A MODEL OF THE ACCUMULATION AND
ALLOCATION OF WEALTH BY INDIVIDUALS

In this introductory chapter to Part I, we present one
of the fundamental building blocks of the theory of
finance, namelyv, the model of the accumulation and
allocation of wealth over time by individuals under
conditions of certainty and perfect capital markets. Once
the model itself has been set forth in fairly general and
abstract terms, we go on in subsequent chapters to con-
sider its extensions to a variety of problems in finance.
The extension of the model to the case of uncertainty is
given in Part II.

Because the wealth allocation model itself is merely a
special case of the more general economic theory of choice
under certainty, we begin by reviewing briefly some of the
main concepts and features of this theory.

I. THE ECONOMIC THEORY OF CHOICE

LLA. Opportunities and Preferences

The economic theory of choice, like any other body of
theory, aims at establishing empirical generalizations
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4 Certainty Models

about the class of phenomena under study. For the theory of choice, this
means generalizations about the way in which choices change in response
~ to changes in the circumstances surrounding the choice.

The first step in constructing the theory is the simple but important one
of classification. We divide the many separate elements bearing on any
choice into two classes. One class is called the “opportunity set” or * con-
straint set.” As the name implies, it is the collection of possible choices
available to the decision maker. Its content, depending on the context,
may be determined by technological limitations, such as the impossibility
of constructing a perpetual-motion machine, or by legal restrictions, such
as those prohibiting selling oneself into slavery, or by market restrictions,
such as the inability to buy a new automobile for 85 because of the absence
of sellers at this price.

The other main elements in the decision problem are the decision maker’s
““tastes” or preferences. For an individual choosing on his own behalf, these
tastes depend on personality, upbringing, education, and so forth. The
theory does not propose to say precisely how these factors enter separately
into the choice but takes the individual and his preferences as given from
outside the problem and proceeds from there. For individuals acting as
managers, and hence presumably on behalf of others, the question of
precisely whose preferences we are talking about, that is, the agent’s or the
principal’s or some combination, must also be faced. We eventually tryv to
do so, but to keep the presentation uncluttered, we defer this issue to
Chapter 2. For the remainder of the present chapter, we are concerned
only with a single individual acting entirely on his own behalf.

I.B. Representation of Preferences: The Utility
Function and Indifference Curves

To develop interesting generalizations about choice behavior, we need a
convenient way of representing tastes and opportunities. One possibility is
to tabulate the decision maker’s choices under laboratory conditions. We
could present the subject with a series of bundles or boxes each containing
some of the relevant objects of choice, carefully record the contents of
each box, and then note which box he actually chose. By suitably varyving
the contents of the boxes, we could obtain an extensive picture of his likes
and dislikes.

Such a table would certainly contain a great deal of information about the
subject’s tastes, but it would be difficult to work with. Any patterns in it
would be too hard to see. The question arises, therefore, whether some
simpler and more compact way exists for representing or at least approxi-
mating the data in the table. Such -a representation is indeed possible,
provided that the subject’s preferences satisfy certain conditions.
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1.B.1. The axioms of choice and the principle of
maximum vtility

These conditions collectively constitute the axioms of the economic theory
of choice. The'word aziom is not to be taken here in its old-fashioned
sense of a self-evident truth. The axioms are to be regarded rather as
provisional assumptions, plausible enough, perhaps, as approximations, but
whose ultimate justification comes, not from their own truth or plausibility,
but from the predictive and descriptive power of the conclusions to which

they lead.!

In discussing the axioms, we let the letters z, y, and 2 represent boxes of
objects presented to the subject for choice. These objects, whatever their
outward form, are referred to as “commodities” to which, instead of names,
we assign numbers 1,2, ...,n. Each box is completely specified by in-
dicating the number of units ¢ of each commodity that it contains; that is,
the box z is represented by an n-tuple of the form (19,¢:9,. . .,qa®).

Azxiom 1 (Comparability). For every pair of boxes z and y the decision
maker can tell us either (1) that he prefers z to y, or (2) that he prefers
y to z, or (3) that he is indifferent to having z or y.

The function of the axiom of comparability'is to rule out cases in which
the decision maker refuses or is unable to make a choice, because, for

example, he may regard the objects of choice as essentially different and
hence incomparable.

Aziom 2 (Transitivity). Whenever the decision maker prefers z to y
and y to 2, he also prefers  to 2. Likewise, if he is indifferent to having
z or y and to having y or z, he is also indifferent to having z or z. Basically,
the subject behaves consistently in making his choices.

If the decision maker’s tastes conform to these axioms, the following
important proposition holds:

The subject’s choice behavior may be characterized by saying that he
behaves as if he were maximizing the value of a “utility function.” This

function assigns a numerical value or “utility index” to each box T, Yy oy

! The methodological principle that theories are to be judged by the empirical validity
of their consequences rather than by that of their assumptions considered separately
has come to be called “positivism.” The classical statement of the positivist position in
economics is that of Milton Friedman, “The Methodology of Positive Economics,” in
Essays in Positive Economics. Chicago: University of Chicago Press, 1956.
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with the quantit-ies, of each commodity in the box as the arguments of
the function.

To illustrate, suppose that we somehow knew that a utility function for a
particular subject took the form

U =‘F(41,92) = 91’ + 112’,

where the letter U is the utility index and ¢, and ¢. are the quantities
respectively of commodities 1 and 2 in any box. Suppose that we also knew
that box z held 6 units of commodity 1 and 4 units of 2 and that box y
held 8 units of commodity 1 and 2 units of 2. Which one does he prefer?
Substituting the contents of box « into the utility function, we obtain an
index of 62 + 42 = 52; for the second box we have 8 4 22 = 68. The
assignment of a higher utility index to the second box is equivalent to saying
that the subject prefers box y to box z.

Note that in the statement of the proposition we say that the subject

- behaves as if he were maximizing the value of a utility function. The -

economic theory of choice does not assert that the subject performs these
calculations on his utility function in making his choices or even that the
subject knows that he has a utility function. It says merely that if his
preferences are complete and consistent, the utility function provides us, as
outside observers, with a way of representing his choices. In what follows
we sometimes gloss over this distinction and speak, say, of a decision
maker’s increasing or decreasing his utility by some action. But this should
always be considered a stylistic device and must not be taken literally.

The reasonableness of the proposition in relation to the axioms is easily
seen. The axioms of comparability and transitivity permit us to rank all
possible boxes in increasing order of preferability. This rank ordering, in
turn, can always be expressed by some device that assigns numbers to each
box so that higher numbers go with higher ranks. The utility function is
just such a device.?

It should also be clear that any specific representation of a subject’s
utility function, such as in this illustration, is not unique. If one such
function exists, so do many others, because what matters is whether the
number assigned to a box is higher or lower than that of another box. How
much higher or lower is of no consequence so long as the ranking is pre-
served. Thus multiplying by a positive constant or performing any other
monotone-increasing transformation of a utility function also yields an

* The more advanced mathematical treatments in the economics literature are also
concerned with the continuity of the utility function and the additional requirements
necessary to assure it. Readers interested in a complete and rigorous discussion of these
and related issues can find it in the classic treatment of the subject by Gerard Debreu,
The Theory of Value. New York: Wiley, 1959.
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equxvalent and perfectly consistent representatlon of the subject’s
preferences.? :

Given the utility function to represent the general structure of preferences,
the next step in the search for interesting, and testable, generalizations
about choice behavior is to invoke certain additional assumptions with
respect to the form and properties of this function. Some of these assump-
tions are mainly for mathematical convenience and are noted here, in
footnotes, only for the sake of completeness.t Others, however, are more
substantive and merit further discussion. In introducing and explaining
them, it is helpful first to show how choices and utility functions can be
represented in geometrical or graphical form.

1.B.2. Indifference curves and the geometrical
_ representation of preferences

In representing the utility function U = U(qug...,¢.) graphically,

. we are, of course, limited to at most three dimensions. Because we must
reserve one dimension for U, the value of the utility index, we are thus
restricted to only two commodities in making up the boxes between which

. the subject is to choose. Although this collapsing down from = distinct
commodities to only two may seem a very drastic simplification, the loss
of generality is actually quite small. For establishing the kinds of proposi-
tions that are our main concern, the two-commodity case is almost always
adequate.

One way of representing a utility function in three dimensions on a
two-dimensional page is with figures of the kind used in solid geometry.
Because it is difficult, and expensive, to draw the figures in correct perspec-
tive, however, we use a projective method that is considerably simpler but
requires, at first, a somewhat greater effort in interpretation on the part of
the reader. To see how it works, imagine a three-dimensional solid repre-
sentation of the utility function U = U(q1,q2), with ¢ and ¢: on two axes
in a horizontal plane and U measured on a third axis vertical, and perpen-
dicular, to the other two. Imagine now that we pick some particular value

¥ Utility functions with this property are said to be “ordinal” functions, in contrast to
‘“‘cardinal” utility functions, which are unique up to a “linear” transformation and
which hence can convey some indication of how much higher one bundle is on the sub-
ject’s scale of preferences than another. We have no need for the stronger, cardinal
functions until we reach Part II and introduce uncertainty.
*In particular, we assume that the a.rguments of the utility function, g;, can be repre-
sented as continuous variables, that is, that all commodities are infinitely divisible,
that the utility function itself is a continuous function of its arguments, snd that it has
continuous derivatives of whatever order we happen to need.

Another assumption that we have already made implicitly by our distinction between
tastes and opportunities is that the two can in fact be separated in the sense that each
can be defined independently of the other.
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of U, say, U = 7, and pass a knife horizontally through the surface at
this'level. The cut being horizontal, the outline is necessarily always a
two-dimensional figure. Now project, that is, drop, this horizontal outline
down onto the horizontal ¢:g. plane. If we repeated this process for many
different values of U, we should obtain a whole set of such two-dimensional
figures; and by labeling each such figure or contour with its value of U,
we could mentally reconstruct the entire three-dimensional figure.

An example of a utility function represented by such contours is shown
in Figure 1.1a. From the numbering of the contours it can be seen that the
utility surface has the form of an irregular hill rising to & summit at the
point labeled U = 40. The indentations in the contours on the southwest
slope imply a trough or draw at the lower levels running in the northeast-
southwest direction. The circular area labeled U = 20 lying between the
contours U = 10 and U = 15 implies a small isolated knoll on the northeast
face. And so on for the various other curls and wrinkles that have been
drawn into the map.

In addition to the utility surface itself, the figure also shows the repre-
sentation of some boxes offered to the subject for choice and the pattern of

his preferences among them. These boxes are indicated by the points

labeled w, z, y, and z—the box w containing ¢, units of commodity 1 and
¢ of commodity 2, and similarly for the others, As drawn, the points
w, z, and y lie on the same contour, U = 10. That these boxes all have the
same utility index is the same as saying that the subject was completely
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. indifferent when presénted with a choice between them—hence the term
“indifference curves,” which is customarily used in the theory of choice

to refer to an iso-utility contour line. Box 2, however, lies on an indifference

" curve with a lower utility index, which is to say that it would be rejected by

the subject in any choice involving w, z, or y.

1.B.3. The axioms of nonsatiation and convexity
We turn now to the final two axioms or assumptions about choice behavior.

Aziom 8 (Nonsatiation of Wants). The subject would alwayé prefer, or
at worst would be indifferent, to have more of any commodity if at the
same time he did not have to take less of any other commodity.

This assumption serves to rule out any positively sloped segments of -

indifference curves, such as the segments mu or kl on curve U = 5 in Figure
1.1a. For where such segments exist, there are points, such as j, having the
same amount of ¢ as box u but less ¢. and yet preferred to u, as shown by
the higher utility index of its indifference curve. A map of a utility surface
that does conform to the axiom—a hill with no summit or northeast face——-
is shown in Figure 1.1b.

