
TRACE INVARIANTS ASSOCIATED WITH
QUOTIENT MODULES OF THE HARDY MODULE

Yi Wang1 and Jingbo Xia

Abstract. We consider the quotient module Q of the Hardy module H2(S) defined by an
analytic set M̃ satisfying certain conditions. A representation for the orthogonal projection
Q : L2(S, dσ)→ Q was derived in [26], which allowed us to prove the geometric Arveson-
Douglas conjecture for Q. In this paper we derive a new representation for Q, which
makes it possible for us to take the next step: We show that for f, g ∈ Lip(S), the double
commutator [Mf , [Mg, Q]] is in the Schatten class Cp for p > dimCM̃ . This Schatten-class
membership leads to a number of results for trace invariants on Q and H2(S). In addition,
we report an unexpected discovery: if dimCM̃ = 1, then Q is 1-essentially normal. This
is a stronger result than the prediction of the Arveson-Douglas conjecture.

1. Introduction

This paper is a continuation of the work in [26]. As such, we will follow the notations
in [26]. To discuss what we will do in this paper, let us first recall the setting in [26].

Denote B = {z ∈ Cn : |z| < 1} and S = {z ∈ Cn : |z| = 1} as usual. Let H2(S) be
the Hardy space on S. Consider an analytic subset M̃ of an open neighborhood of B with
1 ≤ d ≤ n − 1, where d = dimCM̃ . We assume that M̃ has no singular points on S and
that M̃ intersects S transversely. Denote M = B ∩ M̃ . Then we have a submodule

R = {f ∈ H2(S) : f = 0 on M}

of H2(S). The corresponding quotient module is

Q = H2(S)	R.

Both R and Q are the focus of the Arveson-Douglas conjecture [1,2,10], which commands
intense current research interest [4,11,13-15,19,23,25].

In [26], the geometric Arveson-Douglas conjecture was proved for Q. That is, we
showed that Q is p-essentially normal for p > d. Central to this essential normality is the
orthogonal projection

Q : H2(S)→ Q.

It was shown that if f is a Lipschitz function on S, then the commutator [Mf , Q] is in the
Schatten class Cp for every p > 2d [26, Proposition 8.3], which implies that the Geometric
Arveson-Douglas conjecture holds for the quotient module Q.
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For the Bergman space L2
a(B), the analogous result was proved earlier in [25]. Taking

[25] as a guide, we see that more can be done in the Hardy-space case. Specifically, here
we are referring to [25, Proposition 5.11], which says that, in the Bergman-space case, the
double commutator [Mf , [Mg, Q]] improves the Schatten-class membership of the single
commutator [Mg, Q]. This improved Schatten-class membership has implications in terms
of trace invariants [25, Theorem 1.8] in the Bergman-space case.

Thus an obvious question for the Hardy-space case is, what about the Schatten-class
membership of the double commutator [Mf , [Mg, Q]]? This is a question that we did not
address in [26], for two reasons. First, much of [26] was devoted to the proof of [26, Theorem
1.3], a somewhat unexpected compactness criterion onQ, which certainly deserved priority.
Second, and more important, the handling of the double commutator [Mf , [Mg, Q]] in the
Hardy-space case involves a non-trivial hurdle that does not exist in the Bergman-space
case. Let us explain where the difficulty lies.

In [26], the proof of the Schatten-class membership for [Mf , Q] relied on the inequality

(1.1) cQ ≤ Tµ ≤ CQ,

where 0 < c ≤ C <∞. Here, µ is an explicitly given measure on M , and

(1.2) Tµ =

∫
M

Kw ⊗Kwdµ(w),

where

(1.3) Kw(ζ) =
1

(1− 〈ζ, w〉)n
,

which is the reproducing kernel for the Hardy space H2(S). (1.1) and (1.2) give us a
reasonably good handle on Q, which is why we were able to do what we did in [26].

In the case of the Bergman space L2
a(B), the analogues of (1.1) and (1.2) also hold

[14,25]. But the difference is that in the Bergman-space case, the reproducing kernel is

(1.4) KBerg
w (ζ) =

1

(1− 〈ζ, w〉)n+1
.

Because the power on the right-hand side of (1.4) is n + 1, we were able to deal with the
double commutator [Mf , [Mg, Q]] in [25]. Because the power on the right-hand side of
(1.3) is n, we were only able to obtain the desired Schatten-class membership for the single
commutator [Mf , Q] in [26].

Let us explain the difficulty in more detail. After taking the commutator of Tµ once,
the requisite estimates will “consume” 1 unit in the power of the reproducing kernel. In
the case of (1.3), n − 1 will coincide with d when M̃ has the maximum dimension n − 1.
That is why, in the Hardy-space case, (1.1) and (1.2) only allow us to handle the single
commutator [Mf , Tµ]. In contrast, in the Bergman-space case, by taking commutator once,

2



the same consumption of 1 unit of power only reduces the power in (1.4) to n+ 1− 1 = n,
which is still greater than any 1 ≤ d ≤ n− 1, and which allows us to take commutator one
more time.

Thus we see precisely what the difficulty is: If we want to show that in the Hardy-space
case, the double commutator [Mf , [Mg, Q]] also has an improved Schatten-class member-
ship over the single commutator [Mg, Q], we will have to somehow “raise the power in
(1.3)”. This means that we are looking for an operator inequality of the form

(1.5) cQ ≤ T ′ ≤ CQ,

where T ′ is constructed from “kernels with power greater than n”.

We are pleased to report that we have managed to find such a T ′, although it is
quite technical to describe it. Therefore we are able to obtain the desired Schatten-class
membership for [Mf , [Mg, Q]] in the Hardy-space case. Consequently, the trace results in
[25] can be proved in the Hardy-space case. We state our results below.

Theorem 1.1. For any Lipschitz functions f , g on S, the double commutator [Mf , [Mg, Q]]
is in the Schatten class Cp for every p > d.

We write σ for the spherical measure on S with the normalization σ(S) = 1. Let
P : L2(S, dσ) → H2(S) be the orthogonal projection. Recall that for f ∈ L∞(S, dσ), the
Toeplitz operator Tf is defined by the formula

Tf = PMf

∣∣H2(S).

Let R be the orthogonal projection from L2(S, dσ) onto R. Then P = R +Q. Given any
f ∈ L∞(S, dσ), we define the operators

Rf = RMf

∣∣R and Qf = QMf

∣∣Q.
We think of Rf and Qf as “Toeplitz operators” for the submodule R and the quotient
module Q respectively.

Given operators A1, . . . , Ak on a Hilbert space H, one has the antisymmetric sum

[A1, . . . , Ak] =
∑
σ∈Sk

sgn(σ)Aσ(1) · · ·Aσ(k).

This was first introduced by Helton and Howe in [21], and has since become an important
part of operator theory [8,12]. As it turns out, operators of the types Tf , Rf and Qf make
particularly interesting antisymmetric sums. In fact, Theorem 1.1 leads to

Theorem 1.2. Let ` > d. Then for any Lipschitz functions f1, f2, . . . , f2` on S, the
antisymmetric sum

[Qf1 , Qf2 , . . . , Qf2` ]

is in the trace class with zero trace.
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This is the Hardy-space analogue of [25, Theorem 1.8]. But, as we explained above,
the proof in the Hardy-space case requires extra efforts. These extra efforts, however, are
well justified by the implications of Theorem 1.2, of which we present two below.

Let T (C(S)) be the C∗-algebra generated by the Toeplitz operators {Tf : f ∈ C(S)}.
It is well known that we have the exact sequence

(1.6) {0} → K(H2(S))→ T (C(S))→ C(S)→ {0}

of C∗-algebras. By the BDF theory, this represents an element in the extension group
Ext(S) [5,9]. Let T R(C(S)) be the C∗-algebra generated by the operators {Rf : f ∈ C(S)}
on R. Then it is easy to show that we also have the exact sequence

(1.7) {0} → K(R)→ T R(C(S))→ C(S)→ {0},

which also represents an element in Ext(S). From Theorem 1.2 we will deduce

Theorem 1.3. Exact sequences (1.6) and (1.7) represent the same element in Ext(S).

The second implication of Theorem 1.2 is more straightforward:

Theorem 1.4. For any Lipschitz functions f1, f2, . . . , f2n on S, the difference

(1.8) [Tf1 , Tf2 , . . . , Tf2n ]− [Rf1 , Rf2 , . . . , Rf2n ],

as an operator on H2(S), is in the trace class with zero trace.

Remark 1. It should be pointed out that the fact that (1.8) is in the trace class actually
follows from the work in [26]. What is new for this paper is to show that the trace of (1.8)
is zero, and Theorem 1.2 is an indispensable step in this endeavor.

Remark 2. Because we only assume that f1, f2, . . . , f2n ∈ Lip(S), we do not know if the
individual antisymmetric sums

[Tf1 , Tf2 , . . . , Tf2n ], [Rf1 , Rf2 , . . . , Rf2n ]

are in the trace class. Regardless, Theorem 1.4 tells us that the difference of the two is in
the trace class with zero trace.

Next we switch gears and take another look at the Arveson-Douglas conjecture [1,2,10]
itself. Write ζ1, . . . , ζn for the coordinate functions on Cn. In our setting, the prediction of
the geometric Arveson-Douglas conjecture is that for all i, j ∈ {1, . . . , n}, the commutator
[Qζi , Q

∗
ζj

] is in the Schatten class Cp for p > d, which we proved in [26]. A short way of
saying this is that the quotient module Q is p-essentially normal for p > d. What has so
far eluded all investigators is the fact that the case d = 1 is special. In this case, as an
unexpected discovery, we report a result that is stronger than the original prediction of
the Arveson-Douglas conjecture:

Theorem 1.5. In the case d = 1, the quotient module Q is 1-essentially normal. That is,
if d = 1, then for every pair of i, j ∈ {1, . . . , n}, the commutator [Qζi , Q

∗
ζj

] belongs to the
trace class C1.
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The reader will see that the proof of Theorem 1.5 requires a technique that is distinctly
different from the techniques in the proofs of Theorems 1.1-1.4.

The rest of the paper is organized as follows. In Section 2 we first record the precise
definitions of M̃ , M , R, Q etc, and then we collect a number of results that will be needed
in the subsequent sections. Section 3 is the key to the proofs of Theorems 1.1-1.4, in
which we prove a version of Hardy’s inequality on M . In Section 4 we introduce the kernel
Kw,u associated with derivatives in the tangential directions of M . Such a Kw,u serves our
purpose: it has a power n+ 1 in the denominator. Using these kernels, we then construct
the T ′ promised above. The conclusion of Section 4 is that (1.5) indeed holds, which is
proved using the inequalities in Section 3.

Section 5 contains estimates for operators that are discrete sums constructed from
Kw,u over lattices in B. With these estimates established, we prove Theorem 1.1 in
Section 6. The proofs of Theorems 1.2, 1.3 and 1.4 are then presented in Sections 7, 8 and
9 respectively.

After that, we turn to the proof of Theorem 1.5. Central to the proof of Theorem 1.5
is the idea of range space, which will be the subject of Section 10. With the preparations
in Section 10, we prove Theorem 1.5 in Section 11. To conclude the paper, in Section 12
we discuss two examples and an open problem that are related to Theorem 1.5.

2. Preliminaries

In this section we present the precise definitions of the analytic sets, submodules and
quotient modules, etc, that we consider in this paper. We also collect a number of known
results that will be needed in the subsequent sections.

Definition 2.1. [6] Let Ω be a complex manifold. A set A ⊂ Ω is called a complex
analytic subset of Ω if for each point a ∈ Ω there are a neighborhood U of a and functions
f1, · · · , fN analytic in this neighborhood such that

A ∩ U = {z ∈ U : f1(z) = · · · = fN (z) = 0}.

A point a ∈ A is called regular if there is a neighborhood U of a in Ω such that A∩U is a
complex submanifold of Ω. A point a ∈ A is called a singular point of A if it is not regular.

Assumption 2.2. Let M̃ be an analytic subset in an open neighborhood of the closed
ball B. Furthermore, M̃ satisfies the following conditions:

(1) M̃ intersects ∂B transversely.
(2) M̃ has no singular points on ∂B.
(3) M̃ is of pure dimension d, where 1 ≤ d ≤ n− 1.

We emphasize that Assumption 2.2 will always be in force for the rest of the paper.
Given such an M̃ , we fix M , R, R, Q and Q as follows.

Notation 2.3. (a) Let M = M̃ ∩B.
(b) Denote R = {f ∈ H2(S) : f = 0 on M}.
(c) Denote Q = H2(S)	R.
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(d) Let R be the orthogonal projection from L2(S, dσ) onto R.
(e) Let Q be the orthogonal projection from L2(S, dσ) onto Q.

By Assumption 2.2, there is an s ∈ (0, 1) such that

(2.1) M = {z ∈ M̃ : 1− s < |z| < 1 + s}

is a complex manifold of complex dimension d and of finite volume. We take the value
s ∈ (0, 1) so small that the closure of M is contained in the regular part of M̃ . Thus

K = {z ∈ M̃ : 1− (s/2) ≤ |z| ≤ 1}

is a compact subset of the complex manifold M.

Definition 2.4. (a) We define the measure vM on M = M̃ ∩B by the formula vM (E) =
vM(E ∩M) for Borel sets E ⊂M , where vM is the natural volume measure on M.
(b) We define the measure µ on M by the formula

dµ(w) = (1− |w|2)n−1−ddvM (w).

We further extend µ to a measure on B by setting µ(B\M) = 0.

