the uninformed are equally likely to buy and sell (εb= εs= ε) and news is equally likely to

be good or bad (δ = 0.5), the percentage opening spread equation in equation (6) simplifies to

(8)
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−
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6 Given any history of trades we can also construct the theoretical bid and ask prices at any time during the trading
day.  But in our empirical work we focus on opening prices so we provide here only the derivation for the opening
spread.
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Returning to our example of a stock that has trade resulting in estimated parameters

of εΒ = εS=40, µ=50, α=0.4 and δ=0.5, we see that PIN for this stock would be 0.2.  This means

that for this stock the market maker believes that 20% of the trades come from informed traders.

This risk of information based trade results in a spread , but the size of this spread also depends

on the variability of the value of the stock.  If this stock typically has a range of true values of $4

around an expected value on day i of $50 then its opening spread, Σ, would be predicted to be

$0.80 resulting in an opening percentage spread around $50 of 1.6%.

Neither the estimated measure of information-based trading nor the predicted spread is

related to market maker inventory because these factors do not enter into the model.  Instead,

these estimates represent a pure measure of the risk of private information.  More complex

models can also be estimated, allowing for greater complexity in the trading and information

processes.  Easley, Kiefer, and O’Hara [1996; 1997a; 1997b], Easley, Kiefer, O’Hara and

Paperman [1996], and Easley, O’Hara and Paperman [1998] have used these measures of

asymmetric information to show how spreads differ between frequently and infrequently traded

stocks, to investigate how informed trading differs between market venues, to analyze the

information content of trade size, and to determine if financial analysts are informed traders.

Whether asymmetric information also affects required asset returns is the issue of interest

in this paper.  The model and estimating procedure detailed above provide a mechanism for

determining the probability of information-based trading, and it is this PIN variable that we will

explore in an asset pricing context in Section 5 of this paper.  Asset pricing considerations,

however, are inherently dynamic, focussing as they do on the return that traders require over

time to hold a particular asset.  This dictates that any information-linked return must also be

dynamic, and hence we need to focus on the time-series properties of our estimated information

measure.  Prefatory to this, however, is the more fundamental problem of estimating PIN when

the underlying structural variables can be time-varying.

In the next section we address these estimation issues.  Using time series data for a cross

section of stocks, we maximize the likelihood functions given by our structural model.  We use

our estimates of the structural parameters to calculate PIN, and we investigate the temporal

stability of these estimates.  A fundamental difficulty in any empirical investigation is

determining whether the estimates actually measure what they purport to measure.  That is, since

the probability of information-based trading is inherently unobservable, a natural concern is that
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our estimates do not actually capture the underlying asymmetric information.  We address this

concern by examining how well our estimates do in explaining spread behavior.  It is generally

agreed that information-based trading affects spreads, and so we test the economic properties of

our estimated spread (6) using both cross-sectional actual spreads and the time-series of actual

spreads.  Having established the statistical properties and economic validity of our estimates, we

then address the link between information and asset-pricing in the following section.

4.  The Estimation of Information-based Trading

4.1 Data and Methodology

We estimate our model for a sample of all ordinary common stocks listed on the New York

Stock Exchange for the years 1983-1998.  We focus on NYSE-listed stocks because the market

microstructure of that venue most closely conforms to that of our structural model.  We exclude

REITS, stocks of companies incorporated outside of the U.S, and closed end funds.  We also

exclude a stock in any year in which it did not have at least 60 days with quotes or trades, as we

cannot estimate our trade model reliably for such stocks.  This leaves us with a sample of

between 1311 and 1846 stocks to be analyzed each year.

The likelihood function given in equation (5) depends upon the number of buys and sells

each day for each stock in our sample.  Transactions data gives us the daily trades for each of our

stocks, but we need to classify these trades as buys or sells.  To construct this data, we first

retrieve transactions data from the Institute for the Study of Security Markets (ISSM) and Trade

And Quote (TAQ) datasets.  We then classify trades as buys or sells according to the Lee-Ready

algorithm (see Lee and Ready [1991]).  This algorithm is standard in the literature and it

essentially uses trade placement relative to the current bid and ask quotes to determine trade

direction.7   Using this data, we maximize the likelihood function over the structural parameters,

θ = (α, µ, εΒ, εS, δ),  for each stock separately for each year in the sample period. This gives us

one yearly estimate per stock for each of the underlying parameters.8

                                                          
7 See Ellis, Michaely, and O’Hara [1999] for an analysis of alternative trade classification algorithms and their
accuracy.
8 We chose an annual estimation period because of the need to estimate the time series of the large number of stocks
in our sample.  The model can be estimated using as little as 60 trading days of data provided there is sufficient
trading activity.  We estimated our parameters over rolling 60-day windows for a sub-sample of stocks, but found
little difference with the annual estimates.
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The underlying model involves two parameters relating to the daily information structure (α,

the probability of new information, and δ, the probability that new information is bad news) and

three parameters relating to trader composition (µ, the arrival rate of informed traders, and εS and

εb, the arrival rates of uninformed buyers and sellers).  Information on µ, εS and εb accumulates

at a rate approximately equal to the square root of the number of trade outcomes, while

information on α and δ accumulates at a rate approximately equal to the square root of the

number of trading days.  The difference in information accumulation rates dictates that the

precision of our µ  and ε estimates will exceed that of our α and δ estimates, but the length of our

time series is more than sufficient to provide precise estimates of each variable.

The maximum likelihood estimation converges for almost all stocks.  Of more than 20,000

time series, only 716 did not converge.  These failures were generally due to series with days of

such extremely high trading volume compared to normal levels that convergence was not

possible.  Further, the estimation yielded only 456 corner solutions in δ, the probability of an

information event being bad news.  Such corner solutions arise because a sustained imbalance of

trading (e.g. more buys than sells) will result in the estimates of the probability of bad news

being driven to one or zero.  There are only 6 corner solutions found for α, the probability of any

day being an information day.9  This finding is reassuring as it suggests the economically

reasonable result that private information is a factor in the trading of every stock.

4.2 Distribution of Parameter Estimates

The time series patterns of the cross sectional distribution of the individual parameter

estimates are shown in Figure 2.  The parameter estimates generally exhibit reasonable economic

behavior.  The estimates of µ , εS and εb are related to trading frequency, and hence show an

upward trend as trading volume increases on the NYSE over our sample period.10  On the other

hand, the estimates of α and δ are stable across years, and so, as expected, they do not trend.