92

3
U=30
u=20
u=10

U=5

Y ]

Figure 1.15- Convexity and Concavity of Indifference Curves
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10 Certainty Models

Aziom 4 (Convexity). If x and y are two boxes such that U(z) = U(y)
and if 2 is a combination of boxes x and y of the form z = ez + (1 — @)y,
0<a<1,then U(z) 2 U(z) = U(y). In words, if we have two boxes
between which the subject is indifferent, and we construct a new box whose
contents, commodity by commodity, are a weighted average of those of
z and y, where the weights are positive and sum to unity, the subject never
chooses either z or y in preference to the combination box 2.5

Examples of (local) regions of the utility surface that do and do not meet

. this convexity assumption are shown in Figure 1.1b. If we draw a straight

line connecting the points w and z lying on the same indifference curve
U = 10, this straight line representing all the combination boxes along
the line az + (1 — a)w for 0 < « € 1, we see that a combination box,
such as ¢, would not be preferable to z or w. It lies on a lower indifference

 curve with index, say, U = 5, as we have happened to draw it. In this

region, then, the indifference curve does not meet- the convexity assump-
tion. By contrast, the intermediate points on a straight line between z and
y all lie on higher indifference curves, and in this region the indifference
curve for U = 10 is convex. :

To see in more concrete terms what this assumption of convexity implies
about choice behavior, imagine that the boxes contain two commodities,
such as books and theater tickets. Suppose that we start with a box con-
taining 20 books and 3 tickets and then withdraw 1 ticket. Books and
tickets both being desirable commodities for the subject, we should have to
add, say, 2 additional books to the box to keep him on the same indifference
curve—the additional books, in effect, compensating for the ticket with-
drawn. If now we subtract another ticket from the 2 remaining, the con-

vexity assumption implies that we should have to add at least another

2 books and possibly more, to keep the utility index of the box unchanged.
When the removal of the second item requires more compensation than
that of the first, the indifference curve is said to be “strictly convex.”
When the compensation required is the same on successive removals, the
curve is linear, which is the limiting extreme case of convexity.®

In most subsequent applications of the theory to problems of finance we
work with indifference maps of the kind shown in Figure 1.1c. Such maps
have a number of important features and properties that will be invoked

5 As an illustration of the contruction of z from z and y, suppose that z has 8 units of
commodity 1 and 6 units of commodity 2 and y has 6 units of 1 and 10 units of 2; then
by taking @ = 1, z would be a box with 3(8) + 3(6) = 6} units of commodity 1 and
3(6) 4+ 2(10) = 9 units of commodity 2.

¢ For those readers who find it difficult to accept the convexity axiom, even provisionally,
it may be well to point out that we use it here mainly to simplify the graphical presenta-
tions and to avoid the complication of multiple or “corner’” solutions. All the really
essential conclusions can be derived from the first three axioms only.

e it o S o
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Figure 1.1¢ A Sfandarc_i Indifference Map

repeatedly in deriving propositions about choice behavior. To summarize,
the slope of an indifference curve, often called the marginal rate of sub-
stitution of ¢. for gy, is always negative. The marginal rate of substitution
rises in algebraic or falls in absolute value as we move from left to right.
Curves take on higher utility indexes as we move upward on the map.
And there are never any crossings of indifference curves. To test their
understanding, readers for whom this apparatus is unfamiliar may find it
useful to imagine the contrary of each of these properties and then show
that such cases would be inconsistent with one or more of the basic axioms
of comparability, transitivity, nonsatiation, or convexity.?

? Because these concepts are used repeatedly throughout the book, it is well to note
more formally here the distinction between convex “sets” and convex and concave
“functions” and “curves.” A set of points is said to be convex if for any two points z
and y in the set, the pointz = az + (1 — a)y,0 < a < 1, is also in the set. Geometric-
ally, a set is convex if all points on a straight line between any points in the set are also
in the set.

On the other hand, a function f is convex if for any two points z and y in the domain
of f '

Jez+ (1 -a)y) Saf(@) + 1 ~a)fy), 0Za<]l,

and the function is concave if

flaz + (1 —e)y) 2 af(x) + 1 —a)f@¥), 0Lagl.

Geometrically, a function or curve is convex if a line between any two points on the

-
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- 1.C. The Opportunity Set

As noted earlier, the class of choice problems of most concern in economics
as opposed to, say, psychology or aesthetics is that in which the decision
maker’s choices are limited by external restrictions. A graphical repre-
sentation of such restrictions for a two-commodity case is shown in Figure
1.2. As indicated by the shading, the feasible boxes or combinations of
commodities 1 and 2 are restricted to those lying within, or on the boundaries
of, the irregular figure outlined by OAB. Any box not lying within this
opportunity set is excluded from consideration, no matter how desirable it
might be for the subject to have it.

q2

0 ' E 8 a1
Figure 1.2 Opportunity Sets

The precise content or shape of the opportunity set depends, of course, on
the problem at hand. There is, however, one general restriction that is a
feature of virtually all those to be considered here, namely, the assumption
that the set is convex; that is, if # and y are any two boxes in the oppor-
tunity set, all boxes z of the form z = ar + (1 = &)y, 0 < a < 1, are also
in the set. Thus, in terms of Figure 1.2, the property of convexity of the set

function lies everywhere on or above the function; concavity implies that a line between
any two points is everywhere on or below the function.

Hence, when added to the nonsatiation axiom, the convexity axiom presented in the
text is an assumption that commodity indifference curves are convex. But note care-
fully that it is not an assumption that the utility function U is convex. This function is
still only ordinal; that is, the only restriction on the numbers assigned to successive
indifference curves are that they are monotone-increasing, so that the curvature of the
function across indifference curves is arbitrary.

T A 3 i 2, gk e R T
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" rules out segments like that between w and z, where there are boxes like
- ¢ lying on a line joining x and w, but not part of the allowable choices.?

Note that the definition of convexity includes sets with straight-line
outer boundaries, such as the set bounded by ODE in Figure 1.2, as the
limiting special case. In general, convex opportunity sets with curved
boundaries usually arise when the constraints are imposed by “technology”
and the curvature represents *diminishing returns” in the physical possi-
bilities of transforming commodity 1 into commodity 2. The straight-line
cases usually represent market exchange opportunities, the constant slope
implying that the commodities can be exchanged for each other at given,
fixed prices. In some cases, we consider problems with both types of con-
straints operating simultaneously.

LD. Choice Subject to Constraints

~ To obtain a representation of a choice in the presence of constraints,
there remains now only  to bring together the two pieces of the problem,

~ tastes and opportunities, that we have so far considered separately. A

graphical illustration for a two-commodity case is shown in Figure 1.3. The

q2

0 , A 9
Figure 1.3 . Representation of a Constrained Choice

figure shows a subject whose preferences meet the four axioms of choice
and can therefore be represented by a utility map with convex indifference

* As with the'assumption of convexity of indifference curves (see footnote 6 above),
the assumption of convex opportunity sets is mirch stronger than necessary for most of
the important conclusions and is used throughout mainly to simplify the presentation.
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curves increasing in utility index as one moves up and to the right. The
possible boxes available to him lie within the figure OBA. Which one of the
immense number of possibilities represents the one that he would actually
choose?

We can, first of all, eliminate immediately a large number of boxes as
possibilities. In particular, no box such as z in the interior of the opportunity
set could possibly be his eventual choice, because the boxes lying between
a and b on the boundary all have at least as much of one of the two com-
modities as z and more of the other. By virtue of the nonsatiation axiom,
such dominated interior boxes are ruled out, and only the boxes along the
right boundary need be considered. It is for this reason that the right

boundary of the opportunity set is often referred to as the “efficiency

frontier” or “efficient set”.? .

Having narrowed the range of possibilities to the efficient set, we need
only sweep along it in some systematic manner. If, for example, we work
up from the lower right-hand corner, steadily decreasing the amount of ¢,
in the box and increasing the amount of g, we produce a series of choices of
the form a versus b, then b versus ¢, and so on. As drawn, the subject

- prefers b to a, indicated by the fact that b lies on a higher indifference
curve, and prefers ¢ to b. Eventually, by repeating this process, we find a
point that is preferred to its neighbors on either side. In the figure as drawn,
this is the point d, at which an indifference curve is tangent to the efficiency
frontier. All other boxes, whether on the efficiency frontier or within it, lie
on lower indifference curves.

This representation of a constrained choice completes our review of the
fundamentals of the theory of choice. The importance of this theory for our
purposes lies in its simplicity and in the fact that it is both context- and
subject-free. No matter what kinds of commodities that we put in the
boxes and no matter who the subject or what the details of his personal
preferences, his choice can always be represented by a point on the efficiency
frontier, provided only that his tastes meet Axioms 1 to 3. If, in addition,
his tastes meet Axiom 4 and if the opportunity set is convex, we can narrow
the possible choices along the frontier down to the single one where an
indifference curve is tangent to the opportunity set. The four axioms plus
the convexity of the opportunity set guarantee both that there must be
such a point and that there is no more than one.!®

* Because the right boundary of the opportunity set is assumed to be negatively sloping,
the assumption that the set is convex implies that this boundary must be a concave
curve.

10 In what follows, we frequently refer to these tangency points as ‘“‘optimal solutions”
or “‘equilibrium points.” As in the case of references to utility, however, such terms are
normally to be taken in an as if sense and not as implying that the subject is consciously
optimizing or equilibrating.
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The task of much of the rest of the book is essentially a filling in of these
““empty boxes” and a showing of how the very general and abstract theory
of choice can be specialized to obtain meaningful generalizations about
financial choices. But before turning to this task, we present for the record
a very brief account of how a choice subject to constramts can be repre-
sented in mathematical form.

. *LE. The Solution in Mathematical Form!!

In particular, for an n-commodity case, the subject’s chowe can be
expressed as the solution to the problem®

max U(g1,9s. . -,n)

91.42, .-, an

subject to a constraint or opportunity set that may be wntten in general,
implicit form as

T(Qb% o -’qﬂ) = 07

and ‘which represents the points (g1,g2,...,g») that lie along the efficiency
frontier.

With appropriate assumptions about the continuity of the derivatives of
the U and T functions, we can use the methods of the differential calculus
to study properties of the solution to this problem. Specifically, form the
lagrangian function

L = U(qugs..-q») — AT (q1,g2)- - -,0n), (1.1)

and differentiate partially with respect to A and each of the-q.:. Betting
these derivatives equal to zero yields the following n 4 1 equations as
first-order or necessary conditions for a maximum:®

U} = AT, =0
U= AT} =0

: (1.2)
Urn— N1 =0

T(ql:q?)- . -:qn) =0,

u Starred sections here and throughout mark the places in the exposition where some
knowledge of the calculus is required. Such sections may safely be skipped by readers
lacking the necessary mathematical background, without fear of losing the- main thread
of the argument. Such readers may nevertheless find it helpful to skim through the

sections, because the discussion surrounding the mathematical results may provide
additional insights.

12 The expression

max U(g,gs-- *3qn)
91,430 n

is read “choose values of ¢; to g that maximize the utility index.”
B In general, in the mathematical treatments of various maximization and minimiza-
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where U} and T are the partial derivatives of U and T with respect
to gs. .

_ To see the relation between this representation and the graphical repre-
sentation of the two-commodity case, observe that between any pair of
commodities we can eliminate A from the relevant equations of (1.2) to
obtain, for example, : :

y) , ' v ,
% = —17]—,2 or -52 = ,% (1.3)

The definition of an indifference curve is equivalent to the solution set
satisfying the condition on the differential :

dU = Uidg: + Uidgs + -+ + Uldg, = 0

for some specified level of U, Holding ¢; to g. constant, that is, setting »
dgs to dg. = 0, this condition implies that

Or, in words, the slope of an indifference curve at any point is equal to
(minus) the ratio of the first partial derivatives evaluated at this point. -
Similarly, for the opportunity set we have

da: T

dq T
Thus the condition (1.3) is equivalent to the statement that at a maximum
of U, the slope of an indifference curve is the same as that of the oppor-
tunity set, which is, of course, the familiar tangency condition in the
geometric analysis. '

l. THE APPLICATION OF THE THEORY OF CHOICE TO THE ALLOCATION
OF FINANCIAL RESOURCES OVER TIME

ILA. The Two-Period Case

As noted earlier, the basic application of the theory of choice under
certainty to the field of finance is the problem of the allocation of financial
resources by individuals over time. The rest of the present chapter is

tion problems in this book, we do not present sufficient or second-order conditions, be-
cause they usually contribute little in the way of economic insight, which, after all, is
the primary concern. Moreover, such “mathematical license” is often characteristic of
our mathematical treatments in other ways as well. For example, we ignore, for the
most part, the additional complications introduced by nonnegativity conditions on
some or all of the variables.
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devoted to the development of this application in its most general and
abstract form. A number of extensions are then taken up in subsequent
chapters.

