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Abstract. We consider Toeplitz operators Tf on the Hardy space H2(S) of the unit sphere
S in Cn, n ≥ 2. We show that if f is a bounded, real-valued measurable function that
depends only on |z1|, . . . , |zn|, then the spectrum of Tf is connected.

1. Introduction

This paper concerns Toeplitz operators on the Hardy space of n variables. The prob-
lem we investigate goes back to the 1970s, when the investigations of these operators just
began. To explain the problem, we first recall the basic setting.

Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. Let dσ be the spherical
measure on S. For convenience, we take the normalization σ(S) = 1. Recall that the
Hardy space H2(S) can be simply described as the closure of the analytic polynomials
C[z1, . . . , zn] in L2(S, dσ). Let P : L2(S, dσ) → H2(S) be the orthogonal projection.
Given an f ∈ L∞(S), the Toeplitz operator Tf is defined by the formula

Tfh = P (fh), h ∈ H2(S).

The function f is usually called the symbol of the Toeplitz operator Tf .

In the case where n = 1, it is well known that both the spectrum and the essential
spectrum of Tf are connected [2]. But when n ≥ 2, we know from [1] that the spectrum
and the essential spectrum of Tf can be disconnected. However, for the examples given
in [1] with disconnected spectrum or essential spectrum, the Toeplitz operator Tf is not
self-adjoint. Furthermore, it was conjectured in [1] (see page 359 of that paper) that if f
is real valued, i.e., if Tf is self-adjoint, then the spectrum of Tf equals the interval

[ess inf f, ess sup f ].

This conjecture is still open in its full generality. In fact, we are not aware of any progress
on the conjecture in the decades since the publication of [1]. The purpose of this paper is
to prove this conjecture for a special class of symbol functions.

Let us describe the set of symbol functions that we will deal with in this paper.
Intuitively, these are the functions that depend only on |z1|, . . . , |zn|, but we can give a
more rigorous definition as follows. We begin with the n-dimensional torus

Tn = {(τ1, . . . , τn) ∈ Cn : |τ1| = · · · = |τn| = 1}.
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Given an f ∈ L1(S) and a τ = (τ1, . . . , τn) ∈ Tn, we define the function

(1.1) fτ (z1, . . . , zn) = f(τ1z1, . . . , τnzn), (z1, . . . , zn) ∈ S.

Let R be the collection of functions f ∈ L∞(S) satisfying the condition fτ = f for every
τ ∈ Tn. The main result of the paper is that for a real-valued function in R, the spectrum
of the corresponding Toeplitz operator is connected.

Theorem 1.1. If f is a real-valued function in R, then the spectrum of the Toeplitz
operator Tf equals the interval [ess inf f, ess sup f ].

For any f ∈ R, the Toeplitz operator Tf is known to be diagonal with respect to
the standard orthonormal basis {eα : α ∈ Zn+} in H2(S). Thus Tf has eigenvalues
{〈feα, eα〉 : α ∈ Zn+}. To prove Theorem 1.1, we will show that these eigenvalues are
dense in [ess inf f, ess sup f ]. This density is proved in two steps.

As the first step, we show that for any open interval (a, b) satisfying the condition

ess inf f < a < b < ess sup f,

if m ∈ N is sufficiently large, then there are α(m), α
(m) ∈ Zn+ with |α(m)| = m = |α(m)|

such that

(1.2) 〈feα(m)
, eα(m)

〉 < a < b < 〈feα(m) , eα(m)〉.

Furthermore, we show that α(m), α
(m) can be chosen in such a way that their components

are comparable to m. This first step takes up Section 3.

As the second step, we show in Section 4 that if m is sufficiently large, then α(m) and

α(m) are “connected” by a chain of multi-indices γ1, . . . , γk ∈ Zn+ satisfying the following
two conditions:

(a) γ1 = α(m) and γk = α(m).
(b) For every 1 ≤ ν < k, we have |〈feγν , eγν 〉 − 〈feγν+1

, eγν+1
〉| ≤ (b− a)/2.

From (a), (b) and (1.2) it is clear that there is a 1 < j < k such that 〈feγj , eγj 〉 ∈ (a, b).

The proof of (1.2) involves multi-variable Bernstein polynomials. We prove the re-
quired convergence of these polynomials in the Appendix at the end of the paper.