With the measure µ in Definition 2.4(b), we define the Toeplitz operator Tµ on the
Hardy space H2(S) by the formula

(Tµf)(z) =

∫
f(w)

(1− 〈z, w〉)n
dµ(w),

f ∈ H2(S). It is straightforward to verify that we can also write Tµ as

(2.2) Tµ =

∫
Kw ⊗Kwdµ(w),

where Kw(z) = (1− 〈z, w〉)−n, the reproducing kernel for H2(S). Moreover,

〈Tµf, f〉 =

∫
|f(w)|2dµ(w)

for each f ∈ H2(S). If we consider each Kw as a vector in L2(S, dσ), then (2.2) automat-
ically extends Tµ to an operator on L2(S, dσ).

Theorem 2.5. [26, Theorem 3.5] There are scalars 0 < c ≤ C <∞ such that the operator
inequality

cQ ≤ Tµ ≤ CQ

holds on L2(S, dσ).

As usual, we write β for the Bergman metric on unit ball B. For z ∈ B and r > 0, we
denote D(z, r) = {w ∈ B : β(z, w) < r}.
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Definition 2.6. (i) Let a be a positive number. A subset Γ of B is said to be a-separated
if D(z, a) ∩D(w, a) = ∅ for all distinct elements z, w in Γ.
(ii) A subset Γ of B is simply said to be separated if it is a-separated for some a > 0.

Lemma 2.7. [22, Lemma 2.1] For any pair of 0 < a ≤ R <∞, there is a natural number
m = m(a,R) such that every a-separated set Γ in B admits a partition Γ = Γ1 ∪ · · · ∪ Γm
with the property that each Γj is R-separated, j = 1, . . . ,m.

Proposition 2.8. [26, Proposition 2.14] For each r ≥ 1, there exist 0 < c2.8(r) ≤ C2.8(r) <
∞ such that for every z ∈M ∩K, we have

c2.8(r)(1− |z|2)d+1 ≤ vM (D(z, r)) ≤ C2.8(r)(1− |z|2)d+1.

Lemma 2.9. [26, Lemma 8.2] Given any ε > 0, there is a constant 0 < C2.9 = C2.9(ε) <∞
such that the following holds true: Let Γ be a 1-separated set in M ∩K and let {ez : z ∈ Γ}
be an orthonormal set in a Hilbert space H. Then the operator

T =
∑
z,w∈Γ

(1− |z|2)(d+ε)/2(1− |w|2)(d+ε)/2

|1− 〈z, w〉|d+ε
ez ⊗ ew

satisfies the estimate ‖T‖ ≤ C2.9.

For each 1 ≤ p <∞, the formula

‖A‖+p = sup
k≥1

s1(A) + s2(A) + · · ·+ sk(A)

1−1/p + 2−1/p + · · ·+ k−1/p

defines a symmetric norm for operators. On a Hilbert space H, the set

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

is a norm ideal. See Sections III.2 and III.14 in [18]. The relation between these ideals
and the Schatten classes is well known: For all 1 ≤ p < p′ < ∞, we have Cp ⊂ C+

p ⊂ Cp′ .
Thus, for any operator A and for any given 1 ≤ t < ∞, the statement that A ∈ C+

p for
every p > t is equivalent to the statement that A ∈ Cp for every p > t.

The reason why the C+
p ’s are the preferred ideals in the study of the Arveson-Douglas

conjecture is that norm estimates in these ideals are particularly easy:

Lemma 2.10. [25, Lemma 2.9] Given any positive numbers 0 < a ≤ b < ∞, there is a
constant 0 < B(a, b) <∞ such that the following holds true: Let H be a Hilbert space, and
suppose that F0, F1, . . . , Fk, . . . are operators on H such that the following two conditions
are satisfied for every k:

(1) ‖Fk‖ ≤ 2−ak,
(2) rank(Fk) ≤ 2bk.

Then the operator F =
∑∞
k=0 Fk satisfies the estimate ‖F‖+b/a ≤ B(a, b). In particular,

F ∈ C+
b/a.
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Lemma 2.11 [25, Lemma 2.8] Let T be an operator in the weak operator closure of a set
of operators {Tα : α ∈ I}. Suppose that Tα ∈ C+

p for every α ∈ I and that

sup
α∈I
‖Tα‖+p ≤ C <∞.

Then T ∈ C+
p and ‖T‖+p ≤ C.

Proposition 2.12. [26, Proposition 8.4] For any Lipschitz function f on S, the commu-
tator [Mf , Q] is in the Schatten class Cp for every p > 2d.

We conclude the preliminaries with some standard estimates on S.

Lemma 2.13. (a) Given any η > 0, there is a 0 < C
(1)
2.13 = C

(1)
2.13(η) <∞ such that

∫
dσ(ζ)

|1− 〈ζ, z〉|n+η|1− 〈ζ, w〉|n+η
≤ C

(1)
2.13

|1− 〈z, w〉|n+η

(
1

(1− |z|2)η
+

1

(1− |w|2)η

)
for all z, w ∈ B.

(b) Given any ε > 0, there is a 0 < C
(2)
2.13 = C

(2)
2.13(ε) <∞ such that

∫
dσ(ζ)

|1− 〈ζ, z〉|n|1− 〈ζ, w〉|n
≤ C

(2)
2.13

|1− 〈z, w〉|n

(
1

(1− |z|2)ε
+

1

(1− |w|2)ε

)
for all z, w ∈ B.

Proof. Recall from [24, Proposition 5.1.2] that the triangle inequality

|1− 〈z, w〉|1/2 ≤ |1− 〈z, ζ〉|1/2 + |1− 〈ζ, w〉|1/2

holds for all z, w ∈ B and ζ ∈ S. Thus, given any z, w ∈ B, if we define

A = {ζ ∈ S : |1− 〈z, ζ〉| ≥ (1/4)|1− 〈z, w〉|} and

B = {ζ ∈ S : |1− 〈ζ, w〉| ≥ (1/4)|1− 〈z, w〉|},

then A ∪B = S. Hence∫
dσ(ζ)

|1− 〈ζ, z〉|n+η|1− 〈ζ, w〉|n+η
≤ 4n+η

|1− 〈z, w〉|n+η

∫
A

dσ(ζ)

|1− 〈ζ, w〉|n+η

+
4n+η

|1− 〈z, w〉|n+η

∫
B

dσ(ζ)

|1− 〈ζ, z〉|n+η
.

Now an application of [24, Proposition 1.4.10] completes the proof for (a). The fact A∪B =
S also leads to∫

dσ(ζ)

|1− 〈ζ, z〉|n|1− 〈ζ, w〉|n
≤ 4n

|1− 〈z, w〉|n

(∫
A

dσ(ζ)

|1− 〈ζ, w〉|n
+

∫
B

dσ(ζ)

|1− 〈ζ, z〉|n

)
,
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and another application of [24, Proposition 1.4.10] completes the proof for (b). �

3. Integral inequalities on M

We begin with a classic inequality of Hardy: For −1 < α < ∞, 1 ≤ p < ∞ and
g ∈ Cc[0,∞), we have∫ ∞

0

∣∣∣∣ ∫ ∞
x

1

t
g(t)dt

∣∣∣∣pxαdx ≤ ( p

α+ 1

)p ∫ ∞
0

|g(x)|pxαdx.

See [3,20], or Google. From this it is easy to deduce that

(3.1)

∫ ∞
0

|f(x)|pxαdx ≤
(

p

α+ 1

)p ∫ ∞
0

|xf ′(x)|pxαdx

for every f ∈ C∞c [0,∞). We need an analogue of this on M in the case p = 2.

For each z ∈ M, let Tz be the tangent space to M at the point z, which naturally
is a subspace of Cn. Under the usual identification of C with R2 we can also view Tz as
a subspace of R2n of real dimension 2d, equipped with the real inner product. Thus if
z ∈M and h is a real-valued C∞-function on an open neighborhood U of z in Cn ∼= R2n,
then we define (∇Mh)(z) as the orthogonal projection of the real vector (∇h)(z) onto the
real subspace Tz. If h is complex-valued, we can write h = h1 + ih2, where h1 and h2 are
real-valued. In this case, we define (∇Mh)(z) = (∇Mh1)(z) + i(∇Mh2)(z). This defines
the operation ∇M. We think of ∇M as the gradient in the directions tangent to M.

For each 0 < t < 1, we define

(3.2) M (t) = {z ∈M : 1− |z|2 < t} and N (t) = {z ∈M : 1− |z|2 ≥ t}.

Lemma 3.1. There are constants 0 < a < b < 1 and 0 < C3.1 < ∞ such that if f is any
C∞ function on an open set containing B, then∫

M

|f(w)|2dµ(w) ≤ C3.1

∫
M(b)

|(∇Mf)(w)|2(1− |w|2)2dµ(w) + C3.1

∫
N(a)

|f(w)|2dµ(w).

Proof. We begin with a 0 < b < 1 such that M (b) ⊂ M. Consider the function r(w) =
1− |w|2. SinceM intersects S transversely, the vector ∇Mr does not vanish nearM∩ S.
Thus we can use r as one of the real coordinates onM near S. More precisely, if ζ ∈M∩S,
then ζ has an open neighborhood Uζ in M that has the following properties:

(1) Uζ = G((−c, c)× V ), where 0 < c < b, V is a bounded open set in R2d−1 and
G : (−c, c)× V → Cn is a one-to-one C∞ map.
(2) there are 0 < δ < C <∞ such that DG, the derivative of G, satisfies the matrix
inequality δ ≤ (DG)∗(x, y)(DG)(x, y) ≤ C for all x ∈ (−c, c) and y ∈ V .
(3) If w = G(x, y) for some x ∈ (−c, c) and y ∈ V , then x = 1− |w|2. Equivalently,
for each w ∈ Uζ , there is a unique yw ∈ V such that w = G(1− |w|2, yw).
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Obviously, (3) implies Uζ ∩M = G((0, c)× V ) ⊂M (b).

Once we have this c, by the standard technique of using a smooth cutoff function, we
can apply (3.1) with p = 2 on the interval [0, c]. That is, there are C1 and C2 such that

(3.3)

∫ c

0

|h(x)|2xn−1−ddx ≤ C1

∫ c

0

|xh′(x)|2xn−1−ddx+ C2

∫ c

c/2

|h(x)|2xn−1−ddx

for every h ∈ C∞[0, c]. By the definition of µ and property (3) above,∫
Uζ∩M

|f(w)|2dµ(w) =

∫
Uζ∩M

|f(w)|2(1− |w|2)n−1−ddvM (w)

=

∫
V

∫ c

0

|f(G(x, y))|2xn−1−dJ(x, y)dxdy

≤ C3

∫
V

∫ c

0

|f(G(x, y))|2xn−1−ddxdy

≤ C4

∫
V

∫ c

0

∣∣∣∣x d

dx
f(G(x, y))

∣∣∣∣2xn−1−ddxdy(3.4)

+ C5

∫
V

∫ c

c/2

|f(G(x, y))|2xn−1−ddxdy,

where the last ≤ follows from (3.3). By the chain rule for differentiation,

d

dx
f(G(x, y)) = 〈(∇f)(G(x, y)), τ(x, y)〉,

where τ(x, y) is a (real) tangent vector to M at the point G(x, y). Moreover, (2) implies
the bound |τ(x, y)| ≤ C1/2. Hence |df(G(x, y))/dx| ≤ C1/2|(∇Mf)(G(x, y))|. Thus∫

V

∫ c

0

∣∣∣∣x d

dx
f(G(x, y))

∣∣∣∣2xn−1−ddxdy ≤ C
∫
V

∫ c

0

|(∇Mf)(G(x, y))|2x2+n−1−ddxdy

≤ C6

∫
V

∫ c

0

|(∇Mf)(G(x, y))|2xn+1−dJ(x, y)dxdy

= C6

∫
Uζ∩M

|(∇Mf)(w)|2(1− |w|2)n+1−ddvM (w)

= C6

∫
Uζ∩M

|(∇Mf)(w)|2(1− |w|2)2dµ(w),

where the third step uses property (3). Combining this with (3.4), we find that∫
Uζ∩M

|f(w)|2dµ(w) ≤ C7

∫
Uζ∩M

|(∇Mf)(w)|2(1− |w|2)2dµ(w)

+ C8

∫
N(c/2)

|f(w)|2dµ(w).(3.5)
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Since M∩ S is compact, there are ζ1, . . . , ζk ∈ M∩ S such that the corresponding open
sets Uζ1 , . . . , Uζk have the property Uζ1 ∪ · · · ∪ Uζk ⊃ M∩ S = {w ∈ M : 1 − |w|2 = 0}.
Thus Uζ1 ∪ · · · ∪ Uζk ⊃ {w ∈ M : −ρ < 1 − |w|2 < ρ} for some 0 < ρ < 1. Consequently,
Uζ1 ∪ · · · ∪ Uζk ⊃M (ρ). Combining this containment with (3.5), the lemma follows. �

As usual, we write ∂ = (∂1, . . . , ∂n), the analytic gradient on Cn. For any ξ =
(ξ1, . . . , ξn) ∈ Cn, we denote

∂ξ = ξ1∂1 + · · ·+ ξn∂n.

Let z ∈M, and let f be an analytic function on an open neighborhood W of z in Cn. Now
we view the tangent space Tz naturally as a complex subspace of Cn. Let {u1, . . . , ud} be
any orthonormal basis for Tz. We define

|(∂Mf)(z)|2 = |(∂u1
f)(z)|2 + · · ·+ |(∂udf)(z)|2.

It is easy to see that this value is independent of the choice of the orthonormal basis
{u1, . . . , ud} for Tz, which justifies the notation |(∂Mf)(z)|2.

Let z ∈M and let h be a C∞-function on an open neighborhood U of z in Cn ∼= R2n.
By our definition of ∇M, there is a C1 map γ : (−c, c)→M such that γ(0) = z, |γ′(0)| = 1
and

|(∇Mh)(z)| ≤
√

2

∣∣∣∣ ddth(γ(t))
∣∣
t=0

∣∣∣∣.
From this fact we see that if z ∈M and if f is an analytic function on an open neighborhood
W of z in Cn, then

|(∇Mf)(z)|2 ≤ 2|(∂Mf)(z)|2.

