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Abstract. Consider a bounded strongly pseudo-convex domain Ω with a smooth boundary
in Cn. Let T be the Toeplitz algebra on the Bergman space L2

a(Ω). That is, T is the C∗-
algebra generated by the Toeplitz operators {Tf : f ∈ L∞(Ω)}. Extending the work [27,28]
in the special case of the unit ball, we show that on any such Ω, T and {Tf : f ∈ VObdd}+K
are essential commutants of each other. On a general Ω considered in this paper, the proofs
require many new ideas and techniques. These same techniques also enable us to show
that for A ∈ T , if 〈Akz, kz〉 → 0 as z → ∂Ω, then A is a compact operator.

1. Introduction

An enduring question in the study of Toeplitz operators is their essential commutativ-
ity. In this paper we consider this question on strongly pseudo-convex domains. It will be
beneficial to start the paper with a recollection of necessary definitions and background.

Suppose that Z is a collection of bounded operators on a Hilbert space H. Then its
essential commutant is defined to be

EssCom(Z) = {A ∈ B(H) : [A, T ] is compact for every T ∈ Z}.

The study of essential commutants began with the classic papers of Johnson-Parrott [13],
Voiculescu [23] and Popa [19]. Ever since, essential-commutant problems have become a
mainstay of operator theory and operator algebras. As it turns out, many of the most in-
teresting examples in the study of essential commutants are associated with Toeplitz opera-
tors, of various kinds [4,6-9,11,24,25,27,28]. Perhaps, one reason why essential-commutant
problems attract attention is that they are generally not easy.

In this paper we consider an arbitrary bounded, strongly pseudo-convex domain Ω
with a smooth boundary in Cn. Recall that the Bergman space L2

a(Ω) is the collection of
analytic functions h on Ω satisfying the condition∫

Ω

|h|2dv <∞,

where dv is the volume measure on Ω. Let P : L2(Ω)→ L2
a(Ω) be the orthogonal projec-

tion. For each f ∈ L∞(Ω), we have the Toeplitz operator Tf defined by the formula

Tfh = P (fh), h ∈ L2
a(Ω).
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Let T denote the C∗-algebra generated by {Tf : f ∈ L∞(Ω)}. Then T is called the Toeplitz
algebra on the Bergman space L2

a(Ω). It is well known that T contains K, the collection
of compact operators on L2

a(Ω) [22,Theorem 4.1.25]. Obviously, this is a convenient fact
for the study of essential commutants.

In the case of the unit ball B in Cn, the essential commutant problems related to T
were solved in [27,28], with [26,Theorem 1.3] playing a pivotal role. Specifically, in the case
of the unit ball, it was shown that EssCom(T ) = {Tf : f ∈ VObdd} + K in [27] and that
EssCom{Tf : f ∈ VObdd} = T in [28]. Once one knows that, a question naturally presents
itself: what happens if one replaces the unit ball B by a general strongly pseudo-convex
domain Ω? Equally naturally, one would expect that the same results hold on a general
Ω. But here one immediately runs into two difficulties:

(1) The works in [27,28], particularly in [26], rely heavily on the explicit formula for
the Bergman metric β on B. Without such an explicit formula, it is not clear how to redo
many of the estimates in [27,28]. By contrast, in the case of a general strongly pseudo-
convex domain, we only know the asymptotics of the Bergman metric [10,20], but we do
not have a formula for it that is explicit enough. In other words, on a general Ω, we do not
have good enough a handle on the Bergman metric to do many of the necessary estimates.
The same is true if one considers the Kobayashi metric instead of the Bergman metric.

(2) The techniques in [26,27,28] depend heavily on the Möbius transforms on B.
But on a general strongly pseudo-convex domain Ω, there is no such thing as Möbius
transform. In other words, compared with the unit ball, a general Ω totally lacks global
symmetry. Compared with (1), this difficulty is more substantive, but it also makes an
exciting challenge: can we prove the results in [27,28] on a domain without symmetry?

We are pleased to report that we have managed to overcome these difficulties. The
way we deal with difficulty (1) is to simply introduce a new metric that serves our purpose.
Since Ω is a strongly pseudo-convex domain, it has a defining function r, i.e., Ω = {z ∈
Cn : r(z) < 0}. Then the formula

bij(z) = ∂i∂̄j log
1

−r(z)
, 1 ≤ i, j ≤ n,

for z near ∂Ω gives us the infinitesimal generator of a metric d on Ω. One might call this
d a poor man’s imitation of the Bergman metric, but the above formula is explicit enough
to allow us to do all the necessary analysis. We will have more to say about this point
below, and the precise definition of d will be given at the beginning of Section 2.

Difficulty (2) simply requires new approaches. Examining the involvements of Möbius
transforms in [27,28] one by one, we have managed to find a new idea or new technique as
a replacement in each case. Thus the results about essential commutants mentioned above
can indeed be proved without symmetry.

To state our results, we need the notion of vanishing oscillation, which was first intro-
duced in [5,3] for functions on bounded symmetric domains with respect to the Bergman
metric. In this paper we need to define functions of vanishing oscillation with respect to
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the metric d on Ω. Let f be a continuous function on Ω. Then f is said to have vanishing
oscillation if

lim
z→∂Ω

sup{|f(z)− f(w)| : d(z, w) ≤ 1} = 0.

Let VO denote the collection of functions of vanishing oscillation on Ω. Further, define

VObdd = VO ∩ L∞(Ω).

Our main results are the two theorems below:

Theorem 1.1. On any bounded, strongly pseudo-convex domain Ω with a smooth boundary
in Cn, the following hold true:
(i) The Toeplitz algebra T is the essential commutant of {Tf : f ∈ VObdd}.
(ii) The essential commutant of T equals {Tf : f ∈ VObdd}+K.

Let Q denote the Calkin algebra B(L2
a(Ω))/K, and let

π : B(L2
a(Ω))→ Q

be the quotient homomorphism. Then π(EssCom(Z)) = {π(Z)}′ for every subset Z ⊂
B(L2

a(Ω)). Obviously, a subset A of Q satisfies the double-commutant relation A = A′′ if
and only if A = G′ for some G ⊂ Q. Thus Theorem 1.1(i) implies that π(T ) satisfies the
double-commutant relation in Q.

As it turns out, the techniques that allow us to prove Theorem 1.1(i), also give us a
classic compactness criterion for A ∈ T in terms of its Berezin transform on Ω. Let us
write kz, z ∈ Ω, for the normalized reproducing kernel for the Bergman space L2

a(Ω).

Theorem 1.2. Consider any bounded, strongly pseudo-convex domain Ω with a smooth
boundary in Cn. Let A ∈ T . If

(1.1) lim
z→∂Ω

〈Akz, kz〉 = 0,

then A is a compact operator on L2
a(Ω).

At this point, it is appropriate to briefly recall the long history of this line of investiga-
tions. The first result of this genre was due to Axler and Zheng [1], where the domain was
the unit disc in C and A was a finite algebraic combination of Toeplitz operators. Later
in [21], Suárez showed that this compactness criterion holds for all A ∈ T on the unit ball
B in Cn. The fact that Suárez was able to do this for arbitrary A ∈ T on the ball, rather
than just for finite algebraic combinations of Toeplitz operators, was considered to be a
major breakthrough. Consequently, [21] inspired many generalizations [2,12,29], including
generalizations on the Fock space. But all these papers depend on the Möbius transforms
on the domain in question. In this regard, Theorem 1.2 is the first to remove any and all
involvement of Möbius transforms, since in general there aren’t any on Ω.

The rest of the paper is taken up by the proofs of these results. Because we have to
start from scratch, there are numerous steps involved. We conclude the introduction by
an outline of our plan.
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First of all, in Section 2 we precisely define the metric d mentioned above. In addition
to d, another important quantity for the paper is the “gauge”

ρ(z, w) = |z − w|2 + |〈z − w, (∂̄r)(z)〉|

on Ω. Section 2 contains several fundamental estimates involving d and ρ(z, w). Section 3
brings in another important ingredient for our analysis, the function

F (z, w) = |r(z)|+ |r(w)|+ ρ(z, w),

which is a familiar fixture on strongly pseudo-convex domains. The main result of the
section is Lemma 3.8, which is a version of the Forelli-Rudin estimates for Ω in which d
and F are quantitatively involved.

Sections 4 and 5 are devoted to operators that are discrete sums constructed from the
Bergman kernel K(z, w) over d-lattices. The main goal for these two sections is Corollary
5.3, which provides the norm-continuity of such discrete sums under small perturbation of
the lattice.

In Section 6, we introduce LOC(A), the class of “localized versions of A” for any
bounded operator A on L2

a(Ω). Using Lemma 3.8 and Corollary 5.3 mentioned above and
doing quite a bit of additional work, we show in Section 6 that LOC(A) ⊂ T for every
A ∈ B(L2

a(Ω)). This is a major step in the proof of Theorem 1.1(i).

Section 7 is devoted to matters related to functions of vanishing oscillation. In par-
ticular, we consider the scalar quantity

diff(f) = sup{|f(z)− f(w)| : d(z, w) < 1},

which is another essential ingredient in the proof of Theorem 1.1(i). We show that every
operator in EssCom{Tf : f ∈ VObdd} satisfies an “ε-δ” condition involving “diff”.

In Section 8 we construct approximate partitions of the unity on Ω that satisfy two
competing requirements: (1) The “diff” for the partition functions must be small. (2)
There is a fixed, finite cap on the overlaps of the sets involved. This construction is based
on a suitable analogue of “radial-spherical decomposition” for Ω. As it turns out, the
gauge ρ(z, w) plays the role of “spherical coordinates” in our decomposition, whereas the
defining function r gives us a convenient “radial coordinate”.

With all the above preparation, we prove Theorem 1.1(i) in Section 9. The gist of the
proof is that the “ε-δ” condition mentioned above characterizes the membership X ∈ T .
The same work also shows that for A ∈ T , if

(1.2) lim
z→∂Ω

sup{|〈Akw, kz〉| : d(z, w) < R} = 0

for every given 0 < R < ∞, then A is a compact operator. This is a major step in the
proof of Theorem 1.2. In fact, what remains for the proof of Theorem 1.2 is to show that
(1.1) implies (1.2).
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Then in Section 10, we turn to the proof of part (ii) in Theorem 1.1. With the work in
Section 9, this is now relatively easy. First of all, Theorem 1.1(i) tells us that EssCom(T )
coincides with the essential center of T . That is, EssCom(T ) ⊂ T . Then we show that
the membership A ∈ EssCom(T ) implies that the Berezin transform Ã of A is in VObdd.
Since A− TÃ ∈ T , the membership Ã ∈ VObdd and the work in Section 9 lead to an easy
proof of the fact that A− TÃ ∈ K, which proves Theorem 1.1(ii).

Finally, in Section 11 we show that (1.1) indeed implies (1.2). For all previous works
involving this step, this was easy, because one could use Möbius transforms. But in our
case of a general strongly pseudo-convex domain, this becomes a non-trivial step. Material
from Sections 2-4 will be needed for this step.

2. A metric on Ω and related facts

First of all, we cite [15,20] as general references for strongly pseudo-convex domains.
Throughout the paper, Ω denotes a bounded, connected, strongly pseudo-convex domain
in Cn with smooth boundary. More precisely, we always assume that Ω is bounded and
connected, and that there is a real-valued C∞ function r defined in an open neighborhood
of the closure of Ω such that the following three conditions are satisfied:

(1) Ω = {z ∈ Cn : r(z) < 0}.
(2) |(∇r)(z)| 6= 0 for every z ∈ ∂Ω.

(3) There is a c > 0 such that

(2.1)
n∑

i,j=1

(∂i∂̄jr)(z)ξiξ̄j ≥ c(|ξ1|2 + · · ·+ |ξn|2)

for all z ∈ ∂Ω and ξ1, . . . , ξn ∈ C.

Such an r is called a defining function for the domain, and will be fixed along with Ω.

It will be convenient to adopt the following convention: We will consider Cn as a
column space whenever an n× n matrix acts on it. When there is no matrix involved, we
will consider Cn either as a column space or as a row space, whichever is more appropriate.

Let A(z) be the n×n matrix whose entry in the intersection of i-th column and j-row
is (∂i∂̄jr)(z), i, j = 1, . . . , n. By (2) and (3), there is a θ > 0 such that if w ∈ Ω and
r(w) > −3θ, then |(∇r)(w)| 6= 0 and

(2.2) 〈A(w)ξ, ξ〉 ≥ (c/2)|ξ|2

for all ξ ∈ Cn. Let ψ : R→ [0, 1] be a C∞ function such that ψ = 1 on [−θ,∞) and ψ = 0
on (−∞,−2θ]. Write δij for Kronecker’s delta. We then define

(2.3) bij(z) = ψ(r(z))

(
1

−r(z)
(∂i∂̄jr)(z) +

1

r2(z)
(∂ir)(z)(∂̄jr)(z)

)
+ (1− ψ(r(z)))δij
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for i, j ∈ {1, . . . , n} and z ∈ Ω. Let B(z) be the n×n matrix whose entry in the intersection
of i-th column and j-row is bij(z), i, j = 1, . . . , n. From (2.2) and the definition of ψ we
see that the B(z) is invertible for every z ∈ Ω. Thus the local Hermitian form

Hz(ξ, η) = 〈B(z)ξ, η〉, ξ, η ∈ TzΩ = Cn,

generates a non-degenerate metric d on Ω. That is, for z, w ∈ Ω,

(2.4) d(z, w) = inf

∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt,

where the infimum is taken over all C1 maps g : [0, 1] → Ω satisfying the conditions g(0)
= z and g(1) = w. The definition of ψ ensures that for i, j ∈ {1, . . . , n},

bij(z) = ∂i∂̄j log
1

−r(z)
whenever − θ ≤ r(z) < 0.

Denote ∂̄ = (∂̄1, . . . , ∂̄n), which will play a prominent role throughout the paper. Then

(2.5) 〈B(z)ξ, ξ〉 =
〈A(z)ξ, ξ〉
−r(z)

+

(
|〈ξ, (∂̄r)(z)〉|
−r(z)

)2

whenever − θ ≤ r(z) < 0,

ξ ∈ Cn. These identities make d an imitation of the Bergman metric on Ω. Compared with
the real Bergman metric β, our imitation d has the advantage that the explicit formulas
above will greatly simplify many of the estimates below.

Lemma 2.1. There is a c2.1 > 0 such that −r(w) ≥ −c2.12−4d(z,w)r(z) for all z, w ∈ Ω.

Proof. Consider any z, w ∈ Ω such that −r(z) ≤ θ and

−r(w) ≤ −(1/2)r(z).

Let g : [a, b] → Ω be a C1 map such that g(a) = z and g(b) = w. Let a′ be the largest
number in [a, b] such that r(g(a′)) = r(z). Then −r(g(t)) ≤ −r(g(a′)) for t ∈ [a′, b] and∫ b

a′

d

dt
r(g(t))dt = r(g(b))− r(g(a′)) ≥ −(1/2)r(z).

Note that
d

dt
r(g(t)) = 2Re〈g′(t), (∂̄r)(g(t))〉.

Therefore the above implies

2

∫ b

a′
|〈g′(t), (∂̄r)(g(t))〉|dt ≥

∫ b

a′

d

dt
r(g(t))dt ≥ −(1/2)r(z).
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Since −r(g(t)) ≤ −r(z) ≤ θ for every t ∈ [a′, b], by (2.5) we have∫ b

a′

√
〈B(g(t))g′(t), g′(t)〉dt ≥

∫ b

a′

|〈g′(t), (∂̄r)(g(t))〉|
−r(g(t))

dt ≥
∫ b

a′

|〈g′(t), (∂̄r)(g(t))〉|
−r(z)

dt ≥ 1

4
.

From the above we see that if z, w ∈ Ω satisfy the conditions −r(z) ≤ θ and

−r(w) ≤ −2−mr(z) for some m ∈ N,

then for any C1 map g : [0, 1]→ Ω with the properties g(0) = z and g(1) = w we have∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt ≥ m

4
.

Combining this with (2.4), we have m ≤ 4d(z, w). This implies the inequality

−r(w) > −(2−4d(z,w)−1)r(z)

for all w ∈ Ω whenever −r(z) ≤ θ.

Suppose that −r(z) > θ. If −r(w) ≥ θ, then the case is trivial, as the function −r
has a maximum on Ω. Suppose that −r(w) < θ. There is a C1 map g : [0, 1] → Ω such
that g(0) = z, g(1) = w and∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt ≤ d(z, w) + (1/4).

We have−r(g(0)) > θ and−r(g(1)) < θ. Thus there is an a ∈ [0, 1] such that−r(g(a)) = θ.
Define z′ = g(a). By what we proved above, −r(w) > 2−4d(z′,w)−1θ. Since a ∈ [0, 1],
z′ = g(a) and g(1) = w, we have d(z′, w) ≤ d(z, w) + (1/4). Hence

−r(w) ≥ 2−4{d(z,w)+(1/4)}−1θ = −{θ/(−r(z))}(2−4d(z,w)−2)r(z).

Since −r has a maximum on Ω, the lemma also holds in the case −r(z) > θ. �

Lemma 2.2. There is a constant 0 < C2.2 <∞ such that

|z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ C2.2{d(z, w) + d2(z, w)}212d(z,w)(−r(z))

for all z, w ∈ Ω.

Proof. We first show that there is a C such that

(2.6) |z − w| ≤ Cd(z, w)24d(z,w)
√
−r(z)

for all z, w ∈ Ω. By (2.4), for any given z, w ∈ Ω, there is a C1 map g : [0, 1] → Ω such
that g(0) = z, g(1) = w, and∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt ≤ 2d(z, w).
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There is a t0 ∈ [0, 1] such that −r(g(t0)) ≥ −r(g(t)) for every t ∈ [0, 1]. By (2.5) and (2.3),
there is a c1 > 0 such that

c1√
−r(g(t0))

∫ 1

0

|g′(t)|dt ≤
∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt ≤ 2d(z, w).

Set C1 = 2/c1. Since g(0) = z and g(1) = w, the above implies

(2.7) |z − w| ≤ C1d(z, w)
√
−r(g(t0)).

If we write ζ = g(t0), then

d(z, ζ) ≤
∫ t0

0

√
〈B(g(t))g′(t), g′(t)〉dt ≤ 2d(z, w).

By Lemma 2.1, we have −r(ζ) ≤ c−1
2.124d(z,ζ)(−r(z)) ≤ c−1

2.128d(z,w)(−r(z)). Combining this
with (2.7), (2.6) follows.

The same argument also shows that d(z, g(t)) ≤ 2d(z, w) for every t ∈ [0, 1]. Therefore

|z − g(t)| ≤ 2Cd(z, w)28d(z,w)
√
−r(z),

t ∈ [0, 1]. Using Lemma 2.1 and the obvious Lipschitz condition for ∂̄r, we have

|〈z − w,(∂̄r)(z)〉| = |〈g(1)− g(0), (∂̄r)(z)〉| ≤
∫ 1

0

|〈g′(t), (∂̄r)(z)〉|dt

≤
∫ 1

0

|〈g′(t), (∂̄r)(g(t))〉|dt+

∫ 1

0

|g′(t)||(∂̄r)(z)− (∂̄r)(g(t))|dt

≤ 28d(z,w)

c2.1
(−r(z))

∫ 1

0

|〈g′(t), (∂̄r)(g(t))〉|
−r(g(t))

dt

+ 2Cd(z, w)28d(z,w) · C2

(
28d(z,w)

c2.1

)1/2

(−r(z))
∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt

≤ C3(−r(z)){28d(z,w)d(z, w) + 212d(z,w)d2(z, w)}.

Combining this with (2.6), the lemma is proved. �

For z ∈ Ω and a > 0, define the imitation Bergman metric ball

D(z, a) = {w ∈ Ω : d(z, w) < a}.

Definition 2.3. For η ∈ Cn\{0}, a > 0 and b > 0, we let P(η; a, b) be the collection of
vectors u+ v satisfying the following three conditions:

(1) u, v ∈ Cn with |u| < a and |v| < b.
(2) u ⊥ η.
(3) v ∈ {ξη : ξ ∈ C}.
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Proposition 2.4. Given any 0 < a <∞, there are 0 < c ≤ C <∞ such that

z + P((∂̄r)(z); c
√
−r(z),−cr(z)) ⊂ D(z, a) ⊂ z + P((∂̄r)(z);C

√
−r(z),−Cr(z))

for every z ∈ Ω satisfying the condition −r(z) < θ.

Proof. Let 0 < a <∞ be given and consider a sufficiently small c > 0. Let u, v ∈ Cn satisfy
the conditions u ⊥ (∂̄r)(z), |u| < c

√
−r(z), v ∈ {ξ(∂̄r)(z) : ξ ∈ C}, and |v| < −cr(z). We

want to show that d(z, z + u+ v) < a. To prove this, consider the path

g(t) = z + t(u+ v),

t ∈ [0, 1]. Then g′(t) = u+ v. By the Taylor expansion for ∂̄r, we have

〈g′(t), (∂̄r)(g(t))〉 = 〈u+ v, (∂̄r)(z + t(u+ v))〉
= 〈u+ v, (∂̄r)(z) + tX(z)(u+ v) + o(|u+ v|)〉
= 〈v, (∂̄r)(z)〉+ 〈u+ v, tX(z)(u+ v) + o(|u+ v|)〉,

where X(z) is the derivative of ∂̄r at z, which is a linear map from Cn to Cn. Since
|v| < −cr(z) and |u+ v| ≤ c(−r(z) +

√
−r(z)), we see that

|〈g′(t), (∂̄r)(g(t))〉| ≤ cM(−r(z))

for t ∈ [0, 1]. Since r is real-valued, Taylor expansion gives us

r(g(t)) = r(z + t(u+ v)) = r(z) + 2tRe〈u+ v, (∂̄r)(z)〉+O(|u+ v|2)

= r(z) + 2tRe〈v, (∂̄r)(z)〉+O(−c2r(z)).