2. Preliminaries

We adopt the standard multi-index notation [3, page 3]. Let {eα : α ∈ Zn+} be the
standard orthonormal basis for the Hardy space H2(S). Recall that

eα(z) =

(
(n− 1 + |α|)!

(n− 1)!α!

)1/2

zα,

α ∈ Zn+. See [3, Proposition 1.4.9]. It is easy to see that if f ∈ R, then

〈Tfeα, eβ〉 = 〈feα, eβ〉 = 0 when α 6= β.
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Thus if f ∈ R, then the Toeplitz operator Tf is a diagonal operator of the form

Tf =
∑
α∈Zn

+

〈feα, eα〉eα ⊗ eα.

In other words, for any f ∈ R, the Toeplitz operator Tf has eigenvalues {〈feα, eα〉 :
α ∈ Zn+}. It was shown in [1] that for a complex-valued f ∈ R, the closure of the set
{〈feα, eα〉 : α ∈ Zn+} can be disconnected. We will show that if f is a real-valued function
in R, then the set {〈feα, eα〉 : α ∈ Zn+} is dense in the interval [ess inf f, ess sup f ].
Combining this statement with the obvious fact that the spectrum of such a Tf is contained
in [ess inf f, ess sup f ], Theorem 1.1 follows.

Let Q denote the first quadrant of the closed unit ball in Rn−1. That is,

Q = {(x1, . . . , xn−1) ∈ Rn−1 : x2
1 + · · ·+ x2

n−1 ≤ 1 and x1 ≥ 0, . . . , xn−1 ≥ 0}.

On Q we define the measure dµ by the formula

dµ(x1, . . . , xn−1) = (n− 1)!2n−1x1 · · ·xn−1dx1 · · · dxn−1.

It is known that

(2.1)

∫
S

ϕ(|z1|, . . . , |zn−1|)dσ(z1, . . . , zn−1, zn) =

∫
Q

ϕdµ

for every ϕ ∈ C(Q). See [4, page 1377].

We further introduce the set

∆ = {(t1, . . . , tn−1) ∈ Rn−1 : t1 + · · ·+ tn−1 ≤ 1 and t1 ≥ 0, . . . , tn−1 ≥ 0}.

Let dVn−1 denote the standard Lebesgue measure on Rn−1. Making the substitution
t1 = x2

1, . . . , tn−1 = x2
n−1, we have

(2.2)

∫
Q

ξ(x2
1, . . . , x

2
n−1)dµ(x1, . . . , xn−1) = (n− 1)!

∫
∆

ξdVn−1,

ξ ∈ C(∆). For each ξ ∈ C(∆), we define the function

(2.3) (Sξ)(z1, . . . , zn−1, zn) = ξ(|z1|2, . . . , |zn−1|2), (z1, . . . , zn−1, zn) ∈ S.

Then it follows from (2.1) and (2.2) that

(2.4)

∫
S

Sξdσ = (n− 1)!

∫
∆

ξdVn−1

for every ξ ∈ C(∆).
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Proposition 2.1. Given any f ∈ L∞(S), there is a g ∈ L∞(∆) such that

(2.5)

∫
S

fSξdσ = (n− 1)!

∫
∆

gξdVn−1

for every ξ ∈ C(∆). If f ∈ R and if f is real valued, then we have

ess inf g ≤ ess inf f and ess sup f ≤ ess sup g.

Proof. Define

Φ(ξ) =

∫
S

fSξdσ

for every ξ ∈ C(∆). Note that (2.4) implies ‖Sξ‖L1(S,dσ) = ‖ξ‖L1(∆,(n−1)!dVn−1). Hence

|Φ(ξ)| ≤ ‖f‖∞‖ξ‖L1(∆,(n−1)!dVn−1)

for every ξ ∈ C(∆). By the Hahn-Banach theorem, there is a bounded linear functional Φ̃
on L1(∆, (n− 1)!dVn−1) with ‖Φ̃‖ ≤ ‖f‖∞ such that Φ̃(ξ) = Φ(ξ) for every ξ ∈ C(∆). By
the representation of Φ̃, there is a g ∈ L∞(∆) with ‖g‖∞ ≤ ‖f‖∞ such that (2.5) holds.

