SIMPLIFY INPUTS --

SINGLE INDEX CASE

September 2000

A little later we will look at the solution after we have put some more structure on the problem. This will give us greater insight.

inputs		N = 10	N = 100	N = 200
\overline{R}_{i}	Ν	10	100	200
s_{i}	Ν	10	100	200
r_{ik} or s_{ik}	<u>N (N-1)</u>	<u>90</u>	<u>9,900</u>	<u>39,800</u>
	2	2	2	2

Analysts may be able to estimate \overline{R}_i and s_i , but covariance comes from models. Thus, index models were developed to estimate covariances. Many more uses have been developed for them and they have become very important.

Index Models

A. Single index = splits return into unique and systematic.

Unique Part

$$R_{it} = a_i + b_i R_{mt} + e_{it}$$

Systematic Part

Where

- (1) $E(e_i) = 0$ (2) $E(e_i e_j) = 0$ all i and j (3) $E(R_m e_i) = 0$
- (4) \boldsymbol{a}_{i} and \boldsymbol{b}_{i} are constants

1. Expected Value

$$\overline{R}_{i} = E\left(R_{i}\right) = E\left(a_{i} + b_{i}R_{mt} + e_{it}\right)$$
$$= E\left(a_{i}\right) + E\left(b_{i}R_{mt}\right) + E\left(e_{it}\right)$$

$$= a_{i} + b_{i} \overline{R}_{m}$$

2. Variance

$$s_{i}^{2} = E\left(R_{it} - \overline{R}_{i}\right) = E\left[\left(a_{i} + b_{i}R_{mt} + e_{it}\right) - \left(a_{i} + b_{i}\overline{R}_{m}\right)\right]^{2}$$
$$= E\left[b_{i}\left(R_{mt} - \overline{R}_{m}\right) + e_{it}\right]^{2}$$
$$s_{i}^{2} = E\left[b_{i}^{2}\left(R_{mt} - \overline{R}_{m}\right)^{2} + 2b_{i}e_{it}\left(R_{mt} - \overline{R}_{m}\right) + e_{it}^{2}\right]$$
$$= b^{2}E\left[R_{mt} - \overline{R}_{m}\right]^{2} + E\left[e_{i}\right]^{2}$$

$$=\boldsymbol{b}_{i}^{2} \mathbf{E} \left(\mathbf{R}_{mt} - \overline{\mathbf{R}}_{m}\right)^{2} + \mathbf{E} \left(\boldsymbol{e}_{i}\right)^{2}$$

3. Covariance

$$\mathbf{s}_{ij} = E\left[\left(R_{it} - \overline{R}_{i}\right)\left(R_{jt} - \overline{R}_{j}\right)\right]$$

$$= \mathbf{E}\left[\left(\mathbf{a}_{i} + \mathbf{b}_{i}\mathbf{R}_{mt} + \mathbf{e}_{it}\right) - \left(\mathbf{a}_{i} + \mathbf{b}_{i}\overline{\mathbf{R}}_{mt}\right)\right]$$

$$\left[\left(\boldsymbol{a}_{j}+\boldsymbol{b}_{j}R_{mt}+\boldsymbol{e}_{jt}\right)-\left(\boldsymbol{a}_{j}+\boldsymbol{b}_{j}\overline{R}_{mt}\right)\right]$$

$$= E\left[\left(\boldsymbol{b}_{i}\left(\boldsymbol{R}_{mt} - \overline{\boldsymbol{R}}_{m}\right) + \boldsymbol{e}_{it}\left(\boldsymbol{b}_{j}\left(\boldsymbol{R}_{mt} - \overline{\boldsymbol{R}}_{m}\right) + \boldsymbol{e}_{jt}\right)\right]$$

$$= \boldsymbol{b}_{i} \boldsymbol{b}_{j} \boldsymbol{E} \left(\boldsymbol{R}_{mt} - \overline{\boldsymbol{R}}_{m} \right)^{2} + \boldsymbol{b}_{j} \boldsymbol{E} \left[\left(\boldsymbol{R}_{mt} - \overline{\boldsymbol{R}}_{m} \right) \boldsymbol{e}_{it} \right]$$

$$+ \boldsymbol{b}_{i} \mathbf{E} \left[\left(\mathbf{R}_{mt} - \overline{\mathbf{R}}_{m} \right) \boldsymbol{e}_{jt} \right] + \mathbf{E} \left(\boldsymbol{e}_{i} \boldsymbol{e}_{j} \right)$$

$$= \boldsymbol{b}_{i} \boldsymbol{b}_{j} \boldsymbol{s}_{R}^{2} + E \left(\boldsymbol{e}_{i} \boldsymbol{e}_{j} \right)$$

	Observe			
Date	Return GM	Return Market		
Dec	11	5		
Nov	3	4		
Oct	7	7		
Sept	0	-2		
Aug	6	4		
July	<u>9</u> 36	<u>6</u> 24		

Good Fairy says Beta = 1

Return Gm	(constant) +	Beta (return market)	0
0111	<u>a</u>	$\underline{b_i^{R}}$ mt ⁺	<u>- e_{it}</u>
11	2	5	4
3	2	4	-3
7	2	7	-2
0	2	-2	0
6	2	4	0
<u>9</u> 36	<u>2</u> 12	<u>6</u> 24	<u>+1</u> 0

Did the Good Fairy <u>lie</u>???

