Components of the bid-ask spread

Notation

Time sequence: $\mathrm{V}_{\mathrm{t}} \rightarrow \mathrm{M}_{\mathrm{t}} \rightarrow \mathrm{P}_{\mathrm{t}}$
$\mathrm{V}_{\mathrm{t}}=$ the unobservable fundamental value of the stock in the absence of transaction costs. V_{t} is determined just prior to the posting of the bid and ask quotes at time t.
$\mathrm{M}_{\mathrm{t}}=$ the quote midpoint just before a transaction.
$\mathrm{P}_{\mathrm{t}}=$ the transaction price at time t .
$\mathrm{Q}_{\mathrm{t}}=$ the buy-sell indicator variable:
+1 for a buyer-initiated trade, -1 for a seller-initiated trade, 0 for a transaction at the quote midpoint.

Fundamental value:

(1) $\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{t}-1}+\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$,
$S=$ the traded spread,
$\alpha=$ the percentage of the spread attributable to adverse selection,
ε_{t}, $=$ the serially uncorrelated public information shock.

The change in the fundamental value reflects the price information revealed by the last trade, $\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}$, and the public information innovation.

If there is no adverse selection,
$\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$.
If the adverse selection component is the only cost,

$$
\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{t}-1}+(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
$$

Quote midpoint:

(2) $\mathrm{M}_{\mathrm{t}}=\mathrm{V}_{\mathrm{t}}+\beta(\mathrm{S} / 2) \Sigma \mathrm{Q}_{\mathrm{i}}$,
$\beta=$ the percentage of the spread attributable to inventory holding costs.
$\Sigma \mathrm{Q}_{\mathrm{i}}=$ the cumulative inventory from the market open until time $\mathrm{t}-1$.

The market maker lowers the quote midpoint if he has too much inventory to encourage customer buys and discourage customer sells, and vice versa.

Observations:

If $\beta=0$, then $M_{t}=V_{t}$.

From (2), we have

$$
\text { (2a) } \mathrm{M}_{\mathrm{t}}=\mathrm{V}_{\mathrm{t}}+\beta(\mathrm{S} / 2)\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4}+\ldots+\mathrm{Q}_{\mathrm{t}-1}\right)
$$

(2b) $\mathrm{M}_{\mathrm{t}-1}=\mathrm{V}_{\mathrm{t}-1}+\beta(\mathrm{S} / 2)\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4}+. .+\mathrm{Q}_{\mathrm{t}-2}\right)$
Subtracting (2b) from (2a), we have:
(3) $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}-1}=\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}+\beta(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}\right)$

Next note that from (1),
(4) $\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$

Substituting (4) into (3), we have:

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}-1} & =\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\beta(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}\right)+\varepsilon_{\mathrm{t}} \\
& =(\alpha+\beta)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
\end{aligned}
$$

(5) $\Delta \mathrm{M}_{\mathrm{t}}=(\alpha+\beta)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$

Transaction price:

(6) $\mathrm{P}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}+(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+\eta_{\mathrm{t}}$

Observation:

Transaction price can be different from quoted price (η_{t} is not zero).

From (6),
(6a) $\mathrm{P}_{\mathrm{t}-1}=\mathrm{M}_{\mathrm{t}-1}+(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\eta_{\mathrm{t}-1}$
Subtracting (6a) from (6), we have:
$P_{t}-P_{t-1}=M_{t}-M_{t-1}+(S / 2)\left(Q_{t}-Q_{t-1}\right)+\eta_{t}-\eta_{t-1}$
(7) $\Delta \mathrm{P}_{\mathrm{t}}=\Delta \mathrm{M}_{\mathrm{t}}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\eta_{\mathrm{t}}-\eta_{\mathrm{t}-1}$

Finally, substituting (5) into (7), we obtain

$$
\Delta \mathrm{P}_{\mathrm{t}}=(\alpha+\beta)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\eta_{\mathrm{t}}-\eta_{\mathrm{t}-1}
$$

or

$$
\Delta \mathrm{P}_{\mathrm{t}}=(\alpha+\beta)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\eta_{\mathrm{t}}-\eta_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}
$$