Our particular interest is in the composite variable PIN, the probability of information-

based trading.  PIN is computed from equation (7) using the yearly estimates of α, δ, µ , εS and

                                                          
9 The better performance of α over δ is not surprising, as only the fraction of days that have information events is
used for the estimation of δ, while the algorithm uses the whole sample in estimating α.  Indeed, corner solutions to
δ are mainly found in stocks with low α estimates.
10 These estimates also show a peak at the time of the 1987 market crash, and a fall-off in the low volume years
following the crash.
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εb, thus we obtain one estimate of PIN for each stock each year.  The estimated PIN is very

stable across years, both individually and cross-sectionally.  Panel A of Figure 3 shows the cross-

sectional pattern of PIN.  Not only is the median almost constant around 0.19, but the individual

percentiles also appear to be stable across years.   On an individual stock level, absolute changes

between years are relatively small. Panel B of Figure 3 shows the cumulative distribution of

year-to-year absolute changes in individual stock PIN. We find that 50% of absolute changes are

within 3 percentage points (out of a median of 19 percentage points), while 95% are within 11

percentage points.  Thus, individual stocks exhibit relatively low variability in the probability of

information-based trading across years.

An interesting question is how these PIN estimates relate to the underlying trading

volume in the stock.  We calculated the cross-sectional correlations between PIN and the

logarithm of average daily trading volume for each stock for each year of our sample.  The

average correlation over the 16 years in our sample is –0.54, with a range of –0.38 to –0.71.

Hence,  we find that across stocks within the same year, PIN is negatively correlated with trading

volume.  This is consistent with previous empirical work (see Easley, Kiefer, O’Hara and

Paperman [1996]) showing that actively traded stocks face a lower adverse selection problem

due to informed trading.  Note then that across stocks within a each year PIN is negatively

correlated with trading volume, while across time, PIN estimates remain constant, even though

trading volume increases.  These are exactly the patterns we would expect if PIN is capturing the

underlying information structure.

Given that the parameter estimates are stable across years, we pool the years to further

illustrate the distribution of the parameters across stocks.  Figure 4 shows these pooled

distributions for our estimated parameters, and Table 1 presents summary statistics.  It is clear

from the figure that the composite parameter PIN is rather tightly distributed around the mode

0.18, while α and, in particular, δ, are more dispersed over the parameter space.  The skewness

of δ is consistent with the generally rising stock prices over this period;  since stocks typically

did well, the probability of bad news was generally lower than that of good news.  We have

aggregated the uninformed trading variables to depict the balance between uninformed buying

and selling.  Over our time interval, uninformed traders were marginally more likely to sell,

while informed traders were more likely to buy.  This, too, is consistent with the economic
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conditions of our sample, as informed traders were better able to capture the benefits of good

news and thus rising stock prices.

In summary, we have been able to estimate our structural model for a cross-section of

stocks.  The individual parameter estimates appear economically reasonable, and the small

standard errors of our estimates indicate strong statistical significance.  The time-series of our

estimates indicate a remarkable stability, with very little year-to-year movement in our estimated

parameters.  Our contention is that the estimated variables measure the components of

information-based trading, and their combination into our PIN variable provides a concrete

measure of this risk for each stock.

A natural concern is that, while seemingly reasonable, these estimates are, by definition,

unverifiable: information-based trading is not observable, and so our estimates could be artifacts

of our estimating procedure, and not, as we claim, proxies for information.  As with any model,

however, the proof lies in its predictive power.  In particular, if our estimates are measuring

asymmetric information, then one obvious test is to see how well they do in explaining a

phenomena known to be related to information: spreads.  Equation (6) gives the predicted

relationship between our estimated variables and opening spreads, and so an important

evaluation of the model is how well it does in explaining actual spread behavior. Note that since

our estimating procedure uses only trade data, and not prices, spreads provide an independent

check on the validity of our approach.

4.3  Opening Spreads and Information-based Trading

We collected opening bid and ask quotes from the ISSM and TAQ data bases for each

stock in our sample for the time period 1983-1998.  The data were filtered to exclude any likely

errors.  The percentage opening spread was then calculated as the ask less the bid quote divided

by the quote midpoint.  The daily distribution of the percentage opening spreads is given in the

upper panel of Figure 5.  The data vividly illustrate the impact of the market crash of October 19,

1987.  While the immediate impact on spreads on that date is striking, a more intriguing finding

is that spreads in the upper quartile widen and do not return to pre-1987 levels for many years.

This contrasts sharply with median spreads and spreads in the lowest 5% of the distribution

(which are typically those of the most active stocks), which quickly return to their pre-crash
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levels, and then actually show a slight downward trend.  Consequently, the cross sectional

distribution of spreads became more dispersed in the period following the 1987 crash.

The across stock average opening spreads also follow a different time series process after

October 1987.  First, there is an increased time series variation after the crash, as shown in the

bottom panel of Figure 5, which depicts changes in the daily mean opening spread.  The increase

in variance is highly significant, as evidenced by the statistics from the variance homogeneity

test given in Table 2.  However, there is a more fundamental shift in the time series pattern of

spread changes. Table 2 shows the standard deviation, skewness and excess kurtosis of the

changes in the daily across stock mean spread.  Not only does the standard deviation increase,

but skewness and kurtosis are also much larger after October 1987, so that while the Shapiro-

Wilk test does not reject that the data follow a normal distribution before 1987, it strongly rejects

the null in the post-1987 period.  In particular, the post-1987 data is skewed to the right,

indicating that the upper tail is heavier than the lower tail, consistent with specialists now

widening the spread very fast in response to perceived uncertainty, whereas when spreads are

lowered, it is done in smaller steps.

Our model suggests two simple approaches for verifying how well our estimated

parameters relate to actual spreads.11  First, we can informally compare the pattern of actual

spreads in Figure 5 with that of our predicted spread, as given by equation (6).  Collating the

definition of the percentage spread on the left hand side of equation (6) with our operational

definition above, we note that the unconditional expected asset value, V*
i, is proxied by the quote

midpoint.  The predicted spread on the right hand side of equation (6) depends on our estimated

parameters and on the standard deviation of percentage returns. Thus, we calculated year by year

for each stock in the sample the standard deviation of returns using the daily returns from the

Center for Research in Security Prices (CRSP) daily files.  We then computed our predicted

percentage spread, which we denote by PISTD.  Hence, we obtain one estimate of PISTD each

calendar year for each stock in the sample.  Figure 6 gives the yearly distribution of this variable.

