ON THE CONNECTEDNESS OF THE SPECTRA
OF SELF-ADJOINT TOEPLITZ OPERATORS

Jingbo Xia and Congquan Yan!

Abstract. We consider Toeplitz operators T’y on the Hardy space H 2(9) of the unit sphere
S in C", n > 2. We show that if f is a bounded, real-valued measurable function that
depends only on |21],...,|2y], then the spectrum of T is connected.

1. Introduction

This paper concerns Toeplitz operators on the Hardy space of n variables. The prob-
lem we investigate goes back to the 1970s, when the investigations of these operators just
began. To explain the problem, we first recall the basic setting.

Let S denote the unit sphere {z € C™ : |z| = 1} in C". Let do be the spherical
measure on S. For convenience, we take the normalization o(S) = 1. Recall that the
Hardy space H?2(S) can be simply described as the closure of the analytic polynomials
Clz1,...,2,) in L?(S,do). Let P : L*(S,do) — H?(S) be the orthogonal projection.
Given an f € L*(S), the Toeplitz operator T is defined by the formula

T¢h = P(fh), he H*(S).

The function f is usually called the symbol of the Toeplitz operator 7.

In the case where n = 1, it is well known that both the spectrum and the essential
spectrum of Ty are connected [2]. But when n > 2, we know from [1] that the spectrum
and the essential spectrum of T can be disconnected. However, for the examples given
in [1] with disconnected spectrum or essential spectrum, the Toeplitz operator T is not
self-adjoint. Furthermore, it was conjectured in [1] (see page 359 of that paper) that if f
is real valued, i.e., if T is self-adjoint, then the spectrum of Ty equals the interval

[ess inf f,ess sup f].

This conjecture is still open in its full generality. In fact, we are not aware of any progress
on the conjecture in the decades since the publication of [1]. The purpose of this paper is
to prove this conjecture for a special class of symbol functions.

Let us describe the set of symbol functions that we will deal with in this paper.
Intuitively, these are the functions that depend only on |z1|,...,|2z,|, but we can give a
more rigorous definition as follows. We begin with the n-dimensional torus

TTL:{(lev-.,Tn)GCn:|7-1|:...:|7—n|:1}‘
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Given an f € L1(S) and a 7 = (71,...,7,) € T", we define the function

(1.1) fr(z1,ovzn) = f(miz1, - oy Tzn),  (21,...,2n) € S.

Let R be the collection of functions f € L°(S) satisfying the condition f, = f for every
7 € T". The main result of the paper is that for a real-valued function in R, the spectrum
of the corresponding Toeplitz operator is connected.

Theorem 1.1. If f is a real-valued function in R, then the spectrum of the Toeplitz
operator Ty equals the interval [ess inf f,ess sup f].

For any f € R, the Toeplitz operator Ty is known to be diagonal with respect to
the standard orthonormal basis {e, : @ € Z%} in H?*(S). Thus Ty has eigenvalues
{(fearea) : a € Z7}. To prove Theorem 1.1, we will show that these eigenvalues are
dense in [ess inf f,ess sup f]. This density is proved in two steps.

As the first step, we show that for any open interval (a,b) satisfying the condition

ess inf f < a < b <esssup f,

if m € N is sufficiently large, then there are o), alm ¢ 7" with |a(y,)| = m = lalm)]|
such that
(1.2) <f606(m)7606(m)> <a<b< <f€a(m),€a(m)>.

Furthermore, we show that a,,), a(™) can be chosen in such a way that their components
are comparable to m. This first step takes up Section 3.

As the second step, we show in Section 4 that if m is sufficiently large, then a,,) and

a(™) are “connected” by a chain of multi-indices ~1,...,7; € 7'} satisfying the following
two conditions:

(2) 71 = a(m) and 7y, = al™).

(b) For every 1 < v < k, we have [(fe,,€ey,) = (feqy, 1) €y, < (b—a)/2.
From (a), (b) and (1.2) it is clear that there is a 1 < j < k such that (fe,,,e,;) € (a,b).