I.A.1. The objecis of choice: standards of living at

different points in time , .

In studying the allocation of financial resources over time, the objects
of choice can be defined in several ways, depending on how much detail is to
be shown and precisely how the passage of time is to be represented.
_Taking the question of time first, we assume throughout that the passage
of time is not continuous but occurs in discrete jumps one ““unit of time”
apart. Decisions are assumed to be taken and payments to be made only
at the start of these discrete time periods, For generating the kind of
qualitative generalizations about behavior that are our concern, no precise
statement need be made about the length of a unit time period in terms of
calendar time.*.

As for the objects of ch01ce, we could continue to work in the standard
economic framework of individual commodities, giving each cornmodity

~a time index to indicate the period in which it was being presented to the
subject. The utility function would then be of the form V(gu,qx,...,
01,912,022y« « +yGn2 -+« Q115Q265+ + + Gty - - ). But although formally unobjec-
tionable, and really no great complication mathematically, such an ap-
proach makes it difficult to focus sharply on the effects of time per se and
on the purely financial aspects of the allocation decision. To highlight these
aspects of the problem, therefore, we make the following simplifications in
the utility function.

First, because the function in its most general form includes in principle
commodities that represent income-earning activities, for example, hours of
labor, we assume that these can be separated out and that a utility function
can be defined over the set of consumer goods; that is, we assume that
preferences between boxes of consumer goods depend only on the contents
of the boxes and not on the amount or nature of the income-earning ac-
tivities that might accompany them. This creates some problems with
respect to what might be called ““leisure goods,” but they are minor for our
purposes and are neglected. We also neglect the details of the decision with
respect to occupational choice and hours of work. The subject’s occupation
and earnings are taken as given, determined somehow outside the model.

1 Despite assertions to the contrary occa.sxonally encountered in the literature, there is
little basis other than taste or convenience in choosing between a discrete-time formula-
tion of the kind to be followed here and a continuous-time formulation of the kind
often found in economists’ expositions of capital theory. Substantive results that can
be developed under the one convention can always be translated into the other under
conditions of certainty (see, in this connection, footnote 27, below.)
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€2

0 . (-1}
Figure 1.4 Indifference Curves for Patterns of Total Consumption

Second, we replace the individual consumer goods in any period ¢ by a
single composite commodity ¢., called the subject’s ““total consumption” or
“standard of living” in period ¢. This composite commodity is defined as

¢ = Prgit + Pagit + o+ + Dacgner

where the p;, are the prices of the commodities’ in period ¢, assumed
to be known and fixed in our perfect certainty framework, and the g% are
the amounts of the commodities that would be purchased by the consumer,
_ given the prices and a pattern of total resources over all periods that would
permit him to spend ¢, in period t. Operationally, in terms of the earlier
imaginary choice experiments, we now picture ourselves confronting the
subject with different patterns of standards of living, such as, say, $10,000
for period 1 and $8000 thereafter versus $6500 for period 1, $6000 for period
2, and $9000 thereafter. The subject decides how he would allocate these
amounts among commodities in each period and then announces his

% Although we speak of prices and commodities, it should be remembered that the ¢;
represent not stocks of commodities but services rendered by the stocks. In the case of
durable goods, for example, the p;: are to be interpreted not as the purchase prices but
as the one-period rentals for the equipment. '

Note also that the p are to be regarded as being measured in terms of some standard
commodity or numéraire whose price per unit is arbitrarily set equal to 1 in period 1
and every period thereafter. We shall often refer to this standard commodity as “money"”’
and hence speak of dollars of income or consumption. It is important to keep in mind,
however, that this is again only a stylistic device, and the concept of money in our
sense should not be equated with money in its more familiar sense, in which it serves
as a medium of exchange and a store of value as well as the unit of account.




[Ch. 1, Sec. II] Accumulation and Allocation of Wealth 19

preference ordering for time sequences of standards of living. This prefer-
ence ordering over time sequences of standards of living is summarized in
a utility function as U (e,c,. . .\c0p. .. ).

It is shown in the next (starred) section that this function, stated in
terms of total consumptions optimally allocated, satisfies the axioms
assumed for the underlying utility function defined in terms of the com-.
.modities g;.. This implies that the indifference map for such a utility
function for a two-period case must have the general properties shown in
Figure 1.4. In particular, the nonsatiation axiom implies that any given
indifference curve for total consumption must be negatively sloped and that
utility must increase as we move upward and to the right onto higher
indifference curves. The axiom of transitivity implies that indifference
curves cannot cross; the axioms of nonsatiation and convexity together
imply convex indifference curves.

*Il.A.2. The properties of Ulcyca,. . “Clypees) ‘

For simplicity, the analysis is carried out for a two-period, two-com-
modity case. But the method is perfectly general and can readily be ex-
tended to the multiperiod, multicommodity case. :

If U is a utility function for dollars of consumption and V a utility
function for consumption commodities, the relationship between the two
functions can be expressed as ‘

Ulewe:) =  max  V(gugugoge) | (1.4a)

@11.931.912,922

subject to
€1 = pugn + pagn  and €2 = DGz + Poagon. (1.4b)

We first show that if the convexity axiom applies to V, it also applies to U,

Let (gi1,¢%,g1,9%) be the optimal quantities of commodities consumed
when the dollar levels of consumption are (ci,c:), and let (i, gh,gi%,d3)
be optimal for (é1,é;). Assume in addition that

V (gl g qlt,qh) = V(gihga,d%,0%)
%0 that Ulenes) = Ulénds).

Thus (c1,c2) and (é1,65) are on the same indifference curve.
For0<a<1,let

(81,82) = (acr+ (1 — a)éy, ace + (1 — a)éy)
(éll;q2l;él2;g22) = (thﬁ + (1 - a)q'ﬁ, seny ey aq!% + (1 - a)q':ﬂ))
so that ¢t = pudn + pud, G = pufiz + Puda,

and (§u,ga,G12,G22) is a feasible consumption pattern for (&,és).




20 Certainty Models

From the axiom of convexity, the utility function for consumption
commodities satisfies

V(ﬁu;ézx;@m,@ze) 2 aV(Qﬁ;Qﬁ,q;;,q'z) + (1 - a) V(q.l‘l;q;l!q.ﬁyq.;)
Or, equivalently,
V (qu,Ge1,G12,Ge2) > &U(Q,Cz)'*}- (1~ a) U (é1,64)-

Although feasible," the allocation of (&) implied by (gu,Go1,G12,022) is
not necessarily optimal. The decision maker, if given ¢ and & directly,
might choose some other allocation among commodities in preference to
that of

(aqu + (1- a)q'l‘ir Teey ey aq;2 +(1- a)qz‘z)

Because the more constrained choice can never be preferable to the less
constrained one, we thus must have '

U(ene) 2 V(u,go,diz,Goe)-
Hence U(é,é) > alU(cy,e) + (1 = &)U (é1,62), 0La<,

which implies that the convexity axiom also applies to U (ey,c:).

To show that the nonsatiation axiom also applies to U (cy,c:), note that
if the dollars available for consumption in either period are increased,
consumption of at least one commodity can be increased without reducing
consumption of any other commodity in either period. Thus, the non-
satiation of wants assumed in deriving the commodity utility function V
must carry over directly to the utility function U. As in the case of com-
modity indifference curves, the nonsatiation and convexity axioms together
imply convexity of the indifference curves.

It is also clear that the axiom of comparability carries over directly
from V to U. Establishing that the preference ordering implied by U (¢1,c:)
satisfies the transitivity axiom is left as an exercise for the reader.

Finally, it is well to note that the function Ul(eyer), like the function
V (qu,921,912,9:2), provides only a rank ordering of consumption boxes; that
is, it tells us only whether one box is preferred to another, so that U and
V are ordinal utility functions, as distinct from cardinal functions that

would also tell us unambiguously by how much one box is preferred to
another,

I1.A.3. Opportunities: resources and capital markets

The resources that an individual can draw on for his consumption in
any period are of several kinds. Most households, for example, carry over
stocks of durable consumer goods from previous periods, so that they may
either consume the services of these stocks directly or may rent or sell the
goods and consume the proceeds. For simplicity, however, we defer all
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- consideration of durable goods until Chapter 2, after we have first sketched
the main features of the wealth allocation model. For concreteness, at this
stage, the reader may perhaps find it helpful to think of the household as
renting its housing, automobile, television set, and any other durables
from specialized rental firms.

Also generally available to individuals to support their current con-
sumption are, of course, any wages, salaries, or other similar payments that
they receive as compensation for current labor services provided. We:
denote such payments during any period ¢ as y, and refer to them, somewhat
loosely, as the individual’s “income.” In addition to his current income, the
individual typically can look forward to further income in future years.
Future earnings obviously cannot be directly consumed today, but they
may still be able to support current consumption, provided that the
individual can arrange to transfer them to someone else in exchange for
resources to be made available to him immediately.

In what follows, we assume that such exchanges can in fact be made and
- that they take place in a ““capital market.” The term market, of course, is
to be taken, not in the narrow sense of a physical place where buyers and
sellers gather, although some real-world capital markets have this property
as well, but rather in its broader economic sense of the whole collection of
legal, moral, and physical arrangements that make 1t possible to effect
exchanges of current and future incomes.

The precise form that the household’s opportunity set takes in the
presence of a capital market depends on the additional specifying char-
acteristics that we choose to attribute to the market. An extreme, but
particularly fruitful, special set of attributes are those which constitute a
““perfect capital market.” In such a market we assume the following:

1. All traders have equal and costless access to information about the
ruling prices and all other relevant properties of the securities traded.

2. Buyers and sellers, or issuers, of securities take the prices of securities
as given; that is, they do, and can justifiably, act as if their activities in
the market had no detectable effect on the ruling prices.

3. There are no brokerage fees, transfer taxes, or other transaction costs
incurred when securities are bought, sold, or issued.¢

Needless to say, no such market exists in the real world, nor could it.
Rather, what we have here is an idealization of the same kind and function
as that of a perfect gas or a perfect vacuum in the physical sciences. Such

18 Although perha.ps not strictly an attribute of the market proper, we also assume that
there are no income taxes on the earnings from securities; or, if there are, that there are
‘at least no income tax differentials between income in the form of capital gains and
dividends or interest.




22 Certainty Models

idealizations permit us to focus more sharply on a limited number of
aspects of the problem and usually greatly facilitate both the derivation
and statement of the sought-for empirical generalizations. In the nature of
the case, however, the generalizations so obtained can never be anything
more than approximations to the real phenomena that they are supposed
to represent. The question is whether, considered as approximations, they
are close enough; and this, of course, is a question that can only be answered
empirically and in the light of the specific uses to which the approximations
are put.” ’

11.A.4. The opportunity set under perfect capital

markets -

An immediate implication of a perfect market, and one of the main
reasons for using this concept, is that at any one time only one price may
rule in the market. For if two different prices ruled simultaneously, no one

. whose preferences obey the nonsatiation axiom would be willing to sell at

the lower of the two prices or buy at the higher. Only when a common,
single price had been restored could transactions take place.!

In the capital markets the commodities currently being bought and
sold are sums of money to be delivered at various future points in time. We
regard the delivery contracts for each such future point as a separate
(perfect) market and represent the single, current or spot price at the
beginning of the rth period for delivery of $1 at the beginning of the tth
period as ,p,; that is, .p, is the amount of money .that must be paid at
period r for $1 to be obtained, for certain, at ¢. The advantages of the double

- subscript notation become clear in later extensions of the analysis.?