Or
(8) $\Delta \mathrm{P}_{\mathrm{t}}=\lambda(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\mathrm{e}_{\mathrm{t}}$

$$
\Delta \mathrm{P}_{\mathrm{t}}=\lambda(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2) \Delta \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}
$$

$\left[(8 \mathrm{a}) \quad\right.$ or $\left.\Delta \mathrm{P}_{\mathrm{t}}=(\lambda-1)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}\right]$
where $\mathrm{e}_{\mathrm{t}}=\eta_{\mathrm{t}}-\eta_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$ and $\lambda=\alpha+\beta$

Observations:

$\Delta \mathrm{P}_{\mathrm{t}}, \mathrm{Q}_{\mathrm{t}-1}$, and Q_{t} are all observable variables.
Using these variables, we can estimate λ and S.
(9) $\Delta \mathrm{P}_{\mathrm{t}}=\mathrm{b}_{1} \mathrm{Q}_{\mathrm{t}-1}+\mathrm{b}_{2}\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\mathrm{e}_{\mathrm{t}}$
where $\mathrm{b}_{1}=\lambda(\mathrm{S} / 2)$ and $\mathrm{b}_{2}=(\mathrm{S} / 2)$ and thus $\lambda=\mathrm{b}_{1} / \mathrm{b}_{2}$
$1-\lambda=$ an estimate of order processing costs
But cannot separately identify the adverse selection (α) and the inventory holding (β) components of the spread.

Roll (1984) - Q_{t} and Q_{t-1} are independent

Assume that $\lambda=0$ (no adverse selection and inventory costs). Then from (8),

$$
\begin{aligned}
& \operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right) \\
&= \operatorname{cov}\left[(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right),(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}-\mathrm{Q}_{\mathrm{t}-2}\right)\right] \\
&=\left(\mathrm{S}^{2} / 4\right) \operatorname{cov}\left[\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right),\left(\mathrm{Q}_{\mathrm{t}-1}-\mathrm{Q}_{\mathrm{t}-2}\right)\right] \\
&=\left(\mathrm{S}^{2} / 4\right)\left[\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}}, \mathrm{Q}_{\mathrm{t}-1}\right)-\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}}, \mathrm{Q}_{\mathrm{t}-2}\right)\right. \\
&\left.-\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}-1}, \mathrm{Q}_{\mathrm{t}-1}\right)+\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}-1}, \mathrm{Q}_{\mathrm{t}-2}\right)\right] \\
&=\left(\mathrm{S}^{2} / 4\right)\left[-\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}-1}, \mathrm{Q}_{\mathrm{t}-1}\right)\right]=\left(\mathrm{S}^{2} / 4\right)\left[-\operatorname{var}\left(\mathrm{Q}_{\mathrm{t}-1}\right)\right] \\
& {\left[\operatorname{since} \mathrm{Q}_{\mathrm{t}} \operatorname{and} \mathrm{Q}_{\mathrm{t}-1}\right. \text { are independent] }} \\
&=-\left(\mathrm{S}^{2} / 4\right)\left[1 / 2(1-0)^{2}+1 / 2(-1-0)^{2}\right] \\
& {\left[\operatorname{since}^{\mathrm{E}}\left(\mathrm{Q}_{\mathrm{t}-1}\right)=1 / 2(1)+1 / 2(-1)=0\right] } \\
&=-\left(\mathrm{S}^{2} / 4\right)(1) .
\end{aligned}
$$

Hence $S=2\left[-\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right)\right]^{1 / 2}$

Choi, Salandro, and Shastri (1988) - Q_{t} and Q_{t-1} are not independent (see below)

Suppose that the probability of a trade flow reversal [a trade at the bid (ask) is followed by a trade at the ask (bid)] is π and the probability of a trade flow continuation [a trade at the bid (ask) is followed by a trade at the bid (ask)] is $1-\pi$. Then
$\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right)=-\mathrm{S}^{2} \pi^{2}$.
Hence $S=(1 / \pi)\left[-\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right)\right]^{1 / 2}$.
Notice that if $\pi=1 / 2$, then
$\mathrm{S}=2\left[-\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right)\right]^{1 / 2}-\operatorname{Roll}(1984)$

George, Kaul, and Nimalendran (1991)
 - when $\pi=1 / 2$ and $\boldsymbol{\beta}=0$.