The proof of (1.2) involves multi-variable Bernstein polynomials. We prove the re-
quired convergence of these polynomials in the Appendix at the end of the paper.

2. Preliminaries

We adopt the standard multi-index notation [3, page 3]. Let {e, : & € Z7'} be the
standard orthonormal basis for the Hardy space H2(S). Recall that

eo(z) = (M)mz%

(n—1)lal
a € Z7 . See [3, Proposition 1.4.9]. It is easy to see that if f € R, then
(Treq,ep) = (fea,ep) =0 when a # .
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Thus if f € R, then the Toeplitz operator T is a diagonal operator of the form

Ty = Z (fea,ea)eq ® eq.

ani

In other words, for any f € R, the Toeplitz operator Ty has eigenvalues {(feq,€q) :
a € Z71}. It was shown in [1] that for a complex-valued f € R, the closure of the set
{(feasea) : @ € Z7 } can be disconnected. We will show that if f is a real-valued function
in R, then the set {(fea,en) : a € Z7} is dense in the interval [ess inf f,ess sup f].
Combining this statement with the obvious fact that the spectrum of such a T’ is contained
in [ess inf f,ess sup f], Theorem 1.1 follows.

Let Q denote the first quadrant of the closed unit ball in R*~!. That is,
Q={(z1,...,zp_)eR" it 4+ ... 422 <1 and 2, >0,...,2,_1 >0}
On @) we define the measure du by the formula

dp(zy,. . xp_1) = (n— 112" ey ox,_yday - dwgp_q.

It is known that

(21) /@(‘21’,-.-,‘Zn_l‘)dO'(Zl,...,Zn_bZn):/ QOd,LL
S

Q

for every ¢ € C(Q). See [4, page 1377].
We further introduce the set

A={(ty, ..., tp ) eR" ity +--+t, 1 <1 and t; >0,...,t, 1 > 0}.

Let dV,,_; denote the standard Lebesgue measure on R"!. Making the substitution
ty =23, ..., th_1 =22 _,, we have

(2.2) /Qg(x%,...,xi1)du(x1,...,a:n_1) =(n— 1)!/Aden_1,

€ € C(A). For each £ € C(A), we define the function

(2.3) (Sf)(zl,...,zn_l,zn) :§(|21|2,...,|2n_1|2), (21,...,Zn_1,2n) e S.

Then it follows from (2.1) and (2.2) that

(2.4) /Ssgda = (n— 1)!/A§an_1

for every £ € C(A).



Proposition 2.1. Given any f € L>(S5), there is a g € L>°(A) such that

(2.5) /SfSﬁdJ =(n—1)! /Agﬁan_l

for every £ € C(A). If f € R and if f is real valued, then we have

ess inf g <essinf f and esssup f <esssupg.

Proof. Define
o) = [ 15sdo

for every £ € C(A). Note that (2.4) implies |S¢||11(s,d0) = €]l 21 (A, (n—1)1dv,,_,)- Hence
1P| < [ fllcll€llra,(n-1)1dv, 1)

for every £ € C'(A). By the Hahn-Banach theorem, there is a bounded linear functional P
on L'(A, (n —1)!dV,_1) with [|®|| < || f]loc such that ®(§) = ®(&) for every £ € C(A). By
the representation of @, there is a g € L (A) with ||g]lco < ||f]|co such that (2.5) holds.

To prove the second half of the proposition, we introduce the following device. Let
dm,, denote the Lebesgue measure on T" with the normalization m,,(T™) = 1. For every
p € LY(S,do), we define

Ap = / prdmy, (T)7

where ¢, is defined by (1.1).
Suppose that f € R and that f is real valued. Let ¢ > 0. Pick an a € R such that
ess inf f+€—a <O.
Since C|z1, 21, . - -, Zn, 2Zn) is dense in C'(S) with respect to the norm || || and since C(S) is

dense in L(S, do) with respect to the L'-norm, thereis a ¢ € C[z1, Z1, . . ., 2, 2] satisfying
the conditions ¢ > 0 on S, ||q|[11(s,40) = 1, and [ fqdo < ess inf f + e. Thus

