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Abstract. Let µ be a regular Borel measure on the open unit ball B in Cn. By a natural
formula, it gives rise to a Toeplitz operator Tµ on the Hardy space H2(S). We characterize
the membership of T sµ, 0 < s ≤ 1, in any norm ideal CΦ that satisfies condition (DQK).

The same techniques allow us to compute the Dixmier trace of Tµ when Tµ ∈ C+
1 .

1. Introduction

Toeplitz operators are usually associated with symbols that are functions. But in this
paper we only consider Toeplitz operators whose symbols are measures. Moreover, the
underlying space will be the Hardy space on the sphere.

Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. Write dσ for the standard
spherical measure on S with the normalization σ(S) = 1. Recall that the Hardy space
H2(S) is simply the norm closure of the analytic polynomials C[z1, . . . , zn] in L2(S, dσ).
Suppose that µ is a regular Borel measure on the open unit ball B = {z ∈ Cn : |z| < 1}.
On the Hardy space H2(S), we define the Toeplitz operator Tµ by the formula

(1.1) (Tµf)(z) =

∫
f(w)

(1− 〈z, w〉)n
dµ(w), f ∈ H2(S).

It is well known that the Toeplitz operator Tµ is bounded on H2(S) if and only if µ is a
Carleson measure for the Hardy space. In the case where n = 1, Luecking characterized
the membership of Tµ in the Schatten class Cp for all 0 < p < ∞ [12]. Recently in [13],
Pau and Perälä generalized this Schatten-class characterization to cover all n ≥ 1.

There are, however, many more important operator ideals other than the Schatten
classes. For example, if one is interested in the Dixmier trace [1,5,6,16], one considers the
ideal C+

1 , which is strictly larger than the trace class C1 but contained in every C1+ε, ε > 0.
In this paper we will take up the task of determining the membership of Tµ in some of
these other operator ideals. But, as the reader will see, the techniques required to handle
these other ideals are completely different from those employed in [12,13].

First, let us discuss general operator ideals, and the standard reference for these ideals
is [11]. Let ĉ denote the linear space of sequences {aj}j∈N, where aj ∈ R and for every
sequence the set {j ∈ N : aj 6= 0} is finite. A symmetric gauge function is a map

Φ : ĉ→ [0,∞)

Keywords: Hardy space, Toeplitz operator associated with measure, norm ideal, Dixmier trace.
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that has the following properties:
(a) Φ is a norm on ĉ.
(b) Φ({1, 0, . . . , 0, . . . }) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

See [11,page 71]. Each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
j≥1

Φ({s1(A), . . . , sj(A), 0, . . . , 0, . . . })

for bounded operators, where s1(A), . . . , sj(A), . . . are the singular numbers of A. On any
separable Hilbert space H, the set of operators

(1.2) CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a norm ideal [11,page 68]. That is, CΦ has the following properties:
• For any B, C ∈ B(H) and A ∈ CΦ, BAC ∈ CΦ and ‖BAC‖Φ ≤ ‖B‖‖A‖Φ‖C‖.
• If A ∈ CΦ, then A∗ ∈ CΦ and ‖A∗‖Φ = ‖A‖Φ.
• For any A ∈ CΦ, ‖A‖ ≤ ‖A‖Φ, and the equality holds when rank(A) = 1.
• CΦ is complete with respect to ‖.‖Φ.

Now an obvious question is, how do we characterize the membership

(1.3) Tµ ∈ CΦ

for the Toeplitz operator defined by (1.1)? Before we discuss this membership problem,
let us first look at some classes of examples of CΦ.

There are many familiar examples of symmetric gauge functions. For each 1 ≤ p <∞,
the formula Φp({aj}j∈N) = (

∑∞
j=1 |aj |p)1/p defines a symmetric gauge function on ĉ, and

the corresponding ideal CΦp defined by (1.2) is just the Schatten class Cp.

But there are plenty of important ideals CΦ beyond the Schatten classes. For each
1 ≤ p <∞, we have the symmetric gauge function Φ−p defined by the formula

Φ−p ({aj}j∈N) =
∞∑
j=1

|aπ(j)|
j(p−1)/p

, {aj}j∈N ∈ ĉ,

where π : N → N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥ · · · , which
exists because each {aj}j∈N ∈ ĉ only has a finite number of nonzero terms. In this case,
the ideal CΦ−p defined by (1.2) is called a Lorentz ideal and often simply denoted by the

symbol C−p . When p = 1, C−1 is just the trace class C1. But when 1 < p <∞, C−p is strictly
smaller than the Schatten class Cp.

Similarly, for each 1 ≤ p <∞ we have the symmetric gauge function

Φ+
p ({aj}j∈N) = sup

j≥1

|aπ(1)|+ |aπ(2)|+ · · ·+ |aπ(j)|
1−1/p + 2−1/p + · · ·+ j−1/p

, {aj}j∈N ∈ ĉ,
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where, again, π : N → N is any bijection such that |aπ(j)| ≥ |aπ(j+1)| for every j ∈
N. Then CΦ+

p
is usually denoted by the symbol C+

p , and we will write ‖ · ‖+p for ‖ · ‖Φ+
p

.

Moreover, for 1 ≤ p <∞ we have

C−p ⊂ Cp ⊂ C+
p ,

and, with the only exception C−1 = C1, these inclusions are all strict. Furthermore, for each
1 < p <∞, C+

p/(p−1) is the dual of C−p [11]. Also, it is well known that for each 1 ≤ p <∞,

the ideal C+
p is not separable with respect to the norm ‖ · ‖+p .

Because of the structure of the Hardy space H2(S), it does not appear easy to answer
the membership question (1.3) for all symmetric gauge functions Φ. We need to impose a
condition on Φ. But this condition is satisfied by Φp, Φ−p and Φ+

p . Thus we will characterize
the memberships Tµ ∈ C−p and Tµ ∈ C+

p , and we will do even more. Note that Tµ is a
positive operator, so we can consider its powers. Thus, in addition to the membership
problem (1.3), we can more generally consider the problem T sµ ∈ CΦ for 0 < s ≤ 1.

The reader will see that our techniques are so general that if we consider the analogue
of the membership problem T sµ ∈ CΦ on the Bergman space L2

a(B, dv), then no condition
needs to be imposed on Φ. In other words, in the Bergman space case our techniques can
handle all symmetric gauge functions Φ. This is due to the structural difference between
L2
a(B, dv) and H2(S), which will be further explained later. But first let us discuss the

condition that we do need to impose in the Hardy-space case.

For any a = {aj}j∈N and N ∈ N, define the sequence a[N ] = {aNj }j∈N by the formula

(1.4) aNj = ai if (i− 1)N + 1 ≤ j ≤ iN, i ∈ N.

In other words, a[N ] is obtained from a by repeating each term N times. Alternately, we
can think of a[N ] as a⊕ · · · ⊕ a, the “direct sum” of N copies of a.

Definition 1.1. [17,Definition 2.2] A symmetric gauge function Φ is said to satisfy con-
dition (DQK) if there exist constants 0 < θ < 1 and 0 < α <∞ such that

Φ(a[N ]) ≥ αNθΦ(a)

for every a ∈ ĉ and every N ∈ N.

Obviously, the symmetric gauge functions Φp, 1 < p < ∞, and Φ1 = Φ−1 satisfy
condition (DQK). In fact, one can think of (DQK) as an inherent property of the Schatten
classes. But this is one property that is shared by many other classes:

Proposition 1.2. [17,Proposition 5.1] (Also see [9,Section 6].) For each 1 < p <∞, both
symmetric gauge functions Φ−p and Φ+

p satisfy condition (DQK).

The case of C+
1 and Dixmier trace will be considered separately in Sections 7 and 8.

We will determine the membership T sµ ∈ CΦ for Φ satisfying condition (DQK). Next
we discuss the membership criterion, which involves the Bergman-metric structure of B.
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Throughout the paper, β denotes the Bergman metric on B. That is,

β(z, w) =
1

2
log

1 + |ϕw(z)|
1− |ϕw(z)|

, z, w ∈ B,

where ϕz is the Möbius transform of B [14,Section 2.2]. For each z ∈ B and each a > 0,
we define the corresponding β-ball D(z, a) = {w ∈ B : β(z, w) < a}.

Definition 1.3. (i) Let a be a positive number. A subset Γ of B is said to be a-separated
if D(z, a) ∩D(w, a) = ∅ for all distinct elements z, w in Γ.
(ii) Let 0 < a < b < ∞. A subset Γ of B is said to be an a, b-lattice if it is a-separated
and has the property ∪z∈ΓD(z, b) = B.
(iii) A subset Γ of B is simply said to be separated if it is a-separated for some a > 0.

Our investigation fits nicely in the following broader context. Given an operator
A, particularly an operator on a reproducing-kernel Hilbert space, one is always inter-
ested in formulas for its set of singular numbers. But as a practical matter, a formula
that is both explicit and exact, is usually not available. Thus one is frequently forced to
search for alternatives: are there quantities given by simple formulas that are equivalent
to {s1(A), s2(A), . . . , sj(A), . . . } in some clearly-defined sense?

Intuitively, for the Toeplitz operator Tµ defined by (1.1), if Γ is an a, b-lattice in B,
then the set of scalar quantities

(1.5)

{
µ(D(z, b))

(1− |z|2)n
: z ∈ Γ

}
should be equivalent to the set of singular numbers {s1(Tµ), s2(Tµ), . . . , sj(Tµ), . . . }. The
main results of the paper confirm our intuition in two different ways. First, we have

Theorem 1.4. Suppose that Φ is a symmetric gauge function satisfying condition (DQK).
Let 0 < s ≤ 1, and let 0 < a < b <∞ be given such that b ≥ 2a. Then there exist constants
0 < c ≤ C <∞ which depend only on Φ, s, a, b and the complex dimension n such that

cΦ

({(
µ(D(z, b))

(1− |z|2)n

)s}
z∈Γ

)
≤ ‖T sµ‖Φ ≤ CΦ

({(
µ(D(z, b))

(1− |z|2)n

)s}
z∈Γ

)
for every regular Borel measure µ on B and every a, b-lattice Γ ⊂ B.

Second, the connection between (1.5) and {s1(Tµ), s2(Tµ), . . . , sj(Tµ), . . . } can be seen
through Dixmier trace. As it turns out, the techniques that allow us to prove Theorem 1.4,
also allow us to compute the Dixmier trace of Tµ when Tµ ∈ C+

1 . In fact, to compute the
Dixmier trace of Tµ, we just need a more refined version of (1.5), which is understandable
because computation is more precise than general estimates. Suppose that Γ is an a, b-
lattice in B with b ≥ 2a. Then B admits a partition B = ∪z∈ΓEz such that Ez ⊂ D(z, b)
for every z ∈ Γ. We will show that Tµ has the same Dixmier trace as the diagonal operator∑

z∈Γ

czez ⊗ ez,
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where {ez : z ∈ Γ} is any orthonormal set and

(1.6) cz =

∫
Ez

dµ(w)

(1− |w|2)n
,

z ∈ Γ. In other words, Dixmier trace cannot distinguish between the singular numbers
{sj(Tµ) : j ∈ N} and the scalar quantities {cz : z ∈ Γ} explicitly given by (1.6). This fits
nicely in our broader context mentioned earlier.

Let us explain a little more of the underlying intuition for both Theorem 1.4 and
the computation of Dixmier trace mentioned above. The determining factor here is the
behavior of the normalized reproducing kernel kz for the Hardy space H2(S). We have

(1.7) 〈kz, kw〉 =

(
(1− |z|2)1/2(1− |w|2)1/2

1− 〈w, z〉

)n
,

z, w ∈B. The most important thing in the above is the power n, which is what distinguishes
the Hardy space from other reproducing-kernel Hilbert spaces on B. To prove a result
such as Theorem 1.4, one needs control in both radial and spherical directions of a certain
decomposition. Of the two, the radial direction is more problematic. If we had a power
n+ ε in (1.7) for some ε > 0, then it would give us enough control in the radial direction to
handle all norm ideals CΦ. But n itself just misses being enough of a power, if we consider
Φ unconditionally. Then came the realization that in the case where Φ satisfies condition
(DQK), we can “manufacture” an additional power ε for control in the necessary estimates.
That is why we are able to prove what we prove in this paper.

In the Bergman-space analogue of (1.7), the corresponding power is n + 1. That, as
we explained above, makes the Bergman-space case a much easier case. More to the point,
condition (DQK) is not needed for the analogue of Theorem 1.4 on L2

a(B, dv).

To conclude the Introduction, let us briefly describe the rest of the paper. Section 2
contains a number of preliminaries concerning the Bergman metric and related estimates.
In Section 3, we state an operator form of the atomic decomposition on H2(S). Since we
need a more precise statement than what can be found in standard references, we work
out the details in Section 3.

In Section 4 we present a number of properties of symmetric gauge functions and
symmetric norms. We would like to call particular attention to Proposition 4.6, which is
how condition (DQK) enters our estimates.

With the above preparations, the upper bound in Theorem 1.4 is proved in Section
5, and the lower bound is proved in Section 6. The proofs of these two bounds are based
on various decompositions in terms of radial and spherical coordinates, and judicious re-
grouping of the terms, which ultimately produce “small factors”. The best way to explain
this is to take a look at (5.24), where we see two small factors on the right-hand side,

2−2(s(n+t)−n)p and 2−2εn`.
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The factor 2−2(s(n+t)−n)p, which represents decay in the spherical direction, is obtained
through the use of the modified kernel ψz,t, whereas the factor 2−2εn`, which represents
decay in the radial direction, is obtained through condition (DQK). But it takes the long,
tedious work up to (5.24) to actually produce these small factors.

Sections 7 and 8 contain calculations of the Dixmier trace of Tµ when Tµ ∈ C+
1 . More

specifically, in Section 7 we deal with the case where Tµ is a discrete sum. As it turns out,
this discrete case embodies most of the difficulties and is more tedious than the estimates in
Section 5. For example, it requires not one, but two applications of Proposition 4.6, which
take quite a bit of work to set up. The reason for the added difficulty is that computation
of Dixmier trace does not allow the use of the modified kernel ψz,t. Then in Section 8, we
deduce the Dixmier trace of a general Tµ ∈ C+

1 from the discrete case in Section 7, which
also takes some work.

Finally, in Section 9 we show that the membership criterion in Theorem 1.4 is equiv-
alent to a condition stated in terms of modified Berezin transform.

2. Preliminaries

The work in this paper relies heavily on the Bergman-metric structure of the ball. Let
dλ denote the standard Möbius invariant measure on B. That is,

dλ(ζ) =
dv(ζ)

(1− |ζ|2)n+1
.

Lemma 2.1. (1) For any pair of 0 < a < ∞ and 0 < R < ∞, there is a natural number
N = N(a,R) such that for every a-separated set Γ in B and every z ∈ B, we have

card{u ∈ Γ : β(u, z) ≤ R} ≤ N.

(2) For any pair of 0 < a ≤ R < ∞, there is a natural number m = m(a,R) such that
every a-separated set Γ in B admits a partition Γ = Γ1 ∪ · · · ∪ Γm with the property that
each Γj is R-separated, j = 1, . . . ,m.

Proof. (1) is a simple consequence of the fact that, for any 0 < r < ∞, the value of
λ(D(w, r)) is independent of w ∈ B. Then, by (1), for any 0 < a ≤ R < ∞, there is an
m ∈ N such that if Γ is any a-separated set in B, then card{u ∈ Γ : β(u, v) ≤ 2R} ≤ m for
every v ∈ Γ. By a standard maximality argument, Γ admits a partition Γ = Γ1 ∪ · · · ∪ Γm
such that for every j ∈ {1, . . . ,m}, the conditions u, v ∈ Γj and u 6= v imply β(u, v) > 2R.
Thus each Γj is R-separated, proving (2). �

Lemma 2.2. Given any pair of 0 < R1 < ∞ and 0 < R2 < ∞, there is an m ∈ N
which has the following property: Suppose that Γ is a 1-separated set in B. Then for each
z ∈ D(0, R1), there is a partition Γ = Γ1 ∪ · · · ∪ Γm such that for every j ∈ {1, . . . ,m}, if
u, v ∈ Γj and if u 6= v, then β(ϕu(z), ϕv(z)) > R2.

Proof. It suffices to note that for all z, u, v ∈ B we have

β(u, v) ≤ β(u, ϕu(z)) + β(ϕu(z), ϕv(z)) + β(ϕv(z), v) = 2β(0, z) + β(ϕu(z), ϕv(z)).
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Then the desired conclusion follows from Lemma 2.1(2). �

Lemma 2.3. [20,Lemma 2.3] For all u, v, x, y ∈ B we have

(1− |ϕu(x)|2)1/2(1− |ϕv(y)|2)1/2

|1− 〈ϕu(x), ϕv(y)〉|
≤ 2eβ(x,0)+β(y,0) (1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|
.

Lemma 2.4. [10,Lemma 3.9] The inequality 1 − |z|2 ≤ 4e2β(z,w)(1 − |w|2) holds for all
z, w ∈ B.

Lemma 2.5. For each t > 0, there is a constant C2.5 = C2.5(t) such that the inequality

∑
v∈Γ

β(v,ξ)≥R

(
(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|

)n+t

(1− |v|2)n/2 ≤ C2.5e
−tR/2(1− |ξ|2)n/2

holds for every 1-separated set Γ in B, every ξ ∈ B and every R ≥ 0.

Proof. This is similar to [20,Lemma 2.4], but we include the details here for the convenience
of the reader. If w ∈ D(v, 1), then v ∈ D(w, 1) = ϕw(D(0, 1)). Thus if w ∈ D(v, 1), then
v = ϕw(y) for some y ∈ D(0, 1). Let ξ ∈ B. Since ξ = ϕξ(0), from Lemma 2.3 we obtain

(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|
≤ 2e

(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

for every w ∈ D(v, 1). Similarly, for w ∈ D(v, 1), Lemma 2.4 gives us

1− |v|2 ≤ 4e2(1− |w|2).

Set C1 = (2e)n+t(4e2)n/2. Then the above two inequalities lead to(
(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|

)n+t

(1− |v|2)n/2

≤ C1

(
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+t

(1− |w|2)n/2(2.1)

for every w ∈ D(v, 1). Suppose that Γ is a 1-separated set in B. Then by definition
D(v, 1) ∩D(v′, 1) = ∅ for v 6= v′ in Γ. Hence for all ξ ∈ B and R ≥ 0 we have∑

v∈Γ
β(v,ξ)≥R

(
(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|

)n+t

(1− |v|2)n/2

≤
∑
v∈Γ

β(v,ξ)≥R

C1

λ(D(v, 1))

∫
D(v,1)

(
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+t

(1− |w|2)n/2dλ(w)

≤ C1

λ(D(0, 1))

∫
β(w,ξ)≥R−1

(
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+t

(1− |w|2)n/2dλ(w).

(2.2)
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To estimate the last integral, note that

(1− |ξ|2)1/2(1− |ϕξ(ζ)|2)1/2

|1− 〈ξ, ϕξ(ζ)〉|
= (1− |ζ|2)1/2.