To prove the second half of the proposition, we introduce the following device. Let
dmn denote the Lebesgue measure on Tn with the normalization mn(Tn) = 1. For every
ϕ ∈ L1(S, dσ), we define

Aϕ =

∫
Tn

ϕτdmn(τ),

where ϕτ is defined by (1.1).

Suppose that f ∈ R and that f is real valued. Let ε > 0. Pick an a ∈ R such that

ess inf f + ε− a < 0.

Since C[z1, z̄1, . . . , zn, z̄n] is dense in C(S) with respect to the norm ‖·‖∞ and since C(S) is
dense in L1(S, dσ) with respect to the L1-norm, there is a q ∈ C[z1, z̄1, . . . , zn, z̄n] satisfying
the conditions q ≥ 0 on S, ‖q‖L1(S,dσ) = 1, and

∫
S
fqdσ ≤ ess inf f + ε. Thus∫

S

(f − a)qdσ ≤ ess inf f + ε− a < 0.

By the invariance of dσ and the membership f ∈ R, for each τ ∈ Tn we have∫
S

(f − a)qdσ =

∫
S

(fτ − a)qτdσ =

∫
S

(f − a)qτdσ.

Averaging over Tn, we obtain

(2.6)

∫
S

(f − a)Aqdσ =

∫
S

(f − a)qdσ ≤ ess inf f + ε− a.
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If u is a monomial of the form zα1
1 z̄β1

1 · · · zαnn z̄βnn for some α1, β1, . . . , αn, βn ∈ Z+, then
Au 6= 0 only if αj = βj for every 1 ≤ j ≤ n. Since |zn|2 = 1 − |z1|2 − · · · − |zn−1|2 on S,
we see that there is an (n− 1)-variable polynomial p such that

Aq = Sp on S.

Substituting this in (2.6) and recalling (2.5) and (2.4), we now have

(2.7) (n− 1)!

∫
∆

(g − a)pdVn−1 =

∫
S

(f − a)Spdσ ≤ ess inf f + ε− a

Since q ≥ 0 on S, we have Aq ≥ 0 on S. Hence Sp ≥ 0 on S, and consequently p ≥ 0 on
∆. Applying (2.4) again, we have

(2.8) ‖p‖L1(∆,(n−1)!dVn−1) = ‖Sp‖L1(S,dσ) = ‖Aq‖L1(S,dσ) ≤ ‖q‖L1(S,dσ) = 1.

Since ess inf f + ε− a < 0, it follows from (2.7) and (2.8) that

ess inf(g − a) ≤ ess inf f + ε− a.

That is, ess inf g ≤ ess inf f+ε. Since ε > 0 is arbitrary, if follows that ess inf g ≤ ess inf f .
The proof for the inequality ess sup f ≤ ess sup g is similar and will be omitted. �

3. Essential extrema

Given an α = (α1, . . . , αn) ∈ Zn+, we define the (n− 1)-variable polynomial

uα(t1, . . . , tn−1) =
(n− 1 + |α|)!

α!
tα1
1 · · · t

αn−1

n−1 (1− t1 − · · · − tn−1)αn .

Obviously, for each α ∈ Zn+, uα is a non-negative function on ∆, and by (2.4) we have

(3.1)

∫
∆

uαdVn−1 =

∫
S

|eα|2dσ = 1.

If f ∈ L∞(S) and g ∈ L∞(∆) are a pair of functions satisfying (2.5), then

(3.2)

∫
S

f |eα|2dσ =

∫
∆

guαdVn−1

for every α ∈ Zn+. The following is the first step in the proof of Theorem 1.1.

Lemma 3.1. Let g ∈ L∞(∆) be a real-valued function. Given any ε > 0, there exist
a positive number 0 < δ ≤ 1/2 and an integer 0 < M < ∞ such that the following
holds true: For every m ≥ M , there exist α(m) = (αm,1, . . . , αm,n) ∈ Zn+ and α(m) =

(α
(m)
1 , . . . , α

(m)
n ) ∈ Zn+ satisfying the conditions

(a) |α(m)| = m = |α(m)|.
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(b) For every 1 ≤ j ≤ n, we have δm ≤ αm,j ≤ (1− δ)m and δm ≤ α(m)
j ≤ (1− δ)m.

(c) We have∫
∆

guα(m)
dVn−1 ≤ ess inf g + ε and

∫
∆

guα(m)dVn−1 ≥ ess sup g − ε.