/(f—a)qdogessinff+e—a<0.
S

By the invariance of do and the membership f € R, for each 7 € T" we have

[ 7= ado = [ (- = yaedo = [ (= o
s s s
Averaging over T", we obtain

(2.6) /S(f —a)Aqdo = /(f —a)gdo < ess inf f + € — a.
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If u is a monomial of the form zf‘lzfl - 29 2B for some ay, B1,...,0n, Bn € Z,, then

Au # 0 only if aj = B; for every 1 < j < n. Since |z,)> =1— |12 — -+ — |2,—1/> on S,
we see that there is an (n — 1)-variable polynomial p such that

Aqg=S5p on S.

Substituting this in (2.6) and recalling (2.5) and (2.4), we now have

(2.7) (n—1)! /A(g —a)pdVy,_1 = /S(f —a)Spdo <essinf f+e—a

Since ¢ > 0 on S, we have Ag > 0 on S. Hence Sp > 0 on S, and consequently p > 0 on
A. Applying (2.4) again, we have

(2.8) 1Pl A, n=1y1avi_1) = ISPl L1(8,d0) = 1 AqlL1(5,d0) < @]l L1 (5,d0) = 1.
Since ess inf f + € —a < 0, it follows from (2.7) and (2.8) that
ess inf(g —a) <essinf f +¢€—a.

That is, ess inf g < ess inf f+e. Since € > 0 is arbitrary, if follows that ess inf g < ess inf f.
The proof for the inequality ess sup f < ess sup g is similar and will be omitted. [J

3. Essential extrema

Given an a = (a1,...,a,) € Z7, we define the (n — 1)-variable polynomial

(n—14 |a)!

R AN

ua(tl, e ,tnfl) =

Obviously, for each o € Z7}, u,, is a non-negative function on A, and by (2.4) we have

(3.1) / UadVy_1 = / leq|?do = 1.
A S

If f e L*(S) and g € L*°(A) are a pair of functions satisfying (2.5), then

(3.2) /f|ea|2daz/guadvn_1
S A

for every o € Z'}. The following is the first step in the proof of Theorem 1.1.

Lemma 3.1. Let g € L(A) be a real-valued function. Given any € > 0, there exist
a positive number 0 < 6 < 1/2 and an integer 0 < M < oo such that the following

holds true: For every m > M, there exist o) = (Qn,1,-..,0mn) € Z} and alm =
(agm), e ,a,(lm)) € Z satisfying the conditions

(@) || =m = |al™)].



(b) For every 1 < j < n, we have dm < ayy, j < (1 —0)m and om < a(m) < (1—=9)m.
(c) We have

/ gua(m)an_l <essinf g+ ¢ and / JUg(mydVy,—1 > ess sup g — €.
A A

Proof. For any r > 0, we define the subset
A(r)={te A:dt,R"N\A) > r}
of A, where d(t, R""1\A) = inf{|t — x| : x € R""1\A}. Given an € > 0, we define
E={teA:g(t)<essinfg+ (¢/10)} and F ={te€ A:g(t) > esssup g— (¢/10)}.
Then V,,_1(E) > 0 and V,,_1(F) > 0. This means that there is a § > 0 such that
Vic1(ENA(26)) >0 and V,_1(FNA(20)) >0

Below we will explicitly produce a,,); the details for producing a(™) are similar and will
not be repeated.