Since |v| < −cr(z) and since c is small, we obtain

|〈g′(t), (∂̄r)(g(t))〉|
−r(g(t))

≤ cM ′.

Similarly, we have

〈A(g(t))g′(t), g′(t)〉
−r(g(t))

=
〈A(g(t))(u+ v), u+ v〉

−r(g(t))
≤ c2M ′′.

Combining these two inequalities with (2.5) and (2.4), we see that the smallness of c ensures
d(z, z + u+ v) < a. This proves the first inclusion in the proposition.

It is easy to see that the second inclusion, D(z, a) ⊂ · · · , is simply a consequence of
Lemma 2.2. This completes the proof. �

Proposition 2.5. There is a 0 < C2.5 <∞ such that if 0 < a < 1/2, then

D(z, a) ⊂ z + P((∂̄r)(z);C2.5a
√
−r(z),−C2.5ar(z))
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for every z ∈ Ω satisfying the condition −r(z) < θ.

Proof. Suppose that 0 < a < 1/2 and that z, w ∈ Ω satisfy the condition d(z, w) < a.
Then there is a C1 map g : [0, 1]→ Ω with g(0) = z and g(1) = w such that∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt < 2a.

Thus d(z, g(t)) < 2a < 1 for every t ∈ [0, 1]. Suppose that w = z + u+ v with u ⊥ (∂̄r)(z)
and v ∈ {ξ(∂̄r)(z) : ξ ∈ C}. To estimate |u|, we again apply Lemma 2.1, which gives us
−r(z) ≥ −c(1)r(g(t)) for every t ∈ [0, 1]. Since |u| ≤ |z − w|, we have

(2.8) |u| ≤
∫ 1

0

|g′(t)|dt ≤ C3

√
−r(z)
c(1)

∫ 1

0

√
〈B(g(t))g′(t), g′(t)〉dt < C3

√
−r(z)
c(1)

· 2a.

To estimate |v|, we apply Lemma 2.2. Since 0 < a < 1/2, Lemma 2.2 gives us

(2.9) |〈v, (∂̄r)(z)〉| ≤ C2.2d(z, w)(3/2)26(−r(z)).

Recall that θ was chosen so that (∂̄r)(ζ) 6= 0 whenever 0 < −r(ζ) < 3θ. Hence the
proposition follows from (2.8) and (2.9). �

On the domain Ω we define the measure

(2.10) dµ(z) =
dv(z)

(−r(z))n+1
.

Proposition 2.6. For each a ∈ (0,∞), there are 0 < c(a) ≤ C(a) <∞ such that

c(a) ≤ µ(D(z, a)) ≤ C(a)

for every z ∈ Ω.

Proof. Since v(P(η;x, y)) = Cnx
2n−2y2, this follows immediately from Proposition 2.4 and

Lemma 2.1. �

For each 0 ≤ ρ < θ, define the surface

Sρ = {z ∈ Cn : −r(z) = ρ}.

In particular, we have S0 = ∂Ω, the boundary of the domain Ω.

Proposition 2.7. There exist a finite open cover U1, . . . , Um of

H = {z ∈ Cn : 0 ≤ −r(z) ≤ θ/2}

in Cn and a 1 ≤ C <∞ such that the following holds true: Suppose that 0 < ρ ≤ θ/2 and
that z, w ∈ Sρ ∩ Ui for some i ∈ {1, . . . ,m}. Furthermore, suppose that there is an R ≥ 1
such that |z − w| ≤ R√ρ and |〈z − w, (∂̄r)(z)〉| ≤ R2ρ. Then d(z, w) ≤ CR2.

10



Proof. For ζ ∈ Cn and a > 0, denote B(ζ, a) = {ξ ∈ Cn : |ζ − ξ| < a} as usual. Note
that by assumption, H is a compact set on which |∇r| does not vanish. By the usual
open covering argument, there is a τ > 0 such that if z0 ∈ H, then the conclusion of the
standard implicit function theorem holds on B(z0, τ) for the equation r = r(z0). See, e.g.,
[17,page 74]. Since H is compact, there are z1, . . . , zm ∈ H such that ∪mi=1B(zi, τ/2) ⊃ H.
We define Ui = B(zi, τ/2), i = 1, . . . ,m.

Now let 0 < ρ ≤ θ/2, and let z, w ∈ Sρ ∩Ui satisfy the conditions |z −w| ≤ R√ρ and
|〈z − w, (∂̄r)(z)〉| ≤ R2ρ for some R ≥ 1. Then, of course, |z − w| < τ . By the discussion
in the first paragraph, every point in Sρ ∩B(z, τ) can be expressed in the form

z + x+ fz(x),

where x ∈ Cn satisfies the conditions Re〈x, (∂̄r)(z)〉 = 0 and |x| < τ ′, and where fz satisfies
the condition |fz(x)| ≤ C1|x|2. Since the implicit function theorem provides bounds that
are independent of the points in H, reducing the value of τ if necessary, we may assume that
|fz(x)| ≤ (1/2)|x| when |x+fz(x)| < τ . Let x0 ∈ B(0, τ ′) be such that w = z+x0 +fz(x0).
Then (1/2)|x0| ≤ |x0 + fz(x0)| = |z − w|. Hence |x0| ≤ 2R

√
ρ. We have

|〈x0, (∂̄r)(z)〉| ≤ |〈w − z, (∂̄r)(z)〉|+ |〈fz(x0), (∂̄r)(z)〉| ≤ R2ρ+ C2|fz(x0)|
≤ R2ρ+ C3|x0|2 ≤ R2ρ+ 4C3R

2ρ = C4R
2ρ.

Now define the map g : [0, 1]→ Sρ by the formula

g(t) = z + tx0 + fz(tx0),

t ∈ [0, 1]. We have g′(t) = x0 + (Dfz)(tx0)x0, where Dfz is the derivative of fz. Recalling
(2.5), we have

1

ρ
〈A(g(t))g′(t), g′(t)〉 ≤ C5

ρ
|x0|2 ≤

C5

ρ
4R2ρ = C6R

2.

Therefore

(2.11)

∫ 1

0

(
〈A(g(t))g′(t), g′(t)〉

−r(g(t))

)1/2

dt ≤
√
C6R = C7R.

Note that the condition |fz(x)| ≤ C1|x|2 implies that (Dfz)(0) = 0. Hence

g′(t) = x0 + {(Dfz)(tx0)− (Dfz)(0)}x0 = x0 + h(t)

with |h(t)| ≤ C8|x0|2 ≤ 4C8R
2ρ = C9R

2ρ. Consequently

|〈g′(t), (∂̄r)(g(t))〉| ≤ |〈g′(t), (∂̄r)(z)〉|+ |〈g′(t), (∂̄r)(g(t))− (∂̄r)(z)〉|
≤ |〈x0, (∂̄r)(z)〉|+ |〈h(t), (∂̄r)(z)〉|+ C11|g′(t)||g(t)− z|
≤ C4R

2ρ+ C10C9R
2ρ+ C12|x0|2 ≤ C13R

2ρ.
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Thus we have ∫ 1

0

|〈g′(t), (∂̄r)(g(t))〉|
−r(g(t))

dt ≤ C13R
2.

Recalling (2.5), (2.4) and combining the above with (2.11), we find that d(z, w) ≤ C7R +
C13R

2. Since we assume R ≥ 1, it follows that d(z, w) ≤ (C7 + C11)R2. �

For each 0 ≤ ρ ≤ θ/2, we write dσρ for the natural surface measure on Sρ. For every
triple of 0 ≤ ρ ≤ θ/2, ζ ∈ Sρ and t > 0, we define

Qρ(ζ, t) = {ξ ∈ Sρ : |ζ − ξ|2 + |〈ζ − ξ, (∂̄r)(ζ)〉| < t}.

Proposition 2.8. There are constants 0 < τ ≤ θ/2 and 0 < c2.8 ≤ C2.8 <∞ such that

(2.12) c2.8t
n ≤ σρ(Qρ(ζ, t)) ≤ C2.8t

n

for all 0 ≤ ρ ≤ τ , ζ ∈ Sρ and 0 < t ≤ T0, where T0 = sup{|u − v|2 + |〈u − v, (∂̄r)(u)〉| :
u, v ∈ Ω}.

Proof. First, we remark that the restriction t ≤ T0 is only necessary to guarantee the lower
bound in (2.12). Second, adjusting the constants c2.8 and C2.8 if necessary, it suffices to
find an a ∈ (0, T0] such that (2.12) holds for all 0 < t < a.

For each ζ ∈ Sρ, 0 ≤ ρ ≤ θ/2, denote Tζ = {x ∈ Cn : Re〈x, (∂̄r)(ζ)〉 = 0}, which
is the real tangent space to Sρ at ζ. For each pair of ζ ∈ Sρ and s > 0, define Eζ(s) =
{x ∈ Tζ : |x|2 + |〈x, (∂̄r)(ζ)〉| < s}. Each x ∈ Tζ has the decomposition x = y + z,
where 〈y, (∂̄r)(ζ)〉 = 0 and z ∈ {w(∂̄r)(ζ) : w ∈ C}. Since Re〈x, (∂̄r)(ζ)〉 = 0, we have
z = ih(∂̄r)(ζ) for some h ∈ R. Let v2n−1 denote the real (2n − 1)-dimensional volume
measure on Tζ . Using this x = y + z decomposition, it is elementary that there are
0 < c1 ≤ C1 <∞ such that

(2.13) c1s
n ≤ v2n−1(Eζ(s)) ≤ C1s

n

for all ζ ∈ Sρ, 0 ≤ ρ ≤ θ/2, and s > 0.

As in the proof of Proposition 2.7, we apply the standard implicit function theorem.
There is a 0 < τ ≤ θ/2 such that the conclusion of the implicit function theorem holds on
{z ∈ Cn : 0 ≤ −r(z) ≤ τ} for r with uniform bounds. Namely, there are constants b > 0,
0 < c ≤ 1 and 0 < C2 < ∞ such that if 0 ≤ ρ ≤ τ and ζ ∈ Sρ, then every element in
B(ζ, b) ∩ Sρ can be expressed in the form

Φζ(x) = ζ + x+ fζ(x)

for some x ∈ Tζ ∩B(0, c), where fζ satisfies the conditions |fζ(x)| ≤ C2|x|2 and |fζ(x)| ≤
(1/2)|x| when |x| < c. Furthermore, there are constants 0 < c3 ≤ C3 < ∞ such that
the matrix inequality c3 ≤ (DΦζ(x))∗DΦζ(x) ≤ C3 holds whenever 0 ≤ −r(ζ) ≤ τ and
x ∈ Tζ ∩B(0, c), where DΦζ is the derivative of Φζ , which is a 2n× (2n− 1) real matrix.
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Now take a1 = b2. Let 0 ≤ ρ ≤ τ and 0 < t < a1. Then for any pair of ζ ∈ Sρ and
ξ ∈ Qρ(ζ, t), we have ξ ∈ B(ζ, b). Therefore we can write

ξ = ζ + x+ fζ(x)

for some x ∈ Tζ ∩ B(0, c). We have |ξ − ζ| = |x + fζ(x)| ≥ (1/2)|x| and 〈x, (∂̄r)(ζ)〉 =
〈ξ − ζ, (∂̄r)(ζ)〉 − 〈fζ(x), (∂̄r)(ζ)〉 with |fζ(x)| ≤ C2|x|2. Hence

(2.14) |x|2 + |〈x, (∂̄r)(ζ)〉| ≤ C4{|ξ − ζ|2 + |〈ξ − ζ, (∂̄r)(ζ)〉|}

for some constant 1 ≤ C4 < ∞. Similarly, |ξ − ζ| = |x + fζ(x)| ≤ (1 + C3)|x| and
〈ξ − ζ, (∂̄r)(ζ)〉 = 〈x, (∂̄r)(ζ)〉+ 〈fζ(x), (∂̄r)(ζ)〉 with |fζ(x)| ≤ C2|x|2. Consequently

(2.15) |ξ − ζ|2 + |〈ξ − ζ, (∂̄r)(ζ)〉| ≤ C5{|x|2 + |〈x, (∂̄r)(ζ)〉|}

for some constant 1 ≤ C5 < ∞. Set a2 = c2/C4 and a = min{a1, a2, T0}. If 0 < t < a,
then Eζ(C4t) ⊂ Tζ ∩B(0, c). Thus (2.14) implies that for 0 < t < a, we have

Φζ(Eζ(C4t)) ⊃ Qρ(ζ, t).

Combining the smoothness of Φζ on Tζ ∩B(0, c) with the upper bound in (2.13), we obtain

σρ(Qρ(ζ, t)) ≤ σρ(Φζ(Eζ(C4t))) ≤ C6v2n−2(Eζ(C4t)) ≤ C6C1(C4t)
n = C7t

n,

which gives us the upper bound in (2.12). Similarly, since a < c2 and C5 ≥ 1, for 0 < t < a
we have Eζ(t/C5) ⊂ Tζ ∩B(0, c). Therefore for 0 < t < a, (2.15) implies

Φζ(Eζ(t/C5)) ⊂ Qρ(ζ, t).

From the non-singularity of Φζ on Tζ ∩B(0, c) and the lower bound in (2.13) we obtain

c1(t/C5)n ≤ v2n−1(Eζ(t/C5)) ≤ C8σρ(Φζ(Eζ(t/C5))) ≤ C8σρ(Qρ(ζ, t)),

proving the lower bound in (2.12). This completes the proof. �

Proposition 2.9. There is a constant 0 < C2.9 < ∞ such that the following holds true:
Let z ∈ Ω, k ∈ Z and j ∈ Z+. Then the volume of the set

Wz;k,j = {w ∈ Ω : 2k−1(−r(z)) < −r(w) ≤ 2k(−r(z))
and |z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ 2k+j(−r(z))}

does not exceed C2.92nj(−2kr(z))n+1.

Proof. First of all, there is a C1 such that |(∂̄r)(ζ)− (∂̄r)(ζ ′)| ≤ C1|ζ − ζ ′| for all ζ, ζ ′ ∈ Ω.
Suppose that 2k(−r(z)) ≤ τ , where τ is the same as in Proposition 2.8. For any value
2k−1(−r(z)) < ρ ≤ 2k(−r(z)), denote

Σ(ρ; k, j) = {w ∈ Sρ : |z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ 2k+j(−r(z))}.
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Suppose that Σ(ρ; k, j) 6= ∅, and pick a wρ ∈ Σ(ρ; k, j). Then elementary estimates yield

Σ(ρ; k, j) ⊂ Qρ(wρ, C22k+j(−r(z))).

Applying Proposition 2.8, we obtain

(2.16) σρ(Σ(ρ; k, j)) ≤ σρ(Qρ(wρ, C22k+j(−r(z)))) ≤ C3(−2k+jr(z))n

for every 2k−1(−r(z)) < ρ ≤ 2k(−r(z)) under the condition 2k(−r(z)) ≤ τ .

Now consider Ω as a domain in the real space R2n under the usual identification.
We know that (∇r)(x) 6= 0 for every x ∈ ∂Ω. For each a ∈ ∂Ω, there is a j = j(a) ∈
{1, 2, . . . , 2n− 1, 2n} such that the map

Fa(x1, x2, . . . , x2n−1, x2n) = (x1, . . . , xj−1,−r(x1, x2, . . . , x2n−1, x2n), xj+1, . . . , x2n)

from Ω to R2n has the property that the derivative (DFa)(a) is invertible. Thus there is
an open neighborhood Ua of a in R2n such that the inverse mapping theorem holds on Ua
for Fa. Shrinking Ua slightly if necessary, we may assume that DF−1

a is bounded on FaUa.
By the compactness of ∂Ω, there is a finite subset A ⊂ ∂Ω and a 0 < τ1 ≤ τ such that

(2.17)
⋃
a∈A

Ua ⊃ {w ∈ Ω : 0 < −r(w) ≤ τ1}.

To complete the proof of the proposition, consider the following two cases.

(1) Suppose that −2kr(z) ≥ τ1. Then the conclusion of the proposition is trivial. (2)
Suppose that −2kr(z) < τ1. In this case (2.17) gives us

Wz;k,j =
⋃
a∈A
{Ua ∩Wz;k,j}.

Since A is an a priori determined finite set, it suffices to estimate the volume of Ua∩Wz;k,j

for each a ∈ A. Given any a ∈ A, there is a j = j(a) such that for 0 < ρ < τ1,

Sρ ∩ Ua = {F−1
a (x1, . . . , xj−1, ρ, xj+1, . . . , x2n) : (x1, . . . , xj−1, ρ, xj+1, . . . , x2n) ∈ FaUa}.

By (2.16), for each 0 < ρ < τ1, the real (2n− 1)-dimensional volume of the set

{(x1, . . . , xj−1, xj+1, . . . , x2n) : (x1, . . . , xj−1, ρ, xj+1, . . . , x2n) ∈ Fa(Ua ∩ Σ(ρ; k, j))}

does not exceed C9(−2k+jr(z))n. Hence we have the (real) 2n-dimensional volume estimate

v(Fa(Ua ∩Wz;k,j)) ≤ C9(−2k+jr(z))n · 2k(−r(z)).

Applying F−1
a , we find that

v(Ua ∩Wz;k,j) ≤ C102nj(−2kr(z))n+1.
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Since card(A) <∞, this completes the proof. �

Definition 2.10. (i) Let a be a positive number. A subset Γ of Ω is said to be a-separated
if D(z, a) ∩D(w, a) = ∅ for all distinct elements z, w in Γ.
(ii) A subset Γ of Ω is simply said to be separated if it is a-separated for some a > 0.

Lemma 2.11. (1) For any pair of 0 < a <∞ and 0 < R <∞, there is a natural number
N = N(a,R) such that for every a-separated set Γ in Ω and every z ∈ Ω, we have

card{u ∈ Γ : d(u, z) ≤ R} ≤ N.

(2) For any pair of 0 < a ≤ R < ∞, there is a natural number m = m(a,R) such that
every a-separated set Γ in Ω admits a partition Γ = Γ1 ∪ · · · ∪ Γm with the property that
for every j ∈ {1, . . . ,m}, the set Γj is R-separated.

Proof. By Proposition 2.6, any integer N ≥ C(R + a)/c(a) will do for (1). Then, by(1),
for any 0 < a ≤ R <∞, there is an m ∈ N such that if Γ is any a-separated set in Ω, then
card{u ∈ Γ : d(u, v) ≤ 2R} ≤ m for every v ∈ Γ. By a standard maximality argument, Γ
admits a partition Γ = Γ1 ∪ · · · ∪ Γm such that for every j ∈ {1, . . . ,m}, the conditions
u, v ∈ Γj and u 6= v imply d(u, v) > 2R. Thus each Γj is R-separated, proving (2). �

3. Forelli-Rudin estimates on Ω

We will need the familiar functions

(3.1) X(z, w) = −r(w)−
n∑
j=1

∂r(w)

∂wj
(zj − wj)−

1

2

n∑
j,k=1

∂2r(w)

∂wj∂wk
(zj − wj)(zk − wk),

ρ(z, w) = |z − w|2 + |〈z − w, (∂̄r)(z)〉|

and
F (z, w) = |r(z)|+ |r(w)|+ ρ(z, w)

associated with Ω and r, which are standard fixtures on strongly pseudo-convex domains.

Lemma 3.1. [18,20] There is a δ > 0 such that

|X(z, w)| ≈ |r(z)|+ |r(w)|+ |ImX(z, w)|+ |z − w|2 ≈ F (z, w)

in the region Rδ = {(z, w) ∈ Ω× Ω : |r(z)|+ |r(w)|+ |z − w| < δ}.

Below is what one usually refers to as the Forelli-Rudin estimates:

Lemma 3.2. [18,20] Let a ∈ R and κ > −1. Then for z ∈ Ω,

∫
Ω

|r(w)|κ

F (z, w)n+1+κ+a
dv(w) ≈

 1 if a < 0
log
{
|r(z)|−1

}
if a = 0

|r(z)|−a if a > 0
.
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Recall that for any z ∈ Ω with 0 ≤ −r(z) ≤ θ, we have (∂̄r)(z) 6= 0 as a vector in Cn.

Definition 3.3. For z ∈ Ω satisfying the condition 0 < −r(z) < θ, let uz denote the unit
vector (∂̄r)(z)/|(∂̄r)(z)| in Cn.

Lemma 3.4. There exist constants δ0 > 0 and 0 < C3.4 < ∞ such that if z ∈ Ω and
i ∈ Z+ satisfy the condition −2i+1r(z) < δ0, then for every x ∈ [1, 2] we have

(3.2) d(z + 2ir(z)uz, z + x2ir(z)uz) ≤ C3.4.