Thus, making the substitution w = ϕξ(ζ) and using the Möbius invariance of dλ, we obtain∫
β(w,ξ)≥R−1

(
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+t

(1− |w|2)n/2dλ(w)

=

∫
β(0,ζ)≥R−1

(1− |ζ|2)(n+t)/2(1− |ϕξ(ζ)|2)n/2dλ(ζ)

= (1− |ξ|2)n/2
∫
β(0,ζ)≥R−1

dv(ζ)

|1− 〈ξ, ζ〉|n(1− |ζ|2)1−(t/2)
= (∗∗).

It follows from [14,Proposition 1.4.10] that there is a C2 = C2(t) such that

(2.3)

∫
dσ(x)

|1− 〈z, x〉|n
≤ C2

(1− |z|2)t/4

for every z ∈ B. The condition β(0, ζ) ≥ R−1 implies 1−|ζ| ≤ 2e−2R+2. Combining (2.3)
with the decomposition dv = 2nr2n−1drdσ of the volume measure, we have∫

β(0,ζ)≥R−1

dv(ζ)

|1− 〈ξ, ζ〉|n(1− |ζ|2)1−(t/2)
≤
∫ 1

max{1−2e−2R+2,0}

C22nr2n−1dr

(1− r2)1−(t/4)

≤ nC2

∫ 1

max{1−2e−2R+2,0}

dy

(1− y)1−(t/4)
≤ 4

t
nC2(2e−2R+2)t/4.

Therefore

(∗∗) ≤ 4

t
(2e2)t/4nC2e

−tR/2(1− |ξ|2)n/2.

Substituting this in (2.2), we conclude that the lemma holds for the constant

C2.5 =
4n(2e2)t/4C1C2

tλ(D(0, 1))
.

This completes the proof. �

The proofs in Sections 5-8 rely on a standard radial-spherical decomposition of the
ball introduced in [19], which we now review. First of all, the formula

(2.4) d(u, ξ) = |1− 〈u, ξ〉|1/2, u, ξ ∈ S,

defines a metric on the unit sphere S [14]. Denote

B(u, r) = {ξ ∈ S : |1− 〈u, ξ〉|1/2 < r}
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for u ∈ S and r > 0. There is a constant A0 ∈ (2−n,∞) such that

(2.5) min{2−n, π−1}r2n ≤ σ(B(u, r)) ≤ A0r
2n

for all u ∈ S and 0 < r ≤
√

2 [14,Proposition 5.1.4].

For each integer k ≥ 0, let {uk,1, . . . , uk,m(k)} be a subset of S which is maximal with
respect to the property

(2.6) B(uk,j , 2
−k−1) ∩B(uk,j′ , 2

−k−1) = ∅ for all 1 ≤ j < j′ ≤ m(k).

The maximality of {uk,1, . . . , uk,m(k)} implies that

(2.7) ∪m(k)
j=1 B(uk,j , 2

−k) = S.

For each pair of k ≥ 0 and 1 ≤ j ≤ m(k), define the subset

(2.8) Tk,j = {ru : 1− 2−2k ≤ r < 1− 2−2(k+1), u ∈ B(uk,j , 2
−k)}

of B. Let us also introduce the index set

(2.9) I = {(k, j) : k ≥ 0, 1 ≤ j ≤ m(k)}.

However cumbersome the above system is, it is essential for the proofs in Sections 5-8.

Lemma 2.6. [19,Lemma 2.4] Given any 0 < a < ∞, there exists a natural number K
such that every a-separated set Γ in B admits a partition Γ = Γ1 ∪ · · · ∪ ΓK which has the
property that card(Γi ∩ Tk,j) ≤ 1 for all i ∈ {1, . . . ,K} and (k, j) ∈ I.

Last but not least, we remind the reader of the following counting lemma:

Lemma 2.7. [18,Lemma 4.1] Let X be a set and let E be a subset of X×X. Suppose that
m is a natural number such that

card{y ∈ X : (x, y) ∈ E} ≤ m and card{y ∈ X : (y, x) ∈ E} ≤ m

for every x ∈ X. Then there exist pairwise disjoint subsets E1, E2, ..., E2m of E such that

E = E1 ∪ E2 ∪ ... ∪ E2m

and such that for each 1 ≤ j ≤ 2m, the conditions (x, y), (x′, y′) ∈ Ej and (x, y) 6= (x′, y′)
imply both x 6= x′ and y 6= y′.

3. Discrete sums on the Hardy space

The proof of Theorem 1.4 requires a class of operators on the Hardy space H2(S) that
are constructed from separated sequences and modified kernel functions. One can view
this section as an operator form of atomic decomposition [21].
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First, recall that the formula

kw(ζ) =
(1− |w|2)n/2

(1− 〈ζ, w〉)n

gives us the normalized reproducing kernel for the Hardy space H2(S). With that in mind,
for each pair of 0 ≤ t <∞ and w ∈ B, we define

(3.1) ψw,t(ζ) =
(1− |w|2)(n/2)+t

(1− 〈ζ, w〉)n+t
,

ζ ∈ B. In terms of the multiplier

(3.2) mw(ζ) =
1− |w|2

1− 〈ζ, w〉
,

and the normalized reproducing kernel kw, we have the relation

ψw,t = mt
wkw.

In particular, ψw,0 = kw. For t > 0, we think of ψw,t as a modified version of kw. This
modification improves the “decaying rate” of the kernel, as can be seen below:

Proposition 3.1. [8,Proposition 3.1] Given any t > 0, there is a constant 0 < C3.1 <∞
that depends only on t and the complex dimension n such that

|〈ψz,t, ψw,t〉| ≤ C3.1

(
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈w, z〉|

)n+t

for all z, w ∈ B.

The main purpose of the section is to establish Propositions 3.2 and 3.8 below.

Proposition 3.2. Given any t > 0, there is a constant 0 < C3.2 < ∞ that depends only
on t and the complex dimension n such that∥∥∥∥∑

w∈Γ

ψw,t ⊗ ew
∥∥∥∥ ≤ C3.2

for every 1-separated set Γ in B, where {ew : w ∈ Γ} is any orthonormal set.

Proof. Given a 1-separated set Γ and an orthonormal set {ew : w ∈ Γ}, let us write

B =
∑
w∈Γ

ψw,t ⊗ ew.

Then
B∗B =

∑
u,w∈Γ

〈ψw,t, ψu,t〉eu ⊗ ew.
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Consider any vector h =
∑
w∈Γ cwew. We have

(3.3) B∗Bh =
∑
u∈Γ

yueu,

where
yu =

∑
w∈Γ

〈ψw,t, ψu,t〉cw,

u ∈ Γ. Applying Proposition 3.1, the Cauchy-Schwarz inequality and the case R = 0 in
Lemma 2.5, we have

|yu|2 ≤ C2
3.1

(∑
w∈Γ

(
(1− |u|2)1/2(1− |w|2)1/2

|1− 〈w, u〉|

)n+t

|cw|
)2

≤ C2
3.1

∑
w∈Γ

(
(1− |u|2)1/2(1− |w|2)1/2

|1− 〈w, u〉|

)n+t

(1− |w|2)n/2

×
∑
w∈Γ

(
(1− |u|2)1/2(1− |w|2)1/2

|1− 〈w, u〉|

)n+t |cw|2

(1− |w|2)n/2

≤ C2
3.1C2.5

∑
w∈Γ

(
(1− |u|2)1/2(1− |w|2)1/2

|1− 〈w, u〉|

)n+t(
1− |u|2

1− |w|2

)n/2
|cw|2

for every u ∈ Γ. Applying Lemma 2.5 again with R = 0, we have

∑
u∈Γ

|yu|2 ≤ C2
3.1C2.5

∑
w∈Γ

∑
u∈Γ

(
(1− |u|2)1/2(1− |w|2)1/2

|1− 〈w, u〉|

)n+t(
1− |u|2

1− |w|2

)n/2
|cw|2

≤ C2
3.1C

2
2.5

∑
w∈Γ

|cw|2.

By (3.3), this means ‖B∗Bh‖2 ≤ C2
3.1C

2
2.5‖h‖2. Since the vector h =

∑
w∈Γ cwew is

arbitrary, it follows that ‖B‖ ≤ (C3.1C2.5)1/2. This completes the proof. �

Proposition 3.3. Given any t > 0, consider the positive operator

Rt =

∫
ψz,t ⊗ ψz,tdλ(z)

on the Hardy space H2(S). There are constants 0 < a ≤ b <∞ such that a‖h‖2 ≤ 〈Rth, h〉
≤ b‖h‖2 for every h ∈ H2(S).

Proof. The upper bound was explicitly stated in [7,Proposition 3.1]. The lower bound was
not explicitly stated there, because it was not need in [7]. But the proof of [7,Proposition
3.1] clearly contains the lower bound. Indeed identity (3.6) in [7] gives us∫

ψz,t(w)ψz,t(w′)dλ(z) =
∞∑
k=0

bk,tC
n−1+k
k 〈w,w′〉k =

∞∑
k=0

bk,t
∑
|α|=k

eα(w)eα(w′),
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where eα(w) =
{ (n−1+k)!
α!(n−1)!

}1/2
wα, α ∈ Zn+, and

bk,t = n

(∏k−1
j=0 (n+ t+ j)

k!Cn−1+k
k

)2
(n− 1 + k)!∏n−1+k
j=0 (2t+ j)

when k ≥ 1. By standard asymptotic expansion (see, e.g., (3.3) in [7]), there is an a > 0
such that bk,t ≥ a for every k ≥ 0. Recall that {eα : α ∈ Zn+} is the standard orthonormal
basis in H2(S). Therefore the lower bound Rt ≥ a holds. �

Let L be a subset of B that is maximal with respect to the property of being 1-
separated. This L will be fixed for the rest of the section. Define the function

F =
∑
u∈L

χD(u,2)

on B. By Lemma 2.1, there is a natural number N ∈ N such that

card{v ∈ L : D(u, 2) ∩D(v, 2) 6= ∅} ≤ N

for every u ∈ L. The maximality of L implies ∪u∈LD(u, 2) = B. Hence the inequality

(3.4) 1 ≤ F ≤ N

holds on the unit ball B. For each t > 0, define the operator

R′t =

∫
F (w)ψw,t ⊗ ψw,tdλ(w).

By Proposition 3.3 and (3.4), the operator inequality

(3.5) a ≤ R′t ≤ bN

holds on H2(S). By the definition of F and the Möbius invariance of dλ,

R′t =
∑
u∈L

∫
D(u,2)

ψw,t ⊗ ψw,tdλ(w) =
∑
u∈L

∫
D(0,2)

ψϕu(z),t ⊗ ψϕu(z),tdλ(z).

Now, for each z ∈ B, define

Yz,t =
∑
u∈L

ψϕu(z),t ⊗ ψϕu(z),t.

Thus we have

(3.6) R′t =

∫
D(0,2)

Yz,tdλ(z).
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Definition 3.4. For any t > 0 and any separated set Γ in B, we denote

EΓ,t =
∑
w∈Γ

ψw,t ⊗ ψw,t.

Lemma 3.5. (1) Given any 0 < R < ∞, there is an N = N(R) ∈ N which has the
following property: For every pair of t > 0 and ξ ∈ D(0, R), there are 1-separated sets
Γ1, . . . ,ΓN in B such that

Yξ,t = EΓ1,t + · · ·+ EΓN ,t.

(2) For every 0 < r < 1, we have sup|z|≤r ‖Yz,t‖ <∞.

Proof. For (1), it suffices to take the m provided by Lemma 2.2 for the case where R1 = R
and R2 = 2 to be the N(R). Then (2) follows from (1) and Proposition 3.2. �

Lemma 3.6. Let t ≥ 0 be given. Then there is a constant C3.6 = C3.6(t) such that

(3.7) ‖ψz,t − ψw,t‖ ≤ C3.6β(z, w)

for all z, w ∈ B. Similarly, there is a constant C ′3.6 = C ′3.6(t) such that

(3.8) |〈ψγ,t, kz − kw〉| ≤ C ′3.6β(z, w)(1− |z|2)n/2|ψγ,t(z)|

for every γ ∈ B and all z, w ∈ B satisfying the condition β(z, w) < 1.

Proof. First of all, by elementary analysis, there is a C = C(n, t) such that

(3.9)

∣∣∣∣1− ( 1− |u|2

|1− 〈u, z〉|2

)(n/2)+t(
1− 〈z, u〉
1− 〈y, u〉

)n+t∣∣∣∣ ≤ C|u|
for all u ∈ D(0, 1), z ∈ B and y ∈ B.

We have ‖mz‖∞ = 1 + |z| ≤ 2, consequently ‖ψz,t‖ ≤ 2t, z ∈ B. Thus, to prove (3.7),
it suffices to consider z, w ∈ B satisfying the condition β(z, w) < 1. For such a pair of
z, w, we can write w = ϕz(ξ) with β(0, ξ) = β(z, w) < 1. Then

ψw,t(ζ) = ψϕz(ξ),t(ζ) = ψz,t(ζ)

(
1− |ϕz(ξ)|2

1− |z|2

)(n/2)+t(
1− 〈ζ, z〉

1− 〈ζ, ϕz(ξ)〉

)n+t

.

By [14,Theorem 2.2.2], if we write x = ϕz(ζ), then ζ = ϕz(x) and

1− 〈ζ, z〉
1− 〈ζ, ϕz(ξ)〉

=
1− 〈ϕz(x), ϕz(0)〉
1− 〈ϕz(x), ϕz(ξ)〉

=
1− 〈z, ξ〉
1− 〈x, ξ〉

=
1− 〈z, ξ〉

1− 〈ϕz(ζ), ξ〉
.

Similarly,
1− |ϕz(ξ)|2

1− |z|2
=

1− |ξ|2

|1− 〈ξ, z〉|2
.
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Thus we can represent ψw,t as the following “multiplicative perturbation” of ψz,t:

(3.10) ψw,t(ζ) = ψz,t(ζ)

(
1− |ξ|2

|1− 〈ξ, z〉|2

)(n/2)+t(
1− 〈z, ξ〉

1− 〈ϕz(ζ), ξ〉

)n+t

.

Since ‖ψz,t‖ ≤ 2t, combining this identity with (3.9), we find that

‖ψz,t − ψw,t‖ ≤ 2tC|ξ|.

We have

β(0, ξ) =
1

2
log

1 + |ξ|
1− |ξ|

≥ 1

2
log

1

1− |ξ|
.

From this it is elementary to derive that |ξ| ≤ 1− e−2β(0,ξ) ≤ 2β(0, ξ). Hence

‖ψz,t − ψw,t‖ ≤ 2tC · 2β(0, ξ) = 2t+1Cβ(z, w),

which proves (3.7).

To prove (3.8), note that

〈ψγ,t, kz − kw〉 = (1− |z|2)n/2ψγ,t(z)− (1− |w|2)n/2ψγ,t(w).

Writing w = ϕz(ξ) as in the proof of (3.10), we have

(1− |w|2)n/2ψγ,t(w) = (1− |z|2)n/2ψγ,t(z)

(
1− |ϕz(ξ)|2

1− |z|2

)n/2(
1− 〈z, γ〉

1− 〈ϕz(ξ), γ〉

)n+t

= (1− |z|2)n/2ψγ,t(z)

(
1− |ξ|2

|1− 〈ξ, z〉|2

)n/2(
1− 〈ξ, z〉

1− 〈ξ, ϕz(γ)〉

)n+t

.

Combining these identities with an obvious variant of (3.9), (3.8) follows. �

Proposition 3.7. For any given value t > 0, the map z 7→ Yz,t from B into B(H2(S)) is
continuous with respect to the operator norm.

Proof. Let z ∈ B and consider w ∈ U = D(z, 1). By Lemma 3.5(2), we have supζ∈U ‖Yζ,t‖
< ∞. To estimate ‖Yz,t − Yw,t‖, we pick an orthonormal set {fu : u ∈ L} and define

Xζ,t =
∑
u∈L

ψϕu(ζ),t ⊗ fu

for each ζ ∈ U . Since Yζ,t = Xζ,tX
∗
ζ,t, we have supζ∈U ‖Xζ,t‖ < ∞. Thus it suffices to

estimate ‖Xz,t −Xw,t‖2 = ‖(Xz,t −Xw,t)
∗(Xz,t −Xw,t)‖.

To do this, we write ρ = β(z, 0). Since w ∈ D(z, 1), we have w ∈ D(0, ρ + 1). Then
by Lemma 2.2, there is an m ∈ N determined by ρ + 1 such that ‖Xz,t − Xw,t‖2 is less
than or equal to the sum of at most 2m terms of the form ‖A(Xz,t −Xw,t)‖, where

A =
∑
v∈Γ

ev ⊗ ψv,t,
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Γ is a 1-separated set in B, and {ev : v ∈ Γ} is an orthonormal set. Note that

A(Xz,t −Xw,t) =
∑

(v,u)∈Γ×L

〈ψϕu(z),t − ψϕu(w),t, ψv,t〉ev ⊗ fu.

Thus for each R > 0, we can write

(3.11) A(Xz,t −Xw,t) = Sz,w;R + Tz,w;R,

where

Sz,w;R =
∑

(v,u)∈Γ×L
β(v,u)≤R

〈ψϕu(z),t − ψϕu(w),t, ψv,t〉ev ⊗ fu and

Tz,w;R =
∑

(v,u)∈Γ×L
β(v,u)>R

〈ψϕu(z),t − ψϕu(w),t, ψv,t〉ev ⊗ fu.

Let ε > 0 be given. We first show that there is an R > 0 such that

(3.12) ‖Tz,w;R‖ ≤ ε/2 for every w ∈ U = D(z, 1).

To prove this, note that since β(w, 0) < ρ+ 1, Lemma 2.3 gives us

(1− |ϕu(w)|2)1/2(1− |v|2)1/2

|1− 〈ϕu(w), v〉|
≤ 2eρ+1 (1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

for v ∈ Γ and u ∈ L. A similar inequality holds with ϕu(z) in place of ϕu(w). Combining
these facts with Proposition 3.1, we obtain

|〈ψϕu(z),t − ψϕu(w),t, ψv,t〉| ≤ |〈ψϕu(z),t, ψv,t〉|+ |〈ψϕu(w),t, ψv,t〉|

≤ C1

(
(1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

)n+t

,

where C1 = 2(2eρ+1)n+tC3.1. Consider an arbitrary vector h =
∑
u∈L cufu. Then

(3.13) Tz,w;Rh =
∑
v∈Γ

yvev,

where each yv satisfies the estimate

|yv| ≤ C1

∑
u∈L

β(v,u)>R

(
(1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

)n+t

|cu|.
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Applying Lemma 2.5 and the Schur-test as in the proof of Proposition 3.2, we obtain∑
v∈Γ

|yv|2 ≤ C2
1C

2
2.5e
−tR

∑
u∈L
|cu|2.

By (3.13), this means ‖Tz,w;Rh‖2 ≤ C2
1C

2
2.5e
−tR‖h‖2. Since the vector h is arbitrary, we

conclude that ‖Tz,w;R‖ ≤ C1C2.5e
−tR/2. Hence there is an R > 0 such that (3.12) holds.

