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Preface
This document is a collection of teaching notes from a one-semester PhD course given in the Fall of 2003. 
My intent was to cover some of the empirical approaches to market microstructure, the theory that motivated 
them, and the results from time series analysis necessary to understand them. I assume that the reader has 
some prior exposure to or a working knowledge of basic financial economics and statistics, but beyond this 
the presentation is self-contained.

Part I discusses the economic structure underlying the martingale property of security prices, and discusses 
some preliminary features of actual security price data. I then turn to consideration of fixed transaction costs 
and the Roll (1984) model of the bid-ask spread, which then becomes the central construct going forward. In 
particular, the Roll model is used to introduce moving-average and autoregressive representations of time 
series. The next two sections cover the basic asymmetric information models: the sequential trade and 
continuous auction approaches. I then return to the Roll model and discuss generalizations that incorporate 
asymmetric information. These generalizations all feature a transaction price that behaves as random walk 
(the efficient price) plus noise.  The last section of Part I turns to general methods for characterizing 
random-walk and noise components from statistical evidence.  All of the statistical specifications discussed 
in Part I are univariate representations of price changes.

Part II discusses trades, i.e., quantities that can be signed "buy" or "sell", usually from the viewpoint of a 
customer demanding liquidity. Trades constitute an essential component of the asymmetric information 
models described in Part I. They also give rise to what have historically been called "inventory control 
effects". Part II discusses basic inventory control models. The discussion then shifts to multivariate time 
series models, specifically those that involve prices and trades. I examine purely statistical models (vector 
autoregressions), and discuss characterizations of random-walk and noise components in these models. 
These results are generalizations of the univariate results. I discuss a number of structural economic models 
that fit into this framework. It is logical at this point to consider estimates of information asymmetry based 
solely on trades (the "probability of informed trading", PIN). Another useful generalization involves 
multiple prices on the same security.

Electronic limit order books have emerged as the preeminent security market structure. Part III discusses the 
economics of limit orders and markets organized around them. Part IV describes links between market 
microstructure and asset pricing. These last two areas are especially active fields of research.

It is sometimes useful to have a sense of the actual trading institutions. A descriptive piece on US equity 
markets (originally written as a separate working paper) is included in the appendix to this document.

The bibliography to this ms. has live web links. Some of the links are to working paper sites. Others are 
directly to journals, JSTOR or Econbase. You (or your institution) may need a subscription to follow these.

The scope of this manuscript is limited, and the selection of material is idiosyncratic.  It is most certainly not 
a comprehensive treatment of the field of market microstructure. A partial list of omitted topics would 
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include: transaction cost measurement; comparative market design; the "industrial organization" aspects of 
market structure (fragmentation, consolidation, etc.); behavioral aspects of trading; experimental evidence; 
the role of time (duration models, asynchronous trading, etc.); price/volume analyses. In addition, the paper 
is primarily concerned with equity markets. The microstructures of bond, foreign exchange, futures and 
options markets are different.

Nor is the book a full treatment of time series analysis. In fact, there are many excellent books on time series 
analysis. Why attempt the awkward task of bringing this material into a microstructure treatise at all? There 
are several reasons. In the first place, time series analysis concepts are useful (perhaps essential) to critically 
evaluating the empirical work in the field. Second, the interplay between economic and statistical 
microstructure models often helps to clarify both. As a final and perhaps more subtle point, exposition in 
most statistics texts (coverage, sequencing, balance) is usually driven, implicitly at least, by the nature of the 
data to be modeled. It is a fact that most applications and illustrations in the extant literature of time series 
econometrics are drawn from macroeconomics. Now a theorem is a theorem irrespective of the sampling 
frequency. But microstructure data and models are distinctive: normality is often an untenable assumption; 
sample sizes are usually enormous; measurement of "time" itself is open to various interpretations. 
Moreover, topics such as random-walk decompositions and cointegration, which might walk on in Act IV of 
a macroeconomic analysis, merit starring roles in microstructure dramas. It is my hope that seeing this 
material organized from a microstructure perspective will help readers to apply it to microstructure problems.

The notes contain a few assigned problems and empirical "cases". Problems look like this:

Problem 0.1 Information asymmetries in the gold market

In the following model, what is the implied price impact of a $1M gold purchase? ...

Where I've worked out the answer, it is indicated as:

Answer 

The value of $0.02 per ounce is obtained as follows ...

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:32:17



ü Note:

The answers are not distributed with the pdf version of this document. 

Although this document is text of lecture notes that can be printed or viewed on a screen, it is also a 
computer program. It was composed in Mathematica, a software package for working with symbolic 
mathematics. The "code" for many of the derivations, solutions, graphs, etc. is embedded in the text. For the 
sake of expositional clarity, display of this code is suppressed in the printed and pdf versions of the 
document. (Large sections of code are identified by "Mathematica" in the right-hand margin.) If you're 
curious, though, you can download the Mathematica notebook and examine and/or run the code. To view 
the code, you'll need the (free) MathReader, available at www.wolfram.com. To run the code, you'll need 
the full Mathematica system.
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 Chapter 1. Market microstructure: an overview

Market microstructure is the study of the trading mechanisms used for financial securities. 

There is no “microstructure manifesto," and historical antecedents to the field can probably be found going 
back to the beginning of written language. But at some point, the field acquired a distinct identity. As good a 
starting point as any is the coinage of the term “market microstructure” in the paper of the same title by 
Garman (1976):

“[W]e depart from the usual approaches of the theory of exchange by (1) making the assumption of 
asynchronous, temporally discrete market activities on the part of market agents and (2) adopting a 
viewpoint which treats the temporal microstructure, i.e., moment-to-moment aggregate exchange 
behavior, as an important descriptive aspect of such markets.”

Analysis from this perspective typically draws on one or more of the following themes.

ü Sources of value and reasons for trade

In many economic settings, the value of something is often thought to possess private and common 
components. Private values are idiosyncratic to the agent and are usually known by the agent when the 
trading strategy is decided. Common values are the same for everyone in the market and are often known or 
realized only after trade has occurred.

In security markets, the common value component reflects the cash flows from the security, as summarized 
in the present value of the flows or the security’s resale value. Private value components arise from 
differences in investment horizon, risk-exposure, endowments, tax situations, etc. Generally, common value 
effects dominate private value effects.

A necessary condition for gains from trade within a set of agents is contingent on some sort of 
differentiation. In modeling, this is often introduced as heterogeneous private values.
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ü Mechanisms in economic settings

Once motives for trade are established, microstructure analyses generally focus on the mechanism, or 
protocol, used to effect trade. 

Most economists first encounter the Walrasian auction. An auctioneer calls out a hypothetical price, and 
agents specify their excess demands. The process iterates until the total excess demand is zero. This 
mechanism is rarely encountered in practice (the London gold "fixing" being the most important example). 
It is nevertheless a useful point of departure for modeling, and is frequently used as a basis for computing 
the efficiency of a set of trades.

Here are some of the more common mechanisms:

• When there are two agents, trade is accomplished by bargaining. Ultimatum situations arise when one 
side can (credibly) make a “take it or leave it” offer. When there is the possibility of counter-offers, 
we have sequential bargaining.

• When there is one seller and many potential buyers, we often encounter an auction.

• When there have many buyers and many sellers convening at a single time, we have a call market. 
(On securities exchanges organized as floor markets, the convening is often coordinated by having an 
exchange representative “call” the security.)

• In continuous security markets, trades can potentially occur at any time. Continuous security markets 
are frequently categorized as dealership (quote driven) or double auction (order driven) markets.

Most real-world security markets are hybrids. Continuous markets dominate, but there are a fair number of 
periodic call markets as well. Furthermore, although security markets viewed from afar usually involve 
many agents, some interactions viewed closely resemble bargaining situations. As a result, economic 
perspectives from bargaining and auction literatures (which predate financial market microstructure) are 
often useful.

ü Multiple characterizations of prices

There is rarely a “single” price in microstructure analyses.  Prices are sometimes actual trade prices; 
sometimes they are bids or offers (proposed prices). Typically, the price depends on agent’s identity, 
whether she’s buying or selling, the market venue, etc.
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ü “Liquidity”

Liquidity is a summary quality or attribute of a security or asset market. There are no formal definitions, 
except those that are very context-specific. The underlying qualities are sufficiently widely accepted to make 
the term useful in practical and academic discourse.

Here are some of the component attributes of “liquidity”. Liquidity is like the static concept of elasticity 
(“How much will an order (incremental demand or supply) move the price?”. Liquidity, however, also has 
time and cost dimensions. (How much will it cost me to trade? How long will it take me to trade?)

“In a liquid market, you can trade a large amount without moving the price very much. Any price 
perturbations caused by the trade quickly die out.”

A common definition of liquidity is: “Depth, breadth, resilience”

• Depth. If we look a little above the “current” market price, there is a large incremental quantity 
available for sale. If we look a little below the current price, there is a large incremental quantity that 
is sought (by a buyer or buyers).

• Breadth. The market has many participants.

• Resilience. Price impacts caused by the trading are small and quickly die out.

Where does liquidity come from? Here is one thought-provoking viewpoint:

Liquidity is created through a give and take process in which multiple counterparties selectively reveal 
information in exchange for information ultimately leading to a trade.

The excerpt is taken from the offering materials for the Icor Brokerage (an electronic swaps platform).

One sometimes encounters the term "liquidity externality. This is a network externality. As more agents 
participate in a market, the market clearing price will become more stable (less noisy). This benefits the 
individual participants.

ü Econometric issues 

Microstructure time series are distinctive. Market data are typically:

• Discrete events realized in continuous time (“point processes”)

• Well-ordered. 

Most macroeconomic data are time-aggregated. This gives rise to simultaneity, and findings that must 
be qualified accordingly. For example, quarterly labor income and quarterly consumption expenditure 
are postively correlated. We can estimate a linear least-squares relation between the two, but we won't 
be able to say much about causality. Market events, however, are typically time-stamped to the 
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second. This supports stronger conclusions about causality (at least in the post hoc ergo propter hoc 
sense).

• Driven by unspecified (and unobserved) information processes with time-varying characteristics

• Detailed (e.g., the state of a single limit order book is specified by numbers of orders and quantities at 
all price points)

Microstructure data samples are typically:

• Large: there are many observations (10,000 would not be unusual)

• Small: the covered intervals of calendar time are usually short, on the order of days or months.

• New: we don’t have much long-term historical data.

• Old: market institutions are changing so rapidly that even samples a few years previous may be 
seriously out of date.

The range of econometric techniques applied to market data is extremely broad. Always remember that 
economic significance is very different from (and much more difficult to achieve) than statistical 
significance.

ü The questions

Here is a partial list of "big questions" in market microstructure:

• What are optimal trading strategies for typical trading problems?

• Exactly how is information impounded in prices?

• How do we enhance the information aggregation process?

• How do we avoid market failures?

• What sort of trading arrangements maximize efficiency?

• What is the trade-off between “fairness” and efficiency?

• How is market structure related to the valuation of securities?

• What can market/trading data tell us about the informational environment of the firm?

• What can market/trading data tell us about long-term risk?

Although they might have been worded differently, most of these problems have been outstanding as long as 
the field has been in existence. 
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ü Readings

• Background readings in financial economics include Ingersoll (1987(, Huang and Litzenberger 
(1998), Duffie (2001)

• For econometric background, see Greene (2002).

• O'Hara (1995) is the standard reference for the economics of market microstructure. Surveys include: 
Hasbrouck (1996); Madhavan (2000); Biais, Glosten, and Spatt (2002);  Harris (2003).

• The paper’s discussion of time series analysis emphasizes concepts rather than proofs. Hamilton 
(1994) is a deeper, though still accessible, treatment. Gourieroux and Jasiak (2001) and Tsay (2002) 
also provide useful developments.

• The institutional details about trading arrangements are rapidly changing. Some places to start include 
the appendix to this document: Hasbrouck, Sofianos, and Sosebee (1993) (for the NYSE); Smith, 
Selway, and McCormick (1998) (for Nasdaq); Euronext (2003) (for Euronext).

ü Mathematica initializations

If you are reading the pdf or printed version of this document,the code associated with the Mathematica 
sections (like the one immediately following) will not be visible.

MathematicaComments and initializations
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 Chapter 2. The long-term dynamics of security prices

It is often useful in economic analysis to separate, conceptually at least, long-run and short-run effects. 
When we apply this perspective to security markets, we view long-run price dynamics as driven by 
"fundamental" considerations of security value: expected cash flows, long-term risk and required returns. 
The effects of liquidity and trading mechanism are short-run. In a sense, then, microstructure phenomena 
can be viewed as an "overlay" on a long-term valuation process.

This is, of course, a simplification. In most economic analysis, and certainly here, "long-term" and 
"short-term" are linked. The long-term characteristics of a security will determine in part who holds it, who 
trades it, and how it will be traded. Conversely, the features of the trading environment may affect the 
long-term return on the security. In extreme circumstances, the limitations of the trading mechanism may 
preclude a security's existence.

The overlay view of market mechanisms is nevertheless a useful place to start. The first question is then, 
what are the long-term dynamics of security prices? Or, in a world with perfectly frictionless (costless and 
infinitely liquid) markets, how would we expect security prices to behave?

2.a Macroeconomic models of asset prices

The basic result from classical asset pricing theory is that a security price should behave as a martingale. A 
martingale is a time series with unforecastable increments: we can't predict where it will go. Slightly more 
formally, a time series ... xt-1, xt, xt+1  can be considered a martingale if E@xt+1 » xt, xt-1, ...D = xt . This 
implies that the changes (increments) are in expectation zero: E@xt+1 - xt » xt, xt-1, ...D = 0.

Cochrane (2001), Ch. 1: illustrates this with a simple two-period consumption/investment model. Consider 
an agent whose utility depends on current and future consumption:

(2.a.1)U Hct, ct+1L = uHctL + b uHct+1L

The agent has consumption endowments et and et+1.  There is a risky security with current share price pt  and 
payoff xt+1.  The agent's choice variable is the number of shares purchased, x . Negative x  correspond to 
short sales. It is assumed that the agent can buy or sell any amount of the asset at price pt . Given x , the 
levels of consumption are

(2.a.2)
ct = et - pt x
ct+1 = et+1 + xt+1 x

The agent maximizes expected utility Et U Hct, ct+1L  over x  subject to these consumption dynamics. The 
first-order condition is

(2.a.3)- pt u£HctL + Et@b u£Hct+1L xt+1D = 0
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The asset payoff consists of time t + 1 market value plus dividends:

(2.a.4)xt+1 = pt+1 + dt+1

Microstructure analyses are typically short-term, i.e., over horizons sufficiently brief that:

• dt+1 = 0 (The stock does not go ex dividend during the analysis.)

• b º 1 (There is negligible time preference.)

Then:

(2.a.5)pt = EtAb 
u£Hct+1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
u£HctL

 xt+1E º Et mt pt+1 where mt+1 =
u£Hct+1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
u£HctL

Under risk-neutrality, u£HcL  is constant, so

(2.a.6)pt = Et pt+1

Thus, pt  is a martingale. The expectation here is said to be taken with respect to the natural (actual) 
probability measure. More generally, if we drop the assumption of risk-neutrality, the martingale property 
holds with respect to the risk-neutral probability measure.

This development follows from the analysis of a single investor’s problem. Different investors might have 
different ms, different probability assessments, and therefore different risk-neutral probabilities. Under more 
structure (complete markets, absence of arbitrage) there exists one risk-neutral probability measure that is 
common across all agents (see Cochrane).

In much empirical microstructure work, risk neutrality is (implicitly at least) assumed.

A particularly important variant of martingale is the random walk. For example, suppose that the logarithm 
of the security price, mt , follows mt = mt-1 + ut  where Eut = 0. We might also include a drift term: 
mt = mt-1 + m + ut , where m  represents the expected price change due to a positive expected return.

ü A sample of market prices

Here is a graph of NYSE trades in CBL on July 2, 2003, between 9:30 and 10:00. (Although the NYSE 
formally opens at 9:30, the first trade did not occur until 9:42. The program that produced this graph is 
AnalyzeCBL01.sas.)
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The stock was selected as one that was, on average, traded reasonably frequently (but not as often as, say, 
IBM). It is representative of many NYSE-listed stocks. The date, however, was chosen as one on which the 
volume was (for CBL) unusually high. High volume is often associated with the arrival or announcement of 
significant new information relevant for the stock's value, and often this information is associated with a 
large price change as well.

How might we characterize this sample? Assume that the data were generated by a log random walk: 
pt = pt-1 + m + ut  where the ut  are i.i.d. with Eut = 0 and Eut

2 = su
2 .  Supposing that we have a sample 

8p0, p1, ..., pT < , a natural estimate of m is m̀ = ⁄t=1
T D pt êT  where D pt = pt - pt-1 . A natural estimate of 

VarHutL = su
2  is s̀u

2 = ⁄t=1
T HD pt - m̀L2 êT .

For the CBL data above, there are 40 prices. The estimates are: 
m̀ = 0.000176; SEHm̀L = 0.000047; s̀u = 0.0029. These numbers are presented for the sake of completeness 
only. The sample is not a random one and the estimates therefore possess little validity. But sample paths 
from random walks often appear to exhibit trends and other regularities.

But in samples that are random, similar estimates are often used. In their computation and interpretation, 
these issues typically arise.

• What is t?

• Are the moments we're trying to estimate finite?
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• How should we estimate the mean m?

Each of these concerns requires some explanation.

In most time series analysis, the time subscript t  is conventional wall-clock or calendar time. This is 
customary in dealing with most economic or physical variables, where the mechanism that generates the 
data is fundamentally cast or anchored in natural time. In securities markets, though, trade occurrences and 
price changes are often viewed as arising from information that can arrive with intensity that is varying (in 
wall-clock time). Therefore, "event time", i.e., letting t index trades, is often a sensible alternative to natural 
time.

Turning to the second issue, recall that the nth order moment of a random variable x is defined as Exn . The 
centered moment of order n is EHx - ExLn . The variance is therefore the second-order centered moment. A 
moment may be infinite because as x  increases or decreases toward ≤¶  the  quantity xn  or EHx - ExLn  
increases faster than the (tail) probability density declines. In general, if an uncentered moment of order n  is 
finite, the sample estimate ⁄t=1

T xt
n êT , where T is the sample size, is an asymptotically consistent estimate 

(using a Law of Large Numbers). Hypothesis testing, however, often relies on the asymptotic distribution of 
the sample estimate. Constructed using a Central Limit Theorem. The essential properties of this distribution 
require existence of moments of order 2 n .

Classical and generalized moment estimates are used in many settings where the existence of the required 
moments is taken for granted. In many market microstructure applications, however, some skepticism is 
warranted. Recent evidence from extreme-value analyses suggests that finite moments for returns exist only 
up to order 3, and for volume only up to order 1.5. (Gabaix, Gopikrishnan, Plerou, and Stanley (2003)). If 
this is indeed the case, conventional return variance estimates are consistent, but the distribution of these 
estimates is not well-defined. For volume (an essential component of many analyses), the variance is 
infinite, and the quantities that depend on the variance (like the standard error of the mean) are undefined.

Finally, we turn to estimation of the mean. The surprising result here is that in microstructure data, we are 
usually better off setting the estimate of the unconditional return mean to zero. There are two reasons for 
this. First, the cost of  borrowing or lending within trading sessions is often literally zero. In US equity 
markets, for example, a trade on day T  is settled on day T + 3 irrespective of when during day T  the trade 
actually occurred. The second reason is the expected returns are usually small relative to their estimation 
errors.

To see this, suppose that we have a year’s worth of daily data for a typical US stock. Assume an annual 
return of mAnnual = 0.10 ("10%") and a volatility of sAnnual = 0.25. The implied daily expected return is 
mDay = 0.10 ê365 = 0.000274. The implied daily volatility is sDay = 0.25 ëè!!!!!!!!365 = 0.0131. With 365 
observations, the standard error of estimate for the sample mean is 
SEHm̀DayL = sDay ëè!!!!!!!!365 = sAnnual ê365 = 0.000685. This is about two-and-a-half times the true mean.

Let's consider another estimate of mDay : zero. Clearly this is biased downward, but its standard error of 
estimate is only 0.000274. At the cost of a little bias, we can greatly reduce the estimation error. The point 
extends to estimates of centered moments, such as variance, skewness, etc. In most cases, the uncentered 
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(that is, not “de-meaned”) estimates will have substantially lower measurement error than the unbiased 
estimates. Are the numbers here realistic? Microstructure data samples are typically shorter than one year, 
and the problem would actually be worse than indicated.

In a sense, the transition for macro-finance to microstructure can be thought of as a refinement of the 
interval of observation. In a given annual sample, say, we progress from annual observations to daily, from 
daily to hourly, etc. This progression clearly increases the number of observations. More numerous 
observations usually enhance the precision of our estimates. Here, though, the increase in observations is not 
accompanied by any increase in the calendar span of the sample. So do we gain or not? It depends. Merton 
(1980) shows that estimates of second moments (variances, covariances) are helped by more frequent 
sampling. Estimates of mean returns are not.

2.b Martingales in microstructure analyses

When we drop the assumption that the agent can buy or sell any amount x  of the asset at a single price pt , 
the formal argument in support of the martingale property of prices falls apart.

Suppose that the agent can only buy at a dealer’s ask price pt
a  and sell at a dealer’s bid price pt

b  (with, of 
course,  pt

a > pt
b ). The first order condition resulting from the agent’s optimization then becomes 

pt
b § Et mt+1 xt+1 § pt

a . This establishes bounds, but certainly does not imply that either the bid or the ask 
follows a martingale.

The martingale continues to possess a prominent role, however. Suppose that we have a random variable X  
and a sequence of sets of conditioning information F1, F2, ... . For example, suppose that there is a set of 
variables 8z1, z2, ...<  that are useful in predicting X , and we let 
F1 = 8z1<, F2 = 8z1, z2<, ..., Fk = 8z1, z2, ..., zk< . Then the sequence of conditional expectations 
E@X » FkD for k = 1, 2, ...   is a martingale.

It is common in microstructure analyses for an agent’s objective function to depend on the terminal payoff 
of the security. The conditional expectation of this payoff will be important in formulating strategy. Over 
time, the set of conditioning information expands (or, at least, does not contract), and therefore this 
conditional expectation evolves as a martingale. When the conditioning information is “all public 
information”, this is sometimes called (with a nod to the asset pricing literature) “efficient” price of the 
security. 

One of the basic goals of microstructure analysis is a detailed and realistic view of how informational 
efficiency arises, that is, the process by which new information comes to be impounded or reflected in 
prices. In microstructure analyses, observed prices are usually not martingales. By imposing economic or 
statistical structure, though, it is often possible to identify a martingale component of the prices. This allows 
the information attribution to proceed.
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 Chapter 3.
A dealer market with fixed transaction costs: the Roll 
model

The model described in this section is due to Roll (1984). The Roll construct is the basic black dress of 
microstructure models: it's appropriate in many different situations, and it's easy to accessorize.  
Furthermore, the model offers an excellent pedagogical framework. By virtue of the fact that it that maps 
cleanly into a statistical model, it is useful for motivating and illustrating the basics of time series analysis.

3.a Model structure

The evolution of the (log) efficient price is given by:

(3.a.1)mt = mt-1 + ut

The market has the following features:

• All trading is conducted through specialized intermediaries (“dealers”). A dealer posts bid and ask 
(offer) prices, bt and at . If a customer wants to buy (any quantity), he must pay the dealer’s ask price. 
If a customer wants to sell, she receives the dealer’s bid price.

• Dealers are competitive and bear a per-trade cost c . 

Then the bid and ask are given by:

(3.a.2)
bt = mt - c
at = mt + c

That is, the dealers set their quotes to recover their costs. At time t, we observe a transaction price pt :

The actual trade price is:

(3.a.3)pt = mt + c qt

where qt  is the trade direction indicator (+1 if the customer is buying at the ask; –1 if the customer is selling 
at the bid).

Suppose for the moment that mt  follows a homoscedastic random walk. What are some reasonable 
assumptions about qt ?

• Buys and sells are equally likely.

• qt  are serially independent 
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• qt  are independent of the ut .

Before considering estimation and inference, it might be helpful to look at some actual bid/ask/trade data. 
Here is a record of trades and quotes for CBL for a portion of July 2, 2003:

This graph and the statistics discussed in this section are produced by the SAS program AnalyzeCBL01.

The most obvious feature of the data is that the spread between the bid and ask, assumed to be a constant 2 c   
in the Roll model is actually varying, approximately between one and five cents in this sample. Furthermore, 
trades at the bid tend to cause a downward revision in the bid, and trades at the ask cause an upward revision 
in the ask.  This calls into question the assumed independence of qt  and ut . Finally, although it is not 
obvious in this particular sample, the qt  tend to be positively autocorrelated: buys tend to follow buys and 
sells tend to follow sells.

Nevertheless, the Roll model often achieves a characterization of price dynamics that is adequate for many 
purposes.

3.b Inference

The Roll model has two parameters, c and su
2 . These are most conveniently estimated from the variance and 

first-order autocovariance of the price changes.

Inference in this model is based on the price changes D pt :
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(3.b.4)D pt= pt-pt-1 = -c qt-1 + c qt + ut

To obtain VarHD ptL ª g0 , note that

(3.b.5)D pt
2 = qt-1

2 c2 + qt
2 c2 - 2 qt-1 qt c2 - 2 qt-1 ut c + 2 qt ut c + ut

2

In expectation, all of the cross-products vanish except for those involving qt
2, qt-1

2 and ut
2 . So:

(3.b.6)g0 = 2 c2 + su
2

To obtain CovHD pt, D pt-1L = g1 , we examine:

(3.b.7)
D ptD pt-1 = -qt-1

2 c2 + qt-2 qt-1 c2 - qt-2 qt c2 +
qt-1 qt c2 - qt-1 ut-1 c + qt ut-1 c - qt-2 ut c + qt-1 ut c + ut-1 ut

In expectation, all of the cross-products vanish except for the first, so:

(3.b.8)g1 = -c2

It is easily verified that all autocovariances of order two or higher are zero.  From the above, it is clear that 
c =

è!!!!!!!!!
-g1  and su

2 = g0 + 2 g1 . Faced with a sample of data, it is sensible to estimate g0 and g1 , and apply 
these transformations to obtain estimates of the model parameters. Harris (1990) reports distributional 
results.

For CBL on July 2, 2003, there were 821 NYSE trades. The estimated first-order autocovariance of the price 
changes is g̀1 = -0.0000251. This implies c = 0.005 ($/share) and a spread of 2 c = 0.01 ($/share). 

The Roll model is often used in situations where we don't possess bid and ask data. Here, we do. The 
(time-weighted) average NYSE spread in the sample is 0.022 ($/share), so the Roll estimate appears to be 
substantially on the low side. There are several possible explanations for this. One obvious possibility is 
sampling error. Also, as noted above, some of the assumptions underlying the Roll model are unrealistic. 
There are also institutional considerations. When there is variation in the spread, agents may wait until the 
spread is small before trading. In addition, NYSE brokers on the floor will sometimes take the other side of 
an incoming order at a price better than the opposing quote. In this sample, for example, trade prices are on 
average 0.0079 ($/share) away from the quote midpoint. This implies an effective spread of 0.0158 $/share, 
which is somewhat closer to the Roll spread estimate.

We can obtain further results on the Roll model. But these results are best developed in a time series analysis 
framework. This will lay the ground for generalization of the model.
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 Chapter 4.
Moving average and autoregressive representations of 
price changes

The Roll model described in the last section is a simple structural model, with a clear mapping to parameters 
(the covariance and autocovariance of price changes) that are easily estimated.

There are many interesting questions, though, that go beyond parameter estimation. For example, we might 
want to forecast prices beyond the end of our data sample. Alternatively, we might wish to identify the 
series of mt  (the unobserved efficient prices) underlying our data. Finally, in situations where the structural 
model is possibly misspecified, we might prefer to make assumptions about the data, rather than about the 
model.

To answer these questions, we'll begin with the structural model, and then construct a statistical model. 
Then, we'll pretend that we don't know the structural model, and investigate the properties of the data that 
might enable us to identify the statistical model. Finally, we'll work from the statistical model back to the 
structural model. In the process of working from the structural model to the statistical one and thence to the 
data, and back again, we will illustrate econometric techniques that are very useful in more general 
situations. Starting from a known structural model helps to clarify matters.

4.a Stationarity and ergodicity

Whereas most statistical analysis is based on observations that are independently distributed, time series 
observations are typically dependent. When realizations are serially dependent, we effectively have only one 
observation: a single sample path. To fill in for the independence assumption when invoking a law of large 
numbers or central limit theorem, we often rely on properties of stationarity and ergodicity. 

A time series 8xt<  where the mean and covariances don't depend on t  (Ext = m ,  
CovHxt, xt-kL = CovHxs, xs-kL   for all s, t and k) with this property is said to be covariance stationary. If all 
joint density functions of the form f HxtL , f Hxt, xt+1L , ..., f Hxt, xt+1, xt+2L, ...  don't depend on t , then the 
series is (strictly) stationary. Strict stationarity, of course, implies covariance stationarity.
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The price changes implied by the Roll model, D pt , are covariance stationary: ED pt = 0 and 
CovHD pt, D pt-kL = gk . The price levels, pt , are not covariance stationary. Among other things, VarHptL  
increases with t . Covariance stationarity for the D pt  would also fail if we replaced the homoscedasticity 
assumption Eut

2 = su
2  with something like Eut

2 = 5 + CosHtL , or similar time-dependent feature. CosHtL  here 
is a deterministic component of the series. Such components can also arise from time trends (linear or 
otherwise). When the deterministic component is periodic (like CosHtL), it is said to be seasonal (a term that 
says much about the frequency of observation traditionally assumed for time series data). Market data 
typically exhibit intra-day seasonalities (sic): trading volumes and return volatilities tend to be elevated at 
the start and end of trading sessions.

A time series is ergodic if its local stochastic behavior is (possibly in the limit) independent of the starting 
point, i.e. initial conditions. Essentially, the process eventually “forgets” where it started. The price level in 
the Roll model is not ergodic: the randomness in the level is cumulative over time. But the price changes are 
ergodic: D pt  is independent of D pt-k  for k ¥ 2. Non-ergodicity could be introduced by positing 
mt = mt-1 + ut + z , where z  is a zero-mean random variable drawn at time zero. 

The economic models discussed in later chapters (particularly the asymmetric information models) are often 
placed in settings where there is a single random draw of the security's terminal payoff and the price 
converges toward this value. The price changes in these models are not ergodic because everything is 
conditional on the value draw. Nor are they covariance stationary (due to the convergence). Empirical 
analyses of these models use various approaches. We might assume that reality consists of a string of these 
models placed end-to-end (for example, a sequence of "trading days"). In this case, we view the sample as 
an ensemble, a collection of independent sample path realizations. Alternatively, we might view the models 
as stylized descriptions of effects that in reality overlap in some fashion that yields time invariance. For 
example, in each time period, we might have a new draw of some component of firm value.

4.b Moving average models

A white noise process is a time series 8et<  where Eet = 0, VarHetL = se
2  and CovHet, esL = 0 for s ∫ t . This is 

obviously covariance stationary. In many economic settings, it is convenient and plausible to assume that 
8et<  are strictly stationary and even normally distributed, but these assumptions will be avoided here.

White noise processes are convenient building blocks for constructing dependent time series. One such 
construction is the moving average ("MA") model. The moving average model of order one (the "MA(1) 
process") is:

(4.b.1)xt = et + qet-1

The white noise series in a time series model is variously termed the disturbance, error or innovation series. 
From a statistical viewpoint, they all amount to the same thing. The economic interpretations and 
connotations, however, vary. When randomness is being added to a non-stochastic dynamic structural 
model, the term "disturbance" suggests a shock to which the system subsequently adjusts. When estimation 
is the main concern, "error" conveys a sense of discrepancy between the observed value and the model 
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prediction. "Innovation" is the term that is most loaded with economic connotations. The innovation is what 
the econometrician learns about the process at time t  (beyond what's known from prior observations). 
Moving forward in time, it is the update to the econometrician's information set. In multivariate models, 
when xt  comprises a particularly varied, comprehensive and economically meaningful collection of 
variables, the innovation series is often held to proxy the update to the agents' common information set as 
well.

The D pt  in the Roll model have the property that the autocovariances are zero beyond lag one. The MA(1) 
model  also has this property. For this process, g0 = H1 + q2L se

2 , g1 = qse
2  and gk = 0 for k > 1.

More generally, the moving average model of order K  ("MA(K)") is

(4.b.2)xt = et + q1 et-1 + ... + qK  et-K

the MA(K) process is covariance stationary and has the property that g j = 0 for j > K . If we let K = ¶ , we 
arrive at the infinite-order moving average process. 

Now comes a point of some subtlety. If we believe that the data are generated by the Roll model (a 
structural model), can we assert that a corresponding moving average model (a statistical model) exists? By 
playing around with the q and se

2  parameters in the MA(1) model, we can obviously match the variance and 
first-order autocovariance of the structural D pt  process. But this is not quite the same thing as claiming that 
the full joint distribution of the D pt  realizations generated by the structural model could also be generated  
by an MA(1) model. Moreover, there's at least one good reason for suspecting this shouldn't be possible. The 
structural model has two sources of randomness, ut  (the efficient price innovations) and qt  (the trade 
direction indicators). The MA(1) model has only one source of randomness, et .

Why do we care? Why can't we just limit our analysis to the structural model and be done with it? The 
answer to these questions lies in the fact that the econometrician does not observe the ut  and qt , nor, 
therefore does the econometrician know the efficient price. The moving average representation is a useful 
tool for constructing an estimate of the efficient price, as well as for forecasting.

Fortunately, an MA(1) representation does exist. The basic result here is the Wold (not Wald) Theorem:

Any zero-mean covariance stationary process 8xt<  can be represented in the form

(4.b.3)xt = ‚
j=0

¶

q j et- j + kt

where 8xt<  is a zero-mean white noise process, q0 = 1 (a normalization), and ⁄ j=0
¶ q j < ¶ .

kt  is a linearly-deterministic process, which in this context means that it can be predicted arbitrarily well by 
a linear projection (possibly of infinite order) on past observations of xt .

For proofs, see Hamilton (1984) or Sargent (1979).

For a purely stochastic series, kt = 0 and we are left with a moving average representation.
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A related result due to Ansley, Spivey, and Wrobleski (1977) establishes that if a covariance stationary 
process has zero autocovariances at all orders higher than K, then it possesses a moving average 
representation of order K. This allows us to assert that an MA(1) representation exists for the Roll model.

Empirical market microstructure analyses often push the Wold Theorem very hard. The structural models 
are often stylized and underidentified (we can't estimate all the parameters). The data are frequently 
non-Normal (like the trade indicator variable in the Roll model). Covariance stationarity of the observations 
(possibly after a transformation) is often a tenable working assumption. For many purposes, as we'll see, it is 
enough. (Chapter 11 presents an illustration of the Wold Theorem applied to discretely-valued data.)

4.c Autoregressive models

Although the moving average model has many convenient properties, it is difficult in that the driving 
disturbances are generally unobserved. Moreover, direct estimation of the moving average model is difficult 
unless we’re willing to make distributional assumptions on the errors. Most of the time, it's more convenient 
to work with an alternative representation of the model -- the autoregressive form.

To develop this, note that we can rearrange D pt = et + qet-1  as

(4.c.4)et = D pt - q et-1

This gives us a backward recursion for et : et-1 = D pt-1 - qet-2 , et-2 = D pt-2 - qet-3 , and so forth. Using this 
backward recursion in  D pt = et + qet-1  gives

(4.c.5)
D pt = q HD pt-1 - q HD pt-2 - q HD pt-3 - q et-4LLL + et

= -et-4 q4 + D pt-3 q3 - D pt-2 q2 + D pt-1 q + et

If » q » < 1, then in the limit, the coefficient of the lagged et  converges to zero. Then:

(4.c.6)D pt = qD pt-1 - q2 D pt-2 + q3D pt-3 + ... + et

This is the autogressive form: D pt  is expressed as a convergent linear function of its own lagged values and 
the current disturbance. 

4.d The lag operator and representations

To go move between various representations, it is convenient to use the lag operator, L  (sometimes written 
as the backshift operator, B). It works in a straightforward fashion, and can generate leads as well as lags:

(4.d.7)Lxt = xt-1; L2 xt = xt-2; L-3 xt = xt+3, etc.

Using the lag operator, the moving average representation for D pt  is:

(4.d.8)D pt = et + qLet = H1 + qLL et
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The autoregressive representation is:

(4.d.9)D pt = et + qLD pt - q2 L2 D pt + q3 L3 D pt + ... = et + HqL - q2 L2 + q3 L3 + ...L D pt

In the previous section we derived this by recursive substitution. But there is an alternative construction 
that's particularly useful when the model is complicated. Starting from the moving average representation, 
D pt = H1 + qLL et , we may write 

(4.d.10)H1 + qLL-1 D pt = et

where we've essentially treated the lag operator term as an algebraic quantity. If L  were a variable and 
» q » < 1, we could construct a series expansion of the left hand side. This expansion, through the third order 
is:

(4.d.11)@1 - q L + q2 L2 - q3 L3 + OHL4LD D pt = et

where OHL4L  represents the higher order terms. This can be rearranged to get the autoregressive 
representation.

4.e Forecasting

A martingale has differences that are uncorrelated with the history of the series, and therefore can't be 
forecast. The unobservable efficient price in the Roll model is a martingale, but the observed trade price is 
not. If we know q  and have a full (infinite) price history up the time t , 8pt, pt-1, pt-2, ...< , then using the 
autoregressive representation we can recover the innovation series 8et, et-1, et-2< . Then:

(4.e.12)E@D pt+1 » pt, pt-1, ...D = E@et+1 + qet » pt, pt-1, ...D = qet

Therefore, the forecast of next period's price is:

(4.e.13)pt
* ª E@pt+1 » pt, pt-1, ...D = pt + qet

How does pt
*  evolve?

(4.e.14)pt
* - pt-1

* = pt + qet - Hpt-1 + qet-1L = Het + qet-1L + qet - qet-1 = H1 + qL et

The increment to the conditional expectation is a scaled version of the innovation in the process. This is not 
surprising. Recall that martingales often arise as a sequence of conditional expectations. Since the et  are 
serially uncorrelated, pt

*  is a martingale.

Now for a more difficult question. Is it true that pt
* = mt ? That is, have we identified the implicit efficient 

price?

If pt
* = mt , then pt = pt

* + cqt  and D pt = D pt
* + cDqt . But this implies

(4.e.15)et + qet-1 = H1 + qL et + cDqt ñ -qHet - et-1L = cDqt.
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In other words, all of the randomness in the model is attributable to the qt . But this is structurally incorrect: 
we know that changes in the efficient price, ut , also contribute to the et .

Thus the random-walk property assumed for mt  does not suffice to identify it from the observed data. We 
will see later that there are an infinite number of candidates for mt   that are compatible with the data.

4.f Problems

These problems investigate modifications to the Roll model.

Problem 4.1 Autocorrelation in trades

The Roll model assumes that trade directions are serially uncorrelated: CorrHqt, qsL = 0 for t ∫ s . In practice, 
one often finds positive autocorrelation (buys tend to follow buys; sells tend to follow sells). See Hasbrouck 
and Ho (1987) and Choi, Salandro and Shastri (1988).

Suppose that CorrHqt, qt-1L = r > 0 and CorrHqt, qt-kL = 0 for k > 1.  Suppose that r is known. What are the 
autocovariances of the D pt  process? What is the moving average structure? What is the estimate of c?

Problem 4.2 Trade directions correlated with changes in the efficient price.