Given these market prices or rates of exchange between future and
current resources, what can be said about the form of the opportunity set
confronting the decision maker? Let us consider first a two-period case,
and ask how much the decision maker can consume in the second of the

17 To make use again of the analogy from physics, laws of motion derived under a per-
fect-vacuum assumption may be close enough appproximations for many engineering
purposes when dealing with heavy objects, but not for some light objects when the
neglect of air resistance could léad to a breakdown of the mechanism.

8 An equivalent, alternative proof often useful in showing the implications of the perfect
capital market assumption in more complicated cases involves the notion of “arbitrage’
in the sense of a sure profit at no risk or expense; that is, if for ignorance or some other
reason there did exist some willing sellers at the lower price and some willing buyers at
the higher, knowledgeable arbitragers would buy and resell until one or the other group
had been driven from the market. '

¥ The prices ,p. are obviously somehow related to interest rates. But to stress the
similarity between capital markets and other kinds of markets, it is convenient to
present the analysis initially in terms of the ,p,. The formal relationships between these
prices and interest rates are shown later.
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two periods. Because the second period is the ‘“last” period, no resources
can be obtained in period 2 by drawing on future periods. The decision
maker’s resources would be limited to his income for period 2, y., plus.any
financial assets carried over from period 1, @;, or minus any net liabilities
ineurred in period 1 that must now be repaid, in which case a; would be a
negative number; that is, the period 2 consumption would be

C: = Y2 + Q. (1.5)

Of the two components g is taken for our purposes as a fixed and unalterable
_amount determined somehow from outside the context of the problem, but
a,, within limits at least, is under the decision maker’s control. The less he
consumes in period 1, the more funds he can bring to the capital market to
purchase funds deliverable at the start of period 2. In particular, his net
“worth at period 2 will be '

=T+ a) = al—. e
12

The term in brackets represents the difference between his resources in

_period 1 and his consumption in this period and is the amount used to
purchase resources to be delivered at period 2. The total number of dollars -
to be received at period 2 is then just the amount invested divided by the
price 1p..2 Substituting Equation (1.6) for a: in the period 2 constraint
(1.3), we obtain

=y + (h+a) i - cr—l— (1.7
1P: 1P2

as the relation describing the allowable, efficient combinations of ¢ and
¢; that can be obtained by an individual whose income plus initial wealth
consists of 1 + a; in the first period and whose income is y; in the second.
In graphical terms (see Figure 1.5) Equation (1.7) is a straight line in
the cic: plane with a slope of —1/;p: and running through the “endowment
point” z whose coordinates are ((y1 + a1), %.). A movement along this
efficiency frontier away from this point to point v would represent a purchase
of funds for future delivery, that is, lending, and from z to z a sale of future
funds, that is, borrowing. The maximum attainable value of ¢, that is,

% Alternatively, if the amount invested at period 1 is [(31 + @) — a] and the price
of a dollar to be delivered at period 2 is ;ps, the number of period 2 dollars purchased
at period 1 must be the value of a, such that

Cn + a1) = al = 1pay,

from which we easily obtain Equation (1.6). Thus 1/1p: is the number of dollars at
period 2 that can be obtained by investing a dollar at peried 1.
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Figure 1.5 Opportunity Set in a Perfect Capital Market

the intercept on the ¢ axis, is

' 1
v+ (nn + a1)-—,
1D2
which occurs when all the resources available at period 1 are used to pur-
chase dollars for delivery at period 2. The maximum attainable value of
c1, that is, the intercept on the ¢; axis,

1+ a1 4+ yeaps,

occurs when all income to be received at period 2 is sold at the beginning
of period 1. This maximum attainable ¢; can also be interpreted as the
consumer’s wealth w, at period 1; it is the market value of all his current
and future resources.

1LA.5. Interest rates and present values

We have chosen to express the opportunities for carrying over resources
in terms of current market prices for dollars to be delivered in the future
partly to stress the fundamental similarity between capital markets and
any of the other markets considered in economics and partly to lay the
groundwork for future extensions in which this approach is really the only
feasible one. For the present class of problems, however, there is another
way of expressing the rate of exchange between current and future sums.

Suppose, for example, that we have the current sum of P dollars and ask
what will be the number of dollars A that we shall have at the beginning
of the next period if we purchase contracts for the future delivery of dollars
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* at.the current market price of yp,. The answer is
1 .
‘A =P—. (1.8)
1D2

But we can always express the terminal amount A as a sum of the initial

value P, plus, or minus, the difference between A and P, say, AP Hence.

we can rewrite Equation (1.8) as

1l 4 P+AP AP
1pz.— 2 = P =14 i (1.9

The term AP/P is the rate of growth of the capital sum invested during
the period, to be denoted by i, and referred to as the one-period, spot
rate of interest or, for short, Just ‘“rate of interest.” The term 1 4+ AP/P =
1 <+ iy is often referred to in the economics literature as the ‘“force of
interest” and in the actuarial literature as the one-perlod ‘accumulation
factor” at the rate ;7.2 .

Note that in an equation such as (1.8) we can also perform the inverse

21 Here and throughout, unless otherwise noted, interest rates, such as iy, are assumed
to be those on securities denominated in the numéraire commodity, which we here call
money. Nothing in the analysis, however, rules out the possibility that there might
also exist securities denominated in terms of other commeodities (or other currencies).
If the prices, in terms of numéraire, of such commodities differ in different time periods,
the rates of interest on such commodity-denominated securities are not the same as
those on numéraire-denominated securities. Nevertheless, we need not take such securi-
ties explicitly into account in constructing the opportunity set. As long as the markets
for both types of securities are perfect, arbitrage ensures that the effective yield in
terms of numéraire is the same on both numéraire- and commodxty-denommated con-
tracts; that is, we must have, for any commodity ¢,

a+ m‘)[l + (p.:p— )] = (1 +.m)

s = 1red + (.’_’L_':_?.‘Z) + (lr’,-)(Pﬂ el Pn),
Pa Pa

where p; is the unit price, in terms of numéraire, of commodity ¢ and ,7,* is the rate of
interest on securities denominated in commodity i. The same expression rearranged as

or, equivalently,

Piz =~ Pa
Pa

is, of course, familiar to economists as the principle that under certainty, the “real’”
rate of interest is equal to the money rate minus the rate of change of prices. The cross-
product term (17°)[ (P2 — Pa)/Pa] is usually omitted, because in the economics litera-
ture time is typically treated in continuous rather than discrete terms.

i = yry —




26 Certainty Models

operation and obtain the relation -

1
144

P = A'lpz = A (110)

Here we are answering the question, What is the market value today of A
dollars delivered next period? The sum P is called the “present value” of
the deferred payment A4, and the term

1
14+ 1P

known as the one-period “present value factor” at the rate of interest 13,

provides an alternative interpretation of the price 1P

These relations between present and future sums are shown graphically
in Figure 1.6. The future sum A4 to which the present P accumulates at the
rate 17, is indicated by the intercept on the period 2 axis of a line drawn
through the point P with slope equal to (minus) the accumulation factor.
And, in the other direction, passing the line through a point such as 4
gives us the present value of the point as the point P, the intercept on the
period 1 axis. The same procedure can, of course, also be used to find the
present value, or, equivalently, current market value, of any combination

- of period 1 and 2 sums, such as the point z, whose present value is P’.

We can now easily restate the efficient opportunity set in terms of interest
rates merely by substituting (1 + yn) for 1/yp, in Equation (1.7). We thus
obtain ‘

C2 = Yo+ (yl + a) (1 + 47) - a(l+m) (L.11)

Period 2 resources

A

1
] =.(]+ B e —
Slope = -(1 + ,r,) P

P Period 1 resources
Figure 1.6 Present Value Lines
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Period 2 resources

Vz“ }

Slope = -(1 + ,r;)

0 y,'? +a @ eyt w;  Period 1 resources

Figure 1.7 Preferred Allocation

or, rearranging, -

b

LTS (1 4 47m) Swtat g (1 +1Tz) (1.12)
In words, the efficient combinations of standards of living in the two periods,
from among which our subject can and will choose, are those for which the
present value of total consumption is equal to the present (=market)
value of total resources. His actual choice among these possibilities depends
on his tastes, as summarized in his utility function and his indifference
curves. A geometric illustration of an optimal allocation for a particular
set of indifference curves is shown in Figure 1.7.

1.A.6. The preferred allocation

The pattern of standards of living chosen by the decision maker is
indicated by the tangency point z, the total consumptions being ¢f in the
first period and cf in the second. If his initial endowment were the point 2,
with first-period resources of ¥ + a;¥ and second-period income of
¥, he would have moved from z to the preferred point z by sacrificing
some potential consumption in period 1, lending the proceeds }® +
o™ — ¢f on the capital markets at the rate 172, and then adding the matured
proceeds plus the interest on them to his second-period income of y.® to
reach ¢f. If he had started from v, where his second-period resources were
so much greater than those of the first, he would have moved to the pre-
ferred point by borrowing against these future resources to the extent of
f — (1@ + a1®). At the start of the next period he would repay his loan
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plus interest from his income 3.® and consume the balance of ¢ = y,® —
(cf — (1® 4+ a®)) (1 + 1rv).

It is' important to note that the decision maker is really indifferent as to
whether his initial endowment is the point v or the point z in Figure 1.7.
From either starting position, his ultimate consumption combination for
the two periods is ¢f and c¢f. The initial endowment affects merely the
. market exchanges that he undertakes to obtain this consumption com-

bination. Indeed, with a perfect capital market, ¢ and ¢¥ are the optimal
combination of consumptions for any initial endowment, such as v or z or
z, with market value wu,; at period 1. This follows from the fact that in a
perfect capital market any endowment with a given market value.can be
exchanged for any consumption combination with the same market value.
Thus despite, or perhaps because of, the immense simplifications that
have gone into its construction, the solution shown in Figure 1.7 does serve
to point up one of the crucial functions that the capital markets perform
in economic life. In the absence of such markets, the patterns of con-
sumption that individuals could obtain would be rigidly tied to the patterns
in which they earned their incomes. When these patterns are very irregular,
individuals might find it preferable to shift out of such activities into those
offering smoother patterns even at some loss in total earnings for them,
and some consequent reduction in the total income potential for society as a
whole. Capital markets, however, serve to reduce wastes and inefficiencies
of this kind by making it possible, to a considerable extent, to separate the.
income-earning from the' consumption-pattern decisions. Individuals are
free to make their earning and occupation decisions largely on other
grounds, relying on the capital markets to effect any desired degree of
“““smoothing’”’ of the standard of living over time.? '

Il.B. Extension to Three or More Time Periods

Although the simple two-period model is adequate for conveying the
essence of the allocation problem, there are a number of applications for
which it is essential to be able to work with more than two periods. An
extension of this kind poses no great difficulty insofar as the utility function
is concerned. As long as the subject has a finite planning horizon, which
may be, and, in principle normally is, as long as his lifetime, we can simply
incorporate into the utility function as many additional ¢, as required to

1 This stress on consumption smoothing should also help make clear how transactions
in capital assets can arise even without “differences of opinion.” Although all house-
holds are assumed to have identical and entirely correct expectations as to market
returns and might equally well have been assumed to have identical preferences, ex-
changes would still take place as long as the pattern of endowments is different. Further
discussion and illustration of consumption smoothing and its economic significance is
given in the appendix to the present chapter. '
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bring us to the horizon period N. The desire to leave an estate, although
the transfer might occur after the individual’s lifetime, also poses no
diﬁiculty and can be treated simply as an additional consumption term,
v

The extension of the opportumty set to more than two periods, however,
does pose, if not difficulties, at least some complications. For when we
consider many periods, we also open'up for the individual many different

. strategies for transferring funds between periods. In a three-period case,

for example, an individual who wants to carry over funds for two periods
might buy a two-period claim; or he might buy a one-period claim this
period and then reinvest the proceeds next period in another one-period
claim. We also have to admit the existence of “ compound claims,” such as
coupon securities paying specified amounts in each of » time periods plus a

" further lump-sum amount in the nth period. The opportunity set must

somehow allow for these and every other transfer possibility.