Fix such an R. Next we show that for this fixed R, there is a 0 < δ < 1 such that
if β(z, w) ≤ δ, then ‖Sz,w;R‖ ≤ ε/2. By (3.11) and (3.12), this will complete our proof.
Since Γ and L are 1-separated, by Lemma 2.1, there is an N ∈ N such that

card{v ∈ Γ : β(v, x) ≤ R} ≤ N and card{u ∈ L : β(u, x) ≤ R} ≤ N

for every x ∈ B. By a standard maximality argument similar to Lemma 2.7, the set

E = {(v, u) ∈ Γ× L : β(v, u) ≤ R}

admits a partition E = E1 ∪ · · · ∪ E2N with the property that for every j ∈ {1, . . . , 2N},
the conditions (v, u), (v′, u′) ∈ Ej and (v, u) 6= (v′, u′) imply both v 6= v′ and u 6= u′.
Accordingly, we have the decomposition

(3.14) Sz,w;R = S1 + · · ·+ S2N ,

where
Sj =

∑
(v,u)∈Ej

〈ψϕu(z),t − ψϕu(w),t, ψv,t〉ev ⊗ fu

for each j ∈ {1, . . . , 2N}. The property of Ej ensures that

(3.15) ‖Sj‖ = sup
(v,u)∈Ej

|〈ψϕu(z),t − ψϕu(w),t, ψv,t〉|.

On the other hand, it follows from Lemma 3.6 that

|〈ψϕu(z),t − ψϕu(w),t, ψv,t〉| ≤ ‖ψϕu(z),t − ψϕu(w),t‖‖ψv,t‖
≤ 2tC3.6β(ϕu(z), ϕu(w)) = 2tC3.6β(z, w).

Combining this with (3.14) and (3.15), we find that ‖Sz,w;R‖ ≤ 2N2tC3.6β(z, w). Thus if
we choose 0 < δ < 1 such that 2N2tC3.6δ ≤ ε/2, then for every w satisfying the condition
β(z, w) ≤ δ, we have ‖Sz,w;R‖ ≤ ε/2. This completes the proof. �

Proposition 3.8. Given any t > 0, there exists a constant δ > 0 and a finite number of
1-separated sets Γ1, . . . ,Γm in B such that

〈EΓ1,tf, f〉+ · · ·+ 〈EΓm,tf, f〉 ≥ δ‖f‖2

for every f ∈ H2(S).
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Proof. The closure of D(0, 2) is, of course, a compact subset of B. Recall that we have the
integral formula (3.6) for R′t. It follows from the norm-continuity provided by Proposition
3.7 that the integral on the right-hand side of (3.6) is the limit in operator norm of Riemann
sums. In particular, for the a > 0 that appears in (3.5), there is a Riemann sum S such
that ‖R′t − S‖ ≤ a/2. Then, by (3.5), the operator inequality

(3.16) S ≥ a/2

holds on H2(S). Since S is a Riemann sum for the integral in (3.6), there are pairwise
disjoint Borel subsets G1, . . . , Gν in D(0, 2) and zj ∈ Gj , j = 1, . . . , ν, such that

(3.17) S = λ(G1)Yz1,t + · · ·+ λ(Gν)Yzν ,t.

If we set δ = a/{2λ(D(0, 2))}, then from (3.16) and (3.17) we obtain

Yz1,t + · · ·+ Yzν ,t ≥ δ.

Now an application of Lemma 3.5(1) completes the proof. �

4. Norm ideals and condition (DQK)

We need a number of basic facts about ‖ · ‖Φ.

Lemma 4.1. [19,Lemma 3.1] Suppose that A1, . . . , Am are finite-rank operators on a
Hilbert space H and let A = A1 + · · · + Am. Then for each symmetric gauge function Φ
and each 0 < s ≤ 1,

‖|A|s‖Φ ≤ 21−s(‖|A1|s‖Φ + · · ·+ ‖|Am|s‖Φ).

Lemma 4.2. [10,Lemma 3.3] Let A and B be two bounded operators. Then the inequalities

‖|AB|s‖Φ ≤ ‖B‖s‖|A|s‖Φ and ‖|BA|s‖Φ ≤ ‖B‖s‖|A|s‖Φ

hold for every symmetric gauge function Φ and every 0 < s ≤ 1.

Lemma 4.3. [19,Lemma 5.1] Let {Ak} be a sequence of bounded operators on a separable
Hilbert space H. If {Ak} weakly converges to an operator A, then the inequality

‖A‖Φ ≤ sup
k
‖Ak‖Φ

holds for each symmetric gauge function Φ.

Recall from [11,page 125] that given a symmetric gauge function Φ, the formula

Φ∗({bj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {aj}j∈N ∈ ĉ,Φ({aj}j∈N) ≤ 1

}
, {bj}j∈N ∈ ĉ,
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defines the symmetric gauge function that is dual to Φ. Moreover, we have the relation
Φ∗∗ = Φ [11,page 125]. This relation implies that for every {aj}j∈N ∈ ĉ, we have

(4.1) Φ({aj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {bj}j∈N ∈ ĉ,Φ∗({bj}j∈N) ≤ 1

}
.

Lemma 4.4. Let Φ be a symmetric gauge function. Suppose that A and B are operators
such that A∗A ∈ CΦ and B∗B ∈ CΦ. Then AB ∈ CΦ. Moreover,

‖AB‖Φ ≤ {‖A∗A‖Φ‖B∗B‖Φ}1/2 .

Proof. Let Φ∗ be the symmetric gauge function that is dual to Φ. Consider any finite-rank
operator F . We have the polar decomposition F = U |F |, where U is a partial isometry
and |F | = (F ∗F )1/2. We can factor F in the form F = F1F2, where F1 = U |F |1/2 and
F2 = |F |1/2. Note that ‖F1F

∗
1 ‖Φ∗ = ‖F‖Φ∗ = ‖F ∗2 F2‖Φ∗ . Write ‖ · ‖2 for the Hilbert-

Schmidt norm. By (7.9) on page 63 in [11] and the duality between Φ and Φ∗, we have

|tr(ABF )| = |tr(ABF1F2)| = |tr(F2ABF1)| ≤ ‖F2A‖2‖BF1‖2
= {tr(A∗F ∗2 F2A)tr(F ∗1B

∗BF1)}1/2 = {tr(F ∗2 F2AA
∗)tr(B∗BF1F

∗
1 )}1/2

≤ {‖F ∗2 F2‖Φ∗‖AA∗‖Φ‖B∗B‖Φ‖F1F
∗
1 ‖Φ∗}

1/2
= {‖AA∗‖Φ‖B∗B‖Φ}1/2 ‖F‖Φ∗ .

Since this holds for every finite-rank operator F , the lemma now follows from (4.1). �

Suppose that Φ is a symmetric gauge function. For each 1 < p <∞, we define

Φ(p)({aj}j∈N) = {Φ({|aj |p}j∈N)}1/p

for {aj}j∈N ∈ ĉ. Using the duality mentioned above, it is easy to verify that Φ(p) satisfies
the triangle inequality and is, therefore, a symmetric gauge function.

Lemma 4.5. Let Φ be a symmetric gauge function that satisfies condition (DQK). Then
for every 1 < p <∞, the Φ(p) defined above also satisfies condition (DQK).

Proof. By Definition 1.1, there are α and θ such that Φ(h[N ]) ≥ αNθΦ(h) for all h ∈ ĉ and
N ∈ N. Let 1 < p <∞. Given an a = {aj}j∈N ∈ ĉ, denote b = {|aj |p}j∈N. Then

Φ(p)(a[N ]) = {Φ(b[N ])}1/p ≥ {αNθΦ(b)}1/p = α1/pNθ/pΦ(p)(a)

for every N ∈ N. Thus Φ(p) satisfies condition (DQK) with constants α1/p and θ/p. �

An obvious question is, how do we actually use condition (DQK) in the proof of
Theorem 1.4 and in calculation of Dixmier trace? It will be used in the following way:

Proposition 4.6. Suppose that Φ is a symmetric gauge function satisfying condition
(DQK), and let 0 < s ≤ 1. Then there exist constants 0 < ε < 1 and 1 ≤ C < ∞ which
depend only on Φ and s such that the following estimate holds: Let N ∈ N. Suppose that

A1, A2, . . . , Aj , . . .
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are pairwise disjoint subsets of N satisfying the condition card(Aj) ≤ N for every j ≥ 1.
Given a sequence a = {ai}i∈N of complex numbers, define

bj =

(
1

N

∑
i∈Aj

|ai|2
)1/2

for every j ∈ N. Then we have

Φ({bsj}j∈N) ≤ N−εCΦ({|ai|s}i∈N).

Proof. By definition, there are 0 < θ < 1 and 0 < C <∞ such that

(4.2) Φ(a) ≤ Cm−θΦ(a[m]) for all a ∈ ĉ and m ∈ N.

Given any N ∈ N, let M ∈ N be such that N1/2 ≤ M < N1/2 + 1. Given any sequence
a = {ai}i∈N of complex numbers, define bj as above, j ∈ N. Let E = {j ∈ N : bj 6= 0}.
Obviously, Φ({bsj}j∈N) = Φ({bsj}j∈E). For each j ∈ E, define

Bj = {i ∈ Aj : |ai|2 ≥ b2j/2}.

Finally, define

J1 = {j ∈ E : card(Bj) > M} and J2 = {j ∈ E : card(Bj) ≤M}.

Write β = {bsj}j∈J1 . Since bsj ≤ 2s/2|ai|s for every i ∈ Bj and since Bj ∩ Bj′ = ∅ when

j 6= j′, we have Φ(β[M ]) ≤ 2s/2Φ({|ai|s}i∈N). Combining this with (4.2), we find that

(4.3) Φ(β) ≤ CM−θΦ(β[M ]) ≤ 2s/2CM−θΦ({|ai|s}i∈N) ≤ 2s/2CN−θ/2Φ({|ai|s}i∈N).

On the other hand, if i ∈ Aj\Bj , then |ai|2 < b2j/2. Since card(Aj) ≤ N , we have

1

N

∑
i∈Aj\Bj

|ai|2 <
b2j
2
.

Consequently, for each j ∈ E,

1

M

∑
i∈Bj

M

N
|ai|2 =

1

N

∑
i∈Bj

|ai|2 ≥
b2j
2
.

For each j ∈ J2, since card(Bj) ≤ M , the above implies that there is an i(j) ∈ Bj such
that (M/N)|ai(j)|2 ≥ b2j/2. Obviously, for j 6= j′ in J2 we have i(j) 6= i(j′). Hence

(4.4) Φ({bsj}j∈J2) ≤ 2s/2(M/N)s/2Φ({|ai(j)|s}j∈J2) ≤ 2sN−s/4Φ({|ai|s}i∈N),
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where for the second ≤ we use the fact that M < N1/2 + 1. Since E = J1 ∪ J2, the
proposition follows from (4.3) and (4.4). �

We conclude the section with two basic lemmas.

Lemma 4.7. [19,Lemma 6.2] If A1, . . . , Am, . . . are trace-class operators, then the inequal-
ity

‖A1 ⊕ · · · ⊕Am ⊕ · · · ‖Φ ≤ Φ({‖A1‖1, . . . , ‖Am‖1, . . . })

holds for every symmetric gauge function Φ, where ‖ · ‖1 is the norm of the trace class.

Lemma 4.8. [19,Lemma 2.2] Suppose that X and Y are countable sets and that N is a
natural number. Suppose that T : X → Y is a map that is at most N -to-1. That is, for
every y ∈ Y , card{x ∈ X : T (x) = y} ≤ N . Then for every set of real numbers {by}y∈Y
and every symmetric gauge function Φ, we have Φ({bT (x)}x∈X) ≤ NΦ({by}y∈Y ).

5. Proof of Theorem 1.4 — the upper bound

To prove the upper bound in Theorem 1.4, consider a regular Borel measure µ on B.
Given such a µ, we define the measure µ̃ on B by the formula

(5.1) dµ̃(w) =
dµ(w)

(1− |w|2)n
.

It is straightforward to verify that we have the integral representation

Tµ =

∫
kw ⊗ kwdµ̃(w)

for the Toeplitz operator Tµ defined by (1.1). Let 0 < a ≤ b < ∞. Suppose that Γ is an
a, b-lattice in B. We define

TΓ =
∑
z∈Γ

∫
D(z,b)

kw ⊗ kwdµ̃(w).

Since ∪z∈ΓD(z, b) = B, the operator inequality Tµ ≤ TΓ holds on H2(S). It follows from
this operator inequality that for every 0 < s ≤ 1 and every symmetric gauge function Φ,

‖T sµ‖Φ ≤ ‖T sΓ‖Φ.

Thus it suffices to estimate ‖T sΓ‖Φ. But this estimate can be further reduced.

Consider any finite subset F of Γ that has the property µ̃(D(z, b)) 6= 0 for every z ∈ F .
For such an F , we define

TF =
∑
z∈F

∫
D(z,b)

kw ⊗ kwdµ̃(w).
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Lemma 4.3 implies that ‖T sΓ‖Φ is the supremum of ‖T sF ‖Φ over all such possible F ’s. Thus
it suffices to consider an individual TF .

To estimate ‖T sF ‖Φ, by Lemmas 2.6 and 4.1, partitioning F by a fixed number of
subsets if necessary, we may assume that F has the additional property that

(5.2) card(F ∩ Tk,j) ≤ 1 for every (k, j) ∈ I,

where Tk,j and I are given by (2.8) and (2.9) respectively. For convenience, let us write
cz = µ̃(D(z, b)) for each z ∈ F . Define the measure

dνz(w) = c−1
z χD(z,b)(w)dµ̃(w) =

χD(z,b)(w)

cz(1− |w|2)n
dµ(w)

for each z ∈ F . Then

(5.3) TF =
∑
z∈F

cz

∫
kw ⊗ kwdνz(w).

Obviously, dνz is a probability measure concentrated on D(z, b). Therefore each dνz is in
the weak-* closure of the convex hull of unit point masses on D(z, b). Consequently, TF is
in the closure in strong operator topology of operators of the form

(5.4) T =
1

d

∑
z∈F

cz

d∑
i=1

kw(z;i) ⊗ kw(z;i),

where d ∈ N and for each z ∈ F , we have w(z; i) ∈ D(z, b) for every i ∈ {1, . . . , d}. Thus,
for any given 0 < s ≤ 1, it suffices to estimate ‖T s‖Φ.

Now we factor T . Pick an orthonormal set {ε(z; i) : z ∈ F, 1 ≤ i ≤ d} and define

(5.5) W =
1√
d

∑
z∈F

c1/2z

d∑
i=1

kw(z;i) ⊗ ε(z; i).

Obviously, we have T = WW ∗. Denote Ψ = Φ(2). Then

(5.6) ‖T s‖Φ = ‖(WW ∗)s‖Φ = ‖(W ∗W )s‖Φ = ‖|W |2s‖Φ = ‖|W |s‖2Φ(2) = ‖|W |s‖2Ψ.

This reduces the problem to the estimate of ‖|W |s‖Ψ.

To estimate ‖|W |s‖Ψ, pick a t such that st > n. By Proposition 3.8, there are 1-
separated sets Γ1, . . . ,Γm in B such that the operator

(5.7) A = EΓ1,t + · · ·+ EΓm,t
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satisfies the inequality A ≥ δ on H2(S) for some δ > 0. By Lemma 4.2, we have

‖|W |s‖Ψ = ‖|A−1AW |s‖Ψ ≤ δ−s‖|AW |s‖Ψ.

For each 1 ≤ r ≤ m, we pick an orthonormal set {e(r;w) : w ∈ Γr} and factor EΓr,t in the
form EΓr,t = BrB

∗
r , where

Br =
∑
w∈Γr

ψw,t ⊗ e(r;w).

Since A is given by (5.7), applying Lemmas 4.1, 4.2 and Proposition 3.2, we obtain

(5.8) ‖|W |s‖Ψ ≤ 2mδ−sCs3.2 max
1≤r≤m

‖|B∗rW |s‖Ψ.

To summarize, we have now reduced the proof of the upper bound in Theorem 1.4 to the
estimate of ‖|B∗W |s‖Ψ, where

B =
∑
γ∈G

ψγ,t ⊗ eγ ,

G is a 1-separated set in B and {eγ : γ ∈ G} is an orthonormal set. Invoking Lemma 2.6
again, we may further assume that G has the additional property

(5.9) card(G ∩ Tk,j) ≤ 1 for every (k, j) ∈ I,

which, along with (5.2), will be needed for our counting argument below.

Recalling (5.5) and using the reproducing property of kw, we have

B∗W =
∑
γ∈G

∑
z∈F

c1/2z

1√
d

d∑
i=1

(1− |w(z; i)|2)n/2ψγ,t(w(z; i))eγ ⊗ ε(z; i)

=
∑
γ∈G

∑
z∈F

c1/2z eγ ⊗ fz;γ ,(5.10)

where

(5.11) fz;γ =
1√
d

d∑
i=1

(1− |w(z; i)|2)n/2ψγ,t(w(z; i))ε(z; i)

for γ ∈ G and z ∈ F . For each pair of z ∈ F and i ∈ {1, . . . , d}, we have w(z; i) ∈ D(z, b).
Thus there is an x(z; i) ∈ D(0, b) such that w(z; i) = ϕz(x(z; i)). By Lemmas 2.3 and 2.4,
there is a constant C1 such that

(1− |w(z; i)|2)n/2|ψγ,t(w(z; i))| ≤ C1(1− |z|2)n/2|ψγ,t(z)|

for all γ ∈ G, z ∈ F and i ∈ {1, . . . , k}. Hence

(5.12) ‖fz;γ‖ ≤ C1(1− |z|2)n/2|ψγ,t(z)|
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for all γ ∈ G and z ∈ F .

At this point, we need to organize the pairs (γ, z) ∈ G × F using the decomposition
scheme in Section 2. First of all, for each integer k ≥ 0 we define

Hk = {w ∈ B : 1− 2−2k ≤ |w| < 1− 2−2(k+1)}.

The point is that Hk = ∪m(k)
j=1 Tk,j . Then, for each k ≥ 0, define

Gk = G ∩Hk and Fk = F ∩Hk.

By (5.10), we have

(5.13) B∗W =
∞∑
`=0

Y` +
∞∑
`=1

Z`,

where

Y` =
∞∑
k=0

∑
(γ,z)∈Gk×Fk+`

c1/2z eγ ⊗ fz;γ and Z` =
∞∑
k=0

∑
(γ,z)∈Gk+`×Fk

c1/2z eγ ⊗ fz;γ .

Next, from (2.7) we see that there exist Borel sets {Sk,j : (k, j) ∈ I} in the sphere S that
satisfy the following three conditions:

(1) For every (k, j) ∈ I, we have Sk,j ⊂ B(uk,j , 2
−k).

(2) For every k ≥ 0 and every pair of j 6= j′ in {1, . . . ,m(k)}, we have Sk,j ∩Sk,j′ = ∅.
(3) For every k ≥ 0, we have ∪m(k)

j=1 Sk,j = S.
We will use these sets to further decompose Y`.