From (8) $\Delta \mathrm{P}_{\mathrm{t}}=\lambda(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2) \Delta \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$ and $\beta=0$
$\Delta \mathrm{P}_{\mathrm{t}}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2) \Delta \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$
$\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right)=\operatorname{cov}\left[\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)\right.$, $\left.\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-2}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}-\mathrm{Q}_{\mathrm{t}-2}\right)\right]$
$=\operatorname{cov}\left[\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1},(\mathrm{~S} / 2) \mathrm{Q}_{\mathrm{t}-1}\right]$
$+\operatorname{cov}\left[(\mathrm{S} / 2)\left(-\mathrm{Q}_{\mathrm{t}-1}\right),(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}\right)\right]$
$=\alpha\left(\mathrm{S}^{2} / 4\right)\left[\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}-1}, \mathrm{Q}_{\mathrm{t}-1}\right)\right]-\left(\mathrm{S}^{2} / 4\right)\left[\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}-1}, \mathrm{Q}_{\mathrm{t}-1}\right)\right]$
$=-(1-\alpha)\left(\mathrm{S}^{2} / 4\right)\left[\operatorname{cov}\left(\mathrm{Q}_{\mathrm{t}-1}, \mathrm{Q}_{\mathrm{t}-1}\right)\right]$
$=-(1-\alpha)\left(S^{2} / 4\right)\left[\operatorname{var}\left(\mathrm{Q}_{\mathrm{t}-1}\right)\right]$
$=-(1-\alpha)\left(S^{2} / 4\right)\left[1 / 2(1-0)^{2}+1 / 2(-1-0)^{2}\right]$
$=-(1-\alpha)\left(S^{2} / 4\right)$
Hence, $\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right)=-(1-\alpha)\left(\mathrm{S}^{2} / 4\right)$. [This is their equation (5) on p. 628 assuming $\operatorname{cov}\left(\mathrm{E}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}-1}\right)=0$.]

Thus $\mathrm{S}=2\left[-\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right) /(1-\alpha)\right]^{1 / 2}$

Glosten and Harris (1988) - Trade indicator model

(GH1: 1a) $\quad \mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{t}-1}+\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$,
$\mathrm{V}_{\mathrm{t}}=$ the true price immediately after the trade at time t
$S=$ the traded spread
$\alpha=$ the percentage of the spread attributable to adverse selection
$e_{t},=$ the serially uncorrelated public information shock.
(GH2: 1b) $\quad P_{t}=V_{t}+(1-\alpha)(S / 2) \mathrm{Q}_{\mathrm{t}}$

From (GH2), $\mathrm{P}_{\mathrm{t}-1}=\mathrm{V}_{\mathrm{t}-1}+(1-\alpha)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}$
(GH3) $\quad \mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}=\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}+(1-\alpha)(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)$
From (GH1),
(GH4) $\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$
Substituting (GH4) into (GH3),
(GH5) $\quad \mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$

$$
+(1-\alpha)(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right) \text { or }
$$

(GH6) $\quad \Delta \mathrm{P}_{\mathrm{t}}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+(1-\alpha)(\mathrm{S} / 2) \Delta \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$

From (GH5),

$$
\begin{aligned}
& \Delta \mathrm{P}_{\mathrm{t}}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right) \\
&-\alpha(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\mathrm{e}_{\mathrm{t}} \\
&=(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}} \\
&-\alpha(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\mathrm{e}_{\mathrm{t}} \\
&=(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t}}
\end{aligned}
$$

Hence
(GH7) $\Delta \mathrm{P}_{\mathrm{t}}=(\mathrm{S} / 2) \Delta \mathrm{Q}_{\mathrm{t}}+\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t}}$