In the basic Roll model, CorrHqt, utL = 0.  Now suppose that CorrHqt, utL = r , where r is known, 0 < r < 1. 
The idea here is that a buy order is associated with an increase in the security value, a connection that will 
be developed in the models of asymmetric information. Suppose that r is known. What are the 
autocovariances of the D pt  process? What is the moving average structure? What is the estimate of c?
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 Chapter 5. Sequential trade models of asymmetric information

5.a Overview

 Much current work in market microstructure concentrates on the role that trading and markets play in 
aggregating information. That is, the essential outputs of the trading process are signals (most importantly 
the trade price) that summarize diverse private information of market participants.

This role of markets is emphasized in Grossman (1976) and Grossman and Stiglitz (1980). The title of the 
latter piece, “On the impossibility of informationally efficient markets” (italics mine) is not intended as an 
ironclad universal law, but rather as an invitation for us to reflect on the economic forces and mechanisms 
that facilitate or discourage informational efficiency. The asymmetric information models in microstructure 
are very much in this spirit, and are often important for their negative predictions as well as their positive 
ones.

The general features of the microstructure asymmetric information models might be described as follows.

• They are generally dominated by common value considerations. The primary benefit derived from 
ownership of the security is the resale value or terminal liquidating dividend that is the same for all 
holders. But in order for trade to exist, we also need private value components, e.g., diversification or 
risk exposure needs that are idiosyncratic to each agent. The private values are often modeled in an ad 
hoc fashion. Sometimes we simply assert the existence of unspecified private values that generate the 
assumed behavior.

• Generally, public information initially consists of common knowledge concerning the probability 
structure of the economy, in particular the unconditional distribution of terminal security value and 
the distribution of types of agents. As trading unfolds, the most important updates to the public 
information set are market data, such as bids, asks, and the prices and volumes of trades. Many of the 
models make no provision for the arrival of nontrade public information (e.g., “news 
announcements”) during trading.

• Private information may consist of a signal about terminal security value, or more commonly, perfect 
knowledge of the terminal security value.

When all agents are ex ante identical, they are said to be symmetric. This does not rule out private values or 
private information. It simply means that all individual-specific variables (e.g., the coefficient of risk 
aversion, a value signal) are identically distributed across all participants. In an asymmetric information 
model, some subset of the agents has superior private information.

The majority of the asymmetric information models in microstructure examine market dynamics subject to a 
single source of uncertainty, i.e., a single information event. At the end of trading, the security payoff 
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(terminal value) is realized and known.

Thus, the trading process is an adjustment from one well-defined information set to another. From a 
statistical perspective, the dynamics of this adjustment are not stationary. These are not models of ongoing 
trading, although they can be “stacked” one after another to provide a semblance of ongoing trading.

Theoretical market microstructure has two main sorts of asymmetric information models.

• In the sequential trade models, randomly-selected traders arrive at the market singly, sequentially, and 
independently. This line of inquiry begins with Glosten and Milgrom (1985).

• The other class of models usually features a single informed agent who can trade at multiple times. 
Following O'Hara (1995), we’ll describe these as strategic trader models. When an individual trader 
only participates in the market once (as in the sequential trade models), there is no need for her to take 
into account the effect her actions might have on subsequent decisions of others. A trader who revisits 
the market, however, must make such calculations, and they involve considerations of strategy. This 
second class of models is also sometimes described as “continuous auction,” but the continuity of the 
market is not really an essential feature. This line of thought begins with Kyle (1985). (Note: “Albert 
S.” is pronounced “Pete”.)

The essential feature of both models is that a trade reveals something about the agent’s private information. 
A “buy” from the dealer might result from a trader who has private positive information, but it won’t 
originate from a trader who has private negative information. Rational, competitive market makers will set 
their bid and ask quotes accordingly. All else equal, more extreme information asymmetries lead to wider 
quotes. Trades will also engender a “permanent” impact on subsequent prices. The spread and trade-impact 
effects are the principal empirical implications of these models.

We begin with the sequential trade models.

5.b A simple sequential trade model

The essential sequential trade model is a simple construct. The model presented here is a special case of 
Glosten and Milgrom (1985). It is also contained in many other analyses.

The terminal security value is V , which at the end of the day will be either high or low, Vêêê or Vêêê . The 
probability of a high outcome is PVêêê = d . The trading population consists of informed and uninformed 
traders. Informed traders (“insiders”) know the realization of V. The proportion of informed traders in the 
population is µ. 

A dealer posts bid and ask quotes, B and A. A trader is drawn at random from the population. If the trader is 
informed, she buys if  V = Vêêêand sells if V = Vêêê . If the trader is uninformed, he buys or sells randomly and 
with equal probability.

The event tree for the first trade looks like this:
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0.0 Buy
µ Informed,I

1.0 Sell

0.5 Buy
δ 1- µ Uninformed, U

0.5 Sell
V

1.0 Buy
µ Informed,I

0.0 Sell

0.5 Buy
1- µ Uninformed, U

0.5 Sell

V V=

V V=

( )Pr ,I V δ µ=

( ) ( )Pr , 1U V δ µ= −

( ) ( )Pr , 1I V δ µ= −

( )
( ) ( )
Pr ,

1 1

U V

δ µ

=

− −

( )Pr , , 0Buy V I =

( )Pr , ,Sell V I δ µ=

( ) ( )Pr , , 1 2Buy V U δ µ= −

( ) ( )Pr , , 1 2Sell V U δ µ= −

( ) ( )Pr , , 1Buy V I δ µ= −

( )Pr , , 0Sell V I =

( ) ( ) ( )Pr , , 1 1 2Buy V U δ µ= − −

( ) ( ) ( )Pr , , 1 1 2Sell V U δ µ= − −

( )1 δ−

In the probability notation, “Vêêê  ” is shorthand for the event that V = Vêêê , etc. Note that in this model there is 
always a trade. (This is not always the case for these models.)

Mathematica 

 The unconditional buy and sell probabilities are:

(5.b.1)
PrHBuyL = 1ÅÅÅÅ

2
H-2 d m + m + 1L

PrHSellL = Id - 1ÅÅÅÅ
2
M m + 1ÅÅÅÅ

2

In the case where d = 1ÅÅÅÅ
2

 (equal probabilities of good and bad outcomes), the buy and sell probabilities are 
also equal.

The unconditional expectation of terminal value is:

(5.b.2)EV = Vêêê H1 - dL + Vêêê d

The various conditional expectations are:
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(5.b.3)

E@V » U , BuyD = EV
E@V » U , SellD = EV
E@V » I, BuyD = Vêêê

E@V » I, SellD = Vêêê

Now consider the dealer’s situation. The demands of the uninformed traders are inelastic. So if the dealer is 
a monopolist, expected profits are maximized by setting the bid infinitely low and the ask infinitely high. 
Obviously, at these prices, only the uninformed trade.

In practice, the dealer’s market power is constrained by competition and regulation. Competition arises from 
other dealers, but also and more generally from anyone who is setting a visible quote, such as a public 
customer using a limit order. In some venues, regulation limits the dealers’ power. For example, NASD’s 
Rules of Fair Practice (Article III, Section IV) generally prohibit markups (sale price over purchase price) in 
excess of 5%.

To proceed, we’ll assume that dealers are competitive, driving all expected profits to zero. Furthermore, for 
the usual reasons, the dealer can’t cross-subsidize “buys” with “sells” or vice versa. (If he were making a 
profit on the “sells”, for example, another dealer would undercut his ask.) It thus suffices to consider buys 
and sells separately. 

We’ll look at customer buys (trades at the dealer’s ask price). The dealer’s realized profit on the trade is 
p = A - V , or in expectation, conditional on the customer’s purchase, 

(5.b.4)E@p » BuyD = A - E@V » BuyD

Under the zero-expected profit condition, a customer buy at the ask price occasions no ex post regret. The 
revenue received by the dealer (A) is equal to the value of the security surrendered.

Continuing, we may write the dealer’s expected profit as:

(5.b.5)E@p » BuyD = A - HE@V » U , BuyD PHU » BuyL + E@V » I, BuyD PrHI » BuyLL

Setting this to zero it establishes the ask price:

(5.b.6)A = E@V » U , BuyD PHU » BuyL + E@V » I, BuyD PrHI » BuyL

Alternatively, it can be rearranged as:

(5.b.7)HA - E@V » U , BuyDL PHU » BuyL + HA - E@V » I, BuyDL PrHI » BuyL = 0

The first term on the l.h.s. is the expected profits from uninformed buyers; the second term is the expected 
losses to informed buyers. Essentially, the dealer’s losses to informed traders are passed on to uninformed 
traders.

If the uninformed traders lose on average, why do they play? Are they stupid? It can’t be ruled out, but there 
are also considerations outside of the stylized model that are consistent with rational uninformed trading. 
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There may be gains to trade from risk-sharing and long-run returns of security ownership (see O'Hara 
(2003)).

Now to complete the calculation, E@V » U , BuyD = EV  where EV = dVêêê
+ H1 - dL Vêêê , the unconditional 

expectation. The conditional probability of an uninformed buyer is

(5.b.8)PrHU »BuyL =
1 - m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-2 d m + m + 1

For a purchase originating from an informed trader, E@V » I, BuyD = Vêêê . The probability of this event is

(5.b.9)PrHI »BuyL = -
2 Hd - 1L m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-2 d m + m + 1

Therefore the ask price is A =

(5.b.10)A =
Vêêê d Hm - 1L + Vêêê Hd - 1L Hm + 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 d - 1L m - 1

Similarly the bid is:

(5.b.11)B =
Vêêê Hd - 1L Hm - 1L + Vêêê d Hm + 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 d - 1L m + 1

The bid-ask spread is

(5.b.12)A-B =
4 HVêêê

- VêêêL Hd - 1L d m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 - 2 dL2 m2 - 1

In the symmetric case of d = 1ÅÅÅÅ
2

,

(5.b.13)A-B = HVêêê
- VêêêL m

ü A numerical example

This example is programmed on an Excel spreadsheet (SimpleSequentialTradeModel.xls) available on my 
web site.
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SimpleSequentialTradeModel.xls. (c) Joel Hasbrouck, 2004, All rights reserved.

$100 with prob. δ  = 0.400
$150 with prob 1 − δ  = 0.600

µ = 0.900
Result summary: Bid = $103.66; Ask = $148.31; Spread = $44.65

A dealer is trying to set the bid and ask quote, against which incoming market orders will 
trade. There are two kinds of traders. "Informed" traders know what the final value of V will 
be. "Uninformed" traders are trading for idiosyncratic reasons having nothing to do with V, 
and buy or sell with equal probability. The dealer doesn't know the type of the incoming 
traders, but he does know the probability of an informed trader:

This spreadsheet describes a sequential trade model with informed and uninformed traders. It 
is adapted from Glosten and Milgrom, "Bid, ask and transaction prices in a specialist market 
with heterogeneously informed traders," J. Financial Economics, 1985, v. 14, 71-100.

It is now morning. At the end of the day, the stock value, V, will be either:
V

V

=

=

The following tree describes the sequence of events.

0.00 Buy 0.000
µ = 0.90 Informed

0.36 1.00 Sell 0.360
$100.00

δ= 0.400 0.50 Buy 0.020
0.10 Uninformed

0.04 0.50 Sell 0.020
Value

1.00 Buy 0.540
µ = 0.90 Informed

1-δ= 0.600 0.54 0.00 Sell 0.000
$150.00

0.50 Buy 0.030
0.10 Uninformed

0.06 0.50 Sell 0.030

Numbers in bold are total probabilities. For example, the probabality of a low value, followed 
by the arrival of an uninformed trader, followed by a 'buy' is 0.000

Numbers in italics are conditional probabilities. For example, the probability of a buy, given 
that an uninformed trader has arrived is 0.50

V V= =

V V= =
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ü Market dynamics over time

After the initial trade, the dealer updates his conditional estimate of d  and his quotes. The next trader arrives, 
etc.

Denote by dk   the probability of Vêêê  conditional on observing the sign (buy or sell) of the kth trade, i.e., 
dk-1 = d  as defined above. If the kth  trade is a buy, then by reference to the event tree:

(5.b.14)dkHBuykL =
dk-1 - m dk-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-2 dk-1 m + m + 1

A similar expression exists for dkHSellkL . The updating expression can be expressed in general form because 
all probabilities in the event tree except d  are constant over time.

Market dynamics have the following features:

• The trade price series is a martingale.

Recall from the above analysis that Bk = E@V » SellkD   and Ak = E@V » BuykD . Since the trade occurs at 
one or the other of these prices, the sequence of trade prices 8pk<   is a sequence of conditional 
expectations E@V » FkD   where Fk   is the information set consisting of the history (including the kth 
trade) of the buy/sell directions. A sequence of expectations conditioned on expanding information 
sets is a martingale.

• The order flow is not symmetric. 

Using qk  to denote the trade direction as we did in the Roll model (+1 for a buy, –1 for a sell), E@qkD  
is in general nonzero.

• The orders are serially correlated.

Although the agents are drawn independently, one subset of the population (the informed traders) 
always trades in the same direction.

• There is a price impact of trades. For any given pattern of buys and sells through trade k , a buy on the 
k+1st trade causes a downward revision in the conditional probability of a low outcome, and a 
consequent increase in the bid and ask. 

The trade price impact is a particularly useful empirical implication of the model. It can be estimated 
from market data, and is plausibly a useful proxy for information asymmetries. This point will be 
examined subsequently in greater depth.

• The spread declines over time. Knowing the long-run proportion of buys and sells in the order flow is 
tantamount to knowing the outcome. With each trade, the dealer can estimate this proportion more 
precisely, and hence his uncertainty is reduced.
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ü Numerical example, continued

The second worksheet in the spreadsheet shows what the path of bid, ask and trade prices is for any given 
sequence of buys or sells. Here is the path when the third trade is a buy, but all the others are sells: 

Bid/Ask/Trade Prices

$100

$110

$120

$130

$140

1 2 3 4 5 6 7 8 9 10 11 12

Trade sequence

Pr
ic

e Ask
Bid
Trade

5.c Extensions

The sequential trade framework accommodates a range of interesting generalizations.

ü Fixed transaction costs

Suppose that in addition to asymmetric information considerations, the dealer must pay a transaction cost c  
on each trade (as in the Roll model). The modification is straightforward. The ask and bid now are set to 
recover c  as well as the information costs:

(5.c.15)
A = EHV » BuyL + c
B = EHV » SellL - c

The ask quote sequence may still be expressed as a sequence of conditional expectations:

(5.c.16)Ak = EHV » FkL + c

where Fk   is the information set that includes the direction of the kth trade. Therefore the ask sequence is a 
martingale. So too, is the bid sequence. Since trades can occur at either the bid or the ask, however, the 
sequence of trade prices is not a martingale (due to the  ≤c  asymmetry in the problem). In terms of the 
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original Roll model, the effect of asymmetric information is to break the independence between trade 
direction qt  and the innovation to the efficient price ut . Developments along these lines are discussed in 
Glosten and Milgrom (1985), p. 83.

ü Price-sensitive liquidity traders and market failures

The uninformed traders in the basic model are, although not necessarily stupid, rather simple. They aren’t 
price sensitive: their trading demands are inelastic. If they have to buy, for example, they’ll pay whatever 
price is necessary to get the trade done. Such desperate traders do exist, and they are a market-maker’s 
dream customers, but they are not the rule. Most traders, even if driven by private value considerations, are 
somewhat price sensitive.

The traders (both informed and uninformed) in GM are actually modeled as agents subject to a random 
utility, U = rxV + c . r  is the rate of substitution between current and future consumption, where “future” is 
the terminal payoff date; x  is the number of shares held at the payoff date, and c  is current consumption 
(not, in this context, transaction cost). r  is random across traders, and its distribution is common knowledge. 
High r implies a strong preference for future consumption, and therefore (other things equal), a tendency to 
buy the security. The dealer’s r is normalized to unity. The price of current consumption may also be 
normalized to unity. 

Initially for an uninformed trader EU = rxEV + c  . He will buy (paying the dealer’s ask price A) if 
rEV > A . He will sell (at the dealer’s bid price B) if rEV < B . If B < rEV < A  , the agent won’t trade. (In 
the present model, a non-trade event is uninformative. When there is event uncertainty, a non-trade is 
informative. This point is developed below.)

With inelastic uninformed trading demands, the dealer can set the bid and ask as wide as necessary to cover 
her losses to the informed traders. With elastic demands, though, there will generally be fewer uninformed 
agents willing to trade as these prices. The zero-expected-profit equilibrium will generally therefore exhibit 
a wider spread than in the inelastic case.

It is also possible that there exist no bid and ask values (other than  B = Vêêê and A = Vêêê) at which the dealer’s 
expected profit is non-negative. That is, the uninformed traders are so price-sensitive that they are unwilling 
to participate in sufficient number to cover the dealer’s losses to the informed traders (GM, p. 84). Agents 
trying to access the market bid and ask quotes see a blank screen. This is a market failure.

The market failure can be repaired by information dissemination that removes the asymmetry, or requiring 
the dealer to trade at a loss (presumably to be offset by some other benefit or concession). Both do in fact 
occur. Trading often stops (or is officially halted) pending a major news announcement. Exchanges, dealer 
associations, and simple considerations of reputation often effectively force a dealer to maintain a market 
presence when he would prefer to withdraw.

This is a point of considerable social and regulatory importance. While coverage and enforcement varies 
widely, most countries now have laws that prohibit “insider” trading. These prohibitions are grounded in 
considerations of fairness and economic efficiency. The economic efficiency argument holds that market 
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failures are extremely costly for the uninformed traders, who are denied the gains from trade (such as 
improved risk-sharing, etc.).

ü Event uncertainty

In the basic model an information asymmetry exists, and this fact is common knowledge. In real markets, 
however, significant information often arrives in a lumpy fashion. Long periods with no new information 
and steady or sluggish trading are punctuated by periods of extremely active trading before, during, and after 
major news announcements. The latter are sometimes referred to as “fast markets.” Often the dealer’s first 
inkling that an information asymmetry has arisen is a change in the pattern of incoming orders.  A trading 
halt may be declared on the NYSE, for example, solely as a consequence of an “order flow imbalance.”

This gives rise to what Easley and O'Hara (1992) model as event uncertainty. I'll discuss this model in detail 
in Chapter 15, but some general observations are useful at this point. Unlike the simple model, “nature’s” 
first draw determines whether or not an information event occurs. The events of information occurrence and 
nonoccurrence will be denoted I and ~ I  , respectively. Only the set of branches stemming from the I-node 
has a signal realization and the possibility of informed traders. If ~ I  , then all traders are uninformed.

An informed trader always trades (in the direction of her knowledge). An uninformed trader might not trade. 
The no-trade probabilities for uninformed agents are the same whether I or ~ I , but the proportion of 
uninformed in the customer mix is higher with I  . To the dealer, therefore, non-trade suggests an increased 
likelihood of  ~ I .

ü Orders of different sizes

The basic sequential trade model has one trade quantity. Trades in real markets, of course, occur in varying 
quantities. Easley and O'Hara (1987) present a framework similar to that utilized in the last section. Their 
model features event uncertainty and two possible order sizes. The market-maker posts one set of bid and 
ask quotes for small trades and another set for large trades.

The most challenging thing about the model construction is the requirement that the zero-expected profit 
condition must hold for all quantities and directions. Expected losses on large buy orders, for example, can’t 
be cross-subsidized by expected profits on small sell orders.

In the models considered to this point, all trades in which the market-maker might participate have some 
non-zero probability of involving an uninformed trader. This is a “pooling” feature of the trade mix. Were 
some class of trades to involve only informed traders (and therefore certain losses), no bid and ask prices 
(except the extrema of the value distribution would be possible. Such outcomes are “separating”.

Informed traders maximize their profits by trading in the largest possible size. For a pooling equilibrium to 
exist, large orders must have some chance of originating from uninformed traders. A pooling equilibrium is 
also contingent on the existence of event uncertainty.
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ü Orders of different types

The only orders permissible to this point have been marketable ones – orders that would result in an 
immediate execution. Real world security markets admit a much wider range. Many of the variations arise 
when a customer has a trading strategy that can be codified in a simple rule, that when communicated with 
the order avoids the necessity for further monitoring or modification on the customer's part.

One common variant is the price-contingent order. On the sell side, these are called stop-loss orders. When 
the trade price hits or drops through a preset barrier, the order becomes marketable. For example, consider a 
stop-loss order to sell triggered (“elected”) at a price of 50. When the trade price reaches 50, this is 
converted into a market order. Note that actual execution price for this order may well be below 50 if the 
market is moving quickly. There are also buy stop orders, which become marketable when the price rises 
through a preset barrier.

Easley and O'Hara (1991) analyze a sequential trade model where the market accepts stop orders. The main 
implications of the model are:

• Informed traders will never use stop orders. 

• The information content of prices declines (the market becomes “less informationally efficient”)

• There is a greater probability of large price changes. In the model (and in real markets), a trade can 
trigger a wave of elections.

5.d Empirical implications

The sequential trade models convey two useful empirical predictions.

• Spread: At a given point in time, more extreme information asymmetry implies a larger spread.

• Price impact: For any given trade, more extreme information asymmetry implies a larger quote 
revision (price impact).

What sort of statistical approach should we follow?

Observations in the sequential trade models (whether of spreads, quotes, trade prices or first-differences of 
these variables) are not i.i.id. nor are they covariance stationary. Furthermore, because the process described 
by these models is a adjustment in response to non-reccurent initial conditions, the sequence of observations 
is non-ergodic. Therefore, standard time series analysis is not directly applicable. To proceed, we can 
assume that our sample consists of multiple paths of adjustment processes, stacked end-to-end, and a given 
or known mapping to our sample.  We might assume, for example, that the model describes what happens 
between the beginning and end of the calendar/wall-clock trading day, and that our sample consists of 
independent days. Then we can treat each day as a separate observation;. This approach will be discussed in 
detail in a later chapter.
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Alternatively, we can assume that our data are generated by a structural model that incorporates the 
asymmetric information effects in some unspecified fashion. This approach suggests “reduced-form” 
time-series models that have a much more statistical flavor. This approach is used, implicitly if not 
explicitly, in the many studies that rely on time-averages of spreads.

These two approaches lie on a continuum: structural economic models at one end and  reduced-form 
statistical models at the other. The trade-off is the usual one in econometrics. Structural models offer 
stronger economic content and predictions, but they are more subject to misspecification. Reduced-form 
models are more robust to misspecification, but are more limited in the economic insights they can afford.

5.e Problems

Problem 5.1 A modified model

As in the basic model, there are two possible values for V . V = Vêêê  with probability d ; V = Vêêê  with 
probability 1 - d . There are two types of traders. A type-X agent receives a signal HH or LL  that is correct 
with probability pX : PrHL » VêêêL = PrHH » VêêêL = pX  . Similarly, a type-Y traders receives a signal with accuracy 
pY > pX . Traders always trade in the direction of their signal. If they get a low signal, they sell; if they get a 
high signal they buy. The fraction of type-Y traders in the population is m . In a competitive dealer market, 
what are the initial bid and ask?
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 Chapter 6. Strategic trade models of asymmetric information

In the sequential trade framework, there are many informed agents, but each can trade only once, and only if 
he/she is "drawn" as the arriving trader. Furthermore, if order size is a choice variable, the informed agent 
will always trade the largest quantity. The Kyle (1985) model, discussed in this chapter, differs in both 
respects.

In the Kyle model, there is a single informed trader who behaves strategically. She sets her trade size taking 
into account the adverse price concession associated with larger quantities. She can furthermore, in the 
multiple-period version of the model, return to the market, spreading out her trades over time.

The practice of distributing orders over time so as to minimize trade impact is perhaps one of the most 
common strategies used in practice. With decimalization and increased fragmentation of trading activity, 
market participants have fewer opportunities to easily trade large quantities. In the present environment, 
therefore, order splitting strategies are widely used by all sorts of traders (uninformed as well as informed).

Although the Kyle model allows for strategic trade, while the sequential trade models don't, it is more 
stylized in some other respects. There is no bid and ask, for example; all trades clear at an 
informationally-efficient price.

Useful extensions of the Kyle model include: Admati and Pfleiderer (1988); Foster and Viswanathan (1990); 
Subrahmanyam (1991); Subrahmanyam (1991); Holden and Subrahmanyam (1994); Foster and 
Viswanathan (1995); Back (1992).  Back and Baruch (2003) suggest a synthesis of the sequential and 
strategic trade models.

MathematicaInitializations for the analysis of the Kyle model.

6.a The single-period model

The elements of the model are:

• The terminal security value is v~ NHp0, S0L . 

• There is one informed trader who knows  v  and enters a demand x  (buying if x > 0, selling if x < 0). 

• Liquidity traders submit a net order flow  u~ NH0, su
2L , independent of v .

• The market-maker (MM) observes the total demand y = x + u  and then sets a price, p .
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• All of the trades are cleared at p . If there is an imbalance between buyers and sellers, the MM makes 
up the difference.

Note that nobody knows the market clearing price when they submit their orders.

Since the liquidity trader order flow is exogenous, there are really only two players we need to concentrate 
on: the informed trader and the market maker. The informed trader wants to trade aggressively, e.g., buying 
a large quantity if her information is positive. But the MM knows that if he sells into a large net customer 
"buy", he his likely to be on the wrong side of the trade. He protects himself by setting a price that is 
increasing in the net order flow. This acts as a brake on the informed trader's desires: if she wishes to buy a 
lot, she'll have to pay a high price. The solution to the model is a formal expression of this trade-off.

We first consider the informed trader's problem (given a conjectured MM price function), and then show 
that the conjectured price function is consistent with informed trader's optimal strategy.

ü The informed trader's problem

The informed trader conjectures that the MM uses a linear price adjustment rule:

(6.a.1)p = y l + m

where y is the total order flow: y = u + x .

l in the price conjecture is an inverse measure of liquidity. The informed trader's profits are:

(6.a.2)p = Hv - pL x

Substituting in for the price conjecture and y:

(6.a.3)p = x Hv - Hu + xL l - mL

In the sequential trade models, an informed trader always makes money. This is not true here. For example, 
if the informed trader is buying Hx > 0L , it is possible that a large surge of uninformed buying Hu >> 0L  
drives the lHu + xL + m  above v .

The expected profits are Ep :

(6.a.4)Ep = x Hv - x l - mL

The informed trader maximizes expected profits by trading x :

(6.a.5)x =
v - m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 l

The second-order condition for the max is 
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(6.a.6)-2 l < 0

ü The market maker's problem

The MM conjectures that the informed trader's demand is linear in v:

(6.a.7)x = a + v b

Knowing the optimization process that the informed trader followed, the MM can solve for a and b:

(6.a.8)a + v b =
v - m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 l

for all v . This implies:

(6.a.9)
a = - mÅÅÅÅÅÅÅÅ

2 l

b = 1ÅÅÅÅÅÅÅÅ
2 l

The relation between b and l is particularly important. As the liquidity drops (i.e., as l rises), the informed 
trader trades less.

Now the MM must figure out E@v » yD . In computing this, it is useful to recall that if JY
X

N~ NHm, SL , then the 

conditional mean of Y given X is:

(6.a.10)EY »X HxL =
CovHX , Y L Hx - meanHX LL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

VarHX L + meanHY L

where an upper case letter like "X" denotes a random variable and the corresponding lower case "x" denotes 
a realization of that variable. 

Given the definition of the order flow variable and the MM's conjecture about the informed traders behavior,

(6.a.11)y = u + a + v b

Thus:

(6.a.12)Ev»yHyL = p0 +
b Hy - a - b p0L S0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

S0 b2 + su
2

Market efficiency requires Ev»y = p :

(6.a.13)p0 +
b Hy - a - b p0L S0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

S0 b2 + su
2 = y l + m

This must hold for all values of y , so:
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(6.a.14)m = -
a b S0-su

2 p0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
S0 b2+su2

l =
b S0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

S0 b2+su2

Now both the informed trader's problem and the MM's problem have been solved (given their respective 
conjectures). Collecting these results:

(6.a.15)m = -
a b S0-su

2 p0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
S0 b2+su2

l =
b S0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

S0 b2+su2
a = - mÅÅÅÅÅÅÅÅ

2 l
b = 1ÅÅÅÅÅÅÅÅ

2 l

It just remains to solve for the parameters of the conjectures in terms of the problem inputs. 

(6.a.16)a = -
"#######su2 p0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#######S0

m = p0 l =
"#######S0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 "#######su2
b =

"#######su2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#######S0

ü Properties of the solution

Both the liquidity parameter l and the informed trader's order coefficient b depend only on the value 
uncertainty S0  relative to the intensity of noise trading su

2 .

The informed trader's expected profits are:

(6.a.17)Ep =
"######su

2 Hv - p0L2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!!!

S0

These are increasing in the divergence of the value (known by the informed trader) from the expectation of 
the uninformed agents Hp0L . They're also increasing in the variance of noise trading. We can think of the 
noise trading as providing camouflage for the informed trader.  This is of practical importance. All else 
equal, an agent trading on inside information will be able to make more money in a widely held and 
frequently traded stock (at least, prior to apprehension).

The informed trader's demand is:

(6.a.18)x =
"######su

2 Hv - p0L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!

S0

How much of the private information is impounded in the price?  If JY
X

N~ NHm, SL , then the conditional 

variance of Y given X is:

(6.a.19)VarY »X = VarHY L -
CovHX , Y L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

VarHX L

Note that this does not depend on the realization of X . Thus,
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(6.a.20)Varv»y = VarHvL -
CovHy, vL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

VarHyL = S0 -
b2 S0

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
S0 b2 + su

2

Or, in terms of the input parameters:

(6.a.21)Varv»p = Varv»y =
S0ÅÅÅÅÅÅÅÅÅ
2

That is, half of the insider's information gets into the price. This does not depend on the intensity of noise 
trading.

The problems to this chapter discuss modifications to the single-period model.

6.b The multiperiod model

ü Setup

There are k = 1, ..., N  auctions. These are equally-spaced on a unit time interval. In real time, the kth 
auction occurs at time kÅÅÅÅÅ

T
, so the increment between auctions is Dt = 1ÅÅÅÅÅ

T
. At the kth auction, noise traders 

submit an order flow uk ~ NH0, su
2 DtL . The informed trader submits an order flow Dxt .

The informed traders profits are given recursively as pk = Hv - pkL Dxk + pk+1 for k = 1, ..., N and pN+1 ª 0.

ü Solution

Kyle's Theorem 2 gives the solution as follows

The informed trader's demand in auction n  is linear in the difference between the true value v  and the price 
on the preceding auction, pn-1 :

(6.b.22)Dxn=Dt Hv - pn-1L bn

The MM's price adjustment rule is linear in the total order flow:

(6.b.23)D pn=HDun + DxnL ln

Expected profits are quadratic:

(6.b.24)Epn=an-1 Hv - pn-1L2 + dn

The constants in the above are given by the solutions to the difference equation system:
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(6.b.25)

ak =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 lk+1 H1 - ak+1 lk+1L

dk = Dt ak+1 lk+1
2 su

2 + dk+1

bn =
1 - 2 an lnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Dt H2 ln H1 - an lnLL

ln =
bn SnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

su
2

subject to the terminal conditions aN = dN = 0. 

The above recursions are backwards. Sn is the variance of v  conditional on all order flow and prices through 
auction n . It is given by the forward recursion:

(6.b.26)Sn=H1 - Dt bn lnL Sn-1

The solutions for 8ak , dk , bk , lk , Sk<  don't depend on the realization of v . That is, given 8S0, p0, su
2< , 

agents can perfectly forecast the depth and demand coefficients.

ü Analysis of solution

To compute a solution given N and the model parameters 8S0, p0, su
2< , start at the nth  auction. Taking the 

solution for ln  and plugging in from the solution for bn  yields a cubic polynomial equation for ln :

(6.b.27)ln =
H1 - 2 an lnL SnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 Dt su
2 ln H1 - an lnL

The equation has three roots. They are not pretty ones. If you really want to see them, run the following 
Mathematica line (which is not visible in the pdf/printout versions of this document).

The full solution procedure is as follows. The model parameters are S0, v, and su
2 .

1. Pick a trial value of SN . By the terminal conditions, aN = dN = 0. Solve the polynomial 
equation for lN . In general, this is a cubic, but at step N , it is quadratic. Take lN  as the positive 
root. Compute bN  and SN-1 .

2. At step N - 1, compute aN-1  and dN-1  using the above formulas. Solve for lN-1 , taking the 
middle root. Compute bN-1 and SN-1 .

3. Iterate over step 2, backwards in time until we arrive at the first auction Hk = 1L . Compute the 
value of S0  implied by this backward recursion, given our initial guess at SN . Compare this to 
the desired S0 .

Using numerical optimization, repeat steps 2 and 3 until we've found a value of SN , which implies (via the 
backward recursions) the desired value of S0 .
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MathematicaProgram to implement numerical solution

ü Numerical example

Consider the case with T = 4 clearings, su
2 = S0 = 1.

a d l b Sk Sk-1

1 0.591587 0.102483 0.662334 1.07417 0.822136 1.
2 0.541962 0.0442885 0.655372 1.37071 0.637499 0.822136
3 0.43462 0 0.63844 1.92957 0.441163 0.637499
4 0 0 0.575215 3.47696 0.220582 0.441163

The amount of information in the price over time is given by Sk :

0.2 0.4 0.6 0.8 1
Time

0.2

0.4

0.6

0.8

1
Sk Price informativeness

The price becomes more informative over time. The informed traders demand coefficient is bk :
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0.2 0.4 0.6 0.8 1
k

1.5

2

2.5

3

3.5

bk Informed trader's demand coefficient

The informed trader trades more aggressively over time.  The price impact parameter is given by lk :

0.2 0.4 0.6 0.8 1
k

0.58

0.6

0.62

0.64

0.66

lk Price impact coefficient

The price impact coefficient declines over time: an early trade has more impact than a later trade of the same 
size. 
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ü Autocorrelation in trades

We have seen that in the sequential trade models, orders are positively autocorrelated (buys tend to follow 
buys). Does a similar result hold here?

Since the informed trader splits her orders over time, and tends to trade on the same side of the market, her 
order flow is positively autocorrelated. This should induce positive autocorrelation in the total order flow.

This seems simple, sensible and obvious. It's also completely wrong. Remember that market efficiency 
requires that the price follow a Martingale. The increments to a Martingale aren't autocorrelated. 
Furthermore, the price change is proportional to the net order flow. If the price change isn't autocorrelated, 
the net order flow can't be either.

From a strategic viewpoint, the informed trader is sometimes said to "hide" behind the uninformed order 
flow. This means that she trades so that the MM can't predict (on the basis of the net order flow) what she 
will do next.

We now examine what happens when the number of auctions increases.

ü Increasing the number of auctions (when total noise trading remains unchanged)

In this example, we let consider the case with su
2 = 1 and S0 = 4. We examine T = 1, 2, 4, 8. Recall that as 

T  increases, the noise trading per auction decreases. 

0.2 0.4 0.6 0.8 1
Time

0.2

0.4

0.6

0.8

1
Sk Price informativeness
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0.2 0.4 0.6 0.8 1
k

0.6

0.7

0.8

lk Price impact coefficient

6.c Problems based on the single-period model

The essential properties of the model that make it tractable arise from the multivariate normality (which 
gives linear conditional expectations) and a quadratic objective function (which has a linear first-order 
condition). The multivariate normality can accommodate a range of modifications. The following problems 
explore some.

Problem 6.1 Informative noise traders

The noise traders in the basic model are pure noise traders: u  is independent of v . Consider the case where 
the u  order flow is positively related to the value: CovHu, vL = su v > 0. Proceed as above. Solve the 
informed trader's problem; solve the MM's problem; solve for the model parameters Ha, b, m, lL  in terms of 
the inputs, su

2, S0 and su v . Interpret your results. Show that when CorrHu, vL = 1, the price becomes 
perfectly informative.

Answer

Problem 6.2 Informed trader gets a signal

The informed trader in the basic model has perfect information about v. Consider the case where she only 
gets a signal s about v. That is, s = v + e  where e~ NH0, se

2L , independent of v. Solve the model by 
proceeding as in the basic case. Solve the informed trader's problem; solve the MM's problem; solve for the 
model parameters Ha, b, m, lL  in terms of the inputs, su

2, S0 and se
2 . Interpret your results. Verify that when 

se
2 = 0, you get the original model solutions.
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Answer

Problem 6.3 Frontrunning by the informed trader's broker

In a securities market, "front-running" generally refers to a broker holding a customer order and trading 
before his customer. An example in the narrow sense arises when a broker holds a customer market buy 
order in a security and buys before executing the customer order. This is a clear violation of the broker's 
fiduciary duty.

Other examples are less clear. Suppose a customer puts in a limit order to buy XYZ at $100. The broker then 
puts in a limit order to buy XYZ at $100.01. Or, suppose a customer puts in a market order to buy XYZ. The 
broker immediately puts in a market order to buy ABC in the same industry, or an index security in which 
XYZ is a component. In both of these examples, the broker's actions might disadvantage the customer. Under 
present standards, though, it is unlikely that the customer would have a sustainable case.

Suppose that when the informed trader in the basic model puts in an order x, her broker simultaneously puts 
in an order g x , with g > 0. That is, the broker piggy-backs on the informed traders information. 
(Improbable? See Den of Thieves, by James B. Stewart.)

Solve the model by proceeding as in the basic case. Solve the informed trader's problem; solve the MM's 
problem; solve for the model parameters Ha, b, m, lL  in terms of the inputs, su

2, S0 and g .

Answer
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 Chapter 7. The generalized Roll model

7.a Overview

Following the economic perspectives developed in the last two sections, we now turn to the problem of 
generalizing the Roll model to take into account asymmetric information. One sensible first step is to allow 
the efficient price to be partially driven by the trade direction indicator variables.

A number of models along these lines have been proposed. See, for example, Glosten (1987); Glosten and 
Harris (1988); Stoll (1989; George, Kaul and Nimalendran (1991); Lin, Sanger and Booth (1995); Huang 
and Stoll (1997).

The present development is compatible with (i.e., a special case of) most of these models.  In connecting the 
present section to these papers, however, there are a few special considerations.

è Most of the models in the literature were estimated with observations on both prices and trades (the 
qt ). In contrast, this section will examine representations solely in terms of the prices. The reason for 
this is that there are some features of these models that are best initially encountered in a univariate 
setting. A second consideration is that, although we have good recent data on US equity markets that 
allow us to infer qt , this is not universally the case. In many data samples and markets, only trade 
prices are recorded. 

è A second point is that some of these models adopt the perspective of explaining "components of the 
spread," i.e., what proportion of the spread is due to fixed costs, what to asymmetric information and 
so forth. This is nothing more or less than a parameter normalization, convenient for some applications, 
less so for others. The underlying dynamics, however, are essentially the same as in the present 
development.

The term "generalized Roll model" is not in common use. It is used here to emphasize the roots of the Roll 
model in the present development.

7.b Model description

The evolution of the efficient price is given by:

(7.b.1)mt = mt-1 + wt

The increments to the efficient prices are driven by trades and public information.

(7.b.2)wt = l qt + ut
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This reduces to the usual Roll model when l = 0. The actual trade price is:

(7.b.3)pt = mt + c qt

A buy order lifts the ask, so the ask is the trade price when qt = +1:

(7.b.4)At = c + l + mt-1 + ut

Similarly, the bid is the trade price when qt = -1:

(7.b.5)Bt = -c - l + mt-1 + ut

Thus, the bid and ask are set symmetrically about mt-1 + ut . The spread is 2 Hc + lL , where c  reflects the 
fixed costs of the trade (clearing costs, clerical costs, etc.) and l  reflects the adverse selection.

This implies the following timing. Immediately after the time t - 1 trade, the efficient price is mt-1 . Then 
public information arrives as the realization of ut . The market maker sets the bid and ask symmetrically 
about mt-1 + ut .  Then a trade arrives as the realization of qt , and the efficient price is updated to mt .