What is immediately striking is the similarity between the two series.  Both predicted and actual

spreads appear to jump in 1987, and while the medians recover, the upper quartiles widen.

Furthermore, the magnitudes of the percentiles in the two figures are broadly similar, though the

                                                          
11 In previous research (EKOP [1996]) we examined the relationship between opening spreads and PIN for a small
sample of stocks for a single year.  Here we examine the time series and cross sectional relationship between spreads
and PINs for nearly all NYSE stocks.
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predicted spread does not attain the same spikes as that of the actual opening spread, which is not

surprising as the predicted spread essentially is an average over all days of the year while the

actual spread is shown on a daily basis. Since our model allows only information to influence

spreads, we interpret these results as strong evidence in support of the economic reasonableness

of our estimates.

A second approach to test our estimates is to use regression analysis.  If our estimates

actually reflect information-based trading, then they should be able to predict spreads.  We ran

the cross-sectional regression

(9) SPREADi = β0 + β1PISTDi + νi

where SPREADi is the mean of stock i’s  opening percentage spread over all trading days of the

year, and PISTDi is the predicted percentage spread for stock i in that year.  Table 3 - Panel A

lists the regression parameter estimates for each year of our sample period.

The strong performance of the PISTD regressions provides compelling evidence of the

reasonableness of our model and our estimates.  The estimate of β1 is positive and statistically

significant, corresponding to our prediction that greater values of PISTD lead to higher spreads..

Moreover, the R2 of the regressions are quite high, ranging from .41 to .71. A perfect fit for our

model is β0  = 0 and β1= 1, but as we find a positive intercept and a slope less than one, the

predicted values are close but not exact.  A plausible explanation for the positive intercept is

simply that factors other than information affect opening spreads:  inventory, specialist market

power, and price discreteness are all likely culprits.  The under-estimate of β1 may reflect the

econometric difficulties introduced by the regressor being stochastic.  In particular, this problem

produces a negative correlation between the true regressor and the error term, causing β1 to be

biased downward (and β0 to be biased upward).

 It is well known that spreads are also influenced by factors such as volume.  Are we

merely picking up volume effects with our PISTD variable, and not the information effects we

claim?  To address this concern, we ran the estimating equation

(10) SPREADi = β0 + β2 LOGVOLi + νi
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where LOGVOLi is the logarithm of the average daily dollar trading volume for stock i in that

year. The results are given in Table 3- Panel B. We find that volume enters with the expected

effect, with the coefficient on β2 being both negative and statistically significant.  However, the

R2 of the LOGVOL regressions now range only from .38 to .46, significantly lower than the R2

obtained when we use PISTD to predict spreads.  Running the composite regression with both

PISTD and LOGVOL (not reported) reveals that both variables retain their statistical

significance, suggesting that both variables influence opening spreads.

These findings suggest that our model does a very good job of explaining actual spreads.

For our perspective here, these results also provide strong confirming evidence linking our

estimates with the underlying probability of information-based trading.  Having established this

link, we now turn to the deeper question of whether there is also a link between asset returns and

information-based trading.

5. Asset Pricing Tests

5.1.  Data and Methodology

For the asset pricing tests, we need to use additional data on firm characteristics and

returns.  These data are available from the monthly CRSP files and the annual COMPUSTAT

files.  Data are not available for all of our listed firms, so the sample used in our asset pricing

tests is drawn from the intersection of the NYSE listed firms on the CRSP and COMPUSTAT

files.  The monthly samples contain between 997 and 1316 stocks for the period 1984 to 1998,

yielding 180 monthly observations to aggregate over time.  One concern we note at the outset is

the length of our sample period.  Asset pricing tests typically employ long sample periods, but

transaction data, which we need to calculate our PIN variable, are not available prior to 1983,

and since we employ lagged PIN estimates, the asset pricing tests begin in 1984.  Longer sample

periods enhance the ability to find statistically significant factors influencing returns, so our

limited sample period imposes a particularly stringent constraint on our testing approach.

To allow for comparability with previous work, our methodology follows that of Fama

and French (1992) (FF).  Fama and French explored the determinants of the cross-sectional

variation in returns and found that beta, size, and book-to-market (i.e. the ratio of the book value

of equity to the market value of equity) all influenced returns.  Consequently, we include these

variables, as well as our estimated PIN variable, in our analysis of asset pricing returns.  We also
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explore whether the effect of PIN can be captured by previously suggested proxies for liquidity,

namely bid-ask spreads and share turnover, or by return variation, by including these variables in

the asset pricing regressions.

We calculate betas using the following approach.   Pre-ranking betas are estimated for

individual stocks using monthly returns from at least two years to, when possible, five years,

before the test year.  Thus, for each stock we use at least 24 monthly return observations in the

estimation. We regress these stock returns on the contemporaneous and lagged value-weighted

CRSP NYSE/Amex index.  Pre-ranking betas are then given as the sum of the two coefficients

(this approach, suggested by Dimson (1979), is intended to correct for biases arising from non-

synchronous trading).  Next, 20 portfolios are sorted every January on the basis of the estimated

betas, and monthly portfolio returns are calculated as equal-weighted averages of individual

stock returns.  Post-ranking portfolio betas are estimated from the full sample period, such that

one beta estimate is obtained for each of the 20 portfolios. Portfolio returns are regressed on

contemporaneous and lagged values of CRSP index returns. The portfolio beta, pβ̂ , is then the

sum of the two coefficients. We use individual stocks in the cross-sectional regressions, so

individual stock betas are taken as the beta of the portfolio to which they belong. Because the

portfolio compositions change each year, individual stock betas vary over time.

We calculate the other variables in our asset pricing tests as follows. Returns for each

stock are taken from the CRSP monthly return files, using the CRSP de-listing return in the

month of possible de-listing.  All returns are in excess of the one-month T-bill rates. PINit-1 is the

probability of information-based trading in year t-1 whose estimation is described in the previous

section.12  1itSIZE − is the logarithm of market value of equity in firm i at the end of year t-1.

Book value of common equity is obtained from the annual COMPUSTAT files (item 60).