Proof. For any r > 0, we define the subset

∆(r) = {t ∈ ∆ : d(t,Rn−1\∆) > r}

of ∆, where d(t,Rn−1\∆) = inf{|t− x| : x ∈ Rn−1\∆}. Given an ε > 0, we define

E = {t ∈ ∆ : g(t) ≤ ess inf g + (ε/10)} and F = {t ∈ ∆ : g(t) ≥ ess sup g − (ε/10)}.

Then Vn−1(E) > 0 and Vn−1(F ) > 0. This means that there is a δ > 0 such that

Vn−1(E ∩∆(2δ)) > 0 and Vn−1(F ∩∆(2δ)) > 0.

Below we will explicitly produce α(m); the details for producing α(m) are similar and will
not be repeated.

Since Vn−1(E ∩∆(2δ)) > 0, there is a t∗ ∈ E ∩∆(2δ) which is a Lebesgue point of g.
Hence there is an (n−1)-dimensional cube B satisfying the conditions that t∗ ∈ B ⊂ ∆(δ)
and that

1

Vn−1(B)

∫
B

|g − g(t∗)|dVn−1 ≤
ε

10
.

Since t∗ ∈ E, we have g(t∗) ≤ ess inf g + (ε/10), and from the above inequality we obtain

(3.3)
1

Vn−1(B)

∫
B

gdVn−1 ≤ g(t∗) +
ε

10
≤ ess inf g +

ε

5
.

There are continuous functions η, ξ : ∆ → [0, 1] satisfying the conditions that 0 ≤ ξ ≤
χB ≤ η on ∆ and that

1

Vn−1(B)

∫
∆

|η − χB ||g|dVn−1 ≤
ε

20
and

1

Vn−1(B)

∫
∆

|ξ − χB ||g|dVn−1 ≤
ε

20
.

For ϕ ∈ C(∆) and m ∈ N, write ϕm for the m-th Bernstein polynomial of ϕ, as defined in
the Appendix. We know from Proposition A.1 that limm→∞ ‖ϕ− ϕm‖∞ = 0. Combining
this fact with the above inequalities, there is an M1 ∈ N such that if m ≥M1, then

1

Vn−1(B)

∫
∆

|ηm − χB ||g|dVn−1 ≤
ε

10
and

1

Vn−1(B)

∫
∆

|ξm − χB ||g|dVn−1 ≤
ε

10
.

For m ∈ N, we also write (χB)m for the m-th Bernstein polynomial of χB . The condition
ξ ≤ χB ≤ η implies ξm ≤ (χB)m ≤ ηm for every m ∈ N. Hence

ξm − χB ≤ (χB)m − χB ≤ ηm − χB .
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From this we see that the inequality

|(χB)m(t)− χB(t)| ≤ max{|ηm(t)− χB(t)|, |ξm(t)− χB(t)|}

holds for every t ∈ ∆. Thus for each m ≥M1, we have

1

Vn−1(B)

∫
∆

|(χB)m − χB ||g|dVn−1 ≤
ε

5
.

Combining this with (3.3), we find that

1

Vn−1(B)

∫
∆

(χB)mgdVn−1 ≤
1

Vn−1(B)

∫
B

gdVn−1 +
ε

5
≤ ess inf g +

2ε

5

for every m ≥M1. By the definition of the Bernstein polynomial (χB)m in the Appendix
(see (A.2)), this means that if m ≥M1, then

(3.4)
∑
|β|≤m

χB(β/m)
1

Vn−1(B)

∫
∆

ψm,βgdVn−1 ≤ ess inf g +
2ε

5
,

where, for β = (β1, . . . , βn−1) ∈ Zn−1
+ ,

ψm,β(t1, . . . , tn−1) =
m!

β!(m− |β|)!
tβ1

1 · · · t
βn−1

n−1 (1− t1 − · · · − tn−1)m−|β|.