Since V,,—1(E N A(25)) > 0, there is a t, € E N A(20) which is a Lebesgue point of g.
Hence there is an (n —1)-dimensional cube B satisfying the conditions that t. € B C A(6)

and that 1
—_— —g(t)|dVy—1 < —
‘rn 1(B) / |g g( )l 1 10

Since t. € FE, we have g(t.) < ess inf g + (¢/10), and from the above inequality we obtain

1 € €
. - 1< g(t)) + — < ess inf g+ <.
(3.3) Vn—l(B>/Bng 1 < g(t )—}—1O_ess in g+5

There are continuous functions n,£ : A — [0, 1] satisfying the conditions that 0 < & <
x5 <non A and that

€ 1
— dVy,_1 < — d ——— — dVi, - S—
Jn=xslglvis < 55 and g [ Je = xallglaVis < 5

1
Vn—l (B)

For ¢ € C(A) and m € N, write ¢,, for the m-th Bernstein polynomial of ¢, as defined in
the Appendix. We know from Proposition A.1 that lim,, o [[¢ — ¢m|lcc = 0. Combining
this fact with the above inequalities, there is an M; € N such that if m > M, then

! €
m = xsllgldVa-1 < 35 and - s | |G AV, < <
e [l < 5 and o [ el < 5

For m € N, we also write (xp), for the m-th Bernstein polynomial of x 5. The condition
¢ < xp < nimplies &, < (XB)m < Nm for every m € N. Hence

Em —XB < (XB)m — XB < Nlm — XB-



From this we see that the inequality

|(xB)m(t) — xB ()] < max{[nm,(t) — xs®)], [Em(t) — xB(0)]}
holds for every ¢t € A. Thus for each m > M, we have
i [ 10 — xalglavis < §
Vn_]_(B) A XB)m XBI||9 n—1 > 5

Combining this with (3.3), we find that

o
Vo 1(B)

1 € 2€
mgdVn—1 < ————= [ gdV,_1+ - <essinf g+ —
/A(XB) g 1 Vn—l(B)/Bg 1-1—5 ess 1t g + 3

for every m > M;. By the definition of the Bernstein polynomial (xp)., in the Appendix
(see (A.2)), this means that if m > M, then

1 . 2€
(3.4) Z XB(ﬁ/m)V—®/ Ym,39dV,—1 < ess inf g + R
Bl<m n=l A
where, for 5= (f1,...,0n-1) € Z:i_l,
m' 1 m—
Ump(t1s . tpy) = mtfl et (L =ty — e — gL

For each m € N, let k,, be the number of § € Zi_l satisfying the conditions || < m and
B/m € B. There is an My > M, such that if m > Ms, then k,, > 0. For m > M, we can
rewrite (3.4) in the form

1

2¢

)
Hence for each m > My, there is a B,) € Zf‘;l satisfying the conditions |8, < m,
B(m)/m € B and

2e

km / .
= | Ymfm 9dVa1 < ess inf g+ —.
_1(B) J e

(3.5) 7 -

For each m > Ma, we now define the element «,,) € Z} by the formula

Ay = (Bamysm — |B™]).
Comparing the definitions of u, and vy, 3, (3.5) can be rewritten as

km
Va1 (B) T2, (G + m)

2¢

/ ua(m)gdvn_l < ess inf g + 5
A
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From the definition of k,, it is clear that k,,/m"~! — V,,_1(B) as m — oco. Hence

lim k::_l . =1
7o Vo1 (B) [ 1=y (G +m)

Consequently, there is an M, > M such that if m > M, then
/ ua(m)ngn_l < ess inf g + €.
A

From the definition of a,,) it is obvious that |a(,,)| = m. Let us verify that a,,) satisfies
condition (b).

If t = (t1,...,tn—1) belongs to A(9), then we have t; > § for every 1 < j <n—1 and
1—t —---—tp—1 > 0. Note that the latter condition implies that 1 —t; > J for every
1 <j <n-—1. For each m > My, write Bm) = (Bm,15- -5 Bmn—1). Since B,y /m € B
and B C A(d), we have S, j/m > § and 1 — (B, j/m) > § for every 1 < j <n —1, and
1 —(Bmai/m)—--+— (Bmn-1/m) > 6. From these inequalities it is easy to see that the
multi-index a () = (B(m), m — |B(m)|) satisfies condition (b). This completes the proof. [

Lemma 3.1 motivates the following two definitions.