Combining this inequality with Lemma 3.1, we obtain

Corollary 3.2. If f is an analytic function on an open set containing B, then∫
M

|f(w)|2dµ(w) ≤ 2C3.1

∫
M(b)

|(∂Mf)(w)|2(1− |w|2)2dµ(w) + C3.1

∫
N(a)

|f(w)|2dµ(w),

where 0 < a < b < 1 and 0 < C3.1 <∞ are the constants given in Lemma 3.1.

Lemma 3.3. Define the measure ν by the formula

(3.6) dν(w) = (1− |w|2)2dµ(w).

Then ν is a Carleson measure for the weighted Bergman space L2
a,1 = L2

a(B, (1−|z|2)dv(z)).

Proof. For each pair of ζ ∈ S and r > 0, define Q(ζ, r) = {z ∈ B : |1 − 〈z, ζ〉| < r}. By
the well-known [7, Theorem 1], to show that ν is a Carleson measure for L2

a,1, it suffices
to find a C1 such that

(3.7) ν(Q(ζ, r)) ≤ C1r
n+2

11



for all ζ ∈ S and r > 0. We have

ν(Q(ζ, r)) =

∫
Q(ζ,r)∩M

(1− |w|2)2dµ(w) ≤ sup
w∈Q(ζ,r)

(1− |w|2)2µ(Q(ζ, r)) ≤ 4r2µ(Q(ζ, r)).

It was shown in the proof of [26, Proposition 2.13] that

µ(Q(ζ, r)) ≤ Crn

for all ζ ∈ S and r > 0. Thus (3.7) indeed holds. �

Proposition 3.4. There is a constant 0 < C3.4 <∞ such that∫
M

|(∂jf)(w)|2(1− |w|2)2dµ(w) ≤ C3.4‖f‖2

for every f ∈ H2(S) and every j ∈ {1, . . . , n}.

Proof. By Lemma 3.3, we have∫
M

|(∂jf)(w)|2(1− |w|2)2dµ(w) ≤ C
∫
B

|(∂jf)(z)|2(1− |z|2)dv(z)

for f ∈ H2(S) and j ∈ {1, . . . , n}. But it is well known that∫
B

|(∂jf)(z)|2(1− |z|2)dv(z) ≤ C1‖f‖2

for f ∈ H2(S) and j ∈ {1, . . . , n}. This completes the proof. �

4. Modifying the reproducing kernel

We will now try to modify the Hardy-space reproducing kernel Kw(ζ) to suit our need.
For each pair of w ∈ B and u ∈ Cn, we define

Kw,u(ζ) =
n〈ζ, u〉

(1− 〈ζ, w〉)n+1
.

For w ∈ B, u ∈ Cn and f ∈ H2(S), it is easy to see that

(4.1) 〈f,Kw,u〉 =
d

dt
〈f,Kw+tu〉

∣∣
t=0

=
d

dt
f(w + tu)

∣∣
t=0

= (∂uf)(w).

That is, Kw,u is the reproducing kernel for the directional derivative ∂u.

Lemma 4.1. Let w ∈M (b). If u ∈ Tw, then Kw,u ∈ Q.

Proof. Since u ∈ Tw, there is a smooth path γ : (−c, c) → M (b) such that γ(0) = w and
γ′(0) = u. Thus

Kw,u =
d

dt
Kγ(t)

∣∣
t=0

.
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Let f ∈ R. Since the range of γ is contained in M , we have 〈f,Kγ(t)〉 = 0 for every
t ∈ (−c, c). Therefore

〈f,Kw,u〉 =
d

dt
〈f,Kγ(t)〉

∣∣
t=0

=
d

dt
0
∣∣
t=0

= 0.

This shows that Kw,u ⊥ R. That is, Kw,u ∈ Q. �

Since the regular part of M̃ is a complex manifold, there are local frames. That is, if z
is a regular point of M̃ , then there exist an open neighborhood Wz of z in M̃ and continuous
maps uz,1, . . . , uz,d : Wz → Cn such that for each w ∈ Wz, {uz,1(w), . . . , uz,d(w)} is an
orthonormal basis for Tw.

By the choice of s ∈ (0, 1) in (2.1), the closure ofM is contained in the regular part of
M̃ . Therefore the subset M (b) of M∩M is covered by a finite number of Wz’s described
in the above paragraph. Consequently, there is a finite subset F of M̃ and a corresponding
family of Borel subsets {Vz : z ∈ F} of M such that the following hold true:

(1) Vz ⊂Wz ∩M (b) for every z ∈ F .

(2) Vz ∩ Vz′ = ∅ for all z 6= z′ in F .

(3) ∪z∈FVz = M (b).

Definition 4.2. (a) With the finite set F and the family {Vz : z ∈ F} described above,
we define the operator

Y =
∑
z∈F

d∑
i=1

∫
Vz

Kw,uz,i(w) ⊗Kw,uz,i(w)(1− |w|2)2dµ(w).

(b) With the number a given in Lemma 3.1, we define

Z =

∫
N(a)

Kw ⊗Kwdµ(w).

Obviously, both Y and Z are positive operators. We have

tr(Z) =

∫
N(a)

〈Kw,Kw〉dµ(w) =

∫
N(a)

dµ(w)

(1− |w|2)n
<∞

(cf. (3.2)). In other words, Z is in the trace class.

Proposition 4.3. There are 0 < c ≤ C <∞ such that

cQ ≤ Y + Z ≤ CQ.
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Proof. We first show that Y is a bounded operator on H2(S). By (4.1), for f ∈ H2(S),

〈Y f, f〉 =
∑
z∈F

d∑
i=1

∫
Vz

|〈f,Kw,uz,i(w)〉|2(1− |w|2)2dµ(w)

=
∑
z∈F

d∑
i=1

∫
Vz

|(∂uz,i(w)f)(w)|2(1− |w|2)2dµ(w)

≤
∑
z∈F

d∑
i=1

∫
Vz

n∑
j=1

|(∂jf)(w)|2(1− |w|2)2dµ(w)

≤ card(F )d

n∑
j=1

∫
M

|(∂jf)(w)|2(1− |w|2)2dµ(w).

From Proposition 3.4 we now obtain 〈Y f, f〉 ≤ card(F )dnC3.4‖f‖2, f ∈ H2(S). Thus Y
is indeed a bounded operator on H2(S). By Lemma 4.1, the range of Y is contained in
Q. The range of Z is, of course, also contained in Q. Therefore we have the upper bound
Y + Z ≤ CQ for some 0 < C <∞.

To prove the lower bound, we use the fact that for each pair of z ∈ F and w ∈ Vz,
{uz,1(w), . . . , uz,d(w)} is an orthonormal basis for Tw. Therefore, if f ∈ H2(S), then

d∑
i=1

|(∂uz,i(w)f)(w)|2 = |(∂Mf)(w)|2

for each pair of z ∈ F and w ∈ Vz. Consequently,

〈Y f, f〉 =
∑
z∈F

d∑
i=1

∫
Vz

|(∂uz,i(w)f)(w)|2(1− |w|2)2dµ(w)

=
∑
z∈F

∫
Vz

|(∂Mf)(w)|2(1− |w|2)2dµ(w) =

∫
M(b)

|(∂Mf)(w)|2(1− |w|2)2dµ(w),

where the last = follows from properties (2) and (3) of the family {Vz : z ∈ F}. Hence

〈(Y + Z)f, f〉 =

∫
M(b)

|(∂Mf)(w)|2(1− |w|2)2dµ(w) +

∫
N(a)

|f(w)|2dµ(w),

f ∈ H2(S). Applying Corollary 3.2, we obtain the inequality

2C3.1〈(Y + Z)f, f〉 ≥
∫
M

|f(w)|2dµ(w) = 〈Tµf, f〉.

Thus the desired lower bound for Y + Z follows from the lower bound in Theorem 2.5. �
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5. Estimates of various norms

In this section we establish bounds for operators that are discrete sums constructed
from the Kw,u introduced in Section 4. For this purpose, a simplification of notation will
be beneficial. For each pair of z ∈ B and u ∈ Cn, we write

(5.1) kz,u = (1− |z|2)1+(n/2)Kz,u.

Lemma 5.1. There is a constant 0 < C5.1 < ∞ such that the following bound holds: Let
Γ be any 1-separated set contained in M . For each z ∈ Γ, let u(z) ∈ Cn be such that
|u(z)| ≤ 1. Let {cz : z ∈ Γ} be any bounded set of complex coefficients. Then∥∥∥∥∑

z∈Γ

czkz,u(z) ⊗ ez
∥∥∥∥ ≤ C5.1 sup

z∈Γ
|cz|,

where {ez : z ∈ Γ} is any orthonormal set.

Proof. If Γ is 1-separated, then for each δ > 0, card(Γ ∩ N (δ)) is bounded by a constant
determined solely by δ. Therefore we only need to consider the case where Γ ⊂M (δ) for a
sufficiently small δ > 0. That is, we only need to consider those Γ to which Lemma 2.9 is
applicable.

With such a Γ, write

A =
∑
z∈Γ

czkz,u(z) ⊗ ez.

Then
A∗A =

∑
w,z∈Γ

a(z, w)ez ⊗ ew,

where
a(z, w) = c̄zcw〈kw,u(w), kz,u(z)〉,

z, w ∈ Γ. By (4.1), we have

〈Kw,u(w),Kz,u(z)〉 = (∂u(z)Kw,u(w))(z)

=
n(n+ 1)〈z, u(w)〉〈u(z), w〉

(1− 〈z, w〉)n+2
+

n〈u(z), u(w)〉
(1− 〈z, w〉)n+1

.

Thus there is a constant C1 such that

|a(z, w)| ≤ C1c
2

(
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈z, w〉|

)n+2

for z, w ∈ Γ, where c = supz∈Γ |cz|. Combining this with Lemma 2.9, the desired conclusion
follows. �
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Given any integer k ≥ 0, we define

(5.2) Mk = {z ∈M : 1− 2−2k ≤ |z| < 1− 2−2(k+1)}

as in [25,26]. If f ∈ Lip(S), we write L(f) for its Lipschitz constant.

Lemma 5.2. There is a constant 0 < C5.2 < ∞ such that the following bound holds: Let
k ≥ 0, and let Γ be any 1-separated set contained in Mk. For each z ∈ Γ, let u(z) ∈ Cn be
such that |u(z)| ≤ 1. Let {cz : z ∈ Γ} be any set of complex coefficients, and let f ∈ Lip(S).
Then ∥∥∥∥∑

z∈Γ

cz(f − f(z/|z|))kz,u(z) ⊗ ez
∥∥∥∥ ≤ C5.2 sup

z∈Γ
|cz|L(f)2−k,

where {ez : z ∈ Γ} is any orthonormal set.

Proof. As in the previous lemma, we only need to consider k large enough so that Lemma
2.9 can be applied to 1-separated Γ ⊂Mk. This time, we write

B =
∑
z∈Γ

cz(f − f(z/|z|))kz,u(z) ⊗ ez.

Then
B∗B =

∑
w,z∈Γ

b(z, w)ez ⊗ ew,

where
b(z, w) = c̄zcw〈(f − f(w/|w|))kw,u(w), (f − f(z/|z|))kz,u(z)〉,

z, w ∈ Γ. It is easy to see that

(5.3) |f(ζ)− f(z/|z|)| ≤ 2L(f)|1− 〈ζ, z〉|1/2

for ζ ∈ S. Hence, writing c = supz∈Γ |cz|, we have

|b(z, w)| ≤ 4L2(f)c2{(1− |z|2)(1− |w|2)}1+(n/2)

∫
n2dσ(ζ)

|1− 〈ζ, w〉|n+(1/2)|1− 〈ζ, z〉|n+(1/2)

≤ 4n2L2(f)c2C
{(1− |z|2)(1− |w|2)}1+(n/2)

|1− 〈z, w〉|n+(1/2)

(
1

(1− |z|2)1/2
+

1

(1− |w|2)1/2

)
,

where the second ≤ follows from Lemma 2.13(a). For z, w ∈ Γ ⊂Mk, we have

(5.4) 2−2(k+1) ≤ 1− |z|2 ≤ 2−2k+1 and 2−2(k+1) ≤ 1− |w|2 ≤ 2−2k+1.

Therefore

|b(z, w)| ≤ 4(1 + 81/4)n2CL2(f)c22−2k+1

(
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈z, w〉|

)n+(1/2)

,
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z, w ∈ Γ. Thus it follows from Lemma 2.9 that ‖B∗B‖ ≤ C1L
2(f)c22−2k. Since ‖B∗B‖ =

‖B‖2, the lemma is proved. �

Lemma 5.3. Let any 0 < ε < 1 be given. There is a constant 0 < C5.3 = C5.3(ε) < ∞
such that the following bound holds: Let k ≥ 0, and let Γ be any 1-separated set contained
in Mk. For each z ∈ Γ, let u(z) ∈ Cn be such that |u(z)| ≤ 1. Let {cz : z ∈ Γ} be any set
of complex coefficients, and let f, g ∈ Lip(S). Then∥∥∥∥∑

z∈Γ

cz(f − f(z/|z|))(g − g(z/|z|))kz,u(z) ⊗ ez
∥∥∥∥ ≤ C5.3 sup

z∈Γ
|cz|L(f)L(g)2−2k(1−ε),

where {ez : z ∈ Γ} is any orthonormal set.

Proof. As before, we only need to consider k such that Lemma 2.9 can be applied to
1-separated Γ ⊂Mk. Now we write

H =
∑
z∈Γ

cz(f − f(z/|z|))(g − g(z/|z|))kz,u(z) ⊗ ez.