Following Fama-French, we exclude firms with negative book values, and we set BE/ME values

outside the 0.005 and .995 fractiles equal to these fractiles, respectively. We take logs, such that

the explanatory variable, 1itBM − , is ln(BEt-1/ME t-1) for firm i.

For each month in the sample period 1983-1998, we ran the following cross-sectional

regression:
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(11) itittittittpttit BMSIZEPINR ηγγγβγγ +++++= −−− 14131210
ˆ ,

where itR  is the excess return of stock i in month l of year t (monthly subscripts omitted), jtγ ,

 j = 1,…, 5, are the estimated coefficients, and itη is the mean-zero error term. The coefficients

from the cross-sectional regressions are averaged through time, using the standard Fama-

MacBeth (1973) methodology.  Because this procedure is inefficient under time-varying

volatility, we also use the correction technique suggested by Litzenberger and Ramaswamy

(1979).  This correction weights the coefficients by their precisions when summing across the

cross-sectional regressions, and is essentially a weighted least-square methodology.  We report

both the unadjusted and the Litzenberger-Ramaswamy adjusted coefficients.

A problem with almost all variables provided as alternatives to beta as the explanatory

variable of the cross-section of returns (for example, size, book-to-market, earnings-to-price,

turnover, etc.) is that these variables depend on the security price.  Miller and Scholes [1982]

noted that the inverse of price may be a good measure of the conditional beta, and therefore

regression analysis may be capturing mis-measurement of beta, rather than some alternative

priced factor.  Berk [1995] makes a related point.  Because the estimation of PIN involves only

trades, we avoid this potential critique in our inclusion of PIN.

Our primary interest lies in the time series average of t2γ , namely the coefficient for

PIN.  Our hypothesis is that a higher risk of information-based trading for a stock translates into

a higher required return for that stock, so we expect a significantly positive average coefficient

on PIN.

5.2.  Results

Summary statistics on the variables in the asset pricing regressions are provided in Table

4.  The procedure on beta sorting portfolios resulted in a reasonably broad variation in beta, with

beta ranging from between 0.57 and 1.32, and our mean value of 1.0 is as expected.  As noted in

the previous section, our estimated PIN variable has a mean of 0.19, while ranging from 0 to

                                                                                                                                                                                          
12 We use PIN rather than the more complex variables in equation (6) as it is independent of prices, unlike PISTD,
and as it has an obvious interpretation as the probability of information-based trading.
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0.53. The means of the Size and Book to Market variables are also consistent with prior work on

this sample period.

 We first investigate the inter-relationships of the explanatory variables, and in particular

how PIN correlates with each variable.  Table 5 present time series means of the monthly

bivariate correlations of the variables in the asset pricing tests. One of the largest absolute

correlations is between size and PIN, with an average correlation of –0.575.  This finding

confirms results from earlier research that larger firms tend to have lower probabilities of

informed trading.13  One might expect that stocks with greater private information have higher

systematic volatility, and this appears to be the case: PIN is positively correlated with beta, with

a correlation of 0.156. We had weaker priors on the relation between PIN and BM, but note a

positive correlation (0.168). The correlation between return and PIN is rather low, but the

correlation between return and the other explanatory variables is similarly low.

Return and beta are negatively correlated, but, as discussed below, this is in line with

prior findings in this sample period. Likewise, the positive correlation between return and size is

opposite of that reported in earlier periods, but it is consistent with findings from our sample

period.  Finally, the low correlation between return and BM is not unexpected given Loughran’s

[1997] finding that book-to-market arises primarily in Nasdaq stocks, and our sample uses only

NYSE firms.

The results from the asset pricing tests are provided in Table 6.  The results give striking

evidence that that the risk of informed trading as captured by PIN is priced in the required

returns of stocks. Looking at the weighted least squares results, we find a positive and significant

coefficient on PIN (t-value 4.43). The point estimate of the PIN coefficient has the natural

interpretation that a difference of 10 percentage points in PIN between two stocks translates into

a difference in required return of 0.21 percent per month. This is an economically meaningful

and significant difference.  We also find a significant and positive coefficient on SIZE (t-value

9.57), and a significant, but negative, coefficient on BETA (t-value –5.87).  This latter finding,

while inconsistent with standard asset-pricing theory, is consistent with the findings of Fama and

French (1992), Chalmers and Kadlec (1998) and Datar, Naik and Radcliffe (1998) who

investigate similar sample periods. Book-to-Market is not significant, a finding not unexpected

given our earlier discussion.

                                                          
13 See Easley, Kiefer, O’Hara, and Paperman [1996].
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That PIN affects asset returns is consistent with the economic analysis motivating our

work.  We believe that the PIN variable captures aspects of the dynamic efficiency of stock

prices.  These dynamic effects arise because information-based trading affects not only the

spread, but the evolution of prices as well.  Our results are consistent with this dynamic

efficiency influencing the required returns for stocks.

5.3 Alternative Explanations

It is natural to ask whether PIN works in our asset pricing regressions because it is a

fundamental priced variable, or because it is serving as a proxy for some omitted variable.  There

are three obvious candidates, and innumerable less obvious candidates, for the omitted variable

designation.  The most obvious candidate is spreads.  We have shown that the probability of

information-based trade is an important determinant of spreads. Earlier researchers (for example,

Amihud and Mendelson (1986)) found a positive relation between spread and returns, so it could

be that PIN is serving as a proxy for spread.  Second, a stock with a high PIN is one with

substantial imbalances in trades, and thus is a stock whose price is likely to be highly variable.14

So it could be that PIN is serving as a proxy for the variability of returns on the stock.  Of course,

to the extent that this risk can be diversified away it should not be priced, and any

nondiversifiable component of the risk should be picked up by β.  But we know that CAPM does

not work well over this time period, so this risk could be positively related to observed average

excess returns.  Finally, there has been substantial interest in the role of volume, or turnover, in

explaining asset price behavior. Is PIN merely serving as a proxy for these measures? Earlier we

found that PIN and volume each played a role in explaining spread behavior.  We now consider

whether these separate effects also hold in asset pricing.