Definition 3.2. Let 0 < § < 1/2. Then Z5 denotes the collection of o = (v, ..., ap) € Z7}
satisfying the condition d6|a| < a; < (1 —90)|e| for every 1 < j <n.

Definition 3.3. Given 0 < § < 1/2 and m € N, Z;,, denotes the collection of o € Z;
satisfying the condition |a| = m.

Proposition 3.4. Let f € R be a real-valued function. Given any € > 0, there exist a
positive number 0 < § < 1/2 and an integer 0 < M < oo such that if m > M, then there
erist (), alm ¢ Zs.m which have the properties

(3.6) (fea<m),ea(m>) <essinf f+e€e and (feym),€eym ) > esssup f —e.

Proof. Given a real-valued f € R, by Proposition 2.1 and (3.2), there exist a real-valued
g € L°°(A) such that

(3.7) <fea,ea>:/Aguaan1

for every o € Z'} and such that
(3.8) essinf g <essinf f and esssup f < esssup g.

Given an € > 0, Lemma 3.1 provides 0 < 0 < 1/2 and 0 < M < oo such that for m > M,
there are a,), alm e Zs.m which have the properties

(3.9) / JUa,,, dVnp—1 <essinf g+e and / JU o (m)dVy, 1 > €SS sup g — €.
A A
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Combining (3.7), (3.8) and (3.9), we obtain (3.6). [J

4. A chain of eigenvalues

For each 1 < j < n, let ¢; be the element in Z"} whose j-th component is 1 and whose
other components are 0. The purpose of this section is to estimate the L'-norm on S of
functions of the form ||eq|* — [€a+te,—c, |?|, Where ¢ # j. This will take two steps. The first
step is the one-variable version of such estimates.

For each pair of m € N and j € {0,1,...,m}, we define the one-variable polynomial

Vi (t) = Mtj(l _gymi,

gt m — 7)!
It is well known that for all integers £ > 0 and ¢ > 0, we have

1 kel
4.1 k1 - o)ldp = ——— .
(4.1) /O vl =a)fde = G

Lemma 4.1. Given any 0 < § < 1/2, there is a constant 0 < C4.1(5) < oo such that if
m € N and j € {0,1,...,m} satisfy the condition dm < j < (1 — d)m, then
1
C1.1(9)
[ 1m0 = o 01 < S,
Proof. By simple algebra,
(m+1)!

Therefore
(Umj (£) = Vm g1 (8)? = h()((F +1)* = 20 + 1) (m + 1)t + (m + 1)%?),

where

_ (m+1)! 22j 2(m—j—1
h@‘{ml)!(m—jﬂ}t (=g,

Applying (4.1), we find that

! . o 25, (m + 1)| 2 -
/0 (Vi (t) = Vi ja1 () dt = { G+ Diim— j)'} (I — I + I3),
where
L= (j+1) <2j>!<(22<2_— f)!_ )
Iy =2+ D(m + 1) ET 1)!(32(2)!— -t
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By elementary manipulations,

I It Iy = (21')!((22(:;_—‘17)!— 1))! (G +1)2
~2( 4 )+ D)2 4 1)2(2;'7:(;22152))
_@)em—yg-1) (G +1)(m—j)
B (2m — 1)! 2m + 1
Thus
' 2 (m+1! \*@)N20m =4 —1))! G+ 1)(m-—j)
/o (ms(8) = Um 42 (8)) 0t = {(j+ 1)!(m—j)!} @m—-1! 2m+1

By the well-known asymptotic expansion of Stirling, k! ~ kF+(1/2)e=*  Applying this to
the factorials in the above, we find that there is a constant 0 < C; < oo which depends
only on 4 such that

1 2 G
) (Vm,j(t) = Vi1 (t))"dt < —7

forallm € N and j € {0,1,...,m} satisfying the condition ém < j < (1—0)m. Combining
this with the Cauchy-Schwarz inequality

1 1 1/2
[ o) = vt < ( [ st —vm,j+1<t>>2dt) ,
the lemma is proved. [l

In the case n = 2, we can deduce Theorem 1.1 from Lemmas 3.1 and 4.1. But if n > 3,
there is an additional step involved, which we will take next.