Moreover, if −r(z) < δ0, then d(z, z + suz) ≤ C3.4 for every s ∈ [r(z), 0].

Proof. Let z ∈ Ω be such that 0 < −r(z) < θ. Then

d

dt
r(z + tuz) = 2Re〈uz, (∂̄r)(z + tuz)〉 = 2|(∂̄r)(z)|+O(|t|).

Thus there is a 0 < δ0 < θ such that if −r(z) < δ0, then

the function t 7→ r(z + tuz) is increasing on [−δ0, δ0].

Now let z ∈ Ω and i ∈ Z+ be such that −2i+1r(z) < δ0. Let x ∈ [1, 2]. Then for any
s ≤ s′ in the interval [x2ir(z), 2ir(z)], the above monotonicity guarantees r(z + suz) ≤
r(z + s′uz), i.e., −r(z + s′uz) ≤ −r(z + suz). For such a pair of s and s′, it follows from
(2.3), (2.4) and the above monotonicity that

d(z + s′uz, z + suz) ≤ C
|(z + s′uz)− (z + suz)|

−r(z + s′uz)
≤ C | − 2i+1r(z)− 2i(−r(z))|

−2ir(z)
= C,

which proves (3.2). Similarly, if −r(z) < δ0, then for every s ∈ [r(z), 0] we have r(z+suz) ≤
r(z), i.e., −r(z + suz) ≥ −r(z). Hence the same argument shows that d(z, z + suz) ≤
C|z − (z + suz)|/(−r(z)) ≤ C. This proves the lemma. �

Lemma 3.5. There exist constants 0 < c3.5 ≤ 1 and 0 < δ1 ≤ δ0, where δ0 was given in
Lemma 3.4, such that if z ∈ Ω satisfies the condition −r(z) < δ1 and if −δ1 ≤ t ≤ 0, then

−r(z + tuz) + r(z) ≥ c3.5|t|.

Proof. Taylor expansion gives us

r(z + tuz) = r(z) + 2tRe〈uz, (∂̄r)(z)〉+O(t2) = r(z) + 2t|(∂̄r)(z)|+O(t2).

In other words, r(z + tuz)− r(z) = {2|(∂̄r)(z)|+O(t)}t. From this the desired conclusion
becomes obvious. �

Proposition 3.6. There is a constant 0 < C3.6 < ∞ such that if z, w ∈ Ω satisfy
the conditions r(z) = r(w) and |z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ −2jr(z), j ∈ Z+, then
d(z, w) ≤ C3.6(1 + j).
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Proof. Recall the sets U1, . . . , Um from Proposition 2.7, which are an open cover of H =
{ζ ∈ Cn : 0 ≤ −r(ζ) ≤ θ/2} in Cn. By general topology, there is an a1 > 0 such that
for any pair of z, w ∈ H, if |z − w| < a1, then there is an i(z, w) ∈ {1, . . . ,m} such that
z, w ∈ Ui(z,w). Another elementary exercise gives us a pair of constants 0 < θ0 < θ/2
and 0 < a < min{1, a1/4} which have the following property: Suppose that z, w ∈ {ζ ∈
Ω : −r(ζ) < θ0} and that z′, w′ ∈ Ω. If the inequalities |z − w| < a, |z − z′| < a and
|w − w′| < a hold, then there is an i∗ ∈ {1, . . . ,m} such that z′, w′ ∈ Ui∗ .

Define δ = min{θ0, a
2, δ1/2}, where δ1 is given in Lemma 3.5. We divide the rest of

the proof into two cases.

(1) Suppose that −2jr(z) < δc3.5, where c3.5 is also from Lemma 3.5. Then |z−w|2 <
δ, which implies |z − w| < a. We set s = 2jr(z)/c3.5. Since −δ1 < s < 0, by Lemma 3.5,

−r(z + suz) ≥ c3.5|s| = −2jr(z).

Since j ≥ 0, there is an s(z) ∈ [s, 0] such that −r(z + s(z)uz) = −2jr(z). We set
z′ = z + s(z)uz. Then r(z′) = 2jr(z) and |z − z′| = |s(z)| ≤ |s| < δ < a. Since
|s| < δ ≤ δ0/2, it follows from Lemma 3.4 that d(z, z′) ≤ C1(1 + j).

Similarly, since r(w) = r(z), there is an s(w) ∈ [s, 0] such that if we set w′ = w +
s(w)uw, then r(w′) = 2jr(z), |w − w′| ≤ |s| < a and d(w,w′) ≤ C1(1 + j).

Since ∂̄r satisfies a Lipschitz condition on Ω, from the conditions

|z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ −2jr(z),

|z − z′| ≤ −2jr(z)/c3.5, |w − w′| ≤ −2jr(z)/c3.5 and −2jr(z) < δc3.5 it is easy to deduce

|z′ − w′|2 + |〈z′ − w′, (∂̄r)(z′)〉| ≤ −C22jr(z) = C2|r(z′)|.

Since |z − z′| < a, |w − w′| < a and |z − w| < a, by the first paragraph, there is an i∗ ∈
{1, . . . ,m} such that z′, w′ ∈ Ui∗ . Hence it follows from the above bound and Proposition
2.7 that d(z′, w′) ≤ C3. Combining this with the last two paragraphs, we obtain

d(z, w) ≤ d(z, z′) + d(z′, w′) + d(w,w′) ≤ 2C1(1 + j) + C3 ≤ C4(1 + j).

This proves the proposition under the condition −2jr(z) < δc3.5.

(2) Suppose that −2jr(z) ≥ δc3.5. (2.a) Further, suppose that −r(z) ≥ δc3.5/2. In
this case the conclusion is trivial, for {ζ ∈ Cn : −r(ζ) ≥ δc3.5/2} is a compact subset of
Ω. (2.b) Suppose that −r(z) < δc3.5/2, i.e., −2r(z) < δc3.5. Let j0 be the largest natural
number such that −2j0r(z) < δc3.5. Then obviously j0 < j. By the work in case (1) we
know that there are z̃, w̃ ∈ Ω such that r(z̃) = 2j0r(z) = r(w̃), d(z, z̃) ≤ C1(1 + j0) and
d(w, w̃) ≤ C1(1 + j0). The choice of j0 ensures that −2j0+1r(z) ≥ δc3.5, which means
−r(z̃) ≥ δc3.5/2 and −r(w̃) ≥ δc3.5/2. Hence d(z̃, w̃) ≤ C5, and consequently

d(z, w) ≤ d(z, z̃) + d(z̃, w̃) + d(w, w̃) ≤ 2C1(1 + j0) + C5 ≤ C6(1 + j)
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in this subcase. This completes the proof. �

Lemma 3.7. There is a 1 ≤ C3.7 < ∞ such that if z, w ∈ Ω satisfy the conditions
2k−1(−r(z)) ≤ −r(w) ≤ 2k(−r(z)) and |z − w|2 + |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z)), where
k ∈ Z and j ∈ Z+, then d(z, w) < C3.7(1 + |k|+ j).

Proof. (1) First, let us consider the case where k ≥ 1. (1.a) Further, suppose that
2k(−r(z)) ≥ c3.5δ1/4, where c3.5 and δ1 are the constants in Lemma 3.5. Then the con-
dition 2k−1(−r(z)) ≤ −r(w) ≤ 2k(−r(z)) implies −r(w) ≥ c3.5δ1/8. If we also have
−r(z) ≥ c3.5δ1/4, then of course, d(z, w) ≤ C1, regardless of other conditions. Suppose
that −r(z) < c3.5δ1/4. Let k′ be the largest integer such that −2k

′+1r(z) < c3.5δ1. Set

z′ = z + 2k
′+1r(z)uz.

Since −2kr(z) ≥ c3.5δ1/4, we have k′ + 1 < k + 2, i.e., k′ ≤ k. It follows from Lemma 3.4
that d(z, z′) ≤ C3.4(k′+2) ≤ C3.4(k+2). By Lemma 3.5, we have c3.52k

′+1|r(z)| ≤ −r(z′).
The choice of k′ ensures that −2k

′+2r(z) ≥ c3.5δ1. Hence the above implies

c23.5δ1/2 ≤ −r(z′).

Thus d(z′, w) ≤ C2, and consequently d(z, w) ≤ C3.4(k + 2) + C2 ≤ C3k in this subcase.

(1.b) Suppose that 2k(−r(z)) < c3.5δ1/4. Then −r(w) ≤ 2k(−r(z)) < c3.5δ1/4. By
Lemma 3.5, we have

c3.5δ1 ≤ −r(z − δ1uz).

Hence −r(z−δ1uz) > −r(w). Since −r(z) ≤ 2k−1(−r(z)) ≤ −r(w), there is an s ∈ [−δ1, 0]
such that r(z + suz) = r(w). Also, Lemma 3.5 tells us that

(3.3) c3.5|s| ≤ −r(z + suz) = −r(w) ≤ −2kr(z).

Thus |s| ≤ −c−1
3.52kr(z). Now the condition 2k(−r(z)) < c3.5δ1/4 implies −c−1

3.52kr(z) ≤
δ1/4. Therefore it follows from Lemma 3.4 and the inequality |s| ≤ −c−1

3.52kr(z) that

d(z, z + suz) ≤ C3.4{1 + C3 log(2k/c3.5)} ≤ C4k.

Thus what remains for this subcase is to show that

d(z + suz, w) ≤ C5(1 + j).

For convenience, let us denote ζ = z+suz. Since r(ζ) = r(w), to prove the above inequality,
by Proposition 3.6, it suffices to show that

(3.4) |ζ − w|2 + |〈ζ − w, (∂̄r)(ζ)〉| ≤ C62j(−r(ζ)).

By (3.3), |ζ − z| = |s| ≤ c−1
3.52k(−r(z)) ≤ (2/c3.5)(−r(ζ)). Since Ω is bounded, we have

|ζ − z|2 ≤ C7|ζ − z|. Therefore

|ζ − w|2 ≤ 2|ζ − z|2 + 2|z − w|2 ≤ C8(−r(ζ)) + 2k+j+1(−r(z)) ≤ C92j(−r(ζ)).
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We have |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z)) by assumption. Also,

|〈ζ − w, (∂̄r)(ζ)〉 − 〈z − w, (∂̄r)(z)〉| ≤ C10|ζ − z| ≤ C11(−r(ζ)).

Since 2k−1(−r(z)) ≤ −r(ζ), these inequalities prove (3.4). Thus the case k ≥ 1 is proved.

(2) Now suppose that k ≤ 0. Note that the condition 2k−1(−r(z)) ≤ −r(w) ≤
2k(−r(z)) implies that 2−k(−r(w)) ≤ −r(z) ≤ 2−k+1(−r(w)). Also, the condition |z −
w|2 + |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z)) can be rewritten as

|z − w|2 + |〈z − w, (∂̄r)(z)〉| < 21+j(−r(w)).

Since |〈z − w, (∂̄r)(z)〉 − 〈z − w, (∂̄r)(w)〉| ≤ C12|z − w|2, we now have

|z − w|2 + |〈z − w, (∂̄r)(w)〉| < C132j(−r(w)).

Thus case (2) follows from case (1) by reversing the roles of z and w. �

We need the following “vanishing” version of Lemma 3.2.

Lemma 3.8. Given any a > 0 and κ > −1, there are 0 < C <∞ and s > 0 such that∫
Ω\D(z,R)

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w) ≤ C2−sR

for all z ∈ Ω and R ≥ 3C3.7, where C3.7 is the constant in Lemma 3.7.

Proof. For z ∈ Ω and k ∈ Z we define the sets

Zz;k,0 = {w ∈ Ω : 2k−1(−r(z)) ≤ −r(w) < 2k(−r(z))
and |z − w|2 + |〈z − w, (∂̄r)(z)〉| < 2k(−r(z))} and

Zz;k,j = {w ∈ Ω : 2k−1(−r(z)) ≤ −r(w) < 2k(−r(z))
and 2k+j−1(−r(z)) ≤ |z − w|2 + |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z))}, j ≥ 1.

By the definition of F (z, w), for all k ≥ 0 and j ≥ 0, if w ∈ Zz;k,j , then

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
≤ C1

(2k|r(z)|)κ|r(z)|a

(2k+j |r(z)|)n+1+κ+a
=

C1

2(n+1+a)k2(n+1+κ+a)j |r(z)|n+1
.

In the case k < 0, j ≥ 0 and w ∈ Zz;k,j , we have

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
≤ C2(2k|r(z)|)κ|r(z)|a

(|r(z)|+ 2k+j |r(z)|)n+1+κ+a
=

C22κk

(1 + 2k+j)n+1+κ+a|r(z)|n+1
.

By Proposition 2.9, v(Zz;k,j) ≤ C32nj(−2kr(z))n+1. Thus if k ≥ 0 and j ≥ 0, then

(3.5)

∫
Zz;k,j

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w) ≤ C1C32nj(−2kr(z))n+1

2(n+1+a)k2(n+1+κ+a)j |r(z)|n+1
=

C4

2ak2(1+κ+a)j
.
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Similarly, in the case k < 0 and j ≥ 0, we have

(3.6)

∫
Zz;k,j

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w) ≤ C22κkC32nj(−2kr(z))n+1

(1 + 2k+j)n+1+κ+a|r(z)|n+1
=

C52n(k+j)2(1+κ)k

(1 + 2k+j)n+1+κ+a

and 2(1+κ)k = 2(1+κ)k/2 · 2(1+κ)(k+j)/2 · 2−(1+κ)j/2. Let R ≥ 3C3.7. By Lemma 3.7, the
condition Zz;k,j\D(z,R) 6= ∅ implies either |k| ≥ (2C3.7)−1R or j ≥ (2C3.7)−1R. Therefore∫

Ω\D(z,R)

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w) ≤

∑
(k,j)∈E(R)

∫
Zz;k,j

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w),

where E(R) = {(k, j) ∈ Z × Z+ : either |k| ≥ (2C3.7)−1R or j ≥ (2C3.7)−1R}. Using
(3.5) and (3.6), it is now elementary to verify that the lemma holds for every 0 < s <
(2C3.7)−1 min{a, (1 + κ)/2}. �

Lemma 3.9. Given any a > 0 and κ > −1, there is a 0 < C <∞ such that∫
Ω

d(z, w)
|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w) ≤ C

for every z ∈ Ω.

Proof. Given any z ∈ Ω, define E0 = D(z, 3C3.7) and

Ei = D(z, (3 + i)C3.7)\D(z, (3 + i− 1)C3.7)

for i ≥ 1. For each i ∈ Z+, if w ∈ Ei, then d(z, w) < (3 + i)C3.7. Hence∫
Ω

d(z, w)
|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w) =

∞∑
i=0

∫
Ei

d(z, w)
|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w)

≤
∞∑
i=0

(3 + i)C3.7

∫
Ei

|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w).

We now apply Lemma 3.2 to the term where i = 0 and Lemma 3.8 to the terms where
i ≥ 1. The result of this is∫

Ω

d(z, w)
|r(w)|κ|r(z)|a

F (z, w)n+1+κ+a
dv(w) ≤ 3C3.7C0 +

∞∑
i=1

(3 + i)C3.7C2−s(3+i−1)C3.7 .

Since Lemma 3.8 guarantees that s > 0, the right-hand side is finite. �

Lemma 3.10. There exist constants 0 < a0 < 1/2 and 0 < C3.10 < ∞ such that for any
z, z′, w, w′ ∈ Ω satisfying the conditions d(z, z′) < a0 and d(w,w′) < a0, we have

F (z, w) ≤ C3.10F (z′, w′).
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Proof. By Lemma 2.1, it suffices to consider the case where −r(ζ) < θ for every ζ ∈
{z, z′, w, w′}. Since |(∂̄r)(z)− (∂̄r)(w)| ≤ C1|z−w| for all z, w ∈ Ω, there is a C2 such that

F (w, z) ≤ C2F (z, w)

for all z, w ∈ Ω. Therefore it suffices to find 0 < a0 < 1/2 and C such that

(3.7) F (z, w) ≤ CF (z′, w)

for all z, z′, w ∈ Ω satisfying the condition d(z, z′) < a0. Let z, z′ ∈ Ω be such that
d(z, z′) < a for some 0 < a < 1/2. By Lemma 2.1, −r(z) ≤ (4/c2.1)(−r(z′)). Hence, to
prove (3.7), it suffices to consider the case where

(3.8) ρ(z, w) = |z − w|2 + |〈z − w, (∂̄r)(z)〉| ≥ −r(z).

Proposition 2.5 tells us that z′ = z + u + v with u ⊥ (∂̄r)(z) and v ∈ {ξ(∂̄r)(z) : ξ ∈ C}
satisfying the conditions |u| ≤ C2.5a|r(z)|1/2 and |v| ≤ C2.5a|r(z)|. Therefore

|z − z′|2 = |u|2 + |v|2 ≤ C3a
2|r(z)|.

By a simple completion of square, we find that

|z′ − w|2 ≥ |z′ − z|2 − 2|z′ − z||z − w|+ |z − w|2 ≥ (1/2)|z − w|2 − |z′ − z|2.

Also, |〈z − z′, (∂̄r)(z)〉| = |〈v, (∂̄r)(z)〉| ≤ C4a|r(z)|. Consequently

|〈z′ − w,(∂̄r)(z′)〉| ≥ |〈z′ − w, (∂̄r)(z)〉| − C1|z′ − w||z − z′|
≥ |〈z − w, (∂̄r)(z)〉| − C4a|r(z)| − C1|z − w||z − z′| − C1|z − z′|2.

Combining the above inequalities, we see that there is a 1 ≤ C5 <∞ such that

ρ(z′, w) ≥ 1

2
ρ(z, w)− C5a{ρ1/2(z, w)|r(z)|1/2 + |r(z)|}

=
1

2
(1− C5a)ρ(z, w) +

1

2
C5a

{
ρ(z, w)− 2ρ1/2(z, w)|r(z)|1/2 + |r(z)|

}
− 3

2
C5a|r(z)|.

Note that the {· · ·} above is a complete square. Thus if a ≤ (2C5)−1, then

ρ(z′, w) ≥ 1

4
ρ(z, w)− 3

2
C5a|r(z)|.

Recalling (3.8), if we further require that a ≤ (12C5)−1, then

ρ(z′, w) ≥ (1/8)ρ(z, w).

Thus if we set a0 = (12C5)−1, then there is a C such that (3.7) holds for all z, z′, w ∈ Ω
satisfying the condition d(z, z′) < a0. �
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4. Estimates related to the Bergman kernel

Let K(z, w) be the Bergman kernel for Ω. By definition, it has the symmetry K(w, z)
= K(z, w). The following well-known result of Fefferman gives us a good handle on K:

Theorem 4.1. [10,Theorem 2] The Bergman kernel has the form

K(z, w) = C|(∇r)(w)|2detL(w)X−(n+1)(z, w) + K̃(z, w)

on Rδ = {(z, w) ∈ Ω × Ω : |r(z)| + |r(w)| + |z − w| < δ} for some δ > 0, where L is the
Levi form for the domain Ω, X is given by (3.1), and K̃ is an admissible kernel of weight
≥ −n− (1/2). That is, there is a constant C ′ such that |K̃(z, w)| ≤ C ′F (z, w)−n−(1/2).

For any δ > 0, the Bergman kernel K is known to be bounded on (Ω × Ω)\Rδ [14].
One obvious implication of Theorem 4.1 is that

(4.1) c|r(z)|−n−1 ≤ |K(z, z)| ≤ C|r(z)|−n−1, z ∈ Ω.

For each z ∈ Ω, let us denote Kz(w) = K(w, z). Then it has the reproducing property

h(z) = 〈h,Kz〉

for h ∈ L2
a(Ω). We write kz for the normalized reproducing kernel, i.e., kz = Kz/‖Kz‖.

Lemma 4.2. Given any 0 < η < 1/2 and a > 0, there are constants s > 0 and 0 < C4.2 <
∞ such that

sup
z∈Ω
|r(z)|−(n/2)−η

∑
w∈Γ\D(z,R)

|r(w)|(n/2)+η

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

≤ C4.22−sR

for every a-separated set Γ in Ω and every R ≥ 3C3.7 + 1.

Proof. Let 0 < η < 1/2 and a > 0 be given. Define α = (1/3) min{a0, a}, where a0 is the
constants in Lemma 3.10. Suppose that Γ is an a-separated set in Ω. Then

D(w,α) ∩D(w′, α) = ∅ for all w 6= w′ in Γ.

Applying Lemmas 2.1 and 3.10, for ζ ∈ D(w,α) we have

|r(w)|n+(1/2)+η|r(z)|(n+1)/2

F (z, w)n+1
≤ C |r(ζ)|n+(1/2)+η|r(z)|(n+1)/2

F (z, ζ)n+1
.

Thus for z ∈ Ω we have∑
w∈Γ\D(z,R)

|r(w)|(n/2)+η

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

≤
∑

w∈Γ\D(z,R)

C

µ(D(w,α))

∫
D(w,α)

|r(ζ)|n+(1/2)+η|r(z)|(n+1)/2

F (z, ζ)n+1
dµ(ζ)

≤ C

c(α)

∫
Ω\D(z,R−α)

|r(ζ)|−(1/2)+η|r(z)|(n+1)/2

F (z, ζ)n+1
dv(ζ),
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where the second ≤ is justified by Proposition 2.6. Applying Lemma 3.8 to the last integral,
the desired conclusion follows. �

Lemma 4.3. There is a constant 0 < C4.3 <∞ such that

|f(z)| ≤ C4.3|r(z)|−(n+1)/2‖fχD(z,1)‖

for all f ∈ L2
a(Ω) and z ∈ Ω, where ‖fχD(z,1)‖ is the norm of fχD(z,1) in L2(Ω).