We write each z ∈ F in the form z = |z|ξz with ξz ∈ S. For each pair of k ≥ 0 and
` ≥ 0, we have a partition

(5.14) Fk+` = Fk,`,1 ∪ · · · ∪ Fk,`,m(k),

where

(5.15) Fk,`,j = {z ∈ Fk+` : ξz ∈ Sk,j},

1 ≤ j ≤ m(k). By (5.9), for each k ≥ 0 there is a Jk ⊂ {1, . . . ,m(k)} such that Gk =
{γk,j : j ∈ Jk} and such that for each j ∈ Jk, γk,j ∈ Tk,j . For k ≥ 0, ` ≥ 0, j ∈ Jk and
j′ ∈ {1, . . . ,m(k)}, we now define

(5.16) f
(`)
k;j,j′ =

∑
z∈Fk,`,j′

c1/2z fz;γk,j .

Then

Y` =

∞∑
k=0

∑
j∈Jk

m(k)∑
j′=1

eγk,j ⊗ f
(`)
k;j,j′ .
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We further decompose Y` according to spherical separation. For each k ≥ 0, define

Qk,0 = {(j, j′) : j ∈ Jk, 1 ≤ j′ ≤ m(k), d(uk,j , uk,j′) < 2−k+2} and

Qk,p = {(j, j′) : j ∈ Jk, 1 ≤ j′ ≤ m(k), 2−k+p+1 ≤ d(uk,j , uk,j′) < 2−k+p+2}, p ≥ 1.

Accordingly, we define

Y
(p)
` =

∞∑
k=0

∑
(j,j′)∈Qk,p

eγk,j ⊗ f
(`)
k;j,j′

for p = 0, 1, 2, . . . . Then, of course,

(5.17) Y` = Y
(0)
` + Y

(1)
` + Y

(2)
` + · · ·+ Y

(p)
` + · · · .

By (2.6), the definition of Qk,p and (2.5), there is a constant M ∈ N such that for each
pair of k ≥ 0, p ≥ 0 and each j ∈ Jk, we have

(5.18) card{j′ : (j, j′) ∈ Qk,p} ≤M22np.

Similarly, for k ≥ 0, p ≥ 0 and j′ ∈ {1, . . . ,m(k)}, we have

(5.19) card{j : (j, j′) ∈ Qk,p} ≤M22np.

By Lemma 2.7, each Qk,p admits a partition

Qk,p = Q
(1)
k,p ∪ · · · ∪Q

(2M22np)
k,p

such that for every 1 ≤ i ≤ 2M22np, the conditions (j, j′), (h, h′) ∈ Q(i)
k,p and (j, j′) 6= (h, h′)

imply both j 6= h and j′ 6= h′. Accordingly, for every p ≥ 0 we have

(5.20) Y
(p)
` = Y

(p,1)
` + · · ·+ Y

(p,2M22np)
` ,

where

Y
(p,i)
` =

∞∑
k=0

∑
(j,j′)∈Q(i)

k,p

eγk,j ⊗ f
(`)
k;j,j′ ,

i = 1, . . . , 2M22np. If k1 6= k2, then obviously eγk1,j1 ⊥ eγk2,j2 for all j1 ∈ Jk1 and

j2 ∈ Jk2 . Similarly, when k1 6= k2, a chase of definitions shows that f
(`)
k1;j1,j′1

⊥ f (`)
k2;j2,j′2

for

all j1 ∈ Jk1 , j2 ∈ Jk2 , j′1 ∈ {1, . . . ,m(k1)} and j′2 ∈ {1, . . . ,m(k2)}. Now the property of

each Q
(i)
k,p guarantees that if (j, j′), (h, h′) ∈ Q(i)

k,p and (j, j′) 6= (h, h′), then we have both

eγk,j ⊥ eγk,h and f
(`)
k;j,j′ ⊥ f

(`)
k;h,h′ .

Because of all this orthogonality, for each pair of p ≥ 0 and 1 ≤ i ≤ 2M22np we have

(5.21) ‖|Y (p,i)
` |s‖Ψ = Ψ({‖f (`)

k;j,j′‖
s}

(k,j,j′)∈L(i)
p

),
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where

L(i)
p =

∞⋃
k=0

{
(k, j, j′) : (j, j′) ∈ Q(i)

k,p

}
.

Our next task is to estimate the vector norm ‖f (`)
k;j,j′‖, (k, j, j′) ∈ L(i)

p .

By (5.11), for z 6= z′ in F , we have 〈fz;γ , fz′;γ′〉 = 0 for all γ, γ′ ∈ G. Therefore it
follows from (5.16) and (5.12) that

‖f (`)
k;j,j′‖

2 =
∑

z∈Fk,`,j′

cz‖fz;γk,j‖2 ≤ C2
1

∑
z∈Fk,`,j′

cz(1− |z|2)n|ψγk,j ,t(z)|2.

For z ∈ Fk,`,j′ , we have (1− |γk,j |2)n|ψγk,j ,t(z)|2 = |mγk,j (z)|2n+2t (cf. (3.1), (3.2)) and(
1− |z|2

1− |γk,j |2

)n
≤ 2n

(
1− |z|

1− |γk,j |

)n
≤ 2n

(
2−2(k+`)

2−2(k+1)

)n
= C22−2n`.

Writing C3 = C2
1C2, this gives us

(5.22) ‖f (`)
k;j,j′‖

2 ≤ C32−2n`
∑

z∈Fk,`,j′

cz|mγk,j (z)|2n+2t.

Since γk,j ∈ Tk,j , there is a ζk,j ∈ B(uk,j , 2
−k) such that γk,j = |γk,j |ζk,j . For z ∈ Fk,`,j′ ,

we have ξz ∈ Sk,j′ , consequently d(ξz, uk,j′) ≤ 2−k. Hence

{2|1− 〈z, γk,j〉|}1/2 ≥ |1− 〈ξz, ζk,j〉|1/2 = d(ξz, ζk,j)

≥ d(uk,j′ , uk,j)− d(ξz, uk,j′)− d(ζk,j , uk,j)

≥ d(uk,j′ , uk,j)− 2−k+1.

Thus if (k, j, j′) ∈ L(i)
p for some p ≥ 1 and z ∈ Fk,`,j′ , then

{2|1− 〈z, γk,j〉|}1/2 ≥ 2−k+p+1 − 2−k+1 ≥ 2−k+p.

Since 1− |γk,j |2 ≤ 2 · 2−2k, we have |mγk,j (z)| ≤ 4 · 2−2p for z ∈ Fk,`,j′ and (k, j, j′) ∈ L(i)
p ,

p ≥ 0. Substituting this in (5.22), we find that

(5.23) ‖f (`)
k;j,j′‖

2 ≤ C42−4(n+t)p2−2n`
∑

z∈Fk,`,j′

cz

for (k, j, j′) ∈ L(i)
p , p ≥ 0.

Recall that Fk,`,j′ ⊂ Fk+` ⊂ Hk+`. Thus if z ∈ Fk,`,j′ , then by (2.8) there is an h
∈ {1, . . . ,m(k + `)} such that ξz ∈ B(uk+`,h, 2

−k−`). We have Sk,j′ ⊂ B(uk,j′ , 2
−k) by

choice. Combining these facts with (5.2) and (5.15), we find that

card(Fk,`,j′) ≤ card{h : B(uk+`,h, 2
−k−`) ∩B(uk,j′ , 2

−k) 6= ∅} ≤ C522n`,
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where the second ≤ is justified by (2.6) and (2.5). Also, the definition of L
(i)
p ensures that

Fk1,`,j′1 ∩ Fk2,`,j′2 = ∅ for any pair of (k1, j1, j
′
1) 6= (k2, j2, j

′
2) in L

(i)
p .

Suppose that our symmetric gauge function Φ satisfies condition (DQK). By Lemma
4.5, Ψ = Φ(2) also satisfies condition (DQK). We now continue with (5.21) and (5.23).
An application of Proposition 4.6 (for which the necessary verification of conditions was
carried out in the preceding paragraph) to Ψ and s gives us

‖|Y (p,i)
` |s‖Ψ ≤ Cs/24 2−2s(n+t)pΨ

({(
2−2n`

∑
z∈Fk,`,j′

cz

)s/2}
(k,j,j′)∈L(i)

p

)
≤ Cs/24 2−2s(n+t)pC(1 + C5)s/2(C522n`)−εΨ({cs/2z }z∈F )

= C62−2s(n+t)p2−2εn`{Φ({csz}z∈F )}1/2.

Recalling (5.20) and applying Lemma 4.1, we obtain

‖|Y (p)
` |

s‖Ψ ≤ 2
2M22np∑
i=1

‖|Y (p,i)
` |s‖Ψ ≤ 4MC62−2(s(n+t)−n)p2−2εn`{Φ({csz}z∈F )}1/2

= C72−2(s(n+t)−n)p2−2εn`{Φ({csz}z∈F )}1/2.(5.24)

Proposition 4.6 guarantees that ε > 0. Also, we have s(n + t) − n > 0 by the choice of t.
Recalling (5.17) and applying Lemma 4.1 again, we now have∥∥∥∥∣∣∣∣ ∞∑

`=0

Y`

∣∣∣∣s∥∥∥∥
Ψ

≤ 2
∞∑
`=0

∞∑
p=0

‖|Y (p)
` |

s‖Ψ ≤ 2C7

∞∑
`=0

∞∑
p=0

2−2(s(n+t)−n)p2−2εn`{Φ({csz}z∈F )}1/2

= C8{Φ({csz}z∈F )}1/2.(5.25)

Next we turn to the operators Z`, which are much easier to handle because condition
(DQK) will not be needed.

First of all, recall that Gk+` = {γk+`,h : h ∈ Jk+`}, where γk+`,h ∈ Tk+`,h for every
h ∈ Jk+`. By (5.2), for each k ≥ 0 there is an Ik ⊂ {1, . . . ,m(k)} such that Fk =
{zk,j : j ∈ Ik} and such that for each j ∈ Ik, zk,j ∈ Tk,j . For convenience, let us write

e
(`)
k,h = eγk+`,h and ϕ

(`)
k,h,j = fzk,j ;γk+`,h

(cf. (5.11)). With this new notation we have

Z` =

∞∑
k=0

∑
(h,j)∈Jk+`×Ik

c1/2zk,j
e

(`)
k,h ⊗ ϕ

(`)
k,h,j .

Now define

Qk,`;0 = {(h, j) ∈ Jk+` × Ik : d(uk,j , uk+`,h) < 2−k+2} and

Qk,`;p = {(h, j) ∈ Jk+` × Ik : 2−k+p+1 ≤ d(uk,j , uk+`,h) < 2−k+p+2}, p ≥ 1.
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Accordingly, we define

Z
(p)
` =

∞∑
k=0

∑
(h,j)∈Qk,`;p

c1/2zk,j
e

(`)
k,h ⊗ ϕ

(`)
k,h,j .

for p = 0, 1, 2, . . . . Then, of course,

(5.26) Z` = Z
(0)
` + Z

(1)
` + Z

(2)
` + · · ·+ Z

(p)
` + · · · .

As in (5.18) and (5.19), from (2.6) and (2.5) we deduce

card{h ∈ Jk+` : (h, j) ∈ Qk,`;p} ≤M22n(`+p) for every j ∈ Ik and

card{j ∈ Ik : (h, j) ∈ Qk,`;p} ≤M22np for every h ∈ Jk+`.

Thus, as in Lemma 2.7, a standard maximality argument gives us a partition

Qk,`;p = Q
(1)
k,`;p ∪ · · · ∪Q

(2M22n(`+p))
k,`;p

such that for every i ∈ {1, . . . , 2M22n(`+p)}, the conditions (h, j), (h′, j′) ∈ Q
(i)
k,`;p and

(h, j) 6= (h′, j′) imply both h 6= h′ and j 6= j′. Accordingly,

(5.27) Z
(p)
` = Z

(p,1)
` + · · ·+ Z

(p,2M22n(`+p))
` ,

where

Z
(p,i)
` =

∞∑
k=0

∑
(h,j)∈Q(i)

k,`;p

c1/2zk,j
e

(`)
k,h ⊗ ϕ

(`)
k,h,j ,

i = 1, . . . , 2M22n(`+p). Define

L
(i)
`,p =

∞⋃
k=0

{
(k, h, j) : (h, j) ∈ Q(i)

k,`;p

}
.

The property of Q
(i)
k,`;p ensures that for (k, h, j) 6= (k′, h′, j′) in Q

(i)
k,`;p, we have both ϕ

(`)
k,h,j ⊥

ϕ
(`)
k′,h′,j′ and e

(`)
k,h ⊥ e

(`)
k′,h′ . Moreover, the projection (k, h, j) 7→ (k, j) is injective on L

(i)
`,p.

Therefore

‖|Z(p,i)
` |s‖Ψ = Ψ({cs/2zk,j

‖ϕ(`)
k,h,j‖

s}
(k,h,j)∈L(i)

`,p

)

≤ sup
(k,h,j)∈L(i)

`,p

‖ϕ(`)
k,h,j‖

sΨ({cs/2z }z∈F ) = sup
(k,h,j)∈L(i)

`,p

‖ϕ(`)
k,h,j‖

s{Φ({csz}z∈F )}1/2.(5.28)

Obviously, we need to estimate ‖ϕ(`)
k,h,j‖. By (5.12), for each (k, h, j) ∈ L(i)

`,p we have

‖ϕ(`)
k,h,j‖ = ‖fzk,j ;γk+`,h‖ ≤ C1(1−|zk,j |2)n/2|ψγk+`,h,t(zk,j)| ≤ C9

∣∣∣∣ 1− |γk+`,h|
1− 〈zk,j , γk+`,h〉

∣∣∣∣(n/2)+t

.
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Since γk+`,h ∈ Tk+`,h, we write γk+`,h = |γk+`,h|ζγk+`,h with ζγk+`,h ∈ B(uk+`,h, 2
−k−`) as

before. Similarly, zk,j = |zk,j |ξzk,j , where ξzk,j ∈ B(uk,j , 2
−k). We have

2|1− 〈zk,j , γk+`,h〉| ≥ |1− 〈ξzk,j , ζγk+`,h〉| = d2(ξzk,j , ζγk+`,h)

and
d(ξzk,j , ζγk+`,h) ≥ d(uk,j , uk+`,h)− 2−k − 2−k−`.

Thus in the case p ≥ 1, we have

1

|1− 〈zk,j , γk+`,h〉|
≤ 2

(2−k+p)2
≤ 4 · 22(k−p).

Since zk,j ∈ Tk,j , the conclusion also holds in the case p = 0. Therefore

‖ϕ(`)
k,h,j‖ ≤ C10{22(k−p)(1− |γk+`,h|)}(n/2)+t ≤ C10{22(k−p) · 2−2(k+`)}(n/2)+t

= C102−(n+2t)(p+`)

for every (k, h, j) ∈ L(i)
`,p. Substituting this in (5.28), we obtain

‖|Z(p,i)
` |s‖Ψ ≤ Cs102−s(n+2t)(p+`){Φ({csz}z∈F )}1/2.

Applying Lemma 4.1 to (5.27), we have

(5.29) ‖|Z(p)
` |

s‖Ψ ≤ 2
2M22n(p+`)∑

i=1

‖|Z(p,i)
` |s‖Ψ ≤ 4MCs102−κ(p+`){Φ({csz}z∈F )}1/2,

where κ = s(n+ 2t)− 2n. The choice st > n ensures that κ > 0. Recalling (5.26), another
application of Lemma 4.1 leads to∥∥∥∥∣∣∣∣ ∞∑

`=1

Z`

∣∣∣∣s∥∥∥∥
Ψ

≤ 2
∞∑
`=1

∞∑
p=0

‖|Z(p)
` |

s‖Ψ ≤ 8MCs10

∞∑
`=1

∞∑
p=0

2−κ(p+`){Φ({csz}z∈F )}1/2

= C11{Φ({csz}z∈F )}1/2.(5.30)

Recalling (5.25) and applying Lemma 4.1 to (5.13), we find that

‖|B∗W |s‖Ψ ≤ C12{Φ({csz}z∈F )}1/2,

where C12 = 2(C8 + C11). This and (5.8) together give us

‖|W |s‖Ψ ≤ C13{Φ({csz}z∈F )}1/2.

Substituting the above in (5.6), we obtain

‖T s‖Φ = ‖|W |s‖2Ψ ≤ C2
13Φ({csz}z∈F ).
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Since T approximates TF (cf. (5.3) and (5.4)), Lemma 4.3 allows us to conclude that

‖T sF ‖Φ ≤ C2
13Φ({csz}z∈F ).

As we recall, F is an arbitrary finite subset of Γ satisfying (5.2) and the condition that
cz = µ̃(D(z, b)) 6= 0 for every z ∈ F . Thus it follows from Lemmas 2.6, 4.1 and 4.3 that

‖T sΓ‖Φ ≤ 2KC2
13Φ({µ̃s(D(z, b))}z∈Γ).

We know that µ̃(D(z, b)) ≤ C14(1 − |z|2)−nµ(D(z, b)) from Lemma 2.4. Since ‖T sµ‖Φ ≤
‖T sΓ‖Φ, this proves the upper bound for ‖T sµ‖Φ in Theorem 1.4. �

Denote Kw(ζ) = (1−〈ζ, w〉)−n. Having proved the upper bound in Theorem 1.4, next
we state a consequence of it, which will be convenient for application in Section 8.

Proposition 5.1. Let 0 < a <∞ and 0 < b <∞ be positive numbers. Suppose that Φ is a
symmetric gauge function satisfying condition (DQK). Then for any regular Borel measure
µ on B and any a-separated set Γ in B, we have∥∥∥∥∑

z∈Γ

∫
D(z,b)

Kw ⊗Kwdµ(w)

∥∥∥∥
Φ

≤ C5.1Φ

({
µ(D(z, b))

(1− |z|2)n

}
z∈Γ

)
,

where C5.1 is a constant that depends only on a, b, Φ and the complex dimension n.

Proof. Obviously, ∑
z∈Γ

∫
D(z,b)

Kw ⊗Kwdµ(w) = Tν ,

where ν is the measure defined by the formula

dν =
∑
z∈Γ

χD(z,b)dµ.

Since Γ is a-separated, there is a Γ′ containing Γ that is maximal with respect to the
property of being a-separated. Thus Γ′ is an a, 2a-lattice in B. By the upper bound in
Theorem 1.4, the proposition will follow if we can find a constant C such that

(5.31) Φ

({
ν(D(w, 2a))

(1− |w|2)n

}
w∈Γ′

)
≤ CΦ

({
µ(D(z, b))

(1− |z|2)n

}
z∈Γ

)
.

Since Γ is a-separated, by Lemma 2.1, there is an N ∈ N determined by a, b such that for
any w ∈ Γ′, card{z ∈ Γ : D(w, 2a) ∩D(z, b) 6= ∅} ≤ N . Let Γ′′ = {w ∈ Γ′ : ν(D(w, 2a)) 6=
0}. Then for each w ∈ Γ′′, there is a z(w) ∈ Γ such that

ν(D(w, 2a)) ≤ Nµ(D(z(w), b)) and β(w, z(w)) ≤ b+ 2a.

Combining these two conditions with Lemma 2.4, we see that

(5.32) Φ

({
ν(D(w, 2a))

(1− |w|2)n

}
w∈Γ′′

)
≤ C1NΦ

({
µ(D(z(w), b))

(1− |z(w)|2)n

}
w∈Γ′′

)
.
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If w, ξ ∈ Γ′′ are such that z(w) = z(ξ), then β(w, ξ) ≤ 2b+ 4a. Thus, by Lemma 2.1, there
is an M ∈ N such that the map w 7→ z(w) from Γ′′ to Γ is at most M -to-1. Applying
Lemma 4.8, we have

Φ

({
µ(D(z(w), b))

(1− |z(w)|2)n

}
w∈Γ′′

)
≤MΦ

({
µ(D(z, b))

(1− |z|2)n

}
z∈Γ

)
.