We consider each of these variables in turn, and while we show that they are correlated

with PIN as expected, we also show that when they are included in the returns regression they do

not eliminate the direct effect of PIN.  Specifically, we ran three regressions of the form

(12) itittittittittpttit XBMSIZEPINR ηγγγγβγγ ++++++= −−−− 1514131210
ˆ

                                                          
14 This relationship is not completely straightforward because although trade moves prices, public information
events, which in our model do not generate trade, also move prices.  So there could be stocks with low PIN, that is
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where Rit is the excess return of stock i in month l of year t (monthly subscripts omitted), jtγ are

the estimated coefficients, 1−itX is, respectively, the average opening percentage spread for stock

i in year t-1; the standard deviation of daily returns for stock i in year t-1; or a turnover and

volatility of turnover measure for stock i in year t-1; and itη is the mean-zero error term.  Results

of the regressions are reported in Table 7.

We first consider spread.  Consistent with our analysis in Section 4, we define the

variable SPREADit-1 to be the average of the daily opening percentage spreads for stock i in year

t-1.  We know from Table 5 that PIN and SPREAD are positively, but not perfectly, correlated.

Indeed, the relatively low .353 correlation reflects that spreads can be affected by many factors

other than information.  Is PIN or SPREAD the better predictor of returns?  We test this by first

including SPREAD in place of PIN in the asset pricing regression and then by including both

SPREAD and PIN in the regression. When SPREAD is included, and PIN is excluded, SPREAD

is marginally significant, but its coefficient is negative.15 This result is not what would be

expected from liquidity-based theories of asset returns.  When SPREAD and PIN are both

included, SPREAD becomes insignificant and its coefficient remains negative.  But PIN remains

highly significant (t-value=4.0) with the correct positive sign.  The inclusion of spread reduces

the coefficient on PIN only slightly from 2.1 to 1.9.

That it is PIN, and not SPREAD, that affects asset pricing returns is consistent with the

economic analysis motivating our work.  While traders undoubtedly care about spreads, they are

more concerned with the risk of holding the stock, and this is affected by the extent of private

information.  Information-based trading does give rise to spreads, but spreads in actual markets

can be affected by many other factors such as minimum tick sizes, specialist continuity rules, and

even market power.  These factors dictate that spreads will be, at best, a noisy proxy for the risk

of informed trading.  We believe our results here provide strong evidence that information plays

a deeper role, one beyond that captured, however imperfectly, in spreads.

We next consider whether PIN or the variability of returns on a stock is the better

predictor of excess returns.  We define STDit-1 to be the standard deviation of daily returns on

                                                                                                                                                                                          
little information based trade, and highly variable prices caused by the release of public information.  This is
consistent with our analysis in that public events can move the range of true values of the stock.
15 This result is consistent with the findings of Chalmers and Kadlec (1998).
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stock i in year t-1.  As expected, Table 5 shows that STD and PIN are positively correlated, with

a correlation coefficient of 0.240.  When STD is included in the pricing regression in place of

PIN, it is highly significant (TSTAT=-12.2) with a negative coefficient.  This also changes the

coefficient on β from negative and significant to positive and insignificant.  This occurs in part

because the β used in our regressions is the portfolio β and not the individual stock’s β.  Of more

importance for us is that when both STD and PIN are included the coefficient on PIN remains

positive and significant (TSTAT=3.05).  The effect of STD indicates the weakness of CAPM, or

at least our standard implementation of it, over this period.  But it has little effect on the pricing

of the probability of information based trade.

Finally, we consider whether PIN can be interpreted as a proxy for volume effects.

Volume can be measured in many ways, but previous research on asset pricing effects has

typically used turnover, or daily volume divided by shares outstanding.  This measure avoids any

of the price-beta concerns noted earlier, and also allows for greater comparability across stocks.

Datar, Naik and Radcliffe [1998] present evidence that there is a negative relationship between

turnover and returns.  Further, Anshuman, Chordia, and Subrahmanyam [2000] (ANS) argue that

volume effects are better captured by allowing both turnover and the volatility of turnover to

affect price behavior, and find that both variables negatively affect returns. We calculate share

turnover in each stock for each month in year t-3 to t-1, as the number of shares traded divided

by the number of shares outstanding. The natural logarithm of the average turnover is then used

in the asset pricing regressions for year t. As a proxy for the variability of turnover, we follow

ANS [2000] and employ the natural logarithm of the coefficient of variation of the monthly

turnover in years t-3 to t-1.  Including Turnover and CV turnover for each stock in the estimating

equation (without PIN) reveals a strong negative effect on returns of both variables, similar to the

findings in ANS [2000].  When PIN is included along with these variables, the coefficient on

PIN remains positive and significant (t-stat 2.917).16  Thus, it appears that the influence of PIN

on returns is not proxying for the effects of volume.

In summary, the positive relationship between expected return and the probability of

informed trading seems be to robust to the inclusion of different explanatory variables in the

                                                          
16 Including only turnover we find similar effects.  Turnover alone enters negatively and significantly, while
Turnover and PIN together are both significant (t-stats of -9.88 and 2.423, respectively) and retain their predicted
signs.
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cross-sectional regressions.  Thus, there is evidence that the risk of informed trading is, indeed,

an important determinant of the required stock returns.

6. Conclusions

We have investigated the role of information-based trading in affecting asset returns.  Our

premise is that in a dynamic market, asset prices are continually adjusting to new information.

This evolution dictates that the process by which asset prices become informationally efficient

cannot be separated from the process generating asset returns.  Our theoretical model suggests

that private information influences this price evolution, and in so doing affects the risk of

holding the asset.  We set out to test this link between asset prices and private information by

using the structure of a sequential trade market microstructure model to derive an explicit

measure of the probability of information-based trading for an individual stock.   We then

estimated this probability for a large sample of NYSE-listed stocks.  Incorporating our

probability estimates into a standard asset pricing framework revealed strong support for our

hypothesis:  Information-based trading has a large and significantly positive effect on asset

returns.  Indeed, our estimated information variable and firm size are the predominant factors

explaining returns.

That the risk of information-based trading affects asset returns raises a host of important

questions regarding asset pricing in general, and asset pricing models in particular.  Brevity

precludes addressing all of these, but we do feel it useful to consider three general issues.  These

involve the theoretical basis for our result, the empirical properties of PIN, and the implications

of our results for future research.