Note that (GH7) is equal to (8) if $\beta=0$.
(8) $\Delta \mathrm{P}_{\mathrm{t}}=\lambda(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+(\mathrm{S} / 2) \Delta \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$

Madhavan, Richardson, and Roomans (1996)
$($ MRR1 $) \Delta \mathrm{P}_{\mathrm{t}}=(\phi+\theta) \mathrm{Q}_{\mathrm{t}}-\phi \mathrm{Q}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t}}$,
where $\theta=$ the adverse selection component

$$
\begin{aligned}
\phi= & \text { the order processing and inventory } \\
& \text { component }
\end{aligned}
$$

Upon rearrangement, we obtain
(MRR2) $\Delta \mathrm{P}_{\mathrm{t}}=\theta \mathrm{Q}_{\mathrm{t}}-\phi \Delta \mathrm{Q}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t}}$

Note that (MRR2) is analogues to (GH6) above
(GH6) $\quad \Delta \mathrm{P}_{\mathrm{t}}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+(1-\alpha)(\mathrm{S} / 2) \Delta \mathrm{Q}_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}$

Choi, Salandro, and Shastri (1988)

Suppose that the probability of a trade flow reversal [a trade at the bid (ask) is followed by a trade at the ask (bid)] is π and the probability of a trade flow continuation [a trade at the bid (ask) is followed by a trade at the bid (ask)] is $1-\pi$. And also suppose that at time $t-1$, there is an equal probability of a buy and sell.

$\mathrm{P}_{\mathrm{t}-1}$	P_{t}	$\mathrm{P}_{\mathrm{t}+1}$	Probability (PROB)	$\Delta \mathrm{P}_{\mathrm{t}}$	$\Delta \mathrm{P}_{\mathrm{t}+1}$
B	A	A	$(1 / 2) \pi(1-\pi)$	S	0
B	A	B	$(1 / 2) \pi \pi$	S	-S
B	B	A	$(1 / 2)(1-\pi) \pi$	0	S
B	B	B	$(1 / 2)(1-\pi)(1-\pi)$	0	0
A	A	A	$(1 / 2)(1-\pi)(1-\pi)$	0	0
A	A	B	$(1 / 2)(1-\pi) \pi$	0	-S
A	B	A	$(1 / 2) \pi \pi$	-S	S
A	B	B	$(1 / 2) \pi(1-\pi)$	-S	0

$$
\begin{aligned}
& \operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=\Sigma \mathrm{PROB}[\left\{\Delta \mathrm{P}_{\mathrm{t}}-\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}}\right)\right\} \\
&\left.\left\{\Delta \mathrm{P}_{\mathrm{t}-1}-\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}+1}\right)\right\}\right]
\end{aligned}
$$

$\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}}\right)=\Sigma \mathrm{PROB} \Delta \mathrm{P}_{\mathrm{t}}$

$$
\begin{aligned}
& =(1 / 2) \pi(1-\pi)(\mathrm{S})+(1 / 2) \pi \pi(\mathrm{S}) \\
& +(1 / 2) \pi \pi(-\mathrm{S})+(1 / 2) \pi(1-\pi)(-\mathrm{S})=0 .
\end{aligned}
$$

$\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}+1}\right)=\Sigma \mathrm{PROB} \Delta \mathrm{P}_{\mathrm{t}+1}$

$$
\begin{aligned}
& =(1 / 2) \pi \pi(-S)+(1 / 2)(1-\pi) \pi(\mathrm{S}) \\
& +(1 / 2)(1-\pi) \pi(-S)+(1 / 2) \pi \pi(\mathrm{S})=0 .
\end{aligned}
$$

Hence, $\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=\Sigma \mathrm{PROB}\left(\Delta \mathrm{P}_{\mathrm{t}}\right)\left(\Delta \mathrm{P}_{\mathrm{t}+1}\right)$
$=(1 / 2) \pi \pi(\mathrm{S})(-\mathrm{S})+(1 / 2) \pi \pi(-\mathrm{S})(\mathrm{S})=-\pi^{2} \mathrm{~S}^{2}$
If $\pi=1 / 2($ Roll, 1984 $)$, then
$\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=-(1 / 4) \mathrm{S}^{2}$

Stoll (1989)

Suppose that the probability of a trade flow reversal [a trade at the bid (ask) is followed by a trade at the ask (bid)] is π and the probability of a trade flow continuation [a trade at the bid (ask) is followed by a trade at the bid (ask)] is $1-\pi$. And also suppose that at time zero, there is an equal probability of a buy and sell.