Assume b = 1.5

Return

GM	a	b _R_m	+ <i>e</i>
11	0	7.5	3.5
3	0	6	-3
7	0	10.5	-3.5
0	0	-3	3
6	0	6	0
<u>9</u> 36	<u>0</u> 0	<u>9</u> 36	<u>0</u> 0

Covariance with market

$\underline{\boldsymbol{b}=1}$	b =1.5
1 * 4 = 4	1 * 3.5 = 3.5
0 * -3 = 0	0 * -3 = 0
3 * -2 = -6	3 * -3.5 = -10.5
-6 * 0 = 0	-6 * 3 = -18
0 * 0 = 0	0 * 0 = 0
$\frac{2 * 1 = 2}{0}$	<u>2 * 0 = 0</u> -25

$$\boldsymbol{b}_{i} = \frac{\operatorname{cov}\left(\operatorname{R}_{i}\operatorname{R}_{m}\right)}{\operatorname{Var}\left(\operatorname{R}_{m}\right)}$$

<u>Note</u>:

(1). Mean return unchanged

$$\overline{R}_{i} = a_{i} + b_{i}\overline{R}_{m}$$

6=2+1.4

(2). Standard deviation unchanged

$$s_i^2 = b_i^2 s_m^2 + s_{e_i}^2$$

 $13\frac{1}{3} = 1^2 \cdot 8\frac{1}{3} + 5$

(3). Only change is covariance

$$E\left(e_{i}e_{j}\right)=0$$

True <u>only</u> by assumption.

Economic content is only reason securities move together is common response to market movements.

	Consider Ford				
<u>Month</u>	Return	<u>a</u>	b _R	e 1	
Dec	9.5	2	7.5	0	
Nov	7.5	2	6	5	
Oct	9.5	2	10.5	-3	
Sept	-2	2	-3	-1	
Aug	11	2	6	+3	
July	<u>12.5</u> 48	<u>2</u> 12	<u>9</u> 36	<u>1.5</u> 0	

$$\frac{\text{cov}\left(R,R,i\right)}{5*1.5=7.5} \qquad E\left(e,e,i\right) \\ 4*0=0 \\ -3*-.5=+1.5 \\ 1*1.5=1.5 \\ -6*-10=60 \\ 0*3=0 \\ 3*4.5=\frac{13.5}{84} \\ 1*1.5=\frac{1.5}{9}$$

$$\operatorname{cov}\left(\operatorname{R}_{i}\operatorname{R}_{j}\right) = \boldsymbol{b}_{i}\boldsymbol{b}_{j}\boldsymbol{s}_{m}^{2} + \operatorname{E}\left(\boldsymbol{e}_{i}\boldsymbol{e}_{j}\right)$$
$$= 1 \cdot (1.5)(8\frac{1}{3}) + 1.5$$
$$14 = 12\frac{1}{2} + 1.5$$

Adjusting Beta

<u>True</u>	.6	.8	1.0	1.2	1.4
1.2			.2	.6	.2
1.0		.2	.6	.2	
.8	.2	.6	.2		

Extremely high betas likely upper Tail of a true lower beta thus

- (1) Improve if adjust to mean
- (2) Improve if use information about company

Some Adjustment Techniques

I. Blumes

Companies
 1985-1990
 1990-1995

 1

$$\boldsymbol{b}_{11}$$
 \boldsymbol{b}_{21}

 2
 \boldsymbol{b}_{12}
 \boldsymbol{b}_{22}

 3
 \boldsymbol{b}_{13}
 \boldsymbol{b}_{23}

Get adjustment from first to second period

$$\boldsymbol{b}_{i2} = a + b \boldsymbol{b}_{i1} + e_i$$

This shows normal adjustment to forecast for 1995-2000.

$$\boldsymbol{b}_{adj} = \hat{a} + \hat{b} \boldsymbol{b}_{i2}$$

II. Vasichek

Puts more weight on mean if imperfect estimates of Beta.

III. Fundamentals

$$\boldsymbol{b}_{adj} = \boldsymbol{b}_{hist}$$
 + fundamentals

- a. Dividend Payment
- b. Growth

+ firm variables