Of particular importance is why this can occur in a seemingly efficient capital market.  A

natural objection to all candidates put forward to explain asset returns is that, with the exception

of systematic risk, the actions of arbitrageurs should remove any such proposed influence on the

market.  While this may be accurate for some factors, it is not accurate with respect to

asymmetric information. In a world with asymmetric information, an uninformed investor is

always at a disadvantage relative to traders with better information.  In bad times, this

disadvantage can result in the uninformed trader’s portfolio holding too much of the stock; in

good times, the trader’s portfolio has too little of the stock. Holding many stocks cannot remove
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this effect because the uninformed do not know the proper weights of each asset to hold.  In this

sense, asymmetric information risk is systematic because, like market risk, it cannot be

diversified away.17

In our empirical work we found that PIN, the probability of information-based trading

variable, actually dominated all other variables, including β, in explaining returns.  Given our

argument that information has a systematic component, this should not be unexpected.  We

caution, however, that our results do not mean that only private information matters in asset

pricing.  Our theoretical model demonstrates that this is not true; many factors affect the risk of

holding assets, and so, too, should they affect asset pricing.  What our results do suggest is that

the effects of information may be more pervasive, and important, than our simple theories, and

asset-pricing models, have thus far considered.

The success of our PIN variable naturally leads to questions regarding its empirical

properties.  A very useful exercise would be to examine the cross-sectional determinants of PIN,

and in particular how PIN relates to variables such as industry or accounting measures. Not

surprisingly, this is a large endeavor and one we hope to address in future work.  One benefit of

such a project could be to determine a set of "sufficient statistics" for PIN that involves

accounting data.  As is clear from this paper, the actual calculation of PIN requires a

tremendous amount of computation.  Replicating PIN with more easily available data would

make it easier to apply, and would have the added benefit of explaining why it is that some

accounting data appears to be informative for asset pricing.

Finally, our results here suggest a number of directions for future research.  There is now

a substantial body of work suggesting that volume, and volume-linked variables, play an

important role in asset pricing.  We have shown here that PIN is not a volume effect, but there

remains the intriguing question of whether volume effects may be not be proxying for some of

the underlying components of PIN such as the rate of uninformed trade or the probability of

new information.  Investigating the role of the components of PIN would provide insight into

this issue.  An equally intriguing issue is momentum.  There is now wide-spread, if in some

cases grudging, acceptance of the fact that momentum affects asset prices.  These momentum

                                                          
17 It is also not the case in our model that the informed traders will simply trade the effect because they too face risk
in holding the asset.  Informed traders are also  risk averse, and so there will always be a premium to hold the risky
asset.  However, because the stock is relatively less risky for the informed, in equilibrium their expected holdings of
the asset exceed that of the uninformed.  See Easley and O’Hara [2000] for more analysis and discussion.
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effects appear to arise over relatively short time intervals (months 3-12), and they pose a

challenge for virtually all asset pricing theories.  One possible explanation is that momentum is

somehow linked to the underlying information structure of the stock.  Testing for such effects

using our approach would require finer estimates (i.e. monthly) of our PIN variable, as well as

potentially a longer time frame.  We hope to consider this in future research.
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Appendix

In this section we provide the derivations of bid and ask prices that lead to the spread

equation (6) in the text. Let P(t) = (Pn(t), Pb(t), Pg(t)) be the market maker’s belief about the events

"no information event" (n), "bad news" (b), and "good news" (g) conditional on the history of trade

prior to time t.  So P(0) = (1−α, αδ, α(1−δ)).  The expected value of the asset on day i conditional on

the history of trade prior to time t is thus

(A.1) .V)t(PV)t(PV)t(P]t|V[E igib
*
ini ++=

At any time t, the zero expected profit bid price, b(t), is the market maker’s expected value of

the asset conditional on the history prior to t and on the arrival of an order to sell at t.  Calculation

shows that the bid at time t is,
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Similarly, the ask at time t, a(t), is the market maker’s expected value of the asset conditional on the

history prior to t and on the arrival of an order to buy at time t.  Thus the ask at time t is

(A.3 [ ] [ ]( )t|VEV
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These equations demonstrate the explicit role played by arrival rates for informed and

uninformed traders in determining trading prices.  If there are no informed traders (µ = 0), then trade

carries no information, and so the bid and ask are both equal to the prior expected value of the asset.

Alternatively, if there are no uninformed sellers (εS=0) then iV)t(b = ; similarly, if the are no

uninformed buyers then iV)t(a =  for all t.  Generally, both informed and uninformed traders will be

in the market, and so the bid is below ]t|V[E i  and the ask is above ]t|V[E i .  This spread results

from the market maker setting prices to protect her from expected losses to informed traders.
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The factors influencing the spread are easier to identify if we write the spread explicitly.  Let

Σ(t) = a(t) - b(t) be the spread at time t. Then

(A.4) [ ]( ) [ ]( )ii
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The spread at time t can be viewed in two parts.  The first term is the probability that a buy is

information - based times the expected loss to an informed buyer, and the second is a symmetric

term for sells.

The percentage spread for the opening quotes will be important in our empirical work.  It is

(A.5)
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whereσV  is the standard deviation of the daily percentage changes in the value of the asset.  This

standard deviation reflects the potential loss to the market maker from trading with informed traders.

The remaining terms in the spread equation reflect the risk of trading with an informed trader.  This

risk is clearly a crucial factor influencing the size of spreads.

Finally, we note that when εb=εs=ε and δ=0.5 equation A.5 simplifies to

(A.6) 
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Table 1: Parameter Summary Statistics

The table contains time series averages across years 1983-98 of cross sectional means, medians, standard deviations,
and the median of parameter standard errors from the likelihood estimation.

Variable Mean Median StDev Median StErr

alpha  0.283  0.281  0.111 0.035

delta  0.331  0.309  0.181 0.066

mu 31.075 21.303 32.076 0.996

eb 22.304 11.437 31.519 0.324

es 24.046 13.095 31.427 0.299

PIN  0.191  0.185  0.057 0.019

Table 2:  Opening Spreads

The table contains statistics on the changes in the daily across stock mean spread. The sample period is 1983-98
with the month of October 1987 excluded, and statistics on the two subsamples before and after October 1987 are
calculated. The Shapiro-Wilk tests that the data come from a normal distribution. The Brown-Forsythe Modified
Levene is a test for equality of variance between the two subperiods, and it follows a F(1,3866) distribution.