ü Alternative representations and special cases

For the original Roll model, we developed moving average and autoregressive representations that were 
useful in parameter estimation and forecasting. Here, we examine the time series structure of the generalized 
Roll model.

Consider the price changes D pt = pt - pt-1 . Substituting in for pt, mt and wt  gives:

(7.b.6)D pt = -c qt-1 + Hc + lL qt + ut

The model has three parameters 8l, c, su
2<  and two sources of randomness: ut  and qt . We'll consider the 

general case, but it will also sometimes be useful to look at the two special cases:

è Exclusively public information Hl = 0, the original Roll model)

è Exclusively private information Hut = 0 for all t, or equivalently su
2 = 0L .

ü The autocovariance structure of D pt

To obtain VarHD ptL = g0 , consider:

(7.b.7)
D pt

2 = qt-1
2 c2 + qt

2 c2 - 2 qt-1 qt c2 + 2 l qt
2 c -

2 l qt-1 qt c - 2 qt-1 ut c + 2 qt ut c + l2 qt
2 + ut

2 + 2 l qt ut

In expectation, all of the cross-products vanish except for those involving qt
2, qt-1

2 and ut
2 . So:
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(7.b.8)g0 = c2 + Hc + lL2 + su
2

To obtain CovHD pt, D pt-1L = g1 , we examine:

(7.b.9)
D pt D pt-1 = -qt-1

2 c2 + qt-2 qt-1 c2 - qt-2 qt c2 + qt-1 qt c2 - l qt-1
2 c - l qt-2 qt c + 2 l qt-1 qt c -

qt-1 ut-1 c + qt ut-1 c - qt-2 ut c + qt-1 ut c + l2 qt-1 qt + l qt ut-1 + l qt-1 ut + ut-1 ut

In expectation, all of the cross-products vanish except for the second and third terms, so:

(7.b.10)g1 = -c Hc + lL

The second-order cross-product involves no contemporaneous products:

(7.b.11)
D pt D pt-2 =

qt-3 qt-1 c2 - qt-2 qt-1 c2 - qt-3 qt c2 + qt-2 qt c2 - l qt-2 qt-1 c - l qt-3 qt c + 2 l qt-2 qt c -
qt-1 ut-2 c + qt ut-2 c - qt-3 ut c + qt-2 ut c + l2 qt-2 qt + l qt ut-2 + l qt-2 ut + ut-2 ut

So it vanishes, as do higher order autocovariances.

7.c Identification of sw
2

The two estimates of 8g0, g1<  are not sufficient to identify the three parameters of the model 8l, c, su
2< .  

Each of the special cases drops a model parameter, so these cases are identified. But the restrictions they 
impose (exclusively public information, or alternatively, exclusively private information) are not attractive 
ones.

Interestingly, though, one derived parameter from the general model can be identified without further 
restrictions. This is VarHwtL = sw

2 , the variance of the efficient-price increments. To see this, first note:

(7.c.12)wt
2 = l2 qt

2 + 2 l ut qt + ut
2

Since ut and qt  are uncorrelated, and Eqt
2 = 1,

sw
2 = l2 + su

2 .

Now consider the expression g0 + 2 g1 . With the autocovariance calculations we derived above,

(7.c.13)g0+2g1 = l2 + su
2 = sw

2

It will later be shown that the identifiability of sw
2  is a general result, extending to multiple lags and 

multivariate and/or multiple price models.

Intuitively, sw
2  is the variance per unit time of the random-walk component of the security price. This 

variance is time-scaled, in the sense that if we use a longer interval to compute the change, the variance is 
simply multiplied by the length of the interval:
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VarHmt - mt-kL = ksw
2 .

But over long periods, microstructure effects become relatively less important. Most of the long-term 
dynamics in pt  are attributable to mt . More precisely, as k  gets large,

sw
2 =

VarHmt-mt-k L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k
º

VarHpt-pt-k L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k

(How large does k  have to be? Is one day good enough? A week? A month?)

To identify the other parameters in the model, we need more data or more structure.

7.d The moving average (MA) representation

Since the autocovariances vanish above the first-order, using the Wold theorem, the price changes can be 
represented as D pt = et + qet-1.  In terms of this representation, the autocovariances are:

(7.d.14)8g0 = Hq2 + 1L se
2, g1 = q se

2<

Given sample autocovariances, we can solve for the MA parameters. There are two solutions:

(7.d.15)
Solution 1: se

2 = 1ÅÅÅÅ
2

Jg0 - "##################g0
2 - 4 g1

2 N q =
g0+"###################g0

2-4 g1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 g1

Solution 2: se
2 =

g0ÅÅÅÅÅÅÅÅ
2

+ 1ÅÅÅÅ
2

"##################g0
2 - 4 g1

2 q =
g0-"###################g0

2-4 g1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 g1

With some hypothetical values Hg0 = 1, g1 = -.2L , the MA parameters are

(7.d.16)
Solution 1: se

2 = 0.0417424 q = -4.79129
Solution 2: se

2 = 0.958258 q = -0.208712

Remember that, for the basic Roll model, we were able to recursively construct the et  from the pt :

(7.d.17)et = D pt - qD pt-1 + q2 D pt-2 + q3 D pt-3 - ...

From this we see that the two solutions for the moving average parameters are not equally attractive. In the 
first solution » q » > 1, and the above expression does not converge. Formally, it is not invertible.

There's an interesting relationship between the two solutions. Suppose that, rather than pressing for a full 
solution, we simply eliminate se

2 . Then

(7.d.18)g1 Hq2 + 1L = g0 q
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So, q is the solution to g1 q2 - g0 q + g1 = 0. From this, it's easy to see that if q* is a solution, then so is 
1 ê q* .

Therefore the invertible and noninvertible solutions must be related as qInvertible = 1 ê qNoninvertible .

ü Forecasting and filtering

In the basic Roll model the price forecast has been shown to be:

(7.d.19)ft = lim
kØ¶

E@pt+k » pt, pt-1, ...D = E@pt+1 » pt, pt-1, ...D = pt + qet

Recall that, although this forecast is a martingale, it does not equal the efficient price mt  from the structural 
model. But if it isn't mt , what exactly is it?

It turns out that ft =E@mt » pt, pt-1, ...D . This is sometimes called a filtered estimate: the expectation of an 
unobserved state variable conditional on current and past observations.

If you want to see why, read the following section. (You might want to skip it on a first reading.)

ü Proof

We'll now proceed to construct the linear filters for mt = pt - cqt . Since we know pt  and c , the trick is 
forming an expectation of qt . 

We'll be working a linear projection, essentially a linear regression of the form

(7.d.20)qt = a0 pt + a1 pt-1 + ... + vt

(for the filtered estimate) where the as are linear projection coefficients and vt  is the projection error. Now 
while we could compute the as directly, it's a messy calculation because the pt  are correlated with each 
other.

Think of a regression yt = xt b + ut . The linear projection coefficients are given by 

(7.d.21)b = HExt xt 'L-1 Ext ' yt . 

The calculation is a lot easier if  the xt  are not mutually correlated. Then HExt xt 'L  is diagonal and each 
coefficient may be computed as

(7.d.22)bi =
CovHxi,t ,ytLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

VarHxi,tL
.

In the present case, it's much easier to work with the projection

(7.d.23)qt = b0 et + b1 et-1 + b2 et-2 + ... + vt
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Since the et  are uncorrelated, bi = CovHqt ,et-iLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
se2 .  So how do we compute CovHqt, et-iL? We have two ways of 

representing D pt : the statistical and the structural. They obviously must agree:

(7.d.24)q et-1 + et = -c qt-1 + c qt + l qt + ut

Rearranging this to isolate et :

(7.d.25)et = -c qt-1 + Hc + lL qt + ut - q et-1

From which it is clear that CovHqt, etL = c + l . Recursively substituting in again gives:

(7.d.26)et-1 = -c qt-2 + Hc + lL qt-1 + ut-1 - q et-2

Thus, CovHqt, et-1L = 0, and in fact CovHqt, et-kL = 0 for k ¥ 1. So the projection 
qt = b0 et + b1 et-1 + b2 et-2 + ... + vt  becomes

(7.d.27)qt = b0 et + vt  where b0 = c+lÅÅÅÅÅÅÅÅÅÅÅ
se2 .

Next, recall that E@mt » pt, ...D = pt - cE@qt » pt, et, et-1, ...D = pt - c b0 et .

Is there a more intuitive way of expressing this? Substituting in for b0  gives:

(7.d.28)-c b0 = -
c Hc + lL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

se
2

Recall next that:

(7.d.29)8g0 = c2 + Hc + lL2 + su
2, g1 = -c Hc + lL<

From which it is clear that -c b0 = g1 ê se
2 . Analyzing the latter expression using the invertible solution for 

the moving average parameters gives:

(7.d.30)-c b0 =
2 g1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g0 + "##################g0
2 - 4 g1

2

Now the solution set for the MA parameters was

(7.d.31)
se

2 = 1ÅÅÅÅ
2

Jg0 - "##################g0
2 - 4 g1

2 N q =
g0+"###################g0

2-4 g1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 g1

se
2 =

g0ÅÅÅÅÅÅÅÅ
2

+ 1ÅÅÅÅ
2

"##################g0
2 - 4 g1

2 q =
g0-"###################g0

2-4 g1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 g1

where the first solution is noninvertible. By inspection, it is clear that g1 ê se
2 = 1 ê qNoninvertible . But we 

earlier showed that 1 ê qNoninvertible = qInvertible . Thus

E@mt » pt, pt-1, ...D = pt - c b0 et = pt + qInvertible et = ft
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So while ft  is not in general equal to the efficient price, it can be interpreted as the expectation of the 
efficient price conditional on current and past information. That is, ft  is the filtered estimate of mt .

Suppose that we also have at our disposal the future realizations:

E@mt » ..., pt+1, pt, pt-1, ...D  is the smoothed estimate of mt .

For example, given a full data sample, we might be interested in estimating the implicit efficient price at 
some point in the middle of the sample. As in the filtering case, we could start with pt - cqt  and form a 
linear expectation of qt : 

qt = ... + b-1 et+1 + b0 et + b1 et-1 + ... + vt

Rather than pursue this line of development, though, we'll defer discussion of the smoother until a later 
section.

7.e How closely does pt  track mt ?

ü Overview

We've motivated the c parameter in the model as a cost variable. If "customers" come in and trade against 
"dealer" bids and asks, then c is the amount by which a customer buyer overpays relative to the efficient 
price (and similarly for a customer seller). This does not imply that terms of trade or unfair, or that dealers 
make profits after their costs, but it does imply a clear distinction between those who supply liquidity and 
those who demand it.

Many markets, though, don't have such a clean dichotomy between "dealer" and "customer". In 
limit-order-book markets, bids and asks are set by other customers. Sometimes we consider the customers 
who supply liquidity as quasi-dealers, i.e., dealers in all but name. More generally, though, a customer in 
such a market has a choice between using a market or a limit order, and (if a limit order) how it is to be 
priced. In such markets, the dealer/customer or liquidity supplier/demand roles become blurry.

Even when we can't directly impute a cost to either side in trade, though, it is still of interest to know how 
closely the trade prices track the efficient price. This is measured by VarHstL ª ss

2  where st = pt - mt .  

ü ss
2  in the generalized Roll model

The structural model implies st = qt c , so ss
2 = c2 . Unfortunately, since c  is not identified by the data, ss

2  
isn't either. It does possess, however, a lower bound.

To see this, note first that
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(7.e.32)st = pt - mt = (pt - ftL - Hmt - ftL

Now since ft  is constructed from 8pt, pt-1, ...< , the filtering error mt - ft  is uncorrelated with pt - ft . 
Therefore

(7.e.33)ss
2 = VarHpt - ftL + VarHmt - ftL  

Next we use the property that ft = pt + qet  is not dependent on the structural model parameters. This means 
that the first term on the r.h.s. is invariant. Furthermore, under one parameterization (that of exclusively 
private information, ut = 0), mt - ft = 0. This parameterization defines the lower bound.

Specifically, if ut = 0, we've seen that mt = pt + qet , so ss
2 = q2 se

2 = c2 . To establish the last equality, recall 
that we have a mapping from the structural parameters to the autocovariances, and from the autocovariances 
to the moving average parameters. Using the earlier results, q2 se

2  is:

(7.e.34)q2se
2 =

1
ÅÅÅÅÅ
2

Jg0 - "##################g0
2 - 4 g1

2 N

The lower bound is:

(7.e.35)ss
2

êêêê =
1
ÅÅÅÅÅ
2

Jc2 + Hc + lL2 + su
2 - "###############################################################Hl2 + su

2L H4 c2 + 4 l c + l2 + su
2L N = c2

So in the case of exclusively private information, the lower bound is correct.

In the case of exclusively public information Hsu
2 ∫ 0, l = 0L , though, the lower bound is (in terms of the 

structural parameters):

(7.e.36)
1
ÅÅÅÅÅ
2

J2 c2 + su
2 - "###########################su

2 H4 c2 + su
2L N

This is not equal to c2 , the structurally-correct answer.

Does there exist an upper bound?

In general, no. The problem is that there are many alternative structural models that are observationally 
equivalent (have the same q and se

2 ). For example, consider pt = mt-2 + cqt . Here, trade price is driven by an 
efficient price that is two periods "stale". The difference st = pt - mt = -wt - wt-1 + cqt , and its variance is 
inflated by 2 sw

2 .

This does not affect the lower bound result. In the present case, we can write

(7.e.37)st = pt - mt = pt - Hmt-2 + wt-1 + wtL = Hpt - ftL + H ft - mt-2L - Hwt + wt-1L 

Here, given the lagged dependence, neither pt  nor ft  depend on 8wt, wt-1< . The lower bound will understate 
the true ss

2  by 2 sw
2 .
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Now one can make economic arguments that it is unlikely that the price is extremely lagged relative to 
beliefs. Were quotes set relative to yesterday's efficient price, customers would be unwilling to trade on one 
side of the market. Arguments like this might justify at least a provisional assumption about how stale the 
price is likely to be. The point here is that the arguments must be based on economics, not statistics. 
Statistical analysis does not provide an upper bound.
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 Chapter 8. Univariate random-walk decompositions

The previous section generalized the Roll model to incorporate asymmetric information effects, and then 
examined the implications of the more general structural model for the reduced-form ("statistical") 
time-series representation of the price changes.

The present section generalizes these results. Rather than start with a structural model, though, we take a 
more empirical perspective. That is, we start without knowing the structural model. We begin with a 
moving-average representation for the price changes. This is not as restrictive as it might appear. If the price 
changes are covariance-stationary, then we know by the Wold theorem that such a representation exists. It 
may also be identified and estimated in a straightforward fashion. From the MA representation, then, we'll 
attempt to draw economically meaningful inferences.

This is an important approach because our existing structural models are not comprehensive and realistic. 
Trading processes are so complex as to make definitive structural models unattainable. This is not to say that 
the pursuit of such models is pointless, only to suggest that the statistical models implied by them are likely 
to be misspecified. Statistical time series models impose less structure on the data, and may therefore be 
more robust.

The key results are that MA representation for the price changes suffices to identify the variance of the 
implicit efficient price Hsw

2 L , the projection of the efficient price on past price changes, and a lower bound on 
the variance of the difference between the transaction price and the efficient price. It is important that these 
quantities can be constructed without further economic assumptions about the model.

8.a Overview

In empirical microstructure studies, we often need to construct a proxy for an unobservable "efficient" price 
and examine the joint dynamics of this proxy and (often) some information set. Random-walk 
decompositions are especially useful here. The present development is based on Watson (1986).

The framework is one in which an observed integrated time series contains both random-walk and stationary 
components. Watson's perspective is a macroeconomic one: the random-walk component represents the 
long-term trend and the stationary component reflects the business cycle. The macroeconomic orientation 
accounts for the trend/cycle terminology, and the illustration is an application to GNP. 

In our setting, the random-walk component is mt , economically interpreted as the "efficient" price in the 
sense of market beliefs conditional on all public information. 

(8.a.1)mt = mt-1 + wt ,

where the wt  reflect new information. The observed series is the price:
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(8.a.2)pt = mt + st

where st  is a zero-mean covariance stationary process. In the basic Roll model, st = cqt , independent of wt . 
More generally, though, st  can be serially-correlated and correlated with wt . We represent this as:

(8.a.3)st = qwHLL wt + qhHLL ht ,

where ht and wt  are uncorrelated at all leads and lags. qwHLL  and qhHLL  are lag polynomials. Note that since 
wt  is already fixed as the random-walk innovation, we can't generally normalize so that the leading term in 
qwHLL  is unity: qwHLL = qw,0 + qw,1 L + qw,2 L2 + …. In the second term, though, we can scale ht  so that the 
first term in qhHLL  is unity.

In economic terms, st  impounds all microstructure effects of a transient nature that might cause observed 
prices to deviate from optimal beliefs. st  will impound, for example, fixed transaction costs, price effects 
stemming from inventory control, lagged adjustment, etc.

This is a structural model: we can observe pt , but not st  and mt . In terms of the structural model,

(8.a.4)D pt = wt + H1 - LL st = H1 + H1 - LL qwHLLL wt + H1 - LL qhHLL ht

The statistical model for the D pt  is a moving-average process:

(8.a.5)D pt = qHLL et

If we'd started with an autoregressive model for the price-change series, fHLL D pt = et , then we'd set 
qHLL = fHLL-1 and continue.

The challenge is to make inferences about the structural model from the statistical one.

8.b The autocovariance generating function

The autocovariance generating function is a tool that will be used frequently in developing the general 
properties of random-walk decompositions. The following summarizes material in Hamilton, pp. 61-67.

The autocovariances of a time series 8xt<  are gi ª CovHxt, xt-iL for i =. .., -1, 0, 1, ... . We're implicitly 
assuming that the series is covariance-stationary, so gi  does not depend on t . Furthermore, for a real-valued 
time series, gi = g-i .

The autocovariance generating function of x  is defined as the polynomial:

(8.b.6)gxHzL = ... + g-2 z-2 + g-1 z-1 + g0 + g1 z + g2 z2 + ...

The autocovariance generating function is a concise and useful way of representing the dynamic structure of 
the series.

Sometimes we can compute the gs by analysis of the structural model that generated the time series. Often, 
though, we just have a statistical representation for the series. We analyze these cases as follows.
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Suppose that the series can be represented as a moving average model, xt = qHLL et  where L  is the lag 
operator and qHLL = 1 + q1 L + q2 L2 + ... . Then gxHzL = qHz-1L qHzL se

2 . For example, the first-order moving 
average arises in connection with the Roll model: D pt = et + qet-1 = H1 + qLL et . So plugging in (and 
collecting powers of z) gives:

(8.b.7)gxHzL = z q se
2 +

q se
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z

+ Hq2 + 1L se
2

From which it is clear that g0 = H1 + q2L se
2  and g1 = g-1 = qse

2 .

Alternatively, suppose that xt  can be represented by an autoregressive model, fHLL xt = et , where 
fHLL = 1 + f1 L + f2 L2 + ... . Then

gxHzL = fHz-1L-1 fHzL-1 se
2

Intuitively, we can convert the autoregressive representation to a moving average one, xt = fHLL-1 et , and 
then use the previous result for moving average processes. The autocovariance generating function for an 
autoregressive model is slightly more involved than that of a moving average model. Because of the 
inversion, we usually have to construct an infinite-order expansion for fHzL-1 .

For example, consider the first-order autoregressive process xt = -f xt-1 + et , or 
fHLL xt = et where fHLL = H1 + fLL . The series expansion for fHzL-1  (around zero, through the fifth order is) 
is:

(8.b.8)1 - f z + f2 z2 - f3 z3 + f4 z4 - f5 z5 + OHz6L

The expansion of fHz-1L-1 is:

(8.b.9)1 -
f
ÅÅÅÅÅÅ
z

+ f2 J 1
ÅÅÅÅÅ
z

N
2

- f3 J 1
ÅÅÅÅÅ
z

N
3

+ f4 J 1
ÅÅÅÅÅ
z

N
4

- f5 J 1
ÅÅÅÅÅ
z

N
5

+ Oi
k
jjjJ 1

ÅÅÅÅÅ
z

N
6y
{
zzz

In computing the autocovariance generating function we take the product of the two expansions:

(8.b.10)

gxHzL = se
2 f10 + se

2 f8 + se
2 f6 -

se
2 f5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z5 + se

2 f4 +

se
2 f2 + se

2 +
se

2 f6 + se
2 f4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z4 +

-se
2 f7 - se

2 f5 - se
2 f3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z3 +

se
2 f8 + se

2 f6 + se
2 f4 + se

2 f2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z2 +
-se

2 f9 - se
2 f7 - se

2 f5 - se
2 f3 - se

2 f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z
+

z H-se
2 f11 - se

2 f9 - se
2 f7 - se

2 f5 - se
2 f3 - se

2 fL +
z2 Hse

2 f12 + se
2 f10 + se

2 f8 + se
2 f6 + se

2 f4 + se
2 f2L +

z3 H-se
2 f13 - se

2 f11 - se
2 f9 - se

2 f7 - se
2 f5 - se

2 f3L +
z4 Hse

2 f14 + se
2 f12 + se

2 f10 + se
2 f8 + se

2 f6 + se
2 f4L +

z5 H-se
2 f15 - se

2 f13 - se
2 f11 - se

2 f9 - se
2 f7 - se

2 f5L
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This expression neglects the higher-order terms. In fact, each coefficient of z  is an infinite order sum. For 
example, the coefficient of z0H = 1L  is:

g0 = se
2H1 + f2 + f4 + ...L = se

2 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1-f2 .

The coefficient of z  (which is equal to the coefficient of z-1 ) is

g1 = se
2H-f - f3 - f5 - ...L = -se

2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1-f2 = -f g0 .

The coefficient of z2  is g2 = se
2 f2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1-f2 = -f g1 . There's a general recurrence relation: gk = -fgk-1 .

8.c The random-walk variance

The first result comes from considering the autocovariance generating function for D pt  in both the statistical 
and structural representations. From the statistical representation:

(8.c.11)gD pHzL = qHzL qHz-1L se
2

From the structural representation:

(8.c.12)gD pHzL = H1 + H1 - zL qwHzLL H1 + H1 - z-1L qwHz-1LL sw
2 + H1 - zL qhHzL H1 - z-1L qhHz-1L sh

2

In general, the autocovariance generating function for a series (like D pt ) that is the sum of two component 
series will involve cross-terms between the components. These cross-terms vanish here because wt  and ht  
are uncorrelated processes.

We equate the two representations and set z = 1, yielding:

(8.c.13)sw
2 = qH1L2 se

2

The polynomial qHzL  evaluated at z = 1is simply the sum of the coefficients: qH1L = 1 + q1 + q2 + ... .

We have seen a special case of this result. In the Roll model (with or without trade impacts) it was 
demonstrated that sw

2 = H1 + qL2 se
2 .

8.d Further identification in special cases

ü The special case of qhHLL ht = 0: Additional results

When the stationary component is driven entirely by wt , the correspondence between the structural and 
statistical models is:

(8.d.14) H1 + H1 - LL qwHLLL wt = qHLL et
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There is only one source of randomness in the observed series, so wt  and et  are perfectly correlated. Given 
the variance result above,

(8.d.15)wt = qH1L et

Using this and expanding both sides of the prior relation yields

(8.d.16)
1 + H1 - LL qwHLL = 1 + H1 - LL Hqw,0 + qw,1 L + qw,2 L2 + ...L =

1 + qw,0 + Hqw,1 - qw,0L L - Hqw,2 - qw,1L L2 - ... = 1ÅÅÅÅÅÅÅÅÅÅ
qH1L H1 + q1 L + q2 L2 + ∫L

Collecting powers of L  on both sides:

(8.d.17)

H1 + qw,0L = 1 ê qH1L
Hqw,1 - qw,0L = q1 ê qH1L
...
Hqw,k - qw,k-1L = qk ê qH1L
...

The solution to this set of equations is:

(8.d.18)qw,k = -⁄ j=k+1
¶ q j ê qH1L for k = 0, ...

It's also sometimes convenient to write st  in terms of the es as

(8.d.19)st = qeHLL et  where qe,k = -⁄ j=k+1
¶ q j .

This development was first presented by Beveridge and Nelson (1981)

In the Roll framework, this special case corresponds to the special case of exclusively private information. 
Recall that in this case, et = - cÅÅÅÅ

q
 qt , so wt = - H1+qL cÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
 qt . We have q < 0, so the coefficient of qt  is positive. In 

the representation of the stationary component, qwHLL = -qÅÅÅÅÅÅÅÅÅÅ
1+q

. The stationary component is 
st = pt - mt = pt - Hpt + qetL = -qet = cqt . 

Alternatively, we can obtain the stationary component as qwHLL wt = - -qÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+qL  H1+qL cÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q

 qt = cqt .

ü The special case of qwHLL = 0

Here, the stationary component is uncorrelated with wt . The correspondence between structural and 
statistical models is

(8.d.20)wt + H1 - LL qhHLL ht = qHLL et

The autocovariance generating functions of both sides must be equal:

(8.d.21)sw
2 + H1 - zL qhHzL qhHz-1L H1 - z-1L = qHzL qHz-1L se

2
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The qhHLL  coefficients are determined by solving this equation. In the Roll framework, this corresponds to 
the special case of exclusively public information.

8.e Smoothing (optional)

ü General setup

Watson's equation (3.1) states that the linear smoothed state estimate here is

(8.e.22)E@mt » ... pt+1, pt, pt-1, ...D = ⁄k=-¶
¶ vk  pt+k

where the vi are the coefficients in the polynomial

(8.e.23)V HzL = sw
2 @1 + H1 - z-1L qwHz-1LD@qHzL qHz-1L se

2D-1

(using present notation). 

We'll use this formula for smoothing and filtering in the generalized Roll model, where qHLL = 1 + qL . We'll 
construct the smoother for two special cases. The derivations are informal ones. In particular, we'll be 
asserting the behavior of infinite series based on examination of the leading terms.

ü Exclusively private information

For this model, qwHzL = -qÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+qL , i.e., there is no dependence on z  here. Furthermore, sw
2

ÅÅÅÅÅÅÅÅÅ
se

2 = H1 + qL2 . 

Here's a low-order expansion of V HzL :

(8.e.24)

Hq + 1L q11
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z
-

Hq + 1L q10
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z2 +
Hq + 1L q9
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z3 -
Hq + 1L q8
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z4 +
Hq + 1L q7
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z5 -

Hq + 1L q6
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z6 - z5 Hq + 1L Hq10 + q8 + q6 + q4 + q2 + 1L q5 + z3 Hq + 1L Hq12 - 1L q3 +

z Hq + 1L Hq12 - 1L q + Hq + 1L H1 - q12L + z2 Hq + 1L Hq2 - q14L + z4 Hq + 1L Hq4 - q16L

In the development, we'll be using a higher-order expansion of V HzL  where the output is (mercifully) 
suppressed. (The nuts and bolts are visible in the Mathematica version of this document.)

The "center" term in V HzL  is the coefficient of pt  in the smoother, and is equal to 1 + q . The coefficient of 
z-1  in V HzL , the coefficient of pt-1  in the smoother, is -qH1 + qL . The coefficient of z in V HzL  is the 
coefficient of pt+1  (a lead term) in the smoother, and is equal to zero. In fact, all of the coefficients of pt+k  
for k > 0 are zero. The coefficient of z-2  in V HzL  is the coefficient of pt-2  in the smoother: q2H1 + qL .

The pattern of coefficients appears to be:
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(8.e.25)E@mt » …, pt+1, pt, pt-1, …D = H1 + qL pt - qH1 + qL pt-1 + q2H1 + qL pt-2 - …

The coefficients of lagged prices decline exponentially. Furthermore, the sum of the coefficients is equal to 
unity. Thus, we have a one-sided exponentially weighted average. Since the smoother is one-sided, the filter 
and smoother are identical.

Mathematica 

Another way of viewing the filter/smoother here is:

(8.e.31)

E@mt » …, pt+1, pt, pt-1, …D = H1 + qL pt - qH1 + qL pt-1 + q2H1 + qL pt-2 - …
= pt + qHHpt - pt-1L - qHpt-1 - pt-2L + q2Hpt-2 - pt-3L - …L
= pt + qHD pt - qD pt-1 + q2 D pt-2 - …L
= pt + qet

= mt

So the filter agrees with what we've previously derived. It is exact.

ü Exclusively public information

In this case wt = ut , and qwHLL = 0. It turns out that the smoother has a particularly simple form. (Again, the 
nuts and bolts are visible in the Mathematica version.)

The zeroth order term (coefficient of pt ) is:

(8.e.32)Hq + 1L2 Hq20 + q18 + q16 + q14 + q12 + q10 + q8 + q6 + q4 + q2 + 1L

Assuming that the series is infinite, this simplifies to:

(8.e.33)Hq + 1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - q2

The coefficient of z  (coefficient of pt+1  in the smoother) is:

(8.e.34)Hq + 1L2 H-q21 - q19 - q17 - q15 - q13 - q11 - q9 - q7 - q5 - q3 - qL

(8.e.35)-
q Hq + 1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 - q2

The coefficient of z-1  (the coefficient of pt-1  in the smoothed average) is identical. 

The coefficient of z2  (coefficient of pt+2 ) is:

(8.e.36)Hq + 1L2 Hq22 + q20 + q18 + q16 + q14 + q12 + q10 + q8 + q6 + q4 + q2L
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(8.e.37)-
q2 Hq + 1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q2 - 1

The established pattern suggests that the smoother is: 

(8.e.38)

E@mt » …, pt+1, pt, pt-1, …D =

∫ + q2 H1+qL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1-q2  pt+2 - q H1+qL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1-q2  pt+1 + H1+qL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1-q2  pt - q H1+qL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1-q2  pt-1 + q2 H1+qL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1-q2  pt-2 + …

The smoothed estimate of mt  has exponentially declining weights. The sum of the coefficients is unity.

So the smoothed estimate of mt  is a double-sided exponentially-weighted average of the prices.

8.f Filtering

Watson shows that given the statistical model, all compatible structural models have the same filter. That is, 
the coefficients of the current and lagged prices in the projection E@mt » pt, pt-1, ...D  do not depend on 
knowing qwHLL , qhHLL  and sh

2  in eq. (3). In the case where qhHLL ht = 0, the filter is without error 
mt = E@mt » pt, pt-1, ...D .

In the generalized Roll model, we defined ft = E@pt+1 » pt, pt-1, ...D = pt + qet . In the subcase where all 
information was trade related Hut = 0L , we showed that ft = mt . In the subcase where all information was 
public Hl = 0L , we showed that ft = E@mt » pt, pt-1, ...D . The Watson result is a generalization of this.

We defined ft  as the expectation of next period's price. More generally, 

(8.f.39)ft = limkØ¶ E@pt+k » pt, pt-1, ...D = E@mt » pt, pt-1, ... ]

That is, the method of construction we used in the Roll model is generally applicable, and gives us the 
optimal linear filter. (See Beveridge and Nelson).

This is an important result. Countless empirical studies examine the impact of some informational datum on 
a security price. The Watson result (and its multivariate generalization) assert that we can identify a 
component of the price, ft , that behaves as a martingale. We can't claim that this is the true efficient price, 
i.e., the expectation formed in agents' minds. The Watson result tells us, though, that we can at least identify 
the projection of this price on a given information set. This is often enough to support a compelling 
economic story.

8.g Variance of the pricing error: ss
2

As in the generalized Roll model,

(8.g.40)st = pt - mt = Hpt - ftL - Hmt - ftL
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The two r.h.s. terms are orthogonal; ft  is identified, and mt - ft = 0 for one special case HqhHLL ht = 0L . The 
value of ss

2  computed in this special case thus establishes a lower bound.  There is, for the same reason as in 
the generalized Roll analysis, no upper bound.

ü Other approaches

There is a long tradition in empirical finance of measuring market efficiency (informational and operational) 
by measuring or assessing how closely security prices follow a random walk. Statistical measures commonly 
focus on autocovariances, autocorrelations or variance ratios.

The autocovariances and autocorrelations of a random-walk are zero at all non-zero leads and lags. This 
makes for a clean null hypothesis, and there exist a large number of tests to evaluate this null. But if a 
random-walk is rejected (and in microstructure data it usually is), how should we proceed. Statistical 
significance (rejecting the null) does not imply economic significance. It is difficult to reduce a set of 
autocovariances and autocorrelations to a single meaningful number.

One approach is to compare the variances of returns computed at different intervals or endpoints. It was 
noted above that transaction price returns computed over long horizons are dominated by the random-walk 
component. A variance ratio compares the variance per unit time implied by a long horizon with a variance 
per unit time computed from a short horizon:

(8.g.41)VM ,N =

VarHpt-pt-M LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
MÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVarHpt-pt-N LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N

where M , N > 0. If pt  follows a random-walk, VM ,N = 1for all M and N . Usually, though if microstructure 
effects dominate short-horizon returns, then typically, with M < N , VM ,N > 1. That is, microstructure 
effects inflate the variance per unit time in the short run. If we set N   large and examine how VM ,N  changes 
as M  goes from 1 to N , VM ,N  generally declines. In a sense, then, this can summarize how quickly (in terms 
of return interval) the prices come to resemble a random walk. As a single summary statistic, though, VM ,N  
is problematic. There are few principles to apply in choosing M  and N . Furthermore, negative 
autocorrelation at some lags can be offset by positive correlation at others, resulting in a VM ,N  near unity, 
even though the process exhibits complicated dependent behavior.

Variance ratios are also computed when the horizons are the same, but endpoints differ. In some markets, for 
example, the first and last trades of the day occur using different mechanisms, Typically, the opening price 
(first trade) is determined using a single-price call, and the closing price is that last trade in a continuous 
session. The relative efficiencies of the two mechanisms are sometimes assessed by variance ratios like

(8.g.42)
VarHpt

Open - pt-1
OpenL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Var Hpt

Close - pt-1
CloseL

Studies along these lines include Amihud and Mendelson (1987, 1990, 1991) and Ronen (1998).
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8.h Problems

Problem 8.1 Stale prices

The beliefs of market participants at time t  are given by mt = mt-1 + wt . But due to slow operational 
systems, trades actually occur relative to a stale price: pt = mt-1 + c qt . Assume that wt  and qt  are 
uncorrelated at all leads and lags. What is the moving average representation of D pt . From this 
representation, determine sw

2 .

Answer

Problem 8.2 Lagged adjustment

The beliefs of market participants at time t  are given by mt = mt-1 + wt . But due to slow operational 
systems, trade prices adjust to beliefs gradually: 

pt = pt-1 + aHmt - pt-1L . 

There's no bid-ask spread (see the next problem). What is the autoregressive representation for D pt ? What is 
sw

2  (in terms of the parameters of the AR representation)?

Answer

Problem 8.3 Lagged adjustment with a bid-ask spread

The beliefs of market participants at time t  are given by mt = mt-1 + wt . But due to slow operational 
systems, prices adjust gradually. The adjustment process is as follows. There is a notional price level, pt , 
that adjusts toward mt :

(8.h.43)pt = pt-1 + aHmt - pt-1L

Intuitively, pt  may be thought of as the quote midpoint. Actual transaction prices occur as:

(8.h.44)pt = pt + cqt

where qt  and wt  are uncorrelated. What is the process for D pt ? (It will have both autoregressive and moving 
average terms.) What is sw

2 ?

This is a special case of Hasbrouck and Ho (1987), which is in turn based on Beja and Goldman (1980).  HH 
also allow for autocorrelated trades, in which case D pt  is ARMA(2,2).
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Answer
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 Chapter 9. Estimation of time series models

The material to this point has mostly dealt with the correspondence between structural and statistical 
representations of 8D pt< . Given a statistical MA(1) model for the 8D pt< , we could compute structural 
parameters sw

2 , ss
2

êêêê , and (if we make the appropriate restrictive assumptions), 8l, c, su
2 = 0< or 8c, su

2, l = 0< .

We now turn to estimation of structural parameters, based on a sample of prices 8p0, p1, ... pT < . We'd at 
least like consistent estimates of the structural parameters. In addition, for hypothesis testing, we'd like 
distributional results as well.

The overall estimation strategy will involve first estimating the MA model, and then transforming the MA 
estimates into estimates of the structural parameters.

9.a Estimating the MA model.

ü Maximum likelihood

Standard discussions of estimation in time series models usually focus on maximum likelihood methods for 
Gaussian processes. (Hamilton, Ch. 5.) This is generally appropriate for macroeconomic applications, where

è Normality is, if not a proven property, at least a tenable assumption.

è We can compute a likelihood function that is exact in small samples. Macroeconomic applications 
often have relatively few observations.

In microstructure price data, though, normality is not a plausible assumption. The price grid is coarse 
relative to the observations. U.S. equity prices, for example, are quoted in $0.01 increments (ticks), and 
successive price changes are mostly zero, one or two ticks in magnitude.

Furthermore, having an exact likelihood function is less important here. Observations are typically so 
numerous that asymptotic ("large sample") properties of estimators are more closely attained.

Therefore, in microstructure applications, we usually work with moment estimates. Within this class of 
estimators, there are two common approaches.
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ü Direct moment estimates

MA parameters may be estimated directly using generalized method of moments (GMM, Hamilton, Ch. 14). 
Consider the MA(1) process xt = et + qet-1 . The natural moment conditions are those that define the 
autocovariances:

(9.a.1)
g0 = Ext

2 = H1 + q2L se
2

g1 = Ext xt-1 = qse
2

Essentially, GMM picks q and se
2  values that minimize 

(9.a.2)

1
ÅÅÅÅÅÅ
T

 Sxt
2 - H1 + q2L se

2

and
1
ÅÅÅÅÅÅ
T

 Sxt xt-1 - qse
2

GMM also provides distributional results.

This is a sensible and practical way to estimate an MA(1) model.

The approach becomes less attractive for more complex models. For a moving average process of order q , 
denoted MA(q), there are q + 1 parameters. There are also q + 1nonzero autocovariances. There are 2q  sets 
of parameters that will generate these autocovariances, only one of which is invertible. Even when q  is 
modest, this a numerically-challenging exercise. When we extend the framework to model multivariate 
(vector) processes, the dimensionality of the problem increases further.

ü Estimation based on autoregression

We've seen that an MA(1) model possesses an equivalent autoregressive representation:

(9.a.3)xt = et + qet-1 ñ xt = -qxt-1 + q2 xt-2 - q3 xt-3 + ∫ + et

The autoregressive representation can be used as a basis for estimation. Generally, if an MA representation 
is of finite order, then the AR representation is of infinite order (and vice versa). This is the case here. We 
nevertheless note that the AR coefficients are declining geometrically, and that we might obtain a good 
approximation by truncating the representation at some point K .

Such a specification looks like this:

(9.a.4)xt = f1 xt-1 + f2 xt-2 + ∫ + fK  xt-K + et
a

where the a  superscript attached to et  denotes "approximate". This specification may be consistently 
estimated by ordinary least squares.
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The Wold theorem ensures that if the AR model is correctly specified, the disturbances are serially 
uncorrelated and homoscedastic. That is, in computing VarHH f

`
1 f

`
2 ... f

`
K LL  there is no reason to use 

anything more complicated than the usual OLS estimates of the coefficient covariance matrix. The 
possibility of misspecification, though, might militate in favor of a more general approach. Specifically, if 
our choice of K  is lower than the true value or if se

2  has deterministic variation, then the et
a  might be serially 

correlated and/or heteroscedastic. A White or Newey-West estimate might be used instead.

There's one other small problem. If we know that the true statistical model is MA(1), then in estimating the 
equivalent AR specification, we should constrain the AR coefficients to follow the geometrically-declining 
pattern implied by the moving average specification.

In practice, though, the AR approach is generally used in less structured situations, when we don't know the 
order of the MA specification. In this case, we try to set K large enough to ensure that the et  in the AR 
specification are not serially correlated. We then invert the estimated AR representation to obtain the MA 
parameters.