11.8.1. The structure of prices for claims

To see how this problem can be solved as well as to gain some additional
insight into the structure of prices for claims under perfect capital markets,
let us first consider a simple case involving only one- and two-period claims.
In particular suppose that the current price of $1 delivered at the start of
period 2 is 1p» and that the price at the start of period 2 for $1 to be delivered
at period 3 is known to be .p;; that is, ps is next period’s price for a one-
period claim, a number to be taken as known now under perfect certainty.
What can we say about the price now for a claim for $1 to be delivered at
the beginning of period 3, that is, 1ps?

The answer is that under perfect capital markets we must have

1Ps = 1P2*2Ps; (1.13)
that is, the price of a two-period claim for $1 must be equal to the product of
the prices for one-period claims in the two periods. For suppose that such
were not the case and that the price of a two-period claim were greater than
this, say,

1Ps = 1P22Ps + € e> 0. (1.14)

‘Then an individual, no matter what his resources, could always issue a

two-period claim for yps;, that is, promise to repay $1 at the end of two
periods, and immediately invest the proceeds in a one-period claim. The

# In principle we could also handle cases in which the planning horizon is infinitely long
Where such an approach is taken, however—and it is quite commonly found in economic
theory, particularly in connection with macro growth models—it is necessary to impose
certain additional restrictions about the individual’s “‘time preference’ so as to guaran-
tee a finite solution to the maximization of utility. The concept of time preference is
discussed and illustrated in the appendix to the present chapter.
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value of the one-period claim at the beginning of period 2 would be*
1Ps _ 1P2aPs + ¢
1P2 S ¥/ T )

When these claims came due at the beginning of period 2, he could again
reinvest the proceeds in one-period claims, so that at the beginning of
period 3 he would receive

(1732'2?3 +€)i - (1 + € )

Y2} 2Ds 1P2°2Ps ,
dollars. This would be sufficient for him to discharge his debt for $1 on the
two-period claim that he issued and still leave a net gain of ¢/ (1p2+2ps)
dollars as a pure arbitrage profit.

Similarly in the other direction, if 1ps = yp.+ps — ¢, an individual could
buy such a two-period claim, which will yield him $1 at the end of two
periods, and finance the purchase by issuing a one-period claim, that is, by
promising to pay

1Ps - 1D2°2P3 — €
102 1P2

at the beginning of period 2. When this claim came due, he could issue a
second claim, that is, promise to repay

(11’2'2]73 - G) i
1P2 2Ps

at the beginning of period 3. His total liability at period 3 would thus be

(-55):
1D2°2D3

which he could repay from the proceeds of $1 coming due on his two-period
claim and still have ¢/ (1p:+2p;) as a pure arbitrage profit.?

™ Recall that when the price is 1ps, the market value at period 2 of $1 invested at period
1 is 1/1ps. Similarly, when the price is sps, the value at period 3 of $1 invested at period
2is 1/sps. ' ‘

® The ratio of the two “‘spot prices,” ;ps/ips, is often called the “implicit forward price"”
for a one-period claim, one period from now. The name comes from the fact that, even
without making a direct or literal forward contract, an investor with, say, A of funds
available at the start of period 2 can always act now to guarantee himself the oppor-
tunity to purchase one-period claims with these funds next period at a price yp;F =
1ps/1p: by borrowing ‘‘short” an amount equal to (As+1ps) and lending it “long,” thus
yielding (4:+)ps)/ips. In terms of the implicit forward prices, an equivalent way of
stating the equilibrium condition in Equation (1.13) would be yp;® = p;; that is, as
the proposition that in perfect capital markets and perfect certainty, the implicit forward
rate for any period must equal the spot rate expected to rule for the period.
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_ The same reasoning can be applied to cases of three or four or indeed any
number of periods, and starting from any period, so that we can write as
the general rule for the price in period r for an n-period claim for $1, that is,
a claim to be delivered at the beginning of period r + 7,

Pr4n = rpr+1‘.f+lpr+2‘ * *r4n=1Dr4n, (1'15)
or, more compactly,
) . Tl ’
Desn = I Do (1.16)
by

Note also that with Equation (1.15) or (1.16) we can immediately obtain
the price of any compound claims, because with no transaction costs, any
claim to pay or deliver sums in more than one period can always be dupli-
cated by a set of separate one-period contracts. In particular, the market
value V'(7) at the beginning of period r of any claim, positive or negative,
to X (= + 1) dollars at the end of one period, X (r + 2) at the end of two
periods, and so on, down to X (7 4+ n) = periods later, can always be
expressed under perfect capital markets as the simple sum of the market
_values of the component claims:

Vir) = X(+ + Deprt + X(r 4+ 2)Prg2 + o+ + X(r + n)rp'+n
= X(T + l)fpr+l + X(‘l’ + 2)rpf+1‘r+lpv+‘3

r4+n-=l

+ -+ X(r+n) [T @en. (1.17)
tmr

Or, to put it somewhat more dramatically, in a perfect capital market the
market value of any set of claims depends only on the amounts of the claims
and the prices of one-period unit claims and not at all on how the claims
happen to be “packaged.” ‘ '

i1.B.2. An equivalent represeniation in terms of

interest rates

Before applying these results to the problem of constructing the oppor-
tunity set, it is helpful once again to restate the essentials in terms of the
more familiar interest rate and yield formulations in which discussions in
finance are typically conducted. In particular, recall that we have pre-
viously defined the one-period rate of interest in terms of the price of
one-period claims by the relations

14 .70 = . (1-18)

rpf+l

1

or Prgt = T 7.
1 + Tr41

(1.19)
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Substituting from Equation (1.19) into (1.17), we obtain for V'(r)

. X(r+1) X(r+2) X(r +n)
= : R ,
PO e T YO O b T

(1.20)

which is, of course, the familiar expression for the present value of an
arbitrary stream of payments X(r + 1), X(+ + 2), ..., X(r + n).

Certain special cases of Equation (1.20) are frequently encountered in
the literature, mainly because they permit simpler and more easily manip-
ulated valuation formulas. If, for example, we assume that the one-period
interest rates are constant over time at some given value r, products of
accumulation factors over n periods of the form

H (1 + rig1)
) im] )
can be expressed as powers of the force of interest of the form (1 + r)»
and similarly with the present value factors 1/(1 + r)». If in addition to
assuming a constant one-period interest rate, we assume that the pay-

ments too have some constant value X over time, we obtain the familiar
“‘annuity factors,” and their inverses, the “capital recovery factors.” In

particular, Equation (1.20) reduces to

X X X
“Tr T O T T O
Multiplying both sides by 1/(1 + r) and subtracting the resulting expres-
sion from Equation (1.21) yields

“7

(1.21)

1 . X X ' X x
T B R e T
X X X X
- (1+r)3— o (1+1~)n+1=1+r— (1+T)"+1, (1-22)
from which it follows that
d+nm= 1]

=A T an | 1.23
v X[ r(l 47" (1.23)

The expression in brackets in Equation (1.23) is the uniform annuity

present value factor for n periods at a rate of 100r percent per period. It is
sometimes also called the n-period “capitalization factor,” because it tells
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us by how much we have to multiply a given flow of payments to convert
them to a stock of capital value, that is, to convert the income statement
item to a balance sheet item. The inverse operation

r(l 4+ )" ]
d1+nr—1

converts a capital sum V to an equivalently valued n-period flow of pay-
ments X at the rate r, a process familiar to any homeowner with a con-
ventional, equal-payment mortgage. Still another interesting variant on
the annuity formula is the case of a perpetual annuity or ‘‘perpetuity.”
In Equation (1.23), if r > 0, the term —1/r(1 4+ r)" approaches zero as n
approaches infinity. Hence the capitalization factor in brackets collapses in
this case to the very simple and convenient expression?®

V=§, 3 C(1.25)

X = v[ (1.24)

Many other interesting and useful variations on these formulas can be
developed, and some of these are in fact introduced at appropriate places
in subsequent chapters. For present purposes, the important feature of the
analysis is not the formulas themselves. Our concern has rather been to
show where the formulas come from, and to call attention to the critical
role of the concept of a perfect capital market? in their derivation.

3 For many beginners there is something unnatural about a stream of payments sup-
posed to continue forever. It should be emphasized, therefore, particularly because we
make heavy use of such perpetuities in later analyses, that there is nothing particularly
strange about such securities and that they do exist in considerable numbers and varie-
ties in real-world capital markets. Land, common stocks, and most issues of preferred
stocks are the most obvious examples of securities without any specific maturity date,
but there are also some bonds of a similar kind, notably the celebrated “consols” issued
by the British government in the nineteenth century, and #o called because they were
a “‘consolidation” of a series of previously issued debts. Another homely example would
be the “perpetual maintenance’ agreements assumed by many sellers of cemetery plots.
¥ Some of the reading for which this book is intended to serve as an introduction will
be found to run in terms of continuous compounding rather than the discrete com-
pounding that we have chosen to use throughout. Results and formulas developed under
one convention for the case of constant interest rates may be easily translated into the
other merely by interchanging (1 -+ r)* with e* and interchanging integrals with the
corresponding summations. Thus, for example, the annuity formula (1.23) can be
obtained in a continuous formulation as

V-X/.e"‘dtaz-(-e-::—:-l—)-
° re™

and similarly for the rest of the family of simple formulas. The perpetuity capitalization
factor 1/r remains the same, of course, for both cases.
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11.B.3. Multiperiod rates of interest and the concept
of the term structure

We have shown and made use of the fact that a one-to-one correspondence
exists between the one-period rate of interest and the price of one-period
claims. We can readily push this correspondence further and obtain, say, a
two-period rate of interest that would be the similar equivalent to the
price of a two-period claim.

Consider first the case of simple claims. In partxcular, suppose that we
have now in period 1 a claim for $1 payable at the beginning of period 3,
whose current price is 1ps, and suppose further that the period 1 and period
2 one-period interest rates are ir and or3. Then from the product rule
we have

1 . 1 = 1
(L4am) (L42m) 1447

where ,7; is the rate over two periods that corresponds to the price 1p;. We

‘use the new symbol i7; to emphasize that ;7s cannot be directly compared
. with one-period rates, such as i7; or 273, because the period of accumulation
for i7; is twice as long. To obtain this comparability, however, we need
merely ask what one-period rate, if earned in two successive periods, would
leave the investor indifferent to the actual sequence of i followed by 473
By indifferent we mean, of course, that a present amount P would ac-
cumulate to the same amount A under either strategy, or that a future sum
A would have the same present value in the two cases. In symbols, if we
let 473 be the uniform rate, we ask what value of 17; satisfies.

PAl+m)(1+1m) = P(L+ )2 = P(1 4+ 1) (1 + s13) = A4,
or, equivalently,
| A A | A

(14 am) (1 +r3) - (14 ars)? - (1 4 172) (1 4 om3)
Solving either expression and keeping only the positive root, we obtain
(14+m) =~ A +1r) QA +o15)
or =1+ +m) — L
More generally, for an n-period simple claim
a1 = V(L +3m) (L +ars) oo (1 + a¥an) — L.

In words, the n-period rate of interest that is equivalent to the sequence
of n one-period rates is the geometric average of (unity plus) the future
one-period rates (minus unity).

The entire set of n-period rates for all values of n in sequence, that is,
172, 173, 1745« + - 1Tas1, CODStitutes what is often called the “term structure of
interest rates.” Some representations of various possible term structures
are shown in Figure 1.8. In structure 4, for example, the rates rise through-

103 = 1P22Ps =

= P.




[Ch. 1, Sec. II] Accumulétion and Allocation of Wealth = 35

"n A

0 . - n {term to maturity)
' Figure 1.8 Term Structures

out; B is a flat term structure; C falls throughout. Structure D is of an
irregularity far more severe than any term structures ever observed, but
still entirely conceivable. '

In relating the structure of these “‘long’ rates to the one-period ‘‘shoit’
rates of which they are averages, a useful concept is that of the “marginal
rate,” or, as it is sometime called, the implicit forward rate.? In particular,
the marginal or forward rate for period ¢, ;77,,, may be defined as the rate at
which the capital sum invested in a simple claim grows when invested for
one more period, that is, when held through the period ¢. If welet V(¢ 4+ 1)
stand for the value at the start of period ¢ + 1 of $1 invested at the start

- of period 1, and V (¢) for the value at the start of ¢, this marginal rate is
clearly V(t +1)/V(t) — 1 = g%, Under perfect capital markets we
can replace the V’s by their corresponding accumulation factors and obtain

14 o™ = V(t+1) - (1 +1r41)t - A4 ) (A 4ors)ee (1 4+ rer)
R A1) L)t (L4 am) (L)oo (1 + ar)
=1+ Teg1;

that is, not surprisingly, under perfect certainty and perfect capital markets,
the marginal or forward rate for any future period is equal to the (known)
future spot rate for the period.

