OBJECTIVE FUNCTIONS

Fall 2000

Objective Functions

Trade-off is not explicitly made.

II. Trade-off explicit:

A. Use utility functions

Problem is specifying utility.

B. Specify risk tolerance.

By tradition, divide variance by risk tolerance.

Mean Return

risk adjusted expected return

Example:

$$\bar{r}$$
 = 12 S = 15

Tolerance = 50

Risk adjusted expected return: $12 - \frac{225}{50} = 7 \frac{1}{2}$

Same issue is how tolerance specified but maybe easier to work with investor to determine range.

- III. Safety first criteria (emphasis is on avoidance of risk).
- A. Roy's Criteria:

Minimize Prob
$$\left(R_{p} < R_{L}\right)$$

B. Katoka's Criteria

$$\quad \text{Maximize} \ R_L$$

Subject to:
$$Prob\left(R_{P} < R_{L}\right) \le a$$

C. Telser's Criteria

$$\text{Max } \overline{R}_P$$

Subject to:
$$\operatorname{Prob}\left(R_{P} \leq R_{L}\right) \leq a$$

Analysis of criteria:

The following analysis assumes normal returns.

A. Consider Roy's criteria:

$$\text{Min Prob} \left[\begin{matrix} R \\ P \end{matrix} < \begin{matrix} R \\ L \end{matrix} \right]$$

Thus, want to maximize:

$$\frac{\overline{R}_{P}^{-R}L}{\sigma_{P}}$$

 \boldsymbol{R}_L serves as role of \boldsymbol{R}_F

$$\boldsymbol{R}_L$$
 serves as role of \boldsymbol{R}_F

B. Katoka's criteria

$$\text{Maximize } R_L$$

Subject to:

$$|Prob| \left(R_{P} < R_{L} \right) \le a$$

$$R_{L} \leq \overline{R}_{P} - Ks_{P}$$

Where K is set to match above constraint - example 1.65.

Expression of straight line

Note if riskless lending and borrowing get funny results.

Consider Telser's criteria:

$$_{\text{max}}\,\overline{R}_{P}$$

Subj to Prob
$$\left(\begin{matrix} R \\ P \end{matrix} \le R \right) \le a$$

Constraint is:

$$R_{L} \leq \overline{R}_{P} - Ks_{P}$$