In addition, suppose dealers change the position of the spread relative to the true price in order to induce public transactions that would even out the inventory position: bid and ask prices are lowered after a dealer purchase in order to induce dealer sales and inhibit additional dealer purchases and bid and ask prices are raised after a dealer sale in order to induce dealer purchases and inhibit additional dealer sales. The size of a price reversal (conditional on a reversal) is given by $(1-\delta) \mathrm{S}$ and the size of a price continuation (conditional on a continuation) is $\delta \mathrm{S}$.

$\mathrm{P}_{\mathrm{t}-1}$	P_{t}	$\mathrm{P}_{\mathrm{t}+1}$	Probability (PROB)	$\Delta \mathrm{P}_{\mathrm{t}}$	$\Delta \mathrm{P}_{\mathrm{t}+1}$
B	A	A	$(1 / 2) \pi(1-\pi)$	$(1-\delta) \mathrm{S}$	$\delta \mathrm{S}$
B	A	B	$(1 / 2) \pi \pi$	$(1-\delta) \mathrm{S}$	$-(1-\delta) \mathrm{S}$
B	B	A	$(1 / 2)(1-\pi) \pi$	$-\delta \mathrm{S}$	$(1-\delta) \mathrm{S}$
B	B	B	$(1 / 2)(1-\pi)(1-\pi)$	$-\delta \mathrm{S}$	$-\delta \mathrm{S}$
A	A	A	$(1 / 2)(1-\pi)(1-\pi)$	$\delta \mathrm{S}$	$\delta \mathrm{S}$
A	A	B	$(1 / 2)(1-\pi) \pi$	$\delta \mathrm{S}$	$-(1-\delta) \mathrm{S}$
A	B	A	$(1 / 2) \pi \pi$	$-(1-\delta) \mathrm{S}$	$(1-\delta) \mathrm{S}$
A	B	B	$(1 / 2) \pi(1-\pi)$	$-(1-\delta) \mathrm{S}$	$-\delta \mathrm{S}$

$$
\begin{aligned}
& \operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=\Sigma \operatorname{PROB}[\left\{\Delta \mathrm{P}_{\mathrm{t}}-\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}}\right)\right\} \\
&\left.\left\{\Delta \mathrm{P}_{\mathrm{t}+1}-\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}+1}\right)\right\}\right]
\end{aligned}
$$

$\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}}\right)=\Sigma \mathrm{PROB} \Delta \mathrm{P}_{\mathrm{t}}$
$=(1 / 2) \mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}} / \mathrm{B}_{\mathrm{t}-1}\right)+(1 / 2) \mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}} / \mathrm{A}_{\mathrm{t}-1}\right)$
$=(1 / 2)(\pi-\delta) \mathrm{S}+(1 / 2)(-1)(\pi-\delta) \mathrm{S}=0$.

Similarly, $\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}+1}\right)=\Sigma \mathrm{PROB} \Delta \mathrm{P}_{\mathrm{t}+1}=0$

Hence, $\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=\Sigma \mathrm{PROB}\left(\Delta \mathrm{P}_{\mathrm{t}}\right)\left(\Delta \mathrm{P}_{\mathrm{t}+1}\right)$