Combining this inequality with (5.32), (5.31) follows. �

6. Proof of Theorem 1.4 — the lower bound

The main part of the proof of the lower bound consists of estimates similar to those
in Section 5. Therefore many of the notations below are the same as in Section 5. But
some modifications and new ideas are necessary for the lower bound.

To prove the lower bound in Theorem 1.4, we again define µ̃ by (5.1) when a measure
µ is given. Let 0 < a ≤ b <∞. In contrast to Section 5, we now need the inequality

µ(D(z, b))

(1− |z|2)n
≤
(
4e2b

)n
µ̃(D(z, b)),

z ∈ B, which also follows from Lemma 2.4. Suppose that Γ is an a, b-lattice in B. As in
Section 5, we again write cz = µ̃(D(z, b)) for z ∈ Γ.

Consider any finite subset F of Γ satisfying the following three conditions:
(a) cz 6= 0 for every z ∈ F .
(b) F is R-separated for a sufficiently large R > max{1, 2b}, to be determined later.
(c) F satisfies (5.2).

With such an F , we again define the operator TF by (5.3). Let 0 < s ≤ 1 be given. Pick
a t > 0 such that st > n. But instead of the operator B in Section 5, here we need

E =
∑
z∈F

ψz,t ⊗ ez,

where {ez : z ∈ F} is an orthonormal set. Then ‖E‖ ≤ C3.2 by Proposition 3.2. For any
symmetric gauge function Φ, it follows from Lemma 4.2 that

‖(E∗TFE)s‖Φ ≤ C2s
3.2‖T sF ‖Φ ≤ C2s

3.2‖T sµ‖Φ,

where the second ≤ holds because TF ≤ Tµ, which is guaranteed by the condition R > 2b.

Recall from Section 5 that operators T given by (5.4) strongly approximate TF . Con-
sider H = span{ez : z ∈ F}, which is a finite-dimensional Hilbert space. We can regard
E∗TFE as an operator on H. Since dim(H) <∞, all operator topologies on H are equiv-
alent. Therefore there is a T given by (5.4) such that

‖(E∗TE)s‖Φ ≤ 2‖(E∗TFE)s‖Φ ≤ 2C2s
3.2‖T sµ‖Φ.
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Once we have this T , we again factor it in the form T = WW ∗, where W is given by (5.5).
Writing Ψ = Φ(2) as in Section 5, we have

‖(E∗TE)s‖Φ = ‖{E∗W (E∗W )∗}s‖Φ = ‖|E∗W |2s‖Φ = ‖|E∗W |s‖2Ψ.

Writing C1 = {2C2s
3.2}1/2, the above gives us

(6.1) ‖|E∗W |s‖Ψ ≤ C1‖T sµ‖
1/2
Φ .

Similar to (5.10), we have

E∗W =
∑
γ,z∈F

c1/2z eγ ⊗ fz;γ ,

where fz;γ is given by (5.11). Thus E∗W = D +X, where

D =
∑
z∈F

c1/2z ez ⊗ fz;z and X =
∑
γ,z∈F
γ 6=z

c1/2z eγ ⊗ fz;γ .

Since D = E∗W −X, it follows from Lemma 4.1 and (6.1) that

(6.2) ‖|D|s‖Ψ ≤ 2C1‖T sµ‖
1/2
Φ + 2‖|X|s‖Ψ.

First, let us look at the operator D.

Because {ez : z ∈ F} and {ε(z; i) : z ∈ F, 1 ≤ i ≤ d} are orthonormal sets, we have

‖|D|s‖Ψ = Ψ({cs/2z ‖fz;z‖s}z∈F ).

We need a lower bound for ‖fz;z‖. By (5.11), we have

‖fz;z‖ ≥ min
1≤i≤d

(1− |w(z; i)|2)n/2|ψz,t(w(z; i))|.

Recall that w(z; i) ∈ D(z, b) for every 1 ≤ i ≤ d. Thus it follows from Lemmas 2.3 and 2.4
that there is a δ > 0 which is determined by b, n and t such that

(1− |w(z; i)|2)n/2|ψz,t(w(z; i))| ≥ δ(1− |z|2)n/2|ψz,t(z)| = δ

for every 1 ≤ i ≤ d and every z ∈ F . Hence

(6.3) δsΨ({cs/2z }z∈F ) ≤ ‖|D|s‖Ψ.

Next we consider X, which will be handled in a way similar to the B∗W in Section 5.

Similar to (5.13), we have the decomposition

X = Y0 +
∞∑
`=1

Y` +
∞∑
`=1

Z`,
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where

Y` =
∞∑
k=0

∑
(γ,z)∈Fk×Fk+`

c1/2z eγ ⊗ fz;γ and Z` =
∞∑
k=0

∑
(γ,z)∈Fk+`×Fk

c1/2z eγ ⊗ fz;γ

for ` ≥ 1, and where

Y0 =
∞∑
k=0

∑
(γ,z)∈Fk×Fk

γ 6=z

c1/2z eγ ⊗ fz;γ .

As in Section 5, we first consider Y`.

By (5.2), for each k ≥ 0 there is a Jk ⊂ {1, . . . ,m(k)} such that Fk = {γk,j : j ∈ Jk}
and such that for each j ∈ Jk, γk,j ∈ Tk,j . Recall (5.15) for the definition of Fk,`,j . For

k ≥ 0, ` ≥ 0, j ∈ Jk and j′ ∈ {1, . . . ,m(k)}, we now define f
(`)
k;j,j′ by the formula

(6.4) f
(`)
k;j,j′ =

∑
z∈Fk,`,j′
z 6=γk,j

c1/2z fz;γk,j ,

which is a necessary modification of (5.16). (Here, we would like to remind the reader of
the common convention that a summation over the empty index set means 0.) Then

Y` =
∞∑
k=0

∑
j∈Jk

m(k)∑
j′=1

eγk,j ⊗ f
(`)
k;j,j′ =

∞∑
p=0

Y
(p)
`

as in Section 5, where

(6.5) Y
(p)
` =

∞∑
k=0

∑
(j,j′)∈Qk,p

eγk,j ⊗ f
(`)
k;j,j′

for p = 0, 1, 2, . . . , where Qk,p is the same as in Section 5.

Lemma 6.1. Let L ∈ N. If R > 3L+ 13, then Y
(p)
` = 0 whenever we have both ` ≤ L and

p ≤ L.

Proof. Consider any pair of γk,j ∈ Fk and z ∈ Fk,`,j′ , z 6= γk,j . Furthermore, suppose that
(j, j′) ∈ Qk,p, which, as we recall from Section 5, implies

d(uk,j , uk,j′) < 2−k+p+2.

We have z = |z|ξz and γk,j = |γk,j |ξγk,j . The membership z ∈ Fk,`,j′ means 2−2(k+`+1) ≤
1 − |z| ≤ 2−2(k+`) and ξz ∈ Sk,j′ , i.e., d(ξz, uk,j′) < 2−k. Similarly, since γk,j ∈ Tk,j , we
have 2−2(k+1) ≤ 1− |γk,j | ≤ 2−2k and d(ξγk,j , uk,j) < 2−k. Hence

|1− 〈ξz, ξγk,j 〉| = d2(ξz, ξγk,j ) ≤ (2−k+p+2 + 2−k + 2−k)2 ≤ 2−2k+2p+8.
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This leads to

|1− 〈z, γk,j〉| ≤ |1− 〈ξz, ξγk,j 〉|+ 1− |z|+ 1− |γk,j | ≤ 2−2k+2p+10.

Therefore

1− |ϕz(γk,j)|2 =
(1− |z|2)(1− |γk,j |2)

|1− 〈z, γk,j〉|2
≥ 2−2(k+`+1) · 2−2(k+1)

(2−2k+2p+10)2
= 2−(2`+4p+24).

Consequently

β(z, γk,j) ≤
1

2
log

4

1− |ϕz(γk,j)|2
≤ `+ 2p+ 13.

Thus if we have both ` ≤ L and p ≤ L, then β(z, γk,j) ≤ 3L + 13. But if R > 3L + 13,
then there is no such a pair of z 6= γk,j in F , because F is supposed to be R-separated.

By (6.4) and (6.5), this means that Y
(p)
` = 0 under the conditions R > 3L+ 13, ` ≤ L and

p ≤ L. This completes the proof. �

Now let L ∈ N, whose value will be determined momentarily. We choose R such that
R > max{3L+ 13, 2b}. By (5.24), for all ` ≥ 0 and p ≥ 0,

‖|Y (p)
` |

s‖Ψ ≤ C72−2(s(n+t)−n)p2−2εn`Ψ({cs/2z }z∈F ),

where, as we recall, the ε > 0 resulted from the (DQK) condition for Ψ. Taking Lemma
6.1 into account and applying Lemma 4.1, we obtain∥∥∥∥∣∣∣∣ ∞∑

`=0

Y`

∣∣∣∣s∥∥∥∥
Ψ

≤ 2
∑

`,p∈Z+

max{`,p}≥L

‖|Y (p)
` |

s‖Ψ

≤ 2C7

∑
`,p∈Z+

max{`,p}≥L

2−2(s(n+t)−n)p2−2εn`Ψ({cs/2z }z∈F ) ≤ C82−ωLΨ({cs/2z }z∈F ),

where ω = 2 min{s(n+ t)− n, εn}.

For Z`, we similarly retrace the second half of Section 5. In particular, (5.29) still

holds. Then, similar to Lemma 6.1, we find that Z
(p)
` = 0 if we have both ` ≤ L and

p ≤ L, because R > 3L+ 13 and F is R-separated. Thus∥∥∥∥∣∣∣∣ ∞∑
`=1

Z`

∣∣∣∣s∥∥∥∥
Ψ

≤ C92−κLΨ({cs/2z }z∈F ),

where κ = s(n+ 2t)− 2n. Then another application of Lemma 4.1 gives us

‖|X|s‖Ψ ≤ 2

∥∥∥∥∣∣∣∣ ∞∑
`=0

Y`

∣∣∣∣s∥∥∥∥
Ψ

+ 2

∥∥∥∥∣∣∣∣ ∞∑
`=1

Z`

∣∣∣∣s∥∥∥∥
Ψ

≤ 2(C82−ωL + C92−κL)Ψ({cs/2z }z∈F ).
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Combining this with (6.2) and (6.3), we obtain

δsΨ({cs/2z }z∈F ) ≤ 2C1‖T sµ‖
1/2
Φ + 4(C82−ωL + C92−κL)Ψ({cs/2z }z∈F ).

We pick L large enough so that 4(C82−ωL+C92−κL) ≤ δs/2, and set R > max{3L+13, 2b}
accordingly. Then the obvious cancellation and simplification in the above leads to

Ψ({cs/2z }z∈F ) ≤ 4δ−sC1‖T sµ‖
1/2
Φ .

Since Ψ = Φ(2), this implies that

Φ({csz}z∈F ) ≤ {4δ−sC1}2‖T sµ‖Φ.

Recall that F is any finite subset of Γ satisfying conditions (a), (b), (c). Combining this
inequality with Lemmas 2.1 and 2.6, the desired lower bound in Theorem 1.4 follows. �

7. Dixmier trace — the case of discrete sums

In addition to Proposition 1.2, Φ+
1 is another example of symmetric gauge function

that satisfies condition (DQK). To see this, consider an a = {aj}j∈N ∈ ĉ. It suffices to
consider the case where aj ≥ 0 for every j and we have the descending arrangement

a1 ≥ a2 ≥ · · · ≥ aj ≥ · · · .

Since aj = 0 for all but a finite number of j’s, there is a k ∈ N such that

Φ+
1 (a) =

a1 + · · ·+ ak
1−1 + · · ·+ k−1

.

On the other hand, by (1.4), for any N ∈ N we have

Φ+
1 (a[N ]) ≥ aN1 + · · ·+ aNNk

1−1 + · · ·+ (Nk)−1
=

Na1 + · · ·+Nak
1−1 + · · ·+ (Nk)−1

.

Obviously, for any 0 < ε < 1, 1−1 + · · ·+ (Nk)−1 ≤ CεN ε(1−1 + · · ·+ k−1). Therefore

Φ+
1 (a[N ]) ≥ C−1

ε N1−ε a1 + · · ·+ ak
1−1 + · · ·+ k−1

= C−1
ε N1−εΦ+

1 (a).

This shows that Φ+
1 satisfies condition (DQK), and we can take any value less than 1 to

be its “θ”. In particular, Theorem 1.4 determines the membership T sµ ∈ C+
1 , 0 < s ≤ 1.

This enables us to consider the Dixmier trace of Tµ. But before we do that, let us
briefly review the definition of Dixmier trace for the benefit of the reader. First of all, we
cite [2,4,15] as general references. To define the Dixmier trace, one starts with a Banach
limit ω on `∞(N). But in addition to the properties that Banach limits [3,Section III.7]
possess in general, ω is required to have the following “doubling” property:
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(D) For each {ak}k∈N ∈ `∞(N), ω({ak}k∈N) = ω({a1, a1, a2, a2, . . . , ak, ak, . . . }).
Such an ω can be easily constructed. For example, one can start with the doubling operator
D : `∞(N)→ `∞(N). That is,

D{a1, a2, . . . , ak, . . . } = {a1, a1, a2, a2, . . . , ak, ak, . . . }

for {ak}k∈N ∈ `∞(N). Take any Banach limits L1 and L2, distinct or identical. Then an
elementary exercise shows that the formula

ω(a) = L2

({
1

k

k∑
j=1

L1(Dja)

}
k∈N

)
,

a ∈ `∞(N), defines a Banach limit that has the doubling property (D).

With such an ω, for any positive operator A ∈ C+
1 , its Dixmier trace is defined to be

Trω(A) = ω

({
1

log(k + 1)

k∑
j=1

sj(A)

}
k∈N

)
.

The doubling property of ω ensures the additivity Trω(A + B) = Trω(A) + Trω(B) for
positive operators A,B ∈ C+

1 . Thus Trω naturally extends to a linear functional on C+
1 .

This definition guarantees unitary invariance: Trω(U∗TU) = Trω(T ) for every T ∈ C+
1 and

every unitary operator U . Since UT is unitarily equivalent to TU , we have Trω(UT ) =
Trω(TU). From this it follows that Trω(XT ) = Trω(TX) for every T ∈ C+

1 and every
bounded operator X, which is what one expects of a trace.

Previous calculations of Dixmier trace (see, e.g., [1,5,6,16]) relied heavily on the prin-
ciple that if A is in the trace class, then Trω(A) = 0. In this paper, our calculation of
Dixmier trace will be based on two different vanishing principles.

Lemma 7.1. Let A ∈ C+
1 . If the kernel of A contains its range, then Trω(A) = 0.

Proof. Let P be the orthogonal projection onto the range of A. If the kernel of A contains
the range of A, then Trω(A) = Trω(PA) = Trω(AP ) = Trω(0) = 0. �

Even though our next lemma is trivial, we would like to state it for the record anyway.
We remind the reader that we write ‖ · ‖+1 for ‖ · ‖Φ+

1
.

Lemma 7.2. Let Y1, . . . , Yj , . . . be operators in C+
1 such that

∑∞
j=1 ‖Yj‖

+
1 < ∞. Define

Y =
∑∞
j=1 Yj . If Trω(Yj) = 0 for every j ∈ N, then Trω(Y ) = 0.

Lemmas 7.1 and 7.2 will guide our calculation of Dixmier trace. Our task is to extract
non-trivial results from these seemingly trivial principles.

Lemma 7.3. Suppose that B is a set and that A is a subset of B. Let h : A → B be
an injective map which has the property that h(a) 6= a for every a ∈ A. Then there is a
partition A = E1 ∪ E2 ∪ E3 such that for every i ∈ {1, 2, 3}, we have h(Ei) ∩ Ei = ∅.
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Proof. By Zorn’s lemma, there is a subset E1 of A that is maximal with respect to the
property h(E1) ∩ E1 = ∅. If E1 6= A, then there is a subset E2 of A\E1 that is maximal
with respect to the property h(E2) ∩ E2 = ∅. Similarly, if E1 ∪ E2 6= A, then there is a
subset E3 of A\{E1 ∪ E2} that is maximal with respect to the property h(E3) ∩ E3 = ∅.

To complete the proof, it suffices to show that E1 ∪E2 ∪E3 = A. Suppose that there
were some x ∈ A\{E1 ∪ E2 ∪ E3}. It follows from the maximality of E1, E2 and E3 that
for each i ∈ {1, 2, 3}, if we define Fi = Ei ∪ {x}, then h(Fi) ∩ Fi 6= ∅. Since h(x) 6= x, this
means that we have either x ∈ h(Ei) or h(x) ∈ Ei for each i ∈ {1, 2, 3}. Our construction
ensures that Ei ∩Ej = ∅ when i 6= j. Therefore there is at most one i ∈ {1, 2, 3} such that
h(x) ∈ Ei. This leaves a pair of j 6= k in {1, 2, 3} such that x ∈ h(Ej) and x ∈ h(Ek).
Since Ej ∩ Ek = ∅, this contradicts the injectivity of h. Hence no such x exists. �

The computation of Dixmier trace is trivial when the operator in question is explicitly
given as a diagonal operator with respect to an orthonormal set. Even though it is trivial,
we state the case as a proposition below, which will serve as a convenient reference:

Proposition 7.4. Let E be a countable index set and consider an operator of the form

D =
∑
z∈E

czez ⊗ ez,

where {cz}z∈E are non-negative numbers such that Φ+
1 ({cz}z∈E)<∞, and, most important,

{ez : z ∈ E} is an orthonormal set. Let E′ = {z ∈ E : cz 6= 0}. If card(E′) =∞, then

Trω(D) = ω

({
1

log(k + 1)

k∑
j=1

czj

}
k∈N

)
,

where z1, z2, . . . , zk, . . . are an enumeration of the elements in E′ such that czj ≥ czj+1

for every j ∈ N (the condition Φ+
1 ({cz}z∈E) < ∞ ensures that such an enumeration is

possible). If card(E′) <∞, then, of course, Trω(D) = 0.

We first consider Tµ where µ is discrete. Our computation shows that for any separated
set Γ in B, Dixmier trace cannot distinguish {kz : z ∈ Γ} from an orthonormal set.

Theorem 7.5. Suppose that Γ is an a-separated set in B for some a > 0. Let {cz}z∈Γ be
non-negative numbers such that Φ+

1 ({cz}z∈Γ) <∞. Then the operator

T =
∑
z∈Γ

czkz ⊗ kz

is in the ideal C+
1 . Moreover, its Dixmier trace is explicitly given by the formula

(7.1) Trω(T ) = Trω

(∑
z∈Γ

czez ⊗ ez
)
,

where {ez : z ∈ Γ} is any orthonormal set.
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Proof. Obviously, the membership T ∈ C+
1 follows from Proposition 5.1 by applying it

to the symmetric gauge function Φ+
1 and the discrete measure ν =

∑
z∈Γ cz(1 − |z|2)nδz,

where δz denotes the unit point mass at z. Next we compute the Dixmier trace Trω(T ).