In the case n > 3, define
Z:{(tQ,...7trn71) ERniQ tto+ -+ t,-1 <1 and to >0,...,th1 ZO}
For all 5,...,B,—1 € Z4, it follows from (3.1) that

Pl B!
(n=1+pB1+ -+ Bu1)!

(4.2) / ol taey e dt, g =
A

An analogous identity holds on ¥. Combining this fact with (4.1), we also have

1
/(/ 861(1—8)’82ds)t§1+52+1( 11 tfj)dtz---dtnl
b 0

2<j<n—1
_ B1! 32! . (B1+ B2+ 1)1B5! - Bry!
Br+Be+1)! (n=2+B1+Ba+1+3 5 jcn 158!
Bl Bt

3 T =1+ Bt )]
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for all B1,...,Bn—1 € Z4. (In the case n =3, the [[,_,.,, 4 t?j above is interpreted to be
1, and the ), _ j<n—1 f3; is interpreted to be 0.) By the Stone-Weierstrass approximation
theorem, from (4.2) and (4.3) we deduce the identity

1
(44) /Afdvn_lz/z(/o f(Stz,(l—S)tg,tg,...,tn_l)d8>t2dt2"'dtn_1

for every € € C(A).

Lemma 4.2. Given any 0 < 6 < 1/2, there is a constant 0 < Cy2(6) < oo such that if «
and « + €1 — €2 both belong to Zs (see Definition 3.2), then

Ca(8)
/’ua Un4-e1 — 62|dVTL 1< | |1/4 .

Proof. If n = 2, then this lemma is just Lemma 4.1 stated in another way. Thus it suffices
to consider the case n > 3. Suppose that a = (aq, ..., qa,) and denote

© = |ta — Uate, —eol-

Then
n—14+a])! ot .0 o
gO(Stz, (1 — S)tg, . 7tn—1) = ﬁtzlﬂ_ 2t33 s ta 1(1 — t2 — — tn_l)a"
X (a1 +1)(1 — 5) — ags|s™ (1 — s)*2~ !
(45) = h(tg, e ,tn_l)U)(S),
where
(n=1+lah)l .. .
h(ta,... . th—1) = ta1a2ta3-tn11—t— c—tp_1)" d
(2, stn—1) (01 T+ s+ Dlag! a2 3 ( 2 n—1) an
_ (a1 +ax+1)! a as—1
w(s) = ESIE (a1 +1)(1 —s) — ags|s™ (1 — s)** 7.
Note that

(&5 < Cy
a1 + az)/A = |all/4

1 1
| ws)ds = [ oo (5) = v s 1 (5)ds <
0 0 (
by Lemma 4.1. On the other hand, since n — 1+ |a] =n — 2+ |a| + 1, (3.1) implies

/ W(ta, ... tn_1)todty - dt,_q = 1.
>
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Combining this with (4.4) and (4.5), we find that

1
/SOan—1=/ (/ @(Stm(l—3)t2,t3,---,tn—l)dS)t2dt2"'dtn—1
A = \Jo
1 1 CQ
:/h(tg,...,tn_l)tzdtg"'dtn_lf w(s)ds:/ w(s)ds < 7
by 0 0 o] /

This completes the proof. [

Proposition 4.3. Let0 < 6 < 1/2 be given. For anyi # j in{1,...,n}, ifo and a+¢€;,—¢;
both belong to Zs, then

Cy.2(9)
2 2

[ Veal? = lewsei—e, Pl < TEEE,
where Cy.5(9) is the constant provided by Lemma 4.2.

Proof. Performing a permutation of the variables z1,...,z, if necessary, it suffices to
consider the case where ¢ = 1 and j = 2.