Then
H∗H =

∑
w,z∈Γ

h(z, w)ez ⊗ ew,

where

h(z, w) = c̄zcw〈(f − f(w/|w|))(g − g(w/|w|))kw,u(w), (f − f(z/|z|))(g − g(z/|z|))kz,u(z)〉,

z, w ∈ Γ. Again, we write c = supz∈Γ |cz|. This time, (5.3) and (5.4) lead to

|h(z, w)| ≤ 16L2(f)L2(g)c2{(1− |z|2)(1− |w|2)}1+(n/2)

∫
n2dσ(ζ)

|1− 〈ζ, w〉|n|1− 〈ζ, z〉|n

≤ 16n2L2(f)L2(g)c2C(ε)
{(1− |z|2)(1− |w|2)}1+(n/2)

|1− 〈z, w〉|n

(
1

(1− |z|2)2ε
+

1

(1− |w|2)2ε

)
≤ 16n2L2(f)L2(g)c2C(ε)

(
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈z, w〉|

)n
{(1− |z|2)(1− |w|2)}1−ε(1 + 8ε)

≤ C1L
2(f)L2(g)c2

(
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈z, w〉|

)n
2−4k(1−ε),

where the second ≤ follows from Lemma 2.13(b). Applying Lemma 2.9 again, we have

‖H∗H‖ ≤ C2L
2(f)L2(g)c22−4k(1−ε).

Since ‖H∗H‖ = ‖H‖2, the proof is complete. �

Proposition 5.4. (a) Let any 0 < ε < 1 be given. There is a constant 0 < C5.4.1 =
C5.4.1(ε) <∞ such that the following bound holds: Let k ≥ 0, and let Γ be any 1-separated
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set contained in Mk. For each z ∈ Γ, let u(z) ∈ Cn be such that |u(z)| ≤ 1. Given a set of
complex coefficients {cz : z ∈ Γ}, define the operator

(5.5) T =
∑
z∈Γ

czkz,u(z) ⊗ kz,u(z).

Then for f, g ∈ Lip(S), we have

‖[Mf , [Mg, T ]]‖ ≤ C5.4.1 sup
z∈Γ
|cz|L(f)L(g)2−2k(1−ε).

(b) There is a constant 0 < C5.4.2 < ∞ such that for every T given by (5.5) and every
f ∈ Lip(S), we have

‖[Mf , T ]‖ ≤ C5.4.2 sup
z∈Γ
|cz|L(f)2−k.

Proof. (a) It is easy to see that [Mf , [Mg, T ]] = A−B − C +D, where

A =
∑
z∈Γ

cz{(f − f(z/|z|))(g − g(z/|z|))kz,u(z)} ⊗ kz,u(z),

B =
∑
z∈Γ

cz{(g − g(z/|z|))kz,u(z)} ⊗ {(f̄ − f̄(z/|z|))kz,u(z)},

C =
∑
z∈Γ

cz{(f − f(z/|z|))kz,u(z)} ⊗ {(ḡ − ḡ(z/|z|))kz,u(z)} and

D =
∑
z∈Γ

czkz,u(z) ⊗ {(f̄ − f̄(z/|z|))(ḡ − ḡ(z/|z|))kz,u(z)}.

Taking any orthonormal set {ez : z ∈ Γ}, we have the factorization A = A1A2, where

A1 =
∑
z∈Γ

cz{(f − f(z/|z|))(g − g(z/|z|))kz,u(z)} ⊗ ez and A2 =
∑
z∈Γ

ez ⊗ kz,u(z).

Writing c = supz∈Γ |cz|, we have ‖A1‖ ≤ C5.3L(f)L(g)c2−2k(1−ε) by Lemma 5.3 and
‖A2‖ ≤ C5.1 by Lemma 5.1. Hence

‖A‖ ≤ ‖A1‖‖A2‖ ≤ C5.1C5.3L(f)L(g)c2−2k(1−ε).

For B, we have the factorization B = B1B2, where

B1 =
∑
z∈Γ

{(g − g(z/|z|))kz,u(z)} ⊗ ez and B2 =
∑
z∈Γ

czez ⊗ {(f̄ − f̄(z/|z|))kz,u(z)}.

Now Lemma 5.2 gives us ‖B1‖ ≤ C5.2L(g)2−k and ‖B2‖ ≤ C5.2cL(f)2−k. Therefore

‖B‖ ≤ ‖B1‖‖B2‖ ≤ C2
5.2L(f)L(g)c2−2k.
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Since C is just another B and D∗ another A, this completes the proof for (a).

(b) For the single commutator, we have [Mf , T ] = U − V , where

U =
∑
z∈Γ

cz{(f − f(z/|z|))kz,u(z)} ⊗ kz,u(z) and

V =
∑
z∈Γ

czkz,u(z) ⊗ {(f̄ − f̄(z/|z|))kz,u(z)}.

This time, we have the factorization V = A∗2B2, where A2 and B2 are the same as in (a).
Therefore it follows from Lemmas 5.1 and 5.2 that

‖V ‖ ≤ ‖A∗2‖‖B2‖ ≤ C5.1C5.2cL(f)2−k.

The proof is complete upon the observation that, this time, U∗ is just another V . �

Proposition 5.5. (a) Let any p > d be given. There is a constant 0 < C5.5.1 = C5.5.1(p) <
∞ such that the following bound holds: Let Γ be any 1-separated set contained in M . For
each z ∈ Γ, let u(z) ∈ Cn be such that |u(z)| ≤ 1. Given a set of complex coefficients
{cz : z ∈ Γ}, define the operator

W =
∑
z∈Γ

czkz,u(z) ⊗ kz,u(z).

Then for f, g ∈ Lip(S), we have

‖[Mf , [Mg,W ]]‖+p ≤ C5.5.1 sup
z∈Γ
|cz|L(f)L(g).

(b) There is a constant 0 < C5.5.2 < ∞ such that for every W given as above and every
f ∈ Lip(S), we have

‖[Mf ,W ]‖+2d ≤ C5.5.2 sup
z∈Γ
|cz|L(f).

Proof. (a) Given any p > d, we pick an ε > 0 such that

(1− ε)p > d.

Given a 1-separated set Γ in M , we define Γk = Γ ∩Mk for each k ≥ 0. It is known that

(5.6) card(Γk) ≤ C22dk for every k ≥ 0.

See [25, page 1080]. For each k ≥ 0, we define

Wk =
∑
z∈Γk

czkz,u(z) ⊗ kz,u(z).
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For f, g ∈ Lip(S), Proposition 5.4(a) provides the bound

(5.7) ‖[Mf , [Mg,Wk]]‖ ≤ C5.4.1cL(f)L(g)2−2k(1−ε)

for every k ≥ 0, where c = supz∈Γ |cz|. Obviously, (5.6) implies that

(5.8) rank([Mf , [Mg,Wk]]) ≤ 4C22dk,

k ≥ 0. Since

[Mf , [Mg,W ]] =
∞∑
k=0

[Mf , [Mg,Wk]],

from (5.7), (5.8) and Lemma 2.10 we obtain

‖[Mf , [Mg,W ]]‖+d/(1−ε) ≤ B(2(1− ε), 2d)(1 + 4C)C5.4.1cL(f)L(g).

Since d/(1− ε) < p, this proves (a).

(b) Let Wk, k ≥ 0, be the same as in part (a). For f ∈ Lip(S), Proposition 5.4(b)
provides the bound

(5.9) ‖[Mf ,Wk]‖ ≤ C5.4.2cL(f)2−k

for every k ≥ 0. By (5.6), we have

(5.10) rank([Mf ,Wk]) ≤ 2C22dk,

k ≥ 0. Since

[Mf ,W ] =
∞∑
k=0

[Mf ,Wk],

from (5.9), (5.10) and Lemma 2.10 we obtain

‖[Mf ,W ]‖+2d ≤ B(1, 2d)(1 + 2C)C5.4.2cL(f).

This completes the proof. �

6. Double commutators

Let X denote the collection of operators of the form

(6.1) X =

∫
V

Kw,u(w) ⊗Kw,u(w)(1− |w|2)2dµ(w),

where V is any Borel subset of M (b) (cf. Lemma 3.1) and u : V → Cn is any continuous
map satisfying the condition |u(w)| ≤ 1 for every w ∈ V . By the argument in the proof
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of the upper bound in Proposition 4.3, each X ∈ X is a bounded operator on H2(S). By
(5.1) and Definition 2.4, we can rewrite (6.1) as

(6.2) X =

∫
V

kw,u(w) ⊗ kw,u(w)
dvM (w)

(1− |w|2)d+1
.

The following is the main technical result of the section:

Proposition 6.1. (a) Given any p > d, there is a 0 < C6.1.1 = C6.1.1(p) <∞ such that

‖[Mf , [Mg, X]]‖+p ≤ C6.1.1L(f)L(g)

for all X ∈ X and f, g ∈ Lip(S).
(b) There is a 0 < C6.1.2 <∞ such that

‖[Mf , X]‖+2d ≤ C6.1.2L(f)

for all X ∈ X and f ∈ Lip(S).

The basic idea for the proof of Proposition 6.1 is to bring the estimates for discrete
sums in Section 5 and Lemma 2.11 to bear. This involves a standard covering scheme
using balls with respect to Bergman metric.

Let a Borel subset V of M (b) be given as in (6.1) and (6.2), and suppose that V 6= ∅.
We choose a subset L0 of V that is maximal with respect to the property

D(z, 1) ∩D(w, 1) = ∅ for all z 6= w ∈ L0.

This maximality implies that ∪z∈L0
D(z, 2) ⊃ V . By a standard construction, we obtain a

family of Borel sets {∆z : z ∈ L0} satisfying the following conditions:
(1) D(z, 1) ∩ V ⊂ ∆z ⊂ D(z, 2) for every z ∈ L0.
(2) ∆z ∩∆w = ∅ for z 6= w in L0.
(3) ∪z∈L0∆z = V .

For each z ∈ L0, define

αz =

∫
∆z

dvM (w)

(1− |w|2)d+1
.

By (1) and Proposition 2.8, we have

(6.3) αz ≤ C6.3 for every z ∈ L0.

We then define L = {z ∈ L0 : αz > 0}.

For each z ∈ L, we define the measure

dνz(w) =
χ∆z

(w)dvM (w)

αz(1− |w|2)d+1
.
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We can rewrite (6.2) as

X =
∑
z∈L

αzXz, where Xz =

∫
∆z

kw,u(w) ⊗ kw,u(w)dνz(w).

For each z ∈ L, νz is a probability measure concentrated on ∆z. Therefore νz can
be approximated in the weak-∗ topology by measures of the form (1/k)

∑k
j=1 δwj with

w1, . . . , wk ∈ ∆z. Consequently, each Xz is in the weak closure of operators of the form

1

k

k∑
j=1

kwj ,u(wj) ⊗ kwj ,u(wj), where w1, . . . , wk ∈ ∆z.

Summarizing the above, we have established the following:

Lemma 6.2. The operator X given by (6.2) is in the weak closure of convex combinations
of operators of the form

(6.4) Σ =
∑
z∈G

αzkw(z),u(w(z)) ⊗ kw(z),u(w(z)),

where G is any finite subset of L and w(z) ∈ ∆z for every z ∈ G.

Proof of Proposition 6.1. Let p > d be given. By Lemmas 6.2 and 2.11, to prove (a), it
suffices to find a 0 < C6.1.1 <∞ such that

(6.5) ‖[Mf , [Mg,Σ]]‖+p ≤ C6.1.1L(f)L(g)

for every Σ given by (6.4) and every pair of f, g ∈ Lip(S). Similarly, to prove (b), it suffices
to find a 0 < C6.1.2 <∞ such that

(6.6) ‖[Mf ,Σ]‖+2d ≤ C6.1.2L(f)

for every Σ given by (6.4) and every f ∈ Lip(S).

We begin with Lemma 2.7, which tells us that the 1-separated set L admits a partition

L = L1 ∪ · · · ∪ L`

such that for each j ∈ {1, . . . , `}, the set Lj has the property that β(z, z′) > 6 for all z 6= z′

in Lj . We emphasize that this ` is completely determined by the numbers n, 1 and 6.

For the G ⊂ L in (6.4), define Gj = G∩Lj , 1 ≤ j ≤ `. Consider any Gj . For z ∈ Gj ,
since w(z) ∈ ∆z ⊂ D(z, 2), we have β(z, w(z)) < 2. Thus for any z 6= z′ in Gj ,

6 < β(z, z′) ≤ β(z, w(z)) + β(w(z), w(z′)) + β(z′, w(z′)) < 4 + β(w(z), w(z′)).
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This shows that for every j ∈ {1, . . . , `}, the set {w(z) : z ∈ Gj} is 1-separated. For the Σ
given by (6.4), we have Σ = Σ1 + · · ·+ Σ`, where

Σj =
∑
z∈Gj

αzkw(z),u(w(z)) ⊗ kw(z),u(w(z)),

1 ≤ j ≤ `. Since {w(z) : z ∈ Gj} is 1-separated, it follows from Proposition 5.5(a) and
(6.3) that

‖[Mf , [Mg,Σj ]]‖+p ≤ C5.5.1C6.3L(f)L(g),

1 ≤ j ≤ `. Thus (6.5) holds for the constant C6.1.1 = `C5.5.1C6.3. Similarly, it follows from
Proposition 5.5(b) and (6.3) that

‖[Mf ,Σj ]‖+2d ≤ C5.5.2C6.3L(f),

1 ≤ j ≤ `. That is, (6.6) holds for C6.1.2 = `C5.5.2C6.3. This completes the proof. �

Corollary 6.3. The operator Y given in Definition 4.2 has the following properties:
(a) If p > d, then [Mf , [Mg, Y ]] ∈ C+

p for all f, g ∈ Lip(S).