Since this calculation is quite long, let us first explain the main idea involved. Consider
an arbitrary positive operator A in C+

1 . Let {uj : j ∈ N} be an orthonormal basis for the
underlying Hilbert space, and define the operator

A′ =
∞∑
j=1

〈Auj , uj〉uj ⊗ uj .

It follows from [11,Lemma III.3.1] that ‖A′‖+1 ≤ ‖A‖
+
1 . Hence A′ ∈ C+

1 . Note that A−A′
is an operator whose diagonal with respect to the orthonormal basis {uj : j ∈ N} vanishes.
Therefore one’s first instinct is to say

(7.2) Trω(A−A′) = 0,

and consequently Trω(A) = Trω(A′). But unfortunately, in such generality this is a wrong
argument for the Dixmier trace [15,Section 7.5]. The main effort below amounts to proving
(7.2) for our particular A and A′, using the specifics of the operators.

Let {Sk,j : (k, j) ∈ I} be the Borel sets introduced in Section 5, satisfying conditions
(1), (2), (3) there. Again, we write each z ∈ Γ in the form z = |z|ξz with ξz ∈ S. Define

(7.3) Γk = {z ∈ Γ : 1− 2−2k ≤ |z| < 1− 2−2(k+1)}

for each k ≥ 0. Since the Dixmier trace is linear, decomposing Γ by a finite partition if
necessary, Lemma 2.6 allows us to assume that

(7.4) card{z ∈ Γk : ξz ∈ Sk,j} ≤ 1

for every (k, j) ∈ I. We pick an orthonormal set {ez : z ∈ Γ} and define

B =
∑
z∈Γ

c1/2z kz ⊗ ez.

Obviously, T = BB∗. Define A = B∗B. Since B∗B and BB∗ have identical singular
numbers, we have Trω(T ) = Trω(A). Thus our task becomes the computation of Trω(A).
Then note that

A = A′ + Y,

where
A′ =

∑
z∈Γ

czez ⊗ ez and Y =
∑
w,z∈Γ
w 6=z

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez.

Obviously, A′ ∈ C+
1 and Trω(A′) is the right-hand side of (7.1). Thus, as we explained

earlier, our main task is to show that Trω(Y ) = 0.
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The proof of Trω(Y ) = 0 requires two applications of Proposition 4.6 to the symmetric

gauge function Ψ = Φ
+(2)
1 , which produce two “small factors”, which in turn allow Lemma

7.2 to be applied. This involves a decomposition scheme similar to the one in Section 5,
but only more complicated. To begin, we have

(7.5) Y = Y0 +
∞∑
`=1

(Y` + Y ∗` ),

where

Y0 =

∞∑
k=0

∑
w,z∈Γk
w 6=z

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez and

Y` =
∞∑
k=0

∑
(w,z)∈Γk×Γk+`

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez, ` ≥ 1.(7.6)

For each pair of k ≥ 0 and ` ≥ 0, we have a partition

Γk+` = Γk,`,1 ∪ · · · ∪ Γk,`,m(k),

where

(7.7) Γk,`,j = {z ∈ Γk+` : ξz ∈ Sk,j},

1 ≤ j ≤ m(k). By (7.4), for each k ≥ 0 there is a Jk ⊂ {1, . . . ,m(k)} such that Γk =
{γk,j : j ∈ Jk} and such that ξγk,j ∈ Sk,j for each j ∈ Jk.

For k ≥ 0, ` ≥ 0, j ∈ Jk and j′ ∈ {1, . . . ,m(k)}, define

(7.8) f
(`)
k;j,j′ =

∑
z∈Γk,`,j′

c1/2z 〈kγk,j , kz〉ez.

Then

Y` =
∞∑
k=0

∑
j∈Jk

m(k)∑
j′=1

c1/2γk,j
eγk,j ⊗ f

(`)
k;j,j′

for ` ≥ 1. By (7.4), (7.7) and (7.8), we have

Y0 =
∞∑
k=0

∑
(j,j′)∈Jk×{1,...,m(k)}

j 6=j′

c1/2γk,j
eγk,j ⊗ f

(0)
k;j,j′ .

Now we further decompose Y` according to spherical separation. For each k ≥ 0, define

Qk,0 = {(j, j′) : j ∈ Jk, 1 ≤ j′ ≤ m(k), d(uk,j , uk,j′) < 2−k+3} and

Qk,p = {(j, j′) : j ∈ Jk, 1 ≤ j′ ≤ m(k), 2−k+p+2 ≤ d(uk,j , uk,j′) < 2−k+p+3}, p ≥ 1.
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Accordingly, we define

(7.9) Y
(p)
` =

∞∑
k=0

∑
(j,j′)∈Qk,p

c1/2γk,j
eγk,j ⊗ f

(`)
k;j,j′

if either p ≥ 1 or ` ≥ 1. In the case p = 0 and ` = 0, we define Y
(0)
0 by the above sum

with the extra constraint that the inner sum be taken over all (j, j′) ∈ Qk,0 satisfying the
condition j 6= j′. Then, of course,

(7.10) Y` = Y
(0)
` + Y

(1)
` + Y

(2)
` + · · ·+ Y

(p)
` + · · · ,

` ≥ 0. So far, this resembles a portion of Section 5. Next we will decompose each Y
(p)
` .

Because we no longer have the benefit of the modified kernel ψz,t, the decomposition of

Y
(p)
` here is much more complicated than the corresponding part in Section 5.

For each pair of k ≥ 0 and p ≥ 0, let Fk;p be a subset of S that is maximal with
respect to the property

(7.11) B(ξ, 2−k+p) ∩B(ξ′, 2−k+p) = ∅ for all ξ 6= ξ′ in Fk;p.

From this we obtain Borel sets {Eξk;p : ξ ∈ Fk;p} with the following three properties:

(a) ∪ξ∈Fk;pE
ξ
k;p = S

(b) Eξk;p ⊂ B(ξ, 2−k+p+1) for every ξ ∈ Fk;p.

(c) Eξk;p ∩ E
ξ′

k;p = ∅ for all ξ 6= ξ′ in Fk;p.
Now we define the operator

(7.12) Zξ,ξ
′

k,`;p =
∑

uk,j∈Eξk;p,uk,j′∈E
ξ′
k;p

(j,j′)∈Qk,p

c1/2γk,j
eγk,j ⊗ f

(`)
k;j,j′

if either p ≥ 1 or ` ≥ 1. Also, in the case where we have both ` = 0 and p = 0, define

Zξ,ξ
′

k,0;0 =
∑

uk,j∈Eξk;0,uk,j′∈E
ξ′
k;0

(j,j′)∈Qk,0, j 6=j′

c1/2γk,j
eγk,j ⊗ f

(0)
k;j,j′ .

Furthermore, define the set

Gk;p = {(ξ, ξ′) ∈ Fk;p × Fk;p : there is at least one (j, j′) ∈ Qk,p such that

uk,j ∈ Eξk;p and uk,j′ ∈ Eξ
′

k;p}.

This allows us to rewrite (7.9) as

Y
(p)
` =

∞∑
k=0

∑
(ξ,ξ′)∈Gk;p

Zξ,ξ
′

k,`;p.
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Now suppose that the conditions (ξ, ξ′) ∈ Fk;p × Fk;p, uk,j ∈ Eξk;p, uk,j′ ∈ Eξ
′

k;p and
(j, j′) ∈ Qk,p are simultaneously satisfied. Then

d(ξ, ξ′) ≤ d(ξ, uk,j) + d(uk,j , uk,j′) + d(uk,j′ , ξ
′)

≤ 2−k+p+1 + 2−k+p+3 + 2−k+p+1 < 2−k+p+4.

Combining this with (7.11) and (2.5), we see that there is a constant N ∈ N such that

card{ξ′ : (ξ, ξ′) ∈ Gk;p} ≤ N and card{ξ′ : (ξ′, ξ) ∈ Gk;p} ≤ N

for all k ≥ 0, p ≥ 0 and ξ ∈ Fk;p. Thus for each Gk;p, Lemma 2.7 provides a partition

Gk;p = G
(1)
k;p ∪ · · · ∪G

(2N)
k;p

such that for every i ∈ {1, . . . , 2N}, the conditions (ξ, ξ′), (η, η′) ∈ G(i)
k;p and (ξ, ξ′) 6= (η, η′)

imply both ξ 6= η and ξ′ 6= η′. Accordingly, we have

(7.13) Y
(p)
` = Y

(p,1)
` + · · ·+ Y

(p,2N)
` ,

where

(7.14) Y
(p,i)
` =

∞∑
k=0

∑
(ξ,ξ′)∈G(i)

k;p

Zξ,ξ
′

k,`;p.

for each i ∈ {1, . . . , 2N}.

Now define

(7.15) W ξ,ξ′

k,`;p =
∑

uk,j∈Eξk;p,uk,j′∈E
ξ′
k;p

(j,j′)∈Qk,p

eγk,j ⊗ f
(`)
k;j,j′

if either p ≥ 1 or ` ≥ 1, and impose the extra condition j 6= j′ in the sum when ` = 0 = p

(the same will be assumed below). It is clear from (7.12) that Y
(p,i)
` = VW

(p,i)
` , where

V =

∞∑
k=0

∑
j∈Jk

c1/2γk,j
eγk,j ⊗ eγk,j and W

(p,i)
` =

∞∑
k=0

∑
(ξ,ξ′)∈G(i)

k;p

W ξ,ξ′

k,`;p.

Applying Lemma 4.4, we have

‖Y (p,i)
` ‖+1 ≤ {‖V ∗V ‖

+
1 ‖W

(p,i)
` W

(p,i)∗
` ‖+1 }1/2

= {Φ+
1 ({cz}z∈Γ)‖W (p,i)

` W
(p,i)∗
` ‖+1 }1/2.(7.16)
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Thus we need to estimate ‖W (p,i)
` W

(p,i)∗
` ‖+1 .

For any given k ≥ 0 and (ξ, ξ′), the range of W ξ,ξ′

k,`;p is contained in the linear span

of {eγk,j : uk,j ∈ Eξk;p}, whereas the range of W ξ,ξ′∗
k,`;p is contained in the linear span of

{ez : z ∈ Γk,`,j′ and uk,j′ ∈ Eξ
′

k;p}. Thus for each i ∈ {1, . . . , 2N}, by the property of G
(i)
k;p,

the conditions (ξ, ξ′), (η, η′) ∈ G(i)
k;p and (ξ, ξ′) 6= (η, η′) imply both

range(W ξ,ξ′

k,`;p) ⊥ range(W η,η′

k,`;p) and range(W ξ,ξ′∗
k,`;p ) ⊥ range(W η,η′∗

k,`;p ).

If k 6= κ, then, of course, we have

range(W ξ,ξ′

k,`;p) ⊥ range(W η,η′

κ,`;p) and range(W ξ,ξ′∗
k,`;p ) ⊥ range(W η,η′∗

κ,`;p )

for all (ξ, ξ′) ∈ G(i)
k;p and (η, η′) ∈ G(i)

κ;p. From the above orthogonality it follows that

W
(p,i)
` W

(p,i)∗
` =

∞∑
k=0

∑
(ξ,ξ′)∈G(i)

k;p

W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ,

and that the right-hand side is an orthogonal sum. Thus Lemma 4.7 gives us

(7.17) ‖W (p,i)
` W

(p,i)∗
` ‖+1 ≤ Φ+

1

(
{‖W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ‖1}(ξ,ξ′)∈G(i)

k;p
,k≥0

)
.

On the other hand, it follows from (7.15), (7.7) and (7.8) that

W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p =

∑
uk,j∈Eξk;p,uk,j′∈E

ξ′
k;p

(j,j′)∈Qk,p

∑
uk,h∈Eξk;p,uk,j′∈E

ξ′
k;p

(h,j′)∈Qk,p

〈f (`)
k;h,j′ , f

(`)
k;j,j′〉eγk,j ⊗ eγk,h .

Consequently

‖W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ‖1 = tr(W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ) =

∑
uk,j∈Eξk;p,uk,j′∈E

ξ′
k;p

(j,j′)∈Qk,p

‖f (`)
k;j,j′‖

2.

Similar to the proof of (5.22), in the current situation we have

‖f (`)
k;j,j′‖

2 =
∑

z∈Γk,`,j′

cz(1− |z|2)n|kγk,j (z)|2 =
∑

z∈Γk,`,j′

cz

(
1− |z|2

1− |γk,j |2

)n
|mγk,j (z)|2n

≤ C02−2n`
∑

z∈Γk,`,j′

cz|mγk,j (z)|2n.
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For any (j, j′) ∈ Qk,p and z ∈ Γk,`,j′ , we have |mγk,j (z)| ≤ C12−2p as the argument
following (5.22) shows. (We emphasize that this includes the case where p = 0.) Define

(7.18) d
(`)
k,j′ =

(
2−2n`

∑
z∈Γk,`,j′

cz

)1/2

for (k, j′) ∈ I. Then the above estimates tell us that

‖W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ‖1 ≤ C22−4np

∑
uk,j∈Eξk;p,uk,j′∈E

ξ′
k;p

(j,j′)∈Qk,p

(
d

(`)
k,j′

)2

.

By (b), (2.6) and (2.5), we have card{j : uk,j ∈ Eξk;p} ≤ C322np. Thus

‖W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ‖1 ≤ C42−2np

∑
uk,j′∈E

ξ′
k;p

(
d

(`)
k,j′

)2

= C42−2np
∑

(k,j′)∈Aξ
′
k;p

(
d

(`)
k,j′

)2

,

where Aξ
′

k;p = {(k, j′) : uk,j′ ∈ Eξ
′

k;p}. This suggests that we should define

ϕξ,ξ
′

k,`;p =

(
2−2np

∑
(k,j′)∈Aξ

′
k;p

(
d

(`)
k,j′

)2
)1/2

for (ξ, ξ′) ∈ G(i)
k;p. The above now becomes

‖W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ‖1 ≤ C4

(
ϕξ,ξ

′

k,`;p

)2

.

Denote Ψ = Φ
+(2)
1 . Since Φ+

1 satisfies condition (DQK), Lemma 4.5 says that Ψ also
satisfies condition (DQK), which enables us to apply Proposition 4.6 here.

For (ξ, ξ′) 6= (η, η′) in G
(i)
k;p, since ξ′ 6= η′, we have Aξ

′

k;p ∩A
η′

k;p = ∅. Also, card(Aξ
′

k;p) ≤
C322np as we explained above. Applying Proposition 4.6 to Ψ, we have

Φ+
1

(
{‖W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ‖1}(ξ,ξ′)∈G(i)

k;p
,k≥0

)
≤ C4Φ+

1

({(
ϕξ,ξ

′

k,`;p

)2
}

(ξ,ξ′)∈G(i)

k;p
,k≥0

)

= C4

(
Ψ
(
{ϕξ,ξ

′

k,`;p}(ξ,ξ′)∈G(i)

k;p
,k≥0

))2

≤ C4

(
C52−2εnpΨ

(
{d(`)
k,j′}(k,j′)∈I

))2

.(7.19)

From (7.7) and the properties of {Sk,j : (k, j) ∈ I} stated in Section 5 we see that Γk,`,j ∩
Γk,`,j′ = ∅ if j 6= j′. For k 6= κ, we have Γk,`,j ∩ Γκ,`,h = ∅ for all possible j and h.
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Furthermore, from (7.7), (7.3), (7.4), (2.6) and (2.5) we obtain card(Γk,`,j′) ≤ C622n`.
Recalling (7.18) and applying Proposition 4.6 again, we have

Ψ
(
{d(`)
k,j′}(k,j′)∈I) ≤ C72−2εn`Ψ({c1/2z }z∈Γ).

Substituting this in (7.19) and recalling the relation Ψ = Φ
+(2)
1 , we find that

Φ+
1

(
{‖W ξ,ξ′

k,`;pW
ξ,ξ′∗
k,`;p ‖1}(ξ,ξ′)∈G(i)

k;p
,k≥0

)
≤ C82−4εnp2−4εn`Φ+

1 ({cz}z∈Γ).

Combining this with (7.17) and (7.16), we obtain

‖Y (p,i)
` ‖+1 ≤ C

1/2
8 2−2εn(p+`)Φ+

1 ({cz}z∈Γ).

Recalling (7.13), we now have

‖Y (p)
` ‖

+
1 ≤ 2NC

1/2
8 2−2εn(p+`)Φ+

1 ({cz}z∈Γ)

for all ` ≥ 0 and p ≥ 0. Thus

∞∑
`=0

∞∑
p=0

‖Y (p)
` ‖

+
1 +

∞∑
`=1

∞∑
p=0

‖Y (p)∗
` ‖+1 <∞.

Combining this fact with (7.5), (7.10) and with Lemma 7.2, the conclusion Trω(Y ) = 0

will follow if we can show that Trω(Y
(p)
` ) = 0 for every pair of ` ≥ 0 and p ≥ 0.

To prove that Trω(Y
(p)
` ) = 0, let a pair of ` ≥ 0 and p ≥ 0 be given. By (7.9), (7.8) and

(7.7), we need to consider γk,j = |γk,j |ξγk,j ∈ Γk and z = |z|ξz ∈ Γk+`, where ξγk,j ∈ Sk,j ,
ξz ∈ Sk,j′ and (j, j′) ∈ Qk,p. For such a pair of γk,j and z, we have

d(ξγk,j , ξz) ≤ d(ξγk,j , uk,j) + d(uk,j , uk,j′) + d(uk,j′ , ξz) < 2−k + 2−k+p+3 + 2−k ≤ 2−k+p+4.

Therefore

|1− 〈z, γk,j〉| ≤ |1− 〈ξz, ξγk,j 〉|+ 1− |z|+ 1− |γk,j | ≤ 3 · 2−2k+2p+8.

Consequently

1− |ϕγk,j (z)|2 =
(1− |γk,j |2)(1− |z|2)

|1− 〈z, γk,j〉|2
≥ 2−2(k+1) · 2−2(k+`+1)

(3 · 2−2k+2p+8)2
=

1

32 · 220 · 22`+4p
.

This implies that there is a constant 0 < R`,p <∞ such that for γk,j = |γk,j |ξγk,j ∈ Γk and
z = |z|ξz ∈ Γk+` satisfying the conditions ξγk,j ∈ Sk,j , ξz ∈ Sk,j′ and (j, j′) ∈ Qk,p, we have
β(γk,j , z) < R`,p. Thus another look at (7.9) and (7.8) gives us the new representation

Y
(p)
` =

∑
(w,z)∈Ω`,p

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez,
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where Ω`,p is a subset of the set

(7.20) {(w, z) ∈ Γ× Γ : β(w, z) < R`,p and w 6= z}.