Period

Full Pre Oct. 1987 Post Oct. 1987

N 3868 1071 2797

St. Dev. 0.049 0.040 0.053

Skewness 0.499 0.149 0.548

Excess Kurtosis 6.027 1.095 6.181
Shapiro-Wilk p-value 0.001 0.971 0.001

Brown-Forsythe modified Levene
F-value

43.08
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Table 3: Spread regressions

The table contains statistics from the cross-sectional regressions

iii PISTDSPREAD νββ ++= 10 , and

iii LOGVOLSPREAD νββ ++= 20

where SPREADi is the mean percentage opening spread for stock i during year t, PISTDi is the percentage opening
spread predicted by the structural model, and defined by equation (6), and LOGVOLi is the logarithm of the average
daily dollar trading volume for stock i in year t. Regressions are run each year in the sample period 1983-98 and
with all years pooled. White heteroskedasticity consistent standard errors are given in parentheses.

Panel A Panel B
Year Intercept Pistd Adj. R2 Intercept Logvol Adj. R2

All 0.29 0.83 0.598 8.95 -0.52 0.406
( 0.03) ( 0.02) ( 0.11) ( 0.01)

1983 0.43 0.68 0.409 6.01 -0.34 0.383
( 0.08) ( 0.06) ( 0.24) ( 0.02)

1984 0.53 0.70 0.455 7.05 -0.41 0.409
( 0.09) ( 0.07) ( 0.29) ( 0.02)

1985 0.31 0.86 0.643 7.46 -0.44 0.430
( 0.04) ( 0.04) ( 0.30) ( 0.02)

1986 0.01 0.93 0.584 8.58 -0.50 0.395
( 0.09) ( 0.07) ( 0.42) ( 0.03)

1987 0.14 0.68 0.565 8.43 -0.48 0.417
( 0.09) ( 0.05) ( 0.35) ( 0.02)

1988 0.46 0.82 0.487 9.63 -0.57 0.438
( 0.07) ( 0.06) ( 0.42) ( 0.03)

1989 0.44 0.80 0.576 9.52 -0.56 0.419
( 0.10) ( 0.07) ( 0.46) ( 0.03)

1990 0.25 0.93 0.714 11.59 -0.70 0.455
( 0.09) ( 0.06) ( 0.53) ( 0.04)

1991 0.30 0.93 0.727 12.19 -0.73 0.456
( 0.08) ( 0.05) ( 0.51) ( 0.03)

1992 0.53 0.79 0.586 12.02 -0.72 0.445
( 0.17) ( 0.11) ( 0.59) ( 0.04)

1993 0.13 0.99 0.668 9.93 -0.58 0.438
( 0.07) ( 0.05) ( 0.48) ( 0.03)

1994 0.23 0.96 0.612 8.90 -0.51 0.437
( 0.07) ( 0.06) ( 0.37) ( 0.02)

1995 0.49 0.72 0.533 8.49 -0.49 0.422
( 0.11) ( 0.09) ( 0.36) ( 0.02)

1996 0.22 0.85 0.603 8.32 -0.48 0.397
( 0.07) ( 0.06) ( 0.40) ( 0.03)

1997 0.21 0.77 0.627 7.82 -0.45 0.406
( 0.07) ( 0.06) ( 0.38) ( 0.02)

1998 0.07 0.81 0.613 7.85 -0.45 0.420
( 0.06) ( 0.05) ( 0.35) ( 0.02)



36

Table 4: Summary statistics

The table contains means, medians, minimum value and maximum values on the variables
included in the asset pricing regressions given by equations (11) and (12). All statistics are
calculated from the full sample, that is, pooling all months. Return is the percentage monthly
return in excess of the one-month T-bill rate. Betas are portfolio betas estimated from the full
period using 20 portfolios. Pin is the probability of informed trading given by equation (7). Size
is the natural logarithm of year-end market value of equity, and BM is the natural logarithm of
book value of equity divided by market value of equity and trimmed at the 0.005 and 0.995
fractiles. Spread is the yearly average of the daily opening spreads in each stock. Std is the daily
return standard deviation for stock i in year t. Turnover is the natural logarithm of the average
monthly turnover year t-3 to t-1, and CVturn is the coefficient of variation of the monthly
turnover year t-3 to t-1.

Variable Mean Median Min Max

Return  0.74  0.47 -100.60 339.69

Beta  1.00  1.03    0.57   1.32

Pin  0.19  0.18    0.00   0.53

Spread  1.52  1.14    0.14  15.07

Size 13.29 13.30    6.65  18.62

Bm -0.52 -0.47   -3.35   2.39

Std  2.10  1.88    0.46  14.92

Turnover  1.56  1.59   -2.33   4.37

CVturn -0.68 -0.69   -2.07   1.30

Table 5: Simple Correlations

The table contains the time series means of monthly bivariate correlations of the variables in the
asset pricing tests.

Beta Pin Size BM Spread Std Turn-
over

CVturn

Return -0.013 -0.006  0.022 -0.005 -0.020 -0.036 -0.021 -0.018

Beta  0.157 -0.188  0.006  0.200  0.406  0.283  0.068

Pin -0.576  0.168  0.353  0.240 -0.187  0.412

Size -0.384 -0.708 -0.494  0.123 -0.545

BM  0.274  0.113 -0.030  0.161

Spread  0.748 -0.116  0.396

Std  0.294  0.332

Turnover -0.006



37

Table 6: Asset pricing tests

The table contains time series averages of the coefficients in cross-sectional asset pricing tests
using standard Fama-MacBeth (1973) methodology and Litzenberger-Ramaswamy (1979)
precision weighted means.

itittittittpttit BMSIZEPINR ηγγγβγγ +++++= −−− 14131210
ˆ ,

where  Rit is the excess return of stock i in month l of year t (monthly subscripts omitted), jtγ , j

= 1,…, 5, are the estimated coefficients, and itη is the mean-zero error term. Betas are portfolio

betas calculated from the full period using 20 portfolios. PINit-1 is the probability of information-
based trading in stock i of year t-1. SIZEit-1 is given as the logarithm of market value of equity in
firm i at the end of year t-1, and  BMit-1is ln(BEt-1/ME t-1) for firm i in year t-1. T-values are given
in parentheses.