(b) For f ∈ Lip(S), we have [Mf , Y ] ∈ C+
2d with ‖[Mf , Y ]‖+2d ≤ C6.3L(f).

Proof. Obviously, Y is a linear combination of operators in X . Therefore (a), (b) follow
from the corresponding parts in Proposition 6.1. �

Proof of Theorem 1.1. It follows from Proposition 4.3 that the spectrum of Y + Z is
contained in {0} ∪ [c, C], and that the spectral projection of Y + Z corresponding to the
interval [c, C] equals Q. Thus

(6.7) Q =
1

2πi

∫
γ

(λ− Y − Z)−1dλ,

where γ is a simple Jordan curve in C\({0} ∪ [c, C]) whose winding number about 0 is 0
and whose winding number about every x ∈ [c, C] is 1. For any f, g ∈ Lip(S), we have

[Mf , [Mg, Q]] =
1

2πi

∫
γ

[Mf , [Mg, (λ− Y − Z)−1]]dλ =
1

2πi

∫
γ

{F (λ) +G(λ) +H(λ)}dλ,

where

F (λ) = (λ− Y − Z)−1[Mf , Y + Z](λ− Y − Z)−1[Mg, Y + Z](λ− Y − Z)−1,

G(λ) = (λ− Y − Z)−1[Mf , [Mg, Y + Z]](λ− Y − Z)−1 and

H(λ) = (λ− Y − Z)−1[Mg, Y + Z](λ− Y − Z)−1[Mf , Y + Z](λ− Y − Z)−1.

Recall that the operator Z is in the trace class. Thus from Corollary 6.3 and the above
identities we conclude that [Mf , [Mg, Q]] ∈ C+

p for every p > d. We know that C+
t ⊂ Ct′ for

all 1 ≤ t < t′ <∞. Therefore [Mf , [Mg, Q]] is in the Schatten class Cp for every p > d. �

Theorem 6.4. For f ∈ Lip(S), we have [Mf , Q] ∈ C+
2d with ‖[Mf , Q]‖+2d ≤ C6.4L(f).
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Proof. This follows immediately from Corollary 6.3(b) and (6.7). �

One might characterize Theorem 6.4 as a “marginal” improvement of Proposition 2.12,
but we want to emphasize that the membership [Mf , Q] ∈ C+

2d cannot be proved using the
Tµ given by (2.2) alone. This is again due to the power in the reproducing kernel Kw:
Since the power in Kw is n, Proposition 2.12 is the best that we can prove if we do not
look beyond operators constructed from Kw.

7. Antisymmetric sums on Q

We will now derive Theorem 1.2 from Theorem 1.1. This involves a classic vanishing
principle for trace due to Helton and Howe:

Lemma 7.1. [21, Lemma 1.3] Suppose that X is a self-adjoint operator and C is a compact
operator. If [X,C] is in the trace class, then tr[X,C] = 0.

Proposition 7.2. For f, g ∈ Lip(S), we have [Qf , Qg] ∈ C+
d .

Proof. We have

[Qf , Qg] = QMg(1−Q)MfQ−QMf (1−Q)MgQ

= [Q,Mg](1−Q)[Mf , Q]− [Q,Mf ](1−Q)[Mg, Q].(7.1)

Now an application of Theorem 6.4 completes the proof. �

Proposition 7.3. (a) If d ≥ 2, then for f, g, h ∈ Lip(S) we have [Qh, [Qf , Qg]] ∈ Cp for
every p > 2d/3.
(b) If d = 1, then [Qh, [Qf , Qg]] is in the trace class for all f, g, h ∈ Lip(S).

Proof. (a) Continuing with (7.1), we have

[Mh, [Qf , Qg]] = [Mh, [Q,Mg]](1−Q)[Mf , Q]− [Q,Mg][Mh, Q][Mf , Q]

+ [Q,Mg](1−Q)[Mh, [Mf , Q]]− [Mh, [Q,Mf ]](1−Q)[Mg, Q]

+ [Q,Mf ][Mh, Q][Mg, Q]− [Q,Mf ](1−Q)[Mh, [Mg, Q]].(7.2)

Thus it follows from Theorem 1.1 and Proposition 2.12 that [Mh, [Qf , Qg]] ∈ Cp for every
p > 2d/3. Consequently, [Qh, [Qf , Qg]] = Q[Mh, [Qf , Qg]]Q ∈ Cp for p > 2d/3.

(b) In the case d = 1, from (7.2), Theorem 1.1 and Proposition 2.12 we see that
[Mh, [Qf , Qg]] is in the trace class. Consequently, so is [Qh, [Qf , Qg]] = Q[Mh, [Qf , Qg]]Q.
�

Proposition 7.4. Let ν ≥ d. Then for all f, g, f1, f2, . . . , f2ν ∈ Lip(S), the operator

[Qf , Qg[Qf1 , Qf2 , . . . , Qf2ν ]]

is in the trace class with zero trace.

Proof. For convenience, denote

W = [Qf1 , Qf2 , . . . , Qf2ν ].
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For each 1 ≤ j ≤ ν, let τj : {1, 2, . . . , 2ν} → {1, 2, . . . , 2ν} be the transposition such that
τj(2j−1) = 2j, τj(2j) = 2j−1 and τj(k) = k for every k ∈ {1, 2, . . . , 2ν}\{2j−1, 2j}. Let
T2ν be the subgroup of S2ν generated by τ1, . . . , τν . Then there is a subset G2ν of S2ν such
that S2ν = ∪λ∈G2ν

λT2ν and such that λT2ν ∩ λ′T2ν = ∅ for all λ 6= λ′ in G2ν . Therefore

(7.3) W =
∑
λ∈G2ν

sgn(λ)[Qfλ(1) , Qfλ(2) ] · · · [Qfλ(2ν−1)
, Qfλ(2ν) ].

Since ν ≥ d, it follows from Proposition 7.2 that W ∈ Cp for every p > 1. Proposition 7.2
also says that [Qf , Qg] ∈ Cd+ε if ε > 0. Hence [Qf , Qg]W ∈ C1.

Next we show that [Qf ,W ] ∈ C1. If d = 1, this follows from (7.3) and Proposition
7.3(b). Suppose that d ≥ 2. Then Proposition 7.3(a) tells us that [Qf , [Qfλ(2i−1)

, Qfλ(2i) ]]
∈ Cp for every p > 2d/3, where 1 ≤ i ≤ ν and λ ∈ G2ν . Since 2d/3 < d and since for every
j 6= i we have [Qfλ(2j−1)

, Qfλ(2j) ] ∈ Cd+ε for every ε > 0, it follows that [Qf ,W ] ∈ C1.

From the last two paragraphs we obtain the membership [Qf , QgW ] ∈ C1. Similarly,
[(Qf )∗, QgW ] = [Qf̄ , QgW ] ∈ C1 since f̄ is also in Lip(S). Since W is compact, it follows
from Lemma 7.1 that

tr[Qf + (Qf )∗, QgW ] = 0 = tr[Qf − (Qf )∗, QgW ].

From this we obtain tr[Qf , QgW ] = 0 as promised. �

Proof of Theorem 1.2. Write ` = ν + 1. Then the condition ` > d translates to ν ≥ d.
Since 2ν + 2 is even, for any f1, f2, . . . , f2ν+2 ∈ Lip(S), [21, Proposition 1.1] tells us that
the antisymmetric sum

[Qf1 , Qf2 , . . . , Qf2ν+1 , Qf2ν+2 ]

is a linear combination of terms of the form

[Qfξ(1) , Qfξ(2) [Qfξ(3) , Qfξ(4) , · · · , Qfξ(2ν+1)
, Qfξ(2ν+2)

]],

where ξ runs over a certain subset of the symmetric group S2ν+2. Thus Theorem 1.2
follows from Proposition 7.4. �

8. Exact sequence and the associated index

Our goal for this section is to prove Theorem 1.3. Let (T1, . . . , Tn) be an n-tuple of
bounded operators on a separable Hilbert space H. We will say that the tuple (T1, . . . , Tn)
is essentially spherical if the operators

1− (T ∗1 T1 + · · ·+ T ∗nTn), [Ti, Tj ], [Ti, T
∗
j ],

i, j ∈ {1, . . . , n}, are all compact. In addition to Theorem 1.2, for the proof of Theorem 1.3
we need an index formula due to Douglas and Voiculescu for certain essentially spherical
tuples. Our main reference for this section will be [12].
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On the Grassmann algebra ∧Cn, let a1, . . . , an be the representation of the canon-
ical anticommutation relations (CARs). That is, aih = ei ∧ h for i = 1, . . . , n, where
{e1, . . . , en} is the standard orthonormal basis for Cn. Accordingly, we have the operators

d′ = T1 ⊗ a1 + · · ·+ Tn ⊗ an and d′′ = T ∗1 ⊗ a∗1 + · · ·+ T ∗n ⊗ a∗n

on H⊗∧Cn. Let η : ∧oCn → ∧eCn be a unitary transformation. Then define the operator

(8.1) A = (1⊗ η)(d′ + d′′)
∣∣(H⊗ ∧eCn)

on H⊗ ∧eCn. One can think of A as a 2n−1 × 2n−1 matrix with entries in B(H).

Proposition 8.1. [12, Proposition 2] Suppose that T1, . . . , Tn satisfy the conditions

(8.2) [Ti, Tj ] ∈ Cn, [Ti, T
∗
j ] ∈ Cn

for all i, j ∈ {1, . . . , n} and

(8.3) 1− (T ∗1 T1 + · · ·+ T ∗nTn) ∈ Cn.

Then for the operator A defined by (8.1), we have

(8.4) index(A) = tr[T1, T
∗
1 , . . . , Tn, T

∗
n ].

Note that (8.2) and (8.3) are actually very demanding conditions. For example, for the
Toeplitz operators Tζ1 , . . . , Tζn on H2(S), we only have [Tζi , T

∗
ζj

] ∈ C+
n . In other words, the

essentially spherical tuple (Tζ1 , . . . , Tζn) on H2(S) does not satisfy the conditions required
for applying index formula (8.4). It is also known that the essentially spherical tuple
(Rζ1 , . . . , Rζn) on the submodule R does not satisfy the conditions required for applying
index formula (8.4) [17, Theorem 1.1].

But it is a different story on the quotient module Q. It follows from Proposition
2.12 that for all i, j ∈ {1, . . . , n} and for every p > d, we have QζiQζ̄j − Qζiζ̄j ∈ Cp. In
particular, QζiQζ̄j −Qζiζ̄j ∈ Cn, i, j ∈ {1, . . . , n}. In other words, the tuple (Qζ1 , . . . , Qζn)
on the quotient module Q satisfies conditions (8.2) and (8.3).

Proposition 8.2. Let AQ denote the operator defined by (8.1) in the case where H = Q
and (T1, . . . , Tn) = (Qζ1 , . . . , Qζn). Then index(AQ) = 0.

Proof. As we explained above, Proposition 8.1 is applicable to the tuple (Qζ1 , . . . , Qζn).
Therefore

index(AQ) = tr[Qζ1 , Qζ̄1 , . . . , Qζn , Qζ̄n ],

which is 0 according to Theorem 1.2. �

Remark. It is easy to see that the “symbol” of AQ is a 2n−1×2n−1 matrix ϕ with entries
in C(X), where X = M̃ ∩ S. Thus the conclusion index(AQ) = 0 in Proposition 8.2 can
also be obtained if somehow we can show that ϕ represents the 0 element in the K1-group
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of C(X). For some simple examples of M , we can indeed directly verify that [ϕ] = 0 in
K1(C(X)). But, at least for now, we do not have a topological argument for [ϕ] = 0 for the
general M considered in this paper. Even if one manages to find such a general topological
argument, it does not detract from the value of proving index(AQ) = 0 by an analytical
method, namely trace computation.

Proof of Theorem 1.3. Let AHar be the operator defined by (8.1) in the case where H =
H2(S) and (T1, . . . , Tn) = (Tζ1 , . . . , Tζn). Also, we let AR denote the operator defined by
(8.1) in the case where H = R and (T1, . . . , Tn) = (Rζ1 , . . . , Rζn). It is known from the
BDF theory that

index(AHar) and index(AR)

respectively determine the elements in Ext(S) represented by exact sequences (1.6) and
(1.7). See the discussion on page 107 in [12], and see [5,9].

Since P = R+Q, by the essential normality of either Q or R, we have

AHar = (AR ⊕AQ) +K,

where K is a compact operator on H2(S)⊗ ∧eCn. Therefore

index(AHar) = index(AR ⊕AQ) = index(AR) + index(AQ) = index(AR),

where the last = follows from Proposition 8.2. This, as we explained above, means that
exact sequences (1.6) and (1.7) represent the same element in Ext(S). �

9. Difference of antisymmetric sums

Our goal for this section is to prove Theorem 1.4. We begin with the part of Theorem
1.4 that only requires Proposition 2.12:

Proposition 9.1. For any Lipschitz functions f1, f2, . . . , f2n on S, the difference

(9.1) [Tf1 , Tf2 , . . . , Tf2n ]− [Rf1 , Rf2 , . . . , Rf2n ],

as an operator on H2(S), is in the trace class.

Proof. As it was the case for (7.3), there is a subset G2n of S2n such that

[Tf1 , Tf2 , . . . , Tf2n ] =
∑
λ∈G2n

sgn(λ)[Tfλ(1) , Tfλ(2) ] · · · [Tfλ(2n−1)
, Tfλ(2n)

] and

[Rf1 , Rf2 , . . . , Rf2n ] =
∑
λ∈G2n

sgn(λ)[Rfλ(1) , Rfλ(2) ] · · · [Rfλ(2n−1)
, Rfλ(2n)

].