Since Γ is a-separated and R`,p <∞, Lemma 2.1 provides an M`,p ∈ N such that card{w :
(w, z) ∈ Ω`,p} ≤ M`,p for every z and card{z : (w, z) ∈ Ω`,p} ≤ M`,p for every w. By
Lemma 2.7, we have a partition

Ω`,p = Ω
(1)
`,p ∪ · · · ∪ Ω

(2M`,p)
`,p

such that for each i ∈ {1, . . . , 2M`,p}, the conditions (w, z), (w′, z′) ∈ Ω
(i)
`,p and (w, z) 6=

(w′, z′) imply both w 6= w′ and z 6= z′. Accordingly, we have

(7.21) Y
(p)
` = Y

(1)
`;p + · · ·+ Y

(2M`,p)
`;p ,

where
Y

(i)
`;p =

∑
(w,z)∈Ω

(i)

`,p

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez

for each i ∈ {1, . . . , 2M`,p}. Obviously, we have Y
(i)
`;p ∈ C

+
1 .

Fix an i ∈ {1, . . . , 2M`,p} for the moment. The property of Ω
(i)
`,p ensures that the

membership (w, z) ∈ Ω
(i)
`,p defines z as a function of w, and vice versa. Thus there is a

subset E of Γ and an injective map h : E → Γ such that Ω
(i)
`,p = {(w, h(w)) : w ∈ E}.

Hence
Y

(i)
`;p =

∑
w∈E

c
1/2
h(w)c

1/2
w 〈kh(w), kw〉ew ⊗ eh(w).

By (7.20) we have h(w) 6= w for every w ∈ E. Applying Lemma 7.3, we obtain a partition
E = E1 ∪ E2 ∪ E3 such that h(Eν) ∩ Eν = ∅ for ν = 1, 2, 3. For each ν ∈ {1, 2, 3}, define
the orthogonal projection

Pν =
∑
w∈Eν

ew ⊗ ew.

The property h(Eν)∩Eν = ∅ obviously translates to PνY
(i)
`;p Pν = 0. Hence Trω(PνY

(i)
`;p ) =

Trω(PνY
(i)
`;p Pν) = 0. Since Y

(i)
`;p = (P1 + P2 + P3)Y

(i)
`;p , we conclude that Trω(Y

(i)
`;p ) = 0.

Combining the last conclusion with (7.21), we now have Trω(Y
(p)
` ) = 0 for all ` ≥ 0

and p ≥ 0. As we explained earlier, this completes the proof of Theorem 7.5. �

8. Dixmier trace — the general case

Having computed the Dixmier trace for the discrete sum T in Theorem 7.5, we will
now use that result to compute the Dixmier trace for a general Toeplitz operator Tµ defined
by (1.1). The gap between T and Tµ concerns “small perturbations of Γ”, which is handled
by the same techniques that proved the upper bound in Theorem 1.4.
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Proposition 8.1. Let Φ be a symmetric gauge function satisfying condition (DQK). Then
there is a constant 0 < C8.1 < ∞ such that the following holds: Let 0 < a < 1. If Γ is
any 1-separated set in B and if we have a set {w(z) : z ∈ Γ} ⊂ B satisfying the condition
β(z, w(z)) ≤ a for every z ∈ Γ, then∥∥∥∥∑

z∈Γ

czkz ⊗ kz −
∑
z∈Γ

czkw(z) ⊗ kw(z)

∥∥∥∥
Φ

≤ C8.1aΦ({cz}z∈Γ)

for every set of non-negative coefficients {cz}z∈Γ.

Proof. By Lemma 2.6, we may assume that Γ satisfies the additional condition

(8.1) card(Γ ∩ Tk,j) ≤ 1 for every (k, j) ∈ I.

Let us write

D =
∑
z∈Γ

czkz ⊗ kz −
∑
z∈Γ

czkw(z) ⊗ kw(z).

Then D = D1 +D2, where

D1 =
∑
z∈Γ

cz(kz − kw(z))⊗ kz and D2 =
∑
z∈Γ

czkw(z) ⊗ (kz − kw(z)).

Since the estimates of ‖D1‖Φ and ‖D2‖Φ are similar, we will only consider the former.

To estimate ‖D1‖Φ, we pick an orthonormal set {ẽz : z ∈ Γ} and factor D1 in the
form D1 = WL, where

W =
∑
z∈Γ

c1/2z (kz − kw(z))⊗ ẽz and L =
∑
z∈Γ

c1/2z ẽz ⊗ kz.

By Lemma 4.4, ‖D1‖Φ ≤ ‖W ∗W‖1/2Φ ‖L∗L‖
1/2
Φ . Note that

L∗L =
∑
z∈Γ

czkz ⊗ kz,

the Toeplitz operator associated with the discrete measure ν =
∑
z∈Γ cz(1 − |z|2)nδz.

Applying Proposition 5.1 to ν, we obtain

(8.2) ‖L∗L‖Φ ≤ CΦ({cz}z∈Γ).

To complete the proof, we need to estimate ‖W ∗W‖1/2Φ .

For the given Φ, we again have the symmetric gauge function Ψ = Φ(2) defined in

Section 4. Furthermore, ‖W ∗W‖1/2Φ = ‖W‖Ψ as before. Thus it suffices to estimate ‖W‖Ψ.
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We again take advantage of the fact that the operator A given by (5.7) is invertible on
H2(S). By Propositions 3.8 and 3.2, it suffices to estimate ‖B∗W‖Ψ, where

B =
∑
γ∈G

ψγ,t ⊗ eγ ,

t > n, G is a 1-separated set in B and {eγ : γ ∈ G} is an orthonormal set. By Lemma 2.6,
we can further assume that the 1-separated set G has the property that

card(G ∩ Tk,j) ≤ 1 for every (k, j) ∈ I,

which, along with (8.1), allows us to repeat the counting argument in Section 5. But now

(8.3) B∗W =
∑
γ∈G

∑
z∈Γ

c1/2z eγ ⊗ fz;γ ,

where
fz;γ = 〈ψγ,t, kz − kw(z)〉ẽz

for γ ∈ G and z ∈ Γ. Since β(z, w(z)) ≤ a, Lemma 3.6 gives us

(8.4) ‖fz;γ‖ ≤ C ′3.6a(1− |z|2)n/2|ψγ,t(z)|,

γ ∈ G and z ∈ Γ. Obviously, the main difference between this and (5.12) is the factor a.

Following Section 5, for each integer k ≥ 0 we define Hk = {w ∈ B : 1− 2−2k ≤ |w| <
1− 2−2(k+1)}, Gk = G ∩Hk and Fk = Γ ∩Hk. By (8.3), we have

(8.5) B∗W =

∞∑
`=0

Y` +

∞∑
`=1

Z`,

where

Y` =

∞∑
k=0

∑
(γ,z)∈Gk×Fk+`

c1/2z eγ ⊗ fz;γ and Z` =

∞∑
k=0

∑
(γ,z)∈Gk+`×Fk

c1/2z eγ ⊗ fz;γ .

We then decompose Y` and Z` as in Section 5, using the same sets {Sk,j : (k, j) ∈ I}, Qk,p
and Qk,`;p introduced there. Taking s = 1, the argument that precedes (5.25) gives us

(8.6)

∥∥∥∥ ∞∑
`=0

Y`

∥∥∥∥
Ψ

≤ C8a{Φ({cz}z∈F )}1/2,

where the factor a comes from the fact that here we use (8.4) in place of (5.12). Similarly,
the proof of (5.30) now gives us

(8.7)

∥∥∥∥ ∞∑
`=1

Z`

∥∥∥∥
Ψ

≤ C11a{Φ({cz}z∈F )}1/2,
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where a appears for the same reason. Combining (8.5), (8.6) and (8.7), we have ‖B∗W‖Ψ ≤
C12a{Φ({cz}z∈Γ)}1/2. As we explained in the third paragraph of the proof, we can remove
the B∗ from ‖B∗W‖Ψ by applying Propositions 3.8 and 3.2. Hence

‖W‖Ψ ≤ C13a{Φ({cz}z∈Γ)}1/2.

Recall that ‖W‖Ψ = ‖W ∗W‖1/2Φ and that ‖D1‖Φ ≤ ‖W ∗W‖1/2Φ ‖L∗L‖
1/2
Φ . Thus the desired

bound on ‖D1‖Φ follows from the above inequality and (8.2). �

Finally, we will show that for a general Toeplitz operator Tµ defined by (1.1) on the
Hardy space H2(S), we also have a formula for its Dixmier trace in the style of (7.1).

Theorem 8.2. Let µ be a regular Borel measure on B such that Tµ ∈ C+
1 . Let Γ be an

a, b-lattice in B, where 0 < a < b <∞ and b ≥ 2a. (Since b ≥ 2a, such a Γ always exists.)
By Theorem 1.4, we have

(8.8) Φ+
1

({
µ(D(z, b))

(1− |z|2)n

}
z∈Γ

)
<∞.

Since Γ is an a, b-lattice in B, there is a partition B = ∪z∈ΓEz such that for every z ∈ Γ,
we have Ez ⊂ D(z, b). For each z ∈ Γ, define

(8.9) cz =

∫
Ez

dµ(w)

(1− |w|2)n
.

By (8.8) and Lemma 2.4, we have Φ+
1 ({cz}z∈Γ) < ∞. The Dixmier trace of the Toeplitz

operator Tµ is given by the formula

(8.10) Trω(Tµ) = Trω

(∑
z∈Γ

czez ⊗ ez
)
,

where {ez : z ∈ Γ} is any orthonormal set.

Proof. Let Γ′ = {z ∈ Γ : cz 6= 0}. Given a partition Γ′ = Γ′
(1) ∪ Γ′

(2)
, for i = 1, 2 we

can define E(i) = ∪z∈Γ′(i)Ez. Accordingly, µ = µ(1) + µ(2), where µ(i)(∆) = µ(∆ ∩ E(i))
for Borel sets ∆ ⊂ B, i = 1, 2. Obviously, both sides of (8.10) are additive with respect
to such a decomposition. Therefore, by Lemma 2.1, it suffices to prove (8.10) under the
additional assumption that Γ′ is 2b+2-separated. This implies that if we pick an arbitrary
ζ(z) ∈ D(z, b) for each z ∈ Γ′, then the set {ζ(z) : z ∈ Γ′} is 1-separated.

We will prove (8.10) by using Theorem 7.5 and approximation in the ideal C+
1 . This

scheme proceeds as follows. Let an ε > 0 be given. Then by the above-mentioned property
of Γ′ and Proposition 8.1, there is a δ > 0 such that if ζ(z) ∈ D(z, b) for every z ∈ Γ′, and
if a set {w(z) : z ∈ Γ′} has the property that β(ζ(z), w(z)) ≤ δ for every z ∈ Γ′, then

(8.11)

∥∥∥∥∑
z∈G

czkζ(z) ⊗ kζ(z) −
∑
z∈G

czkw(z) ⊗ kw(z)

∥∥∥∥+

1

≤ εΦ+
1 ({cz}z∈Γ)
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for every G ⊂ Γ′. For each z ∈ Γ′, we define the measure νz by the formula νz(∆) =
c−1
z µ̃(∆ ∩Ez), where ∆ is any Borel set in B and the relation between µ̃ and µ was given

by (5.1). By (8.9), each νz is a probability measure on B. Furthermore,

Tµ =
∑
z∈Γ′

cz

∫
Ez

kw ⊗ kwdνz(w).

By Lemma 2.1(1), for the δ chosen above, there is anN ∈N that has the following property:
For each z ∈ Γ′, there are ξz,1, . . . , ξz,N ∈ D(z, b) such that ∪Ni=1D(ξz,i, δ/2) ⊃ D(z, b).
Thus for each z ∈ Γ′, Ez admits a partition Ez = Ez,1 ∪ · · · ∪ Ez,N such that

(8.12) sup
u,v∈Ez,i

β(u, v) ≤ δ,

1 ≤ i ≤ N . Accordingly, we rewrite the Toeplitz operator Tµ in the form

(8.13) Tµ =
∑
z∈Γ′

N∑
i=1

cz

∫
Ez,i

kw ⊗ kwdνz(w).

With this N so fixed, we pick a k ∈ N such that N/k ≤ ε.

For each z ∈ Γ′, denote Jz = {i ∈ {1, . . . , N} : νz(Ez,i) 6= 0}. Then for every pair
of z ∈ Γ′ and i ∈ Jz, define the probability measure dνz,i = {νz(Ez,i)}−1χEz,idνz. This
allows us to rewrite (8.13) in the form

Tµ =
∑
z∈Γ′

∑
i∈Jz

czν(Ez,i)

∫
Ez,i

kw ⊗ kwdνz,i(w).

For every pair of z ∈ Γ′ and i ∈ Jz, there is an m(z, i) ∈ Z+ such that m(z, i)/k ≤
νz(Ez,i) < (m(z, i) + 1)/k. Thus for every such pair of z, i we have

(8.14) νz(Ez,i) =
m(z, i)

k
+ a(z, i), where 0 ≤ a(z, i) ≤ 1/k.

Accordingly, we have Tµ = T1 + T2, where

T1 =
1

k

∑
z∈Γ′

∑
i∈Jz

czm(z, i)

∫
Ez,i

kw ⊗ kwdνz,i(w) and(8.15)

T2 =
∑
z∈Γ′

∑
i∈Jz

cza(z, i)

∫
Ez,i

kw ⊗ kwdνz,i(w).

We will show that Trω(T1) is close to the right-hand side of (8.10) and that ‖T2‖+1 is small.

To estimate Trω(T1), observe that for every z ∈ Γ′, we have∑
i∈Jz

m(z, i) = k
∑
i∈Jz

m(z, i)

k
≤ k

∑
i∈Jz

νz(Ez,i) = kνz(∪i∈JzEz,i) = kνz(Ez) = k.
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That is, there is a natural number k′ ≤ k such that∑
i∈Jz

m(z, i) ≤ k′ for every z ∈ Γ′.

We can think of m(z, i) as the “multiplicity” with which Ez,i appears in the sum (8.15).
Once this is clear, we see that there are subsets Γ1 ⊃ · · · ⊃ Γk′ of Γ′ such that

(8.16) T1 = (1/k)(S1 + · · ·+ Sk′),

where, for each 1 ≤ j ≤ k′,

Sj =
∑
z∈Γj

cz

∫
Ez,ι(j,z)

kw ⊗ kwdνz,ι(j,z)(w)

with ι(j, z) ∈ Jz for every z ∈ Γj . Furthermore, to match multiplicities, for every pair of
z ∈ Γ′ and i ∈ Jz we have

(8.17) card{j ∈ {1, . . . , k′} : z ∈ Γj and ι(j, z) = i} = m(z, i).

For each pair of 1 ≤ j ≤ k′ and z ∈ Γj , we pick a ζ(z, j) ∈ Ez,ι(j,z). Accordingly, we define
the operators

Dj =
∑
z∈Γj

czkζ(z,j) ⊗ kζ(z,j),

1 ≤ j ≤ k′. We need to estimate ‖Sj −Dj‖+1 .

Fix a j ∈ {1, . . . , k′} for the moment. For each z ∈ Γj , νz,ι(j,z) is a probability measure
concentrated on Ez,ι(j,z). It is, therefore, in the weak-* closure of convex combinations of
unit point masses on Ez,ι(j,z). Consequently, Sj is the weak limit of operators of the form

Hj =
1

d

d∑
r=1

∑
z∈Γj

czkw(z,r) ⊗ kw(z,r),

where d ∈ N and w(z, r) ∈ Ez,ι(j,z) for every pair of z ∈ Γj and r ∈ {1, . . . , d}. For a
given r ∈ {1, . . . , d}, since w(z, r) ∈ Ez,ι(j,z) and ζ(z, j) ∈ Ez,ι(j,z), by (8.12) we have
β(ζ(z, j), w(z, r)) ≤ δ for every z ∈ Γj . Applying (8.11), we find that

‖Hj −Dj‖+1 ≤
1

d

d∑
r=1

∥∥∥∥ ∑
z∈Γj

czkw(z,r) ⊗ kw(z,r) −
∑
z∈Γj

czkζ(z,j) ⊗ kζ(z,j)
∥∥∥∥+

1

≤ εΦ+
1 ({cz}z∈Γ).

Since Sj−Dj is in the weak closure of operators of the form Hj−Dj , combining the above
estimate with Lemma 4.3, we obtain ‖Sj − Dj‖+1 ≤ εΦ+

1 ({cz}z∈Γ). Recalling (8.16) and
the fact that k′ ≤ k, we now have ‖T1 − (1/k)(D1 + · · ·+Dk′)‖+1 ≤ εΦ

+
1 ({cz}z∈Γ). Thus

(8.18) |Trω(T1)− Trω((1/k)(D1 + · · ·+Dk′))| ≤ εΦ+
1 ({cz}z∈Γ).
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Recall that for each pair of 1 ≤ j ≤ k′ and z ∈ Γj , we have ζ(z, j) ∈ Ez,ι(j,z). Thus, by the
assumption on Γ′, every {ζ(z, j) : z ∈ Γj} is a 1-separated set, 1 ≤ j ≤ k′. Hence Theorem
7.5 can be applied to every Dj . Pick an orthonormal set {ez : z ∈ Γ}. By Theorem 7.5,
we have

Trω

(
1

k
(D1 + · · ·+Dk′)

)
= Trω

(
1

k

k′∑
j=1

∑
z∈Γj

czez ⊗ ez
)
.

Applying (8.17) on the right-hand side, we obtain

Trω

(
1

k
(D1 + · · ·+Dk′)

)
= Trω

(∑
z∈Γ′

∑
i∈Jz

cz
m(z, i)

k
ez ⊗ ez

)
.

Combining the above with (8.14) and with the fact that
∑
i∈Jz νz(Ez,i) = νz(Ez) = 1 for

every z ∈ Γ′, we have

(8.19) Trω

(
1

k
(D1 + · · ·+Dk′)

)
= Trω

(∑
z∈Γ′

czez ⊗ ez
)
− E ,

where

E = Trω

(∑
z∈Γ′

∑
i∈Jz

cza(z, i)ez ⊗ ez
)
.

We have 0 ≤ a(z, i) ≤ 1/k for every pair of z ∈ Γ′ and i ∈ Jz. Since card(Jz) ≤ N for
every z ∈ Γ′, it is easy to see that E ≤ (N/k)Φ+

1 ({cz}z∈Γ). Recall that k was chosen so
that N/k ≤ ε. Combining these facts with (8.18) and (8.19), we conclude that

(8.20)

∣∣∣∣Trω(T1)− Trω

(∑
z∈Γ′

czez ⊗ ez
)∣∣∣∣ ≤ 2εΦ+

1 ({cz}z∈Γ).

Next we estimate ‖T2‖+1 .

A retrace of the definitions of the measures νz and νz,i gives us T2 = Tα, where

dα =
∑
z∈Γ′

∑
i∈Jz

a(z, i)

νz(Ez,i)
χEz,idµ.

Recall that Γ′ is 2b + 2-separated. This guarantees that D(z, b) ∩D(z′, b) = ∅ for z 6= z′

in Γ′. Therefore it follows from Proposition 5.1 that

(8.21) ‖T2‖+1 = ‖Tα‖+1 ≤ C5.1Φ+
1

({
α(D(z, b))

(1− |z|2)n

}
z∈Γ′

)
.