There are two ways of performing this inversion. Both have their uses.

First, we can invert the AR lag polynomial. The compact form of the AR representation is fHLL xt = et  where 
fHLL = 1 - f1 L - f2 L2 - … - fK  LK . Inverting gives xt = fHLL-1 et . Thus, qHLL = fHLL-1 . The inversion is 
carried out by series expansion.  This approach is useful when we don't need the full MA representation. 
Recall that in D pt = qHLL et , the variance of the random-walk component is sw

2 = qH1L2 se
2 . Since we only 

need the sum of the MA coefficients, we may compute sw
2 = se

2 ê fH1L , where f(1) is the sum of the 
autoregressive coefficients. That is, we only need to invert the sum of the AR coefficients, not the full 
polynomial.

The second approach is based on forecasting. Given an MAHqL  representation xt = qHLL et , the forecast, in the 
sense of the linear expectation (projection) conditional on a given disturbance is:

(9.a.5)E@xt+k » etD = qk  et

This follows from simply taking the expectation of the MA representation, noting that the et  are 
uncorrelated.

This forecast may also be computed from the AR representation. Suppose that at time t , we set all lagged xs 
to their unconditional mean of zero Hxt-1 = xt-2 =. .. = 0L . The current observation is then simply xt = et . 
Noting that E@et+1 » etD = 0, 

(9.a.6)E@xt+1 » etD = f1 xt = f1 et

Iterating one more step ahead,

(9.a.7)E@xt+2 » etD = f1 E@xt+1 » etD + f2 et = Hf1
2 + f2L et
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Etc.

Thus, the coefficients in the MA representation are q0 = 1, q1 = f1 , q2 = Hf1
2 + f2L , …

The MA coefficients developed in this fashion are also called the impact multipliers. A plot of E@xt+k » etD  
conditional on some et  (usually et = 1) describes the impulse response function of the process.

When the variable is a difference of an integrated series, like D pt , it is more natural to compute and plot the 
cumulative impulse response function E@⁄ j=0

k D pt+k » etD . Plotted over time, this quantity depicts the 
dynamic response of prices to et .

In the present context, impact multipliers and moving average coefficients are the same thing. This is not 
always the case. Impact multipliers can also be computed from a nonstochastic version of an AR model, i.e., 
one in which the disturbances are suppressed, a linear difference equation.

9.b Structural estimates and their distributional properties

Given estimates 9q
`HLL, s̀e

2=  for the MA parameters, we may form estimates of the structural parameters (e.g., 
sw

2 ) by solving for these parameters using the estimates in lieu of the true 8qHLL, se
2< .

There are two approaches to characterizing the distributions of these estimates.

ü The "delta" method

We can construct an asymptotic covariance matrix by the "delta" method (Greene, section 5.2.4 or Cochrane 
p. 207). The intuition is as follows.

Suppose that we have a random vector distributed as a multivariate normal: x~ NHm, WL . Linear 
transformations of x  are also multivariate normal. If A  is some m µ n  matrix of coefficients, then 
Ax~ NHAm, AWA£L .

Now consider the situation where we have a parameter vector q and we're interested in a (possibly nonlinear) 
continuous function f HqL  where f  is m µ 1.

Suppose that we possess an estimate of q that is asymptotically normal: è!!!!T  Iq` - qM~N(0,W) . Then 

(9.b.8)
è!!!!!T  I f Hq

`L - f HqLM~ NH0, J WJ £L      where J = J ∑ fiÅÅÅÅÅÅÅÅÅ
∑q j

N
i, j

.

In the present case, for example, suppose that we seek estimates of 8sw
2, ss

2
êêêêê< . We start by estimating an AR 

model of order K . The fHLL  coefficients can be estimated by least squares. Denote the coefficient vector by 
f = H f1 f2 … fK L , with corresponding estimate f

`
. We can also form estimates s̀e

2  and VarHf
` L  by the 

usual methods.

Chapter 9            Page 67

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:11:07



Since 8sw
2 , ss

2
êêêê<  both depend on se

2  as well as the f coefficients, however, we'll need to know the joint 
distribution of  Y

`
= H f

`
s̀e

2 L . In the normal (Gaussian) case, f
`

 and s̀e
2  are asymptotically independent 

(Hamilton, pp. 300-301). We'll also need the function mapping f  and se
2  to 8sw

2, ss
2

êêêê< . We compute the 
Jacobian of this function (possibly numerically) and apply it to the Y

`
 variance matrix.

This approach can work well if the mapping function is approximately linear. Most of those we work with in 
microstructure, unfortunately, are not. Random-walk decomposition parameters, impulse response functions, 
etc., are usually highly nonlinear.

ü Subsampling

An alternative approach involves partitioning the full sample into subsamples, computing an estimate for 
each subsample, and examining the distributional properties of the subsample estimates. For example, if the 
T observations span D  days, it is natural to form subsamples for each day.  We estimate our model (MA, 
VAR, whatever) for each day and compute any estimates of interest for the day.  In the case of the 
random-walk variance, for example, we would then have a series s̀w,d

2 for d = 1, ..., D .  We would then 
compute the mean across days, and the standard error of this mean by the usual methods.

This is formally correct if different days are statistically independent. If we're modeling short-run 
microstructure effects, this is roughly accurate.

This approach for estimating the properties of time series data was originally advocated by Bartlett (for 
spectral estimates). In finance, inference based on subsamples in this fashion is generally called the 
"Fama-McBeth" approach.

ü Starting values

Suppose we're modeling price changes. What should we do with the overnight return?

The naive approach is to simply treat the price sample 8p0, p1, ..., pT <  as an undifferentiated sequence, and 
make no special provision for cases where, in computing D pt = pt - pt-1 , pt  is the first trade of the day and 
pt-1  is the last trade of the previous day.

Although this usually simplifies the data analysis and programming, it is highly problematic. For one thing, 
opening and closing prices are often determined by different market mechanisms (e.g., single price call vs. 
continuous trading). Another consideration is that the overnight dynamics of the efficient price are almost 
certainly different from those of the trading day. As a general rule, it is better to treat each day as a separate 
sample, and to discard the first price change.

If we're estimating a VAR of order K , though, we'll need K  lagged price changes. Here, one may either set 
lagged unobserved price changes to zero, or else begin the estimation sample with D pK . 
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Standard approaches to this problem advocate a formal modeling of the initial observations, essentially 
creating marginal distributions in which any dependence on unobserved values has been integrated out (e.g., 
Hamilton, Ch. 5). In principle, these approaches assume that the true process has been evolving all along and 
our sample starts when we begin collecting data. Although this view may be appropriate in macroeconomic 
data, it is usually far less so in microstructure analyses. At the NYSE, the curtain goes up at 9:30 in the 
morning. There may have been some prior trading activity, but if so, the dynamics were almost certainly 
different.

9.c Case study I

Here, we'll download and analyze the TAQ data record for a single ticker symbol on a single data. Each 
class participant will receive a different symbol and day.

You will need to access WRDS using the supplied account. You'll then extract and download a SAS dataset 
using the WRDS web interface. You'll then analyze the data using SAS. To do this, you'll need access to 
SAS on a PC or mainframe. Most of the class will probably be using NYU's Eureka machine. If you're using 
Columbia machines, please see me. I'll supply a SAS shell for the program you'll need to run. You might be 
able to run it as is, but it might need a little modification. You'll then take the output of the program and 
proceed to compute Roll spread estimates and other parameters.

Your write-up should look like the "results" section of an article. That is, there should be (at most) a few 
pages of summary. The summary should report the key statistics, of course, but should also go a little 
beyond this. The study calls for you to estimate some simple models. Are these models appropriate for your 
stock? Do they fit the data well? In some cases, the same value (e.g., sw

2 ) is estimated by various 
approaches. Are there big differences? Why? Etc.

In an article, you'd present the numbers in tables. Here it suffices to attach you SAS output to the back of the 
summary.

ü Accessing WRDS

Go to the WRDS website at http://wrds.wharton.upenn.edu/. Go to the 'members login' page and log in.

Then ö NYSE TAQ ö  'Consolidated Trades'. In this menu, specify your ticker symbol and your date. 
Select all datafields. Select as the output format 'SAS dataset'. Submit your request. When the request is 
processed, download the file.

Next, go to the 'Consolidated Quotes' menu. Again, specify your symbol and date. Select all datafields. 
Output and download as a SAS dataset.
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ü Using SAS

On the course website, there is a SAS shell program (named 'AnalyzeTaq01.sas') for you to work with. 
There is also a sample listing and log file. You can view and edit these files with any text editor (like 
notepad).

Download this program and the CT and CQ datasets to the machine where you'll be running SAS. Note: the 
shell program assumes that the CT dataset is named 'ct2' and the CQ dataset is named 'cq2', both in your 
home directory. To run the program, at the machine prompt, you'll enter something like 'sas 
AnalyzeTaq01.sas'.  SAS should put its log output in 'AnalyzeTaq01.log' and its listing output in 
'AnalyzeTaq01.lst'. Download both of these files to your PC and print them out.

SAS has good online documentation at its website (www.sas.com). You need to register to use it, giving 
your email address, etc.

ü Analyzing the output

The listing output first contains summary statistics from the CQ file, including means, mins and maxes of 
absolute spreads ($ per share), log spreads (log(ofr/bid)) and the bid-ask midpoint ('BAM'). These summary 
spread statistics will be the point of reference for comparing some of the other estimates.

You should compute:

1. The Roll estimate of the spread.  The output from 'proc arima' contains the autocovariances you 
need (based on first differences of log transaction prices). Compare the Roll spread estimate to 
the primary market (NYSE) average log spread.
NOTE: Proc arima appears to automatically center autocovariance and autocorrelation estimates 
around the mean. This is generally not the best choice for microstructure price data, but I don't 
know of any easy way to turn it off.

2. sw
2  and ss

2
êêêê  for the MA(1) model (estimated in 'proc arima' ). Report these as standard 

deviations for ease of interpretation.

3. sw
2  and ss

2
êêêê  for the MA(3) model (estimated in 'proc arima' ). Report these as standard 

deviations for ease of interpretation.

4. Finally, find out the name of your company. What was the market return on that day? Was there 
any news on the company? (Search the Dow-Jones index.)

The assignment is due on Wednesday, November 5. Let me know early on if you're encountering 
difficulties.
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Part II: Multivariate models of trades and prices
To this point, although trade variables have been used in the models, they've entered in fairly simple ways. 
Furthermore, inference has been based on univariate analyses of price changes.

In this section, we focus more closely on trades and how they are incorporated into specification and 
estimation.
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 Chapter 10. The trade process and inventory control

The asymmetric information models address one aspect of trade/price dynamics. The probability that the 
trade arose from the order of an informed trader gives rise to an immediate and permanent price impact.

In this section we investigate another mechanism, generally termed the inventory control effect. The 
inventory control models actually predate the asymmetric information models. I discuss in some detail 
Garman (1976) and Amihud and Mendelson (1980). Related papers include Ho and Macris (1984); Stoll 
(1976); Stoll (1978); O'Hara and Oldfield (1986); Madhavan and Smidt (1991); Madhavan and Smidt 
(1993); Hasbrouck and Sofianos (1993); Reiss and Werner (1998).

10.a The dealer as a smoother of intertemporal order imbalances.

Garman (1976) suggests that a dealer is needed because buyers and sellers do not arrive synchronously. In 
this model, buy and sell orders arrive randomly in continuous time. The arrival processes are Poisson.

ü Background: the exponential/Poisson arrival model

Suppose that an event of some sort (e.g., a buy order arrival) has just occurred. Let t be the random waiting 
time until the next occurrence. Suppose that t  is exponentially distributed with parameter l:

(10.a.1)f HtL = e-tl l

The exponential distribution has the property that E@tD = 1 ê l  and VarHtL = 1 ê l2 . Thus, l has units of 
time-1 , e.g. "events per second".

A Poisson random variable n  with parameter m has a distribution defined over n œ 80, 1, ...<  as

(10.a.2)f HnL =
e-m mn
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n!

The mean and variance are E@nD = m and Var@nD = m . If inter-event arrival times are exponentially distributed 
with parameter l, then the number of events occurring within a time interval of duration D is a Poisson 
variable with parameter m = D ê l . This framework is often called the Poisson arrival model. l is the arrival 
intensity. If l is measured in seconds-1 , and we let D = 1, then l-1  is the expected number of events per 
second.
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ü The Garman model

The arrival intensities for buyers and sellers are lB and lS . These are functions of the prices faced by 
customers. Suppose that the dealer posts a single price p . Then lSHpL  is monotone increasing and lBHpL  is 
monotone increasing.

These functions describe supply and demand curves. Demand and supply are not static. Let It  denote the 
number of shares held by a dealer, i.e., the dealer's inventory of stock. If there is to be no net drive in It , then 
we must have lS = lB .

The sense in which the market "clears" at p*  is that average supply and demand per unit time are equal.

p*  the only single equilibrium price, but we’re not in a single-price world. Suppose that the dealer can post 
an ask price, PB , a price at which buyers trade, and a bid price PS  , at which sellers trade. The condition of 
equal arrival rates is now lSHPSL = lBHPBL . For the moment, we’ll treat this as a constraint on the dealer’s 
pricing strategy.

The dealer earns the spread PS - PB  on each buyer-seller pair ("the dealer's turn"). From the dealer's 
perspective, suppose that, subject to equal arrival rates, we set PB < p* < PS . By setting a wide spread

• We increase the revenue per buyer-seller pair.

• We decrease the number of traders per unit time.

Revenue per unit time is given by the shaded area:
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The dealer's inventory of stock is

(10.a.3)IsHtL = IsH0L + NSHtL - NBHtL

where NBHtL  is the cumulative number of trades at the ask (customer buys, dealer sells) through time t ; NSHtL  
is the cumulative number of trades at the bid (customer sells, dealer buys). IsH0L  is the dealer’s starting 
position. There is a similar expression for the dealer’s holding of cash. The key constraint is that  dealer 
holdings of stock and cash cannot drop below zero (“ruin”).

Clearly, if   lSHPSL = lBHPBL , holdings of stock follow a zero-drift random walk. Cash holdings follow a 
positive-drift random walk (remember the turn).

Garman points out that if  lSHPSL = lBHPBL , the dealer is eventually ruined with probability one. (A 
zero-drift random-walk will eventually hit any finite barrier with probability one.) Furthermore, with 
realistic parameter values, the expected time to ruin is a matter of days. The view of equilibrium as a balance 
of stochastic arrival rates is utilized by Saar (1998).

The practice of modeling buyer and seller arrivals as Poisson event processes is a very active area of 
empirical research. Modern approaches allow the arrival rate to be time-varying, with the intuition that 
arrival rate corresponds to informational intensity (Engle and Russell (1998)). Domowitz and Wang (1994) 
examine the properties of a limit order book where order arrivals at each price are Poisson.

10.b Active inventory control

 The dealer in the above variant of the Garman model sets the bid and ask prices once and for all. As he sees 
an inventory barrier approaching, he simply watches and prays that the barrier isn’t hit. Commenting on the 
short expected failure times implied by this strategy under realistic parameter values, Garman notes, “[T]he 
order of magnitude makes it clear that the specialists [dealers] must pursue a policy of relating their prices to 
their inventories in order to avoid failure.”
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This statement lays out the intuition behind an important aspect of microstructure analysis called the 
inventory control principle. The essential mechanism is that dealers change their bid and ask quotes in order 
to elicit an expected imbalance of buy and sell orders, in the direction of restoring their inventories to a 
preferred position. 

In Amihud and Mendelson (1980), the dealer maximizes expected profits per unit time (given risk 
neutrality). The bid and ask prices as a function of the inventory level are depicted as follows:

The key results are:

• Bid and ask are monotone decreasing functions of the inventory level.

• Dealer has a preferred position.

• There is a positive spread.

• The spread is increasing in distance from preferred position.

• The bid-ask midpoint is not always where the true value lies.

• Price fluctuations associated with inventory control are transient.

• There are no manipulative strategies.

In both Garman and AM, the spread results from market power. 

10.c How do dealer inventories actually behave?

Here are some sweeping generalizations:
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Ruins do occur, but infrequently. 

Furthermore, in practice ruins aren’t usually caused by trades that drive the dealer’s inventory into the 
barrier. Ruin generally arises because security inventories are levered (partially financed with debt). A 
sudden price movement triggers a default in the dealer’s borrowing arrangements. A holding of 
200,000 shares may be perfectly okay when the price of the security is $50 per share, but not when 
the price is $10. 

In a sense, ruin is caused not by moving inventory hitting a fixed barrier, but by a moving barrier 
hitting the existing level of inventory.

• Inventories are mean reverting. They do not follow random-walk-type processes.

“Mean-reverting” simply means that the process seems to return over time to some long-run average 
value.  A mean-reverting process does not diverge over time (like a random walk).  Mean-reversion 
does not necessarily imply stationarity: the dynamics of the reversion process might change over time.

• Inventory data are difficult to obtain.  They reveal market-makers’ trading strategies and profit 
mechanisms.

Here are representative data (Hasbrouck and Sofianos (1993)).

Some salient features:

• Inventory sometimes takes on a negative value (short positions).

• There is no obvious drift or divergence.
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• The mean inventory is near zero. A closing inventory 

• There is a sharp spike in late 1989. This corresponds to the “mini-crash”.

This inventory graph is well-behaved (in the sense that it corresponds to our economic intuition).

 The long-term component is much larger than the typical daily variation.
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The inventory appears to be mean-reverting, but has protracted departures from the mean.

ü Is the visible quote the control variable for inventory control?

In both Garman and AM models, the dealer changes his bid and ask to induce an imbalance of incoming 
orders.

I’ll discuss some exceptions below, but as a general rule most empirical analysis of inventory control refutes 
the basic mechanism. In my experience, when I've  sought confirmation of the practice from real-world 
dealers, my inquiries were met with tolerant amusement. A dealer who would pursue the hypothesized 
mechanism would be signaling to the world at large his desire to buy or sell. This puts him at a competitive 
disadvantage. 

This doesn’t settle matters. Some sort of inventory control must be used because inventories aren’t 
divergent. If the adjustment mechanism isn’t quote-based, then what else could it be? Here are some 
possibilities:

• In many markets, dealer quotes are not publicly available. They are given only in response to an 
inquiry by a customer or another dealer. It is safer here to reveal a quote that indicates an adjustment 
desire. The inquiries are not anonymous. If the counterparty (customer or dealer) uses the information 
against the dealer, he will find that the next time he inquires, the dealer will make a poor market. The 
implicit (sometimes explicit) message is: “You bagged me on our last deal. I’m quoting wide to you 
in order to protect myself. And punish you.”

• Interdealer brokers (see Reiss and Werner (1998))

• Selectively “going along”

• Eighthing/pennying

• Other anonymous venues.

Nevertheless, although the price-based inventory control mechanism has not proven relevant to dealers, the 
basic lines of thought have emerged as mainstays of the order strategy literature.

10.d The properties of the trade direction series

It was assumed in the basic Roll model that trade directions were not serially correlated 
HCorrHqt, qt-kL = 0 for k ∫ 0L . In practice, however, this variable tends to exhibit striking positive 
autocorrelation (Hasbrouck and Ho (1987)). Etc.
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 Chapter 11. Random walks, etc.

The last section noted the connection between the trade direction indicator variable qt  and the dealer's 
inventory, It . Assuming that all buys and sells are for one unit, It = It-1 - qt  or qt = -DIt .  (If we wanted to 
allow for various quantities, we'd just use the signed order volume in lieu of qt .)

Now if qt  are independent (as assumed by the basic Roll model), then It  will behave like a random walk. It 
will tend to diverge over time (as suggested by Garman).  But if It  is covariance stationary, what does that 
imply about qt ?

The resolution of these questions turns on the concepts of unit roots and invertibility. We develop these, and 
then revisit the Wold theorem.

11.a Is it a random walk?

 How do we know whether a time series is a random walk or stationary?

The question is actually ill-phrased. In the Roll model, for example, the price is neither a random-walk nor 
stationary. It’s a mixture of both sorts of components. A somewhat better question is, how do we know if a 
time-series contains a random-walk component?

From a statistical viewpoint, however, even this is too vague. For reasons that will become clear in a 
moment, it’s more precise to ask “Does the process contain a unit root?” Formally, the material in this 
section applies to processes that might have a unit root and are covariance-stationary after first-differencing.

When the seminar speaker says, “the price of stock XYZ is nonstationary, so we take first differences before 
computing our statistics,” this is verbal shorthand, and drops some additional assumptions (with which the 
audience and speaker are presumed to be familiar). In general, you don’t make a nonstationary time series 
stationary simply by first-differencing it.

The the term "unit root" arises in connection with the autoregressive representation for a time series. 
Consider the autoregressive form of a time series xt  in terms of the lag polynomial:

(11.a.1)fHLL xt = et where fHLL = 1 + f1 L + f2 L2 + ... + fK  LK

 The stationarity of xt  depends critically on the form of fHLL . The criterion is based on the solutions to the 
polynomial equation fHzL = 0, i.e., the roots of the lag polynomial with the L operator replaced by a complex 
variable z.

If any of the solutions are equal to one, then xt  has a random-walk component. In the long run, this 
component dominates the behavior of the series, causing it to diverge. A solution to f(z)=0 is called a root. 
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Hence, we say in this situation that “xt  has a unit root.”

Suppose that we factor the polynomial as:

(11.a.2)fHzL = H1 - a1 zL H1 - a2 zL ... H1 - aK  zL

If z = 1 êai for i = 1, ..., K  then z = 1 êai  are the roots of the equation. The criterion is this: if 
» ai » > 1 for i = 1, ..., K , i.e., if the roots lie outside of the unit circle, then the process is stationary.

For example, xt = 2 xt-1 + et   is autoregressive (that is, linear in past values). It is, however, explosive: we 
double the last value and add a disturbance. From the polynomial perspective: fHzL = H1 - 2 zL , which is zero 
when z = 1 ê2. This is inside the unit circle.

The Roll model also provides a nice illustration. 

The structural model has the MA representation

(11.a.3)D pt = et + qet-1  

or, using the lag operator:

(11.a.4)H1 - LL pt = qHLL et, where qHLL = 1 + qL

The autoregressive representation for the price level is:

(11.a.5)fHLL pt = et where fHLL = qHLL-1 H1 - LL

We can identify at least one root here, and its value is unity. This is not surprising because we built a 
random walk into the structural model.

But if we didn’t know the structural model, we’d have to make an inference based on a sample of data. 
There are various tests available. In practice we use:

• Economic logic.

• The eyeball test. Does a plot of the series look like it’s diverging?

• Statistical unit root tests.

The eyeball and statistical tests are good ones, but it is too easy in microstructure data to conjure up 
situations in which they would give the wrong answer. In the Roll model, for example, a large trading cost 
coupled with a small random-walk volatility can generate a sample in which the dominant feature is bid-ask 
bounce and the sample path is apparently stationary.
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11.b Invertibility

Suppose we have a series like a dealer's inventory series, It , that can be presumed covariance-stationary. By 
the Wold Theorem, it possesses a moving average representation: It = qHLL et . The first-difference of It  will 
be stationary as well. It also possesses a moving average representation: DIt = H1 - LL qHLL et

When we encountered in the analysis of the Roll model a series (like pt  or mt ) that was (or contained) a 
random-walk component, we arrived at stationarity by taking the first difference. Suppose with a dealer’s 
inventory series, we aren’t sure if it possesses a unit root or not. To be on the safe side, shouldn’t we take 
the first difference anyway? If it was stationary to begin with, the first difference is still stationary, so what's 
the harm?

The problem with “over differencing” is that it ruins the recursion that underlies the autoregressive 
representation for the series. To see this, consider the simple case where It = et . The recursion then becomes

(11.b.6)DIt = et - et-1 = et - HDIt-1 + et-2L = … = et - DIt-1 - DIt-2 - ...

The coefficients on the lagged values of DIt  never converge.

Despite the fact that an autoregressive representation does not exist, it is always possible to compute 
least-squares estimates for autoregressive models in finite samples. Often these estimated models will appear 
quite reasonable, with apparently well-behaved residuals, respectable goodness-of-fit tests, etc. 

One additional caveat. Suppose that in lieu of dealer inventories, the data identify dealer trades: “100 shares 
purchased from the dealer, 200 shares sold by the dealer, etc.” The trade series is (minus) the first difference 
of the inventory series. So if inventories are stationary, the trade series is noninvertible.

Can you estimate a non-invertible moving average model? Yes, but not by forcing it into an autoregressive 
straitjacket. Hamilton discusses a maximum likelihood approach.

11.c The Wold theorem revisited

The Wold theorem assures us that if qt  is covariance stationary, then it possesses a moving average 
representation. If this representation is invertible, then qt  possesses an autoregressive representation as well.  
Suppose, for example, we have a low order AR representation

(11.c.7)qt = fqt-1 + et

Autoregressions are particularly useful because we can estimate them using ordinary least squares.

But wait a minute. The variable we're trying to model here takes on discrete values: qt = ≤1. This means 
that if we try to estimate the autoregression, our dependent variable will be a limited dependent variable. 
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Wasn't there something in Econometrics 101 that explicitly warned against these sorts of estimates? Don't 
we have to use probit or logit instead?

The concern is an important one. Virtually all microstructure series except time are discretely valued. Prices, 
for example, live on a grid that was $1/8 for a long time, and is presently $0.01.  The vast majority of trades 
occur in round-lot multiples (units of 100 shares). Probit models are occasionally used (Lo, MacKinlay and 
Hausmann), but they are not the norm. If we couldn't assert some sort of validity for specifications like (c.1), 
empirical market microstructure would be quite difficult.

The purpose of this discussion, then, is to establish the force and the limitations of the Wold theorem.

We start with some reassurances. The Wold theorem is not contingent on the time series being 
continuously-valued, Gaussian, etc. Discrete time series are fine. Given covariance stationarity, we can 
confidently write qt = qHLL et  where Eet = 0, Eet

2 = se
2  and Eet es = 0 for t ∫ s . Furthermore, since et  is 

uncorrelated with et-1, et-2, ... , then it is also uncorrelated with qt-1 . This means that the et  in (c.1) satisfy 
the main requirements for consistency of OLS estimators: they are zero-mean, homoscedastic and 
uncorrelated with the explanatory variables. So (c.1) is a sensible specification for estimation and 
forecasting.

Now for the limitations. The Econometrics 101 cautionary note points out that in a linear probability model, 
the disturbances might have to have weird distributions in order to generate discrete values for the 
dependent variable. In a specification that is based on a behavioral model, this is a disturbing point. Suppose 
I'm estimating yi = b0 + b1 xi + ui  where yi = 1 if individual i  buys an ice-cream cone and xi  is the 
temperature at the time of decision. It is pretty clear that no standard distribution is likely to generate 
zero/one values for yi . While we might assert, therefore, that ui  is uncorrelated with xi , it is virtually 
impossible for ui  to be independent of xi . The same argument applies to the et  in (c.1). Even though they are 
not serially correlated, they are almost certainly not serially independent.

An example might clarify matters. Instead of working with qt , though, we'll construct a simpler indicator 
variable. Suppose that t indexes minutes in the trading session. In terms of observed activity bt  is an 
indicator variable, equal to one if there is at least one trade in minute t and zero otherwise.

Suppose that the bt  are generated in the following way. There is an unobserved i.i.d. series 8at<: 
at = 1 with probability h ; at = 0 with probability 1 - h . Then,  bt = 1 if at + at-1 = 2 and zero otherwise.

Then the outcomes and their associated probabilities are:
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(11.c.8)

at at-1 at-2 Prob bt bt-1

1 1 1 1 h3 1 1
2 1 1 0 H1 - hL h2 1 0
3 1 0 1 H1 - hL h2 0 0
4 1 0 0 H1 - hL2 h 0 0
5 0 1 1 H1 - hL h2 0 1
6 0 1 0 H1 - hL2 h 0 0
7 0 0 1 H1 - hL2 h 0 0
8 0 0 0 H1 - hL3 0 0

The mean is

(11.c.9)Ebt = Ebt-1 = h2

The variance is:

(11.c.10)gb,0 = E@bt-EbtD2 = h2 - h4

The first-order autocovariance is:

(11.c.11)gb,1 = E@bt-EbtD@bt-1-Ebt-1D = -Hh - 1L h3

Thus, gb,1 > 0. Trades will appear to cluster in time.

By way of explanation, the "standard" model of random event occurrence is the Poisson/exponential model, 
where waiting times between events are exponentially distributed and (in consequence) the number of trades 
in any interval is a Poisson variate. In this model events occur “evenly” (that is, with constant intensity) in 
time.

In most real securities market, trading activity is more clustered than would be predicted by the 
exponential/Poisson model. That is, if the current trade occurred quickly after the last trade, it is likely to be 
quickly followed by another trade. When the event occurrences are plotted over time, they visually “cluster”.

Thus, although the latent mechanism in the problem is fanciful, the behavior of the observed series is not.

Autocovariances at all orders higher than one vanish, so we can write bt = et + qet-1 . We earlier saw that the 
invertible solution for the MA(1) parameters in terms of the autocovariances is:

(11.c.12)se
2 =

g0ÅÅÅÅÅÅÅÅ
2

+ 1ÅÅÅÅ
2

"##################g0
2 - 4 g1

2 q =
g0-"###################g0

2-4 g1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 g1

So:

(11.c.13)se
2 = 1ÅÅÅÅ

2
J-h4 + h2 + "#########################################-Hh - 1L3 h4 H3 h + 1L N q =

h4-h2+"#########################################-Hh-1L3 h4 H3 h+1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 Hh-1L h3
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For example, with h = 0.8,

(11.c.14)gb,0 = 0.2304, gb,1 = 0.1024

and

(11.c.15)se
2 = 0.167976 q = 0.609612

We know from the Wold theorem that the et  are uncorrelated, but not much more.

At this point, it's easier to simulate the process and look at the properties of the estimated et . (See 
MA1Problem.sas.) In a generated random sample of 100,000 observations: 
bt
êêê

= 0.6449, g̀b,0 = 0.229, g̀b,1 = 0.1018, s̀e
2 = 0.1670, and q

`
= 0.6101.  All are reasonably close to the 

population values.

Now what do the et  look like? In the first place, their autocorrelations are very close to zero, as the Wold 
theorem would predict. A kernel density (smoothed) histogram, though, reveals a very irregular distribution:

Furthermore, the higher-order autocorrelations are quite different from zero. For example, 
CorrHet, et-1

2 L = -0.18. Thus, the et  are certainly not serially independent.
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ü Summary

Assuming covariance stationarity, we're on firm econometric ground when we estimate linear 
autoregressions (and, later, vector autoregressions). Interpreting them, though, calls for a little caution. We'd 
generally like to interpret et  as an innovation, i.e., "new information". This interpretation must be qualified 
as "conditional on a linear model". There might be nonlinear models that would offer better forecasting 
performance and different innovations. 
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 Chapter 12. Multivariate time series

In the univariate models, pt  actually serves in two roles. On the left hand side of an autoregression, pt  is the 
quantity of interest, the variable containing the martingale component that we identify with the efficient 
price. On the right hand side, the lagged pt  constitute the information set, the variables on which the 
martingale is (implicitly, in our procedures) projected. Both of these roles are open to extension and 
generalization. Initially, we will consider information sets expanded to include trade-direction variables, and 
anything else deemed relevant.  Later, we will analyze techniques for drawing inferences about the 
martingale component of multiple price series.

This section summarizes relevant terminology and results. The material here is covered in Hamilton, Ch. 11 
and 12.

12.a Vector moving average and autoregressive models

Consider a vector time series 8yt<  where yt  is an Hn µ 1L  vector. For example, we might have yt = H D pt qt L  
where qt  is a trade direction variable.

The analysis broadly follows the univariate case. The multivariate autocovariances are matrices:

(12.a.1)Gk = EHyt - mL Hyt-k - mL£

In suppressing any dependence on t , we're implicitly assuming that 8yt<  is covariance stationary. Note that 
Gk = G-k

£ .

The univariate autocovariance generating function generalizes to:

(12.a.2)gHzL= ∫ + G-2 z-2 + G-1 z-1 + G0 + G1 z + G2 z2∫

The multivariate Wold theorem ensures that we can write yt  as a (possibly infinite order) moving average:

(12.a.3)yt = et + q1 et-1 + q2 et-2 + ∫ = qHLL et

where the et  is a vector zero-mean white noise process: Eet = 0, Eet et
£ = W , Eet et-k

£ = 0 for k ∫ 0. 
qHLL = I + q1 L + q2 L2 + ∫  is a matrix lag polynomial: each of the qi  is Hn µ nL . This is a vector moving 
average (VMA). The autocovariance generating function may be computed as

(12.a.4)gHzL = qHz-1L WqHzL 

If the VMA is invertible, it can be written as vector autoregression (VAR):

(12.a.5)fHLL yt = yt + f1 yt-1 + f2 yt-2 + ∫ = et

where fHLL = I + f1 L + f2 L2 + ∫ , with each fi  an Hn µ nL  matrix.
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As with univariate processes, it's useful to be able to go back and forth between AR and MA representations. 
Recall that for univariate processes, computing the correspondence between AR and MA representations 
generally required computing series expansions of the lag polynomials. This is also true for the vector 
processes.

For example, suppose that yt  is a vector moving average of order 1, VMA(1): yt = et + qet-1 . The matrix lag 
polynomial is HI + qLL . The autoregressive parameters may be computed from the matrix series expansion 
fHLL = I - qL + q2 L - q3 L + ∫ . Formally, this is identical to the univariate expansion, but the sums and 
products here are sums and products of matrices. Hamilton gives further results.

In microstructure applications, one usually estimates the VAR and then (if necessary) transforms the VAR 
into a VMA. (Although it is important that we can go in the other direction if need be, the need arises far 
less frequently.) In the discussion of the univariate case, we went from autoregressive to moving average 
representations by forecasting the process subsequent to a one-unit shock. The same approach works here.

Suppose that we possess (or have estimated) a VAR of the form given above. Suppose that all lagged values 
are set to their unconditional mean (zero): yt-1 = yt-2 = ... = 0. Consider the forecasts subsequent to a 
shock at time t  of et :

(12.a.6)

yt = et

E@yt+1 » etD = f1 yt = f1 et

E@yt+2 » etD = f1 E@yt+1 » etD + f2 yt = Hf1
2 + f2L et

...

This implies that the leading terms in the VMA are:

(12.a.7)yt = et + q1 et-1 + q2 et-2 + ... = et + f1 et-1 + Hf1
2 + f2L et-2 + ...

Note: Some statistical software packages (like SAS's PROC MODEL) don't directly compute the VMA 
representation. In these cases, you can obtain the VMA by forecasting the estimated model subsequent to 
unit shocks in each of the disturbances.

Briefly, a truncated version of the VAR in eq. (12.5) can be estimated by least squares. By inversion (or 
forecasting), one obtains the VMA representation. From this, one computes estimates of impulse response 
functions, sw

2 , ss
2

êêêê , etc. Distributional properties of these estimates may be inferred using the delta or 
subsampling methods described in the univariate case.
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12.b Impulse response functions: their use and interpretation

In many empirical settings, an economic hypothesis makes a clear prediction about the sign and/or size of a 
regression coefficient. VAR's, though, are used in situations where interest centers on joint dynamics of the 
variables. The individual VAR coefficient estimates are not usually very illuminating in this respect: it is a 
rare hypothesis that confidently asserts sign and size of a particular entry of fHLL .  Usually, the content of a 
VAR is assessed by summary transformations of the coefficients. The impulse response functions are among 
the most important of these transformations because they enable us to map out (in a form that is easily 
graphed) the time path of the system variables. The time path depicted, though, will depend on the starting 
point chosen. What starting point is most meaningful?

Suppose that we have a bivariate vector process yt = H y1,t y2,t L£  with VMA representation yt = qHLL et  and 
VarHetL = W . For a given innovation et , the conditional forecast k  periods ahead is E@yt+k » etD = qk  et . If (as is 
usually the case) q0  is normalized to I , then E@yt » etD = yt = et . The impulse response function is the 
mapping (over time) of the effect of variable j  on variable i : the series of Hi, jL  entries in the qHLL  lag 
polynomial.  

Having computed the VMA coefficients, we'd like to make statements like "a one-unit shock to y2,t  causes 
y1, t+k  to be qk,1,2 , on average," (where qk,1,2  is the (1,2) entry of the qk , the matrix coefficient of Lk ). This 
statement is supposed to convey the intuition of what would happen if one initial variable were changed, 
while all others were held constant. 

The problem is that if the two variables have a contemporaneous relationship, this sort of shock might be an 
extremely unrepresentative occurrence. Suppose, for example, that the two variables are the daily returns on 
overlapping indexes (like the Dow and the S&P 100). There certainly exist days when the former rises and 
latter stays the same or even falls, but these are relatively infrequent events.  So when the two innovations 
are contemporaneously correlated, how should we construct hypothetical innovations, to use as starting 
points for impulse response functions, that are more representative?

The situation is similar to what happens in an ordinary linear regression (projection). Suppose (for 
concreteness and simplicity) that H yt x1 t x2 t L  are multivariate normal with zero mean and covariance 

matrix S =
i
k
jjjj

sy
2 Syx

Sxy Sxx

y
{
zzzz  where Sxx is the 2 µ 2 covariance matrix of the xs, Syx  is 1 µ 2 and Syx = Sxy

£ . 

Consider the linear projection 

(12.b.8)yt = xt b + ut  where xt = H x1 t x2 t L  and b = H b1 b2 L£ = Sxx
-1 Sxy.

A coefficient, like b1  is normally interpreted as the effect of a unit change in x1 t , holding x2 t  fixed. But it is 
certainly not the case that E@yt » x1 t = 1D = b1.  This latter conjecture ignores the information contained in x1 t  
that is relevant for predicting x2 t  (reflected in the CovHx1 t, x2 tL  on the off-diagonal of Sxx . There are several 
ways of computing E@yt » x1 t = 1D .  Perhaps the most straightforward is to consider a new projection, one in 
which yt  is solely projected onto x1 t : yt = b1

* x1 t + ut  where b1
* = CovHyt, x1 tL ê sy

2 . Then 
E@yt » x1 t = 1D = b1

* .
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Alternatively, we could first project x2 t  onto x1 t : x2 t = a1 x1 t , where a1 = CovHx2 t, x1 tL ê VarHx1 tL . If we 
were to set x1 t = 1, we'd expect x2 t = a1 . The predicted value of y  would then be 
E@yt » x1 t = 1D = H 1 a1 L b . The ordering in which we did things here was arbitrary. We'd get the same 
prediction if we conditioned on x2 t = a1 .  That is, E@yt » x1 t = 1D = E@yt » x2 t = a1D .

It is more difficult to make causal effects. If x1 t  is a control variable, for example, we can't assert that if we 
dialed x1 t  to unity, we'd expect the realization of yt  to be E@yt » x1 t = 1D  (as computed by either of the above 
methods), or b1  for that matter. To proceed, we need to assume or impose a causal ordering.

If we assume that causality (in the familiar sense) flows from x1 t  to x2 t , then E@yt » x1 t = 1D  would be the 
value computed above, which took into account the effect of x1 t  on x2 t  and hence yt . If causality were to 
flow entirely in the other direction, E@yt » x1 t = 1D = b1 , (and a computation of E@yt » x2 t = 1D  would involve 
the indirect effects of x2 t  on x1 t ).

Assertion of a causal direction is tantamount to asserting a recursive structure for the variables. A 
convenient tool for computing this structure is the Cholesky factorization.

12.c Cholesky factorizations

Sometimes, for a given covariance matrix, we seek to construct a factor representation in which the factors, 
considered sequentially, capture the variation in a variable not explained by factors that were included 
earlier. This could be done by performing successive linear projections. The Cholesky factorization is an 
alternative. In a Cholesky decomposition, a symmetric positive definite matrix is factored into a lower 
triangular matrix and its transpose: W = F£ F , where F£ is lower triangular. The lower triangular matrix can 
be interpreted as a transformation matrix for recursively generating the original variables from a set of 
underlying uncorrelated zero-mean unit-variance factors.