$$
\begin{aligned}
& =(1 / 2) \pi(1-\pi)(1-\delta) \mathrm{S} \delta \mathrm{~S} \\
& +(1 / 2) \pi \pi(1-\delta) \mathrm{S}(-1)(1-\delta) \mathrm{S} \\
& +(1 / 2)(1-\pi) \pi(-\delta S)(1-\delta) \mathrm{S} \\
& +(1 / 2)(1-\pi)(1-\pi)(-\delta S)(-\delta S) \\
& +(1 / 2)(1-\pi)(1-\pi) \delta \mathrm{S} \delta \mathrm{~S} \\
& +(1 / 2)(1-\pi) \pi \delta \mathrm{S}(-1)(1-\delta) \mathrm{S} \\
& +(1 / 2) \pi \pi(-1)(1-\delta) \mathrm{S}(1-\delta) \mathrm{S} \\
& +(1 / 2) \pi(1-\pi)(-1)(1-\delta) \mathrm{S}(-1) \delta \mathrm{S} \\
& =\mathrm{S}^{2}\left[(1-\pi)^{2} \delta^{2}-\pi 2(1-\delta)^{2}\right] \\
& =\mathrm{S}^{2}\left[\delta^{2}(1-2 \pi)-\pi^{2}(1-2 \delta)\right]
\end{aligned}
$$

Hence $\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=\mathrm{S}^{2}\left[\delta^{2}(1-2 \pi)-\pi^{2}(1-2 \delta)\right]$

If $\delta=0$, then
$\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=-\mathrm{S}^{2} \pi^{2}$
If $\delta=0$ and $\pi=1 / 2($ Roll, 1984 $)$, then $\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}-1}\right)$
$=-(1 / 4) S^{2}$

Similarly, it can be shown that $\operatorname{cov}\left(\Delta \mathrm{Q}_{\mathrm{t}}, \Delta \mathrm{Q}_{\mathrm{t}+1}\right)=$ $S^{2} \delta^{2}(1-2 \pi)$

From

$\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=\mathrm{S}^{2}\left[\delta^{2}(1-2 \pi)-\pi^{2}(1-2 \delta)\right]$
$\operatorname{cov}\left(\Delta \mathrm{Q}_{\mathrm{t}}, \Delta \mathrm{Q}_{\mathrm{t}+1}\right)=\mathrm{S}^{2} \delta^{2}(1-2 \pi)$

Estimate

$\operatorname{cov}\left(\Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{t}+1}\right)=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{~S}^{2}+\mathrm{u}$
$\operatorname{cov}\left(\Delta \mathrm{Q}_{\mathrm{t}}, \Delta \mathrm{Q}_{\mathrm{t}+1}\right)=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{~S}^{2}+\mathrm{v}$

Then calculate δ and π by solving the following simultaneous equations:

$$
a_{1}=\delta^{2}(1-2 \pi)-\pi^{2}(1-2 \delta)
$$

$\mathrm{b}_{1}=\delta^{2}(1-2 \pi)$

Realized Spread:

Realized spread $=$ the expected revenue on two transactions (i.e., a buy and sell)
$=\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}} / \mathrm{B}_{\mathrm{t}-1}\right)-\mathrm{E}\left(\Delta \mathrm{P}_{\mathrm{t}} / \mathrm{A}_{\mathrm{t}-1}\right)$
$=\pi(1-\delta) \mathrm{S}+(1-\pi)(-\delta S)-[(-1) \pi(1-\delta) \mathrm{S}+(1-\pi)(\delta S)]$
$=2(\pi-\delta) \mathrm{S}$.

Observation:

With only order processing costs ($\pi=1 / 2$ and $\delta=0$), the realized spread is the same as the quoted spread, i.e., the realized spread $=2(1 / 2-0) S=S$.

With only adverse selection costs ($\pi=1 / 2$ and $\delta=1 / 2$), the realized spread is zero, i.e., the realized spread $=$ $2(1 / 2-1 / 2) S=0$.

When the quoted spread is determined by inventory costs, $\pi>1 / 2$ and $\delta=1 / 2$, so that the realized spread is positive but less than the quoted spread, i.e., the realized spread $=2(\pi-1 / 2) S>0$.