Thus it suffices to show that for f1, f2, . . . , f2n ∈ Lip(S), we have

(9.2) [Tf1 , Tf2 ] · · · [Tf2n−1
Tf2n ]− [Rf1 , Rf2 ] · · · [Rf2n−1

Rf2n ] ∈ C1.
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The key to this is Proposition 2.12: if f ∈ Lip(S), then [Mf , Q] ∈ Cp for p > 2d. Using
this fact, the proof of (9.2) is the same as the proof of [25, Lemma 4.2]. �

What remains for the proof of Theorem 1.4 is to show that the trace of (9.1) is zero.
This trace computation can be further divided into two parts: Proposition 9.3 and “the
rest of the argument”. The proof of Proposition 9.3 is basically a repeat of the proof of
Theorem 1.2, and therefore relies on Theorem 1.1. In other words, Proposition 9.3 relies
on the work in Sections 3-6. By contrast, “the rest of the argument” only involves previous
techniques, although these previous techniques are themselves recent developments in [16].

To show that (9.1) has zero trace, we follow the approach in [16]. For each natural
number m ∈ N, we define the subset

Ω(m) = {z ∈M : 1− 2−2m ≤ |z| < 1}

of M . We recall the measure µ from Definition 2.4. For each m ∈ N, by restricting µ
to Ω(m) and M\Ω(m) we obtain two measures. That is, we define the measures µ(m) and
λ(m) by the formulas

µ(m)(E) = µ(E ∩ Ω(m)) and λ(m)(E) = µ(E ∩ {M\Ω(m)})

for Borel sets E. We have, of course, µ = µ(m) + λ(m) for each m. The measures µ(m) and
λ(m) give rise to Toeplitz operators Tµ(m) and Tλ(m) . More precisely, we have

(Tµ(m)f)(z) =

∫
f(w)

(1− 〈z, w〉)n
dµ(m)(w) and

(Tλ(m)f)(z) =

∫
f(w)

(1− 〈z, w〉)n
dλ(m)(w)

for f ∈ H2(S).

By adapting the work in [16, Section 3] to the Hardy-space setting, we obtain

lim
m→∞

‖[Tµ(m) ,Mf ]‖p = 0 for f ∈ Lip(S) and p > 2d.

By smooth functional calculus (see the proof of [16, Proposition 4.1]) and the relation
µ = µ(m) + λ(m), the above leads to

(9.3) lim
m→∞

‖[ϕ(Tµ),Mf ]− [ϕ(Tλ(m)),Mf ]‖p = 0

for ϕ ∈ C∞c (R), f ∈ Lip(S) and p > 2d.

Recall from Theorem 2.5 that cQ ≤ Tµ ≤ CQ for some 0 < c ≤ C < ∞. By
[16, Lemma 4.2] and the construction preceding it, there is an h ∈ C∞c (R) that has the
following properties:

(1) 0 ≤ h ≤ 1 on R.
(2) h = 0 on (−∞, c/3] ∪ [C + 2,∞).

28



(3) h(Tµ) = Q.
(4) (1− h2)1/2h ∈ C∞c (R).

With this h we define

(9.4) Am = h(Tλ(m)),

m ∈ N. Since the measure λ(m) is concentrated on M\Ω(m), the Toeplitz operator Tλ(m)

is compact. Since h = 0 on (−∞, c/3], we conclude that rank(Am) <∞ for every m ∈ N.

We have 0 ≤ Tλ(m) ≤ Tµ ≤ CQ. Since h vanishes on a neighborhood of 0, h(Tλ(m)) is
the limit in operator norm of operators of the form Tλ(m)q(Tλ(m)), where q are polynomials.
Hence for each m ∈ N, the range of Am is contained in the quotient module Q. Thus
(9.4) defines a sequence of finite-rank positive contractions {Am} satisfying the operator
inequality

(9.5) 0 ≤ Am ≤ Q

for every m ∈ N.

By (9.5), it is straightforward to verify that the operator

Q(m) =

 A2
m (1−A2

m)1/2Am

(1−A2
m)1/2Am Q−A2

m


is an orthogonal projection on L2(S, dσ)⊕ L2(S, dσ). On this space we further define

R′ =

[
R 0
0 0

]
, Q′ =

[
Q 0
0 0

]
, P ′ =

[
P 0
0 0

]
and Q′′ =

[
0 0
0 Q

]
.

Since the ranges of R′ and Q(m) are orthogonal to each other, we also have the orthogonal
projection

P (m) = R′ +Q(m)

on L2(S, dσ)⊕ L2(S, dσ), m ∈ N. For f ∈ Lip(S), we write

Df =

[
Mf 0
0 Mf

]
.

With P ′, R′, P (m), Q(m) and Df , we define the “Toeplitz operators”

T ′f = P ′DfP
′, R′f = R′DfR

′, T
(m)
f = P (m)DfP

(m) and Q
(m)
f = Q(m)DfQ

(m),

m ∈ N, as in [16].

Proposition 9.2. For any f1, f2, . . . , f2n ∈ Lip(S), we have

lim
m→∞

‖[T ′f1 , T
′
f2 , . . . , T

′
f2n ]− [T

(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

]‖1 = 0.
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Proof. This is deduced from (9.3) the same way [16, Proposition 6.1] is deduced from [16,
Proposition 4.1]. �

Proposition 9.3. Let ν ≥ d. Then for all f1, f2, . . . , f2ν+1, f2ν+2 ∈ Lip(S) and m ∈ N,
the antisymmetric sum

[Q
(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2ν+1

, Q
(m)
f2ν+2

]

is in the trace class with zero trace.

Proof. Since rank(Am) <∞, we have Q(m) = Q′′+Lm, where Lm is a finite-rank operator.
Thus it follows from Theorem 1.1 that for f, g ∈ Lip(S),

[Df , [Dg, Q
(m)]] ∈ Cp if p > d.

Similarly, it follows from Proposition 2.12 that for f ∈ Lip(S),

[Df , Q
(m)] ∈ Cp if p > 2d.

Once these two Schatten-class memberships are established, the rest of the proof is a repeat
of the work in Section 7. �

Proposition 9.4. For all f1, f2, . . . , f2n ∈ Lip(S) and m ∈ N, the difference

[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

]− [R′f1 , R
′
f2 , . . . , R

′
f2n ]

is in the trace class with zero trace.

Proof. Given any m ∈ N, we let Z(m) denote the collection of (2n+1)-tuples (X0, . . . , X2n)
satisfying the following two conditions:

(1) For each j ∈ {0, 1, . . . , 2n}, Xj is either R′ or Q(m).
(2) For each (X0, . . . , X2n), there is at least one i ∈ {0, 1, . . . , 2n} such that Xi = R′

and at least one j ∈ {0, 1, . . . , 2n} such that Xj = Q(m).
Then from the relation P (m) = R′ +Q(m) we obtain

[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

]− [R′f1 , R
′
f2 , . . . , R

′
f2n ] = [Q

(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2n

] +Gm,

where

Gm =
∑

(X0,X1,...,X2n)∈Z(m)

∑
σ∈S2n

sgn(σ)X0Dfσ(1)X1Dfσ(2)X2 · · ·X2n−1Dfσ(2n)
X2n.

Proposition 9.3 tells us that [Q
(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2n

] is in the trace class with zero trace.
By the argument for [16, Lemma 6.7(a)], Gm is a finite-rank operator. Thus it suffices to
show that tr(Gm) = 0. But this is just a repeat of the argument on pages 24-26 in [16]. �

Proof of Theorem 1.4. Since P ′ = P ⊕ 0 and R′ = R⊕ 0, we have

[T ′f1 , T
′
f2 , . . . , T

′
f2n ]− [R′f1 , R

′
f2 , . . . , R

′
f2n ]

= {[Tf1 , Tf2 , . . . , Tf2n ]− [Rf1 , Rf2 , . . . , Rf2n ]} ⊕ 0.
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Thus, by Proposition 9.1, it suffices to show that

(9.6) tr([T ′f1 , T
′
f2 , . . . , T

′
f2n ]− [R′f1 , R

′
f2 , . . . , R

′
f2n ]) = 0.

Applying Proposition 9.4, for each m ∈ N we have

tr([T ′f1 , T
′
f2 , . . . , T

′
f2n ]− [R′f1 , R

′
f2 , . . . , R

′
f2n ])

= tr([T ′f1 , T
′
f2 , . . . , T

′
f2n ]− [T

(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

])

+ tr([T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

]− [R′f1 , R
′
f2 , . . . , R

′
f2n ])

= tr([T ′f1 , T
′
f2 , . . . , T

′
f2n ]− [T

(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

])

+ 0.

Combining this with Proposition 9.2, (9.6) follows. �

10. The range space

The idea of range space was first introduced in [14] for quotient modules of the
Bergman module. This turns out to be the only technique we have at the moment that
proves the 1-essential normality in Theorem 1.5. The reader will see that the technique of
range space is distinctly different from the techniques we used in the previous sections.

First, we remind the reader that the measure dµ is given in Definition 2.4(b). Accord-
ingly, we have the Hilbert space L2(µ) = L2(M,dµ) of measurable functions on M that
are square-integrable with respect to dµ.

We will now introduce the restriction operator from B toM . Ordinarily, the restriction
operator should be denoted by the symbol R, which is common in the literature. But for
us, R denotes the orthogonal projection from L2(S, dσ) to the submodule R. To avoid
confusion, we’d better choose a different symbol for the restriction operator.

Let f ∈ Q. Since f is an analytic function on B, we define Jf to be the restriction of
this analytic function to the subset M of B. By (2.2) we have

(10.1)

∫
M

|(Jf)(w)|2dµ(w) =

∫
M

|f(w)|2dµ(w) = 〈Tµf, f〉

for every f ∈ Q. Thus, by the upper bound in Theorem 2.5, J is a bounded operator that
maps Q into L2(µ). By the lower bound in Theorem 2.5 and (10.1), we have

(10.2) ‖Jf‖2 ≥ c‖f‖2 for every f ∈ Q.

Therefore the range of J is a closed linear subspace of L2(µ).

Definition 10.1. (a) Write P for the range of the restriction operator J introduced above.
(b) Let E denote the orthogonal projection from L2(µ) onto P.

31



Obviously, (10.1) is equivalent to the statement that

(10.3) J∗Jf = Tµf for every f ∈ Q.

Moreover, (10.2) says that J is an invertible operator from Q to P.

If f ∈ R, then its restriction to M is the zero function. Since H2(S) = R⊕Q, we see
that the range space P is actually the collection of the restrictions of all f ∈ H2(S) to M .

Lemma 10.2. [26, Lemma 2.10] Given any a > 0 and κ > −1, there is a 0 < C10.2 < ∞
such that ∫

M

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ C10.2

for every z ∈M .

Moreover, it is known that if κ > −1, then∫
M

(1− |w|2)κdvM (w) <∞

[26, page 15]. This finiteness is due to the fact that we can use the function 1 − |w|2 as
one of the 2d real coordinates on M for w ∈M near S.

We define the operator T̂µ on L2(µ) by the formula

(T̂µϕ)(ζ) =

∫
M

ϕ(w)Kw(ζ)dµ(w), ζ ∈M,

ϕ ∈ L2(µ).

Proposition 10.3. (a) T̂µ is a bounded operator on L2(µ).

(b) T̂µ maps L2(µ) into P.

(c) Let T̃µ denote the restriction of T̂µ to the subspace P. Then T̃µ = JJ∗. In particular,

T̃µ is invertible on P.

(d) With respect to the orthogonal decomposition L2(µ) = P ⊕ P⊥, we have T̂µ = T̃µ ⊕ 0.

Proof. (a) The boundedness of T̂µ follows from the Rudin-Forelli estimate in Lemma 10.2
by a standard Schur-test argument. See the proof of Lemma 10.8 below for a more general
version of this boundedness.

(b) Once we know that T̂µ is bounded, the inclusion T̂µL
2(µ) ⊂ P becomes obvious.

(c) For each f ∈ Q, it is easy to see that T̃µJf = JTµf . Combining this with (10.3),

we have T̃µJf = JTµf = JJ∗Jf . Since JQ = P, this implies T̃µ = JJ∗. Since J : Q → P
and J∗ : P → Q are invertible, so is T̃µ.

(d) This follows from (b) and the obvious fact that T̂µ is self-adjoint. �

Definition 10.4. For f ∈ L∞(µ), M̂f denotes the operator of multiplication by the
function f on L2(µ).

32



As usual, we write ζ1, . . . , ζn for the coordinate functions on B.

Proposition 10.5. For each j ∈ {1, . . . , n}, P is an invariant subspace for M̂ζj .

Proof. Let f ∈ Q. Then Qζjf = ζjf − gj for some gj ∈ R. Since gj = 0 on M , we have

(10.4) JQζjf = ζjf
∣∣M − gj∣∣M = ζjf

∣∣M = ζjJf = M̂ζjJf.

That is, for each f ∈ Q, we have M̂ζjJf ∈ JQ = P, which proves the proposition. �

Proposition 10.5 makes it possible for us to introduce

Definition 10.6. For each j ∈ {1, . . . , n}, let Mζj denote the restriction of the operator

M̂ζj to the invariant subspace P.

Thus we can restate (10.4) in the form

Corollary 10.7. We have JQζj = MζjJ for every j ∈ {1, . . . , n}.

Lemma 10.8. Let G(ζ, w) be a Borel function on M×M . Consider the operator on L2(µ)
given by the formula

(10.5) (AGϕ)(ζ) =

∫
M

ϕ(w)G(ζ, w)Kw(ζ)dµ(w),

ϕ ∈ L2(µ). If G satisfies the condition∫∫
|G(ζ, w)|p|Kw(ζ)|2dµ(w)dµ(ζ) <∞

for some 2 ≤ p <∞, then AG belongs to the Schatten class Cp.