® Compare footnote 25 above. In much of the literature on the term structure of in-
terest rates; the term implicit is usually omitted, for simplicity, in referring to forward
rates. We stress it here merely to remind students of finance that true explicit forward
contracts also exist and in fact are quite common, especially in connection with the
financing of residential construction.

VA
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- The relation between these marginal rates and the (geometric) average
n-period, or long, rates of the term structure is the same as that between
any other average and.the series marginal to it. In particular when the
marginal rate exceeds the average rate, the average rises; and when the
marginal is below the average, the average falls. In Figure 1.8, for example,
the rising yield curve A implies that future one-period spot rates will be
" higher than both the current one-period spot rate and current long rates,
although not necessarily in any uniform or regular way. For curve C, the
opposite is the case, and for the flat curve B, all future spot rates are
constant and equal to the current rate. For curve D, the pattern is one of
substantial fluctuation in the future short rates sometimes rising above
and sometimes falling below the current rates.® .

11.B.4. The equal rate of return principle

Up to this point, we have been discussing yields and interest rates mainly
in the context of simple claims, that is, claims in which there is only a single
cash payment that occurs at the maturity date. There remains only to
show the implications of the results obtained for the case of compound
claims. In particular, what can we say about the yields on such claims in
relation to those of simple claims?

Consider, for example, an n-period compound security that pays X (¢ + 1).
in cash at the beginning of period ¢ + 1, and suppose that the one-period
rate of interest for ¢ is .ri41. As before, we can define the one-period yield
on the compound security during period ¢ as the rate of growth of wealth
initially invested in such a security. If we denote this initial investment by
V (t), this rate of growth, (pe41, is

Xt+1)+Ve+1) —-V(Q©)
V() ’

where V(t + 1) is the market value of the claim as of the start of period
¢ + 1. Under the perfect market assumption we know that this one-period
yield or rate of return on any compound security during any period must be
exactly the same as what we have been calling the one-period rate of interest
on a simple claim for the period. In such a market the investor is free to

(1.26)

P+l =

® As drawn, curve D is meant to imply that some marginal rates, and hence future
spot rates, will actually be negative. If we interpreted the rates as ‘“real’” rates in the
sense of footnote 21, there would, of course, be nothing whatever anomalous about such
negative rates. Their occurrence would simply mean that the rate of price increase of
the commodity exceeded the nominal or money rate of interest. Even for contracts
denominated in numéraire, however, there would be nothing in the present framework
to prevent negative rates if we expressly ruled out the carry-over of any physical com-
modity, including, presumably the numéraire commodity itself. Once the carry-over of
numéraire is allowed, of course, we do have a floor under money rates of interest, but this

floor may still be below zero to the extent that there are storage or other costs of carry-
over.
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Hold any of the securities available during a given time period, and to shift
costlessly among securities from one period to the next. Thus if all securities
are to be held, all must yield the same rate of return during any period.
Equivalently, the existence of differential yields would imply the existence
of costless arbitrage, which is, of course, inconsistent with a perfect market.
Some further insight into the meaning of this result can be obtained by
separating the definitional expression (1.26) into two components as

Xt+1) V{E+1) — V()
70 20

The first term X (¢ + 1)/V(t) is often called the ‘“cash yield”’ and the
second the “capital gain yield.” Our analysis implies, in effect, that the
total yield is-independent of the packaging. A security with a high cash
yield will have a correspondingly low capital gain yield, or even a capital
loss; but whatever the package, the total is the same and is always equal to
the market rate of interest for the period.

Because (p.41 = 41 for every period ¢, it also follows that we can define
an n-period holding yield

tPrin = \n/(l + ) (1 + t+1Pt+2) vee(l 4 t4n—1Pten) — 1

exactly analogous to, and in terms of its value, exactly equal to, the n-period
rate of interest ... As it turns out, there is relatively little need for this
more general form of the holding period yield in the class of decision
problems that we examine in this book. Its main function in the finance
literature has been to serve as one basis for the ez post evaluation of invest-
ments in particular securities—a use in which it is often referred to as the
vield “with reinvestment.”’®

(1.27)

Pl = Tl =

» To see the origin and justification of this characterization of the n-period yiéld, suppose

that an investor held =, units of a given compound security at the start of period ¢. If he

reinvests its cash payment of X (¢ 4+ 1) per unit at the then ruling market price of

V(t + 1) per unit, he will have n,(1 + X (¢t + 1)/V (¢ + 1)) = n. units at the start

of period ¢ + 1. Hence the total value of his holdings of the security at that time will be
X(t+1)

Vit+1)

(V(t +1) + Xt +1)
¢ Vi +1)

m(V(t +1) + X +1)
1 20)]
At the start of ¢ 4- 2, his wealth will be
NVt +2) = n,V(t + i)tl + 1410048]
= V([ + 0l + wpera] = 0V () [1 + prgadt

<V +1)

~

naVit+1) = m(l +

)-V(t-l-l)

) V(@) = aV(OL1 + wpiad

and so on.
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li.B.5. The n-period opportunify set

With these results about the structure of prices and yields in perfect
capital markets in hand, we may turn back now to the task of constructing
the opportunity set for a decision maker in the multiperiod case. As before,
consider first the total consumption possible for the subject during the last
period N. Because we permit no carryover of resources to or from later
periods, this maximum must be given by

ey =ynv+ax 20,

that is, by the sum of the income for the period plus the proceeds of any
securities accumulated from previous periods. The term yy is taken as
- somehow given from outside the problem, but ay can be further decomposed
into

ay = [y.\’—l + av-p1 — 0y-1](1 + .\'-—lr-V)- .

' Note that with our perfect market assumption, this expression for ay
. applies regardless of the particular financial strategy that he may happen to
adopt; that is, whatever may be the particular securities composing ay—;
‘and ay, we know that the one-period yield on any resources invested during
period N — 1 will be precisely x—irn. Furthermore this will be the appro-
priate rate to apply regardless of whether he is a net borrower for the
period—the case of yy—1 + av—1 < cy—1 and hence ay < 0%—or a net
lender, because with perfect markets the borrowing and lending rates are
the same.

By repeated application of the same reasoning we can eliminate all the
intermediate values of a,, obtaining ultimately as the expression for the
opportunity set

. 3 Cy
Tt armaTw Tt T+ o)
tm]

] ¥s N/ S—
a+ H+ (1 + 17’2) (1 4+1m) (1 + 2“) i NHI(I + o)

¢ (1.28)

In addition to the yield with reinvestment, references are sometimes found to a
‘‘yield without reinvestment.” This yield is the same as that of the so-called “discounted
cash flow, internal rate of return,” that we consider in Chapter 3. It is also the way in
which the so-called “yield to maturity” on a coupon bond is customarily computed and
quoted.

31 Note incidentally that the requirement that cy be nonnegative implicitly puts a
maximum on the amount that can be borrowed during N ~ 1 and, by extension, in all
previous periods. Or, to put it another way, no one is allowed to die in debt. ‘




[Ch. 1, Sec. 11} Accumulation and Allocdtion of Wealth 39

" that is, the efficient combinations of standards of living available to the

decision maker under perfect capital markets are only those for which the
- present (=market) value of the sequence of consumptions is equal to the
present value of his income plus any initial endowment a;. This set encom-
passes every financial strategy, security package, or portfolio composition
available to the decision maker over the N-period horizon.

*]1.B.6. The optimal cllocation in the multiperiod

" case; mathematical treatment

Putting together the expressions for the utility function and the oppor-
tunity set, we may now represent the optimal allocation of financial
resources over time as the solution to the problem

max Ul(c,Czy. .. 0n)
€1,62).00y cN

subject to the constraint expressed by Equation (1.28). To obtain the
necessary conditions for a maximum, form the lagrangian function

L = U(eyey,. . ,CN) - X(Cl'l‘ T4 + - +X"—-’1‘"€L—
. v ‘I]; (1 4+ repn)

Y2 o YN

B e
1 +_1f‘2 ‘Hl (1 + 1)

and differentiate partially with respect to A and to each of the ¢.. Setting
these derivatives equal to zero, the first-order conditions for a maximum are
then the following N equations, plus Equation (1.28):

Ui—A=0
1
rl_x =
t 1+ 0
1
Uk = Ay =0,

‘1;11 (1 + )

where U/ is the partial derivative of U with respect to c;. Or, equivalently,

N-1

1= U;(1+1Tz) =R oree = U}IVH (1+¢T‘+1) = A,
fam]

Note that between any pair of periods whether adjacent or not we continue
to have a simple tangency solution of precisely the same kind as in the two-
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Figure 1.9 Preferred Allocation between Nonadjacent Periods

périod case. For example, between periods 1 and 2 we have, after multi-
plying both sides by —1,

94

- E/T; = — (1 +.1);

between periods 3 and 7,
' U} :
-m = — (L) (L4 am)-e- (1 +4m);
and for the general term,
Ul t+n-1 )
- ‘_: == ( H (1 + frf+1)) . (1.29)
n T i

The term on the left-hand side is the slope of the-indifference curve in the
(¢, t + n) plane, that is, dc.ia/dcs, and the term on the right represents the
slope of the opportunity set, which is, of course, (minus) the force of
interest over the indicated n periods. A graphical illustration for this
n-period solution is shown in Figure 1.9 with ¢f and c¢¥. as the optimal
total consumption in the two periods when af is the optimal initial assets
for period ¢. '

IL.C. Conelusion

We now have in hand most of the essential elements of the model of
wealth allocation over time under certainty and perfect capital markets. An
illustration of how the abstract model can be specialized and adapted to
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“help explain important features of observed savings behavior is given in the
appendix to the present:chapter. The development of the remaining aspects
of the model and in particular its extension to allow for durable goods, real
investment, and corporations is the task of Chapters 2 and 3.
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APPENDIX

An Hustrative Application
of the Wealth Allocation Model:
The Life Cycle of Savings

The specific application of the model of wealth allocation over time that
we consider in this appendix is that of savings decisions by individuals.
In particular, we try to show how the model, when fleshed out with certain
additional specifying assumptions about the structure of tastes and oppor-
"tunities, can be made to yield propositions about how the level of current
savings by an individual varies over his lifetime and how it responds to
- differences in age, wealth, income, and the rate of interest. Our approach
is to start with the simplest possible version and then successively bring in
additional complications, pointing up along the way some of the implica-
tions of the various models for the field of finance.

. THE BASIC FRAMEWORK!

LA. Smoothing Irregularities in the Income Stream

In Chapter 1, the general model of wealth allocation was used to show,
among other things, how an individual could “smooth” his standard of

! The classic statement of the “life-cycle”” approach that we take here is in F. Modigliani
and R. Brumberg, “Utility Analysis and the Consumption Function: An Interpretation
of Cross-Section Data,” in K. Kurihara, ed., Post-Keynesian Economics, New Brunswick,
1954. )

42
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living over time in the face of an unsmooth income stream, for example, by
consuming less than his income in periods when it was abnormally high and
carrying over the funds saved to periods when it was abnormally low;
or by borrowing, that is, “dissaving” during a period of low income to
maintain the standard of living in anticipation of repayment of the loan
from the proceeds of higher income receipts in the future. A natural way,
therefore, to begin any more detailed study of savings decisions is to seek
out the major sources of irregularity in income streams that might call for
~such smoothing. Under our assumptions of perfect certainty and perfect
capital markets—which rule out the need to save for unforeseen con-
tingencies, such as illness or unemployment, or to accumulate liquid assets
in advance of purchasing large consumer durables—there are still, typically,
two major sources of unevenness in his lifetime income experience that an
individual attempts to smooth by his saving plan. First, in most occupations,
annual earnings can be expected to rise more or less steadily with age,
partly as a reflection of increases in skill and experience and partly because
of the continued, projected growth of productivity that steadily raises the
level of wages and salaries throughout the economy. Second, most wage and
salary earners can confidently look forward to compulsory or voluntary
retirement, at which point their nonproperty income ceases entirely.?