Proof. It is easy to see that the conclusion is trivial if −r(z) ≥ θ. Suppose that −r(z) < θ.
Then Proposition 2.4 provides a c > 0 such that

D(z, 1) ⊃ z + P((∂̄r)(z); c|r(z)|1/2, c|r(z)|)

for every such z. Averaging on the polyball, for f ∈ L2
a(Ω) we have

|f(z)| ≤ 1

v(P((∂̄r)(z); c|r(z)|1/2, c|r(z)|))

∫
z+P((∂̄r)(z);c|r(z)|1/2,c|r(z)|)

|f |dv.

Applying the Cauchy-Schwarz inequality on the right, the desired conclusion follows. �

Lemma 4.4. Given any complex dimension m ∈ N, there is a constant 0 < C4.4(m) <∞
such that the following bound holds: Let 0 < ρ <∞ and define B(ρ) = {z ∈ Cm : |z| < ρ}.
Then for every u ∈ Cm with |u| < ρ/2 and every analytic function f on B(ρ), we have

|f(u)− f(0)| ≤ |u|
ρ
· C4.4(m)

vm(B(ρ))

∫
B(ρ)

|f |dvm.

Proof. By standard integration formulas on the ball, there is a C = C(m) such that

(4.2) |(∂jg)(0)| ≤ C

vm(B(1))

∫
B(1)

|g|dvm

for every analytic function g on B(1) = {z ∈ Cm : |z| < 1} and every j ∈ {1, . . . ,m}.
Suppose that u = (u1, . . . , um). If f is analytic on B(ρ), then

f(u)− f(0) =

∫ 1

0

d

dt
f(tu)dt =

∫ 1

0

m∑
j=1

(∂jf)(tu)ujdt.

Since |u| < ρ/2, for every t ∈ [0, 1] we have tu + B(ρ/2) ⊂ B(ρ). From (4.2) and the
scaling properties of ∂j and dvm we deduce

|(∂jf)(tu)| ≤ 2

ρ
· C

vm(B(ρ/2))

∫
tu+B(ρ/2)

|f |dvm.

Since vm(B(ρ/2)) = 2−2mvm(B(ρ)), we see that the constant C4.4(m) = m22m+1C will do
for the lemma. �
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Lemma 4.5. There exist constants 0 < C4.5 <∞ and 0 < c4.5 < 1 such that

|f(w)− f(z)| ≤ C4.5d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖

for every pair of z, w ∈ Ω satisfying the condition d(z, w) < c4.5 and every f ∈ L2
a(Ω).

Proof. By Lemma 2.1, there is a 0 < θ1 < θ such that if −r(z) ≥ θ and d(z, w) ≤ 1, then
−r(w) ≥ θ1. Since {ζ ∈ Ω : −r(ζ) ≥ θ1} is a compact subset of Ω, we see that the case
−r(z) ≥ θ is trivial.

Suppose that −r(z) < θ. Then Proposition 2.4 provides a c > 0 such that

(4.3) D(z, 1) ⊃ z + P((∂̄r)(z); c|r(z)|1/2, c|r(z)|)

for every such z. By Proposition 2.5, there is an 0 < α < 1/2 such that

(4.4) D(z, α) ⊂ z + P((∂̄r)(z); (c/2)|r(z)|1/2, (c/2)|r(z)|)

for every such z. Set c4.5 = α. Let w ∈ Ω be such that d(z, w) < α. Then we can
write w = z + x + y, where x ⊥ (∂̄r)(z) and y ∈ {η(∂̄r)(z) : η ∈ C}. By (4.4), we have
|x| < (c/2)|r(z)|1/2 and |y| < (c/2)|r(z)|.

Let f ∈ L2
a(Ω) be given. Define F (ξ) = f(z+ξ+y) for ξ ⊥ (∂̄r)(z) with |ξ| < c|r(z)|1/2.

Applying Lemma 4.4 to the case where ρ = c|r(z)|1/2, we have

(4.5) |f(w)− f(z + y)| = |F (x)− F (0)| ≤ |x|
c|r(z)|1/2

· C4.4(n− 1)

vn−1(B)

∫
B

|F |dvn−1,

where B = {ξ ∈ Cn : 〈ξ, (∂̄r)(z)〉 = 0 and |ξ| < c|r(z)|1/2}. On the other hand, for every
ξ ∈ B we have

(4.6) |F (ξ)| = |f(z+ ξ+ y)| ≤ 1

A(D((c/2)|r(z)|))

∫
D((c/2)|r(z)|)

|f(z+ ξ+ y+ ηuz)|dA(η),

where uz = (∂̄r)(z)/|(∂̄r)(z)| and D((c/2)|r(z)|) = {η ∈ C : |η| < (c/2)|r(z)|}. Note that
vn−1(B) = cn−1(c|r(z)|1/2)2n−2 = a1|r(z)|n−1. Combining (4.5), (4.6) and (4.3), we obtain

|f(w)− f(z + y)| ≤ |x|
|r(z)|1/2

· C1

|r(z)|n+1

∫
D(z,1)

|f |dv.

Applying the Cauchy-Schwarz inequality and Proposition 2.6, we have

|f(w)− f(z + y)| ≤ |x|
|r(z)|1/2

·
C1

√
v(D(z, 1))

|r(z)|n+1
‖fχD(z,1)‖ ≤

|x|
|r(z)|1/2

·
C2‖fχD(z,1)‖
|r(z)|(n+1)/2

.

Since d(z, w) < α and α < 1/2, (2.6) gives us that |x|/|r(z)|1/2 ≤ C3d(z, w). Hence

(4.7) |f(w)− f(z + y)| ≤ C4d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖.
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Next we show that

(4.8) |f(z + y)− f(z)| ≤ C5d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖,

which together with (4.7) will complete the proof of the lemma.

To prove (4.8), we write y = βuz, where β ∈ C. Define G(η) = f(z + ηuz) for η ∈ C
with |η| < c|r(z)|. Now, applying Lemma 4.4 to the case where ρ = c|r(z)|, we have

(4.9) |f(z + y)− f(z)| = |G(β)−G(0)| ≤ |β|
c|r(z)|

· C4.4(1)

A(D(c|r(z)|))

∫
D(c|r(z)|)

|G|dA,

where D(c|r(z)|) = {η ∈ C : |η| < c|r(z)|}. For each η ∈ D(c|r(z)|) we have

(4.10) |G(η)| = |f(z + ηuz)| ≤
1

vn−1(B)

∫
B

|f(z + ξ + ηuz)|dvn−1(ξ),

where B = {ξ ∈ Cn : 〈ξ, (∂̄r)(z)〉 = 0 and |ξ| < c|r(z)|1/2}. Note that |β| = |y|. Thus
(4.9), (4.10) and (4.3) together give us

|f(z + y)− f(z)| ≤ |y|
|r(z)|

· C6

|r(z)|n+1

∫
D(z,1)

|f |dv.

Since d(z, w) < α and α < 1/2, Lemma 2.2 implies that |y|/|r(z)| ≤ C7d(z, w). Applying
the Cauchy-Schwarz inequality and Proposition 2.6 on the right-hand side, we obtain (4.8).
This completes the proof. �

Proposition 4.6. There is a constant C4.6 such that if z, w ∈ Ω satisfies the condition
d(z, w) < c4.5, where c4.5 was given in Lemma 4.5, then

|〈f, kz − kw〉| ≤ C4.6d(z, w)‖fχD(z,1)‖

for every f ∈ L2
a(Ω). Consequently, if d(z, w) < c4.5, then ‖kz − kw‖ ≤ C4.6d(z, w).

Proof. Write Kz(ζ) = K(ζ, z), the unnormalized reproducing kernel. Note that Lemma
4.5 implies that ‖Kz −Kw‖ ≤ C4.5d(z, w)|r(z)|−(n+1)/2 if d(z, w) < c4.5. Therefore

|‖Kz‖ − ‖Kw‖| ≤ C4.5d(z, w)|r(z)|−(n+1)/2 if d(z, w) < c4.5.

Combining this with (4.1), the condition d(z, w) < c4.5, and Lemma 2.1, we obtain

(4.11) |‖Kz‖−1 − ‖Kw‖−1| = |‖Kz‖ − ‖Kw‖|
‖Kz‖‖Kw‖

≤ C1d(z, w)|r(z)|(n+1)/2

when d(z, w) < c4.5. Let f ∈ L2
a(Ω). Then

〈f, kz − kw〉 = f(z)‖Kz‖−1 − f(w)‖Kw‖−1

= (f(z)− f(w))‖Kw‖−1 + f(z)(‖Kz‖−1 − ‖Kw‖−1).(4.12)
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Applying Lemma 4.5, we have

|f(z)− f(w)|‖Kw‖−1 ≤ C4.5d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖‖Kw‖−1

≤ C2d(z, w)‖fχD(z,1)‖,(4.13)

where the second ≤ follows from (4.1), the condition d(z, w) < c4.5, and Lemma 2.1. On
the other hand, Lemma 4.3 tells us that

|f(z)| ≤ C4.3|r(z)|−(n+1)/2‖fχD(z,1)‖.

Combining this with (4.11), we obtain

(4.14) |f(z)||‖Kz‖−1 − ‖Kw‖−1| ≤ C1C4.3d(z, w)‖fχD(z,1)‖.

Obviously, the lemma follows from (4.12), (4.13) and (4.14). �

Lemma 4.7. There is a c4.7 > 0 such that for any pair of z, w ∈ Ω, if d(z, w) ≤ c4.7, then
|〈kz, kw〉| ≥ 1/2.

Proof. We have 1−Re〈kz, kw〉 = 2−1‖kz−kw‖2. By Proposition 4.6, there is a c4.7 > 0 such
that for any pair of z, w ∈ Ω, if d(z, w) ≤ c4.7, then ‖kz − kw‖ ≤ 1. Thus if d(z, w) ≤ c4.7,
then 1− Re〈kz, kw〉 ≤ 1/2, which implies |〈kz, kw〉| ≥ 1/2. �

5. Discrete sums

We now consider operators constructed from the Bergman kernel.

Lemma 5.1. There is a constant 0 < C5.1 < ∞ such that the following estimate holds:
Let Γ be any 1-separated set in Ω. Suppose that {ez : z ∈ Γ} is an orthonormal set and
{cz : z ∈ Γ} is a bounded set of complex coefficients. Then∥∥∥∥∑

z∈Γ

czkz ⊗ ez
∥∥∥∥ ≤ C5.1 sup

z∈Γ
|cz|.

Proof. Given such Γ, {ez : z ∈ Γ} and {cz : z ∈ Γ}, define the operator

A =
∑
z∈Γ

czkz ⊗ ez.

Then for every f ∈ L2
a(Ω) we have

A∗f =
∑
z∈Γ

c̄z‖Kz‖−1f(z)ez.

From Lemma 4.3 and (4.1) we obtain

‖A∗f‖2 ≤ C2
4.3

∑
z∈Γ

|cz|2‖Kz‖−2|r(z)|−n−1‖fχD(z,1)‖2 ≤ (C2
4.3/c) sup

z∈Γ
|cz|2‖f‖2.
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Since f ∈ L2
a(Ω) is arbitrary, this means that ‖A‖ = ‖A∗‖ ≤ c−1/2C4.3 supz∈Γ |cz|. �

Lemma 5.2. Let Γ be a 1-separated set in Ω. Suppose that for every z ∈ Γ, we have a
ζ(z) ∈ Ω with d(z, ζ(z)) < c4.5. Then for every orthonormal set {ez : z ∈ Γ} and for every
bounded set of complex coefficients {cz : z ∈ Γ}, we have∥∥∥∥∑

z∈Γ

czkz ⊗ ez −
∑
z∈Γ

czkζ(z) ⊗ ez
∥∥∥∥ ≤ C4.6 sup

z∈Γ
|cz|d(z, ζ(z)).

Proof. Write

D =
∑
z∈Γ

czkz ⊗ ez −
∑
z∈Γ

czkζ(z) ⊗ ez =
∑
z∈Γ

cz(kz − kζ(z))⊗ ez.

For any f ∈ L2
a(Ω), we have

D∗f =
∑
z∈Γ

c̄z〈f, kz − kζ(z)〉ez.

Applying Proposition 4.6, if d(z, ζ(z)) < c4.5 for every z ∈ Γ, then

‖D∗f‖2 =
∑
z∈Γ

|c̄z〈f, kz − kζ(z)〉|2 ≤ C2
4.6

∑
z∈Γ

|cz|2d2(z, ζ(z))‖fχD(z,1)‖2

≤ C2
4.6 sup

z∈Γ
|cz|2d2(z, ζ(z))‖f‖2.

Since f ∈ L2
a(Ω) is arbitrary, this implies ‖D‖ = ‖D∗‖ ≤ C4.6 supz∈Γ |cz|d(z, ζ(z)). �

Corollary 5.3. Given any a > 0, 0 ≤ C < ∞ and ε > 0, there is a δ > 0 such that the
following estimate holds: Let Γ be an a-separated set in Ω. Suppose that ϕ, ϕ′, ψ and ψ′

are maps from Γ into Ω. If the inequalities

d(z, ϕ(z)) ≤ C, d(z, ψ(z)) ≤ C, d(ϕ(z), ϕ′(z)) ≤ δ, d(ψ(z), ψ′(z)) ≤ δ

hold for every z ∈ Γ, then for any bounded set of coefficients {cz : z ∈ Γ} we have∥∥∥∥∑
z∈Γ

czkϕ(z) ⊗ kψ(z) −
∑
z∈Γ

czkϕ′(z) ⊗ kψ′(z)
∥∥∥∥ ≤ ε sup

z∈Γ
|cz|.

Proof. For z, w ∈ Γ, if d(z, w) > 2C + 2, then d(ϕ(z), ϕ(w)) > 2 and d(ψ(z), ψ(w)) > 2.
By Lemma 2.11, there is an N ∈ N determined by a and C such that Γ admits a partition

Γ = Γ1 ∪ · · · ∪ ΓN
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with the property that for each j ∈ {1, . . . , N}, the sets {ϕ(z) : z ∈ Γj} and {ψ(z) : z ∈ Γj}
are 1-separated. Pick an orthonormal set {ez : z ∈ Γ}. Fixing a j ∈ {1, . . . , N} for the
moment, we have∑

z∈Γj

czkϕ(z) ⊗ kψ(z) −
∑
z∈Γj

czkϕ′(z) ⊗ kψ′(z) = AB∗ −A′B′∗,

where

A =
∑
z∈Γj

czkϕ(z) ⊗ ez, B =
∑
z∈Γj

kψ(z) ⊗ ez,

A′ =
∑
z∈Γj

czkϕ′(z) ⊗ ez, B′ =
∑
z∈Γj

kψ′(z) ⊗ ez.

We have
AB∗ −A′B′∗ = (A−A′)B∗ +A′(B∗ −B′∗).

Since {ϕ(z) : z ∈ Γj} and {ψ(z) : z ∈ Γj} are 1-separated, if we apply Lemma 5.2 to
A−A′ and B −B′ and Lemma 5.1 to B and A′, we see that

‖AB∗ −A′B′∗‖ ≤ ε

N
sup
z∈Γ
|cz|

when δ is sufficiently small. This completes the proof. �

6. Operators in the Toeplitz algebra T

Define the measure
dµ̃(w) = K(w,w)dv(w)

on Ω. By (4.1), this is just a slightly different version of the measure dµ defined by (2.10).
Given an f ∈ L∞(Ω), we have the integral representation

(6.1) Tf =

∫
f(w)kw ⊗ kwdµ̃(w)

for the Toeplitz operator Tf . This formula is obtained by direct verification. Starting from
this representation, we will show that the Toeplitz algebra T contains certain classes of
operators. The two main steps in the section are Propositions 6.4 and 6.6 below.

Proposition 6.1. Suppose that Γ is a separated set in Ω and that {cz : z ∈ Γ} is a bounded
set of complex coefficients. Then the operator∑

z∈Γ

czkz ⊗ kz

belongs to the closure of {Tf : f ∈ L∞(Ω)} with respect to the operator norm.
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Proof. By Lemma 2.11, we may assume that Γ is 1-separated. Let ε > 0 be given. Since
supz∈Γ |cz| <∞, it follows from Corollary 5.3 that there is a δ > 0 such that

(6.2)

∥∥∥∥∑
z∈Γ

czkz ⊗ kz −
∑
z∈Γ

czkζ(z) ⊗ kζ(z)
∥∥∥∥ ≤ ε

if ζ(z) ∈ D(z, δ) for every z ∈ Γ. We may, of course, assume that δ < 1, consequently
D(z, δ) ∩D(w, δ) = ∅ for all z 6= w in Γ.

Define the function

(6.3) ϕ =
∑
z∈Γ

cz
µ̃(D(z, δ))

χD(z,δ)

on Ω. By (4.1) and Proposition 2.6, there is an β > 0 such that µ̃(D(z, δ)) ≥ β for every
z ∈ Ω. Hence ϕ ∈ L∞(Ω). We will show that

(6.4)

∥∥∥∥∑
z∈Γ

czkz ⊗ kz − Tϕ
∥∥∥∥ ≤ ε.

To prove this, we define the measure dνz = {µ̃(D(z, δ))}−1χD(z,δ)dµ̃ for every z ∈ Γ. Then
it follows from (6.1) and (6.3) that

Tϕ =
∑
z∈Γ

cz

∫
kw ⊗ kwdνz(w).

Note that each dνz is a probability measure concentrated on D(z, δ). Hence dνz is in the
weak-* closure of convex combinations of unit point masses on D(z, δ). Therefore Tϕ is
the limit in weak operator topology of operators of the form

T =
1

k

k∑
j=1

∑
z∈Γ

czkζ(z;j) ⊗ kζ(z;j),

where k ∈ N and ζ(z; j) ∈ D(z, δ) for all z ∈ Γ and j ∈ {1, . . . , k}. By (6.2),∥∥∥∥∑
z∈Γ

czkz ⊗ kz − T
∥∥∥∥ ≤ 1

k

k∑
j=1

∥∥∥∥∑
z∈Γ

czkz ⊗ kz −
∑
z∈Γ

czkζ(z;j) ⊗ kζ(z;j)
∥∥∥∥ ≤ ε.

Since this holds for every such T and since Tϕ is the weak limit of such T ’s, (6.4) follows.
Since ε > 0 is arbitrary, this completes the proof. �

Next we remind the reader of a well-known fact:

Proposition 6.2. [22,Theorem 4.1.25] The Toeplitz algebra T contains K, the collection
of compact operators on the Bergman space L2

a(Ω).
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Definition 6.3. (a) Let D0 denote the collection of operators of the form∑
z∈Γ

czkz ⊗ kγ(z),

where Γ is any separated set in Ω, {cz : z ∈ Γ} is any bounded set of complex coefficients,
and γ : Γ→ Ω is any map for which there is a 0 ≤ C <∞ such that

(6.5) d(z, γ(z)) ≤ C

for every z ∈ Γ.
(b) Let D denote the closure of the linear span of D0 with respect to the operator norm.
(c) For any A ∈ B(L2

a(Ω)), D0(A) denotes the collection of operators of the form∑
z∈Γ

cz〈Akψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z),

where Γ is a separated set in Ω, {cz : z ∈ Γ} is a bounded set of coefficients, and ϕ,ψ : Γ→
Ω are maps for which there is a 0 ≤ C < ∞ such that d(z, ϕ(z)) ≤ C and d(z, ψ(z)) ≤ C
for every z ∈ Γ.
(d) For any A ∈ B(L2

a(Ω)), D(A) denotes the closure of the linear span of D0(A) with
respect to the operator norm.

Proposition 6.4. We have the inclusion D0 ⊂ T . Consequently, D ⊂ T .

Proof. Let Γ, {cz : z ∈ Γ}, γ and C be as described in Definition 6.3(a), and consider

T =
∑
z∈Γ

czkz ⊗ kγ(z).

To show that T ∈ T , by Lemma 2.11, we may assume that

(6.6) d(z, w) > 4C + 2 for all z 6= w in Γ.

For each z ∈ Γ, since d(z, γ(z)) ≤ C, by (2.4) there is a C1 map gz : [0, 1] → Ω such that
gz(0) = z, gz(1) = γ(z), and such that the number

`z =

∫ 1

0

√
〈B(gz(t))g′z(t), g

′
z(t)〉dt

satisfies the condition `z ≤ 2C. Pick a k ∈ N such that 2C/k < min{a0, c4.7}, where a0

and c4.7 are the constants in Lemmas 3.10 and 4.7 respectively. For each z ∈ Γ, there are

0 = x(z, 0) ≤ x(z, 1) ≤ · · · ≤ x(z, k − 1) ≤ x(z, k) = 1

such that ∫ x(z,j)

0

√
〈B(gz(t))g′z(t), g

′
z(t)〉dt =

j

k
`z
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for j = 0, 1, . . . , k. For each pair of z ∈ Γ and j ∈ {0, 1, . . . , k}, we now define

γj(z) = gz(x(z, j)).