Consider the 2 µ 2 covariance matrix

(12.c.9)S =
i
k
jjjj

s1
2 r s1 s2

r s1 s2 s2
2

y
{
zzzz

The Cholesky factor

(12.c.10)F =
i
k
jjj

s1 r s2

0 è!!!!!!!!!!!!!1 - r2 s2

y
{
zzz

F£ F  recreates the original covariance matrix

Now consider the lower triangular matrix

(12.c.11)F£ =
i
k
jjj

s1 0

r s2
è!!!!!!!!!!!!!1 - r2 s2

y
{
zzz
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Suppose we posit a factor structure for x :

J x1 t
x2 t

N =
i
k
jjj

s1 0

r s2
è!!!!!!!!!!!!!1 - r2 s2

y
{
zzz J z1 t

z2 t
N  where J z1 t

z2 t
N~ NH0, IL

z1  explains all of x1 t , so it is natural to view this as the "x1 factor". z2  reflects the information contained in 
x2  that is not in x1 . This corresponds to a causal ordering that places primacy on x1 . This factor structure is 

purely a consequence of the ordering. If we'd arranged the variables as J x2 t

x1 t
N , x2 t  would have been the 

principal driver.

Orthogonalized impulse response functions

Suppose that we have an innovations representation (VMA) for a multivariate time series yt :

(12.c.12)yt = et + q1 et-1 + q2 et-2 + ...

With the Cholesky factorization F£ F = W = VarHetL , we may then write et = F£ zt  where zt ~ NH0, IL . This 
expresses the model innovations in terms of underlying unobserved uncorrelated factors. The VMA written 
in this fashion is:

(12.c.13)yt = F£ zt + q1 F£ zt-1 + q2 F£ zt-2 + ...

where the qi F£  coefficient matrices represent the orthogonalized impulse response coefficients. For 
example, if zt = H 1 0 … 0 L£ , F£ zt  will  be an n µ 1vector of the contemporaneous effects of a 
one-standard-deviation shock to e1 t , assuming that this shock affects all other variables; q1 F£ zt  will be the 
effect in period t + 1 and so on.

When we wish to investigate behavior of the system under alternative causal orderings, it is often easiest to 
re-order the variables in the original analysis, letting the statistical software do the work. This will usually 
result in a fresh estimation of the model, however. If compositional efficiency is a consideration, an 
alternative procedure is to simply permute the variables in the coefficient and covariance matrices, and 
recompute the Cholesky factorization.

12.d Attributing explanatory power

An important related issue involves the attribution of explanatory power. The explained variance in the 

regression is b£ VarJJ x1 t
x2 t

NN b = b1
2 s1

2 + 2 b1 b2 s12 + b2
2 s2

2 .  If s12 = 0, there is a clean decomposition of 

how much is explained by the two variables. If s12 ∫ 0, ambiguity arises. We may nevertheless identify two 
extremes. We may associate the covariance term entirely with x1 t , or alternatively, entirely with x2 t . The 
first case corresponds to placing x1 t  first in the causal ordering; the second, to placing x2 t  first.  Notice that 
since the covariance term can be negative, it is not possible to say a priori which ordering maximizes the 
explanatory power.
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The situation can also be viewed as one in which we sequentially add explanatory variables to a regression. 
The incremental explanatory power of a variable depends on what variables were included earlier, and we 
can't assume that the incremental explanatory power of a variable is maximized by placing it first.  For 
example, consider a signal extraction problem that arises frequently in microstructure models. The true value 
is v~ NH0, sv

2L ; the observed signal is s = v + e , where e ~ NH0, se
2L , independent of v . In models, we usual 

need to project v  on s . Here, consider the (perfect) projection of v  on s  and e.  Suppose we put e  "first". The 
projection of v  solely on e  has no explanatory power (due to the independence of v and e). But if we add e to 
a projection that already includes s , the explanatory power jumps (from some R2 < 0 to R2 = 1).  So the 
incremental explanatory power of e  is actually maximized by including it last.

The lesson seems to be that if we seek the maximum or minimum possible incremental explanatory power 
for a variable, we must consider its incremental explanatory power under all possible orderings 
(permutations) of the variables. Actually, we need not investigate all permutations. The incremental R2  
associated with adding x*  to the variable set depends only on the preceding explanatory variables, not their 
ordering. If we have a total of n + 1explanatory variables, and wish to examine the incremental R2  

associated with adding x*  as the k + 1st  variable, there are J k
n

N =
n!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-kL! k! possible combinations. So the 

total number of combinations associated with adding x*  first, second, etc. is ‚
k=0
n

 
n!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-kL! k! = 2n . This 

is smaller than the number of permutations, n! .  With n = 9, we need to investigate 512 cases, while 
9! = 362, 880.

12.e Forecast variance decompositions

In constructing the impulse response functions (moving average representation), we forecast the system 
conditional only on knowing et . (Recall that all lagged values were set to zero.) In a real-time forecasting 
situation, we'd possess the history of the process. The forecast at lead k  in this situation is 
E@yt+k » et, et-1, ...D .  In the table below, we present the actual value of yt+k , the forecast of yt+k  and the 
difference between the two (the forecast error):

Actual yt+k = et+k +q1 et+k-1 + ... qk-1 et+1 +qk  et +qk-1 et-1 + ...
Forecast E@yt+k » et, et-1, ...D = qk  et +qk-1 et-1 + ...

Forecast error yt+k - E@yt+k » et, et-1, ...D = et+k +q1 et+k-1 + ... qk-1 et+1

The forecast error covariance at lead k  is therefore:  ⁄ j=0
k-1 q j W q j

£ . In the case of diagonal W , the forecast 
error variance can be cleanly dichotomized into contributions from each of the system innovations. If there 
are off-diagonal elements, we can bound these contributions using different Cholesky factorizations and 
permutations as described above. A particularly important special case of this technique arises in the limit as 
k Ø ¶ . In this case, the forecast error variance is equal to the total variance of the system variables, VarHytL .

Note: ⁄ j q j W q j
£ ∫ @⁄ j q jD W @⁄ j q jD£ .  Confusion on this point is especially problematic when one of the 

variables is a price change, D pt .  In this case, the corresponding term of limiting ⁄ j q j W q j
£  is VarHD ptL , 
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while the corresponding term of the limiting @⁄ j q jD W @⁄ j q jD£  is VarHwtL , the variance of the random-walk 
component of the price.
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 Chapter 13. Prices and trades: statistical models

13.a Trade direction variables: constructing qt

Most markets disseminate and record bid and ask quotes. When these are merged with the trade reports, it is 
often possible to judge the trade price relative to the bid and ask quotes. A trade at the ask (or more 
commonly, above the bid-ask midpoint) is signed as a "buy" (qt = +1); a trade at the bid (or below the 
bid-ask midpoint) is a "sell" (qt = 1). 

Although simple in principle, the procedure has its limitations. Two of the more commonly-encountered 
difficulties are:

• In some markets, trades may occur at prices other than the posted bid and ask. In US equity markets, 
for example, trades occurring exactly at the bid-ask midpoint frequently occur.

• Reporting practices may induce incorrect sequencing of trades and quotes.

Despite these limitations, however, qt  constructed in this way often have substantial power in explaining 
price dynamics.

13.b Simple trade/price models

This section describes four models of increasing complexity. 

ü Model 1 (Generalized Roll model, with both pt  and qt  observed)

When we observe both pt and qt , the generalized Roll model can be estimated via single-equation least 
squares.

Recall that the models is:

(13.b.1)

mt = mt-1 + wt
wt = l qt + ut

pt = mt + c qt
D pt = -c qt-1 + c qt + l qt + ut

Previously, we assumed that only the pt were observed. In many applications, though, we possess the qt  as 
well. If this is the case, we can easily estimate the  8c, l, su

2<  parameters via OLS regression applied to the 
last equation. 

Chapter 13            Page 93

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:11:13



OLS suffices here because the qt  in this equation are both known and predetermined (with respect to the 
D pt ). The residual, ut , is uncorrelated with the explanatory variables. The long-run price forecast is:

(13.b.2)ft = E@pt+1 » pt, pt-1, ..., qt, qt-1, ...D = pt + E@D pt+1 » pt, pt-1, ..., qt, qt-1, ...D = pt - cqt

By inspection, it is clear that ft = mt . The variance of the random walk component is:

(13.b.3)
sw

2 = l2 sq
2

´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨̈ ¨≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨
Trade-related ê Private Information

+ su
2

´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈¨≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈¨
Non-trade-related ê Public information

Given the structure of qt , sq
2 = 1, a result that we've used earlier. Here we leave it in symbolic form. 

This expression implies a clear decomposition of random-walk variance into one component that is 
attributable to trades and another that is uncorrelated with trades. Given the economic rationale for the 
specification, the trade-related component is due to the market's assessment of the private-information 
component of the trade, while the non-trade component is due to public information. 

The l2 sq
2  quantity is in a sense an absolute measures of private information. Sometimes its useful to have a 

relative measure as well.  An natural candidate is

(13.b.4)l2 sq
2 ê sw

2 . 

This can be viewed as the coefficient of determination (R2 ) in a regression of wt  on qt .

ü Model 2: Autocorrelated trades

When the qt  are serially correlated, the D pt  regression must include lags of qt . As long as the qt  are 
exogenous, though, we don't need to estimate a joint specification.

Suppose, for example that qt  is MA(1): 

(13.b.5)qt =b eq,t-1 + eq,t

In most markets, the autocorrelation in trade directions is positive: the order following a "buy" also tends to 
be a "buy". Thus, it's realistic to expect q > 0.

In the generalized Roll model, qt  appears in two contexts. First, it simply determines whether the trade price 
is at the bid or ask. Second, it drives the revision in the efficient price due to inferred private information. In 
this latter context, it is important to note that in the present case, E@qt » qt-1, qt-2, ...D ∫ 0. Therefore, the 
information content of qt , i.e., the informational innovation, what we learn that we didn't know before, is 
qt - E@qt » qt-1, qt-2, ...D = et

q . The increment to the efficient price is therefore

(13.b.6)wt = ut + l eq,t

Now, D pt  becomes:

Chapter 13            Page 94

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:11:13



(13.b.7)D pt = ut - c Hb eq,t-2 + eq,t-1L + l eq,t + c Hb eq,t-1 + eq,tL

Due to the presence of et-2
q , D pt will have a nonzero autocovariance at lag two (it is now a second-order 

moving average). The price at time t + 2 is:

(13.b.8)pt+2 = pt+D pt+1+D pt+2 = pt + ut+1 + ut+2 - c b eq,t-1 - c eq,t + Hc b + lL eq,t+1 + Hc + lL eq,t+2

Taking the expectation of this, conditional on what we know at time t  gives

(13.b.9)ft = pt - c beqt-1
- ceq,t

As above, we can verify that ft = mt . The random-walk decomposition is now:

(13.b.10)sw
2 = l2 VarHeq,tL + su

2

If the qt  are still to be unconditionally distributed as equally-probable realizations of ≤1, then (assuming 
q > 0), VarHeq,tL < 1. So the trade-related contribution to the efficient price variance is lower than in the 
uncorrelated case.

Estimation in this model is slightly more complicated because the expression for D pt , which we were using 
as a regression specification, involves the unobserved eq,t  innovations. 

One approach would be to estimate the qt  process, compute èq,t , the estimated innovations and use them in 
the D pt  regression: 

(13.b.11)D pt = ut - c Hb èq,t-2 + èq,t-1L + l èq,t + c Hb èq,t-1 + èq,tL

The èt , though, are generated regressors. OLS coefficient estimates will be consistent here. (This is true only 
because the qt  are exogenous.) The asymptotic distribution of the OLS estimates, though is complicated.

An easier and more general approach is to estimate the model by regressing the D pt  onto the qt . To see what 
this implies, first rewrite the regression in terms of the lag operator:

(13.b.12)D pt = ut + Hl + c - cH1 - bL L - c bL2L eq,t

Then recall that since qt = H1 + bLL eq,t ,

(13.b.13)eq,t = H1 + bLL-1 qt

Substituting into the D pt equation gives:

(13.b.14)D pt = ut + Hl + c - cH1 - bL L - c bL2L H1 + bLL-1 qt

The expansion of H1 + bLL-1 qt  is of infinite order. In practice, we'd get approximate results by estimating a 
truncated specification. (Specification would be simpler if we'd started with an autoregressive representation 
for qt , like qt = bqt-1 + eq,t , in the first place.)

In this case, we don't need to estimate the joint dynamics of qt and D pt . It might be more efficient to do so, 
though, since b  appears in both processes. We could stack the last two equations as a vector autoregression.
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We might also want to specify the VAR in a way that explicitly models the contemporaneous causality (the 
impact of qt  on D pt ). The generic VAR is usually specified as yt = f1 yt-1 + f2 yt-2 + … + et , where the 
first term on the r.h.s. is yt-1

In the present model, we have a recursive relationship at time t . It could be specified as:

(13.b.15)yt = f0 yt + f1 yt-1 + f2 yt-2 + … + et  where f0 = J 0 l + c
0 0

N

Essentially, we have a recursive contemporaneous structure: qt  affects D pt , but not vice versa. When this 

model is estimated, the residual covariance matrix Varik
jj ut

eq,t

y
{
zz  will be diagonal by construction.

How should the VAR be estimated? VARs are conventionally (and conveniently) estimated using ordinary 
least-squares. Here, though, we have a preferred structural model, and GMM is a reasonable alternative. 
Applying GMM here, we'd have five model parameters 8c, l, b, su

2, se
2< . These parameters determine the 

(vector) autocovariances of the process, and it would be logical to use these as the moment conditions.

ü Model 3: Endogenous trades

When the qt  are not exogenous, it is necessary to model the joint dynamics. In this variation of the model, 
price changes can affect subsequent qt .

To this point, qt  have been assumed exogenous to the public information process ut . This simplifies the 
analysis because there is a clear causal direction of the effects in the model. It is not, however, particularly 
realistic.

Returns might affect subsequent trades for several reasons. Recall that the dealer inventory control 
hypothesis suggests that dealers respond to inventory imbalances by changing their quotes to elicit an 
imbalance in the subsequent incoming order flow. More broadly, we suspect that some agents in the 
economy follow price-sensitive strategies. If the price goes up purely by reason of public information, 
momentum traders may leap in and buy. Alternatively, an options trader who is hedging a short call position 
will buy when the price rises.  Either of these effects (and probably many others) break the assumption that 
qt  is exogenous.

When we are modeling multiple time series and can't assert a priori a one-way causal structure, the model 
must allow for joint dynamics. The models that we can test and interpret are fairly general and flexible ones. 
But to illustrate the approach, we'll consider a simple modification to our structural model.

The new trade direction process is:

(13.b.16)qt = a ut-1 + b eq,t-1 + eq,t

Note that eq,t  is still the innovation in the trade.
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(13.b.17)D pt = ut - c Ha ut-2 + b eq,t-2 + eq,t-1L + l eq,t + c Ha ut-1 + b eq,t-1 + eq,tL

The equations may be stacked to form a vector moving average:

(13.b.18)J D pt
qt

N = J 1 l + c
0 1

N ik
jj ut

eq,t

y
{
zz + J ca -cH1 - bL

a b
N ik
jj ut-1

eq,t-1

y
{
zz + J -ca -c b

0 0
N ik
jj ut-2

eq,t-2

y
{
zz

This can be written more concisely in vector/matrix notation

(13.b.19)yt = q0.et + q1.et-1 + q2.et-2

where "." denotes matrix multiplication and

(13.b.20)yt=J D pt
qt

N; et=
i
k
jj ut

eq,t

y
{
zz; q0=J 1 c + l

0 1
N; q1=J c a -c H1 - bL

a b
N; q2=J -c a -c b

0 0
N

Let qk,1  denote the first row of qk , i.e., the row corresponding to D pt . Then

(13.b.21)D pt = q0,1 et + q1,1 et-1 + q2,1 et-2

where

(13.b.22)q0,1 = 81, c + l<; q1,1 = 8c a, -c H1 - bL<; q2,1 = 8-c a, -c b<

Recall that in the univariate case, D pt = qHLL et , we could compute the random-walk variance as 
sw

2 = qH1L2 se
2 . The corresponding result here, derived from the multivariate autocovariance generating 

function is

(13.b.23)sw
2 = Hq0,1 + q1,1 + q2,1L W Hq0,1 + q1,1 + q2,1L£

where W ª VarHetL =
i
k
jjj su

2 0
0 VarHeq,tL

y
{
zzz .

The sum of the qk,1 's is:

(13.b.24)Sq = 81, l<

So

(13.b.25)sw
2 = Sq W Sq£ = VarHeq,tL l2 + su

2

This is the same sw
2 as we obtained for the simpler case when there was no feedback from ut-1  to qt . Why?

Although the model is more complex dynamically, the informational dynamics are identical. That is, wt  is 
generated the same way in both models. In the summation of the qk,1 , the transient effects drop out and we're 
left with the variance of the random-walk component. 
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As in the previous case, we could estimate this model with a VAR like 

yt = f0 yt + f1 yt-1 + f2 yt-2 + … + et  where f0 = J 0 l + c
0 0

N . The estimated residual covariance matrix is 

diagonal by construction.

To this point, we've concentrated on the first row of the system. The full sum of the qk  is:

(13.b.26)J 1 l
a b + 1

N

The second row corresponds to qt , which is stationary (and therefore doesn't contain a random walk 
component). The coefficient sum can nevertheless be interpreted as summarizing the effect of a given 
innovation on long-run cumulative trades.

ü Model 4: Contemporaneous trade and public information effects

This model allows public information to affect trades:

(13.b.27)qt = a ut + b eq,t-1 + eq,t

Interpreting ut  as public information, a > 0 might arise as a consequence of buying by uninformed traders 
on positive news. Market-makers observe the public information prior to setting their quotes, so from their 
perspective, eq,t  is still the informational innovation in the trade.

(13.b.28)D pt = ut - c Ha ut-1 + b eq,t-2 + eq,t-1L + l eq,t + c Ha ut + b eq,t-1 + eq,tL

The VMA coefficient matrices are now:

(13.b.29)q0 = J 1 c + l
0 1

N; q1 = J c a -c H1 - bL
a b

N; q2 = J -c a -c b
0 0

N

Unlike the previous case, there is no clear contemporaneous recursive structure. Therefore, we could not 
estimate (as we did in the previous cases) a VAR like:

(13.b.30)yt = f0 yt + f1 yt-1 + f2 yt-2 + … + et

where f0  has all entries on the main diagonal and below equal to zero.

A specification like:

(13.b.31)J y1 t

y2 t
N = J 0 g12

g21 0
N J y1 t

y2 t
N + J e1 t

e2 t
N

can be estimated by single-equation least-squares. The problem is one of interpretation. We can rewrite this 

as HI - gL yt = et , where g = J 0 g12

g21 0
N , from which it is clear that et  is a (particular) linear transformation 

of yt .
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The structural model here actually possesses additional identifying restrictions on the VMA and VAR 
coefficients that we could in principle exploit. More generally, if we can't identify a contemporaneous 
recursive structure, it is better to estimate a VAR like:

(13.b.32)yt = f1 yt-1 + f2 yt-2 + … + et

where contemporaneous effects will show up in the off-diagonal elements of VarHetL = W . Estimation 
proceeds as follows. We estimate a truncated VAR for yt = H D pt qt L£ :

(13.b.33)yt = f1 yt-1 + f2 yt-2 + … + fK  yt-K + et

which we write more compactly as 

(13.b.34)HI - fHLLL yt = et where fHLL = f1 L + f2 L2 + … + fK  LK

Consider the expression qH1L W qH1L£  where qHLL  is the VMA lag polynomial. Since qHLL = HI - fHLLL-1 ,

(13.b.35) qH1L W qH1L£ = HI - fH1LL-1 W HI - fH1LL-1 £

The first element of qH1L W qH1L£  is sw
2 . I.e.,

(13.b.36)sw
2 = c W c£  where c  is the first row of HI - fH1LL-1 .

Since W is not generally diagonal, the decomposition of sw
2  into trade- and non-trade-related components is 

not identified. Using the Cholesky factorization approach described above, though, we can determine an 
upper and lower bound for each contribution.

13.c General VAR specifications

The structural models described above are intended to illustrate the various sorts of joint dynamics that can 
arise between trades and prices. We can compute many of the derived statistics from these models, though, 
without knowing the precise structure and identifying the structural parameters. This is fortunate because 
most economic microstructure models are stylized constructs, intended primarily to illustrate the broad 
features of an economic mechanism. We have no plausible theory, for example, that might predict that qt  is 
MA(1), as opposed to, say, AR(1).

For a particular stock, we might attempt a precise identification of the orders of the VAR and VMA 
components of a model, but in practice we usually seek robust specifications that might be estimated across 
different stocks and different time samples. These considerations militate in favor of general specifications. 
The approaches discussed here are covered in Hasbrouck (1988, 1991a, 1991b, 1993).

Both the Kyle and Easley-O'Hara models suggest that larger order flows convey more information. It 
therefore makes sense to expand the set of signed trade variables to include signed volume, i.e., a quantity 
like qt Vt  where Vt  is the volume (usually the dollar volume) of the trade. It is also common to include 
signed nonlinear transformations of the volume to allow for more flexibility in the trade-impact function.  
Commonly used variables include qt Vt

2, qt 
è!!!!!Vt and qt logHVtL .
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Let Qt  denote the collection of signed-trade variables employed in a specification, for example, 

Qt = J qt
qt Vt

N . The complete set of variables in the VAR is then yt = J D pt
Qt

N .

We estimate a general VAR of the form:

(13.c.37)yt = fHLL et  where fHLL = f1 L + f2 L2 + … + fK  LK .

The covariance matrix of the disturbances is VarHetL = W . It will be useful to partition this as 

VarHetL =
i
k
jjj s1

2 s1 Q

sQ 1 WQ

y
{
zzz  where s1

2 = VarHe1 tL , the variance of the error associated with the D pt  equation, and 

W  is the covariance matrix of the trade variables.

Assuming the joint process to be covariance stationary and invertible, the yt  possess a VMA representation 
yt = qHLL et .

In the univariate case, with yt = D pt , the autoregression could be expressed in the form yt = fHLL yt + et  and 
the moving average representation in the form yt = qHLL et , with the correspondence given by 
qHLL = H1 - fHLLL-1 . The variance of the random-walk component of pt  was 
sw

2 = » qH1L »2 se
2 = » 1 - fH1L »-2 se

2 .

The corresponding development in the present multivariate case is qH1L W qH1L£ . This is not a scalar, but 
rather an n µ n  matrix, in which sw

2  is the first-row, first-column entry. That is:

(13.c.38)sw
2 = a W a£  where a is the first row of qH1L , or equivalently, the first row of HI - fH1LL-1 .

We now turn to the interpretation of sw
2 .  Most importantly, sw

2  does not depend on the variable set used in 
the VAR. It is the same whether D pt  is projected onto only itself or onto a large collection of variables, 
including some irrelevant ones. In assessing the components of sw

2 , it is useful partition W  as 

W =
i
k
jjj s1

2 s1 Q

sQ 1 WQ

y
{
zzz  where s1

2 = VarHe1 tL , the variance of the error associated with the D pt  equation, and WQ  

is the covariance matrix of the trade variables. We partition a  accordingly as  a = H a1 aQ L .

In the case where s1 Q = 0,

(13.c.39)sw
2 = aQ WQ aQ

£ + a1
2 s1

2

This identifies a dichotomy between trade-related and non-trade-related contributions to sw
2 . At this level, 

resolution between these two components does not depend on resolving the contributions from the different 
components of the trade variable set Qt . In the case where s1 Q ∫ 0, the contributions cannot be determined 
exactly, but they can be bounded using the Cholesky factorization approach.

When resolution of the sw
2  components is the main objective of the analysis, it is often useful to use the 

quote midpoint (bid-ask midpoint, BAMt ) as the price variable, i.e., replacing D pt  with DBAM t . 
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In the timing of the sequential trade models, recall that the market-maker revised the quote after a trade. 
Since the revision occurs after a trade, there is no ambiguity about contemporaneous causality. So we form 
yt = HDBAM t, Qt

£L£ , where DBAM t  is the revision (if any) immediately after the trade, and estimate the VAR 
allowing for "contemporaneous" effects running from Qt  to DBAM t .

How do we know that sw
2  implied by the DBAM t  is the same as that implied by the D pt ? Intuitively, trade 

prices, bids and offers tend to move closely together over long periods. More formally, they are 
cointegrated. This property will be considered in a subsequent chapter.

13.d Summary of asymmetric information measures

The initial analysis of the sequential trade models suggested that the bid-ask spread might be a reasonable 
proxy for the extent of information asymmetry. From the multivariate dynamic analyses of prices and trades, 
other possible measures arise.

ü The trade impact coefficient, l

The l  in models 1-4 is intuitively similar to l  in the Kyle model. It is a coefficient that measures how much 
a trade (or a trade innovation) moves the market price.  l is clearly identified in the structured models. The 
general VAR specifications that allow for multiple lags and multiple trade variables present a problem. It is 
not generally a good practice to pick one particular coefficient at one particular lag as "l". Signed trade 
variables tend to be contemporaneously and serially correlated, leading to some multicollinearity and 
indeterminacy in particular VAR coefficients. A better practice is to compute, using the impulse response 
function, the cumulative price impact of an innovation corresponding to a representative trade.

ü Variance decomposition measures

Decomposition of the random-walk variance sw
2  can characterize trade-related contributions. Using the 

notation of the general VAR analysis, denote sw,x
2 = aQ WQ aQ

£ , an absolute measure of the trade contribution 
and Rw

2 = sw,x
2 ê sw

2  as the relative measure.

13.e Case Study II

For your ticker symbol and date, using TaqAnalyze02.sas as a template:

1. Perform a VAR analysis of trades and prices.
Assess the preliminary properties of trade direction indicator. 2. From the regression of price 
changes against current and lagged trades, determine c, l, sw

2 and Rw,x
2  for the generalized Roll 

model.
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2. Analyze the trade sign direction variable (mean, variance, autocorrelations). Fit a low-order 
ARMA model. (An AR(1) is a good start.) What is the innovation variance compared with 
VarHqtL? (Compare a mean and demeaned model.) Comment on model fit.

3. Full VAR analysis: what proportion of the random-walk variance for your stock can be 
attributed to trades? Comment on difference relative to the generalized Roll model estimates in 
step 1.
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 Chapter 14. Prices and trades: structural models

The preceding section suggested approaches to broadly characterizing trade effects in microstructure 
models. There also exist many approaches based on structural models. This chapter discusses some 
representative examples.

14.a Glosten & Harris (1988)

The model is:

(14.a.1)

Pt
0 Price of transaction t

Vt Number of shares in transaction t

Tt Wall-clock time between transactions t - 1 and t

Qt Buy/sell indicator Hqt in our notationL
mt Efficient price

et Innovation in efficient price, et = mt - mt-1

Zt Adverse-selection

Ct Transitory spread component.

(14.a.2)mt = mt-1 + et + Qt Zt

(14.a.3)

Pt = mt + Qt Ct

Pt
0 = RoundJPt,

1
ÅÅÅÅÅ
8

N
Zt = z0 + z1 Vt

Ct = c0 + c1 Vt

There are a number of interesting features here. 

• The change in the efficient price due to a trade is Qt Zt = QtHz0 + z1 VtL : this reflects both directional 
and size effects.

• The transitory ("clerical and clearing") part of the cost in (1e) also contains a size effect.

• Price discreteness is explicitly modeled.

This model is also important because it estimated for U.S. equity data that contain trade prices and volumes, 
but not bid-ask quotes. This means that the trade direction indicator variables can't be constructed by 
comparing the trade price to the prevailing bid ask midpoint.
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The Qt  are therefore unobserved ("latent") state variables. The estimation technique involves non-linear 
state-space filtering. When Glosten and Harris wrote the paper, this could only be carried out by numerical 
approximations to and integrations of the conditional state densities at each point in time.  Non-linear 
state-space models are nowadays usually estimated by Bayesian Markov chain Monte Carlo (MCMC) 
methods that are easier to implement.

In applications involving U.S. equity data, the Glosten-Harris model has been superseded by approaches that 
use quote data, which are now widely available.  There are many other markets, though, where quotes are 
also missing from the data record.  In these cases, the Glosten-Harris model approach (except for the 
estimation technique) remains important.

14.b Madhavan, Richardson and Roomans (1997)

The model (in their notation):

• xt  is the trade-indicator variable, +1 if the trade is a "buy", -1if a "sell", and zero if the trade occurred 
within the prevailing spread. PrHxt = 0L = l .

• The probability that a trade at the bid is followed by another trade at the bid (and similarly for the ask) 
is PrHxt = xt-1 » xt-1 ∫ 0L = g .

• The first-order autocorrelation in xt  is CorrHxt, xt-1L = r = 2 g - H1 - lL .

These assumptions imply that: E@xt » xt-1D = rxt-1 , i.e., that the innovation in the trade direction is 
xt - rxt-1 .

The efficient price is:

(14.b.4)
mt = mt-1 + qHxt - EHxt » xt-1LL´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈̈ ¨¨̈≠ Æ¨¨¨¨¨¨¨¨̈ ¨¨¨¨¨¨¨̈ ¨̈

Inferred private information
+ et´̈ ¨¨¨¨¨¨¨̈¨¨¨¨¨¨¨̈¨≠ Æ¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈ ¨

public information

The trade price is:

(14.b.5)
pt = mt + fxt´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈ ≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨̈ ¨̈

Noninformational cost of trade
+ xt´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈ ¨̈≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈

Disturance due to price rounding

The model parameters are 8q, f, l, r, se
2, sx

2< . However, moments can be constructed that use only the first 
four of these. Estimation proceeds via GMM.

14.c Huang and Stoll (1997)

The transaction price is

(14.c.6)pt = qt + zt
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where qt  is the quote midpoint and zt  is 

(14.c.7)rt
p = pt - pt-1 = rt

q + zt - zt-1

The quote midpoint return is

(14.c.8)rt
q = E@rt

* » Wt-1D + gHDIt-1L + et

where E@rt
* » Wt-1D  is the "consensus return" conditional on Wt-1 , the public information set after the t - 1st  

trade,

gHDIt-1L  is an inventory-control term and et  arises from new public information (not contained in Wt-1 ).

E@rt
* » Wt-1D = f Izt-1, rt-1

f M  where rt
f  is the return on a stock index futures contract.

14.d The components of the spread

Historically, a prominent line of analysis in market microstructure has focused on modeling the bid-ask 
spread. In a dealer market, the (half) spread is an obvious and convenient measure of trading cost. 
Furthermore, the effects of clearing costs, inventory control and asymmetric information are in principle all 
reflected in the spread. It is therefore something a unifying feature in empirical analysis. Analyses along this 
line include Glosten (1987), Glosten and Harris (1988), Stoll (1989), George, Kaul, and Nimalendran 
(1991), Lin, Sanger, and Booth (1995), and Huang and Stoll (1997).

In most cases, these models have at their core a model of joint price-trade dynamics similar to the ones 
already considered. The specifications, however, often model cost parameters not in absolute terms, but 
rather relative to the spread.

The model of Huang and Stoll (1997) is illustrative.

The implicit efficient price, Vt , evolves as:

(14.d.9)
Vt = Vt-1 + J aS

ÅÅÅÅÅÅÅÅÅÅ
2

N
´̈ ¨¨¨¨¨¨¨̈¨¨¨̈¨≠ Æ¨¨¨¨¨¨¨¨̈¨̈ ¨
Impact coefficient

 Qt-1

´̈ ¨¨¨¨¨¨¨̈¨¨¨¨¨¨¨̈¨̈¨≠ Æ¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨¨¨̈¨
Asymmetric information

+ et´̈ ¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈≠ Æ¨¨¨¨¨¨¨¨̈¨̈ ¨̈
Public information

Initially, the revision is driven by Qt-1 , implicitly assuming that this entire quantity is unanticipated. This is 
later generalized.

The quote equation contains an inventory control mechanism. The quote midpoint is Mt :

(14.d.10)
Mt = Vt + J bS

ÅÅÅÅÅÅÅÅÅÅ
2

N ‚
i=1

t-1

Qi

´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈̈ ≠ Æ¨¨¨¨¨¨¨¨̈¨¨¨¨¨¨¨̈¨̈¨
H-L Accumulated inventory
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where b > 0. For example, after a run of positive Qs (customer buying), the MM will be short, and should 
adjust her quote midpoint upwards to encourage incoming sales.

(14.d.11)DMt =
Ha + bL S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
 Qt-1 + et

The trade price and its first difference are:

(14.d.12)Pt = Mt +
S
ÅÅÅÅÅÅ
2

 Qt + ht´̈ ¨¨¨¨¨¨¨̈¨¨¨̈¨≠ Æ¨¨¨¨¨¨¨¨̈¨̈¨
Price discreteness

(14.d.13)DPt =
S
ÅÅÅÅÅÅ
2

 DQt + l´̈ ¨̈ ¨̈≠ Æ¨¨̈
Ha+bL

 
S
ÅÅÅÅÅÅ
2

 Qt-1 + et´̈ ¨¨¨̈ ≠ Æ¨¨̈
et+Dht

Note that while l  is identified, its individual components are not. Estimation proceeds via GMM.

The components of l can be identified if we posit that the Qt  are autocorrelated. In this case, the trade 
innovation appears in the asymmetric information adjustment, while the full trade quantity appears in the 
inventory adjustment. The modified trade dynamics are those implied by PrHQt ∫ Qt-1 L = p , where p is the 
reversal probability. Thus:

(14.d.14)E@Qt » Qt-1D = H1 - 2 pL Qt-1

The unexpected component of the trade at time t - 1 is:

(14.d.15)Qt-1 - E@Qt-1 » Qt-2D = Qt-1 - H1 - 2 pL Qt-2

Proceeding, we obtain:

(14.d.16)

DVt = J aS
ÅÅÅÅÅÅÅÅÅÅ
2

N Qt-1 - J aS
ÅÅÅÅÅÅÅÅÅÅ
2

N H1 - 2 pL Qt-2 + et

DMt =
Ha + bL S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
 Qt-1 - J aS

ÅÅÅÅÅÅÅÅÅÅ
2

N H1 - 2 pL Qt-2 + et

DPt =
S
ÅÅÅÅÅÅ
2

Qt + Ha + b - 1L S
ÅÅÅÅÅÅ
2

 Qt-1 - J aS
ÅÅÅÅÅÅÅÅÅÅ
2

N H1 - 2 pL Qt-2 + et

Note that the trade process is exogenous to the price processes.

Estimation proceeds via GMM.  All parameters are identified.

At present, models that concentrate on the spread and its components must contend with two developments. 
First, with decimalization, the spreads in U.S. equity markets have become narrow and sizes have dropped. 
Thus the quoted spread is less informative about the terms of trade that all but the smallest orders face. 
Second, with the increased prominence of electronic limit order books, the assumption that quotes and the 
spread are set by a dealer, or someone effectively acting as a dealer, has become less attractive.
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 Chapter 15. The probability of informed trading (PIN)

The papers to this point have assessed private information using trade/price impacts.

A series of papers (Easley, Kiefer, and O'Hara (1997), Easley, Kiefer, and O'Hara (1996), Easley, Kiefer, 
O'Hara, and Paperman (1996), and Easley, Hvidkjaer, and O'Hara (2002)), henceforth EHKOP, develops 
and implements methods of measuring information asymmetry that focuses on the trade (signed order flow) 
process. There are several variants, this discussion focuses on EHO (2002).

15.a Model structure

The model features information events that occur at (and only at) the beginning of the day with probability 
a . If an information event occurs, informed traders receive a Bernoulli signal d œ 8High, Low< . Throughout 
the day, uninformed buyers arrive with Poisson intensity eb ; uninformed sellers, with intensity es . If an 
information event has occurred, informed traders arrive with intensity m .

This is the event tree:

The summary proxy for asymmetric information is the probability of informed trading:
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(15.a.1)PIN =  
amÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅE@B+SD =

amÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅam+eB+eS

This is the unconditional probability that a randomly selected trade originates from an informed trader. 

Turning to inference, note first that the multivariate event arrival process is stationary within the day, but it 
is not ergodic. The effects of initial conditions (occurrence of the information event and signal realization) 
never die out. Estimation is based on the likelihood function for the number of buys (B) and sells (S) in a 
given day. Each day is essentially a separate observation.

The economic model is obviously a stylized one. No one would seriously suggest that information events 
occur only at the beginning of the day, and that signals are Bernoulli. The analysis is designed to capture 
certain characteristics of trade dynamics, not serve as a comprehensive model. Given these limitations, it is 
sensible to consider the characteristics of empirical HB, SL  distributions that are likely to identify PIN.

The unconditional HB, SL  distribution is a bivariate mixture of Poisson distributions. Defining f Hl, nL  to be 
the probability of n  occurrences given a Poisson distribution with parameter l , and assuming for simplicity 
that eS = eB = e , the unconditional density of buys and sells is:

(15.a.2)f HB,SL = H1 - aL f He, BL f He, SL + a d f He + m, BL f He, SL + a H1 - dL f He, BL f He + m, SL

The Poisson distribution for n with parameter l  has:

(15.a.3)
Density Mean Std. Dev.
‰-l ln
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n!
l

è!!!
l

As long as l is not too close to zero, the Poisson is approximately a discretized normal density. For example, 
if l = 10 ("ten traders per day"), the Poisson and corresponding normal distributions are:

5 10 15 20

0.02

0.04

0.06

0.08

0.1

0.12

Accordingly, in what follows, we'll approximate the Poisson distribution with parameter l  by a normal 
distribution with mean l  and standard deviation è!!!

l .
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Before examining the EHKOP model in detail, it is useful to establish a few aspects of mixture distributions 
by examining the univariate case

15.b A mixture of two Normal Poisson approximations

Each component density is a normal approximation to a Poisson distribution. Let f Hl, xL  denote a normal 
density with mean l and standard deviation è!!!

l . The mixture density is:

(15.b.4)f HxL = a f Hl1, xL + H1 - aL f Hl2, xL

where a and H1 - aL  are the mixture weights. 

If l1 and l2  are very different, and a º 1 ê2, the two component normals are distinct. With 
l1 = 10, l2 = 50 and a = 1 ê2, the density of the mixture is:

20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

Here, the two component distributions are clearly visible.

The components are not always so distinct. Suppose that we have a normal distribution that characterizes 
most sample observations, but there are a few "outliers" that we'd like to model with a more diffuse normal 
density. The latter is sometimes called the contaminating density. The prominence of the contaminating 
density in the final mixture depends on (a) how distinct it is from the base density, and (b) its mixing weight. 
There is a trade-off between these two features.
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To take a homey analogy, suppose that we're mixing paints. We're starting with a bucket of pale yellow and 
want to end up with a pale orange. We can either mix in a very small amount of intense red, or a generous 
amount of pale pink. The results will (to my eye, at least) look very similar.

Back in the realm of probability densities, suppose that we start with NIl = 10, s =
è!!!!!!10 M  and consider 

mixtures constructed so that the mean remains at 10. The table below describes some mixtures and their 
properties.

(15.b.5)

a l1 l2 Mean Variance
0.1 8 10.2222 10. 10.4444
0.2 9 10.25 10. 10.25
0.3 9.33333 10.2857 10. 10.1905
0.4 9.5 10.3333 10. 10.1667

(15.b.6)

a Skewness Kurtosis aH10-l1L H1-aLHl2-10L
0.1 0.0160931 2.97802 0.2 0.2
0.2 0.017141 2.99658 0.2 0.2
0.3 0.0153353 3.00088 0.2 0.2
0.4 0.0145673 3.00273 0.2 0.2

Recall that a normal density has zero skewness and a coefficient of kurtosis equal to three. Here is a plot of 
the four mixture densities:
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In summary, despite the considerable variation in the mixture parameters 8a, l1, l2< , the mixture densities 
and the population moments are very similar. Statistical resolution of these mixtures on the basis of a data 
sample would be extremely difficult.

