SIMPLIFY INPUTS --

SINGLE INDEX CASE

A little later we will look at the solution after we have put some more structure on the problem. This will give us greater insight.
inputs
$\mathrm{N}=10$
$\mathrm{N}=100$
$\mathrm{N}=200$
$\overline{\mathrm{R}}{ }_{i}$
10
100
200
σ_{i}
N
10
100
200
ρ_{ik} or $\sigma_{\mathrm{ik}} \frac{\mathrm{N}(\mathrm{N}-1)}{2} \quad \frac{90}{2} \quad \frac{9,900}{2} \quad \frac{39,800}{2}$

Analysts may be able to estimate \bar{R}_{i} and σ_{i}, but covariance comes from models. Thus, index models were developed to estimate covariances. Many more uses have been developed for them and they have become very important.

Index Models

A. Single index $=$ splits return into unique and systematic.

Unique Part

$$
\mathrm{R}_{\mathrm{it}}=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{R}_{\mathrm{mt}}+\varepsilon_{\mathrm{it}}
$$

Systematic Part

Where

(1) $E\left(\varepsilon_{i}\right)=0$
(2) $E\left(\varepsilon_{i} \varepsilon{ }_{j}\right)=0$
all \mathbf{i} and \mathbf{j}
(3) $\mathrm{E}\left(\mathrm{R}_{\mathrm{m}}^{\mathrm{i}} \mathrm{\varepsilon}_{\mathrm{i}}\right)=0$
(4) α_{i} and β_{i} are constants

1. Expected Value

$$
\begin{aligned}
\bar{R}_{i}=E\left(R_{i}\right) & =E\left(\alpha_{i}+\beta_{i} R_{m t}+\varepsilon_{i t}\right) \\
& =E\left(\alpha_{i}\right)+E\left(\beta_{i} R_{m t}\right)+E\left(\varepsilon_{i t}\right) \\
& =\alpha_{i}+\beta_{i} \bar{R}_{m}
\end{aligned}
$$

2. Variance

$$
\begin{aligned}
& \sigma_{\mathrm{i}}^{2}=\mathrm{E}\left(\mathrm{R}_{\mathrm{it}}-\overline{\mathrm{R}}_{\mathrm{i}}\right)=\mathrm{E}\left[\left(\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{R}_{\mathrm{mt}}+\varepsilon_{\mathrm{it}}\right)-\left(\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \overline{\mathrm{R}}_{\mathrm{m}}\right)\right]^{2} \\
& =\mathrm{E}\left[\beta_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{mt}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)+\varepsilon_{\mathrm{it}}\right]^{2} \\
& \sigma_{\mathrm{i}}^{2}=\mathrm{E}\left[\beta_{\mathrm{i}}^{2}\left(\mathrm{R}_{\mathrm{mt}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)^{2}+2 \beta_{\mathrm{i}} \varepsilon_{\mathrm{it}}\left(\mathrm{R}_{\mathrm{mt}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)+\varepsilon_{\mathrm{it}}^{2}\right]
\end{aligned}
$$

$$
=\beta_{\mathrm{i}}^{2} \mathrm{E}\left(\mathrm{R}_{\mathrm{mt}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)^{2}+\mathrm{E}\left(\varepsilon_{\mathrm{i}}\right)^{2}
$$

3. Covariance

$$
\sigma_{i j}=E\left[\left(R_{i t}-\bar{R}_{i}\right)\left(R_{j t}-\bar{R}_{j}\right)\right]
$$

$$
=E\left[\left(\alpha_{i}+\beta_{i} R_{m t}+\varepsilon_{i t}\right)-\left(\alpha_{i}+\beta_{i} \overline{\mathrm{R}}_{\mathrm{mt}}\right)\right]
$$

$$
\left[\left(\alpha_{j}+\beta_{j} R_{m t}+\varepsilon_{j t}\right)-\left(\alpha_{j}+\beta_{j} \bar{R}_{m t}\right)\right]
$$

$$
=E\left[\left(\beta_{i}\left(R_{m t}-\bar{R}_{m}\right)+\varepsilon_{i t}\right)\left(\beta_{j}\left(R_{m t}-\bar{R}_{m}\right)+\varepsilon_{j t}\right)\right]
$$

$$
\begin{aligned}
& =\beta_{i} \beta_{j} E\left(R_{m t}-\bar{R}_{m}\right)^{2}+\beta_{j} E\left[\left(R_{m t}-\bar{R}_{m}\right) \varepsilon_{i t}\right] \\
& +\beta_{i} E\left[\left(R_{m t}-\bar{R}_{m} \varepsilon_{j t}\right]+E\left(\varepsilon_{i} \varepsilon_{j}\right)\right. \\
& =\beta_{i} \beta_{j} \sigma_{R_{m}}^{2}+E\left(\varepsilon_{i} \varepsilon_{j}\right)
\end{aligned}
$$

| Date | Observe | |
| :--- | :---: | :---: | \(\left.\begin{array}{r}Return

Market\end{array}\right\}\)

Good Fairy says Beta $=1$

Return Gm	(constant) + \qquad α_{i} \qquad	Beta (return market) \qquad $\beta_{i} \mathrm{R}_{\mathrm{mt}}{ }^{+}$ \qquad	$\underline{\varepsilon_{i t}}$
11	2	5	4
3	2	4	-3
7	2	7	-2
0	2	-2	0
6	2	4	0
$\frac{9}{36}$	$\frac{2}{12}$	$\frac{6}{24}$	$\frac{+1}{0}$

Did the Good Fairy lie???