We have γ0(z) = z and γk(z) = γ(z), z ∈ Γ. Since `z ≤ 2C, for all 0 ≤ j < k and z ∈ Γ,

d(γj(z), γj+1(z)) ≤
∫ x(z,j+1)

x(z,j)

√
〈B(gz(t))g′z(t), g

′
z(t)〉dt = `z/k < min{a0, c4.7}.

By Lemma 4.7, this ensures that

(6.7) |〈kγj(z), kγj+1(z)〉| ≥ 1/2

for all 0 ≤ j < k and z ∈ Γ.

To prove that T ∈ T , it suffices to show that for every j ∈ {0, 1, . . . , k} and every
subset E of Γ, we have

(6.8)
∑
z∈E

czkz ⊗ kγj(z) ∈ T .

We will accomplish this by an induction on j. Since γ0(z) = z for every z ∈ Γ, the case
j = 0 follows from Proposition 6.1. Suppose now that 0 ≤ j < k and that (6.8) holds for
this j and for every E ⊂ Γ. To simplify notation, for every S ⊂ Γ, let us denote

XS =
∑
z∈S

czkz ⊗ kγj(z) and YS =
∑
z∈S

1

〈kγj+1(z), kγj(z)〉
kγj+1(z) ⊗ kγj+1(z).

By the induction hypothesis, we have XS ∈ T . By (6.7) and Proposition 6.1, we also have
YS ∈ T . Therefore XSYS ∈ T for every S ⊂ Γ. To complete the induction, it suffices to
show that given E ⊂ Γ and ε > 0, there is a finite partition E = S1 ∪ · · · ∪ SN such that

(6.9)

∥∥∥∥XS1
YS1

+ · · ·+XSNYSN −
∑
z∈E

czkz ⊗ kγj+1(z)

∥∥∥∥ ≤ ε.
To see how this is done, first note that for any partition E = S1 ∪ · · · ∪ SN ,

XS1
YS1

+ · · ·+XSNYSN −
∑
z∈E

czkz ⊗ kγj+1(z)

=
N∑
ν=1

∑
z,w∈Sν
z 6=w

cz
〈kγj+1(w), kγj(z)〉
〈kγj+1(w), kγj(w)〉

kz ⊗ kγj+1(w) = UWV ∗,

where

U =
∑
z∈E

czkz ⊗ ez, V =
∑
z∈E

kγj+1(z) ⊗ ez and

W =
N∑
ν=1

∑
z,w∈Sν
z 6=w

〈kγj+1(w), kγj(z)〉
〈kγj+1(w), kγj(w)〉

ez ⊗ ew,
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where {ez : z ∈ E} is an orthonormal set.

By (6.6), {γj+1(z) : z ∈ E} is a 1-separated set. Thus Lemma 5.1 provides the bound
‖V ‖ ≤ C5.1. Similarly, ‖U‖ ≤ C5.1c, where c = supz∈Γ |cz|. Consequently

(6.10)

∥∥∥∥XS1YS1 + · · ·+XSNYSN −
∑
z∈E

czkz ⊗ kγj+1(z)

∥∥∥∥ ≤ C2
5.1c‖W‖.

Thus we need to find a partition E = S1 ∪ · · · ∪ SN such that ‖W‖ is small. To do this,
consider an R > 3C3.7 +1, whose value will be determined below. By Lemma 2.11, there is
a partition E = S1 ∪ · · · ∪ SN such that for every ν ∈ {1, . . . , N}, the conditions z, w ∈ Sν
and z 6= w imply d(z, w) > R. With S1, . . . , SN so chosen, we define

F =
N⋃
ν=1

{(z, w) ∈ Sν × Sν : z 6= w}.

We can rewrite W in the form

W =
∑

(z,w)∈E×E

a(z, w)ez ⊗ ew,

where

a(z, w) =


〈kγj+1(w),kγj(z)〉
〈kγj+1(w),kγj(w)〉

if (z, w) ∈ F

0 if (z, w) /∈ F
.

Recall that d(γp(z), γp+1(z)) < a0 for all z ∈ Γ and 0 ≤ p < k. Recalling (6.7) and
applying Theorem 4.1 and Lemmas 3.1, 2.1, and Lemma 3.10 multiple times, we obtain

|a(z, w)| ≤ 2
|K(γj(z), γj+1(w))|
‖Kγj+1(w)‖‖Kγj(z)‖

≤ C1

(
|r(γj(z))|1/2|r(γj+1(w))|1/2

F (γj(z), γj+1(w))

)n+1

≤ C2

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

for (z, w) ∈ F . Pick an η ∈ (0, 1/2) and define h(w) = |r(w)|(n/2)+η, w ∈ Γ. If (z, w) ∈ F ,
then d(z, w) > R by design. Since E is 1-separated, it follows from Lemma 4.2 that

∑
w∈E
|a(z, w)|h(w) ≤ C2

∑
w∈E\D(z,R)

|r(w)|(n/2)+η

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

≤ C2C4.2

2sR
h(z)

for every z ∈ E. A similar inequality holds for
∑
z∈E |a(z, w)|h(z), w ∈ E. By the standard

Schur test, we conclude that ‖W‖ ≤ C2C4.22−sR. Recalling (6.10), we see that (6.9) holds
if we pick R > 3C3.7 + 1 such that C2

5.1cC2C4.22−sR ≤ ε. This completes the proof. �
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Following the ideas in [28], we will now generalize the notion of localized operators to
strongly pseudo-convex domains.

Definition 6.5. Let A be a bounded operator on the Bergman space L2
a(Ω). Then

LOC(A) denotes the collection of operators of the form

(6.11) T =
∑
z∈Γ

TfzATfz ,

where Γ is any separated set in Ω and {fz : z ∈ Γ} is any family of continuous functions
on Ω satisfying the following three conditions:
(1) There is a 0 < ρ <∞ such that fz = 0 on Ω\D(z, ρ) for every z ∈ Γ.
(2) The inequality 0 ≤ fz ≤ 1 holds on Ω for every z ∈ Γ.
(3) The family {fz : z ∈ Γ} satisfies a uniform Lipschitz condition on Ω with respect to
the metric d. That is, there is a 0 < C < ∞ such that |fz(ζ) − fz(ξ)| ≤ Cd(ζ, ξ) for all
z ∈ Γ and ζ, ξ ∈ Ω.

Proposition 6.6. For every bounded operator A on L2
a(Ω), we have LOC(A) ⊂ D(A).

Proof. Let A be a bounded operator on L2
a(Ω), and consider a T given by (6.11). To prove

that T ∈ D(A), by Lemma 2.11, we may assume that Γ is 1-separated. For convenience,
let us define the product measure ν = µ̃× µ̃ on Ω× Ω. By (6.1), for each z ∈ Γ we have

(6.12) TfzATfz =

∫∫
hz(u, v)ku ⊗ kvdν(u, v),

where

(6.13) hz(u, v) = fz(u)fz(v)〈Akv, ku〉.

By condition (1) above, hz vanishes on the complement of D(z, ρ) × D(z, ρ). It follows
from Proposition 4.6 and condition (3) above that for any a > 0, there is a b > 0 such that

(6.14) sup
z∈Γ
|hz(u, v)− hz(u′, v′)| ≤ a if d(u, u′) ≤ b and d(v, v′) ≤ b.

The rest of the proof is divided into two steps.

Step I. We first show that for any ε > 0, there is a 0 < δ ≤ ρ such that the following
holds true: Suppose that Λ is a subset of Γ. For each z ∈ Λ, let ϕ(z), ψ(z) ∈ D(z, ρ).
For each z ∈ Λ, suppose that we have a Borel set Ez = Fz × Gz with Fz ⊂ D(ϕ(z), δ),
Gz ⊂ D(ψ(z), δ) and ν(Ez) > 0. Finally, for each z ∈ Λ, let az ∈ [0, 2]. Then

(6.15)

∥∥∥∥∑
z∈Λ

az
ν(Ez)

∫∫
Ez

hz(u, v)ku⊗ kvdν(u, v)−
∑
z∈Λ

azhz(ϕ(z), ψ(z))kϕ(z)⊗ kψ(z)

∥∥∥∥ ≤ ε.
To prove this, denote

W =
∑
z∈Λ

az
ν(Ez)

∫∫
Ez

hz(u, v)ku ⊗ kvdν(u, v) and

Z =
∑
z∈Λ

azhz(ϕ(z), ψ(z))kϕ(z) ⊗ kψ(z).
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Note that for each z ∈ Λ, {χEz/ν(Ez)}dν is a probability measure concentrated on Ez.
Thus it is in the weak-* closure of convex combinations of unit point masses on Ez. Con-
sequently W is in the closure in weak operator topology of operators of the form

W ′ =
1

k

k∑
j=1

∑
z∈Λ

azhz(u(z; j), v(z; j))ku(z;j) ⊗ kv(z;j),

where k ∈ N and, for each 1 ≤ j ≤ k, we have (u(z; j), v(z; j)) ∈ Ez, i.e., u(z; j) ∈ Fz and
v(z; j) ∈ Gz, z ∈ Λ. It is easy to see that

W ′ − Z =
1

k

k∑
j=1

(Xj + Yj),

where

Xj =
∑
z∈Λ

az{hz(u(z; j), v(z; j))− hz(ϕ(z), ψ(z))}ku(z;j) ⊗ kv(z;j) and

Yj =
∑
z∈Λ

azhz(ϕ(z), ψ(z))ku(z;j) ⊗ kv(z;j) −
∑
z∈Λ

azhz(ϕ(z), ψ(z))kϕ(z) ⊗ kψ(z).

From (6.14) and Lemmas 2.11 and 5.1 we see that there is a δ1 > 0 such that ‖Xj‖ ≤ ε/2
for every 1 ≤ j ≤ k if δ ≤ δ1. By Corollary 5.3, there is a δ2 > 0 such that ‖Yj‖ ≤ ε/2 for
every 1 ≤ j ≤ k if δ ≤ δ2. Hence for any 0 < δ ≤ min{δ1, δ2, ρ}, we have ‖W ′ − Z‖ ≤ ε.
Since W −Z is the weak limit of operators of the form W ′ −Z, we have ‖W −Z‖ ≤ ε for
any choice of 0 < δ ≤ min{δ1, δ2, ρ}. This proves (6.15) and completes Step I.

Step II. Recall that ν = µ̃× µ̃. By (4.1) and Proposition 2.6, there is an N ∈ N such
that N ≥ ν(D(w, 2ρ) ×D(w, 2ρ)) for every w ∈ Ω. Let ε > 0 be given. We will now find
a B ∈ span(D0(A)) such that

(6.16) ‖T −B‖ ≤ Nε.

Since ε > 0 is arbitrary, this will imply the membership T ∈ D(A). To find such a
B ∈ span(D0(A)), let δ be the number provided for this ε in Step I. For each z ∈ Γ, there
is a subset Sz in D(z, ρ) that is maximal with respect to the property

D(x, δ/2) ∩D(y, δ/2) = ∅ for all x 6= y in Sz.

By Proposition 2.6 and the fact that µ(D(z, 2ρ)) < ∞, we see that Sz is a finite set, and
consequently we can represent it in the form Sz = {ϕ(z; 1), . . . , ϕ(z;m(z))} with some

m(z) ∈ N. The maximality of Sz implies that ∪m(z)
j=1 D(ϕ(z; j), δ) ⊃ D(z, ρ). Thus for each

z ∈ Γ, a standard set-theoretical argument gives us Borel sets

F (z; 1), . . . , F (z;m(z))
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with the following properties:
(i) D(ϕ(z; j), δ/2) ⊂ F (z; j) ⊂ D(ϕ(z; j), δ) for each j ∈ {1, . . . ,m(z)}.
(ii) F (z; i) ∩ F (z; j) = ∅ for all i 6= j in {1, . . . ,m(z)}.
(iii) D(z, ρ) ⊂ ∪m(z)

j=1 F (z; j) ⊂ D(z, 2ρ).
We now define Ez;i,j = F (z; i)× F (z; j) for z ∈ Γ and i, j ∈ {1, . . . ,m(z)}.

Let z ∈ Γ. Since hz vanishes on (Ω× Ω)\(D(z, ρ)×D(z, ρ)), (iii) and (ii) imply

(6.17) TfzATfz =

m(z)∑
i=1

m(z)∑
j=1

∫∫
Ez;i,j

hz(u, v)ku ⊗ kvdν(u, v).

By (i) and Proposition 2.6, there is a k ∈ N such that 1/k < ν(Ez;i,j) for all z ∈ Γ
and i, j ∈ {1, . . . ,m(z)}. For such a triple of z, i, j, we let p(z; i, j) be the largest natural
number satisfying the condition p(z; i, j)/k ≤ ν(Ez;i,j). Define

a(z; i, j) =
k

p(z; i, j)
ν(Ez;i,j)

for z ∈ Γ and i, j ∈ {1, . . . ,m(z)}. Then 0 < a(z; i, j) ≤ 2, because the definition of
p(z; i, j) ensures that {p(z; i, j) + 1}/k > ν(Ez;i,j). We can now rewrite (6.17) in the form

(6.18) TfzATfz =
1

k

m(z)∑
i=1

m(z)∑
j=1

p(z; i, j)
a(z; i, j)

ν(Ez;i,j)

∫∫
Ez;i,j

hz(u, v)ku ⊗ kvdν(u, v).

On the other hand, for every z ∈ Γ, we have

m(z)∑
i=1

m(z)∑
j=1

p(z; i, j) = k

m(z)∑
i=1

m(z)∑
j=1

p(z; i, j)

k
≤ k

m(z)∑
i=1

m(z)∑
j=1

ν(Ez;i,j)

≤ kν(D(z, 2ρ)×D(z, 2ρ)) ≤ kN.

We can regard p(z; i, j) as the “multiplicity” with which the triple (z, i, j) appears in (6.18).
The above estimate shows that for a fixed z ∈ Γ, all the multiplicities add up to something
less than or equal to kN . Thus there are subsets Γ1,Γ2, . . . ,ΓkN of Γ such that

(6.19)
∑
z∈Γ

TfzATfz =
1

k

kN∑
`=1

∑
z∈Γ`

a(z; i(z, `), j(z, `))

ν(Ez;i(z,`),j(z,`))

∫∫
Ez;i(z,`),j(z,`)

hz(u, v)ku⊗kvdν(u, v),

where for each pair of ` ∈ {1, . . . , kN} and z ∈ Γ` we have i(z, `), j(z, `) ∈ {1, . . . ,m(z)}.
For each ` ∈ {1, . . . , kN}, define

B` =
∑
z∈Γ`

a(z; i(z, `), j(z, `))hz(ϕ(z; i(z, `)), ϕ(z; j(z, `)))kϕ(z;i(z,`)) ⊗ kϕ(z;j(z,`)).
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Since ϕ(z; i(z, `)), ϕ(z; j(z, `)) ∈ D(z, ρ) for every z ∈ Γ`, recalling Definition 6.3(c) and
(6.13), we have B` ∈ D0(A). Therefore the operator

(6.20) B =
1

k

kN∑
`=1

B`

belongs to the linear span of D0(A). By the choice of δ and Step I, we have∥∥∥∥ ∑
z∈Γ`

a(z; i(z, `), j(z, `))

ν(Ez;i(z,`),j(z,`))

∫∫
Ez;i(z,`),j(z,`)

hz(u, v)ku ⊗ kvdν(u, v)−B`
∥∥∥∥ ≤ ε,

1 ≤ ` ≤ kN . Combining this with (6.19) and (6.20), we see that ‖T −B‖ does not exceed

1

k

kN∑
`=1

∥∥∥∥ ∑
z∈Γ`

a(z; i(z, `), j(z, `))

ν(Ez;i(z,`),j(z,`))

∫∫
Ez;i(z,`),j(z,`)

hz(u, v)ku ⊗ kvdν(u, v)−B`
∥∥∥∥ ≤ Nε.

This proves (6.16) and completes the proof of the proposition. �

It follows from Lemma 2.11 that D(A) ⊂ D for every A ∈ B(L2
a(Ω)) (cf. Definition

6.3). Thus from Propositions 6.6 and 6.4 we immediately obtain

Corollary 6.7. For every bounded operator A on L2
a(Ω), we have LOC(A) ⊂ T .

To conclude this section, we recall

Lemma 6.8. Let {f1, . . . , f`} be a finite set of functions in L∞(Ω) with the property that
fjfk = 0 for all j 6= k in {1, . . . , `}. Let A be any bounded operator on the Bergman space
L2
a(Ω). Then there exist complex numbers {γ1, . . . , γ`} with |γk| = 1 for every k ∈ {1, . . . , `}

and a subset E of {1, . . . , `} such that if we define

F =
∑
k∈E

fk, G =
∑

k∈{1,...,`}\E

fk, F ′ =
∑
k∈E

γkfk and G′ =
∑

k∈{1,...,`}\E

γkfk,

then ∥∥∥∥∑
j 6=k

TfjATfk

∥∥∥∥ ≤ 4(‖TF ′ATG‖+ ‖TG′ATF ‖).

This lemma was proved in the case of the unit ball as Lemma 5.1 in [28]. But the proof
in the case of a general Ω is exactly the same. The only property of Toeplitz operators that
was used in the proof of [28,Lemma 5.1] was that a Toeplitz operator is the compression
to a subspace of a multiplication operator on an L2. Thus not only does Lemma 6.8 hold,
its analogue also holds, for example, in the setting of Hardy spaces. For that reason we
will not repeat the proof of Lemma 6.8 here.

7. Oscillation and compactness
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For a continuous function f on Ω, we define

diff(f) = sup{|f(z)− f(w)| : d(z, w) ≤ 1}.

Lemma 7.1. For any continuous function f on Ω and any k ∈ N, we have

(7.1) |f(z)− f(w)| ≤ (k + 1)diff(f)

for any pair of z, w ∈ Ω satisfying the condition d(z, w) ≤ k.

Proof. Let z, w ∈ Ω be such that d(z, w) ≤ k. By (2.4), there is a C1 map γ : [0, 1] → Ω
such that γ(0) = z, γ(1) = w and

(7.2)

∫ 1

0

√
〈B(γ(t))γ′(t), γ′(t)〉dt ≤ k + 1.

There are 0 = x0 ≤ x1 ≤ · · · ≤ xk ≤ xk+1 = 1 such that

(7.3)

∫ xj+1

xj

√
〈B(γ(t))γ′(t), γ′(t)〉dt =

1

k + 1

∫ 1

0

√
〈B(γ(t))γ′(t), γ′(t)〉dt

for 0 ≤ j ≤ k. Define zj = γ(xj), j = 0, 1, . . . , k+ 1. Then z0 = z and zk+1 = w. It follows
from (7.2), (7.3) and (2.4) that d(zj , zj+1) ≤ 1, consequently

|f(zj)− f(zj+1)| ≤ diff(f)

for j = 0, 1, . . . , k. With this inequality, (7.1) follows from a standard telescoping sum. �

Recall that P denotes the orthogonal projection from L2(Ω) onto L2
a(Ω).

Lemma 7.2. There is a constant 0 < C7.2 < ∞ such that ‖[Mf , P ]‖ ≤ C7.2diff(f) for
every bounded continuous function f on Ω.

Proof. Let T be the integral operator on L2(Ω) with the function

{d(z, w) + 2}|K(z, w)|

as its integral kernel. We know that |K(z, w)| = |K(w, z)|. Recall that the Bergman kernel
K is bounded on (Ω × Ω)\Rδ for any δ > 0 [14]. Thus it follows from Theorem 4.1 and
Lemma 3.1 that |K(z, w)| ≤ C1F (z, w)−n−1 for all z, w ∈ Ω. Combining this fact with
Lemmas 3.9 and 3.2, and with the Schur test, we see that the operator T is bounded on
L2(Ω). Let f be a bounded continuous function on Ω. It follows from Lemma 7.1 that

|(f(z)− f(w))K(z, w)| ≤ diff(f){d(z, w) + 2}|K(z, w)|

for all z, w ∈ Ω. Hence ‖[Mf , P ]‖ ≤ diff(f)‖T‖. �

37



Recall that a continuous function f on Ω is said to have vanishing oscillation if

lim
z→∂Ω

sup{|f(z)− f(w)| : d(z, w) ≤ 1} = 0.

We denote by VObdd the collection of continuous functions of vanishing oscillation on Ω
that are also bounded.

Proposition 7.3. For each f ∈ VObdd, the commutator [Mf , P ] is compact.

Proof. It suffices to consider f ∈ VObdd with ‖f‖∞ ≤ 1. For each R > 0, we will
decompose f in the form f = gR + hR, where gR has a compact support and hR satisfies
the conditions diff(hR) ≤ R−1 and ‖hR‖∞ ≤ 1. Since gR has a compact support, [MgR , P ]
is compact. On the other hand, Lemma 7.2 tells us that ‖[MhR , P ]‖ → 0 as R→∞. Thus
such a general decomposition implies the compactness of [Mf , P ].

To decompose f , let R > 0 be given. Since f ∈ VObdd, there is a t > 0 such that

(7.4) |f(z)− f(w)| ≤ (2R)−1 if z ∈ Ht and d(z, w) ≤ 1,

where Ht = {ζ ∈ Ω : −r(ζ) < t}, and we may assume Ht 6= Ω. Define

ϕR(x) =

 (2R)−1x if 0 ≤ x ≤ 2R

1 if x > 2R
.