Beta Pin Size BM

Fama-MacBeth -0.201  1.768  0.150  0.029
(-.413) (2.473) (2.593) (0.270)

L-R WLS -0.600  2.101  0.160  0.025
(-5.87) (4.426) (9.567) (0.681)
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Table 7: Alternative Explanations

The table contains time series averages of the coefficients in cross-sectional asset pricing tests
using standard Fama-MacBeth (1973) methodology and Litzenberger-Ramaswamy (1979)
precision weighted means.

itittittittittpttit XBMSIZEPINR ηγγγγβγγ ++++++= −−−− 1514131210
ˆ ,

where  Rit is the excess return of stock i in month l of year t (monthly subscripts omitted), jtγ , j

= 1,…, 4, and x, are the estimated coefficients, and itη is the mean-zero error term. Betas are

portfolio betas calculated from the full period using 20 portfolios. PINit-1 is the probability of
information-based trading in stock i of year t-1. SIZEit-1 is given as the logarithm of market value
of equity in firm i at the end of year t-1, and  BMit-1 is ln(BEt-1/ME t-1) for firm i in year t-1. The
control variable Xit-1 is, respectively, in panel A, the average opening percentage spread for firm i
in year t-1, and in panel B, the standard deviation of daily returns for firm i in year t-1.   In panel
C, we include the variables Turnover and the Coefficient of variation of turnover (CVturn).
Turnover is the natural logarithm of the average monthly turnover year t-3 to t-1, and CVturn is
the coefficient of variation of the monthly turnover year t-3 to t-1.  T-values are given in
parentheses.

Panel A.

Beta Pin Size BM Spread

Fama-MacBeth -0.171  0.105  0.013 -0.043
(-.356) (2.134) (0.125) (-.541)

L-R WLS -0.535  0.082  0.016 -0.036
(-5.23) (4.433) (0.441) (-1.62)

Fama-MacBeth -0.199  1.694  0.144  0.020 -0.034
(-.414) (2.513) (2.868) (0.195) (-.429)

L-R WLS -0.559  1.909  0.125  0.023 -0.027
(-5.44) (3.999) (5.876) (0.628) (-1.20)
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Panel B.

Beta Pin Size BM Std

Fama-MacBeth  0.195  0.047 -0.033 -0.301
(0.444) (1.014) (-.321) (-2.65)

L-R WLS -0.010  0.029 -0.033 -0.327
(-.089) (1.851) (-.877) (-12.2)

Fama-MacBeth  0.168  1.409  0.077 -0.026 -0.294
(0.385) (2.144) (1.630) (-.254) (-2.59)

L-R WLS -0.033  1.451  0.060 -0.027 -0.319
(-.302) (3.050) (3.270) (-.715) (-11.8)

Panel C.

Beta Pin Size BM Turnover CVTurn

Fama-MacBeth -0.084  0.108  0.028 -0.314 -0.211
(-.192) (1.946) (0.268) (-3.37) (-2.51)

L-R WLS -0.293  0.125  0.028 -0.344 -0.178
(-2.71) (7.319) (0.755) (-10.3) (-2.76)

Fama-MacBeth -0.054  1.255  0.127  0.031 -0.298 -0.243
(-.126) (1.645) (2.201) (0.300) (-3.11) (-2.91)

L-R WLS -0.323  1.425  0.147  0.030 -0.324 -0.213
(-2.96) (2.917) (7.908) (0.818) (-9.53) (-3.25)
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Figure 1.  Tree Diagram of the Trading Process. α is the probability of an information event, δ is the probability of a low signal, µ

is the rate of informed trade arrival, εb is the arrival rate of uninformed buy orders and εs is the arrival rate of uninformed sell orders.

Nodes to the left of the dotted line occur once per day.

Information Event Occurs α

Information Event Does Not Occur (1−α)

Signal Low δ

Signal High (1−δ)

Once per Day

Buy Arrival Rate:  εb

Sell Arrival Rate:  εs + µ

Buy Arrival Rate:  εb + µ

Sell Arrival Rate:  εs

Buy Arrival Rate:  εb

Sell Arrival Rate:  εs
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Figure 2: Parameter distributions
The figure shows the cross-sectional distribution over time of the estimated parameters in the microstructure model
given by the likelihood function in equation (2). Panel A gives the annual cross-sectional mean of the trading
frequency parameters, εb, εs and µ. Panel B shows the 5th, 25th, 50th, 75th and 95th percentiles each year in the sample
period for the cross-sectional distribution of α, the probability that an information event has occurred. Panel C
shows same percentiles for δ, the probability of an information day containing bad news.

Panel A: Yearly means of trading frequency parameters, εb, εs and µ..

Panel B: Yearly distributions of the probability of information event, α.



42

Panel C: Yearly distributions of the probability of an information day containing bad news, δ.



43

Figure 3: PIN distributions
The figure shows the cross-sectional distribution of the estimated probability of information based trading, PIN,
given by equation (7). Panel A shows the 5th, 25th, 50th, 75th and 95th percentiles each year in the sample period for
the cross-sectional distribution of PIN. Panel B shows the cumulative distribution of absolute price changes from
year t-1 to year t of individual stock PIN estimates.

Panel A: Yearly distribution of PIN.

Panel B: Cumulative distribution of yearly absolute changes in PIN.
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Figure 4: Parameter distributions with pooled data
The figure shows the empirical distribution of the microstructure model parameters with all stocks and all years
pooled. Panel A gives the distribution of α, the probability that an information event has occurred. Panel B shows
the distribution for δ, the probability of an information day containing bad news. Panel C contains the distribution
for PIN. Panel D shows the distribution of the uninformed order flow imbalance, (εb-εs)/(εb+εs).

Panel A: Distribution of α, the probability that an information event has occurred.

Panel B: Distribution of δ, the probability of an information day containing bad news.
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Panel C: Distribution of PIN.

Panel D: Distribution of uninformed order flow imbalance, (εb-εs)/(εb+εs).
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Figure 5: Opening spreads
The figure shows opening percentage spreads in the sample of NYSE stocks retrieved from ISSM. Panel A contains
the daily cross-sectional distribution represented by the 5th, 25th, 50th, 75th and 95th percentiles. Panel B indicates the
volatility pattern by showing the first difference of the mean percentage opening spread.

Panel A: Daily cross-sectional distribution of opening spreads.

Panel B: Daily change in the mean percentage opening spread.
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Figure 6: Distribution of PISTD
The figure contains percentiles from the cross-sectional distribution of PISTD for each year in the sample period
1983-98. PISTD is defined by equation (5), and it is equal to the opening spread predicted by the structural model.
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