Spread Components:

Realized spread $=$ Order processing costs + Inventory costs

Adverse selection costs $=$ Quoted spread - Realized spread

$$
=S-2(\pi-\delta) S=[1-2(\pi-\delta)] S
$$

Inventory costs $=$ Realized spread in the absence of order processing costs $(\delta=1 / 2)$

$$
=2(\pi-1 / 2) S
$$

Order processing costs $=$ Realized spread - Inventory costs

$$
\begin{array}{r}
=2(\pi-\delta) S-2(\pi-1 / 2) S=2 S(\pi-\delta-\pi+1 / 2) \\
=2 S(-\delta+1 / 2)=S(-2 \delta+1)
\end{array}
$$

Observation: If $\delta=0$ (i.e., no inventory effect and no adverse selection), Order processing costs $=\mathrm{S}$.

Serial correlation in trade flows

Suppose that the probability of a trade flow reversal [a trade at the bid (ask) is followed by a trade at the ask (bid)] is π and the probability of a trade flow continuation [a trade at the bid (ask) is followed by a trade at the bid (ask)] is $1-\pi$. Then
(10) $\quad \mathrm{E}\left(\mathrm{Q}_{\mathrm{t}-1} / \mathrm{Q}_{\mathrm{t}-2}\right)=(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}$
[since $P\left(\mathrm{Q}_{\mathrm{t}-1}=\mathrm{Q}_{\mathrm{t}-2}\right)=(1-\pi)$ and $\mathrm{P}\left(\mathrm{Q}_{\mathrm{t}-1}=-\mathrm{Q}_{\mathrm{t}-2}\right)=\pi$.]
From (4), we have $\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}=\alpha(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$
Now, note that $\mathrm{Q}_{\mathrm{t}-1}$ is not complete unpredictable because of (10). Because the market knows (10), (4) must be modified to account for the predictable information contained in the trade at time $\mathrm{t}-2$.
(11) $\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}=\alpha(\mathrm{S} / 2)\left[\mathrm{Q}_{\mathrm{t}-1}-\mathrm{E}\left(\mathrm{Q}_{\mathrm{t}-1} / \mathrm{Q}_{\mathrm{t}-2}\right)\right]+\varepsilon_{\mathrm{t}}$

Substituting (10) into (11), we obtain;
(12) $\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}=\alpha(\mathrm{S} / 2)\left[\mathrm{Q}_{\mathrm{t}-1}-(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}\right]+\varepsilon_{\mathrm{t}}$ (note that if $\pi=0.5$, (12) becomes (4)).

$$
\begin{aligned}
& { }_{5}^{A} \operatorname{man}_{5}^{\frac{5}{2}} \\
& P\left(Q_{A_{-1}}=Q_{\lambda, 2}\right) \\
& =1-\pi \\
& P\left(Q_{A_{1}}=-Q_{x_{2}}\right)=\lambda \\
& E\left(Q_{1-1} / Q_{A_{-2}}\right) \\
& =Q_{\lambda-2} \cdot(1-\pi) \\
& -Q_{2} \pi \\
& =Q_{n-2}(1-4) \\
& =Q_{t \rightarrow 2}(1-2 \pi)
\end{aligned}
$$

From (3), $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}-1}=\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{t}-1}+\beta(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}\right)$ and (12),

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}} & -\mathrm{M}_{\mathrm{t}-1}=\alpha(\mathrm{S} / 2)\left[\mathrm{Q}_{\mathrm{t}-1}-(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}\right]+\varepsilon_{\mathrm{t}}+\beta(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}\right) \\
& =\alpha(\mathrm{S} / 2)\left[\mathrm{Q}_{\mathrm{t}-1}-(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}\right]+\beta(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}-1}\right)+\varepsilon_{\mathrm{t}} \\
& =(\alpha+\beta)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}-\alpha(\mathrm{S} / 2)(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}+\varepsilon_{\mathrm{t}}
\end{aligned}
$$

Hence
(13) $\Delta \mathrm{M}_{\mathrm{t}}=(\alpha+\beta)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}-\alpha(\mathrm{S} / 2)(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}+\varepsilon_{\mathrm{t}}$