Then ϕR satisfies the Lipschitz condition |ϕR(x)−ϕR(y)| ≤ (2R)−1|x−y| for x, y ∈ [0,∞).
For a non-empty set E ⊂ Ω and z ∈ Ω, we denote d(z, E) = inf{d(z, ζ) : ζ ∈ E} as usual.
By the triangle inequality for d, |d(z, E)− d(w,E)| ≤ d(z, w) for all z, w ∈ Ω. Hence

(7.5) |ϕR(d(z, E))− ϕR(d(w,E))| ≤ (2R)−1|d(z, E)− d(w,E)| ≤ (2R)−1d(z, w)

for all z, w ∈ Ω. We now define

gR(z) = f(z)(1− ϕR(d(z,Ωt))) and hR(z) = f(z)ϕR(d(z,Ωt)),

where Ωt = {ζ ∈ Ω : −r(ζ) ≥ t}. Since ‖f‖∞ ≤ 1 and ‖ϕR‖∞ = 1, we have

|hR(z)− hR(w)| ≤ |f(z)− f(w)|+ |ϕR(d(z,Ωt))− ϕR(d(w,Ωt))|.

If hR(z) − hR(w) 6= 0, then either z ∈ Ht or w ∈ Ht. Thus if d(z, w) ≤ 1 and hR(z) −
hR(w) 6= 0, then it follows from (7.4) and (7.5) that |hR(z) − hR(w)| ≤ 1/R. That is,
diff(hR) ≤ 1/R as promised. On the other hand, if gR(z) 6= 0, then d(z,Ωt) < 2R. By
Lemma 2.1, this means that −r(z) ≥ c(R)t, where c(R) > 0 is a constant determined by
R. Hence the support of gR is a compact set contained in Ω. This completes the proof. �

Lemma 7.4. Let f1, . . . , fk . . . be a sequence of continuous functions on Ω satisfying the
following four conditions:

(1) There is a 0 < C <∞ such that ‖fk‖∞ ≤ C for every k ∈ N.
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(2) For every k ∈ N, there exist ak > bk > 0 such that fk = 0 on Ωak ∪Hbk .
(3) limk→∞ ak = 0.
(4) limk→∞ diff(fk) = 0.

Then there is an infinite subset I of N such that fJ ∈ VObdd for every J ⊂ I, where

fJ =
∑
k∈J

fk.

Proof. By condition (3) and Lemma 2.1, we can inductively pick a sequence of natural
numbers k(1) < k(2) < · · · < k(j) < · · · such that ak(j+1) < bk(j) and

(7.6) d(z, w) ≥ 2 if − r(z) ≤ ak(j+1) and − r(w) ≥ bk(j)

for every j ∈ N. Let I = {k(1), k(2), . . . , k(j), . . . }.

For each k ∈ N, define Rk = {z ∈ Ω : bk ≤ −r(z) ≤ ak}. Then (2) says that fk = 0
on Ω\Rk. It follows from (7.6) that

(7.7) if z ∈ Rk(j) and w ∈ Rk(j′) for j 6= j′ in N, then d(z, w) ≥ 2.

This immediately implies that if J ⊂ I, then fJ is continuous on Ω. Moreover, since
Rk(j) ∩ Rk(j′) = ∅ whenever j 6= j′, it follows from (1) and (2) that ‖fJ‖∞ ≤ C for every
J ⊂ I. That is, such an fJ is bounded on Ω.

Let j0 ∈ N, and let z, w ∈ Ω satisfy the conditions −r(z) ≤ ak(j0) and d(z, w) ≤ 1.
Then it follows from (7.7) that there is at most one j ∈N such that fk(j)(z)−fk(j)(w) 6= 0.
Furthermore, by (7.6), if such a j exist, then it must satisfy the condition j ≥ j0. Thus
for z, w ∈ Ω satisfying the conditions −r(z) ≤ ak(j0) and d(z, w) ≤ 1, we have

|fJ(z)− fJ(w)| ≤ sup{diff(fk(j)) : j ≥ j0}

for every J ⊂ I. Applying conditions (3) and (4), this means that for every J ⊂ I, fJ has
vanishing oscillation. �

Definition 7.5. (a) For each t > 0, the symbol Λ(t) denotes the collection of continuous
functions g on Ω satisfying the following three conditions:

(1) 0 ≤ g(z) ≤ 1 for every z ∈ Ω.
(2) g(z) = 1 when z ∈ Ωt = {ζ ∈ Ω : −r(ζ) ≥ t}.
(3) There is a t′ = t′(g) ∈ (0, t) such that g(z) = 0 whenever −r(z) ≤ t′.

(b) Let t > 0 and δ > 0. Then Λ(t; δ) denotes the collection of functions g ∈ Λ(t) satisfying
the additional condition diff(g) ≤ δ.

Lemma 7.6. For all t > 0 and δ > 0, we have Λ(t; δ) 6= ∅.

Proof. This is similar to the proof of Proposition 7.3. Let ψ : [0,∞)→ [0, 1] be a Lipschitz
function with Lipschitz constant δ. Furthermore, suppose that ψ(0) = 1 and that ψ = 0 on
[R,∞) for a sufficiently large R. Let t > 0 be such that Ωt 6= ∅ (otherwise, (2) is trivial).
By Lemma 2.1, the function f(z) = ψ(d(z,Ωt)) is in Λ(t; δ). �
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Lemma 7.7. Given any pair of f ∈ L∞(Ω) and h ∈ L2
a(Ω), we have

(7.8) lim
t↓0

sup{‖Tfgh− Tfh‖ : g ∈ Λ(t)} = 0.

Proof. Denote Ht = {z ∈ Ω : −r(z) < t} as before. By Definition 7.5(a), we have

‖Tfgh− Tfh‖2 ≤ ‖fgh− fh‖2 ≤ ‖f‖2∞
∫
Ht

|h(z)|2dv(z)

for all g ∈ Λ(t), f ∈ L∞(Ω) and h ∈ L2
a(Ω). This obviously implies (7.8). �

For a bounded operator A on a Hilbert space H, denote

‖A‖Q = inf{‖A+K‖ : K is any compact operator on H},

which is the essential norm of A.

Lemma 7.8. [16,Lemma 2.1] Let {Bi} be a sequence of compact operators on a Hilbert
space H satisfying the following conditions:
(a) Both sequences {Bi} and {B∗i } converge to 0 in the strong operator topology.
(b) The limit limi→∞ ‖Bi‖ exists.
Then there exist natural numbers i(1) < i(2) < · · · < i(m) < · · · such that the sum

∞∑
m=1

Bi(m) = lim
N→∞

N∑
m=1

Bi(m)

exists in the strong operator topology and we have∥∥∥∥ ∞∑
m=1

Bi(m)

∥∥∥∥
Q

= lim
i→∞

‖Bi‖.

Definition 7.9. For t > 0 and δ > 0, the symbol Φ(t; δ) denotes the collection of
continuous functions f on Ω satisfying the following three conditions:

(1) 0 ≤ f(z) ≤ 1 for every z ∈ Ω.
(2) f(z) = 0 whenever −r(z) ≥ t.
(3) diff(f) ≤ δ.

In analogy with [28,Proposition 3.7], every operator in EssCom({Tg : g ∈ VObdd})
satisfies the following “ε-δ” condition:

Proposition 7.10. Let X be an operator in the essential commutant of {Tg : g ∈ VObdd}.
Then for every ε > 0, there is a δ = δ(X, ε) > 0 such that

lim
t↓0

sup{‖[X,Tf ]‖ : f ∈ Φ(t; δ)} ≤ ε.
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Using 7.4-7.9 above, the proof of Proposition 7.10 is a repeat of the proof of Propo-
sition 3.7 in [28], modified in the obvious way. For that reason we will omit the proof of
Proposition 7.10 here.

Lemma 7.11. Let h1, . . . , hk . . . be a sequence of continuous functions on Ω, and denote
Uk = {z ∈ Ω : hk(z) 6= 0}, k ∈ N. Suppose that this sequence has the property that there
is an a > 1 such that inf{d(z, w) : z ∈ Uj , w ∈ Uk} ≥ a for every pair of j 6= k in N. Then
the function h =

∑∞
k=1 hk has the property that diff(h) ≤ supk∈N diff(hk).

Proof. Observe that, under the assumption, for any pair of z, w ∈ Ω satisfying the condition
d(z, w) ≤ 1, the cardinality of the set {k ∈ N : hk(z)− hk(w) 6= 0} is at most 1. �

8. Approximate partition of unity

In this section the boundary ∂Ω of the domain plays a prominent role. It will be
beneficial to make a simplification of notation: for ζ ∈ ∂Ω and t > 0, let us write

Q(ζ, t) = {ξ ∈ ∂Ω : |ζ − ξ|2 + |〈ζ − ξ, (∂̄r)(ζ)〉| < t}.

In other words, in terms of the notation in Section 2, we have Q(ζ, t) = Q0(ζ, t). Similarly,
we will write dσ for dσ0. That is, dσ is the surface measure on ∂Ω.

Lemma 8.1. There is a constant 1 ≤ C8.1 <∞ such that for any triple of ζ, ξ ∈ ∂Ω and
t > 0, if Q(ζ, t) ∩Q(ξ, t) 6= ∅, then Q(ξ, t) ⊂ Q(ζ, C8.1t).

Proof. By the assumption on the defining function r, there is an L such that |(∂̄r)(x) −
(∂̄r)(y)| ≤ L|x− y| for all x, y ∈ ∂Ω. Suppose that there is a w ∈ Q(ζ, t) ∩Q(ξ, t). Then

|ζ − w|2 + |〈ζ − w, (∂̄r)(ζ)〉| < t and |ξ − w|2 + |〈ξ − w, (∂̄r)(ξ)〉| < t.

From this it is elementary to obtain |ζ − ξ|2 ≤ 2(|ζ − w|2 + |ξ − w|2) < 2t. Further,

|〈ζ − ξ, (∂̄r)(ζ)〉| ≤ |〈ζ − w, (∂̄r)(ζ)〉|+ |〈w − ξ, (∂̄r)(ζ)〉|
≤ |〈ζ − w, (∂̄r)(ζ)〉|+ |〈w − ξ, (∂̄r)(ξ)〉|+ |w − ξ| · L|ξ − ζ|
< 2t+

√
t · L
√

2t = (2 +
√

2L)t.

Therefore if we set C1 = 4 +
√

2L, then the condition Q(ζ, t) ∩ Q(ξ, t) 6= ∅ implies ξ ∈
Q(ζ, C1t). Suppose that z ∈ Q(ξ, t), i.e., |ξ − z|2 + |〈ξ − z, (∂̄r)(ξ)〉| < t. Then

|〈ξ − z, (∂̄r)(z)〉| ≤ |〈ξ − z, (∂̄r)(ξ)〉|+ |ξ − z| · L|ξ − z| < (1 + L)t.

That is, if z ∈ Q(ξ, t), then ξ ∈ Q(z, (2 + L)t) ⊂ Q(z, C1t). Thus the condition Q(ζ, t) ∩
Q(ξ, t) 6= ∅ implies Q(ζ, C1t)∩Q(z, C1t) 6= ∅ for every z ∈ Q(ξ, t). By the first conclusion,
we have z ∈ Q(ζ, C2

1 t). Thus the lemma holds for C8.1 = C2
1 = (4 +

√
2L)2. �

Corollary 8.2. Consider any ζ ∈ ∂Ω and t > 0. If x, y ∈ ∂Ω are such that x ∈ Q(ζ, t)
and y /∈ Q(ζ, C8.1t), then y /∈ Q(x, t).
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Proof. If x ∈ Q(ζ, t), then Q(x, t) ∩ Q(ζ, t) 6= ∅. By Lemma 8.1, we have Q(x, t) ⊂
Q(ζ, C8.1t). Therefore if y /∈ Q(ζ, C8.1t), then y /∈ Q(x, t). �

Lemma 8.3. There is a constant 0 < C8.3 <∞ such that the following bound holds: Let
t > 0, and let E be a subset of ∂Ω that has the property Q(x, t) ∩Q(y, t) = ∅ for all x 6= y
in E. Then for any R ≥ 1 and any ζ ∈ ∂Ω,

card{x ∈ E : Q(x,Rt) ∩Q(ζ,Rt) 6= ∅} ≤ C8.3R
n.

Proof. It t > T0 (see Proposition 2.8), then the property of E implies card(E) ≤ 1. Suppose
that 0 < t ≤ T0. If Q(x,Rt) ∩Q(ζ,Rt) 6= ∅, then Q(x,Rt) ⊂ Q(ζ, C8.1Rt) by Lemma 8.1.
Let E0 = {x ∈ E : Q(x,Rt)∩Q(ζ,Rt) 6= ∅}. Since Q(x, t)∩Q(y, t) = ∅ for all x 6= y in E,
we have

card(E0) inf
x∈E0

σ(Q(x, t)) ≤
∑
x∈E0

σ(Q(x, t)) = σ

( ⋃
x∈E0

Q(x, t)

)
≤ σ(Q(ζ, C8.1Rt)).

Applying Proposition 2.8 to the case ρ = 0, we have

card(E0)c2.8t
n ≤ C2.8(C8.1Rt)

n.

Cancelling out tn and simplifying, we see that the lemma holds for the constant C8.3 =
(C2.8/c2.8)Cn8.1. �

The first order Taylor expansion for r reads

r(z + u) = r(z) + 2Re〈u, (∂̄r)(z)〉+

∫ 1

0

2Re〈u, (∂̄r)(z + xu)− (∂̄r)(z)〉dx.

Thus r(z + t(∂̄r)(z)) = r(z) + 2t|(∂̄r)(z)|2 + O(t2) when |t| is small. Recall that ∂̄r does
not vanish on ∂Ω. Hence when z is close to ∂Ω and t is positive and small, we have

r(z + t(∂̄r)(z)) ≥ r(z) + t|(∂̄r)(z)|2.

Thus for each z ∈ Ω near ∂Ω, there is a tz > 0, tz ≈ |r(z)|, such that r(z+ tz(∂̄r)(z)) = 0.
Let us restate this fact more precisely: There exist a J ∈ N and a 0 < Cp <∞ such that
for every z ∈ H2−J = {ζ ∈ Ω : −r(ζ) < 2−J}, there is a p(z) ∈ ∂Ω such that

(8.1) |z − p(z)| ≤ Cp|r(z)|.

In other words, there is a map p : H2−J → ∂Ω such that the above bound holds for every
z ∈ H2−J . Note that our choice above does not promise any kind of continuity for the map
p, but that does not matter for our purpose.

This p and the defining function r together allow us to decompose H2−J in a manner
that is analogous to the radial-spherical decomposition for the unit ball in [28]. More
specifically, p plays the role of “spherical coordinates”, while −r is the analogue of “radial
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coordinate”. Because we only need a large-scale, or “coarse”, decomposition, (8.1) is all
that we need to know about p.

Lemma 8.4. There is a constant 0 < C8.4 <∞ such that

|z′ − w′|2 + |〈z′ − w′, (∂̄r)(z′)〉|
≤ 3{|z − w|2 + |〈z − w, (∂̄r)(z)〉|}+ C8.4{|z − z′|+ |w − w′|}

for all z, w, z′, w′ ∈ Ω = Ω ∪ ∂Ω.

Proof. It is elementary that |z′ − w′|2 ≤ 3|z − w|2 + 3|z − z′|2 + 3|w − w′|2. Since Ω is
bounded, there is a C1 such that |ζ − ξ| ≤ C1 for all ζ, ξ ∈ Ω. Hence

(8.2) |z′ − w′|2 ≤ 3|z − w|2 + 3C1{|z − z′|+ |w − w′|}.

Similarly, since ∂̄r is bounded and satisfies a Lipschitz condition on Ω, we have

|〈z′ − w′,(∂̄r)(z′)〉| ≤ (|z − z′|+ |w − w′|)|(∂̄r)(z′)|+ |〈z − w, (∂̄r)(z′)〉|
≤ C2(|z − z′|+ |w − w′|) + |〈z − w, (∂̄r)(z)〉|+ |z − w||(∂̄r)(z′)− (∂̄r)(z)|
≤ C2(|z − z′|+ |w − w′|) + |〈z − w, (∂̄r)(z)〉|+ C3|z − z′|.(8.3)

Obviously, the lemma follows from (8.2) and (8.3). �

We begin the decomposition with natural numbers m > J and j ≥ 1. Define

(8.4) dm,j = m2−jm, am,j = C8.1m2−jm and bm,j = C2
8.1m2−jm,

where C8.1 is the constant in Lemma 8.1. That is, am,j = C8.1dm,j and bm,j = C2
8.1dm,j .

Let Em,j be a subset of ∂Ω that is maximal with respect to the property

(8.5) Q(u, dm,j) ∩Q(v, dm,j) = ∅ for all u 6= v ∈ Em,j .

By the maximality of Em,j and Lemma 8.1, we have

(8.6)
⋃

u∈Em,j

Q(u, am,j) = ∂Ω.

Fix a natural number N0 such that N0 ≥ C8.3(C2
8.1)n, where C8.3 is the constant in Lemma

8.3. Since bm,j = C2
8.1dm,j , it follows from (8.5) and Lemma 8.3 that

(8.7) card{v ∈ Em,j : Q(v, bm,j) ∩Q(u, bm,j) 6= ∅} ≤ N0

for every u ∈ Em,j . Now, given any m > J , j ≥ 1 and u ∈ Em,j , we define the sets

Am,j,u = {z ∈ Ω : p(z) ∈ Q(u, am,j) and 2−(j+1)m > −r(z) ≥ 2−(j+2)m} and

Bm,j,u = {z ∈ Ω : p(z) ∈ Q(u, bm,j) and 2−jm > −r(z) > 2−(j+3)m}.
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It follows from (8.6) that

(8.8)

∞⋃
j=1

⋃
u∈Em,j

Am,j,u = H2−2m = {z ∈ Ω : −r(z) < 2−2m}.

Note that even though we have (8.8), we do not know that every Am,j,u is non-empty from
its definition. Nevertheless, we have

Lemma 8.5. There is a constant J < M8.5 < ∞ such that if m ≥ M8.5, then Am,j,u 6= ∅
for all j ≥ 1 and u ∈ Em,j .

Proof By the Taylor expansion for r, there are constants J < M1 < ∞ and 0 < C1 < ∞
such that if m ≥ M1, then for every pair of j ≥ 1 and u ∈ Em,j there is a u′ such that
−r(u′) = 2−(j+(3/2))m and |u− u′| ≤ C1(−r(u′)). By Lemma 8.4, we have

|u− u′|2 + |〈u− u′, (∂̄r)(u)〉| ≤ C8.4|u− u′| ≤ C8.4C1(−r(u′)) = C8.4C12−(j+(3/2))m.

Applying Lemma 8.4 again and recalling (8.1), we have

|u− p(u′)|2+|〈u− p(u′), (∂̄r)(u)〉| ≤ 3{|u− u′|2 + |〈u− u′, (∂̄r)(u)〉|}+ C8.4|u′ − p(u′)|
≤ 3C8.4C12−(j+(3/2))m + C8.4Cp2

−(j+(3/2))m.

Let M8.5 ≥M1 be such that M8.5 ≥ 3C8.4C1 + C8.4Cp. If m ≥M8.5, then u′ ∈ Am,j,u. �

Lemma 8.6. There is a constant M8.5 + 100 ≤M8.6 <∞ such that for m ≥M8.6, j ≥ 1,
and u ∈ Em,j , if z ∈ Am,j,u and w ∈ Ω\Bm,j,u, then d(z, w) ≥ (1/13)m.

Proof. Set M1 = max{M8.5 + 100, 10C8.4}, where C8.4 and M8.5 are the constants in
Lemmas 8.4 and 8.5 respectively. Consider any m ≥ M1, j ≥ 1 and u ∈ Em,j . For a pair
of z ∈ Am,j,u and w ∈ Ω\Bm,j,u, there are three possibilities, depending on the value of
r(w).

(1) Suppose that −r(w) ≥ 2−jm. Then r(z)/r(w) ≤ 2−(j+1)m/2−jm = 2−m. Com-
bining this with Lemma 2.1, we have c2.12−4d(w,z) ≤ r(z)/r(w) ≤ 2−m. Hence

d(z, w) ≥ (1/4)m+ (1/4){log c2.1/ log 2}.

Let M2 ≥M1 be such that (1/2)M2 ≥ | log c2.1/ log 2|. Thus if m ≥M2, then for all j ≥ 1,
u ∈ Em,j , z ∈ Am,j,u and w ∈ Ω\Bm,j,u, we have

(8.9) d(z, w) ≥ (1/8)m

under the condition −r(w) ≥ 2−jm.