For each m ∈ N, let km be the number of β ∈ Zn−1
+ satisfying the conditions |β| ≤ m and

β/m ∈ B. There is an M2 ≥M1 such that if m ≥M2, then km > 0. For m ≥M2 we can
rewrite (3.4) in the form

1

km

∑
|β|≤m

χB(β/m)
km

Vn−1(B)

∫
∆

ψm,βgdVn−1 ≤ ess inf g +
2ε

5
,

Hence for each m ≥ M2, there is a β(m) ∈ Zn−1
+ satisfying the conditions |β(m)| ≤ m,

β(m)/m ∈ B and

(3.5)
km

Vn−1(B)

∫
∆

ψm,β(m)
gdVn−1 ≤ ess inf g +

2ε

5
.

For each m ≥M2, we now define the element α(m) ∈ Zn+ by the formula

α(m) = (β(m),m− |β(m)|).

Comparing the definitions of uα and ψm,β , (3.5) can be rewritten as

km

Vn−1(B)
∏n−1
j=1 (j +m)

∫
∆

uα(m)
gdVn−1 ≤ ess inf g +

2ε

5
.
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From the definition of km it is clear that km/m
n−1 → Vn−1(B) as m→∞. Hence

lim
m→∞

km

Vn−1(B)
∏n−1
j=1 (j +m)

= 1.

Consequently, there is an M∗ ≥M2 such that if m ≥M∗, then∫
∆

uα(m)
gdVn−1 ≤ ess inf g + ε.

From the definition of α(m) it is obvious that |α(m)| = m. Let us verify that α(m) satisfies
condition (b).

If t = (t1, . . . , tn−1) belongs to ∆(δ), then we have tj > δ for every 1 ≤ j ≤ n− 1 and
1 − t1 − · · · − tn−1 > δ. Note that the latter condition implies that 1 − tj > δ for every
1 ≤ j ≤ n − 1. For each m ≥ M1, write β(m) = (βm,1, . . . , βm,n−1). Since β(m)/m ∈ B
and B ⊂ ∆(δ), we have βm,j/m > δ and 1 − (βm,j/m) > δ for every 1 ≤ j ≤ n − 1, and
1 − (βm,1/m) − · · · − (βm,n−1/m) > δ. From these inequalities it is easy to see that the
multi-index α(m) = (β(m),m− |β(m)|) satisfies condition (b). This completes the proof. �

Lemma 3.1 motivates the following two definitions.

Definition 3.2. Let 0 < δ ≤ 1/2. Then Zδ denotes the collection of α = (α1, . . . , αn) ∈ Zn+
satisfying the condition δ|α| ≤ αj ≤ (1− δ)|α| for every 1 ≤ j ≤ n.

Definition 3.3. Given 0 < δ ≤ 1/2 and m ∈ N, Zδ,m denotes the collection of α ∈ Zδ
satisfying the condition |α| = m.

Proposition 3.4. Let f ∈ R be a real-valued function. Given any ε > 0, there exist a
positive number 0 < δ ≤ 1/2 and an integer 0 < M < ∞ such that if m ≥ M , then there
exist α(m), α

(m) ∈ Zδ,m which have the properties

(3.6) 〈feα(m)
, eα(m)

〉 ≤ ess inf f + ε and 〈feα(m) , eα(m)〉 ≥ ess sup f − ε.

Proof. Given a real-valued f ∈ R, by Proposition 2.1 and (3.2), there exist a real-valued
g ∈ L∞(∆) such that

(3.7) 〈feα, eα〉 =

∫
∆

guαdVn−1

for every α ∈ Zn+ and such that

(3.8) ess inf g ≤ ess inf f and ess sup f ≤ ess sup g.

Given an ε > 0, Lemma 3.1 provides 0 < δ ≤ 1/2 and 0 < M <∞ such that for m ≥ M ,
there are α(m), α

(m) ∈ Zδ,m which have the properties

(3.9)

∫
∆

guα(m)
dVn−1 ≤ ess inf g + ε and

∫
∆

guα(m)dVn−1 ≥ ess sup g − ε.
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Combining (3.7), (3.8) and (3.9), we obtain (3.6). �

4. A chain of eigenvalues

For each 1 ≤ j ≤ n, let εj be the element in Zn+ whose j-th component is 1 and whose
other components are 0. The purpose of this section is to estimate the L1-norm on S of
functions of the form ||eα|2 − |eα+εi−εj |2|, where i 6= j. This will take two steps. The first
step is the one-variable version of such estimates.

For each pair of m ∈ N and j ∈ {0, 1, . . . ,m}, we define the one-variable polynomial

vm,j(t) =
(m+ 1)!

j!(m− j)!
tj(1− t)m−j .