Define @, = uq/(n —1)! for a € Z7 . It is easy to verify that
Hea‘Z - ‘ea+€1—62|2’ = S’aa - ﬁ06+61—62‘

on S (see (2.3)). Thus by (2.4),
/ ||eoz|2 - |€O¢—|—61—62|2|d(7 = / Sltle — Z~504-1—61—62|d‘7 =(n— 1)!/ |t — aa+e1—62|an—1
S S A

:/ |uo¢ _ua+61—62‘dvn—l'
A

Now an application of Lemma 4.2 completes the proof. [

Lemma 4.4. Suppose that o, 8 € Zs , for some 0 < 6 < 1/2 and m € N. Also, suppose
that a # B. Then there exist y1,...,vk € Zs.m which satisfy the following conditions:

(a) 1 = a and v, = B.
(b) For every 1 < v <k, there existi = i(v) and j = j(v) such that v, 41 = v, +€ —¢€;.

Proof. First of all, for each w = (w1, ..., w,) € Z"™, we define
w] = fwi] + - 4 |wnl.

We begin with 74 = «. By an induction on the |- | defined above, it suffices to find
a Y2 € Zsm such that v = 71 + € — ¢; for some ¢ # j in {1,...,n} and such that
v = B < |m = Bl.
Suppose that o = (aq,...,ay) and 8 = (f1,...,0,). Since |a] = m = || and since
a # [, there exist i # j in {1,...,n} such that o; < f; and a;; > ;. We define
Y2 = (12,15 s V2.n)

12



such that v2; = a; + 1, 72 = aj — 1 and v2, = a, for every v € {1,...,n}\{i,j}.
Obviously, |y2| = |a| =m, y2 =71 + €& — €5, and |y2 — 5| < |y1 — B]. Thus the only thing
that needs further verification is the membership v € Zs.

Since o, 8 € Zs m and oy < B, we have
m<o<a+1=v,;,<p <(1-90m.

Since «, f € Zsm and a; > [, we also have
m<pi<a;j—1l=v,<a; <(1-45§m.

Hence v, € Zs. This completes the proof. [

With all this preparation, we can now prove our main result.

Proof of Theorem 1.1. Let f be a real-valued function in R. It is obvious that the spectrum
of Ty is contained in [ess inf f,ess sup f]. To prove the theorem, it suffices to show that
for every pair of a, b satisfying the condition

(4.6) ess inf f <a < b <esssup f,

the interval (a,b) contains an eigenvalue of Ty. In other words, we need to find an a € Z7}
such that (feq,eq) € (a,b).

Note that (4.6) means that there is an € > 0 such that
essinf f+e<a<b<esssup f—e.

For this €, we apply Proposition 3.2. Thus there are 0 < 6 < 1/2 and 0 < M < oo such
that if m > M, then there exist o), alm ¢ Zs.m which have the properties

(feaimys Capmy) <essinf f+e and (feym),eqm) > esssup f —e.
Hence

(4.7) <f604(m)7604(m)> <a<b< <f€a(m),6a(m)>.
We now take an m > M such that

Cy2(0
(1) 171 22 <

where Cy 2(6) is the constant provided by Lemma 4.2.

By (4.7), we obviously have o) # a(™ . Applying Lemma 4.4 to the pair Q(m)s alm)
in Zs m, we obtain v1,...,v, € Zs n, satisfying the following conditions:

(i) 71 = a(m) and 3 = al™),

(ii) For every 1 < v < k, there exist i(v) and j(v) such that v, 11 = v, + €) — €50)-
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By (4.7) and (i), we have

(49) <f€7176’71><a<b< <f67k76’7k>'
Applying (ii), Proposition 4.3 and (4.8), for every 1 < v < k we have

|<f6’yu7€%/> - <f€7u+1ve’yy+1>| S ||f||00 /S ||e’7u|2 - Ie’yu+1|2|dg

. / e |2 = lexs tery e, ldo

Ciy. 2(6) 1
Define v, = max{v : (fe,,,ey,) < a}. Then it follovvs from (4.9) that v, < k. The
definition of v, ensures that (fe,, ., ,e,, .,) > a. By the condition (fe,, ,e,, ) <a and

(4.10), we have (fe,, ., ey, ,,) <b. That is,

<fe%/*+1a e’YV*+1> € (a7 b)

This completes the proof. [

Appendix

The purpose of this appendix is to justify the approximation of continuous functions
on A by multi-variable Berntein polynomials in the proof of Lemma 3.1.