(2) Suppose that −r(w) ≤ 2−(j+3)m. Then r(w)/r(z) ≤ 2−(j+3)m/2−(j+2)m = 2−m.
From Lemma 2.1 we now deduce c2.12−4d(z,w) ≤ r(w)/r(z) ≤ 2−m. Thus (8.9) again holds
under the condition −r(w) ≤ 2−(j+3)m when m ≥M2.
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(3) Suppose that 2−(j+3)m < −r(w) < 2−jm. Then by the definition of Bm,j,u we have
p(w) /∈ Q(u, bm,j). In contrast, since z ∈ Am,j,u, we have p(z) ∈ Q(u, am,j). Since bm,j =
C8.1am,j , by Corollary 8.2 we have p(w) /∈ Q(p(z), am,j). Recall that am,j = C8.1m2−jm

and that C8.1 ≥ 1. Thus it follows from Lemma 8.4 and (8.1) that

m2−mj ≤ am,j ≤ |p(z)− p(w)|2 + |〈p(z)− p(w), (∂̄r)(p(z))〉|
≤ 3{|z − w|2 + |〈z − w, (∂̄r)(z)〉|}+ C8.4Cp{|r(z)|+ |r(w)|}
≤ 3{|z − w|2 + |〈z − w, (∂̄r)(z)〉|}+ C8.4Cp{2−(j+1)m + 2−jm}.

Now we pick an M3 ≥ M2 such that M3 ≥ 4C8.4Cp, i.e., (1/2)M3 ≥ 2C8.4Cp. When
m ≥M3, elementary manipulations turn the above into the inequality

(1/6)m2−mj ≤ |z − w|2 + |〈z − w, (∂̄r)(z)〉|.

Combining this with Lemma 2.2, we obtain

(1/6)m2−mj ≤ C2.2{d(z, w) + d2(z, w)}212d(z,w)(−r(z)).

Since −r(z) ≤ 2−(j+1)m, this implies

(1/6)m2m ≤ C2.2{d(z, w) + d2(z, w)}212d(z,w).

From this inequality it is elementary to deduce that there is an M8.6 ≥ M3 such that if
m ≥M8.6, then d(z, w) ≥ (1/13)m. Combining this with (8.9), the proof is complete. �

By Lemma 8.5, for every triple of m ≥M8.5, j ≥ 1 and u ∈ Em,j , we can pick a

(8.10) zm,j,u ∈ Am,j,u.

This pick will be fixed for the rest of the paper.

Lemma 8.7. There is a constant M8.6 < M8.7 < ∞ such that if m ≥ M8.7, then there is
an 0 < Rm <∞ which has the property that

(8.11) Bm,j,u ⊂ D(zm,j,u, Rm)

for all j ≥ 1 and u ∈ Em,j .

Proof. Suppose that m ≥ M8.5. Given any j ≥ 1 and u ∈ Em,j , we have 2−(j+2)m ≤
−r(zm,j,u) < 2−(j+1)m by (8.10). Now let w ∈ Bm,j,u. Then 2−(j+3)m < −r(w) < 2−jm,
which means −2−2mr(zm,j,u) ≤ −r(w) ≤ −22mr(zm,j,u). In other words, we have

(8.12) 2k−1(−r(zm,j,u)) ≤ −r(w) ≤ 2k(−r(zm,j,u)) for some k ∈ Z with |k| ≤ 2m.

We have p(w) ∈ Q(u, bm,j). Since p(zm,j,u) ∈ Q(u, am,j) ⊂ Q(u, bm,j), Lemma 8.1 gives us
Q(u, bm,j) ⊂ Q(p(zm,j,u), C8.1bm,j). Hence p(w) ∈ Q(p(zm,j,u), C8.1bm,j). That is,

|p(zm,j,u)− p(w)|2 + |〈p(zm,j,u)− p(w), (∂̄r)(p(zm,j,u))〉| < C8.1bm,j .
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Applying Lemma 8.4 and (8.1), we obtain

|zm,j,u − w|2+|〈zm,j,u − w, (∂̄r)(zm,j,u)〉| < 3C8.1bm,j + C8.4Cp(|r(zm,j,u)|+ |r(w)|)
≤ 3C3

8.1m2−jm + 2C8.4Cp2
−jm < (3C3

8.1m+ 2C8.4Cp)2
2m(−r(zm,j,u)).

Let M8.7 > M8.6 be such that (3C3
8.1M8.7 + 2C8.4Cp)2

−M8.7 ≤ 1. When m ≥ M8.7, the
above inequality gives us

|zm,j,u − w|2 + |〈zm,j,u − w, (∂̄r)(zm,j,u)〉| < 23m(−r(zm,j,u))

≤ 2k+3m+|k|(−r(zm,j,u)).(8.13)

Combining (8.12) and (8.13) with Lemma 3.7, we obtain d(zm,j,u, w) < C3.7(1+ |k|+3m+
|k|) ≤ C3.7(1 + 7m). Thus when m ≥M8.7, (8.11) holds for Rm = C3.7(1 + 7m). �

In the above we picked constants such that M8.7 > M8.6 ≥M8.5 + 100 and M8.5 > J .
Thus if m ≥M8.7, then m/13 > 7. Now, for every m ≥M8.7, we define the function

(8.14) f̃m(x) =

 1− {(m/13)− 4}−1x for 0 ≤ x ≤ (m/13)− 4

0 for (m/13)− 4 < x <∞
.

Obviously, f̃m satisfies the Lipschitz condition |f̃m(x) − f̃m(y)| ≤ {(m/13) − 4}−1|x − y|,
x, y ∈ [0,∞). For every triple of m ≥M8.7, j ∈ N and u ∈ Em,j , we define

fm,j,u(z) = f̃m(d(z,Am,j,u)) for z ∈ Ω.

Lemma 8.8. For every triple of m ≥ M8.7, j ∈ N and u ∈ Em,j , the function fm,j,u
defined above has the following five properties:
(a) The inequality 0 ≤ fm,j,u ≤ 1 holds on B.
(b) fm,j,u = 1 on the set Am,j,u.
(c) |fm,j,u(z)− fm,j,u(w)| ≤ {(m/13)− 4}−1d(z, w) for all z, w ∈ Ω.
(d) If fm,j,u(z) 6= 0 and w ∈ Ω\Bm,j,u, then d(z, w) ≥ 4.
(e) We have diff(fm,j,u) ≤ {(m/13)− 4}−1.

Proof. (a) and (b) follow directly from the definitions of f̃m and fm,j,u. Then note that

|fm,j,u(z)− fm,j,u(w)| = |f̃m(d(z,Am,j,u))− f̃m(d(w,Am,j,u))|

≤ 1

(m/13)− 4
|d(z,Am,j,u)− d(w,Am,j,u)| ≤ d(z, w)

(m/13)− 4
,

which proves (c). For (d), observe that if fm,j,u(z) 6= 0, then d(z,Am,j,u) < (m/13) − 4.
This means that there is a z′ ∈ Am,j,u such that d(z, z′) ≤ (m/13) − 4. If w ∈ Ω\Bm,j,u,
then Lemma 8.6 tells us that d(z′, w) ≥ m/13. By the triangle inequality,

d(z, w) ≥ d(z′, w)− d(z, z′) ≥ (m/13)− {(m/13)− 4} = 4.
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Hence (d) holds. Finally, note that (e) is an immediate consequence of (c). �

By (8.7) and a standard maximality argument, each Em,j admits a partition

(8.15) Em,j = E
(1)
m,j ∪ · · · ∪ E

(N0)
m,j

such that for every ν ∈ {1, . . . , N0}, we have Q(u, bm,j) ∩ Q(v, bm,j) = ∅ for all u 6= v in

E
(ν)
m,j . Therefore for each ν ∈ {1, . . . , N0}, the conditions u, v ∈ E

(ν)
m,j and u 6= v imply

Bm,j,u ∩Bm,j,v = ∅.

Definition 8.9. Let m ≥ M8.7 be given. (a) For each pair of κ ∈ {1, 2, 3} and ν ∈
{1, . . . , N0}, where N0 is the integer that appears in (8.7) and (8.15), let I

(ν,κ)
m denote the

collection of all triples m, 3j + κ, u satisfying the conditions j ∈ Z+ and u ∈ E(ν)
m,3j+κ.

(b) For κ ∈ {1, 2, 3}, ν ∈ {1, . . . , N0} and q ∈ N, let I
(ν,κ)
m,q denote the collection of all

triples m, 3j + κ, u satisfying the conditions 0 ≤ j ≤ q and u ∈ E(ν)
m,3j+κ.

(c) Denote Im = ∪3
κ=1 ∪

N0
ν=1 I

(ν,κ)
m .

The elements in Im, equivalently the subscripts in Am,j,u, Bm,j,u and fm,j,u, are
obviously quite cumbersome to write as triples. For this we have the following remedy:

Notation 8.10. (1) We will use the symbol ω to represent the triple m, j, u.
(2) For any subset I of Im, denote fI =

∑
ω∈I fω and FI =

∑
ω∈I f

2
ω.

Lemma 8.11. Let m ≥ M8.7, κ ∈ {1, 2, 3} and ν ∈ {1, . . . , N0}. Then for any ω 6= ω′ in

I
(ν,κ)
m , we have Bω ∩Bω′ = ∅.

Proof. If ω = (m, 3j + κ, u) and ω′ = (m, 3j + κ, v) for a pair of u 6= v in E
(ν)
m,3j+κ,

then by the property of the partition (8.15) we already know that Bω ∩ Bω′ = ∅. The

other possibility is that ω = (m, 3j + κ, u) and ω′ = (m, 3j′ + κ, v) with u ∈ E(ν)
m,3j+κ and

v ∈ E
(ν)
m,3j′+κ, where j 6= j′. If j 6= j′, then |(3j + κ) − (3j′ + κ)| ≥ 3, which ensures

Bω ∩Bω′ = ∅ by the values of −r on Bω and Bω′ . �

Lemma 8.12. Let m ≥ M8.7, κ ∈ {1, 2, 3} and ν ∈ {1, . . . , N0}. Then for every subset I

of I
(ν,κ)
m , we have fI ∈ Φ(2−m; ((m/13)− 4)−1).

Proof. Let I ⊂ I
(ν,κ)
m . For each ω ∈ I, fω is continuous on Ω and satisfies the condition

0 ≤ fω ≤ 1. Lemma 8.11 tells us that for ω 6= ω′ in I, we have Bω ∩Bω′ = ∅. By Lemma
8.8(d), if z, w ∈ Ω are such that fω(z) 6= 0 and fω′(w) 6= 0, then d(z, w) ≥ 4. It follows
that fI is continuous on B and that 0 ≤ fI ≤ 1. Furthermore, we can invoke Lemma 7.11
to obtain diff(fI) ≤ supω∈I diff(fω) ≤ ((m/13) − 4)−1, where the second ≤ follows from
Lemma 8.8(e).

Since I ⊂ I
(ν,κ)
m , if ω ∈ I, then Bω ⊂ H2−κm = {ζ ∈ Ω : −r(ζ) < 2−κm}. Since

Lemma 8.8(d) says that fω = 0 on Ω\Bω, we conclude that fI = 0 on {ζ ∈ Ω : −r(ζ) ≥
2−κm}. Recalling Definition 7.9, this completes the verification of the membership fI ∈
Φ(2−m; ((m/13)− 4)−1). �
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Lemma 8.13. Let m ≥M8.7, κ ∈ {1, 2, 3} and ν ∈ {1, . . . , N0}, and let I be any subset of

I
(ν,κ)
m . Then for every bounded operator A on L2

a(Ω), we have∑
ω∈I

TfωATfω ∈ LOC(A).

Proof. Given any I ⊂ I
(ν,κ)
m , consider the set Γ = {zω : ω ∈ I}, where zω was picked in

(8.10). By Lemmas 8.11 and 8.6, Γ is an (m/26)-separated set in Ω. Define fzω = fω
for each ω ∈ I. We need to verify that the functions {fzω : zω ∈ Γ} satisfy conditions
(1)-(3) in Definition 6.5. First of all, (2) follows from Lemma 8.8(a). Lemma 8.7 tells us
that for each ω ∈ I, we have Bω ⊂ D(zω, Rm). By Lemma 8.8(d), we have fzω = 0 on
Ω\D(zω, Rm), verifying (1). Finally, condition (3) follows from Lemma 8.8(c). �

9. The essential commutant of {Tf : f ∈ VObdd}

Recall that we write K for the collection of compact operators on the Bergman space
L2
a(Ω). Furthermore, Proposition 6.2 tells us that K ⊂ T . Also recall that for each

f ∈ L∞(Ω), we have the Hankel operator Hf defined by the formula

Hfh = (1− P )(fh), h ∈ L2
a(Ω).

Proof of Theorem 1.1(i). Obviously, Proposition 7.3 implies that EssCom{Tf : f ∈ VObdd}
⊃ T . Thus we only need to prove that EssCom{Tf : f ∈ VObdd} ⊂ T .

Let X ∈ EssCom{Tf : f ∈ VObdd} be given. To show that X ∈ T , pick any ε > 0. It
suffices to produce a decomposition X = Y + Z such that Y ∈ T and

(9.1) ‖Z‖ ≤ 3N0{16(2 + ‖X‖) + ‖X‖+ 2}ε,

where N0 is the constant that appears in (8.7) and (8.15).

First, we apply Proposition 7.10, which provides a δ > 0 and a t∗ > 0 such that

(9.2) ‖[X,Tf ]‖ ≤ 2ε for every f ∈ Φ(t∗; δ).

Then we apply Lemma 7.2, which tells us that there is a δ′ > 0 such that

(9.3) ‖Hg‖ ≤ ε

for every bounded continuous function g on Ω with diff(g) ≤ δ′. With δ, t∗ and δ′ so fixed,
we pick an integer m ≥M8.7 satisfying the conditions

(9.4) ((m/13)− 4)−1 ≤ min{ε, δ, δ′} and 2−m ≤ t∗.

With m so fixed, let us consider the function FIm given in Notation 8.10(2). Since

(9.5) FIm =
3∑

κ=1

N0∑
ν=1

F
I

(ν,κ)
m
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and since by Lemma 8.12 each F
I

(ν,κ)
m

satisfies the inequality 0 ≤ F
I

(ν,κ)
m

≤ 1 on Ω, we

have 0 ≤ FIm ≤ 3N0 on Ω. By Lemma 8.8(b) and (8.8), we have FIm(z) ≥ 1 whenever
−r(z) < 2−2m. Thus we have shown that the function

(9.6) h = χΩ2−2m + FIm

satisfies the inequality 1 ≤ h ≤ 3N0 + 1 on Ω, where Ω2−2m = {ζ ∈ Ω : −r(ζ) ≥ 2−2m}.
This guarantees that the positive Toeplitz operator Th is both bounded and invertible on
L2
a(Ω). Moreover, ‖T−1

h ‖ ≤ 1. Since Th ∈ T and T is a C∗-algebra, we have T−1
h ∈ T .

By (9.6) and (9.5), we have the decomposition

(9.7) X = XThT
−1
h = X0 +

3∑
κ=1

N0∑
ν=1

Xν,κ,

where

X0 = XTχΩ
2−2m

T−1
h and Xν,κ = XTF

I
(ν,κ)
m

T−1
h

for 1 ≤ κ ≤ 3 and 1 ≤ ν ≤ N0. Obviously, the Toeplitz operator TχΩ
2−2m

is compact.

Hence, by Proposition 6.2, X0 ∈ K ⊂ T .

We further decompose each Xν,κ. To do that, define the operators

(9.8) Yν,κ =
∑

ω∈I(ν,κ)
m

TfωXTfωT
−1
h and Aν,κ =

∑
ω,ω′∈I(ν,κ)

m

ω 6=ω′

TfωXTfω′T
−1
h .

Obviously, Yν,κ +Aν,κ = Tf
I
(ν,κ)
m

XTf
I
(ν,κ)
m

T−1
h (cf. Notation 8.10). We further define

(9.9) Bν,κ = [X,Tf
I
(ν,κ)
m

]Tf
I
(ν,κ)
m

T−1
h +XH∗f

I
(ν,κ)
m

Hf
I
(ν,κ)
m

T−1
h .

It follows from Lemmas 8.8(d) and 8.11 that F
I

(ν,κ)
m

= f2

I
(ν,κ)
m

. For any real-valued f ∈
L∞(Ω), we have Tf2 = T 2

f +H∗fHf . Therefore

(9.10) Xν,κ = Yν,κ +Aν,κ +Bν,κ.

Since T−1
h ∈ T , it follows from Lemma 8.13 and Corollary 6.7 that Yν,κ ∈ T .

To estimate ‖Aν,κ‖, first observe that on L2(Ω), we have the strong convergence∑
ω,ω′∈I(ν,κ)

m,q

ω 6=ω′

MfωXPMfω′ →
∑

ω,ω′∈I(ν,κ)
m

ω 6=ω′

MfωXPMfω′ as q →∞,
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where I
(ν,κ)
m,q was given by Definition 8.9(b). Compressing this strong convergence to L2

a(Ω)
and using the bound ‖T−1

h ‖ ≤ 1, we see that there is a q ∈ N such that

(9.11) ‖Aν,κ‖ ≤ 2‖Zν,κ‖, where Zν,κ =
∑

ω,ω′∈I(ν,κ)
m,q

ω 6=ω′

TfωXTfω′ .

Since fωfω′ = 0 for ω 6= ω′ in I
(ν,κ)
m,q , by Lemma 6.8, there are complex numbers {γω : ω ∈

I
(ν,κ)
m,q } of modulus 1 and a subset I of I

(ν,κ)
m,q such that if we define

F =
∑
ω∈I

fω, G =
∑

ω∈I(ν,κ)
m,q \I

fω, F ′ =
∑
ω∈I

γωfω and G′ =
∑

ω∈I(ν,κ)
m,q \I

γωfω,

then

(9.12) ‖Zν,κ‖ ≤ 4(‖TF ′XTG‖+ ‖TG′XTF ‖).

Note that TG′XTF = TG′ [X,TF ] + TG′TFX. We have F ∈ Φ(2−m; ((m/13) − 4)−1) by
Lemma 8.12. Hence it follows from (9.4) and (9.2) that

(9.13) ‖TG′ [X,TF ]‖ ≤ ‖[X,TF ]‖ ≤ 2ε.

Since Bω ∩ Bω′ = ∅ for all ω 6= ω′ in I
(ν,κ)
m , we have G′F = 0 on Ω, and consequently

TG′TF = −H∗
G′
HF . Since diff(F ) ≤ ((m/13)− 4)−1, by (9.4) and (9.3), we have

‖TG′TFX‖ ≤ ‖HF ‖‖X‖ ≤ ‖X‖ε.

Combining this with (9.13), we see that ‖TG′XTF ‖ ≤ (2 + ‖X‖)ε. The same argument
also shows that ‖TF ′XTG‖ ≤ (2+‖X‖)ε. Substituting these in (9.12) and recalling (9.11),
we obtain

(9.14) ‖Aν,κ‖ ≤ 16(2 + ‖X‖)ε.

Next we estimate ‖Bν,κ‖.

Lemma 8.12 tells us that diff(f
I

(ν,κ)
m

) ≤ ((m/13) − 4)−1. Combining this with (9.4)

and (9.3), and with the fact ‖T−1
h ‖ ≤ 1, we obtain

‖XH∗f
I
(ν,κ)
m

Hf
I
(ν,κ)
m

T−1
h ‖ ≤ ‖X‖‖Hf

I
(ν,κ)
m

‖ ≤ ‖X‖ε.

Again, Lemma 8.12 says that f
I

(ν,κ)
m
∈ Φ(2−m; ((m/13)−4)−1). Hence it follows from (9.4)

and (9.2) that
‖[X,Tf

I
(ν,κ)
m

]Tf
I
(ν,κ)
m

T−1
h ‖ ≤ ‖[X,Tf

I
(ν,κ)
m

]‖ ≤ 2ε.
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Recalling (9.9), from the above two inequalities we obtain

(9.15) ‖Bν,κ‖ ≤ (‖X‖+ 2)ε.

To summarize, we have shown that for each pair of 1 ≤ κ ≤ 3 and 1 ≤ ν ≤ N0, we have
the decomposition (9.10) where Yν,κ ∈ T and where Aν,κ, Bν,κ satisfy estimates (9.14) and
(9.15) respectively. Combining (9.10) with (9.7), we have X = Y + Z, where

(9.16) Y = X0 +
3∑

κ=1

N0∑
ν=1

Yν,κ and Z =
3∑

κ=1

N0∑
ν=1

(Aν,κ +Bν,κ).

Now, (9.1) follows from (9.14) and (9.15), and we have shown that Y ∈ T . This completes
the proof of part (i) in Theorem 1.1. �

Proposition 9.1. For X ∈ T , if LOC(X) ⊂ K, then X is compact.

Proof. Let X ∈ T and suppose that LOC(X) ⊂ K. As we showed above, for every ε > 0,
X admits a decomposition X = Y +Z, where Y and Z are given by (9.16), with X0 known
to be compact. By (9.8) and Lemma 8.13, the condition LOC(X) ⊂ K implies Yν,κ ∈ K.
Thus Y is compact. Since Z satisfies (9.1), this shows that X is compact. �

Proposition 9.2. Let X ∈ T . Suppose that X has the property that for every 0 < R <∞,

(9.17) lim
z→∂Ω

sup{|〈Xkw, kz〉| : d(z, w) < R} = 0.

Then X is a compact operator.