1.B. Some Specifications and Simplifications

The major implications for savings behavior of these irregularities in
the income stream can be brought out most sharply by further specifying
and simplifying the model in Chapter 1. In particular, we assume that:

1. The individual plans to leave no estate to his heirs at the time of his
death and, by the same token, will not be the beneficiary of any bequests
during his own lifetime. This unrealistic assumption, we hasten to add, is
a good deal stronger than is really necessary for our purposes. In principle,
the estate motive can readily be incorporated into the analysis simply by
adding an additional “consumption’ term to the utility function in the
vear of death. We omit it completely here, however, partly because so
little is known about motives for gifts and bequests and partly to emphasize
how much can be said about saving behavior even in the absence of estate
motive saving.

2. The individual has no “time preference” for either immediate or
deferred consumption. More precisely, if A and B are two fixed levels of
resources and ¢ and ¢+ 1 are any two time periods, then U(e: = 4,

* A third source of irregularity, even in a certainty framework, would be changes in
family size and hence in per capita income within the family. We do not go into such
matters here, however, except in passing and as a qualification to certain results ob-
tained from the single-decision-maker models.
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€1 = B) = U(c, = B, ¢is1 = A). In terms of Figure 1.4 or 1.7, this
assumption implies that the indifference curves for standards of living are
symmetric around a 45° line through the origin. Like the no-bequest
assumption, this too is much stronger than is necessary, but it has the virtue
of great simplicity, as well as emphasizing that psychological or cultural
preferences for deferred gratification are in no sense essential to the ex-
planation of saving behavior. ;

3. The market rate of interest is zero. This assumption is introduced
only temporarily to facilitate the calculation of specific examples. It is
dropped after the main features of the simplest models have been fully
explored. In the meantime, it may perhaps also serve as a useful reminder
that, although interest is indeed the “reward for saving,” the absence of
any such reward does not imply the absence of any motive for individual
saving. -

-

1.C. Consumption, Saving, and Wealth over the

Life Cycle ' ‘

. ‘Given these assumptions and assuming further that the individual is
entering his {th year in the labor force, has a further life expectancy of
N —t years, a further working-life expectancy of W — t years, and will
have no wage or salary income during the N — W years of his retirement,
we can express his choice problem as

max U(cyCeqry....cn) - (A1)

subjeét to the budget constraint

N w o
ch=az+2yr=a:+(W—l+1)ﬂn (A.2)

i Tt

w
where §, = ( y,)/ (W — t 4+ 1) is the average income of the individual
7 =t

over the remainder of the working life as of the start of period ¢, and a, is
the accumulated value of his financial assets at the start of .

By virtue of our assumptions of zero time preference and a zero market
rate of interest we know that the optimal value of consumption must be
the same in every period, that is,

%* * %
€t = Ciy1 = v++.= cN.3

? Readers for whom this conclusion is not immediately obvious may find it helpful to
portray the decision problem graphically for a two-dimensional case. They should
quickly see that the assumption of symmetry of the indifference curves implies that the
slope of any indifference curve equals —1 at the point where the indifference curve
intersects a 45° line through the origin. But —1 is the slope of an opportunity line when
the interest rate is zero. Hence, for this rate, the optimal solutions lie along the 45° line,
with equal consumptions in both periods.
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We may thus rewrite the resource constt_aint (A.2) as
N
Setr=[N—-t+ 1]t =a +[W—t+ 1}
T f

and, by rearranging, obtain

«_ 1 W—t+4+1_
Ct —N_§+1a¢+N__t+1ye
as an explicit ‘ consumption function” for an individual during the {th year
of his participation in the labor force.

The economic meaning of this result can perhaps best be appreciated by
following a hypothetical individual through a complete life cycle. For
concreteness, suppose that his total work expectancy when he enters the
labor force at, say, age 20 is 40 years, after which he anticipates a retirement
period of an additional 10 years; that is, at age 20,¢t = 1, W — ¢ 4+ 1 = 40,
and N.— ¢ 4+ 1 = 50. Suppose, further, that his average annual earnings
‘when he enters employment are expected to be $10,000 and that he expects
to earn exactly this amount in each of the 40 years of employment. (The
assumption of a constant annual income is made at this point solely for the
purpose of isolating the pure retirement effect.) Because he starts with no
inherited or accumulated wealth, his .consumption during his first year of
entry, that is, at ¢t = 1, as given by Equation (A.3), is

«_ 1 40-0 _
4= 0+ 50 10,000 = 8000.

Because his income exceeds his consumption, he is saving and thereby
accumulating capital, so that his wealth at the start of the following period
is $2000. Hence, his consumption during the next year is

«_ 1 40 ~ 1 ===392,000==

¢ =3 2000 + T 10,000 m

Once again, he consumes less than his income, adding a further increment
of $2000 to his wealth. During each of his years in the labor force thereafter
the pattern is repeated. His expected total future income from work falls by
one year’s earnings of $10,000 each year; but his accumulated wealth rises
by an additional $2000, and the number of years of remaining life over
which he must spread his resources falls by one. These forces just balance
to maintain his desired consumption at a level of $8000.

(A.3)

8000. .

By the time he retires he will have accumulated a retirement fund of -

$80,000 (40 years at $2000 per year). His consumption during his first
Year of retirement is then

1
el = 10 80,000 = 8,000,
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Figure A.1 Life Cycle Profile for the Basic Ca.se

and because his income is zero, this $8000 of consumption represents net
dissaving on his part. The decumulation of capital proceeds steadily there-
after until his life and his resources terminate together. (Needless to say,
in the real world, the story does not always have such a neat and happy
ending.) ’

The lifetime profiles of earnings, consumption, saving, and wealth
implied by this highly simplified model are shown in Figures A.1 and A.2.
Several features of these profiles are worth some comment at this point.
Note first the implied difference in “investment objectives’ between the
young and the old—the former being concerned with the growth of their
retirement funds and the latter with their orderly liquidation. Note also the
obvious tendency of the process to lead to a substantial concentration in
the distribution of wealth. If, for example, there were equal total numbers

in each age group and if all entered the labor force at age 20, then despite

our extreme egalitarian distribution of wage income among those still
ah
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Figure A.2 Asset Profile in the Basic Case
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employed, some 55 percent of total wealth would be held by a group
amounting to only 40 percent of the total population, that is, the group of
relatively elderly persons aged between 50 and 70. Note finally that if the
anticipated retirement period is of any sizable length, the volume of wealth
necessary to sustain the intergenerational cycle is quite large in relation to
total labor income. Assuming again equal numbers in each age group, we
find that the ratio of wealth to income is 5 to 1, a figure of about the same
order of magnitude as found in modern industrial societies and one that the
simple life-cycle model can produce without having to invoke any estate
motive for saving.¢

1.D. Consumption and Saving with- a Growing Income

Additional insights into saving behavior are provided when we drop the
assumption of a constant annual income during the working years and
replace it with one involving the steady rise in income over time anticipated
in most occupations. To effect this change, it is convenient to separate
current income and average future income in the resources constraint
(A.2), rewriting it as

N w w
Tad=at+Xy.=at+y+ X y (A4)

T L 1] reait]
=a+y.+ (W =07,

where .41 = average annual income from ¢ + 1 on. Because the change in
assumptions with respect to the income pattern does not affect the optimal
consumption pattern, we still have a solution of the form ¢! = ¢y +++ = ¢, .
and repeating the steps in the previous section, we obtain -

1 1 W—1t
e T j A.
Ce N—t+1al+N—t+1y‘+N——t+lyH-l (A.5)
as the explicit consumption function and
N - 1 W —t
st =y, —cf = d (A.6)

N—t+1? Nt +1®*  N—t+19

! Readers interested in comparing these and subsequent profiles with profiles actually
compiled from survey data can find examples of the latter in ““The ‘Permanent Income’
and ‘Life-Cycle’ Hypotheses of Saving Behavior,” by F. Modigliani and A. Ando, in
Proceedings of the Conference on Consumption and Saving, vol. 2, Philadelphia, 1960, and
in “The Life Cyecle in Income, Saving and Asset Ownership,” by H. Lydall, in Econo-
metrica, April 1955.

The main qualitative discrepancy between these profiles and ours arises from the
fact that the family rather than the individual is really the basic decision unit and the
family typically changes in size over the life cycle. Thus even for extreme consumption
smoothers, family consumption tends to rise as children enter the family, reach a peak
as they reach adolescence, and then decline as they leave home to set up new family
units of their own. Hence, in practice, saving and wealth holdings tend to be even more
concentrated in the upper age groups than our simple models suggest.
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as the explicit savings function in terms of wealth, current income, average
future income, and the life-cycle parameters W, N, and &.

To facilitate comparison with the simpler model in the previous section,
suppose that N and W are 50 and 40 years, as before, and that the in-
dividual’s average annual income over his entire working lifetime is still
$10,000. But let his starting income at ¢ = 1, that is, at calendar age 20,
be only $5125 with a steady annual increment of $250 a year thereafter,
thus reaching a level of $14,875 in the last year before retirement, 40 years
later. Because the total lifetime level of resources is still $400,000, the
actual amount of consumption is also still $8000 per year, as in the case
considered earlier. The pattern of saving and of wealth holdings, however,
is quite different. '

During the first year of entry into the labor force, the individual’s
saving is :

. _ 8 1 §§)_'.394,875 — _og7s

81 50 5125 50 0 50 ——-—-—39 2875.
He is, in short, actually dissaving initially, and financing this excess of
consumption expenditures over current income by borrowing, for example,
by tuition loans to attend graduate school. During the next period, his
income rises by $250, his net wealth becomes —$2875, and his saving for
the year thus becomes '

48 38.389,500 -

) 1
*» .. ., N e m—— (- — — = 25
82 m 5375 m (—2875) 2 38 | -2625.

It is easy to see that with the numerical values assumed, th“is dissaving will

Ceo St y,ﬁl

Ye

8,000 /

.| | ] -
1 10 20 30 40 50 t

Figure A.3 Savings and Consumption Profiles with Rising Income
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-20,000 -
Figure A.4 Asset Profile for the Rising Income Case

continue to diminish steadily by $250 per year and cease altogether after 12
years. It will take another 13 years until his net wealth reaches zero, that
is, until all the debts incurred during the early, low-income years have been
repaid. Hence the entire retirement fund of $80,000 is actually accumulated
during the last 16 years of work, with nearly 20 percent of it actually coming
during the last 2 years before retirement. The profiles of income, con-
sumption, saving, and wealth for this income growth example are shown
graphically in Figures A.3 and A 4.5

* Note, incidentally, that by introducing anticipated income growth over the working
years, we have in effect provided a rationale for the standard Keynesian consumption
function as applied to a cross section of income receivers. By a Keynesian consumption
function we mean one of the form ¢ = a + by, with ¢ > 0 and b, the “marginal pro-
Pensity to consume,” positive, but less than unity. These conditions on & and b imply
that c/y, the average propensity to consume, falls with y or, conversely, that s/y rises
with y. As can readily be seen from Figure A.3, the average propensity to save out of
current income, st/y:, does indeed rise steadily with income during the working years,
although putting the emphasis entirely on income, as is all too often the case in the
standard texts, obscures the basic life cycle and hence age-dependent mechanism at work.
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LE. The Effects of Changes in Income and Wealth -

The consumption and savings functions in the previous section, with
their separate coefficients for current income and expected future income,
" can also be used to show at least the essential rationale for the distinction
- between “ permanent” and “transitory” changes in income that figures so
heavily in recent discussions and controversies over saving behavior.t

Consider, for example, an individual somewhere in the working age
group, say at age 45, that is, at ¢ = 26, for concreteness. Using the previous
values of 40 years and 50 years for the work span and life span respectively,
his consuniption function for the year is

.. 1 1 40 -25—1

-2t T o I AD

0.0404 + 004y¢ + 0.56]7“.1.