Proof. This follows from a standard interpolation between the Hilbert-Schmidt norm and
the operator norm. One end of this interpolation, the case p = 2, is obvious. Thus we
only need to show that in the case where G is bounded, we have ‖AG‖ ≤ C1‖G‖∞. But
the case of operator norm follows from Lemma 10.2 and the Schur test, as follows.

Consider the function h(w) = (1− |w|2)−1/2 on M . Recalling Definition 2.4, we have∫
M

h(w)|G(ζ, w)Kw(ζ)|dµ(w) ≤ C‖G‖∞
∫
M

(1− |w|2)−1/2

|1− 〈ζ, w〉|d+1
dvM (w)

= C‖G‖∞
∫
M

(1− |w|2)−1/2

|1− 〈ζ, w〉|d+1+(1/2)−(1/2)
dvM (w) ≤ C1‖G‖∞h(ζ),

where the last step is an application of Lemma 10.2. A similar argument shows that∫
M

h(ζ)|G(ζ, w)Kw(ζ)|dµ(ζ) ≤ C1‖G‖∞h(w).

Thus the Schur test gives us ‖AG‖ ≤ C1‖G‖∞ as promised. This completes the proof. �
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Proposition 10.9. For every pair of j ∈ {1, . . . , n} and p > 2d, we have [M̂ζj , T̂µ] ∈ Cp
and [M̂ζj , E] ∈ Cp.

Proof. It follows from parts (d) and (c) in Proposition 10.3 that there is an h ∈ C∞c (R)
such that E = h(T̂µ). Thus by the standard smooth functional calculus, it suffices to show

that [M̂ζj , T̂µ] ∈ Cp for every pair of j ∈ {1, . . . , n} and p > 2d.

Note that for any j ∈ {1, . . . , n}, if we define Gj(ζ, w) = ζj−wj , then [M̂ζj , T̂µ] = AGj ,
where AGj is given by (10.5). Thus, by Lemma 10.8, it suffices to show that∫∫

|ζj − wj |p|Kw(ζ)|2dµ(w)dµ(ζ) <∞

for every p > 2d. We have |ζj − wj | ≤
√

2|1− 〈ζ, w〉|1/2. Given any p > 2d, we write it in
the form p = 2d+ 2r with some r > 0. Then

|ζj − wj |p|Kw(ζ)|2 ≤ C|1− 〈ζ, w〉|d+r|Kw(ζ)|2.

Recalling Definition 2.4, we now have∫∫
|ζj − wj |p|Kw(ζ)|2dµ(w)dµ(ζ) ≤ C1

∫∫
|1− 〈ζ, w〉|d+r

|1− 〈ζ, w〉|2d+2
dvM (w)dvM (ζ).

Since r > 0, Lemma 10.2 tells us that this is finite. This completes the proof. �

Proposition 10.10. For every p > d, the tuple (Mζ1 , . . . ,Mζn) on the range space P is
p-essentially normal. In other words, for all i, j ∈ {1, . . . , n} and p > d, the commutator
[Mζi ,M

∗
ζj

] on P is in the Schatten class Cp.

Proof. This follows from Proposition 10.9 by the easy identity

(10.6) [Mζi ,M
∗
ζj ] = [E, M̂ζi ](E − 1)[E, M̂ζj ]

∗,

i, j ∈ {1, . . . , n}. �

Let

(10.7) J∗ = U |J∗|

be the polar decomposition of the operator J∗. We know that J∗ : P → Q is invertible.
Therefore the U above is a unitary operator. Also, by Proposition 10.3(c), we have |J∗| =
(JJ∗)1/2 = T̃

1/2
µ . Combining this with Corollary 10.7, we find that

(10.8) Qζj = J−1MζjJ = UT̃−1/2
µ Mζj T̃

1/2
µ U∗ = UMζjU

∗ +Kj

for each j ∈ {1, . . . , n}, where

(10.9) Kj = UT̃−1/2
µ [Mζj , T̃

1/2
µ ]U∗.
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We alert the reader that (10.8) and (10.9) are important identities.

Lemma 10.11. The operator Kj given by (10.9) belongs to Cp for every p > 2d.

Proof. It suffices to show that [Mζj , T̃
1/2
µ ] ∈ Cp for p > 2d. By Proposition 10.3(c), the

spectrum of T̃µ is contained in [c, C] for some 0 < c < C < ∞. Therefore there is an

h ∈ C∞c (R) such that T̃
1/2
µ = h(T̃µ). By the standard smooth functional calculus, this

reduces the proof of the lemma to that of the membership [Mζj , T̃µ] ∈ Cp for p > 2d. Since

[Mζj , T̃µ] = E[M̂ζj , T̂µ]E, Proposition 10.9 gives us the desired conclusion. �

The above naturally leads to the notion of “essential joint subnormality”:

Definition 10.12. (a) Let (S1, . . . , Sn) be a commuting tuple of operators on a Hilbert
spaceH. We say that (S1, . . . , Sn) is jointly subnormal if it extends to a commuting tuple of
normal operators. That is, if there exist a Hilbert space Ĥ containing H and a commuting
tuple of normal operators (N1, . . . , Nn) on Ĥ such that H is an invariant subspace for each
Nj and such that Sj = Nj

∣∣H for every j ∈ {1, . . . , n}.
(b) Let (T1, . . . , Tn) be a tuple of operators on a Hilbert space H, which may or may not
be commuting. Let 1 ≤ p <∞. We say that (T1, . . . , Tn) is p-essentially jointly subnormal
if there is a commuting, jointly subnormal tuple (S1, . . . , Sn) on H such that Tj − Sj ∈ Cp
for every j ∈ {1, . . . , n}.

Obviously, the tuple (Mζ1 , . . . ,Mζn) on the range space P is jointly subnormal, as
are the tuple (Tζ1 , . . . , Tζn) on H2(S) and the tuple (Rζ1 , . . . , Rζn) on the submodule R.
Moreover, the property of being jointly subnormal is preserved under unitary equivalence.

For a well-known example of a tuple that is essentially jointly subnormal but not
jointly subnormal, we mention the multiplication operators (Mζ1 , . . . ,Mζn) on the Drury-
Arveson space H2

n.

Since Q is a quotient module, in general we do not know if the tuple (Qζ1 , . . . , Qζn)
is jointly subnormal. Thus it is significant that from (10.8) and Lemma 10.11 we obtain

Theorem 10.13. The commuting tuple (Qζ1 , . . . , Qζn) on Q is p-essentially jointly sub-
normal for every p > 2d.

11. The case d = 1

With the preparations in Section 10, we are now ready to specialize to the case d = 1
and prove Theorem 1.5. We begin with a special property of M in the case d = 1.

Proposition 11.1. Suppose that d = 1. Then there is a 0 < C <∞ such that

(11.1) |ζ − w| ≤ C|1− 〈ζ, w〉|

for all ζ, w ∈M .

Proof. First, recall the setM (t) from (3.2). For any fixed 0 < t < 1, if we have w ∈M\M (t),
then (11.1) obviously holds. Thus we only need to consider the case where w ∈ M (t) for
a fixed t ∈ (0, 1) that is sufficiently close to 0. Similarly, for any fixed δ > 0, if ζ, w ∈ M
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satisfy the condition |ζ − w| ≥ δ, then (11.1) obviously holds. Thus we only need to
consider ζ, w ∈M satisfying the condition |ζ − w| ≤ δ for some given δ > 0.

Then note that the Möbius transforms of the unit disc give us the inequality

(11.2) |a− b| ≤ |1− ab̄|

for all complex numbers a, b with |a| < 1 and |b| < 1.

For each z ∈ K (cf. Section 2), let Tz be the tangent space to the complex manifold
M at z, and let pz be the orthogonal projection of z on Tz. By Assumption 2.2(1), if
z ∈ M̃ ∩S, then pz 6= 0. Reducing the value of s ∈ (0, 1) in the definition of K if necessary,
we may assume that pz 6= 0 for every z ∈ K. Thus under the condition d = 1, for each
z ∈ K, the modified tangent space Tmod

z (cf. [26, Definition 2.6]) is just Cz.

Let Pz : Cn → Cz be the orthogonal projection, z ∈ K. By [26, Lemma 2.7],
Pz : M → Cz is biholomorphic near z. Moreover, by the analysis on pages 7-9 in [26],
there are constants 0 < C <∞ and ε > 0 such that

|z − ξ| ≤ C|Pz(z − ξ)| if z ∈ K, ξ ∈M and |z − ξ| ≤ ε.

Thus for every pair of ζ ∈ K and w ∈M satisfying the condition |ζ−w| ≤ ε, since Pζζ = ζ
and since ζ and Pζw both belong to the subspace Cζ of complex dimension 1, we have

|ζ − w| ≤ C|ζ − Pζw| ≤ C|1− 〈ζ, Pζw〉| = C|1− 〈ζ, w〉|,

where the second ≤ follows from (11.2). As we explained in the first paragraph, this proves
the proposition. �

Let Lip(M) denote the collection of Lipschitz functions on M .

Proposition 11.2. Suppose that d = 1. Then for every f ∈ Lip(M), the commutators
[M̂f , T̂µ] and [M̂f , E] are in the Hilbert-Schmidt class C2. Moreover, we have [Mζj , T̃µ] ∈ C2
for every j ∈ {1, . . . , n}.

Proof. Obviously, [Mζj , T̃µ] = E[M̂ζj , T̂µ]E. As we mentioned in the proof of Proposition

10.9, there is an h ∈ C∞c (R) such that E = h(T̂µ). Thus by the standard smooth functional

calculus, we only need to show that [M̂f , T̂µ] ∈ C2 for every f ∈ Lip(M).

Given any f ∈ Lip(M), we have [M̂f , T̂µ] = AG, where G(ζ, w) = f(ζ) − f(w) and
AG is given by (10.5). Thus it suffices to show that∫∫

|f(ζ)− f(w)|2|Kw(ζ)|2dµ(w)dµ(ζ) <∞

under the condition d = 1. But when d = 1, it follows from the Lipschitz condition for f
and Proposition 11.1 that

|f(ζ)− f(w)|2|Kw(ζ)|2 ≤ C1|ζ − w|2|Kw(ζ)|2 ≤ C2|1− 〈ζ, w〉|2|Kw(ζ)|2
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for w, ζ ∈M . Recalling Definition 2.4, this inequality leads to∫∫
|f(ζ)− f(w)|2|Kw(ζ)|2dµ(w)dµ(ζ) ≤ C3

∫∫
1

|1− 〈ζ, w〉|2
dvM (w)dvM (ζ).

Applying Lemma 10.2 in the case d = 1, the above is finite. This completes the proof. �

Proposition 11.3. Suppose that d = 1. Then the tuple (Mζ1 , . . . ,Mζn) on the range space
P is 1-essentially normal. That is, for all i, j ∈ {1, . . . , n}, the commutator [Mζi ,M

∗
ζj

] on
P is in the trace class C1.

Proof. This follows immediately from Proposition 11.2 and identity (10.6). �

We now define the function

ρ(ζ) = 1− |ζ|2, ζ ∈ B.

Lemma 11.4. Suppose that d = 1. Let ε > 0. If δ > 0 satisfies the condition

(2 + ε)((1/2)− δ) > 1,

then the operator M̂ρ(1/2)−δE is in the Schatten class C2+ε.

Proof. It follows from Proposition 10.3 that E = T̂µ(T̃−1
µ ⊕ 0). Therefore it suffices to

show that M̂ρ(1/2)−δ T̂µ ∈ C2+ε. Denote t = (2 + ε)((1/2)− δ).

By (10.5), we have M̂ρ(1/2)−δ T̂µ = AG with G(ζ, w) = ρ(1/2)−δ(ζ). Thus, applying

Lemma 10.8, the membership M̂ρ(1/2)−δ T̂µ ∈ C2+ε will follow if we can show that∫∫
|G(ζ, w)|2+ε|Kw(ζ)|2dµ(w)dµ(ζ) <∞.

That is, we have reduced the proof of the lemma to that of the inequality∫∫
(1− |ζ|2)t|Kw(ζ)|2dµ(w)dµ(ζ) <∞.

Specializing Definition 2.4 to the case d = 1, we have∫∫
(1− |ζ|2)t|Kw(ζ)|2dµ(w)dµ(ζ) ≤ C

∫∫
(1− |ζ|2)t

|1− 〈ζ, w〉|4
dvM (w)dvM (ζ).

Since t > 1, we deduce from Lemma 10.2 that the above is finite. �

Lemma 11.5. Given any f, g ∈ Lip(M), define the operator T on L2(µ) by the formula

(11.3) (Tϕ)(ζ) =

∫
M

ϕ(w)(f(ζ)− f(w))(g(ζ)− g(w))Kw(ζ)dµ(w),
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ϕ ∈ L2(µ). If d = 1, then M̂ρ−(1/2)+δTM̂ρ−(1/2)+δ ∈ C2 for every δ > 0.

Proof. Given any δ > 0, it suffices to show that∫∫
{ρ−(1/2)+δ(ζ)ρ−(1/2)+δ(w)}2|(f(ζ)− f(w))(g(ζ)− g(w))|2|Kw(ζ)|2dµ(w)dµ(ζ) <∞.

By the Lipschitz condition for f , g and Proposition 11.1, the left-hand side does not exceed

C1

∫∫
{(1− |ζ|2)(1− |w|2)}−1+2δ|1− 〈ζ, w〉|4|Kw(ζ)|2dµ(w)dµ(ζ).

Applying Definition 2.4 in the case d = 1, the above is dominated by

C2

∫∫
{(1− |ζ|2)(1− |w|2)}−1+2δdvM (w)dvM (ζ).