Recall, though, that the mean of the mixture is m = al1 + H1 - aL l2 , implying aHm - l1L = H1 - aL Hl2 - mL . 
The parameter combinations were chosen not only to keep the mean constant, but also to hold constant these 
two components. They are reported as the last columns in the table. 
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These results suggest that for a given value of aHm - l1L , we don't get much variation in sample moments by 
varying a or l1 . Intuitively, the components of this product are:

a´̈ ¨¨¨¨¨¨¨̈¨̈ ≠ Æ¨¨¨¨̈ ¨¨¨̈
Mixing weight

µ Hm - l1L´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈ ≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨̈ ¨̈
Degree of difference from base density

Is this really what's explaining the similarity of the densities, or is it merely a result of matching the mean?  
Here are parameter combinations that hold constant the mean, but without holding constant aHm - l1L .

(15.b.7)

a l1 l2 Mean Variance aH10-l1L H1-aLHl2-10L
0.1 9 10.1111 10. 10.1111 0.1 0.1
0.2 8 10.5 10. 11. 0.4 0.4
0.3 7 11.2857 10. 13.8571 0.9 0.9
0.4 6 12.6667 10. 20.6667 1.6 1.6

The densities are much more distinct:
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We've informally shown:

• When the parameters are varied in a way that keeps aHm - l1L  fixed, the mixture distribution barely 
changes.

• When the parameters are varied in a way that does not keep aHm - l1L  fixed, the mixture distribution 
varies substantially.

This suggests that the product aHm - l1L , which involves the mixing parameter and a shape parameter, is 
likely to be better identified in a data sample. More precisely, in a GMM procedure based on matching the 
first four moments of the density, we'll typically find that the estimated precision of the parameter estimates 
is low and that the covariance matrix of parameter estimates exhibits strong positive correlation in 
estimation errors for a and l1  (as well as for a and l2 ). The estimates of aHm - l1L  and H1 - aL Hl2 - mL , 
constructed as functions of the parameters will be relatively precise.

The importance of this point to the EHKOP model arises in the fact that, like aHm - l1L  in above case, PIN is 
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essentially the product of a mixing weight and a parameter difference.This greatly enhances the precision 
with which PIN might be estimated.

We now return to the EHKOP model.

15.c Mixture aspects of EHKOP 

For simplicity, we'll consider the case where eB = eS = e  and d = 1ÅÅÅÅ
2

. The approximation to the mixture of 
Poissons is then the mixture of normals:

(15.c.8)f HB,SL = H1 - aL f He, BL f He, SL +
1
ÅÅÅÅÅ
2

a f He + m, BL f He, SL +
1
ÅÅÅÅÅ
2

a f He, BL f He + m, SL

As a numerical illustration, we'll use the test values:

(15.c.9)8a = 0.4, e = 10, m = 10<

This implies that on a day with no information event, we expect to see ten buys and ten sells. With an 
information event, if the news is positive, we expect to see twenty buys and ten sells. The figures below 
depict contour and 3D plots of the unconditional distribution of buys and sells (using the normal 
approximation).

Probability density for the number of buys and sells
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The "base" density here is a bivariate normal centered at ten buys and ten sells. The stretching of the density 
along the B  and S  axes reflects the higher arrival rates on information days. The canyon between the two 
lobes occurs because if an information event occurs, good and bad news are mutually exclusive.
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The density above is representative. Changes in the parameter values can dramatically distort the picture, as 
the following examples show.

m=10 a=0.5 e=10 PIN=0.2 m=10 a=0.99 e=10 PIN=0.33

m=10 a=0.1 e=10 PIN=0.05 m=10 a=0.2 e=10 PIN=0.09

When the characteristics of a distribution are strongly dependent on parameter values, different sample 
distributions will imply different parameter values, i.e., the data are likely to informative in estimating the 
parameters with precision.

PIN, however, is a derived, summary quantity. Suppose that we investigate a set of distributions where PIN  
is held constant at 0.10.
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m=8 a=0.28 e=10 PIN=0.1 m=7 a=0.32 e=10 PIN=0.1

m=10 a=0.22 e=10 PIN=0.1 m=9 a=0.25 e=10 PIN=0.1

Although m and a  vary considerably, the distributions look quite similar. This suggests that PIN might be 
estimated precisely, even if this is not the case for the individual parameters. A large a and small m have 
effects similar to small a and large m. 

15.d Summary

The EHKOP approach to characterizing information asymmetry is based solely on signed trades, and can be 
estimated from daily counts of the number of buy and sell orders (B and S). The summary statistic, 
probability of informed trading (PIN), is driven by the frequency and magnitudes of buy-sell imbalances 
» S - B » .

PIN is most strongly driven by the product a m . The preceding analysis of the mixture distribution suggests 
that PIN is likely to be well-identified, even though a  and m  might be less distinct. By the same reasoning, 
we'd also expect PIN to be well-identified if a and m varied across the sample in such a way that relatively 
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high a was accompanied by low m, and vice versa. In economic terms, this might arise if information events 
that were relatively frequent had fewer informed traders.

On non-information days, buys and sells will arrive randomly: there will be no autocorrelation in the signed 
order flow. On information days, though, the preponderance of buys or sells will imply greater likelihood of 
one-sided runs. Thus, a high PIN is equivalent to positive intraday autocorrelation in buys and sells.

Although positive autocorrelation of buys and sells is generally a feature of the sequential trade analyses , it 
is not a feature of the Kyle-type auction models. In the latter, the signed net order flow is serially 
uncorrelated. That is, if we have multiple market clearings during the day, the sequence of net orders at each 
clearing is uncorrelated. (The market maker does not observe buys and sells separately, however.)

In contrast, the joint dynamics of orders and price changes are common to both sequential trade and 
sequential auction approaches: a buy order (or net buy order) moves prices upwards (in expectation, 
permanently). This commonality suggests that specifications that focus on trade/price dynamics (such as the 
VAR approaches) might provide better characterizations of asymmetric information.

In any event, if a sequential trade model has implications for order price impacts, shouldn't we use these 
implications (and the price data) in our estimation? The answer is not obviously "yes". A more 
comprehensive statistical model should in principle lead to more precision in the estimates, but only if the 
model is correctly specified. It may be the case that inferences based solely on trades are more robust to 
misspecification that models based on joint dynamics.

As an additional consideration, one important mechanism may cause both VAR and PIN approaches to yield 
similar inferences. Many markets are characterized by quotes or limit orders that are not updated promptly 
in response to public announcements. In response to an announcement, market-order traders ("day traders") 
successively hit one side of the market until the stale orders have been exhausted. In a PIN analysis, this 
mechanism leads to high trade autocorrelation (and a large PIN estimate). A VAR analysis of the same data 
will typically attribute the quote changes to the incoming trades (rather than public information). A high 
price impact coefficient would also be viewed as evidence of information asymmetries. With respect to this 
mechanism, therefore, both VAR and PIN estimates are likely to lead to the same conclusion. Whether this 
conclusion is correct depends on whether one views the original announcement as public (because it was 
delivered by a broad medium like a newswire) or private (because only a subset of agents [the market order 
traders] had the opportunity to use the information in implementing their strategies).
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 Chapter 16. What do measures of information asymmetry tell us?

The exposition to this point has focused on how spreads, trade autocorrelations and price impact coefficients 
can all be used as microstructure-based proxies for information asymmetries. 

Increasingly, these measures are being used in corporate finance and accounting studies where the need for 
such measures is compelling. A partial list of representative studies includes: Lee, Mucklow and Ready 
(1993); Dennis and Weston (2001); Ertimur (2003); Sunder (2003); Odders-White and Ready (2003).

At the same time, there are studies that suggest caution. Neal and Wheatley (1998) point out that spreads on 
closed end mutual funds are too large to be explained by information asymmetries (given the relatively 
transparent valuation of these portfolios). Saar and Yu (2003) examine spreads around revisions in the 
Russell indexes. These revisions are algorithmic and predictable. Saar and Yu suggest that this spread 
variation cannot, therefore, be linked to cash-flow uncertainty.

Furthermore, order flows in the Treasury bond and foreign exchange markets appear to have price impacts 
(Lyons (2001)). Shall these impacts be attributed to asymmetric information about interest rates? trade 
patterns? There have been a few cases in the U.S. of individuals trading on prior knowledge of government 
announcements,  but these are relatively rare.

Most of the asymmetric information models focused, implicitly at least, on equity markets. In these markets, 
there are obviously large sources of uncertainty, and information endowments and production that are not 
uniform across agents. It is therefore natural to characterize private information as valuable to the extent that 
it predicts long-run, persistent changes in value.

Lyons points out that private information about transient price components may also have value. An agent 
who can buy low and sell high will make money even if these prices arose from "temporary" effects.
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 Chapter 17. Linked prices: cointegration and price discovery

The predictions of many interesting economic models concern multiple prices. "Multiple prices" in this 
context covers bid, ask, and trade prices, possibly for different securities, possibly for different markets. 
Often the economic hypotheses suggest arbitrage or other connections among the prices. This chapter 
discusses model specification in such situations.

The presentation is based on Engle and Granger (1987); Hasbrouck (1995); Lehmann (2002); de Jong 
(2002); Baillie, Booth, Tse, and Zabotina (2002); Harris, McInish, and Wood (2002a, 2002b); and, 
Hasbrouck (2002).  Werner and Kleidon (1996), Hasbrouck (2003) and Chakravarty, Gulen, and Mayhew 
(2004) are representative applications.

17.a Two securities

Suppose that we have two securities that each behave in accordance with the simple Roll model, that is for 
i = 1, 2, we have:

(17.a.1)
mi,t = mi,t-1 + ui,t

pi,t = mi,t + cqi,t

What sort of joint dynamics are economically reasonable?

Both efficient prices follow random walks. The ui,t  increments might be correlated, reflecting common 
dependence on macro or industry factors. But if the values of the two securities are subject to different 
firm-specific factors, then the correlation will be less than perfect. The two securities might appear to move 
together in the short-run. But in the long-run, the cumulative effect of the firm-specific factors will tend to 
cause the prices to diverge.

The behavior is different when the efficient prices are identical, m1,t = m2,t = mt . This might occur when the 
two prices refer to the same security traded in different  markets. With transaction costs and some degree of 
market separation, we would no longer expect arbitrage to ensure p1,t = p2,t .  Hence the two prices might 
diverge in the short run.  In the long-run, though, arbitrage and substitutability would almost certainly limit 
the divergence between the two prices. Thus, we'd expect the difference p1,t - p2,t  to be stationary.

When two variables are integrated of order one (i.e., contain random-walk components), they are said to be 
cointegrated if there exists a stationary linear combination of the variables. For example, the price of IBM 
on the NYSE and that on the Pacific exchange both contain random-walks, but the difference between the 
two prices does not diverge.

The econometrics of cointegrated systems are often quite complex. Much of this complexity arises because, 
in macro applications, we need to test whether the series contain random walks in the first place, then 
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whether they are in fact cointegrated, and finally we need to estimate the cointegrating vector (the weights in 
the stationary combination).

In microstructure applications, these issues are of distinctly secondary importance. The larger questions 
remain and are very pertinent. Do stock prices follow a random-walk, or are they trend-stationary? Are they 
cointegrated with consumption?, etc.  It's not that we consider these issues settled or trivial. Instead, we 
admit at the outset that our data, high-frequency observations over short lengths of calendar time, are 
unlikely to have any power in resolving these larger questions. Microstructure models are best viewed as 
overlays on fundamental economic processes that capture short-term trading effects.

From this perspective, we assume at the outset that security prices are integrated. Obvious economic 
relationships or arbitrage principles dictate the cointegrating vectors. Accordingly, the main concern is 
representation and estimation.

17.b One security, two markets

For simplicity, we'll initially consider the case where a single security trades in different markets. We have a 
common efficient price, and the model becomes:

(17.b.2)
mt = mt-1 + ut

i
k
jjj p1,t

p2,t

y
{
zzz = J 1

1
N mt +

i
k
jjj c1 q1,t

c2 q2,t

y
{
zzz

The cost parameters c1  and c2  are market-specific: the two markets might have different spreads. 

VarJ q1 t
q2 t

N =
i
k
jjj 1 rq

rq 1
y
{
zzz , reflecting the possibility that trade directions in the two markets are 

contemporaneously correlated.

It is easy to verify that the price changes D pt  are jointly covariance stationary and that the autocovariances 
of order two or more are zero. Invoking the Wold result, we have a VMA of order 1:

(17.b.3)
i
k
jjj D p1,t

D p2,t

y
{
zzz =

i
k
jjj e1,t

e2,t

y
{
zzz + J q11 q12

q21 q22
N 
i
k
jjj e1,t-1

e2,t-1

y
{
zzz

Consider the forecast future prices:

(17.b.4)Et 
i
k
jjj p1,t+1

p2,t+1

y
{
zzz =

i
k
jjj p1,t

p2,t

y
{
zzz + J q11 q12

q21 q22
N 
i
k
jjj e1,t

e2,t

y
{
zzz

Since dependencies in this model die out after the first lag, Et@pi,t+kD = Et@pi,t+1D for k ¥ 1.

By a generalization of Watson's argument, these forecasts are equal to the projection of mt  onto current and 
past prices. Since mt  is identical for both securities, these projections have be identical, i.e., we must have 
Et p1,t+1 = Et p2,t+1 . The revisions in these forecasts are:
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(17.b.5)Et 
i
k
jjj p1,t+1

p2,t+1

y
{
zzz - Et-1 

i
k
jjj p1,t

p2,t

y
{
zzz =

i
k
jjj D p1,t

D p2,t

y
{
zzz + J q11 q12

q21 q22
N 
i
k
jjjik
jjj e1,t

e2,t

y
{
zzz -

i
k
jjj e1,t-1

e2,t-1

y
{
zzzy{
zzz = JI + J q11 q12

q21 q22
NN i

k
jjj e1,t

e2,t

y
{
zzz

Now since the forecasts are identical, the revisions in the forecasts must also be identical. Thus:

(17.b.6)H 1 + q11 q12 L = H q21 1 + q22 L

The variance of the (common) random-walk component is

(17.b.7)sw
2 = b W b£ where b = H b1 b2 L = H 1 + q11 q12 L = H q21 1 + q22 L

where W = VarHetL .

The situation here is analogous to the one in which we attempted to decompose sw
2  into trade- and 

non-trade-related components. Here, though, the decomposition is between contributions attributable to each 
of the two markets.

For the case where W  is diagonal, Hasbrouck (1996) defines the information share of the i th market to be

(17.b.8)ISi =
bi

2 VarHei,tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

sw
2

When W  is nondiagonal, lower and upper bounds on the information share may be computed by 
investigating alternative Cholesky factorizations.

In the earlier single-security decomposition of sw
2 , the trade-related component, sw,x

2  was viewed as 
reflecting the market's reaction to private information signalled by the trade, and the remainder, sw

2 - sw,x
2  

was then attributable to public non-trade information.

Here, the variance attributions measure the relative amounts of information production in both markets. In 
the present case, among other things, the shares will depend on the relative magnitudes of c1 and c2 . If 
c1 < c2 , then the price in market 1 is effectively a higher precision signal, which is reflected in a higher 
information share.

One might hope, following the earlier developments that used VMAs, that one could specify a VAR for the 
D ps, which could then be estimated and inverted to obtain the above VMA. It turns out, though, that such a 
VAR representation does not exist: in the presence of cointegration, the VMA is non-invertible. 

Fortunately, the VMA structure can be recovered from a vector specification that is a slight generalization of 
the VAR, specifically, an error-correction model. An error correction model includes, in addition to the 
usual lagged values, a term defined by the cointegrating vectors.  In the present case, for example, the error 
correction model could be specified as:

(17.b.9)D pt = fHLL D pt + J g1
g2

N Hp1,t-1 - p2,t-1L + et

The middle r.h.s. term includes an "error" (i.e., deviation) and coefficients that reflect "correction" (i.e., 
adjustment response). A tendency for p1,t  to move toward p2,t  would suggest g1 < 0, while a tendency for 
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p2,t  to move toward p1,t  would suggest g2 > 0.  There is an arbitrary normalization here. We could have 
defined the error as p2,t-1 - p1,t-1 , which would merely flip the signs on the coefficients.

We may estimate a truncated version of this system. Then compute the VMA representation by calculating 
the impulse response functions subsequent to orthogonal unit shocks (as was done for the price/trade VARs 
considered earlier).

17.c The general case of multiple prices

Let pt = H p1 t p2 t … pn,t L  where all prices refer to the same security. At this level of generality, these 
prices might be trade prices, bids or asks in different markets. A general VECM specification is then:

(17.c.10)D pt = f1 D pt-1 + f2 D pt-2 ++ fK  D pt-K + gHa - zt-1L + et

In the error correction term, zt = A pt  defines the cointegration vectors. Here, one possible choice for A  is 
the coefficient matrix that defines the differences relative to the first price:

(17.c.11)A pt =

i

k

jjjjjjjjjjjjj

1 -1 0 … 0
1 0 -1 0
ª ∏ ª

1 0 0 … -1

y

{

zzzzzzzzzzzzz
 

i

k

jjjjjjjjjjjjj

p1 t
p2 t

ª

pn t

y

{

zzzzzzzzzzzzz
=

i

k

jjjjjjjjjjjjj

p1 t - p2 t
p1 t - p3 t

ª

p1 t - pn t

y

{

zzzzzzzzzzzzz
= zt

Note that A  is Hn - 1L µ n , and for conformability, a must be Hn - 1L µ 1 and g must be n µ Hn - 1L .

An element of a , ak  has the interpretation of being the mean ("long run average") value of p1 t - pk t . From 
the error correction perspective, ak  is the value of p1 t - pk t  consistent with "equilibrium" or "stability", in 
the sense that if zk t = ak , this component has no effect on the current dynamics. If the pt  are all trade prices, 
it would be reasonable to take a = 0. But if the prices are bids and asks, possibly in different markets, then 
non-zero ak  will arise from the fact that bids are generally below ask prices, and the bid in one market might 
generally be higher (more aggressive) than the bid in another market.

A, a, and g  are not unique. If we take an arbitrary nonsingular square matrix of order n - 1, denoted R, then 
the error correction term gHa - zt-1L = gHa - A pt-1L = gR-1HR a - RA pt-1L . More formally, our choice of 
A is no more (or less) than a linear basis for the space of possible alternatives.

It is often cleaner to tell an economic story based on deviations relative to one particular price, such as the 
trade price in the presumptively "dominant" market. One might then describe dynamics in terms of 
adjustment toward or away from this price. From this, it is a small step to attributing this adjustment to the 
market or agents in the market. Beyond identifying a generally infinite set of possible adjustment 
mechanisms, however, the econometrics provide no support for such attributions.

Although in microstructure applications we can usually specify A  a priori, g and a  must generally be 
estimated jointly. OLS is not, therefore, feasible, and we must employ nonlinear least square procedures 
instead.
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The equivalent VMA representation may be derived by constructing the impulse response functions 
subsequent to one-unit shocks in each of the individual innovations. Letting this representation be:

(17.c.12)D pt = QHLL et where VarHetL = W

Given a basis for the cointegrating vectors, the VMA is invariant to all linear transformations of this basis. 
This suggests that the VMA is a more reliable construct for inference than the g or a . Among other things, 
the impulse response functions are invariant to basis rotations.

With a common efficient price, it can be shown that all of the rows of Q(1) are equal, where Q(1) is the sum 
of the VMA coefficient matrices. Defining b  as any of these rows, the variance of the efficient price 
increments is sw

2 = b W b£ . This may be decomposed into absolute and relative contributions using methods 
already discussed.

ü Price discovery

In general, decompositions of sw
2  imply attributions of information origination.

When the elements of pt  are prices from different markets, the VECM describes the adjustment dynamics 
among the different markets. This is often of great interest from an industrial organization perspective.

When the elements of pt  are prices from different sets of traders, the decompositions may indicate who is 
(viewed by the market as) informed.

17.d Sources of cointegration

ü Linear arbitrage conditions

Often a set of prices is subject to an arbitrage relationship.  Suppose, that p1 t, p2 t, …, pn t  are n  
components of an index given by pI,t = b pt , where b  is the row vector of index weights. For an index 
futures contract with price p f t , the no-arbitrage condition may be written as p f t = b pt + c  where c  is the 
cost-of-carry (or the fair-value basis). A sensible VECM would be based on the augmented price vector 
pt

* = H p f t p1 t … pn t L£

(17.d.13)D pt
* = FHLL D pt

* + gHc - H 1 -b L pt-1
* L + et

There are now multiple random-walk components:

(17.d.14)VarHwtL =

i

k

jjjjjjjjjjjjj

VarHw f tL CovHw f t, w1 tL
CovHw1 t, w f tL VarHw1 tL

∏

VarHwn tL

y

{

zzzzzzzzzzzzz
= QH1L W QH1L£
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The rows of Q(1) will not be identical. Q(1) will be of rank n .

In these sorts of estimations, several issues typically arise. First, c  is generally changing between days, 
reflecting forward-spot convergence, declining cost of carry, and a sudden upward jump when the contract is 
rolled over into the next maturity.  Second, c  is generally constant within the day, since none of its 
components (interest, dividends, etc.) accrue within the day. In practice, we can either determine a day's c  
by estimation of the model within a day, by modeling the cost determinants of c , or by fitting a time-trend 
(more properly, a step function that jumps overnight).

The error correction term in a VECM, gHa - zt-1L  reflects a speed of adjustment that depends on the 
magnitude of the error. In arbitrage situations, there may be no adjustment at all until the error reaches the 
transaction cost bounds of the marginal trader. Threshold error correction approaches are a way to model 
these dynamics.

A related situation involves a stock trading in two different currencies. The arbitrage relationship here 
involves the price of the stock in each currency, and the exchange rate. For most purposes, it is reasonable to 
assume the exchange rate exogenous to the stock dynamics. Going even further, since exchange rate 
variation is generally much smaller than stock variation, the foreign exchange rate might even be assumed to 
be fixed.

ü Nonlinear arbitrage conditions

The arbitrage relations linking underlying and derivative securities are often nonlinear in the prices. These 
may be accommodated by inverting the arbitrage relationship to restate all prices in terms of the price of one 
security (usually the underlying).

For example, suppose that the theoretical value of a call option is Ct = f HStL .  An error correction model 
might be specified in terms of St - f -1HCtL , where f -1HCtL  is the stock price implied by the call value. 

17.e Case Study III

For your symbol and date, using TaqAnalyze03.sas as a template:

1. Replicate VECM for NYSE bid and ask

2. Determine information shares for NYSE and Chicago bids.

3. In the set (NYSE bid, NYSE ask, Chicago bid, Chicago ask) estimate a bivariate VECM for any 
pair not consider above (e.g., NYSE bid, Chicago ask). Compute information shares.

4. (Optional) Estimate a VECM for all four bids and asks. Determine the joint information share 
of NYSE bids and asks. What are the min and max?
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Part III: Limit orders
The models in Parts I and II are most clearly viewed in settings where dealers set the bid and ask quotes, and 
outside customers arrive and trade against these quotes. The models in this section examine limit orders and 
markets organized around them.
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 Chapter 18. Limit orders and dealer quotes

18.a Overview

A limit order is usually defined as a customer order that specifies quantity and price, and is subject to risk of 
non-execution. For example, if the market is 100 bid, offered at 101, a customer order to buy 100 shares at 
100.2 won't normally be executed immediately. In US equity venues, under most circumstances, the 
customer bid would be publicly disseminated as the new prevailing market bid. There are two principal 
outcomes. A customer sell order might arrive that hits the original buy order, causing a transaction at 100.2. 
On the other hand, the market might "move away" from the order: bids and asks might rise, leaving the 
orginal order unexecuted. 

The customer limit buy order is functionally the same as a dealer bid. In fact, limit buy orders are often 
simply called "bids". This similarity is extremely important because it implies that customer limit orders 
compete with dealer quotes. The tension between these two sorts of agents is an ongoing consideration in 
market structure evolution and regulation. 

The similarity also facilitates a useful modeling fiction. The analyses developed in Parts I and II are for the 
most part models of risk-neutral dealer behavior. In applying these models (or their statistical counterparts) 
to markets in which limit orders play a large role, we sometimes assume that the limit order traders are 
identical to dealers, subject to the same costs and objectives.

In taking this position, though, it is usually necessary to broaden our concept of private information. 
Customers who place limit orders usually don't monitor their orders as closely as dealers. Accordingly, 
public limit orders are often "stale" in the sense that they don't reflect up-to-the-second public information. 
In response to a public new announcement (e.g., on a newswire), market orders will quickly "pick off" the 
stale orders. Should we view these market orders as motivated by private information?

I now turn to the differences between customer limit orders and dealer quotes. There are many, but the 
literature emphasizes two:

• The first difference between dealer and customer concerns the former's ability to condition on size of 
the incoming order. Dealers in US equity markets often post aggressive bids and asks for small 
quantities. By law the quotes must be firm for these quantities. But suppose that a customer order 
arrives for a larger quantity. After trading the small quantity at the posted quote, the dealer often has 
some discretion in how much to trade of the remainder, and at what price. This discretion is not 
absolute, owing to constraints of regulation and reputation. But it does exist. In any event, the dealer 
knows the full size of the order. The customers in the limit order book do not, and this (it will be 
shown) causes them to price their orders somewhat less aggressivley.
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The second difference arises from the different objectives of customers and dealers. The dealer sets 
her bid so that, if hit, she can  make a profit by quickly reversing the trade (selling) at a higher price. 
The customer's strategy is typically motivated by a need to acquire the security for reasons of hedging 
or long-term portfolio objectives. The dealer's alternative to placing the bid is to not participate in the 
market at all. The customer's alternative is accomplishing the trade with a market order.

Using a market order, the customer can buy immediately at 101. Using the limit order, the customer 
might buy at a lower price, but might also leave the market empty-handed. From the customer's 
viewpoint, then, execution uncertainty is an important aspect of the problem.

This chapter explores the first consideration; the next two chapters, the second. Finally I discuss equilibrium 
models. 

18.b Limit order placement when faced with incoming orders of varying size

The framework here is a market with two sorts of traders.

è Market order traders. They are motivated by some combination of liquidity needs and superior 
information.

è Passive liquidity suppliers. These agents supply the limit orders that populate the book. They are 
risk-neutral agents who are subject to a zero-expected profit condition. They differ from the 
competitive dealers in the sequential trade models in the sort of price schedule they can quote. 
(Offering liquidity through the book, they can't condition on the size of the incoming order.)

The classic article here is Glosten (1994); the analysis below focuses on a special case due to Sandas (2001).

Sandas' framework is time-homogeneous. The security value (conditional on public information) is Xt , with 
dynamics:

(18.b.1)Xt = Xt-1 + dt .

The increment dt  reflects the information content of orders that have arrived through time t  and additional 
public non-trade information.

We'll analyze only the sell side of the book and arriving buy orders. Treatment of the bid side is 
symmetrical. The ask (sell) side of the book is described by a price vector H p1 p2 … pk L  ordered so that 
p1  is the lowest (most aggressive). The associated vector of quantities is H Q1 Q2 … Qk L . 

The incoming order is m  ("shares") signed positively for a buy order (and negative for a sell order). 
Conditional on the incoming order being a buy, the distribution of m  is:

(18.b.2)fBuyHmL =
‰- mÅÅÅÅÅÅÅl
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
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The essential feature in this model can be illustrated as follows. With l = 5, fBuyHmL  is:
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m HOrder sizeL
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0.1
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Consider the seller whose limit order is at the margin when the total quantity is 10. His order will execute 
when the incoming order size is 10 or greater (the shaded area). The price of his order must be set to recover 
the information costs associated with these larger orders.

The revision in beliefs subsequent to the order is given by:

E@Xt+1 » Xt, mD = Xt + am

where a > 0.

The order processing cost is g . If a limit order priced at p1  is executed, the profit (per unit traded) is.

(18.b.3)p1 - g - E@Xt+1 » Xt, mD = p1 - Xt - g - am

This will generally be positive for small m , but negative for large m . If we could condition on the size of the 
order, we'd impose a zero-expected profit condition for all m .

(18.b.4)m =
p - g - XtÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a

Suppose that the sell limit orders at the price p1  are ordered in time priority, I wish to sell an infinitesimal 
amount at p1  and that the cumulative quantity (my order plus everyone who's ahead of me) is q .

My order will execute if the incoming quantity is at least as high as q . Define IHm ¥ qL  as the indicator 
function for this event (execution).

My expected profit conditional on execution is 
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(18.b.5)
Ep1 = E@p1-Xt-g-am » m¥qD = ‡

q

¶
Hp1-X -g-amL fBuyHmL„m =

-‰- qÅÅÅÅÅl HX + g + a Hq + lL - p1L

I will be indifferent to adding my order to the queue at this price when q = Q1  where

(18.b.6)Q1 =
- X - g - a l + p1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a

This might be negative for X  just below p1 . In this case, Q1 = 0.

Now suppose that I want to sell at p2 . E@Hp2 - X - g - amL IHm ¥ Q1 + qLD

(18.b.7)Ep2 = ‡
Q1+q

¶
Hp2-X -g-amL fBuyHmL„m = -‰-

q+Q1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅl HX + g + a Hq + lL - p2 + a Q1L

Which implies:

(18.b.8)Q2 =
- X - g - a l + p2 - a Q1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a

... and at p3

(18.b.9)
Ep3 = ‡

Q1+Q2+q

¶
Hp2-X -g-amL fBuyHmL„m =

‰-
q+Q1+Q2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅl H- X - q a - g - a l + p3 - a Q1 - a Q2L

and:

(18.b.10)Q3 =
- X - g - a l + p3 - a Q1 - a Q2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a

And so forth. In general:

(18.b.11)Qk_ = IfAk < dX t + 1, 0, -l +
- X - g + pkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a
- ‚

j=dX t+1

k-1

Q jE

where dX t  is the floor of X , i.e., the largest integer less than or equal to X .

Normalize the price grid so that the tick size is unity: pk = k .

As an example, consider the numerical values:

(18.b.12)8X = 0, a = 0.1, g = 0, l = 5<
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Here are the book schedule and value revision function:
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Notice that the limit order book price schedule lies entirely above the expectation revision function. This 
means that if my order is the last one to execute, I realize a profit.

Suppose that the initial valuation was slightly above zero:

(18.b.13)8a = 0.1, g = 0, l = 5, X = 0.1<

Then:
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The apparent difference is that the quantities get reduced.

Does the book always start at the next higher tick above X ? Consider:

(18.b.14)8a = 0.1, g = 0, l = 5, X = 0.8<

In this case:
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Consider next the evolution of the book. Suppose that (starting from {a  =  0.1, g  =  0, l  =  5, X  =  0}) we 
get a small order of m = 1. The new value of X = a m = 0.1, so the full set of parameters is now:

(18.b.15)8X = 0.1, a = 0.1, g = 0, l = 5<

And:
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Now suppose that the first order was m = 8, leading to revised parameters:

(18.b.16)8X = 0.8, a = 0.1, g = 0, l = 5<

and:
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Originally, there were 10 shares available at a price of 2. The initial order of 8 shares left 7 shares at this 
price. In the new equilibrium, no additional shares were added.

Suppose we have an execution that leaves quantity q  at the best price p . The book is said to "backfill" when, 
subsequent to the execution, additional limit orders arrive at p  or better.

Conjecture 1: "backfilling" does not occur in this model.

Conjecture 2: "backfilling" might occur if we introduced event uncertainty.

Chapter 18            Page 130

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:11:16



18.c Empirical evidence

Sandas examines a sample of data from the Swedish Stock Exchange (and electronic limit order book 
market). His results may be summarized in the following graph.

Sandas' Figure 1 illustrates the average shapes of the book for two stocks and an estimated price impact 
function.  In principle if the the book represented the supply and demand curves of a single liquidity supplier 
who could condition on the size of the incoming order, these curves and the price impact function would 
coincide. The book is much steeper than the price impact functions.
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Can this difference in slopes arise reflect the inability of liquidity suppliers to condition on the size?

Sandas uses the break-even conditions in the model as moment conditions in GMM estimation. Two sorts of 
moment conditions are used. First, the break-even conditions on the book at a point in time are sufficient the 
identify the parameters. Second, the model also implies conditions on the dynamics of book revisions that 
are sufficient to identify a .

Sandas' Figure 2 depicts book shapes and price impact functions implied by 

1. a estimated using the break-even conditions (solid line)

2. a estimated using the dynamic conditions (dotted line)
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These graphs suggest that the book price schedule is too steep relative to the dynamic price impact.

Sandas investigates several possible explanations for this finding. One possibility is that the exponential 
distribution assumed for the incoming orders is a poor approximation.

The left-hand graphs of Sandas' Figure 3 compare the actual and implied order distributions. Relative the 
exponential, there are too many small orders and too many large orders. Thus, when a midsize order is 
executed, the likelihood that it was blown through by a much larger order is higher than the estimated 
exponential distribution would suggest.

18.d Introduction of a dealer/specialist

Most markets (including US equity markets) are hybrids of electronic limit order books and dealers. Dealers 
in this context are defined by two features: (1) They can condition their trades on the total size of the 
incoming order; (2) They must yield to customer orders at the same price. Seppi (1997) suggests analysis on 
the follow lines.

To illustrate the situation, we'll take as a point of departure the ask side of the book from the Sandas model.
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Suppose that (with the price impact parameter a = 0.1), the incoming order is a purchase of 8 shares. If the 
book were the only liquidity supplier, the order would cross the sell schedule at point A: five shares would 
be sold at p1 = 1 and three shares at p2 = 2.

Now consider the dealer. Conditional on the order, the revised security value is 0.8.  The dealer would make 
a profit on any shares he could sell at p1 = 1.  Customers have priority for five shares, but the dealer is free 
to offer more. In this case, he'll sell three shares. The shaded area is his profit. He can't sell at p2 = 2 
because other customers have priority at that price.

If the incoming order were for ten shares, he'd let the book take the full amount (five shares at p1  and five 
shares at p2 ).

Returning to the eight-share example, in actual markets, this is sometimes called "quantity improvement". 
Dealers in this situation typically claim, "The book was only showing five shares at p1 , so this was all the 
customer could expect. But I was able to give the customer a better deal, giving him all eight shares at that 
price. I saved the customer an amount equal to three shares µ  one price tick."

The dealer's claim is, as stated, correct. From a welfare viewpoint, however, there is an effect on the 
incentives for customers to post limit orders. The dealer's profit would otherwise accrue to the limit order 
sellers. Although the latter would make a profit on this particular order, a zero-expected profit condition 
holds over all of their executions. The profit on this order is offset by their losses on larger orders. 
Obviously, they will supply less liquidity (smaller quantities, higher prices).
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 Chapter 19. Bidding and offering with uncertain execution

To explore what happens with execution uncertainty, we will first explore how execution uncertainty affects 
the strategy of an agent who is already at her optimum portfolio position. This development is actually due 
to Stoll (1978). Stoll was interested in how risk aversion would affect dealers' quote setting behavior. The 
intuition is as follows. Consider a dealer who is at her portfolio optimum, and has posted bid and ask prices. 
If the bid is hit for one unit, she will be moved off of her optimum. The bid must be set to compensate her 
for this loss of utility. We won't develop Stoll's argument in its full generality. Instead, we'll examine a 
representative situation, and various extensions.

19.a Expected utility

Assume that the dealer has a negative exponential (constant absolute risk aversion, CARA) utility function 
UHW L = -e-a W , and that W ~ NHmW , sW

2 L . Then expected utility is

(19.a.1)EUHmW ,sW
2 L = -‰

1ÅÅÅÅÅ2 a2 sW
2 -a mW

This can be shown as follows. The characteristic function of a random variable W  is defined as the 
expectation  Ee Â t W  where Â =

è!!!!!!!
-1 . If W ~ NHmW , sW

2 L , then the characteristic function is:

(19.a.2)E‰ÂtW = ‰Â t mW - 1ÅÅÅÅÅ2 t2 sW
2

Letting t = ia , -eitW = -e-aW = U HW L . Letting t = ia  in the above gives the desired result.

19.b Setting the bid for a single risky security.

There is one risky asset that pays X . X ~ NHmX , sX
2 L . The dealer can borrow or lend at zero interest. The 

initial endowment of stock and cash is zero.

It will be useful in this analysis to employ the concept of a benchmark notional price, P . One interpretation 
of this is as the price that would obtain in a frictionless market. To establish a benchmark position, we 
assume that the dealer sets up her portfolio in this frictionless market.  All purchases are made from cash 
borrowed at zero interest; all sales are short-sales. If n  shares are purchased, then terminal wealth is given by 
W = nHX - PL , with expectation EW =  n HmX - PL , and variance sW

2 = n2 sX
2 .  Stoll alternatively suggests 

that the price be viewed as the dealer's subjective valuation.

Expected utility is:
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(19.b.3)EUBase = -‰
1ÅÅÅÅÅ2 n2 a2 sX

2 -n a HmX -PL

To find the optimal n , differentiate w.r.t. n , set to zero and solve:

(19.b.4)n =
mX - P
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a sX
2

Expected utility at the optimum is:

(19.b.5)EUBase,Opt=-‰
-

HP-mX L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 sX
2

This is the notional, benchmark utility. After it is established, the hypothetical frictionless market closes and 
the dealer opens operations in the "real" market.

That is, starting with n  shares, she puts out a bid B . If she's hit, she buys at B , and her terminal wealth is 
W  =  -B + X + n HX - PL . So EW = -B + mX + nHmX - PL  and sW

2 = Hn + 1L2 sX
2 . Her expected utility is 

then:

(19.b.6)EUBuy = -‰
1ÅÅÅÅÅ2 Hn+1L2 a2 sX

2 -a H-B+mX +n HmX -PLL

The expected utility of the new position (having just bought), assuming that n  was originally optimal is:

(19.b.7)EUBuy,Opt = -‰
B a+ 1ÅÅÅÅÅ2

i

k
jjjjjjsX

2 a2-2 P a-
HP-mX L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

sX
2

y

{
zzzzzz

The key assertion is that the dealer sets the bid so that if hit, she achieves the same expected utility as at her 
base optimum. Setting EUBuy,Opt ã EUBase,Opt  and solving for B  gives:

(19.b.8)B = P -
a sX

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2

This is intuitively sensible. The bid is marked down from the notional frictionless price. The markdown 
increases with the risk of the asset and with the risk aversion of the dealer.

ü Extension: Bid as a function of quantity

Starting from n  shares valued at notional price P , suppose that the dealer buys q  more at price B  (which will 
depend on q). The terminal wealth is W  =  qHX - BL + n HX - PL . So EW = qHmX - BL + nHmX - PL  and 
sW

2 = Hn + qL2 sX
2 . Her expected utility is:

(19.b.9)EUBuy = -‰
1ÅÅÅÅÅ2 Hn+qL2 a2 sX

2 -a Hq HmX -BL+n HmX -PLL

The expected utility of the new position (having just bought), assuming that n  was originally optimal is:
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(19.b.10)EUBuy,Opt = -‰
1ÅÅÅÅÅ2 q2 sX

2 a2+HB-PL q a-
HP-mX L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 sX
2

The key assertion is that the dealer sets the bid so that if hit, she achieves the same expected utility as at her 
base optimum. Setting EUBuy,Opt ã EUBase,Opt  and solving for B  gives:

(19.b.11)B = P -
1
ÅÅÅÅÅ
2

q a sX
2

The bid is linear in quantity.