Proof. Recall from Proposition 6.6 that LOC(X) ⊂ D(X). Combining this with Propo-
sition 9.1, it suffices to prove the inclusion D0(X) ⊂ K under the assumption that (9.17)
holds for every 0 < R <∞. By Definition 6.3(c), we need to show that the operator

T =
∑
z∈Γ

cz〈Xkψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z)

is compact, where Γ is a separated set in Ω, {cz : z ∈ Γ} is a bounded set of coefficients,
and ϕ,ψ : Γ→ Ω are maps for which there is a 0 ≤ C <∞ such that d(z, ϕ(z)) ≤ C and
d(z, ψ(z)) ≤ C for every z ∈ Γ.

By the assumption on ϕ, ψ and Lemma 2.11, there is a partition Γ = Γ1∪· · ·∪Γk such
that for each 1 ≤ j ≤ k, the conditions z, w ∈ Γj and z 6= w imply d(ϕ(z), ϕ(w)) > 2 and
d(ψ(z), ψ(w)) > 2. Hence for each 1 ≤ j ≤ k, the sets {ϕ(z) : z ∈ Γj} and {ψ(z) : z ∈ Γj}
are 1-separated. This leads to the decomposition T = T1 + · · ·+ Tk, where

Tj =
∑
z∈Γj

cz〈Xkψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z)
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for every 1 ≤ j ≤ k. Thus it suffices to show that Tj ∈ K for every 1 ≤ j ≤ k. Fix such a
j for the moment. For each δ > 0, denote Γj,δ = {z ∈ Γj : −r(z) ≤ δ}. Using an obvious
finite-rank approximation and applying Lemma 5.1, for each δ > 0, we have

‖Tj‖Q ≤
∥∥∥∥ ∑
z∈Γj,δ

cz〈Xkψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z)

∥∥∥∥ ≤ C2
5.1c sup

z∈Γj,δ

|〈Xkψ(z), kϕ(z)〉|,

where c = supz∈Γ |cz|. Since d(z, ϕ(z)) ≤ C and d(z, ψ(z)) ≤ C for every z ∈ Γ, it follows
from (9.17) that the right-hand side tends to 0 as δ ↓ 0. Thus ‖Tj‖Q = 0, i.e., Tj is a
compact operator. This completes the proof. �

As an immediate consequence of Proposition 9.2, we have

Corollary 9.3. Let X ∈ T . Then X is compact if and only if

lim
z→∂Ω

‖Xkz‖ = 0.

10. The essential commutant of the Toeplitz algebra

We now turn to the proof of part (ii) in Theorem 1.1.

Proposition 10.1. If f ∈ VObdd, then

lim
z→∂Ω

‖(f − f(z))kz‖ = 0.

Proof. Let f ∈ VObdd and consider a large R > 0. We have

‖(f − f(z))kz‖2 =

∫
D(z,R)

|f(w)− f(z)|2|kz(w)|2dv(w)

+

∫
Ω\D(z,R)

|f(w)− f(z)|2|kz(w)|2dv(w)

≤ sup
d(z,w)<R

|f(w)− f(z)|2 + C1‖f‖2∞
∫

Ω\D(z,R)

|r(z)|n+1

F (z, w)2n+2
dv(w).

Applying Lemma 3.8, there are constants 0 < C2 <∞ and s > 0 such that

(10.1) ‖(f − f(z))kz‖2 ≤ sup
d(z,w)<R

|f(w)− f(z)|2 + C2‖f‖2∞2−sR.

Now we use the fact that f has vanishing oscillation: Using the cutoff functions provided
by Lemma 7.6, for any δ > 0, we can write f = f1 + f2, where f1 has a compact support
in Ω and diff(f2) ≤ δ. Combining this fact with Lemma 7.1, we see that

lim
z→∂Ω

sup
d(z,w)<R

|f(w)− f(z)| = 0
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once an R > 0 is given. This and (10.1) together imply that ‖(f−f(z))kz‖ → 0 as z → ∂Ω.
This completes the proof. �

Proposition 10.2. Suppose that {zj} and {wj} are sequences in Ω satisfying the following
two conditions:

(1) limj→∞ r(zj) = 0.
(2) There is a constant 0 < C <∞ such that d(zj , wj) ≤ C for every j ∈ N.

Then for every A ∈ EssCom(T ) we have

(10.2) lim
j→∞

‖[A, kzj ⊗ kwj ]‖ = 0.

Proof. For the given {zj}, {wj} and A, suppose that (10.2) did not hold. Then, replacing
{zj}, {wj} by subsequences if necessary, we may assume that there is a c > 0 such that

(10.3) lim
j→∞

‖[A, kzj ⊗ kwj ]‖ = c.

We will show that this leads to a contradiction.

By condition (1) and Lemma 2.1, there is a sequence j1 < j2 < · · · < jν < · · · of
natural numbers such that −r(zjν+1) < −r(zjν ) for every ν ∈ N and such that the set
{zjν : ν ∈ N} is 1-separated. For each ν ∈ N, we now define the operator

Bν = [A, kzjν ⊗ kwjν ],

whose rank is at most 2. By conditions (1), (2) and Lemma 2.1, we also have that r(wj)→ 0
as j →∞. Thus both sequences of vectors {kzj} and {kwj} converge to 0 weakly in L2

a(Ω).
Consequently we have the convergence

lim
ν→∞

Bν = 0 and lim
ν→∞

B∗ν = 0

in the strong operator topology. Thus by (10.3) and Lemma 7.8, there is a subsequence
ν(1) < ν(2) < · · · < ν(m) < · · · of natural numbers such that the sum

B =

∞∑
m=1

Bν(m)

converges strongly with ‖B‖Q = c > 0. Thus B is not compact. Now define the operator

Y =
∞∑
m=1

kzjν(m)
⊗ kwjν(m)

.

Since the set {zjν : ν ∈ N} is 1-separated and since condition (2) holds, by Proposition 6.4
we have Y ∈ T . Since A ∈ EssCom(T ), the commutator [A, Y ] is compact. On the other
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hand, we clearly have [A, Y ] = B, which is not compact because ‖B‖Q > 0. This gives us
the contradiction promised earlier. �

Lemma 10.3. [27,Lemma 5.1] Let T be a bounded, self-adjoint operator on a Hilbert space
H. Then for each unit vector x ∈ H we have ‖[T, x⊗ x]‖ = ‖(T − 〈Tx, x〉)x‖.

Lemma 10.4. [27,Lemma 5.2] Let T be a bounded, self-adjoint operator on a Hilbert space
H. Then for every pair of unit vectors x, y ∈ H we have

|〈Tx, x〉 − 〈Ty, y〉| ≤ ‖[T, x⊗ y]‖+ ‖[T, x⊗ x]‖+ ‖[T, y ⊗ y]‖.

For a bounded operator A on L2
a(Ω), we define the function

Ã(z) = 〈Akz, kz〉, z ∈ Ω.

Recall that Ã is commonly called the Berezin transform of the operator A.

Proposition 10.5. If A ∈ EssCom(T ), then its Berezin transform Ã is in VObdd.

Proof. It suffices to consider a self-adjoint A ∈ EssCom(T ). Obviously, Ã is bounded, and
Proposition 4.6 tells us that it is continuous on Ω. If it were true that Ã /∈ VO, then there
would be a c > 0 and sequences {zj}, {wj} in Ω with

(10.4) lim
j→∞

r(zj) = 0

such that for every j ∈ N, we have d(zj , wj) ≤ 1 and

(10.5) |〈Akzj , kzj 〉 − 〈Akwj , kwj 〉| = |Ã(zj)− Ã(wj)| ≥ c.

But on the other hand, it follows from Lemma 10.4 that

(10.6) |〈Akzj , kzj 〉 − 〈Akwj , kwj 〉| ≤ ‖[A, kzj ⊗ kwj ]‖+ ‖[A, kzj ⊗ kzj ]‖+ ‖[A, kwj ⊗ kwj ]‖.

By (10.4) and the condition d(zj , wj) ≤ 1, j ∈ N, we can apply Proposition 10.2 to obtain

(10.7) lim
j→∞

‖[A, kzj ⊗ kwj ]‖ = 0 and lim
j→∞

‖[A, kzj ⊗ kzj ]‖ = 0.

By Lemma 2.1, conditions (10.4) and d(zj , wj) ≤ 1, j ∈ N, also imply limj→∞ r(wj) = 0.
Thus Proposition 10.2 also provides that

(10.8) lim
j→∞

‖[A, kwj ⊗ kwj ]‖ = 0.

Obviously, (10.6), (10.7) and (10.8) together contradict (10.5). �

Lemma 10.6. If A ∈ EssCom(T ), then

lim
z→∂Ω

‖(A− TÃ)kz‖ = 0.
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Proof. Again, it suffices to consider a self-adjoint A ∈ EssCom(T ). Then it follows from
Lemma 10.3 and Proposition 10.2 that

lim
z→∂Ω

‖(A− Ã(z))kz‖ = lim
z→∂Ω

‖[A, kz ⊗ kz]‖ = 0.

Therefore it suffices to show that

lim
z→∂Ω

‖(TÃ − Ã(z))kz‖ = 0.

Since ‖(TÃ − Ã(z))kz‖ ≤ ‖(Ã− Ã(z))kz‖, this follows from Propositions 10.5 and 10.1. �

Finally, we are ready to determine the essential commutant of T .

Proof of Theorem 1.1(ii). Again, it follows from Proposition 7.3 that EssCom(T ) ⊃ {Tf :
f ∈ VObdd}+K.

For the reverse inclusion, consider any A ∈ EssCom(T ). We need to show that A ∈
{Tf : f ∈ VObdd}+K. We know that Ã ∈ VObdd from Proposition 10.5. Hence it suffices
to show that A− TÃ is compact. For this we apply Lemma 10.6, which gives us

(10.9) lim
z→∂Ω

‖(A− TÃ)kz‖ = 0.

The membership A ∈ EssCom(T ) implies, of course, that A ∈ EssCom{Tf : f ∈ VObdd}.
Hence Theorem 1.1(i) tells us that A ∈ T . Consequently, A− TÃ ∈ T . By Corollary 9.3,
the membership A− TÃ ∈ T and (10.9) together imply that A− TÃ is compact. �

11. Berezin transform near the boundary

The purpose of this section is to show that condition (9.17) is implied by the vanishing
of Berezin transform near ∂Ω. This along with Proposition 9.2 will give us the proof of
Theorem 1.2. To begin, we need to fix some necessary constants:

Lemma 11.1. (1) There is a 0 < c0 < 1 such that z+P((∂̄r)(z); 2c0
√
−r(z),−2c0r(z)) ⊂

D(z, 1) for every z ∈ Ω satisfying the condition −r(z) < θ.
(2) There is a b0 > 0 such that D(z, 3b0) ⊂ z + P((∂̄r)(z); c0

√
−r(z),−c0r(z)) for every

z ∈ Ω satisfying the condition −r(z) < θ.
(3) There is an a0 > 0 such that z + P((∂̄r)(z); a0

√
−r(z),−a0r(z)) ⊂ D(z, b0) for every

z ∈ Ω satisfying the condition −r(z) < θ.

Proof. By Proposition 2.4, there is a 0 < c < 1 such that z+P((∂̄r)(z); c
√
−r(z),−cr(z)) ⊂

D(z, 1) for every z ∈ Ω satisfying the condition −r(z) < θ. Then c0 = c/2 will do for (1).

To prove (2), take any 0 < b < 1/2 such that C2.5b < c0. By Proposition 2.5, we have

D(z, b) ⊂ z + P((∂̄r)(z); c0
√
−r(z),−c0r(z))

whenever −r(z) < θ. Thus (2) holds for the constant b0 = b/3.
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Finally, note that (3) is a direct consequence of Proposition 2.4. �

Once the above constants are fixed, we can introduce the following “polyballs”:

Definition 11.2. (1) Let

P = {(u1, u2, . . . , uu) ∈ Cn : |u1| < a0 and (|u2|2 + · · ·+ |un|2)1/2 < a0},
Q = {(u1, u2 . . . , uu) ∈ Cn : |u1| ≤ c0 and (|u2|2 + · · ·+ |un|2)1/2 ≤ c0} and

R = {(u1, u2 . . . , uu) ∈ Cn : |u1| < 2c0 and (|u2|2 + · · ·+ |un|2)1/2 < 2c0}.

(2) For each z ∈ Ω satisfying the condition −r(z) < θ, let Sz be the linear transformation
on Cn given by the formula

Sz(u1, u2, . . . un) = (−r(z)u1,
√
−r(z)u2, . . . ,

√
−r(z)un), (u1, u2, . . . un) ∈ Cn.

(3) For each z ∈ Ω satisfying the condition −r(z) < θ, let Uz be a unitary transformation
on Cn such that Uz{(0, u2, . . . , un) : u2, . . . , un ∈ C} = {u ∈ Cn : 〈u, (∂̄r)(z)〉 = 0}.
(4) For each z ∈ Ω satisfying the condition −r(z) < θ, denote Vz = UzSz.

Proposition 11.3. Suppose that U is a connected open set in Cn that is symmetric with
respect to conjugation. That is, (w1, . . . , wn) ∈ U if and only if (w̄1, . . . , w̄n) ∈ U . Let F
be an analytic function on the domain U × U in Cn ×Cn. If F (z̄, z) = 0 for every z ∈ U ,
then F is identically zero on U × U .

Proof. For each j ∈ {1, . . . , n}, let ej denote the vector in Cn whose j-th component is 1
and whose other components are 0. We then define

(djF )(w, z) =
1

2

(
∂

∂x
+ i

∂

∂y

)
F (w + (x+ iy)ej , z + (x+ iy)ej)

∣∣∣∣
x=0=y

and

(∂jF )(w, z) =
1

2

(
∂

∂x
− i ∂

∂y

)
F (w + (x+ iy)ej , z)

∣∣∣∣
x=0=y

for j ∈ {1, . . . , n} and w, z ∈ U . It is straightforward to verify that for every multi-index
α ∈ Zn+, we have dαF = ∂αF . Since F (z̄, z) = 0 for every z ∈ U , an easy induction on |α|
yields (dαF )(z̄, z) = 0 for every z ∈ U and every α ∈ Zn+. Thus if we fix any z ∈ U , then
(∂αF )(z̄, z) = 0 for every α ∈ Zn+. By the standard power-series expansion, this means
that the analytic function fz(ζ) = F (ζ, z), ζ ∈ U , vanishes on a small open ball containing
z̄. Since U is connected, we conclude that fz = 0 on U . Since this is true for every z ∈ U ,
it follows that F is identically zero on U × U . �

Proposition 11.4. Let A be a bounded operator on the Bergman space L2
a(Ω). If

(11.1) lim
z→∂Ω

〈Akz, kz〉 = 0,

then for every given 0 < R <∞ we have

(11.2) lim
z→∂Ω

sup{|〈Akw, kz〉| : w ∈ D(z,R)} = 0.
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Proof. Given (11.1), suppose that (11.2) failed for some 0 < R < ∞. We will show that
this results in a contradiction. First of all, the failure of (11.2) for this particular R means
that there is an ε > 0 and sequences {zj}, {wj} in Ω such that

(11.3) lim
j→∞

r(zj) = 0

and at the same time, d(zj , wj) < R and

(11.4) |〈Akwj , kzj 〉| ≥ ε

for every j ≥ 1. Since d(zj , wj) < R, for every j ≥ 1 we have a C1 map gj : [0, 1] → Ω
such that gj(0) = zj , gj(1) = wj and

(11.5)

∫ 1

0

√
〈B(gj(t))g′j(t), g

′
j(t)〉dt ≤ R+ 1.

By (11.3), (11.5) and Lemma 2.1, discarding a finite number of j’s if necessary, we may
assume that −r(gj(t)) < θ for all j and t ∈ [0, 1]. Thus Lemma 11.1 can be applied
on all these paths. With the b0 provided by Lemma 11.1, we pick an m ∈ N such that
(R+ 1)/m < b0. Thus for every j ≥ 1, there is a partition

0 = xj(0) < xj(1) < · · · < xj(m) = 1

of the interval [0, 1] such that

(11.6)

∫ xj(i)

xj(i−1)

√
〈B(gj(t))g′j(t), g

′
j(t)〉dt ≤

R+ 1

m
< b0

for every 1 ≤ i ≤ m. Now, for every pair of j ≥ 1 and 0 ≤ i ≤ m, we define

z
(i)
j = gj(xj(i)).

In particular, we have z
(0)
j = zj and z

(m)
j = wj for all j.

Recall that we write Kz(ζ) = K(ζ, z), which is the (unnormalized) reproducing kernel
for L2

a(Ω). Let us denote
Φ(w, z) = 〈AKw,Kz〉,

w, z ∈ Ω. For every pair of j ≥ 1 and 0 ≤ i ≤ m, we define the function

(11.7) F
(i)
j (ζ, ξ) = |r(z(0)

j )|n+1Φ
(
z

(i)
j + V

z
(i)
j

ζ, z
(0)
j + V

z
(0)
j

ξ
)
,

ζ, ξ ∈ R. A review of Definitions 11.2 and 2.3 gives us the identity

(11.8) z
(i)
j + V

z
(i)
j

R = z
(i)
j + P((∂̄r)(z

(i)
j ); 2c0

√
−r(z(i)

j ),−2c0r(z
(i)
j )).
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Therefore Lemma 11.1 ensures that each F
(i)
j is well defined, and it is obviously an analytic

function of R × R. By (11.8), Lemma 11.1(1) and (11.5), if w = z
(i)
j + V

z
(i)
j

ζ for some

ζ ∈ R, then d(w, z
(0)
j ) ≤ R+ 2. Thus by (4.1) and Lemma 2.1, there is a C1 = C1(R) such

that

|F (i)
j (ζ, ξ)| ≤ C1‖A‖

for all ζ, ξ ∈ R, j ≥ 1 and 0 ≤ i ≤ m. Hence for each 0 ≤ i ≤ m, {F (i)
j : j ≥ 1} is a normal

family of analytic functions on R×R. Consequently there is a sequence

j1 < j2 < · · · < jν < · · ·

in N such that for every 0 ≤ i ≤ m, the sequence {F (i)
jν
}ν∈N is uniformly convergent on

each compact subset of R×R. For every 0 ≤ i ≤ m, define the function

(11.9) F (i) = lim
ν→∞

F
(i)
jν

on R×R. Next we show that every F (i) is identically zero on R×R.

We will accomplish this by an induction on i. First, let us show that F (0) is the zero
function. For j ≥ 1 and ζ ∈ R, we have

F
(0)
j (ζ, ζ) = |r(z(0)

j )|n+1Φ
(
z

(0)
j + V

z
(0)
j

ζ, z
(0)
j + V

z
(0)
j

ζ
)
.

As we explained above, (4.1) and Lemma 2.1 together guarantee that

|F (0)
j (ζ, ζ)| ≤ C1

∣∣∣∣〈Akz(0)
j

+V
z
(0)
j

ζ
, k
z

(0)
j

+V
z
(0)
j

ζ

〉∣∣∣∣.
By (11.3) and Lemmas 11.1(1) and 2.1, for each ζ ∈ R we have r

(
z

(0)
j + V

z
(0)
j

ζ
)
→ 0

as j → ∞. Thus, combining the above inequality with (11.1) and (11.9), we find that
F (0)(ζ, ζ) = 0 for every ζ ∈ R. By Proposition 11.3, F (0) is identically zero on R×R.

Now suppose that 0 ≤ i < m and that we have shown that F (i) is identically zero on
R×R. We need to show that F (i+1) is also identically zero on R×R. By (11.6), we have

d(z
(i)
j , z

(i+1)
j ) < b0. A review of Definition 11.2 and Lemma 11.1 gives us

(11.10) z
(i+1)
j + V

z
(i+1)
j

P ⊂ D(z
(i+1)
j , b0) ⊂ D(z

(i)
j , 3b0) ⊂ z(i)

j + V
z

(i)
j

Q.

Let ξ ∈ R be given. By (11.7) and (11.10), for any ζ ∈ P, there is an ηj(ζ) ∈ Q such that

(11.11) F
(i+1)
j (ζ, ξ) = F

(i)
j (ηj(ζ), ξ).
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Since Q is a compact set in R and since F (i) = 0, by (11.9) we have

lim
ν→∞

sup{|F (i)
jν

(η, ξ)| : η ∈ Q} = 0.

Combining this with (11.11) and (11.9), we find that F (i+1)(ζ, ξ) = 0 for every ζ ∈ P.
Since P is a non-empty open subset of R, this implies that F (i+1)(ζ, ξ) = 0 for every
ζ ∈ R. Since this is true for every ξ ∈ R, we conclude that F (i+1) is identically zero on
R×R. This completes the induction on i.

In particular, the above tells us that F (m) = 0 on R×R, and consequently

(11.12) lim
ν→∞

F
(m)
jν

(0, 0) = F (m)(0, 0) = 0.

Recalling (11.7), we have

F
(m)
jν

(0, 0) = |r(z(0)
jν

)|n+1Φ
(
z

(m)
j , z

(0)
j

)
= |r(zjν )|n+1〈AKwjν

,Kzjν
〉.

Since d(wjν , zjν ) < R, from (4.1) and Lemma 2.1 we obtain

|〈Akwjν , kzjν 〉| ≤ C2|F (m)
jν

(0, 0)|.

This and (11.12) together contradict (11.4). This completes the proof. �

Proof of Theorem 1.2. This follows immediately from Propositions 11.4 and 9.2. �
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