Assume $\beta=1.5$

Return GM	α_{i}	$\beta_{i} R_{m}$	$+\varepsilon_{i}$
11	0	7.5	-3.5
3	0	6	-3
7	0	10.5	-3.5
0	0	-3	3
6	0	6	0
$\frac{9}{36}$	$\frac{0}{0}$	$\frac{9}{36}$	$\frac{0}{0}$

Covariance with market

$$
\begin{array}{ll}
\frac{\beta=1}{1 * 4=4} & \frac{\beta=1.5}{1 * 3.5=3.5} \\
0 *-3=0 & 0 *-3=0 \\
3 *-2=-6 & 3 *-3.5=-10.5 \\
-6 * 0=0 & -6 * 3=-18 \\
0 * 0=0 & 0 * 0=0 \\
\frac{2 * 1=2}{0} & \frac{2 * 0=0}{-25}
\end{array}
$$

Note:
(1). Mean return unchanged

$$
\begin{aligned}
& \overline{\mathrm{R}}_{\mathrm{i}}=\alpha_{i}+\beta_{i} \overline{\mathrm{R}}_{\mathrm{m}} \\
& 6=2+1 \cdot 4
\end{aligned}
$$

(2). Standard deviation unchanged

$$
\begin{aligned}
& \sigma_{\mathrm{i}}^{2}=\beta{ }_{\mathrm{i}}^{2} \sigma_{\mathrm{m}}^{2}+\sigma_{\mathrm{i}}^{2} \\
& 131 / 3=1^{2} \cdot 81 / 3+5
\end{aligned}
$$

(3). Only change is covariance
$E\left(\varepsilon_{i} \varepsilon_{j}\right)=0$
True only by assumption.
Economic content is only reason securities move together is common response to market movements.

Consider Ford

Month	Return	α_{i}	$\beta_{i} \mathrm{R}_{\mathrm{m}}$	ε_{i}
Dec	9.5	2	7.5	-1
Nov	7.5	2	6	-.5
Oct	9.5	2	10.5	-3
Sept	-2	2	-3	-1
Aug	11	2	6	+3
July	$\frac{12.5}{48}$	$\frac{2}{12}$	$\frac{9}{36}$	$\frac{1.5}{0}$

$$
\begin{aligned}
& 5 \text { * } 1.5=7.5 \\
& -3^{*}-.5=+1.5 \\
& 1 \text { * } 1.5=1.5 \\
& -6 \text { * }-10=60 \\
& 0 \text { * } 3=0 \\
& 3 * 4.5=\frac{13.5}{84} \\
& 0 * 3=0 \\
& 1 * 1.5=\frac{1.5}{9} \\
& \operatorname{cov}\left(R_{i} R_{j}\right)=\beta_{i} \beta_{j} \sigma_{m}^{2}+E\left(\varepsilon_{i} \varepsilon_{j}\right) \\
& =1 \cdot(1.5)(81 / 3)+1.5 \\
& 14=121 / 2+1.5
\end{aligned}
$$

Adjusting Beta

True	.6	.8	observe 1.0	1.2	1.4
1.2			.2	.6	.2
1.0		.2	.6	.2	
.8	.2	.6	.2		

Extremely high betas likely upper
Tail of a true lower beta thus
(1) Improve if adjust to mean
(2) Improve if use information about company

Some Adjustment Techniques

I. Blumes

Companies
1985-1990
1990-1995

1

β_{21}

2

β_{22}

3

β_{23}

Get adjustment from first to second period

$$
\beta_{i 2}=a+b \beta_{i 1}+e_{i}
$$

This shows normal adjustment to forecast for 19952000.

$$
\beta_{\mathrm{adj}}=\hat{\mathrm{a}}+\overline{\mathrm{b}} \beta_{\mathrm{i} 2}
$$

II. Vasichek

$$
\beta_{\mathrm{adj}}=\frac{\sigma_{\beta_{\mathrm{i} 1}^{2}}^{\sigma_{\beta_{1}}^{2}+\sigma_{\beta}^{2}} \bar{\beta}_{\mathrm{i} 1}}{\sigma_{\bar{\beta}_{1}}^{2}+\sigma_{\beta_{\mathrm{i} 1}^{2}}^{2}} \beta_{\mathrm{il}}
$$

Puts more weight on mean if imperfect estimates of Beta.
III. Fundamentals

$$
\beta_{\mathrm{adj}}=\beta_{\mathrm{hist}}+\text { fundamentals }
$$

a. Dividend Payment
b. Growth

+ firm variables