19.c Setting the bid with correlated risky assets

One of the strongest intuitions in modern finance is that the risk of security depends on how it interacts with 
the risk of other assets held. In a market making context, this might suggest that the bid price should depend 
on the covariance of the asset's payoff with the rest of the dealer's portfolio. We consider this as follows.

Suppose that we have two assets with payoffs X ~ NHm, W) bivariate normal. The expanded notation treats 
n, B, m, and P  as vectors:

(19.c.12)9n = J n1
n2

N, B = J B1
B2

N, m = J m1
m2

N, P = J P1
P2

N, W =
i
k
jjjj

w1
2 r w1 w2

r w1 w2 w2
2

y
{
zzzz=

Using vector notation, the expected utility of buying and holding n  shares is:

(19.c.13)EUBase = -‰
1ÅÅÅÅÅ2 a2 nT .W.n-a nT .Hm-PL

where T  denotes transposition and "." denotes matrix multiplication. The optimal n  are obtained by solving 
aWn - Hm - PL = 0 fl n = a-1 W-1Hm - PL .

Expanding this out gives the optimal n  as:

(19.c.14)n =

i

k

jjjjjjjjjj

-r P2 w1+r m2 w1+HP1-m1L w2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a Hr2-1L w1

2 w2
P2 w1-m2 w1+r Hm1-P1L w2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a Hr2-1L w1 w2
2

y

{

zzzzzzzzzz

In the special case of m1 = m2 = m and P1 = P2 = P ,

(19.c.15)n =

i

k

jjjjjjjjjj

-
HP-mL Hr w1-w2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a Hr2-1L w1
2 w2

HP-mL Hw1-r w2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a Hr2-1L w1 w2
2

y

{

zzzzzzzzzz

Returning to the more general case, at the optimum, expected utility is:
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(19.c.16)
EUBase,Opt = -‰

P2
2 w1

2+m2
2 w1

2+2 r HP1-m1L m2 w2 w1-2 P2 Hm2 w1+r HP1-m1L w2L w1+HP1-m1L2 w2
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Hr2-1L w1

2 w2
2

ü The bid for asset 1:

Denote by S  the quantity of stock that will be purchased if bid B  is hit:

(19.c.17)EUBuy = -‰
1ÅÅÅÅÅ2 a2 Hn+SLT .W.Hn+SL-a InT .Hm-PL+ST .Hm-BLM

Initially:

(19.c.18)S = J 1
0

N

That is, if the bid for asset 1 is hit, we'll acquire one more unit of asset 1. Expected utility in this case is:

(19.c.19)
-‰

P2
2 w1

2+m2
2 w1

2+2 r HP1-m1L m2 w2 w1-2 P2 Hm2 w1+r HP1-m1L w2L w1+IP1
2-2 Ia Ir2-1M w1

2+m1M P1+m1
2+a Ir2-1M w1

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 Hr2-1L w1
2 w2

2

where B1  is the bid price of asset 1. Setting this equal to the optimal base utility and solving gives:

(19.c.20)B1 = P1 -
a w1

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2

This is a surprising result: the bid does not depend on the payoff correlation, r .

What's going on is this: The correlation does indeed enter into the expected utility in both the base case and 
when the bid is hit. But it affects both in a similar fashion. From a comparative statics perspective, an 
increase in r  causes the dealer to hold less of each security to begin with.

ü Bids for portfolios

In many markets, a dealer may be asked to provide a quote for a bundle of securities. An options market 
maker, for example, might put out a bid on a straddle (the combination of a put and a call). We've seen that 
correlation doesn't affect the bid on an individual security. Might it affect the bid on a package?

Suppose that the package is one unit of asset 1 and one unit of asset 2, purchased at bids B1 and B2 , 
respectively. Expected utility is:

(19.c.21)
EUBuy =

-‰

P2
2 w1

2+m2
2 w1

2+2 r HP1-m1L m2 w2 w1-2 P2 Im2 w1+w2 Ir P1-r m1+a Ir2-1M w1 w2MM w1+w2
2 IP1

2-2 Ia Ir2-1M w1
2+m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Hr2-1L w1

2 w2
2
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The bid for the package will be BTotal = B1 + B2 :

(19.c.22)BTotal = P1 + P2 -
1
ÅÅÅÅÅ
2

a Hw1
2 + 2 r w2 w1 + w2

2L

Here, correlation affects things as we'd expect. As r  increases, the package becomes riskier and the 
mark-down increases.  The package essentially becomes a single asset with variance w1

2 + 2 r w2 w1 + w2
2 .
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 Chapter 20. Limit order submission strategies

The last chapter considered execution uncertainty for an agent (a dealer) who was at her portfolio optimum 
and required compensation for acting as counterparty to customer orders that would drag her away from the 
optimum. Starting the agent at her optimum greatly simplified the analysis in that she would be indifferent 
between any execution outcome that had same expected utility.

In this chapter, we consider an agent (a "customer") who is not at her optimum. She is facing the choice 
between doing nothing, trading with a market order, and (maybe) trading with a limit order. This is a classic 
problem. The model here draws on Cohen, Maier, Schwartz and Whitcomb (1981), henceforth CMSW. As I 
did with the Stoll development in the last chapter, I'll explore a special case of the model.

As in the Stoll model, consider an agent who has a negative exponential utility function is U HW L = -e-a W  . 
If terminal wealth is W ~ NHmW , sW

2 L , 

(20.a.1)EUHmW ,sW
2 L = -‰

1ÅÅÅÅÅ2 a2 sW
2 -a mW

There is one risky asset that pays X ~ NHmX , sX
2 L . There is unlimited borrowing and lending at zero interest. 

The notional price of the risky-asset is P  (in the same sense as the Stoll model).   If n  shares are purchased, 
then terminal wealth is given by W = nHX - PL , with expectation EW =  n HmX - PL , and variance 
sW

2 = n2 sX
2 . Expected utility is:

(20.a.2)EU = -‰
1ÅÅÅÅÅ2 n2 a2 sX

2 -n a HmX -PL

Maximizing over n  gives

(20.a.3)nOptimum =
mX - P
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a sX
2

Without loss of generality, we normalize P  to unity. Expected utility at the optimum is:

(20.a.4)EUOptimum = -‰
-

HmX -1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 sX
2

Suppose that the trader enters the market one share short of her optimum. If she does nothing (the "null" 
strategy), her expected utility is:

(20.a.5)
EUNull = -‰

I-mX +a sX
2 +1M ImX +a sX

2 -1M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 sX
2

Suppose that the market ask price is A . If she buys a share at this price, her wealth becomes:
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(20.a.6)W = -A +
HX - 1L HmX - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a sX
2 + 1

The expected terminal wealth is:

(20.a.7)mW =
HmX - 1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a sX
2 - A + 1

The variance of terminal wealth is:

(20.a.8)sW
2 =

HmX - 1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a2 sX
2

Buying a share at the ask price A  follows as the outcome of a market order. The expected utility of this 
strategy is

(20.a.9)
EUMarket = -‰

HA-1L a-
HmX -1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 sX
2

By setting EUMarket = EUNull  and solving for A , we find:

(20.a.10)ACritical =
a sX

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
+ 1

If the market ask price A < ACritical , the trader will use a market order in preference to doing nothing. If 
A > ACritical , she'll do nothing. As risk HsX

2 L  and/or risk aversion (a), increase, ACritical  also increases. That 
is, the agent is more willing to pay up for the share.

To illustrate with a numerical example, take values:

(20.a.11)8mX = 1.1, sX
2 = 1, a = 1<

These imply:

(20.a.12)ACritical = 1.5

Recall that the notional asset price used to determine the optimum was unity. Thus, the agent is willing to 
pay up by half to acquire the share.

Now we turn to limit order strategies. The uncertainty of a limit order is that we don't know whether it will 
execute (be hit). So if we put in a limit buy order at price L .

(20.a.13)EULimit = PHit EULimitHit + H1 - PHitL EUNull

where
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(20.a.14)
EULimitHit = -‰

HL-1L a-
HmX -1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 sX
2

Now as long as the order is priced at L < ACritical , EULimitHit > EUNull , so EULimit ¥ EUNull , with strict 
equality if PHit > 0. Thus, we might as well put in some limit order, even if it is priced far away from the 
market and the probability of execution is near zero. But what is the optimal limit order?

We need to max EULimit  over L  where both EULimitHit  and PHit  depend on L . The dependence of EULimitHit  
on L  is given above. But how should we model PHit ?

The modeling of limit order execution probabilities and durations is an active area for current research. One 
way of looking at things is to appeal to the lognormal diffusion process that underlies standard continuous 
time option pricing. A limit buy order priced at L  will execute when S  hits L  from above. With a lognormal 
diffusion, the probability of hitting this barrier in a given time interval can be expressed as the lognormal 
distribution function. Lo, MacKinlay and Zhang (2002) demonstrate that this approach does not yield 
accurate predictions of time-to-execution durations. In the present context, though, we're simply trying to 
illustrate some qualitative features of the problem. Using the lognormal diffusion approach:

(20.a.15)PHitHL, m, sL =
1
ÅÅÅÅÅ
2

i
k
jjjjerf

i
k
jjjj

logHLL - m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 s

y
{
zzzz + 1

y
{
zzzz

where L  is the limit price, and m and s are the parameters of the lognormal distribution. In what follows, it 
will be convenient to take numerical values:

(20.a.16)8m = -1, s = 0.8<

With these values, PHit  looks like this:

0.25 0.5 0.75 1 1.25 1.5 1.75 2
L

0.2

0.4

0.6

0.8

1
PHitHL,m,sL

With this hit probability function, 
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(20.a.17)EULimit =
1
ÅÅÅÅÅ
2

‰
-

HmX -1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 sX
2 i

k
jjjjJ‰HL-1L a - ‰

1ÅÅÅÅÅ2 a2 sX
2 N erfc

i
k
jjjj

logHLL - m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 s

y
{
zzzz - 2 ‰HL-1L ay

{
zzzz

It is not feasible to solve analytically for the L  that maximizes this expression. For the model parameters 
given above, however, we may solve numerically:

(20.a.18)LOptimal = 0.658584 and EULimitOptimal = -0.924981

Now what would the ask price have to be to make us indifferent between a market order and a limit order?

We solve numerically for the value of A  that makes EUMarket = EULimitOptimal:

(20.a.19)A = 0.927018

At the trial values,

(20.a.20)EUNull = -1.6405

There is a strict ordering EULimit > EUNull . Consider a hypothetical market opening in which limit order 
sellers start high, setting a high initial ask price A , and then dropping it. As long as A > 0.927018, the limit 
will use a limit buy order priced at LOptimal = 0.658584. When A  drops below this, she'll switch to a market 
order.

The switch point is well above the limit order price. A market order gives certainty of execution, and at 
some point this certainty induces a switch. CMSW refer to this as "gravitational pull", in the sense that as 
the ask drops into range, it "pulls" opposing limit bids toward it as market orders.

Note: Behavioral evidence suggests that individuals exhibit a "certainty preference" (cf. the Allais paradox). 
In practice, most individuals use limit order strategies relatively infrequently.

We can investigate (numerically) the sensitivity of limit order pricing to changes in model parameters. 
We've been using:

(20.a.21)8mX = 1.1, sX
2 = 1, a = 1<

Suppose that we keep the asset characteristics the same, but consider a slightly higher degree of risk 
aversion:

(20.a.22)8mX = 1.1, sX
2 = 1, a = 1.1<

With these parameters,

(20.a.23)EUNull = -1.82212

(20.a.24)LOptimal = 0.684141 and EULimitOptimal = -0.948083
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The ask price at which the agent is indifferent between this limit order and a market order is:

(20.a.25)A = 0.956079

Thus, the more risk-averse trader submits a higher-priced (more aggressive) limit order, which will have a 
higher probability of execution. Furthermore, the switch point (to a market order) is also higher.

In general, the "gravitational pull" effect in limit orders refers to any mechanism that will cause a jump-type 
switch in order strategy (from limit buy to market buy) before the ask declines to the limit price. It is 
important because we can envision a market with large number of buyers and sellers, with a wide range of 
risk tolerances, motivated by varying degrees of suboptimality in their initial allocations.

The bid and ask in a market are determined by the marginal buyer and seller (among the those not 
previously matched). With a great diversity of trader characteristics and trading needs, we might expect the 
spread in a market with continuous prices to be infinitesimal. For example, we can envision a relatively 
risk-tolerant buyer with a minimal motive for trade to place a limit buy order at the market ask price "less 
epsilon".

What conditions might generate a finite spread, i.e., one uniformly bounded away from zero? A discrete 
price grid would obviously suffice. CMSW also point out that a discontinuity in the hit probability would 
also suffice. Suppose that for a buy order priced at L, we have limLØ A- PrHit = p < 1. In this case, limit 
order strategies for risk averse agents would not give rise to orders priced arbitrarily close to the ask.

ü Broader models of choice and strategy

The utility-based approach illustrates many of the features and trade-offs in the simple market vs. limit order 
choice. In practice, though, many realistic trading strategies (particularly ones used by institutions) are 
multiperiod (or continuous) and involve order revision. Angel (1994) and Harris (1998) model these 
strategies. Bertsimas and Lo (1998) consider order-splitting strategies.

The first step is defining the objective function. In the simple utility-based approach, expected utility is a 
unified objective, in the sense that it covers all sources of randomness, both the payoffs to the risky asset and 
the uncertainty of limit order execution.  In general, though, trading strategies are generally formulated 
separately from the investment/portfolio strategy (cf. Perold (1988)). The latter problem is extremely 
complicated in its own right, and usually (but not always) involves decisions on longer time horizons. The 
representative case is an institutional equity fund manager with a long-term investment horizon. In this 
situation, the portfolio problem is solved first (possibly taking into account rough measures of trading costs). 
The trading problem is then one of achieving the desired portfolio.

At this stage, Harris identifies several "stylized" trading problems, specifically: an uninformed trader buying 
or selling a given quantity subject to a time constraint, an uninformed trader passively supplying liquidity, 
and an informed trader maximizing profits. The decision points are fixed in discrete time. Limit order 
execution probabilities are based on the beta distribution. The models are solved numerically.
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The optimal strategies exhibit many characteristics of realistic behavior. For example, an uninformed trader 
facing a deadline will start by placing limit orders away from the market. As the deadline approaches, the 
trader will revise the orders, pricing them more aggressively. Finally, if nothing has executed by the 
deadline, the trade is accomplished with a market order.
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 Chapter 21. Dynamic equilibrium models

Some aspects of limit order book markets, notably social welfare considerations, can only be addressed in an 
equilibrium context. Even apart from welfare considerations, though, the need for equilibrium analysis arises 
directly. When we model an individual agent's choice of order type, we encounter obvious features of the 
problem that arise from the collective behavior of others facing similar problems. The quote that the agent 
faces coming into the market and the existing state of the book depend on past actions of other agents; the 
execution probabilities of a limit order depend on the agents arriving in the future, and so forth.

The dynamic models are stylized ones, but they nevertheless arrive at useful empirical predictions.

This chapter focuses on Parlour (1998) and Foucault (1999). Related work includes Parlour and Seppi 
(2003), Hollifield, Miller, Sandas, and Slive (2003), Goettler, Parlour, and Rajan (2003), Foucault, Kadan, 
and Kandel (2001).

ü Foucault (1999)

Structure

The model is set in discrete time, t = 1, ..., T  where T  is the terminal payoff date. The underlying value of 
the security is vt = v0 + ⁄i=1

t et , where the et  are i.i.d. Bernoulli, taking on values of ≤s  with equal 
probability.

T  is not known by market participants. At the start of every period t , there is 1 - r  probability that t = T : 
there is no more trading and the payoff is realized. With this modeling device, the problem (and solution) is 
identical in every period, greatly simplifying analysis. Were T known in advance, this would not be case.

At each time t  (assuming that the game is not over), a trader arrives. The trader is characterized by the 
reservation price, Rt , he assigns to the security, a portion of which is idiosyncratic:

(21.a.1)Rt = vt + yt

where yt œ 8+L, -L<  with probabilities k  and 1 - k , independent of the value process. yt  does not reflect 
private information. It arises from portfolio or liquidity considerations that are not explicitly modeled. yt  
drives the direction of the agent's desired trade (buy or sell).

If a trade is executed at price P , a buyer will have utility U HytL = VT + yt - P .  A seller will have utility 
UHytL = P - VT - yt .

The state of the book at the time of arrival is described by st = 8At, Bt< . The no order (empty book) 
condition is indicated by setting At = ¶ and  Bt = -¶ . The trader knows st, vt  and yt . The strategies open 
to him are as follows. If the book is not empty, he can hit either the bid or the ask with a market order. 
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Alternatively, he can place both a limit buy and a limit sell order. If the book is empty, this latter strategy is 
the only one available (apart from the suboptimal strategy of doing nothing).

A trader gets one shot at the market. He doesn't have the opportunity to return and revise his order. 
Furthermore, limit orders are valid only for one period. This implies that the book is either empty or full. 

The probability of execution for a limit order depends on the limit price in the usual way. Here, though, the 
execution probability is not an ad hoc functional form, but instead arises endogenously. Specifically, the 
time-t trader knows the distribution of vt+1  and the distribution of the characteristics for the time t + 1 trader.  
This enables him to derive the execution probability for any given limit price.

Despite the simplicity of the model, the strategic considerations regarding order choice are quite rich (and 
complicated!).

First consider execution risk of a limit order when there is no possibility of change in the underlying asset 
value (s = 0). Part of the execution risk arises from the random characteristics of the next trader. If yt = +L  
("a natural buyer") and yt+1 = +L  a trade is (in equilibrium) unlikely. So a limit order can fail to execute 
because the two parties wish to trade in the same direction. A limit order submitted at time t  might also fail 
to execute, however, because t + 1 = T  (the world ends).

Once we allow s ∫ 0, a buy limit order submitted at time t  (for example) also faces the risk that et+1 = -s . 
This corresponds to the real-world situation of a limit order that can't be canceled promptly in response to a 
public news announcement. This is a form of the winner's curse. It increases the chance that my limit order 
will execute, but decreases my gain from the trade (and perhaps drives it negative).  The limit order is said to 
be "picked off" subsequent to a "public" information event.

A move in the other direction, et+1 = +s , decreases my chance of execution (but increases my gains from an 
execution). This situation occurs in actual trading situations when the market "moves away" from a limit 
order, often leaving the trader (a) wishing he'd originally used a market order, and (b) "chasing the market" 
with more aggressively priced limit or market orders. (This strategy is not available in the Foucault model.)

Results 

• As in the analyses of individual order choice, when the opposite side quote is distant, a trader is more 
likely to use a limit order.

• The fundamental risk of a security, s , is a key variable.  If s  increases ("higher fundamental risk") 
then a given limit order faces a higher pick-off risk. This causes limit order traders to fade their prices 
(make them less aggressive) and the spread widens. Market orders become more expensive, leading 
traders to favor limit orders. The order mix shifts in favor of limit orders, but fewer of them execute.

This is a comparative statics result, and thus best viewed as a cross-sectional prediction (across firms) 
rather than dynamic one (what happens when the volatility changes over time).
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ü Parlour (1998)

Model structure

Timing. Consumption can occur on day 1 or day 2. Trade can only take place at times t = 0, ..., T , all on 
day 1. Clearing occurs at the end of the day: all trades are settled in units of day-1 consumption.  The 
security has a non-random payoff, V per share, realized at time 2. 

Agents have preferences U HC1, C2, bL = C1 + bC2  where b  is a continuous random variable distributed on 
the interval Hbêê, b

êêL  where 0 < bêê < 1 < b
êê

. That is, there is uncertainty and heterogeneity across agents in their 
relative valuations of C1  and C2 . Agents also differ in their endowments. With probability pS , the arriving 
trader has one unit, and is a (potential) seller. With probability pB , the arriving trader is a potential buyer of 
one unit. With probability 1 - pB - pS , the trader is neither a buyer nor a seller.

Variation in b  is the sole source of randomness in the model.

The price grid is discrete. In fact, there are only two prices, a bid and an ask, B and A , and they are separated 
by one tick. There are dealers who are willing to buy an infinite amount at B  and sell an infinite amount at A .

At each time t , a trader arrives. Using a market order, she may buy (at A) or sell (at B) a single share. 
Alternatively, she can enter a limit buy order (priced at B) or a limit sell order (priced at A). She may do 
nothing at all. 

In the book, dealers must yield to customers. (All customer orders take priority over dealer orders.) The 
book is maintained in time priority. A customer's limit buy order will execute only if market sell orders 
arrive in the future that are sufficient to fill the customer's order and all limit buy orders that were placed 
earlier.

This is a model of queuing and quantities, therefore, rather than a model of prices.

Results

• Effect of same-side depth ("crowding out effect"). When the quantity is large on the ask side, an 
arriving seller is more likely to use a market order. This occurs because a new limit sell order would 
go to the end of a long queue (and have a low probability of execution).

• Effect of opposite-side depth. When the quantity is large on the bid side, an arriving seller is more 
likely to use a limit order. (Subsequent buyers are more likely to use market orders, so the execution 
probability of a limit sell order is higher.)

• The model also makes predictions about likelihoods of sequences of events.
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Part IV: Microstructure and asset pricing
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 Chapter 22. Trading and asset pricing with fixed transaction costs

This chapter explores the links between microstructure and asset pricing. 

22.a Theory

Modifications of standard equilibrium asset pricing models predict that nonstochastic transaction costs 
should generally have minor effects on expected returns. Agents typically adapt to these costs by trading 
infrequently and sparingly. In consequence, trading volumes and aggregate trading costs are small. 

Standing against this prediction are two sorts of empirical evidence. One is the simple observation that 
trading volumes are much larger than these models would predict. Presumably aggregate trading costs are 
large as well.  The second source of empirical evidence comes from empirical return specifications in which 
various measures of trading cost are introduced as explanatory variables. The evidence here is mixed, but is 
at least partially supportive of a positive cross-sectional relation between transaction costs and expected 
returns.

Recently, theoretical and empirical studies have started to examine stochastic transaction costs. This opens 
another avenue for transaction costs to affect expected returns. If transaction cost variation is not 
diversifiable, i.e., if the variation is at least in part systematic, then the common component becomes an 
aggregate risk factor. An individual asset's exposure (sensitivity) to this risk-factor should therefore be 
priced.

For starters, consider the Roll model, with log quote midpoint mt , at = logHask priceLt = mt + c  and 
bt = logHbid priceLt = mt - c . An investor who buys at the ask, holds for one period and sells at the bid has a 
net return mt+1 - mt - 2 c , i.e., 

(22.a.1)rt
Net = rt

Gross - 2 c .

If c  is now interpreted as impounding explicit trading costs (like commissions), it can easily be on the order 
of 1% or so for a small stock. Thus, 2 c  is of moderate importance relative to gross returns.

But if the agent holds for n  years, the average annualized net return is

(22.a.2)rt
Net

êêêêêê
= rt

Gross
êêêêêêêê

- 2 cÅÅÅÅÅÅÅÅ
n

.

Long holding periods can clearly reduce the impact of trading costs. If n  is the same for all assets and 
investors, and if investors price assets to equate net expected returns (all else equal), then in a cross section 
of securities, gross returns are a linear function of spread.
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ü Amihud and Mendelson (1986): The model

Amihud and Mendelson model an economy in which investors are heterogeneous in their expected holding 
periods.The key intuition of their model is that investors with longer horizons tend to hold assets with 
relatively high spreads.This induces a concave relationship between spread.

• There are i = 1, ..., M  investor types

• There are j = 0, ..., N  securities modeled as perpetuities with cash flows d j  (dollars per period).

• S j  is the relative spread: V j  is the ask price and V jH1 - S jL  is the bid. S0 = 0: asset zero is something 
like cash or interest-bearing bank account. The assets are ordered by increasing spread: 
S0 = 0 § S1 § … § SN-1 § SN < 1. The vector of ask prices will be denoted V = @V jD . The vector of 
bid prices is B = @V jH1 - S jLD .

• A type-i  investor enters the market with wealth Wi  (cash) and purchases a portfolio (at ask prices). 

Investor types are distinguished by their expected holding periods. The holding period of the portfolio 
is Ti . Ti  is exponentially distributed with parameter mi : E@TiD = 1 ê mi . Investor types are ordered by 
increasing expected holding period: m1

-1 § m2
-1 § … § mM -1

-1 § mM
-1 .

• Type i  investors arrive randomly in continuous time with Poisson arrival intensity li .

The combination of a Poisson "birth" process plus an exponential "death" process implies that the 
population of type-i  investors who are "alive" (i.e., holding assets) at any instant is on average 
mi = li ê mi .

Denote by xi  the vector of share holdings for a type-i  agent. An agent of type i  with risk-neutral 
time-additive utility max's:

(22.a.3)EA Ÿ0
Tie-ri y xi

£ d  „ y
´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈ ¨̈ ≠ Æ¨¨¨¨¨¨¨¨̈¨¨¨¨¨¨¨̈¨̈
Present value of dividends

+ e-riTi  xi
£ B

´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨̈¨
Present value of liquidation proceeds

E = Hmi + riL-1 xi
£Hd + mi BL

subject to a the initial wealth constraint xi
£ V § Wi  and x ¥ 0 (no short sales). The simplicity of this 

expression arises in part from the exponentially distributed holding period. This ensures that a type-i 's 
expected remaining holding period (measured from the present to liquidation) is 1 ê mi , irrespective of how 
long the individual has already held the portfolio. There are no life-cycle effects.

The quantity mi xi  is the total amount held (on average) by all type-i  investors. If the supply of each asset is 
normalized to unity, then market clearing requires ⁄i=0

M mi xi = i  where i is an HN + 1L µ 1 unit vector.

This market clearing condition equates supply and demand in the time-averaged sense. At any given time, 
the actual imbalance is absorbed by dealers. The dealer's compensation for this is presumably impounded in 
the bid-ask spread.

The model is now characterized by M  linear optimizations subject to linear cons.traints and non-negativity 
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requirements. 

X *
M µHN+1L

  are the equilibrium allocations; V *  are the equilibrium ask prices. The spread-adjusted return is:

(22.a.4) ri j =
d jÅÅÅÅÅÅÅÅ
V j

- mi S j . 

Note: mi S j  is spread/expected holding period.

Which assets will a type-i  investor hold? Her highest spread adjusted return is defined as ri
* = max j ri j .

The required gross return on asset j   for a type-i  investor is ri
* + mi S j . In equilibrium:

(22.a.5)
d j

ÅÅÅÅÅÅÅÅÅÅ
V j

* = min
i

8ri
* + mi S j<

(22.a.6)V j
* = max

i
9 d j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ri

* + mi S j
=

Assets with higher spreads are allocated to portfolios of investors with longer expected holding periods.  The 
gross return is a concave function of spread.
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ü Constantinides (1986)

"The ... primary result ... is that transaction costs have only a second-order effect on equilibrium asset 
returns: investors accommodate large transaction costs by drastically reducing the frequency and volume of 
trade."

The model is cast as a modification of a continuous-time consumption-investment problem due to Merton 
(1973). There are two securities, i = 0, 1.

(22.a.7)
d P0 ê P0 = r d t
d P1 ê P1 = m d t + s dw

where prices are in units of consumption ("dollars"). 

The agent's wealth is Wt  and the rate of consumption is ct . Fraction at  is invested in the risky-security, so 
wealth dynamics are:

(22.a.8)dWt = @HHm - rL a + rL Wt - ctD d t + saWt dw

The initial endowment is W0  and initial expected utility is E0 Ÿ0
¶e-rt ct

g ê g „ t . With no transaction costs,  
the optimal consumption-wealth ratio, ct

* êWt , and the optimal portfolio weight a* , are both constant.

Transaction costs are introduced as follows. Suppose that the holdings of securities 0 and 1 are xt  and yt . If 
vt  dollars of the risky security are bought, the holdings of the risk-free security become xt - vt - » vt » k  
where k  is the proportional transaction cost.

Institutional commissions are currently about $0.05 per share. The bid-ask spread for a typical NYSE stock 
might be of similar magnitude, making the one-way half-spread $0.025. At a hypothetical share price of 

Chapter 22            Page 153

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:11:20



$50, k = 0.075 ê50 =  0.0015. For a thinly traded security, however, the spread might be as large as $1.00, 
implying k = 0.55 ê50 =  0.011.

The optimal investment policy in this case is to keep the relative holdings yt ê xt  in the interval @lêê, l
êêD .  The 

interior of this interval is a "no-trade" region. Upon reaching lêê  or l
êê

, the individual only trades enough to 
remain in the interval.

Constantinides solves the problem numerically for a range of k  and realistic or plausible values for the other 
parameters:

Note that as k  increases, so does the width of the no-trade region.

Constantinides then introduces a hypothetical risky-security that is perfectly correlated with and has the 
same return variance as security 1, but can be traded with no cost. The liquidity premium, dHkL , is defined as 
the equalizer, an expected return component that, when added to m , makes the investor indifferent between 
the actual costly-to-trade security and the costless-to-trade security, assuming that the agent starts out at his 
optimum portfolio. Table 1 shows that in terms of annual return, dHkL êyear, the liquidity premium for small 
k  is modest. At large k  (0.10 and above) the premium starts to become visible relative to the gross return. 
They are, however, smaller than one might expect.

What are the implications for trading volume? Suppose that I have $1 invested in the risk-free security. 
Interpreting the liquidity premium as the annual trading cost dHkL = Turnover µ k , a proportional trading 
cost of 0.05 implies an annual turnover of 0.0061 ê0.05 = 0.12. The NYSE reports that annual turnover on 
its stocks, however, has recently been running about 100%.

Thus, although the Constantinides analysis suggests that liquidity premia are about one order of magnitude 
smaller than proportional trading costs, the analysis also implies a turnover that is about one order of 
magnitude smaller than observed.
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ü Heaton and Lucas (1996)

The Heaton-Lucas model incorporates labor income, incomplete markets, and differential transaction costs 
on stocks and bonds. The agent may also face different borrowing and lending rates.

For stocks, the transaction cost function is:

(22.a.9)kHst+1, stL = kt@Hst+1 - stL pt
sD2

where st  is the number of shares held at the end of time t , pt
s  is the price per share and kt  is the quadratic 

cost factor. (Certain notation present in the Heaton-Lucas paper is suppressed here.)  The quadratic 
dependence captures deterioration in the terms of trade associated with larger quantities. 

As written, k  is an absolute cost. The proportional transaction cost is k ê pt
s » Dst+1 » = kt » Dst+1 » pt

s .

In asset pricing models, bonds are generally not to be thought of as a specific security (like 30-year 
T-bonds), but instead more broadly as borrowing and lending opportunities. Accordingly, HL model bond 
trading costs in a variety of ways. Their emphasis is on an asymmetric quadratic specification:

(22.a.10)wHbt+1L = Wt minH0, bt+1 pt
bL2

where Wt  is the cost factor. The bonds have a one-period maturity, so the amount purchased is the same as 
the amount held during the period. A positive purchase/holding Hbt+1 > 0L  is equivalent to lending. No cost 
is assessed in this direction: wHbt+1L = 0. A negative purchase/holding Hbt+1 < 0L  is equivalent to borrowing. 
The cost in this direction is wHbt+1L = WtHbt+1 pt

bL2 > 0.  Since only the borrower pays, for comparability 
with the stock case (where both sides pay), the proportional cost is measured as Wt » bt+1 » pt

b ê2.

The model is solved numerically, with parameters calibrated to US data. (In particular, the expected stock 
return is fixed at 8% per year.) 

As in the Constantinides model, the optimal trading strategy is highly sensitive to transaction costs. If there 
are transaction costs in only one market (stock or bonds), then trading substantially shifts to the other 
market. 

To investigate the effects of costs in both markets, HL present figures that summarize the dependence of 
outcomes on transaction cost parameters, set symmetrically for stock and bond markets, so that W = k ê2.

HL's Figure 2 maps W  into percentage trading costs:
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Thus, an average trading cost of 5% corresponds to W º 2.

HL's Figure 1 depicts equilibrium expected returns:

With small transaction costs, the equity premium is near zero. This is the "equity premium puzzle". (The 
"net premium" measures the indirect effect of transactions costs associated with increased consumption 
volatility.)
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Can costs explain the equity premium?

"If marginal stock market transactions costs of 6% are taken as a reasonable estimate, the model still predicts 
a substantial equity premium. ... [However] to obtain an equity premium as large as 5 percent requires a 
marginal stock market transactions cost of 10%, so that without strict borrowing constraints, very large costs 
are needed to produce a premium close to its observed average level." (p. 467)

HL's Figure 3 describes the trading volume:

"Average trading" is the ratio, value of securities traded/consumption. 

In 2002, total US personal consumption expenditure (from the national income and product accounts) was 
about $7.3 Trillion. At the end of 2002, household and nonprofit holdings of corporate equities had a market 
value of about $10 Trillion (Board of Governors Flow of Funds reports). Assuming that the 100% annual 
turnover figure for the NYSE is representative, the implied average trading is 10 ê7.3 = 1.37. This roughly 
an order of magnitude higher than the model predicts.

The inability of normative models to explain trading volume is not limited to equity markets. Trading 
volume in foreign exchange markets also exceeds by an order of magnitude the level that explained by the 
requirements of trade in goods, services and financial assets.
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22.b Empirical Analyses

ü Amihud and Mendelson (1986)

Elements of the analysis:

• CRSP monthly returns, 1960-1979.

• Cost measure is average of beginning of year and end of year relative spreads (Fitch data, last quote 
for last day of the year).

• Fama-MacBeth approach

• Estimate b over a five-year period (En =years 1-5)

• Portfolio formation over a five-year period HFn = years 6 - 10L . Form 7 groups ranked by spread in 
year 10. Within each spread group, form 7 b  groups (based on b estimates from years 1-5). This 
yields 49 portfolios. Estimate portfolio b in years 6-10. Compute average monthly excess returns for 
each portfolio in year 11.

Here are the mean spreads and monthly excess returns for the groups formed by sorting on spread (from 
their Table 2):

(22.b.11)

Spread H%L Excess return H%L Beta Mkt.Cap.
1 0.486 0.349 0.799 2,333.
2 0.745 0.511 0.870 665.
3 0.939 0.429 0.884 418.
4 1.145 0.589 0.913 276.
5 1.396 0.669 0.932 184.
6 1.774 0.855 0.970 109.
7 3.208 1.024 1.115 55.

A move from group 7 to group 1 implies a 2.722 % drop in spread and a 0.675 % drop in excess monthly 
return. As an illustration, AM suggest a hypothetical stock in group 7 that has a total required monthly 
return of 2% and cash flows of $1/month in perpetuity. The value of the stock is $50. If managers could 
engineer a move to group 1, its new value would be H0.02 - 0.00675L-1 =$75.5, a substantial increase.

Graphically:
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Some concavity is evident from the graph. In expanded tests (that control for beta and size), AM find that it 
is statistically significant.

Related papers include:

• Eleswarapu and Reinganum (1993): Sample is NYSE, 1961-1990. Liquidity premium confounded 
with January seasonal. No evidence of liquidity premium in non-January months.

• Eleswarapu (1997). Sample is Nasdaq, 1973-1990. Spreads from CRSP. Here are Eleswarapu's mean 
spreads (in spread-ranked subgroups):

(22.b.12)

Spread H%L
1 2.005
2 3.443
3 4.849
4 6.643
5 9.368
6 14.201
7 30.632

ü Brennan and Subrahmanyam (1996)

Two liquidity measures are used,

Glosten-Harris The  l coefficient from

(22.b.13)D pt = lqt + yDDt + yt

Hasbrouck-Foster-Viswanathan. The l coefficient from the restricted VAR:

Chapter 22            Page 159

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:11:23



(22.b.14)
qt = aq + ‚

i=1

5

bi D pt-i + ‚
j=1

5

g j qt- j + tt

D pt = ap + yDDt + ltt + vt

These models are estimated for 1984 and 1988 for NYSE-listed firms.

How to scale the estimates?

Intuition from Kyle model where D pt = lHxt + utL . The expected total cost of trading xt  shares is lxt
2 . The 

marginal cost of the last share is 2 lxt  ($ per share). In terms of dollar volume of the trade, the marginal cost 
is 2 lxt ê pt .

Define Cq ª 2 lq ê p  where q  is the average trade size and p  is the average price per share.

Alternatively: Cn ª ln ê p  where n  is the number of shares outstanding.

Portfolio formation procedure sorts first on size, then on GH l (5 µ 5 portfolios).
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22.c Alternative measures of "liquidity"

Empirical asset pricing studies generally require data samples longer than those needed for microstructure 
analyses. This is because expected asset returns are typically small relative to their variances, and a large 
sample is therefore needed to estimate the former with precision. (Recall the previous discussion on why the 
expected return is generally set to zero in microstructure analyses.)

Studies of based on US equity data, for example, usually use CRSP data, which begin in 1962 (daily) or 
1926 (monthly). In contrast, the TAQ data begin in 1993. ISSM data go back about a decade earlier. The 
combined time span, therefore, is at best about half of CRSP's. Furthermore, these microstructure data are by 
no means homogeneous over this period. Institutions and reporting systems have greatly changed.

These considerations strongly motivate the need for liquidity and trading cost measures that involve only 
daily return and volume information. Here are some approaches.

ü Liquidity ratio

The Amivest liquidity ratio for a stock is

(22.c.15)L = i
k
jj VoldÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» rd »

y
{
zz

êêêêêêêêêêêê

where rd  is the return on day d ; Vold  is the volume (dollar or share) on day d . The average is taken over all 
days in the sample where rd ∫ 0.

The originator of the ratio, Amivest, was a money management and broker/dealer concern. It was taken over 
by the North Fork Bank (New York) in 1998.

This measure has been used in cross-sectional studies of comparative liquidity across markets (see Cooper, 
Groth and Avera (1985)). Ideally, a liquidity measure should pick up only price changes that are associated 
with orders. Grossman and Miller (1987) point out that the liquidity ratio does not discriminate. If volatility 
driven by public information is accompanied by little or no volume, L  will be low.

ü Illiquidity ratio

Proposed by Amihud (2002)

(22.c.16)L = J » rd »
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Vold

N
êêêêêêêêêêê

The average is taken over all days in the sample where Vold ∫ 0 . Amihud finds that this measure is 
significantly and positively related to returns:
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ü Reversal measures

Pastor and Stambaugh (2003) propose as an inverse measure of liquidity g  in the regression.

(22.c.17)rd+1
e = q + f rd + g signHrd

e L vold + ed+1

where d  runs over all days in the sample and rd
e  is the excess return (relative to the market). It's easiest to 

understand the intuition here by considering a variant based on returns and signed order flow, xd , rather than 
volume:

(22.c.18)rd+1 = q + f rd + g xd + ed+1

In this case, g > 0 would suggest that the market did not fully respond to the preceding day's order flow. On 
the other hand, g < 0 would suggest that the market over-reacted, perhaps due to limited capacity of market 
makers (broadly defined) to absorb the order flow.

The application in Pastor and Stambaugh calls for panel estimates of g : a separate estimation for each stock 
in each month.

Pastor and Stambaugh validate this interpretation of g  by simulating the following market:

(22.c.19)rd = fd´̈ ¨¨¨¨¨¨¨̈¨≠ Æ¨¨¨¨̈ ¨̈ ¨
Market factor

+ ud´̈ ¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈ ≠ Æ¨¨¨¨¨¨¨¨̈¨̈ ¨̈
Idiosyncratic factor

+ f Hqd-1 - qdL´̈ ¨¨¨¨¨¨¨̈¨¨¨̈¨≠ Æ¨¨¨¨¨¨¨¨̈¨̈ ¨
Order flow term

+ hd - hd-1´̈ ¨¨¨¨¨¨¨̈¨̈ ¨̈≠ Æ¨¨¨¨¨¨¨¨̈¨̈
Bid-ask bounce

where qd  is signed order flow on day d .  This is in turn generated by a factor structure: qd = qd
* + qd

i  where 
qd

*  is the market component of signed order flow and qd
i  is the idiosyncratic component.