As defined in Section 2, we have the compact subset
A={(ty,...,th ) eR" ity +--+t, 1 <1 and t; >0,...,t,_1 >0}

of R"~!. Borrowing an idea from probability theory, each point t = (tl, coytno1) €A
gives rise to what might be called a “multinomial distribution”, as follows.

Imagine that there is an n-sided coin which has the property that on a random toss,
the probability of it landing on the j-th side is ¢; for 1 < j < n — 1, and the probability of

it landing on the n-th sideis 1 —¢; — - —t,,_1.
Now consider m tosses of this coin. For any 5 = (f1,...,8n-1) € Zﬁ__l with |5 < m,
the quantity
ML P -18]
pg=———"—1 1...tn’i (1_151_..._15 71)771
P B m B! ! "

is the probability of the coin landing on the j-th side §; times for all 1 < j <n — 1. For
each 1 < j <n—1, let X; be the random variable that counts the number of times of the
coin landing on the j-th side in a random sequence of m tosses. For each k£ > 1, we have

Z Bivs = Zth

|Bl<m

X Z £t (L =ty — =ty )P P
Bal - Br_il(m _V_62_"'_5n71)!

B2+ +Brn—1<m—v
= Z v t”(l — )™
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Obviously, the same calculation is valid for every 1 < j < n — 1. Therefore

k\ k m' v m—v
forall1 <j <m—1andk > 1. That is, each X; actually satisfies a binomial distribution.
Thus we know from every textbook in probability theory that E((X;—mt;)?) = mt;(1—t;)
for every 1 < j < n — 1. Equivalently,

(A1) B((X,/m) —;)7) = B

forevery 1 <53 <n—1.

Note that (A.1) can also be proved by a much simpler argument, as follows. Obviously,
the single-toss version of X; has expectation value ¢; and variance t;(1 — ¢;). Since the
tosses are independent of each other, the variance in the case of m tosses equals mt;(1—t;),
ie., B((X; —mt;)?) = mt;(1—t;).

For every pair of m € N and 8 = ($1,...,0n-1) € Zﬁfl satisfying the condition
|B| < m, we now define the (n — 1)-variable polynomial

m!

_ : B ,Bn 1 . o . m—|B|
m gty b)) = =P P (1 t_ .
Yttty etno) = g, gt e (2 ”
For any function h on A, we define its m-th Bernstein polynomzial by the formula
(A2) han(t) = ) h(B/m)mp(t), t€ A
|B]<m

Proposition A.1. For every f € C(A), we have

lim Hf_ fm”oo =0.
m—r 00

Proof. We know that Lipschitz functions are dense in C'(A) with respect to the norm
| - |loo- Combining this density with the obvious fact that ||y, ||e < ||h]|ee for h € C(A),

it suffices to prove the proposition for Lipschitz functions on A.

Let f be a Lipschitz function on A, and write L for its Lipschitz constant. Since

= Y F(B/m)vms(t),

|B|<m
we have
() = fnlt |——\ £8) = £(8/m)) st \ S 170 — FB/m) (1)
|ﬁ|<m |BI<m
1/2
(A.3) <L S Jt— (B/m) s () ( S - 5hm|wmﬁno ,
|B|<m |B|<m
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where the last < follows from the Cauchy-Schwarz inequality. For t = (t1,...,t,—1) and
B=(B1,...,0n—1), we have

[t = (B/m)* = (t1 = (Br/m))* + -+ (tn1 = (Bur/m))*.
Therefore for every t = (t1,...,t,—1) € A, it follows from (A.3) and (A.1) that

I = Im(] = L(Z S (1= (35 /m) (0 " L(Z %)/

J=1B|<m J=1

<r n—1

dm -
This completes the proof. [
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