Furthermore, for each z ∈ Γ′ we have

α(D(z, b)) = α(Ez) =
∑
i∈Jz

a(z, i)
µ(Ez,i)

νz(Ez,i)
= cz

∑
i∈Jz

a(z, i)
µ(Ez,i)

µ̃(Ez,i)
.
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Since Ez,i ⊂ Ez ⊂ D(z, b), Lemma 2.4 tells us that µ(Ez,i) ≤ C1(1− |z|2)nµ̃(Ez,i). Thus

α(D(z, b)) ≤ C1(1− |z|2)ncz
∑
i∈Jz

a(z, i) ≤ C1(1− |z|2)ncz(N/k) ≤ C1(1− |z|2)nczε

for every z ∈ Γ′, where the second ≤ follows from the facts that 0 ≤ a(z, i) ≤ 1/k and that
Jz ⊂ {1, . . . , N}. Substituting this in (8.21), we obtain

(8.22) ‖T2‖+1 ≤ C1C5.1εΦ
+
1 ({cz}z∈Γ′).

Since Tµ = T1 + T2 and since ε > 0 is arbitrary, (8.10) follows from (8.20) and (8.22). �

9. Modified Berezin transforms and an equivalent condition

Recall that for an operator A on the Hardy space H2(S), the function

Â(z) = 〈Akz, kz〉, z ∈ B,

is called the Berezin transform of A. But for our purpose we need the scalar quantity
〈Aψz,t, ψz,t〉 with t > 0, which is really a modified version of Berezin transform. If µ is a
Borel measure on B, then for the Toeplitz operator Tµ defined by (1.1) we have

〈Tµψz,t, ψz,t〉 =

∫
(1− |z|2)n+2t

|1− 〈w, z〉|2n+2t
dµ(w).

This quantity gives us a condition that is equivalent to the condition in Theorem 1.4:

Theorem 9.1. Let 0 < s ≤ 1 be given. Pick a t > 0 such that s(n+ 2t) > n. Suppose that
Φ is a symmetric gauge function satisfying condition (DQK). Let 0 < a < b < ∞ also be
given such that b ≥ 2a. Then there exist constants 0 < c ≤ C < ∞ which depend only on
s, t, a, b, Φ and the complex dimension n such that

cΦ({〈Tµψz,t, ψz,t〉s}z∈Γ) ≤ Φ

({(
µ(D(z, b))

(1− |z|2)n

)s}
z∈Γ

)
≤ CΦ({〈Tµψz,t, ψz,t〉s}z∈Γ)

for every regular Borel measure µ on B and every a, b-lattice Γ ⊂ B.

The proof of Theorem 9.1 will take a few steps. First of all, we need to introduce
more sets based on the radial-spherical decomposition in Section 2, which proved valuable
in [10,19]. Let (k, j) ∈ I. In addition to the Tk,j given by (2.8), we define

(9.1) Qk,j = {ru : 1− 2−2k ≤ r < 1− 2−2(k+2), u ∈ B(uk,j , 9 · 2−k)}.

For each (k, j) ∈ I, we define the subset

Fk,j = {(`, i) : ` > k, 1 ≤ i ≤ m(`), B(u`,i, 2
−`) ∩B(uk,j , 3 · 2−k) 6= ∅}
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of I. We then define

(9.2) Wk,j = Qk,j ∪ {∪(`,i)∈Fk,jQ`,i},

(k, j) ∈ I. By (2.7) and (9.1), we have Wk,j ⊃ {ru : 1−2−2k ≤ r < 1, u ∈ B(uk,j , 3 ·2−k)}.

As before, µ̃ will always be defined in terms of µ by (5.1).

Lemma 9.2. Let Φ be a symmetric gauge function satisfying condition (DQK) and let
0 < s ≤ 1. Then there is constant 0 < C9.2 <∞ such that

Φ({22snkµs(Wk,j)}(k,j)∈I) ≤ C9.2Φ({µ̃s(Qk,j)}(k,j)∈I)

for every regular Borel measure µ on B.

Proof. From (9.1) and (9.2) it is obvious that

(9.3) 22nkµ(Wk,j) ≤ C1µ̃(Qk,j) + C1

∑
(`,i)∈Fk,j

2−2n(`−k)µ̃(Q`,i).

We then repurpose the symbol `. For ` ≥ 0 and (k, j) ∈ I, define the set

G
(`)
k,j = {(k + `, h) : 1 ≤ h ≤ m(k + `), B(uk+`,h, 2

−k−`) ∩B(uk,j , 3 · 2−k) 6= ∅}

as in [19]. By (2.6) and (2.5), there is a natural number M such that

(9.4) card(G
(`)
k,j) ≤M22n`

for all (k, j) ∈ I and ` ≥ 0. Similarly, there is an N ∈ N such that

card{j′ ∈ {1, . . . ,m(k)} : G
(`)
k,j′ ∩G

(`)
k,j 6= ∅} ≤ N

for all (k, j) ∈ I and ` ≥ 0. By a standard maximality argument, for each ` ≥ 0, there is
a partition

I = I
(1)
` ∪ · · · ∪ I

(N)
`

such that for every ν ∈ {1, . . . , N}, the conditions (k, j), (k′, j′) ∈ I(ν)
` and (k, j) 6= (k′, j′)

imply G
(`)
k,j ∩G

(`)
k′,j′ = ∅.

For (k, j) ∈ I and ` ≥ 0, define

(9.5) E`;k,j = 2−2n`
∑

(k+`,h)∈G(`)

k,j

µ̃(Qk+`,h).

Continuing with (9.3), we have

22nkµ(Wk,j) ≤ C1

∞∑
`=0

E`;k,j .
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Since 0 < s/2 < 1, this leads to

(9.6) 2snkµs/2(Wk,j) ≤ Cs/21

∞∑
`=0

E
s/2
`;k,j .

Again we write Ψ = Φ(2). Since Φ satisfies condition (DQK), Lemma 4.5 tells us that
Ψ also satisfies condition (DQK). For each pair of ` ≥ 0 and ν ∈ {1, . . . , N}, the sets in

the family {G(`)
k,j : (k, j) ∈ I(ν)

` } are pairwise disjoint. By (9.4) and (9.5), we can apply
Proposition 4.6 in the present situation to obtain

Ψ
(
{Es/2`;k,j}(k,j)∈I(ν)

`

)
≤ C2M

s/22−2εn`Ψ
(
{µ̃s/2(Qk,j)}(k,j)∈I

)
.

Thus, writing C3 = NC2M
s/2, for every ` ≥ 0 we have

Ψ
(
{Es/2`;k,j}(k,j)∈I

)
≤

N∑
ν=1

Ψ
(
{Es/2`;k,j}(k,j)∈I(ν)

`

)
≤ C32−2εn`Ψ

(
{µ̃s/2(Qk,j)}(k,j)∈I

)
.

Combining this with (9.6), we find that

Ψ
(
{2snkµs/2(Wk,j)}(k,j)∈I

)
≤ Cs/21

∞∑
`=0

Ψ
(
{Es/2`;k,j}(k,j)∈I

)
≤ Cs/21 C3

∞∑
`=0

2−2εn`Ψ
(
{µ̃s/2(Qk,j)}(k,j)∈I

)
.

Since Proposition 4.6 guarantees ε > 0, the above can be rewritten as

Ψ
(
{2snkµs/2(Wk,j)}(k,j)∈I

)
≤ C4Ψ

(
{µ̃s/2(Qk,j)}(k,j)∈I

)
.

Squaring both sides and using the relation Ψ = Φ(2), we now have

Φ
(
{22snkµs(Wk,j)}(k,j)∈I

)
≤ C2

4Φ
(
{µ̃s(Qk,j)}(k,j)∈I

)
,

proving the lemma. �

As on page 996 in [19], for each (k, j) ∈ I we define

(9.7) Hk,j = {(`, h) ∈ I : 0 ≤ ` ≤ k, 1 ≤ h ≤ m(`), B(u`,h, 2
−`) ∩B(uk,j , 2

−k) 6= ∅}.

Lemma 9.3. Given any t > 0, there is a constant C9.3 which depends only on t and
n such that the following estimate holds: Let (k, j) ∈ I and z ∈ Tk,j . Then there exist
(`, ν(`)) ∈ Hk,j for ` = 0, . . . , k such that for every Borel measure µ on B, we have

〈Tµψz,t, ψz,t〉 ≤ C9.3

k∑
`=0

2−2(n+2t)(k−`) · 22n`µ(W`,ν(`)).
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Proof. Let (k, j) ∈ I and z ∈ Tk,j be given. Then z = |z|ξ for some ξ ∈ B(uk,j , 2
−k).

Set ν(k) = j. If 0 ≤ ` < k, by (2.7), there is a ν(`) ∈ {1, . . . ,m(`)} such that ξ ∈
B(u`,ν(`), 2

−`). Then the lemma will follow if we can prove that the inequality

(9.8) |ψz,t|2 ≤ C1

k∑
`=0

2−2(n+2t)(k−`)22n`χW`,ν(`)

holds on B, where C1 depends only on n and t.

To prove (9.8), first observe that W0,ν(0) = B. By the argument on the bottom of page

996 in [19], we have |1− 〈w, z〉|−1 ≤ 4 · 22(`−1) for w ∈ W`−1,ν(`−1)\W`,ν(`). On the other

hand, the definition of Tk,j gives us 1− |z| ≤ 2−2k. Combining these two inequalities, we
see that (9.8) holds on B\Wk,ν(k) = B\Wk,j . But on the set Wk,j , (9.8) follows from the

simple fact that |1− 〈w, z〉| ≥ 1− |z| ≥ 2−2(k+1) = (1/4)2−2k since z ∈ Tk,j . �

Lemma 9.4. Let 0 < s ≤ 1 be given, and let t > 0 satisfy the condition s(n + 2t) > n.
Suppose that Φ is a symmetric gauge function satisfying condition (DQK). Then there
exists a constant 0 < C9.4 < ∞ such that for every regular Borel measure µ on B and
every set of points z(k, j) ∈ Tk,j , (k, j) ∈ I, we have

Φ({〈Tµψz(k,j),t, ψz(k,j),t〉s}(k,j)∈I) ≤ C9.4Φ({µ̃s(Qk,j)}(k,j)∈I).

Proof. By Lemma 9.2, it suffices to show that

(9.9) Φ({〈Tµψz(k,j),t, ψz(k,j),t〉s}(k,j)∈I) ≤ CΦ({22snkµs(Wk,j)}(k,j)∈I).

To prove this, in addition to the Hk,j given by (9.7), we also need the set

H
(`)
k,j = {(`, h) : (`, h) ∈ Hk,j}

for each integer ` ∈ {0, . . . , k}.

Let µ be a regular Borel measure on B. For each triple of integers 0 ≤ ` ≤ k and

1 ≤ j ≤ m(k), there is an element (`, h(k, j; `)) ∈ H(`)
k,j such that

µ(W`,h(k,j;`)) ≥ µ(W`,h) for every (`, h) ∈ H(`)
k,j .

Let 0 < s ≤ 1 be given. Let z(k, j) ∈ Tk,j , (k, j) ∈ I. Lemma 9.3 implies that

〈Tµψz(k,j),t, ψz(k,j),t〉s ≤ Cs9.3
k∑
`=0

2−2s(n+2t)(k−`)22sn`µs(W`,h(k,j;`))

= C1

k∑
ν=0

2−2s(n+2t)ν22sn(k−ν)µs(Wk−ν,h(k,j;k−ν))(9.10)
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for each (k, j) ∈ I, where C1 = Cs9.3. Define

ak,j;ν =

 22n(k−ν)µ(Wk−ν,h(k,j;k−ν)) if ν ≤ k

0 if ν > k

for all (k, j) ∈ I and all ν ≥ 0. Thus we can rewrite (9.10) in the form

〈Tµψz(k,j),t, ψz(k,j),t〉s ≤ C1

∞∑
ν=0

2−2s(n+2t)νask,j;ν .

Consequently, for each symmetric gauge function Φ we have

(9.11) Φ({〈Tµψz(k,j),t, ψz(k,j),t〉s}(k,j)∈I) ≤ C1

∞∑
ν=0

2−2s(n+2t)νΦ({ask,j;ν}(k,j)∈I).

Let us denote

(9.12) ϕk,j = 22nkµ(Wk,j)

for every (k, j) ∈ I. We obviously have ak,j;ν = ϕk−ν,h(k,j;k−ν) when ν ≤ k. Since
ak,j;ν = 0 when k < ν, for each ν ≥ 0 we have

Φ({ask,j;ν}(k,j)∈I) = Φ({ϕsk−ν,h(k,j;k−ν)}(k,j)∈I(ν)),

where I(ν) = {(k, j) : k ≥ ν, 1 ≤ j ≤ m(k)}.

For each ν ≥ 0, consider the map Gν : I(ν) → I defined by the formula

Gν(k, j) = (k − ν, h(k, j; k − ν)), (k, j) ∈ I(ν).

If k 6= k′, then, of course, Gν(k, j) 6= Gν(k′, j′) for all possible j and j′. Now suppose
that integers j and j′ are in the set {1, . . . ,m(k)} such that Gν(k, j) = Gν(k, j′). Then
h(k, j; k − ν) = h(k, j′; k − ν). A chase of definitions gives us

B(uk−ν,h(k,j;k−ν), 2
−(k−ν)) ∩B(uk,j , 2

−k) 6= ∅ and

B(uk−ν,h(k,j′;k−ν), 2
−(k−ν)) ∩B(uk,j′ , 2

−k) 6= ∅.

Since h(k, j; k− ν) = h(k, j′; k− ν), we have d(uk,j , uk,j′) ≤ 4 · 2−(k−ν). Thus we conclude
from (2.6) and (2.5) that there is an N ∈ N which depends only on n such that for all
ν ≤ k and all 1 ≤ j ≤ m(k),

card{j′ ∈ {1, . . . ,m(k)} : Gν(k, j′) = Gν(k, j)} ≤ N22nν .

That is, the map Gν : I(ν) → I is at most N22nν-to-1. Applying Lemma 4.8, we have

Φ({ask,j;ν}(k,j)∈I) = Φ({ϕsGν(k,j)}(k,j)∈I(ν)) ≤ N22nνΦ({ϕsk,j}(k,j)∈I).
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Substituting this in (9.11) and recalling (9.12), we find that

Φ({〈Tµψz(k,j),t, ψz(k,j),t〉s}(k,j)∈I) ≤ C1N

∞∑
ν=0

2−2{s(n+2t)−n}νΦ({ϕsk,j}(k,j)∈I)

= C1N
∞∑
ν=0

2−2{s(n+2t)−n}νΦ({22snkµs(Wk,j)}(k,j)∈I).

Since we assume s(n+ 2t) > n, (9.9) follows. This completes the proof. �

For each (k, j) ∈ I, we define the point

wk,j = (1− 2−2k−1)uk,j .

Recalling (2.8) and (9.1), we have wk,j ∈ Tk,j ⊂ Qk,j for every (k, j) ∈ I.

Lemma 9.5. [10,Lemma 6.1] There is a τ0 > 0 such that D(wk,j , τ0)∩D(wt,h, τ0) = ∅ for
all (k, j) 6= (t, h) in I. In other words, {wk,j : (k, j) ∈ I} is a τ0-separated set in B.

Proof of Theorem 9.1. It is elementary that there is a bound 0 < R <∞ for the Bergman-
metric diameter of every Qk,j , (k, j) ∈ I. Let 0 < a ≤ b < ∞ be given. By Lemmas 9.5
and 2.1, there is an M ∈ N such that

(9.13) card{(k′, j′) ∈ I : β(wk,j , wk′,j′) ≤ 2b+ 2R} ≤M

for every (k, j) ∈ I. Suppose that Γ is an a, b-lattice in B. If z, z′ ∈ Γ have the property
that D(z, b) ∩Qk,j 6= ∅ and D(z′, b) ∩Qk,j 6= ∅ for some (k, j) ∈ I, then

β(z, z′) < R+ 2b.

Therefore, by Lemma 2.1, there is an N ∈ N such that

card{z ∈ Γ : D(z, b) ∩Qk,j 6= ∅} ≤ N

for every (k, j) ∈ I. Let 0 < s ≤ 1 and µ be given. Then for every (k, j) ∈ I, there is a
zk,j ∈ Γ satisfying the following two conditions:

(1) D(zk,j , b) ∩Qk,j 6= ∅.
(2) If z ∈ Γ and D(z, b) ∩Qk,j 6= ∅, then µ̃(D(z, b)) ≤ µ̃(D(zk,j , b)).

Since ∪z∈ΓD(z, b) = B, for every (k, j) ∈ I we have

µ̃(Qk,j) ≤
∑
z∈Γ

D(z,b)∩Qk,j 6=∅

µ̃(D(z, b)) ≤ Nµ̃(D(zk,j , b)).

Thus for any symmetric gauge function Φ, we have

(9.14) Φ({µ̃s(Qk,j)}(k,j)∈I) ≤ NsΦ({µ̃s(D(zk,j , b))}(k,j)∈I).
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By definition, for any pair of (k, j), (k′, j′) ∈ I we have

D(zk,j , b) ∩Qk,j 6= ∅ and D(zk′,j′ , b) ∩Qk′,j′ 6= ∅.

Thus if it happens that zk,j = zk′,j′ , then

β(wk,j , wk′,j′) < R+ b+ b+R = 2b+ 2R.

Combining this with (9.13), we see that the map (k, j) 7→ zk,j from I into Γ is at most
M -to-1. Thus an application of Lemma 4.8 gives us

(9.15) Φ({µ̃s(D(zk,j , b))}(k,j)∈I) ≤MΦ({µ̃s(D(z, b))}z∈Γ).

Since Γ is a-separated, Lemma 2.6 provides a partition Γ = Γ1∪· · ·∪ΓK such that for
all i ∈ {1, . . . ,K} and (k, j) ∈ I, we have card(Γi∩Tk,j) ≤ 1. Consider any i ∈ {1, . . . ,K}.
Since ∪(k,j)∈ITk,j = B, for each z ∈ Γi, there is a (k, j) ∈ I such that z ∈ Tk,j . We now
write z(k, j) for this z. Then there is some Ji ⊂ I such that Γi = {z(k, j) : (k, j) ∈ Ji}
and z(k, j) ∈ Tk,j for every (k, j) ∈ Ji. Applying Lemma 9.4, (9.14) and (9.15) we have

Φ({〈Tµψz,t, ψz,t〉s}z∈Γi) = Φ({〈Tµψz(k,j),t, ψz(k,j),t〉s}(k,j)∈Ji)
≤ C9.4Φ({µ̃s(Qk,j)}(k,j)∈I) ≤ C9.4N

sMΦ({µ̃s(D(z, b))}z∈Γ)

for every i ∈ {1, . . . ,K}. Hence

Φ({〈Tµψz,t, ψz,t〉s}z∈Γ) ≤ C9.4KN
sMΦ({µ̃s(D(z, b))}z∈Γ).

Recalling (5.1) and applying Lemma 2.4, the lower bound in Theorem 9.1 follows.

For the upper bound, it suffices to note that for the given b, there is a δ > 0 such that
if w ∈ D(z, b), then

1− |z|2

|1− 〈w, z〉|
≥ δ and

1− |w|2

|1− 〈w, z〉|
≥ δ.

(This can be seen, for example, by writing w = ϕz(u) with u ∈ D(0, b)). Hence

µ̃(D(z, b)) ≤ δ−2n−2t〈Tµψz,t, ψz,t〉

for every z ∈ B. This proves the upper bound and completes the proof of Theorem 9.1. �
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