Chapter 22            Page 162

© 2004, Joel Hasbrouck, All rights reserved.  Print  date:1/8/04, 13:11:25



Superficially, this resembles a microstructure specification. By way of comparison, consider the generalized 
Roll model:

(22.c.20)D pt = Hl + cL qt - cqt-1 + ut

where t  indexes transactions, c  is the fixed cost of liquidity provision (clearing fees, etc.) and l  is the impact 
parameter. If we time-aggregate this over all trades on a given day, we'd have:

(22.c.21)‚
t=1

N

D pt = l ‚
t=1

N

qt + cHqN - q0L + ‚
t=1

N

ut

where q0  is the trade direction indicator at the close of the previous day. To a point, we can establish a 
correspondence with the PS specification: Sut  in the (time-aggregated, generalized) Roll model corresponds 
to fd + ud  in the PS specification; cHqN - q0L  in the Roll model corresponds to hd - hd-1  in the PS 
specification. 

The day's aggregate order flows, though, appear in fundamentally different ways. In the Roll model, l S qt  
represents the cumulative information content of the orders. This arises from quote-setters' beliefs about 
informed trading. The reaction to this occurs entirely within the day: there is no lagged term. In the PS 
model, fHqd-1 - qdL  is a transient return component. There is an over-reaction to today's order flow. It is 
completely reversed, however, on the following day. There is no permanent impact of orders.

Here is a plot of estimated average gi :
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Note the large variation relative to the mean.

22.d Stochastic liquidity

Most of the development to this point has assumed fixed transaction costs. Much recent work has studied 
time-varying liquidity, and common factors therein. See Chordia, Roll, and Subrahmanyam (2000); 
Hasbrouck and Seppi (2001); Huberman and Halka (2001); Pastor and Stambaugh (2003); Acharya and 
Pedersen (2002).
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1 Introduction 

This is an overview of the current status and recent history of trading procedures in US equity 
markets. It is aimed at researchers and practitioners who work with current or historical market 
data, and seek to understand the institutions that give rise to these data. 

2 Overview 

Figure 1 depicts the main components of the US equity markets and their relationships. The 
connectors indicate only the primary relationships. (In a broader sense, every box is almost 
certainly connected to every other box.) 

 
Figure 1. Market components and relationships 

• The customers are the individuals and institutions (pension funds, mutual funds and other 
managed investment vehicles) who need to trade equities. The distinction between retail 
and institutional customers is mainly one of size: institutional customers simply need to 
trade larger amounts. The distinction should not be construed as “naïve vs. 
sophisticated”. It should also be noted that the customers in this arena are not simply 
passive purchasers of the produced services. Increasingly, they are active participants, 
often effectively competing in the market-making process. 

• Brokers have traditionally acted as agents for customer orders. They may provide other 
services as well (such as advice and research), but from the present perspective, their role 
is a narrower one. 

• Dealers act as counterparties to customer trades. 

The dividing line between brokers and dealers is blurry. They are often the same people, 
and in US regulatory law are often referred to as “broker-dealers”. 

Customers 
• Institutional  
• Retail 

Linkage systems for 
market data 

Market venues 
• Exchanges 
• Nasdaq 
• ECNs 
• ATSs 

Market 
Regulation 

Intermarket 
linkage 
systems 

Brokers 
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In many settings, when a single entity acts as agent for customer orders (broker) 
and trades against customer orders (dealer), this is called dual trading. Due to the 
obvious conflict of interest, dual trading is either strictly prohibited or regulated. 

• The market venues are simply places (real or virtual) where trades occur. The principal 
venues are: 

• The exchanges (also known as the “listed” market). Most importantly, the New York 
Stock Exchange (NYSE), but also including the American Stock Exchange, 
Cincinnati and the regional stock exchanges (Philadelphia, Boston, Chicago, Pacific). 

• Nasdaq (a.k.a. the “unlisted” market). 

• The ECN’s (Electronic Communication Networks). Formally (in law) the term 
merely describes an entity that displays quotes. 

• The ATS’s (Alternative Trading Systems). Places where trades occur. 

“ECN” nowadays generally refers to a market organized as an electronic limit order 
book. The principal examples are Island and Instinet. Since these systems can also 
execute trades, they are also ATS’s. There are also ATS’s that are not ECN’s 
(Liquidnet, Posit, etc.). 

• Regulators. U.S. market regulation is somewhat diffuse. 

• In 1933, Congress created the Securities and Exchange Commission (SEC) and 
delegated to it the regulatory authority. The SEC has in turn delegated authority to 
industry entities, “Self-Regulatory Organizations” (“SRO’s). The NYSE and NASD 
(National Association of Securities Dealers) are the principal SRO’s. 

Legislative actions on security markets generally take the form of broad 
pronouncements that authorize the SEC’s regulatory mandate, but leave the details of 
the rules up to the SEC. 

• The individual states regulate securities markets. Their involvement generally 
predates the creation of the SEC. Over time, it has waxed and waned. They have 
never been more prominent and active than they are at present. 

• In some cases, US law gives private parties a right of action. Improper disclosure by 
corporations is commonly enforced by private lawsuits (“10b-5 cases”). Private 
lawsuits in issues regarding trading practices are rarer, but there have been some 
important ones. 

• The SEC is not just a rule maker and enforcer. It has generally tried to foster open 
discussion and debate about the structure of markets. Their website (www.sec.gov) 
includes many useful and authoritative special studies. SEC rules are available online 
at http://www.law.uc.edu/CCL/sldtoc.html and http://www.sec.gov/rules/final.shtml. 
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• The SEC and state authorities primarily regulate corporate stock and bond markets. 
Other securities markets fall to other entities: futures markets (the U.S. Commodities 
Futures Trading Commission); T-bonds (the Treasury Department). 

• Note: Figure 1 should not be construed as implying that customers’ trading activities 
aren’t subject to any regulatory oversight whatsoever. Their behavior is obviously 
governed by broad prohibitions on fraud and manipulation. Their trading activities do 
not normally, however, entail specific authorization from or reporting to market 
regulatory authorities.  

Figure 1 indicates two sorts of linkage systems. Although they are drawn as connectors 
bridging customers and the markets, they also link the disparate market venues. As equity 
markets have grown more fragmented (i.e., trading activity is more dispersed), the linkage 
systems have become more important. 

• Information links 

Information originating from the market venues (trade reports, quotes, etc.) are 
disseminated under complicated arrangements of consolidation and distribution. 
Organizations engaged in this activity must register as Securities Information Processors 
(SIPs). The most important SIPs are the CTA (Consolidated Tape Association) and 
Nasdaq. The CTA services primarily exchanges (but also includes some ECN’s); Nasdaq 
reports the activity of its own dealers. 

• Intermarket access links 

Access refers to the ability to send an order to, and obtain an execution from, a market 
venue.  

The paper now turns to a more detailed discussion of the components, beginning with the most 
important and complex: the market venues. 

3 The basic types of trading protocols 

This section describes the general features of the three types of markets that dominate US equity 
trading. The specifics are discussed in the context of particular market venues. 

3.1 Open outcry (“floor”) markets 

An open outcry market is a physically-centralized venue in which participants strike bilateral 
deals. This is still the dominant mechanism in most of the U.S. futures exchanges. 

In an open outcry market, traders shout out the bids and asks (“24 bid for 1,000 shares” or “500 
shares offered at 25”). Executions occur when another traders signals that he is hitting the bid 
(selling) or lifting the offer (buying).  
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Traders may act as brokers, i..e., as agent for the orders of off-floor customers. They may also 
trade for their own account (proprietary trading). When they trade against customers, they are 
effectively functioning as dealers.  

The practice of simultaneously representing customer orders and trading against customer orders 
gives rise to an obvious conflict of interest. The phenomenon is called “dual trading” and most 
floor markets either regulate it or prohibit it altogether. 

3.2 Dealer markets 

Dealers are intermediaries who have established a reputation for standing ready to buy or sell. 
This reputation encourages customers to take their orders to a dealer. The costs of trading with a 
dealer are presumably lower than if the customer were to try to locate a potential counterparty on 
his own behalf.  

Dealer markets are not generally physically centralized. Dealers often have electronic links to 
their customers, and also links to other dealers (which are not visible to customers). 

Dealer markets are generally set up to discourage direct, disintermediated customer-to-customer 
trade. Customers cannot generally provide liquidity directly to the market. 

3.3 Electronic limit order book markets 

A limit order specifies direction (buy or sell), quantity and the worst acceptable price. If the limit 
price of a newly arriving buy order exceeds the limit price of a sell order already in the system, 
the buy order is said to be marketable and a trade occurs (at the limit price of the sell order). 

If the incoming buy order is not marketable, it is added to the book of unexecuted buy orders. 
The book is maintained in price time priority. An order to buy at 100 won’t be executed before 
an order to buy at 101. An order to buy submitted at 10:01 won’t be executed before a buy order 
at the same price submitted at 10:00. 

Modern limit order books are computerized, with electronic order entry and interfaces to 
reporting and clearing systems, and with public display of the prices and quantities on the book. 
Generally, these systems are anonymous. 

In the electronic limit order book, a customer can buy or sell immediately only if there exists an 
unexecuted limit sell or buy order submitted by another customer. Thus, liquidity is said to be 
supplied by other customers. 

There is nothing in principle to prevent a customer from acting as a dealer, i.e., continually 
posting buy and sell limit orders to maintain a market presence. But there is also no particular 
advantage to doing so. The anonymity of the market means that there is no possibility of 
sustaining a reputation. There are furthermore no barriers to entry. One’s bid or ask may be 
undercut at any time by a new arrival. 
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4 The New York Stock Exchange 

Historically, the NYSE has been the dominant US equity trading venue. An economist might 
describe it as a multiproduct firm, producing listing, regulatory and trading services. The present 
analysis focuses mainly on the trading services, i.e., how the NYSE operates as a market. 

Basic background on the NYSE is given in Hasbrouck, Sofianos, and Sosebee (1993) and 
Teweles and Bradley (1998). At this point, however, both sources are somewhat dated. The 
NYSE Constitution and Rules is authoritative and complete in the details, but it is difficult to 
distill from this document an overall picture of how the market really functions. 

NYSE trading protocols are complex because the Exchange is a hybrid market that embodies 
elements of an open outcry system, a dealer market and an electronic limit order book. These 
mechanisms are not simply run in parallel isolation, but are integrated in a fashion that attempts 
to merge the best features of each. It is perhaps easiest to approach these mechanisms and their 
interaction by reviewing them in the order in which they historically arose. 

4.1 The NYSE as an open outcry (“floor” market) 

The NYSE was founded in 1792 and first functioned as an open outcry market. In addition to the 
basic features of these markets described in the last section, the NYSE’s procedures also 
embodied the following principles. 

Price priority.  

For example, someone who is bidding 101 should have priority over someone who’s 
bidding 100. 

In this example, it might be thought that self-interest of sellers would ensure price 
priority. Why would anyone sell at 100 when they could sell at 101? Why is a rule 
needed? 

A trade at 100 when a buyer is bidding 101 is called a “trade-through”. (Or, as a verb, 
“The seller in the transaction traded through the 101 bid.”)  

Hypothetically, a broker with a customer may care more about getting the order filled 
quickly than getting the best price, particularly if the customer can’t easily monitor the 
market. 

The rule of price priority gives the other side (in this case, the bidder) the right to protest 
(and break) the trade. 

Time priority 

First-come, first-served is a time-honored principle that rewards prompt action. In the 
present case, the first member to bid or offer at a price gets the first trade at that price.  
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Beyond that, there is no time priority. In a crowd, it’s possible to keep track of who was 
first. It’s more difficult to keep track of who was second, third, etc. 

After the first trade at a price, all members bidding or offering at that price are said to be 
at parity. This means that they have equal claim to all counterparty interest at that price. 

Size precedence 

This is a secondary priority rule. Normally, if A and B are both bidding $100 and are at 
parity, they will share arriving sellers equally. If an order to sell 300 shares at the price 
arrives, A and B will each buy 150 shares, or they might flip a coin for the whole amount. 
But if A is bidding for 300 shares and B is bidding for 100 shares, A would get the full 
amount based on size precedence. Size precedence is rarely invoked nowadays. 

The practice of public last-sale reporting and dissemination of bids and offers dates from the 
floor phase of the NYSE’s history (and predates by many years the establishment of any external 
regulatory authority). 

4.2 The dealer (specialist). 

The dealer part of the picture emerged in the 1870’s. According to legend a member broke his 
leg and while constrained by immobility decided to specialize in certain selected stocks. The 
practice was adopted by more ambulatory brokers and the specialist system was born. 

There is currently one specialist per stock. This has given rise to the expression in the academic 
literature (and elsewhere) of “monopolistic specialist”. The specialist does enjoy some market 
power, but the qualifier greatly exaggerates the extent of it. The specialist participation rate 
(specialist purchase + specialist sales)/(2 x total volume) is about 15% (NYSE Fact Book). 

Initially there might have been multiple specialists for a given stock. As recently as 1963, there 
were 35 listed stocks that had more than one specialist (Seligman (1995), citing the Special 
Study of the U.S. Securities and Exchange Commission (1963), p. 338). By 1967 there were 
none. Although the competition might have been thought beneficial to customers, the reality was 
somewhat different. Seligman quotes the Special Study: 

At present [1963] competition is unsatisfactory for several reasons. Commission firms are 
often confused as to who is quoting the best market in active stocks. The commission 
firms do not shop for the best service, but often give each competitor half their brokerage 
business. In addition, neither competitor accepts full market-making responsibilities, thus 
adding to the Exchange’s regulatory problems. 

The specialist’s main responsibility is to maintain a “fair and orderly market”.  There a large 
number of rules that specify what the specialist must do (affirmative obligations) and what he 
can’t do (negative obligations). But none of these rules supercedes the duty to maintain a fair and 
orderly market. 

Affirmative obligations 
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The specialist must bid and offer (make a market) when nobody else is willing to do so. 
The specialist has the sole authority and responsibility for the quotes. 

Agent for the limit order book. For many purposes, the book can be thought of as a single 
member. The specialist keeps the book and represents book interest in the crowd. 

Agent for electronically-delivered market orders. 

Maintain price continuity. 

Negative obligations 

A specialist (indeed no member) is allowed to trade ahead of a public customer at a price. 

A specialist is discouraged from “trading in a destabilizing fashion” (buying on an uptick 
or selling on a downtick). 

The specialist’s role as agent for public orders has become more prominent with the prevalence 
of electronic delivery. The exchanges order delivery and routing systems (notably “SuperDOT”) 
send virtually all orders that don’t require a broker’s human attention to the specialist’s 
workstation (“DisplayBook”). 

4.3 The limit order book 

The book is maintained by the specialist. When there were multiple specialists, each specialist 
could have his own limit order book. Now there is a single electronic book. 

In acting as agent for limit order book, the specialist in a sense becomes the book, representing it 
as if it were a single floor trader. An important implication of this is that although price/time 
priority is strictly observed within the book, the book as a single entity might be at parity with 
floor traders that arrived considerably after the limit orders in the book were posted. 

4.4 The bid and ask quotes 

The specialist sets the bid and ask quotes, but in doing so he might be representing his own 
interest, orders on the book, bids or offers that a floor broker might want displayed, or a 
combination of all of these. 

If there are orders on the book at the bid or ask, they must be represented (under the quote 
display rule), but the display is not automatic. 

Historically, the specialist could exercise a fair amount of discretion in the display of customer 
limit orders. Presently, limit orders that better the existing quote must be executed or displayed 
within 30 seconds. (See the discussion of the SEC’s Quote Display Rule in section 5.3). 
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4.5 Executions 

4.5.1 Small orders 

Order execution (particularly for small orders) is now often automatic. Any order (up to 1,099 
shares) designated to go to the NYSE Direct+ system does not go to the specialist, but is 
executed automatically at the posted quote (against the specialist). See 
http://www.nyse.com/pdfs/NYSEDirect.pdf. A similar system is used for odd-lots (market orders 
smaller than 100 shares). 

Market orders delivered to the specialist’s post, however, do not execute automatically. Acting as 
agent for the order, the specialist effectively auctions it off. As an example, consider an incoming 
buy order. Here are some common (but by no means exhaustive) scenarios. 

The simplest outcome is a trade at the posted ask price. The specialist might be selling for his 
own account at this price, but he can’t do this if there are any public limit sell orders priced at the 
ask (or lower).  

The only way for the specialist to sell from his own account when there are public sellers is to 
offer the buyer a better (lower) price. If the lowest public limit sell order price is 100, for 
example, the specialist can only sell from his own account at a price of 99.99 or lower. 

This outcome results in the buyer receiving a price better than the posted ask, a phenomenon 
termed “price improvement”. While this works to the benefit of the buyer, however, the limit 
order seller at 100, believing himself to be the most aggressive seller in the market, may feel 
disadvantaged. 

The practice used by the specialist can be employed by any broker who is physically present at 
the specialist’s post. The floor thus enjoys a last-mover advantage. 

4.5.2 Large orders 

Large executions are sometimes called block trades. The customary size threshold for a block 
trade is 10,000 shares, but nowadays many orders of that size would simply be allowed to follow 
the electronic route of small orders, as described above. 

The terms of large orders are usually negotiated by customers and their brokers. Often the 
process involves the broker guaranteeing the customer a price and then working the order 
(feeding it to the market) slowly over time to minimize price impact. The general process is the 
same whether the stock is listed on an exchange or Nasdaq. (See below.)  

When a broker has located both a buyer and seller for a block, he may, under certain 
circumstances, “cross” the block, i.e., execute the trade without other buyers and sellers stepping 
in to take part or all of one or both sides (the “clean-cross rule”). 

Trade sizes on the NYSE grew for many years, but then dropped. In 1963, the average trade size 
was 204 shares. The average grew rather steadily, peaking at 2,303 shares in 1988. In 2002, it 
was 606 shares, a level not seem since the late 1970’s.  
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4.6 Opening and closing procedures 

The opening procedure is effectively a single-price call auction. Brokers submit customer orders. 
The specialist tries to find a single price at which supply equals demand.  

Some markets (Euronext) have a closing auction as well. In principle, the specialist can invoke 
the opening auction system one the close, but this is rarely (if ever) done. 

5 Nasdaq 

Historically, Nasdaq was primarily a dealer market with geographically dispersed dealers linked 
by electronic systems that displayed bid and ask quotes and (later) last sale prices. Smith, 
Selway, and McCormick (1998) discuss the history of Nasdaq up to 1998. The present discussion 
overlaps with this and extends it. 

Nasdaq circa 1990 was distinctly a dealer market, essentially as described in Section 3.2.  More 
so than the NYSE, it was transformed in the 1990’s by economic, political and regulatory 
pressures. The changes greatly enhanced customer protection and reduced the power and 
profitability of Nasdaq members (brokers and dealers). The changes also weakened the authority 
and reach of Nasdaq as a central market operator. 

5.1 The Manning Rules 

Historically, Nasdaq (like most dealer markets) gave little protection to customer limit orders. 

For example, suppose that the best market quote was 100 bid, offered at 102. A Nasdaq dealer 
who received a customer limit order to buy at 101 didn’t have to display the order as a new, more 
aggressive quote. The dealer could furthermore buy for his own account at prices below 101 
(thus trading through the customer order). The customer was only entitled to an execution when 
the market offer price dropped to 101 (essentially making the customer order marketable). 

The “Manning” rules were adopted by NASD to prohibit brokers from trading ahead or through 
their customer limit orders. The name is explained in an SEC opinion on a subsequent 
administrative proceeding: 

“The term is a reference to E.F. Hutton & Co., 49 S.E.C. 829 (1988), in which the 
Commission held that a firm violated its fiduciary duties to a customer, William 
Manning, who had placed a limit order to sell a security, when the firm sold shares of that 
security at prices above the limit price.” 

SEC Administrative proceedings file3-9941, available at: 
http://www.sec.gov/litigation/opinions/34-44357.htm#P58_4039

The Manning rules were adopted in two phases: 

“Manning I” said that a dealer couldn’t trade ahead of limit orders entrusted to them by their own 
customers. 
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“Manning II” said that a dealer couldn’t trade ahead of customer limit orders that had been sent 
to them by other brokers. 

It was and is common on Nasdaq (and other markets as well) for orders to ultimately be 
represented by brokers other than the one who originally received the order. Manning II simply 
says that the protection goes with the order, i.e., that it doesn’t vanish when the order changes 
hands prior to representation. 

5.2 The collusion charges 

Christie and Schultz (1994) found that despite the ⅛ tick size used in US security markets, 
Nasdaq dealers tended to quote on a ¼-point grid. They suggested that this might be a 
coordination device to maintain spreads at ¼ . This would be profitable for dealers because most 
retail trades occurred at the bid or and the ask. Furthermore with weak limit order protection, 
there was little opportunity for customers to use limit orders to compete with dealer quotes. 

Christie, Harris, and Schultz (1994) describe the events immediately surrounding the study. They 
had sought comments from industry participants, and, after the findings were accepted for 
publication, Vanderbilt University issued a press release (May 24, 1994).  

Also on May 24, a meeting of major Nasdaq dealers was convened at the offices of Bear Sterns 
in New York. At this meeting a NASD official encouraged dealers to reduce their spreads. The 
stated reason for this exhortation was a an earlier rule change (January, 1994) to a Nasdaq 
automatic execution system (SOES), not the CS study. Whatever the motivation, on May 27, 
spreads began to drop dramatically. (See figure.) 

© 2004, Joel Hasbrouck. All rights reserved. 

http://links.jstor.org/sici?sici=0022-1082%28199412%2949%3A5%3C1813%3AWDNMMA%3E2.0.CO%3B2-E
http://links.jstor.org/sici?sici=0022-1082%28199412%2949%3A5%3C1841%3AWDNMMS%3E2.0.CO%3B2-R


 Appendix      Page 177  

 

 

Nadaq authorized an external review of the matter (the Rudman Commission); the SEC and the 
Department of Justice opened investigations; and civil lawsuits were filed against the Nasdaq 
dealers (on behalf of customers). When the dust settled: 

• The Rudman Commission examined NASD’s governance and recommended that market 
operation and market regulation be separated. The latter was spun off as NASD-R (now 
identified on its website as “the world’s leading private-sector provider of financial 
regulatory services”). 

The separation was (and is) structurally complex, and is now enmeshed with Nasdaq’s 
demutualization. 

One aspect of the arrangement, at least in retrospect, stands out as particularly significant. 
Nasdaq (the market operator) signed a long-term contract with NASD-R to provide 
regulatory services. As Nasdaq market share and revenues have declined, it is not clear 
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that this is a viable long-term arrangement. Market regulation is bedeviled with extensive 
free-rider problems, and it remains unclear how the costs should be borne. 

• The SEC and DOJ investigations were concluded and settled. The SEC’s “21(a)” report 
on the investigation is at http://www.sec.gov/litigation/investreport/nasdaq21a.htm.  

• The civil law suits were consolidated and eventually settled in May, 1999 for about $1B. 

5.3 The SEC’s rule on Order Execution Obligations 

While the SEC and DOJ investigations can be viewed as a straightforward attempt to hold 
Nasdaq market-makers responsible for their prior behavior, the practices uncovered by the 
investigations also served to support constructive reform going forward. The most striking 
examples of this are rules 11Ac1-4 and 11Ac1-1 on Order Execution Obligations (full text at 
http://www.sec.gov/rules/final/37619a.txt). 

The extent of this rule is not limited to Nasdaq; it applies to all markets. However, it is best 
understood in the context of Nasdaq regulation. Although it had some ramifications for the 
NYSE, it had more profound effects on Nasdaq. It has two parts: the Display Rule and the Quote 
Rule. 

From the SEC’s summary: 
Specifically, the Commission is adopting new Rule 11Ac1-4 ("Display Rule") under the 
Securities Exchange Act of 1934 ("Exchange Act") to require the display of customer limit 
orders priced better than a specialist's or over-the-counter ("OTC") market maker's quote or 
that add to the size associated with such quote. The Commission also is adopting 
amendments to Rule 11Ac1-1 ("Quote Rule") under the Exchange Act to require a market 
maker to publish quotations for any listed security when it is responsible for more than 1% 
of the aggregate trading volume for that security and to make publicly available any superior 
prices that a market maker privately quotes through certain electronic communications 
networks ("ECNs") ("ECN amendment").  

The Display Rule strengthened Nasdaq customer limit orders beyond the protections afforded by 
Manning. When display is required, a customer limit order can become the best bid or offer in 
the market. 

The Quote Rule was designed to curb a practice whereby Nasdaq dealers would set wide quotes 
that were visible to the public, but narrow quotes in the interdealer and institutional markets that 
were not visible to the public.  

This practice remains common in many other dealer markets (including FX and bonds). 

The Quote Rule also marked the debut of the term “Electronic Communications Network” 
(ECN). 
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5.4 SuperMontage 

Nasdaq is largely defined by its information systems. The first system (1960s?) imply allowed 
for display of dealer quotes (the quote “montage”). Systems subsequently added allowed for 
trade reporting and confirmation (ACT), interdealer communication of trading commitments 
(SelectNet), small retail order execution (SOES), etc. Smith, Selway, and McCormick (1998) 
describe the history and state of these systems up to 1998. Most systems underwent substantial 
modifications after that. 

At present, most of the functionality in these disparate systems is now consolidated in one 
system, SuperMontage. Conceptually, SuperMontage comes closest to resembling an electronic 
limit order book for dealers. That is, the display and trading protocols are similar to what would 
be found in an electronic limit order book, except that customers are not permitted direct access 
to the system. 

The system was designed to facilitate established Nasdaq practices like preferencing. At the 
SEC’s request, the system was forced to include ECN’s. As a result, the actual trading protocols 
are quite complex. (See material at 
http://www.nasdaqtrader.com/trader/hottopics/supermontage_hottopics.stm.)  

SuperMontage’s market share is (August, 2003) about 17% by volume. 

6 ECN’s 

In US regulatory law, an ECN is simply a medium for the display of quotes. There is no 
requirement that it also provide a trading mechanism. Nevertheless, as a practical matter, 
virtually all ECN’s are electronic limit order book markets, on which trades do in fact occur. 

The claim as to whose system was the first electronic stock exchange is and always will be in 
dispute. Certainly, however, one strong contender is Instinet. It began operation in 1979 as an 
electronic limit order book for institutions (mutual funds, pension funds, etc.). It did not really 
take off, though, until it began to allow the entry of Nasdaq market makers. Until recently, it was 
the clearly the largest ECN (by trading volume). 

The Nasdaq market makers used the system essentially as their interdealer market, and this 
clientele became a substantial, perhaps the dominant, group of Instinet participants. 

Significantly, to avoid the regulatory overhead, Instinet went to some effort to avoid 
characterization as an “exchange,” perhaps hoping to avoid the regulatory overhead such a 
designation would entail. 

Perhaps more significantly, Instinet did not open itself to retail traders. 

This proved to be a foregone opportunity, as newer entrants in the ECN business successfully 
sought and profited from the retail business. 
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The most successful of these was the Island ECN. Its volume grew until it met (and in some 
issues, surpassed) that of Instinet. Reuters (which owns Istinet) purchased Island in 2002 
(2001?). 

7 Alternative Trading Systems (ATSs) 

With the advent of network and internet technology in the 1990’s, there arose considerable 
interest in devising new electronic trading mechanisms. The structure of US regulation was not 
well-suited to this development. Regulation centers around institutions rather than functions, and 
the principal trading institution for regulatory purposes was the “national securities exchange”. 
This concept is defined in narrow terms that the newer entrants did not really fit. 

Initially, the SEC dealt with the new entrants using “No Action” letters that granted provisional 
permission for operation of trading systems. But it soon became clear that a more consistent and 
cohesive regulatory structure was called for. 

The SEC’s rule on the Regulation of Exchanges and Alternative Trading Systems (“Reg ATS,” 
at http://www.sec.gov/rules/final/34-40760.txt) established a new framework. The key provision: 

To allow new markets to start, without disproportionate burdens, a system with less than 
five percent of the trading volume in all securities it trades is required only to: (1) file 
with the Commission a notice of operation and quarterly reports; (2) maintain records, 
including an audit trail of transactions; and (3) refrain from using the words "exchange," 
"stock market," or similar terms in its name. 

Above the five percent threshold, the responsibilities of the market increase: 

If, however, an alternative trading system with five percent or more of the trading volume 
in any national market system security chooses to register as a broker-dealer -- instead of 
as an exchange -- the Commission believes it is in the public interest to integrate its 
activities into the national market system.  In addition to the requirements for smaller 
alternative trading systems, Regulation ATS requires alternative trading systems that 
trade five percent or more of the volume in national market system securities to be linked 
with a registered market in order to disseminate the best priced orders in those national 
market system securities displayed in their systems (including institutional orders) into 
the public quote stream. Such alternative trading systems must also comply with the same 
market rules governing execution priorities and obligations that apply to members of the 
registered exchange or national securities association to which the alternative trading 
system is linked. 

The ECNs constituted as electronic limit order books are also ATSs. ATSs that do not display 
quotes (and hence are not ECNs) include Liquidnet and ITG’s Posit crossing. 

Domowitz and Lee (2001) give further discussion. 

8 Decimalization 

Up to the 1990s, US stocks by longstanding practice had been priced in units of ⅛ of a dollar. 
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This was, by world-wide standards, archaic, as most exchanges quoted in decimals. The US 
practice was viewed mostly as a slightly annoying, but mostly neutral aberration. 

Then the Nasdaq collusion investigations raised in public consciousness the possibility that a 
market’s tick size might have a large effect on trading costs. 

To take the simplistic view, if the bid and ask are set by “insiders” and outside customers and 
only trade at the these prices, insiders would seek to keep spreads wide. The tick size sets a floor 
on how narrow the spreads can become. It was conjectured that if the tick size were mandated to 
be smaller, spreads would fall to the cost of providing dealer services. 

Positioned as a populist issue, the outcome was never in doubt. Congress passed the Common 
Cents Pricing Act of 1997. The NYSE switched to sixteenths and then, as required by the law, to 
pennies. 

Two figures from Stoll and Schenzler (2002) describe the effects: 

 

© 2004, Joel Hasbrouck. All rights reserved. 

http://mba.vanderbilt.edu/fmrc/pdf/wp2002-02.pdf


 Appendix      Page 182  

 

9 The (ongoing) debate over consolidation and fragmentation 

In all security markets there is a trade-off between consolidation and fragmentation. 
Consolidation or centralization brings all trading interest together in one place, thereby lessening 
the need for intermediaries, but as a regulatory principle it favors the establishment and 
perpetuation of a single market venue with consequent concern for monopoly power. Allowing 
new market entrants (like the ATSs) maximizes competition among trading venues, but at any 
given time the trading interest in a security is likely to be dispersed (fragmented) among the 
venues, leading to increased intermediation and price discrepancies among markets.  

The growing role of alternative trading systems, increasing competition among market venues 
and the experience of the Nasdaq reforms brought these concerns to the fore. 

The public debate was occasioned by the call for the repeal of the NYSE’s Rule 390. This rule 
embodied the principle that NYSE members were prohibited from conducting trades off the floor 
of the Exchange. At one time, the rule had great force and reach, but by the 1990’s, it had been 
weakened considerably. It nevertheless stood as strong symbol of the Exchange’s anti-
competitive power. 

The relationship of the NYSE (as the self-regulatory organization) and the SEC (as the final 
authority on approval of rules) required the NYSE to propose the rule change to the SEC. The 
SEC then solicited comment on the proposal and finally took action (modification and approval, 
in this case). 
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In soliciting comment, the SEC took the occasion to address broad issues. In the “Rule 390 
Concept Release” (February 23, 2000, at http://www.sec.gov/rules/sro/ny9948n.htm), the SEC 
laid out terms of the debate and raised the relevant policy questions. 

At about the same time, the US Senate Banking Committee conducted hearings in New York on 
the Competitive Market Supervision Act (on February 28, 2000) and on the Financial 
Marketplace of the Future (February 29, 2000).  Referred to at the time as the “World Trade 
Center hearings”, these meetings are noteworthy because for a short time, it appeared that 
momentum was developing within the financial services industry in favor of a consolidated 
[electronic] limit order book (“CLOB”). For reasons apparently having to do with uncertainties 
over what such a system might do the institutions’ competitive positions, however, the 
momentum suddenly abated. In retrospect, this marked the high-water mark for sentiments of 
centralization. 

10 Market data 

From a functional perspective, US equity markets provide trading services, listing sponsorship of 
corporations, information and regulatory services.  

With the advent of the ECNs and ATSs, the provision of trading services, narrowly defined as 
covering only the entry and matching of orders, became extremely competitive and, therefore, 
for many players, only marginally profitable or worse. Attention then naturally shifted to the 
other roles as sources of revenue. 

Listing arrangements are relatively stable. The “seal of approval” that listing is hypothesized to 
confer is not something that a new entrant can easily replicate.  

The pricing, provision and payment for regulatory services is an important matter of ongoing 
debate, but regulatory services are not presently regarded as a “growth area”. 

This leaves market data. With market fragmentation and decimalization, the volume of market 
data has grown. Furthermore, with the advent of computerized trading systems, so too has the 
need for such data. At the same time, the costs of providing it have dropped. 

It is difficult to define the property rights associated with market data. (Wherein does the value 
of a last sale report arise? Does it belong to the buyer and seller? The exchange where the trade 
took place? Or does it acquire value only when combined with all the other trade data for the 
security?) Furthermore, collection and dissemination of the data involve large economies of scale 
and scope, and large fixed costs.  

The SEC appointed a panel to examine the issue (the “Seligman Committee”, after the 
chairperson). The final report and associated documents are available at: 
http://www.sec.gov/divisions/marketreg/marketinfo.shtml.) It is an excellent summary of the 
issues and market participant views. 

The committee arrived at no strong consensus for future policy, but it did at least recommend 
that regulators maintain the present policies. These include inexpensive dissemination of last sale 
prices and volumes and inside bids and asks (and sizes at these quotes). Beyond this, however, 
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venues would be allowed to develop and price information as they saw fit. Thus, the NYSE’s 
OpenBook system (which reports the state of limit order book with a ten second delay) can be 
priced at what the market will bear. 

11 Intermarket linkage systems 

Market data systems allow participants to see bids, asks and last sale prices across the various 
market venues. They do not generally, however, permit the participants to send an order or 
otherwise interact with the venues. This characterizes what are sometimes called access systems.  

The functionality is sometimes implemented at the broker level. A broker will often have 
electronic links to multiple venues, which the customer can access in a uniform fashion. At this 
level, the decision of where the order goes is made by the broker’s routing algorithms or the 
customer. 

Reflecting the complexity of the routing decision, these systems are generically known as SORT 
(smart order routing technology) or SOM (smart order management) systems. 

Other systems are channels for passing orders (“commitments”) between market venues.  

The most venerable of these is the Intermarket Trading System (ITS). ITS links the NYSE and 
the regional stocks exchanges. It allows brokers at one exchange to send orders directly to 
another. 

ITS was set up in response to a Congressional mandate (the 1975 Securities Act) to build a 
“national market system”.  The latter phrase has probably given rise to deeper exegesis than any 
other expression in market regulation. It has been interpreted vaguely as general support for 
widespread participation in security markets and at the extreme as a clear charge for a 
consolidated limit order book. 

Although it embodies many other facilities, Nasdaq’s SuperSOES system certainly qualifies. It 
can automatically generate executions between different market-makers, between a broker and a 
market-maker or even between a broker and an ECN. 

In addition, some of the ECNs have set up bilateral links. Archipelago displays a consolidated 
limit order book, comprising both its own book and Island’s. 

Intermarket access systems have become flash points for inter-venue disputes. A major 
difference arises from the relative speeds of electronic and floor-based venues. To avoid trade-
throughs, the former may be forced to send orders to the latter, at a penalty in response time that 
some traders feel is substantial. 

These disputes would be moot but for forced participation. The latitude afforded the newer 
electronic venues by the SEC’s Reg ATS vanishes when the a venue’s market share exceeds 5%. 
At that point, linkage with a registered market becomes mandatory. 
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12 The SEC’s initiative on disclosure of order routing and execution practices 

When brokers handle customer orders, significant agency problems arise. These occur for the 
usual reasons. 

• The broker has a private incentive to pursue courses of action that might deviate from the 
agent’s interest. 

• It is extremely difficult for the agent to monitor the principal’s performance. 

Regarding the first point, the private incentive is a rather direct and simple one. Retail brokers 
(who accept customer orders) often enter into arrangements with market makers whereby the 
market maker will pay the retail broker in cash or services for all customer orders sent to the 
market maker. This is called payment for order flow. Payment for order flow is legal, but it does 
not relieve the broker of the legal duty to provide “best execution” for the customer. 

The monitoring difficulties arise because customers don’t generally possess detailed level of 
market data that might enable them to estimate the quality of the brokerage service provided on 
the order. Moreover, the broker’s performance on one order tells us little because individual 
order outcomes are noisy. Performance can really only be assessed by examining a sample of 
orders. 

Payment for order flow has long bothered many observers because of its resemblance to 
commercial bribery. (Consider the case of a real estate agent who sells a house and accepts side 
payments from potential buyers.) 

The SEC has not banned payment for order flow, but it has taken steps to make payment and 
performance more transparent. 

These steps are codified in the rule on the Disclosure of Order Routing and Execution Practices 
(available at http://www.sec.gov/rules/final/34-44060.htm). There are two parts to the rule: 
11Ac1-5 and 11Ac1-6. 

Rule 11Ac1-5 (“Dash Five”) requires all market centers to report summary measures of their 
execution quality. “Market centers” comprises exchanges, ECN’s and Nasdaq dealers. For 
market orders, the measures are sensible ones, comparing the trade price relative to quote 
midpoints prevailing before and after the trade. The dash five statistics are widely reported on 
market center websites (as required by the law). 

Calculation of the dash five statistics must be done according to very precise rules laid down by 
the SEC. Nevertheless, these statistics are not audited, and the data required to verify them are 
not publicly available. They must be taken, therefore, with a grain of salt. 

Rule 11Ac1-6 (“Dash Six”) requires all customer brokers to disclose their relationships with 
market makers to whom they send orders. The disclosure must be detailed (how many cents per 
share rebated, for example). The information must also be displayed on their web sites. 
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13 Time line 

The preceding discussion has been organized by topic. The following chart summarizes the 
chronology. Links in the chart are to sections in the present paper. 

(Other useful timelines include the NYSE’s at http://www.nyse.com/about/1020656067766.html, 
and the Nasdaq’s at http://www.nasdaq.com/about/about_nasdaq_long.stm.) 

Date Regulatory  NYSE Nasdaq 
Jan 24, 2002  OpenBook begins 

operation 
 

Sept. 14, 2001 Final report of the 
SEC’s Advisory 
Committee for 
Market Information

  

Jan 29, 2001  Decimal pricing 
fully implemented 

 

Jan 30, 2001 SEC’s Rule on the 
Disclosure of Order 
Execution and 
Routing Practices.  

  

Aug. 28, 2000  Decimal pricing 
begins 

 

April 21, 1999 SEC’s “Reg ATS” 
becomes effective  

  

June 24, 1997  Begins trading in 
sixteenths. 

 

Sept, 1996 SEC’s rule on Order 
Execution 
Obligations (“display 
rule” and “quote 
rule”) 

  

May 22, 1995   Manning II
June 24, 1994   Manning I
May 27, 1994   Nasdaq market 

makers begin 
reducing their 
spreads. 

May 24, 1994   “Bear Sterns” 
meeting. (NASD 
officials and 
members) 

May 24, 1994   Charges of 
collusion leveled 
by Christie and 
Schultz in a 
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Date Regulatory  NYSE Nasdaq 
Vanderbilt 
University press 
release.  
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