Suppose now that the individual received an ‘““unanticipated’” raise in
salary of $100 per year.” Then his permanent labor income has risen by
$100 and his current (and future annual) ¢onsumption expenditures will
rise by 0.04($100) + 0.56($100) = $60. Alternatively and equivalently,
of course, we could say that his lifetime level of resources has risen by
$1500 ($100 in each of the 15 remaining years of employment) ; and because
he spreads his resources equally over his remaining lifetime—in this case,
25 years—his annual consumption rises by $1500/25 or $60 per year.

Suppose, on the other hand, that the $100 raise were in the form of a
bonus that was regarded as purely transitory, that is, as not expected to be
repeated in any subsequent year. Then from Equation (A.7) we see that his
-current (and future annual) consumption will rise by only $4. This much
lower marginal propensity to consume out of transitory labor income
reflects the fact that his lifetime resources have in this case risen by only
8100, with 23 years of life remaining over which consumption is to be
spread.

¢ The classic statement of the permanent income hypothesis is in Milton Friedman,
A Theory of the Consumption Function. Princeton, N.J.: Princeton University Press,
1957.

7 We are, of course, speaking loosely in referring to “‘unanticipated changes.” Given the
certainty assumption of the model, we can really speak validly only of cross-sectional
differences as between individuals, not of changes for a given individual. In the present
context, however, these loose, although expositionally convenient, references to changes
do no great harm, because in these and similar examples in this appendix our concern is
really only with the likely signs and rough relative orders of magnitude of the responses.
For insights at this level of generality, the certainty models are “good enough.”
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il. CONSUMPTION, SAVING, AND THE RATE OF INTEREST®

I.A. .Some Additional Assumptions: Homogeneity and
Its Implications ' .

Having explored some of the basic forces molding consumption and
savings patterns over the life cycle, we now go on to enrich the picture
further by dropping our simplifying assumption that the rate of interest is
zero. As before, our goal is to obtain a simple and transparent consumption
function, and the first step in its derivation is again that of introducing
additional specifications with respect to the utility function. In particular,
we assume that preferences have the following property: If

_ Ul(eii,ert,y. . .,en') = Uledyeddy. . open?),
then U\ Aeoty. . ohewt) = U(herd)Aedy. . . hew?) ;

that is, if the decision maker is indifferent when asked to choose between
two patterns of lifetime consumption ¢ and j, he would also be indifferent
between two patterns that represent a mere proportionate scaling up or
down of 7 and j. '

~ An illustration for a two-period case is provided in Figure A.5. The
points z and y are two particular combinations of ¢, and c. that have equal
utility indexes and hence lie on the same indifference curve. If we draw a
straight line, or ray, from the origin through the point z, any point along
the ray represents the same pattern of consumptions in the two periods as
the point z, although the .absolute amounts differ. At the point 2’, for
example, the total consumption in each period is A, times that of the point
. Our assumption requires that if we now draw the ray through y and find
the point ¥’ = Ay, then y’ lies on the same indifference curve as z’. Because
what is true for the two points  and y is true for all the points on indiffer-
ence curve I, our assumption also means that all indifference curves are
parallel, radial projections of one another.

The important economic consequences of this property can be seen as
soon as we add in the opportunity set. In Figure A.5, for example, the line
KK represents the opportunities available to an individual, the present
value of whose resources is K3, at a time when the interest rate is 1. Because
the indifference curves are radially parallel, we know that the slope of the
indifference curve II at the point ' must also equal — (1 + 1) and hence
that the point z’ is the chosen combination for this value of the interest
rate and a level of initial resources K{ = MK;. Thus, under our assumption,
all expansion paths of tangency points traced out by varying levels of

* This section is intended mainly for those readers with a special interest in the micro
foundations of aggregate savings functions.
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Figure A.5 Homogeneity Postulate

wealth for some given value of r (the analogs of the Engel curves in ordinary
consumer demand theory) are straight lines through the origin.

This property, in turn, has some obvious but important-implications for
the form of the consumption function. The general budget constraint of
Equation (1.28) can be written for an individual with a further work
expectancy of W — ¢ years and a life expectancy of N — ¢ years as

N e w Y
¢ + 2 p =a, 4 Yy, + E T = w,(r),
=TT Q4 aara) =TT (1 A+ aara)
amt+1 w4l
' (A.8)

where w,(r) is the value of lifetime resources as of the start of period ¢.
Because the Engel curves or expansion paths are straight lines through the
origin, we have, between consumption in ¢ and any later period ¢ + 8, the
proportionality relation

Ciyd = kt+l (r) Ct,

where the factor of proportionality, which is, of course, the slope of the
expansion path, is written as k.,s(r) to emphasize its dependence in general
on the level of interest rates but independence of the level of wealth.
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Substituting into Equation (A.8) and simplifying yields

e |1+ )If k(1) = w(r) (A.9)
,-¢+1a H . 1+ .-_,r.,)

" or, equivalently, in consumption function form

‘ ¥ k. (r) -
a=|14+ ¥ — we(r) = v ()wi(r); (A.10)
el H_l (1 + a—lra)

that is, consumption during period ¢ is proportional to lifetime resources at
the start of the period—the specific proportion depending on the stage in
the life cycle and the level of interest rates.

This property of proportionality or linear homogeneity of the con-
sumption function is one that we have already exploited in the previous
examples in Section I, although we arrived at it by a somewhat different
route.? It is also a property that in one form or another has come to play a

central role in many recent theoretical and empirical studies of savings -
behavior.

I1.B, Interest Rates and Consumption Decisions over
the Life Cycle - .

To bring out more sharply some of the main interactions between interest
rates and consumption decisions over the life cycle implicit in a con-
sumption function such as (A.10), it is helpful to specialize the utility
function still further. In particular, we assume that the utility function can

be approximated by a simple, equally weighted product of the standard of
living in each year,

LT(Cz,CH.l,. .o ,CN) = Ct*Ct41°+++ °CN. (A.ll)

Given such a function, which satisfies our assumption of linear, homogeneous
expansion paths and which also preserves the symmetry or zero time
preference of the earlier examples, and given, for further simplicity, that
the rate of interest is the same in all periods, so that the lifetime resources
constraint becomes

. N ¢ w ye ,
oot TE-I (14 r)y— =otyt ,EH (L4 r)—t = w(r), (A.12)

* Our assumption of zero time preference implies in effect that the Engel curve. corre-
sponding to a zero rate of interest is a straight line through the origin. And because
zero was the value that we specifically assumed for the rate of interest, we got the pro-
portionality properties over the particular range we were considering.
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it can readily be shown that the relation between the optimal value of

consumption in year ¢ and that in any subsequent period r is
F=cf(1+ry (A.13)

that is, for this particular form of the utility function and constraint set
k() = (L4 )0

Substituting once again for the ¢, or the left-hand side of Equation (A.9),
the terms (1 + 7)? cancel, and we obtain

SNk —t
el X il + 1)

(1 4+ 7r)r-t =cf(N—t+1) = w(r) (A.14)
il

or in consumption function form

ot

1 | o 1x
= [N———-—-—_ T 1] w(r). : (A.15)

Thus, for the special utility function that we have chosen, the propor-
tionality factor v.(r) can be stated in terms of the life-cycle parameters N

and ¢ as simply 1/[N — ¢ 4+ 1], exactly the same factor as in our earlier
examples.!! ;

As for the income and asset components of w,(r), assume for simplicity,
as well as to provide a direct basis of comparison with- earlier examples,
that the rate of labor earnings is a constant amount y during each year
of employment. If so,

w "
wl(r) =a,+ Y. + Z —_—y't-tl': =aqa,+ Y. -+ A(T, W - t)y-g+1, (A.lﬁ)
met1 (1 7)

10 We leave the proof as an exercise for any student who may feel in need of some further
drill.

1 That v:(r) is independent of r is & consequence of the particular utility function used—
Equation (A.11)—and does not rest on our further simplifying assumption of constant
interest rates. Equation (A.15) would continue to hold in exactly that form even if
interest rates differed from period to period.

Note also that Equation (A.15) is essentially the Friedman form of the consumption
function. For empirical testing, however, and especially for facilitating comparison
with the Keynesian form, he prefers to state it not in terms of the stock variable
we(r) but in terms of a flow variable that he dubbed permanent income (see Section
LE.). In principle, at least, the conversion is simple: let F(r; N —~1 + 1) = the
capital recovery factor for N — ¢ + 1 years at the rate r—see Equation (1.24)—and let
¥® = permanent income at the start of ¢ = w,(r) - F(r; N — ¢+ 1);and let a; =
(1/N -t +1)/F(r; N—1t+1). Then the equivalent permanent income form of
Equation (A.15) would be ¢ = ay®.
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where the term A (r; W — t) denotes the present value of an annuity of $1
for W — t years at the rate r—see Equation (1.23)—and #4118 the uniform,
and hence also average, labor income from ¢ 4 1 on. Combining Equations
(A.15) and (A.16), we thus have as our explicit consumption function in
terms of the life-cycle parameters N, W and ¢, labor income, financial
assets, and the rate of interest
. _ 1 1 A(r; W —1t)

c‘—-N-t+‘1a‘+N—t+1‘+ t+1yc+1
Note that for the special case of r = 0, Equatlon (A.17) reduces exactly
to our earlier consumption functions, such as (A.5), because A (O; W — t) =
W — t.Forr > 0, of course, A(r; W — &) < W — .

It is useful to have variants of Equation (A.17) running in terms of
total current income, that is, labor income plus interest income, rather than
of labor income alone. In particular, if we define wi-; as the value of any
assets carried over before the addition of the interest earned, so that
wi-1(1 + 1) = a, then Wwe can rew. rite Equation (A.17) as

(A.17)

‘ 1 1 A(r; W t) _
* - P g e AT
‘C¢ N_t+1u:—1+N_t+1[ru¢-1+ye]+ N—t+1 Gerr
_ ' (A.18)
and the corresponding saving function as
1+ N -t
st = Ye + rwiog — &t = (T_N—_+t-}———l) wi-x+myz
AW - t) o 1 !
-t+1y‘+“ N—t+1°
N Alr,W-—=1t)
+ [—T:l-] (y: + rwiz) — W(——_t:}-—]:— Je.  (A.19)

For purposes of comparison with the results in Section I, suppose again
that N and W are 50 and 40 years, respectively, that y, is $10,000 in each
year of the working life, and that the annual interest rate is 4 percent.
Then, during the first year in which the individual enters the labor force,
. his consumption is
19.58 20.58

———0+-—10000+— 0000==—-5—0-10000 = 4117,

and his saving for the year is

e* o _1_0_4) gg 19.58 _ 2942 _
s (004 =5 ) 0 T 55 10,000 — == 10,000 = —=10,000 = 5883.




56 Certainty Models

The corresponding figures for the zero interest rate model, it will be recalled,
were $8000 for consumption and $2000 for saving. What has happened, of
course, is that the prospect of a 4 percent return on savings has led him to
reduce his immediate consumption substantially—the loss in utility due to
this reduction being compensated for by the higher level of consumption

_and utility that this abstinence makes possible in subsequent years. During
the next year, for example, his income will rise by the $235 of interest
earned on his fund of $5883, and his consumption will increase to

o= (1424) 5883+ 10000+19—3—710000=4281

and his saving to

s = (o 04 — %4) 5883 + = 10 000 — 1?137 10,000 = 5984.

" By year ¢t = 18, his consumptioh will have regained the $8000 level, and in
the first year of retirement at ¢ = 41 it will have increased to slightly more
than $19,000 for the year. The sum total of his consumption expenditures

over his entire lifetime will be more than a million dollars, as compared
with only $400,000 in the no-interest case, the entire difference representing
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Figure A.6 Savings and Consumption Profiles with a Nonzero Interest Rate
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the investment earnings on his accumulated savings. Such is the power
" of compound interest!

The profiles of earnings, consumption, saving, and wealth are presented
graphically in Figures A.6 and A.7.
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Figure A.7 Asset Profile for the Case of a Nonzero Interest Rate