Since δ > 0, this is finite. This completes the proof. �

Lemma 11.6. Suppose that d = 1. Then for all f, g ∈ Lip(M), the operator

E[M̂f , [M̂g, T̂µ]]E

is in the trace class.

Proof. Note that the double commutator [M̂f , [M̂g, T̂µ]] is none other than the operator T
defined by (11.3). Thus our task is to show that ETE ∈ C1.

Given a small ε > 0, we will show that there is a factorization ETE = A1A2A3 such
that A1, A3 ∈ C2+ε and A2 ∈ C2. This, of course, will imply that ETE ∈ C1.

To obtain the desired factorization, we pick a δ > 0 such that (2 + ε)((1/2)− δ) > 1.
We then define

A1 = EM̂ρ(1/2)−δ , A2 = M̂ρ−(1/2)+δTM̂ρ−(1/2)+δ and A3 = M̂ρ(1/2)−δE.

For these operators, we have A1, A3 ∈ C2+ε by Lemma 11.4 and A2 ∈ C2 by Lemma 11.5.
Since these three operators do give us the factorization ETE = A1A2A3, the proof is
complete. �

Lemma 11.7. Suppose that d = 1. Then for each pair of i, j ∈ {1, . . . , n}, the operator
[Mζi , [M

∗
ζj
, T̃µ]] is in the trace class.

Proof. It is easy to see that

[Mζi , [M
∗
ζj , T̃µ]] = E[M̂ζi , E[M̂ζ̄j , T̂µ]E]E

= E{[M̂ζi , E][M̂ζ̄j , T̂µ]E + E[M̂ζi , [M̂ζ̄j , T̂µ]]E + E[M̂ζ̄j , T̂µ][M̂ζi , E]}E.

Applying Proposition 11.2 and Lemma 11.6 to the appropriate terms inside the { }, we
obtain the membership [Mζi , [M

∗
ζj
, T̃µ]] ∈ C1. �
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Lemma 11.8. Suppose that d = 1. Then for each pair of i, j ∈ {1, . . . , n}, the operator

[Mζi , [M
∗
ζj
, T̃

1/2
µ ]] is in the trace class.

Proof. As we mentioned in the proof of Lemma 10.11, the spectrum of T̃µ is contained in
[c, C], where 0 < c < C < ∞. Consider H+ = {λ ∈ C : Re(λ) > 0}, the right half-plane.
Let γ be a simple Jordan curve in H+\[c, C] whose winding number about every x ∈ [c, C]
is 1. Taking advantage of the fact that the square-root function λ1/2 is analytic on H+,
from the Riesz functional calculus we obtain

T̃ 1/2
µ =

1

2πi

∫
γ

λ1/2(λ− T̃µ)−1dλ.

Similar to the argument in the proof of Theorem 1.1, the above formula leads to

[Mζi , [M
∗
ζj , T̃

1/2
µ ]] =

1

2πi

∫
γ

λ1/2{A(λ) +B(λ) + C(λ)}dλ,

where

A(λ) = (λ− T̃µ)−1[Mζi , T̃µ](λ− T̃µ)−1[M∗ζj , T̃µ](λ− T̃µ)−1,

B(λ) = (λ− T̃µ)−1[Mζi , [M
∗
ζj , T̃µ]](λ− T̃µ)−1 and

C(λ) = (λ− T̃µ)−1[M∗ζj , T̃µ](λ− T̃µ)−1[Mζi , T̃µ](λ− T̃µ)−1.

Applying Lemma 11.7 to B(λ) and Proposition 11.2 to A(λ) and C(λ), we obtain the

membership [Mζi , [M
∗
ζj
, T̃

1/2
µ ]] ∈ C1. �

Lemma 11.9. Suppose that d = 1. Then for each pair of i, j ∈ {1, . . . , n}, the operator

[Mζi , [Mζj , T̃
1/2
µ ]] is in the trace class.

Proof. It suffices to observe that if we replace M∗ζj by Mζj in Lemmas 11.7 and 11.8, then
the proofs still work. �

Lemma 11.10. Suppose that d = 1. Then for every j ∈ {1, . . . , n} we have [Mζj , T̃
1/2
µ ] ∈

C2 and Kj ∈ C2, where, as we recall, Kj is given by (10.9).

Proof. The membership [Mζj , T̃
1/2
µ ] ∈ C2 is obtained from Proposition 11.2 by applying

smooth functional calculus, or the Riesz functional calculus used above. �

Lemma 11.11. Suppose that d = 1. Then for every pair of i, j ∈ {1, . . . , n}, we have
[UMζiU

∗,K∗j ] ∈ C1 and [UMζiU
∗,Kj ] ∈ C1, where U is given in (10.7).

Proof. By (10.9), we have

[UMζiU
∗,K∗j ] = U [Mζi , [T̃

1/2
µ ,M∗ζj ]T̃

−1/2
µ ]U∗

= U{[Mζi , [T̃
1/2
µ ,M∗ζj ]]T̃

−1/2
µ + [T̃ 1/2

µ ,M∗ζj ]T̃
−1/2
µ [T̃ 1/2

µ ,Mζi ]T̃
−1/2
µ }U∗.

Thus the membership [UMζiU
∗,K∗j ] ∈ C1 follows from Lemmas 11.8 and 11.10. Similarly,

the membership [UMζiU
∗,Kj ] ∈ C1 follows from Lemmas 11.9 and 11.10. �
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With the above preparation we can now accomplish the main goal of the section.

Proof of Theorem 1.5. By (10.8), for any i, j ∈ {1, . . . , n}, we have

[Qζi , Q
∗
ζj ] = [UMζiU

∗ +Ki, UM
∗
ζjU
∗ +K∗j ]

= U [Mζi ,M
∗
ζj ]U

∗ + [UMζiU
∗,K∗j ] + [Ki, UM

∗
ζjU
∗] + [Ki,K

∗
j ].

By Proposition 11.3 and Lemma 11.10, the first and the last term above are in the trace
class. By Lemma 11.11, the two middle terms are also in the trace class. Hence [Qζi , Q

∗
ζj

]
is in the trace class as promised. �

Once we have established the 1-essential normality of the tuple (Qζ1 , . . . , Qζn) in
the case d = 1, we can begin to consider the trace of commutators of polynomials in
Qζ1 , . . . , Qζn , Q

∗
ζ1
, . . . , Q∗ζn . Let k,m ∈ N and consider any Si, Tj ∈ {Qζ1 , . . . , Qζn , Q∗ζ1 ,

. . . , Q∗ζn}, 1 ≤ i ≤ k and 1 ≤ j ≤ m. Under the assumption d = 1, Theorem 1.5 implies

[S1 · · ·Sk, T1 · · ·Tm] ∈ C1.

Moreover, it is an easy consequence of the 1-essential normality of (Qζ1 , . . . , Qζn) that

tr[S1 · · ·Sk, T1 · · ·Tm] = tr[Sα(1) · · ·Sα(k), Tβ(1) · · ·Tβ(m)]

for every permutation α of the set {1, . . . , k} and every permutation β of the set {1, . . . ,m}.
Therefore we only need to consider traces of the form

tr[Q∗pQq, Q
∗
rQs],

where p, q, r, s ∈ C[ζ1, . . . , ζn]. The same is true if we consider the trace of commutators
of polynomials of the operators Mζ1 , . . . ,Mζn ,M

∗
ζ1
, . . . ,M∗ζn on P.

Theorem 11.12. When d = 1, we have

(11.4) tr[Q∗pQq, Q
∗
rQs] = tr[M∗pMq,M

∗
rMs]

for all p, q, r, s ∈ C[ζ1, . . . , ζn].

Proof. First of all, in addition to the 1-essential normality provided by Theorem 1.5, it
follows from (10.8) and Lemmas 11.10 and 11.11 that for i, j ∈ {1, . . . , n}, the commutators
[Qζi ,K

∗
j ] and [Qζi ,Kj ] are in the trace class. Let A be the unital algebra generated by

Qζ1 , . . . , Qζn , Q∗ζ1 , . . . , Q
∗
ζn

, K1, . . . ,Kn, K∗1 , . . . ,K
∗
n. Then for any j ∈ {1, . . . , n} and

any A,B,C ∈ A, we have [AKjB,C] ∈ C1. We also have [AKjB,C
∗] ∈ C1 since the

membership C ∈ A implies C∗ ∈ A. Thus it follows from Lemma 7.1 that tr[AKjB,C] = 0.
Similarly, we have tr[AK∗jB,C] = 0 for all A,B,C ∈ A and j ∈ {1, . . . , n}.

Given any p, q, r, s ∈ C[ζ1, . . . , ζn], from (10.8) it is easy to deduce that

[Q∗pQq, Q
∗
rQs] = U [M∗pMq,M

∗
rMs]U

∗ +X,
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where X is a linear combination of commutators of the form [AKjB,C] and [AK∗jB,C],
where A,B,C ∈ A and j ∈ {1, . . . , n}. By the preceding paragraph, we have tr(X) = 0.
Therefore (11.4) holds. �

Since Mζ1 , . . . ,Mζn are just multiplication operators on P, the hope is that the right-
hand side of (11.4) is more commutable. The significance of Theorem 11.12 is that any
explicit formula for the right-hand side of (11.4) (say in terms of some integral involving
p, q, r, s) is an explicit formula for the left-hand side.

12. Examples and an open problem

The assumption d = 1 is the obvious geometric condition in Theorem 1.5. But what
is also involved in Theorem 1.5 is the algebraic notion of “multiplicity” associated with
the submodule that gives arise to Q. It is worth reminding the reader that in this paper,
we only consider quotient modules of the form

(12.1) Q = H2(S)	R, where R = {f ∈ H2(S) : f = 0 on M}.

This kind of R has multiplicity 1, because f is only required to vanish on M to the first
order. If we increase the multiplicity, then the corresponding quotient module no longer
has 1-essential normality, even if the underlying variety still has complex dimension 1. We
will see this in the following example.

Example 12.1. Consider the case n = 2. That is, suppose that S ⊂ C2. Let [ζ2
1 ] be the

principal submodule of H2(S) generated by the monomial ζ2
1 . In other words, [ζ2

1 ] is the
closure of {ζ2

1f : f ∈ H2(S)} in H2(S). Clearly, this submodule [ζ2
1 ] has multiplicity 2

with the underlying variety {(0, z) : |z| < 1, z ∈ C}. Define

[ζ2
1 ]⊥ = H2(S)	 [ζ2

1 ],

which is the quotient module corresponding to the submodule [ζ2
1 ]. Then the module

operator Qζ1 on [ζ2
1 ]⊥ has the properties that [Q∗ζ1 , Qζ1 ] ∈ C+

1 and that [Q∗ζ1 , Qζ1 ] /∈ C1.

To see this, we use the standard orthonormal basis {ei,j : i, j ≥ 0} for H2(S). Recall

that ei,j(ζ) = { (i+j+1)!
i!j! }1/2ζi1ζ

j
2 for i, j ≥ 0. Let Q : H2(S) → [ζ2

1 ]⊥ be the orthogonal
projection. Then Q = Q0 +Q1, where

Qi =
∞∑
j=0

ei,j ⊗ ei,j , i = 0, 1.

By straightforward calculation,

[Q∗ζ1 , Qζ1 ] = QMζ̄1QMζ1Q−QMζ1QMζ̄1Q

= Q0Mζ̄1Q1Mζ1Q0 −Q1Mζ1Q0Mζ̄1Q1

=
∞∑
j=0

|〈ζ1e0,j , e1,j〉|2e0,j ⊗ e0,j −
∞∑
j=0

|〈ζ1e0,j , e1,j〉|2e1,j ⊗ e1,j

=

∞∑
j=0

1

j + 2
e0,j ⊗ e0,j −

∞∑
j=0

1

j + 2
e1,j ⊗ e1,j .
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This gives us three pieces of information: that [Q∗ζ1 , Qζ1 ] /∈ C1, that [Q∗ζ1 , Qζ1 ] ∈ C+
1 , and

that the Dixmier trace of [Q∗ζ1 , Qζ1 ] is 0. �

Our next example provides a contrast to Example 12.1.

Example 12.2. Again, consider the case n = 2. This time, consider the principal submod-
ule [ζ1ζ2] of H2(S) generated by the monomial ζ1ζ2. Define Ṽ = {(0, z) : z ∈ C}∪{(z, 0) :
z ∈ C} and V = Ṽ ∩B2. It is easy to see that

[ζ1ζ2] = {f ∈ H2(S) : f = 0 on V }.

Since dimCṼ = 1, the quotient module [ζ1ζ2]⊥ = H2(S) 	 [ζ1ζ2] is 1-essentially normal
by Theorem 1.5. Of course, for such a simple quotient module [ζ1ζ2]⊥, its 1-essential
normality can also be verified by hand. In fact, this is one of the examples that led us to
the discovery of Theorem 1.5. �

Summarizing the above discussion, the point we want to make is that essential nor-
mality depends on the underlying multiplicity as well as on the underlying dimension.

Once we have Theorem 1.5, a natural question is, is there a generalization of it in our
setting (12.1) for the case 1 < d ≤ n− 1? We end the paper with an open problem that is
worth exploring:

Problem 12.3. Consider general Q in (12.1) with 1 < d ≤ n−1. For analytic polynomials
p1, . . . , pd, q1, . . . , qd ∈ C[ζ1, . . . , ζn], is the antisymmetric sum

[Qp1 , Q
∗
q1 , . . . , Qpd , Q

∗
qd

]

in the trace class? If it is in the trace class, is there a formula for its trace, say in terms
of some integral on M? In other words, is there an analogue of the Helton-Howe trace
formula [21] for the above antisymmetric sum?
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