Note from (7), $\Delta \mathrm{P}_{\mathrm{t}}=\Delta \mathrm{M}_{\mathrm{t}}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\eta_{\mathrm{t}}-\eta_{\mathrm{t}-1}$.
Substituting (13) into (7), we obtain:

$$
\begin{aligned}
& \Delta \mathrm{P}_{\mathrm{t}}=(\alpha+\beta)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}-\alpha(\mathrm{S} / 2)(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2} \\
&+\varepsilon_{\mathrm{t}}+(\mathrm{S} / 2)\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{t}-1}\right)+\eta_{\mathrm{t}}-\eta_{\mathrm{t}-1} \\
&=(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+(\alpha+\beta-1)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}-\alpha(\mathrm{S} / 2)(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2} \\
&+\varepsilon_{\mathrm{t}}+\eta_{\mathrm{t}}-\eta_{\mathrm{t}-1}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(14: \mathrm{HS}(25)) \quad \Delta \mathrm{P}_{\mathrm{t}}= & (\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+(\alpha+\beta-1)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1} \\
& -\alpha(\mathrm{S} / 2)(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}+\mathrm{e}_{\mathrm{t}},
\end{aligned}
$$

where $e_{t}=\eta_{t}-\eta_{t-1}+\varepsilon_{t}$

Note that:

(10) $\mathrm{E}\left(\mathrm{Q}_{\mathrm{t}-1} / \mathrm{Q}_{\mathrm{t}-2}\right)=(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}$ and
(14) $\Delta \mathrm{P}_{\mathrm{t}}=(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}}+(\alpha+\beta-1)(\mathrm{S} / 2) \mathrm{Q}_{\mathrm{t}-1}$

$$
-\alpha(\mathrm{S} / 2)(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}+\mathrm{e}_{\mathrm{t}},
$$

Hence, we can estimate parameter values using the following regression models:
$\mathrm{E}\left(\mathrm{Q}_{\mathrm{t}-1} / \mathrm{Q}_{\mathrm{t}-2}\right)=\mathrm{b}_{1} \mathrm{Q}_{\mathrm{t}-2}+\mathrm{e}_{1 \mathrm{t}}$

$$
\begin{aligned}
& \Delta P_{t}=b_{2} Q_{t}+b_{3} Q_{t-1}+b_{4} Q_{t-2}+e_{2 t}, \\
& \text { where } b_{1}=(1-2 \pi), b_{2}=(S / 2), b_{3}=(\alpha+\beta-1)(S / 2), \\
& \quad \text { and } b_{4}=-\alpha(S / 2)(1-2 \pi)
\end{aligned}
$$

Here we have four unknowns (π, S, α, and β) and four equations, hence solvable!

Alternatively, we can estimate the component of the spread directly using (13). Replacing the traded spread with the quoted spread, we can rewrite (13) as:

$$
(15) \Delta \mathrm{M}_{\mathrm{t}}=(\alpha+\beta)\left(\mathrm{S}_{\mathrm{t}-1} / 2\right) \mathrm{Q}_{\mathrm{t}-1}-\alpha\left(\mathrm{S}_{\mathrm{t}-1} / 2\right)(1-2 \pi) \mathrm{Q}_{\mathrm{t}-2}+\varepsilon_{\mathrm{t}}
$$

Now using the two-equations regression model:
$\mathrm{E}\left(\mathrm{Q}_{\mathrm{t}-1} / \mathrm{Q}_{\mathrm{t}-2}\right)=\mathrm{b}_{1} \mathrm{Q}_{\mathrm{t}-2}+\mathrm{e}_{1 \mathrm{t}}$
$\Delta \mathrm{M}_{\mathrm{t}}=\mathrm{b}_{2}\left(\mathrm{~S}_{\mathrm{t}-1} / 2\right) \mathrm{Q}_{\mathrm{t}-1}-\mathrm{b}_{3}\left(\mathrm{~S}_{\mathrm{t}-1} / 2\right) \mathrm{Q}_{\mathrm{t}-2}+\mathrm{e}_{2 \mathrm{t}}$,
where $b_{1}=(1-2 \pi), b_{2}=(\alpha+\beta)$, and $b_{3}=\alpha(1-2 \pi)$.
We now have three unknowns $(\pi, \alpha$, and β) and three equations.