It is well known that for all integers k ≥ 0 and ` ≥ 0, we have

(4.1)

∫ 1

0

xk(1− x)`dx =
k!`!

(k + `+ 1)!
.

Lemma 4.1. Given any 0 < δ ≤ 1/2, there is a constant 0 < C4.1(δ) < ∞ such that if
m ∈ N and j ∈ {0, 1, . . . ,m} satisfy the condition δm ≤ j ≤ (1− δ)m, then∫ 1

0

|vm,j(t)− vm,j+1(t)|dt ≤ C4.1(δ)

m1/4
.

Proof. By simple algebra,

vm,j(t)− vm,j+1(t) =
(m+ 1)!

(j + 1)!(m− j)!
tj(1− t)m−j−1((j + 1)− (m+ 1)t).

Therefore

(vm,j(t)− vm,j+1(t))2 = h(t)((j + 1)2 − 2(j + 1)(m+ 1)t+ (m+ 1)2t2),

where

h(t) =

{
(m+ 1)!

(j + 1)!(m− j)!

}2

t2j(1− t)2(m−j−1).

Applying (4.1), we find that∫ 1

0

(vm,j(t)− vm,j+1(t))2dt =

{
(m+ 1)!

(j + 1)!(m− j)!

}2

(I1 − I2 + I3),

where

I1 = (j + 1)2 (2j)!(2(m− j − 1))!

(2m− 1)!
,

I2 = 2(j + 1)(m+ 1)
(2j + 1)!(2(m− j − 1))!

(2m)!
and

I3 = (m+ 1)2 (2j + 2)!(2(m− j − 1))!

(2m+ 1)!
.
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By elementary manipulations,

I1 − I2 + I3 =
(2j)!(2(m− j − 1))!

(2m− 1)!

(
(j + 1)2

− 2(j + 1)(m+ 1)
2j + 1

2m
+ (m+ 1)2 (2j + 1)(2j + 2)

2m(2m+ 1)

)
= · · · · · ·

=
(2j)!(2(m− j − 1))!

(2m− 1)!
· (j + 1)(m− j)

2m+ 1
.

Thus∫ 1

0

(vm,j(t)− vm,j+1(t))2dt =

{
(m+ 1)!

(j + 1)!(m− j)!

}2
(2j)!(2(m− j − 1))!

(2m− 1)!
· (j + 1)(m− j)

2m+ 1
.

By the well-known asymptotic expansion of Stirling, k! ≈ kk+(1/2)e−k. Applying this to
the factorials in the above, we find that there is a constant 0 < C1 < ∞ which depends
only on δ such that ∫ 1

0

(vm,j(t)− vm,j+1(t))2dt ≤ C1

m1/2

for all m ∈ N and j ∈ {0, 1, . . . ,m} satisfying the condition δm ≤ j ≤ (1−δ)m. Combining
this with the Cauchy-Schwarz inequality∫ 1

0

|vm,j(t)− vm,j+1(t)|dt ≤
(∫ 1

0

(vm,j(t)− vm,j+1(t))2dt

)1/2

,

the lemma is proved. �

In the case n = 2, we can deduce Theorem 1.1 from Lemmas 3.1 and 4.1. But if n ≥ 3,
there is an additional step involved, which we will take next.

In the case n ≥ 3, define

Σ = {(t2, . . . , tn−1) ∈ Rn−2 : t2 + · · ·+ tn−1 ≤ 1 and t2 ≥ 0, . . . , tn−1 ≥ 0}.

For all β1, . . . , βn−1 ∈ Z+, it follows from (3.1) that

(4.2)

∫
∆

tβ1

1 · · · t
βn−1

n−1 dt1 · · · dtn−1 =
β1! · · ·βn!

(n− 1 + β1 + · · ·+ βn−1)!
.

An analogous identity holds on Σ. Combining this fact with (4.1), we also have∫
Σ

(∫ 1

0

sβ1(1− s)β2ds

)
tβ1+β2+1
2

( ∏
2<j≤n−1

t
βj
j

)
dt2 · · · dtn−1

=
β1!β2!

(β1 + β2 + 1)!
· (β1 + β2 + 1)!β3! · · ·βn−1!

(n− 2 + β1 + β2 + 1 +
∑

2<j≤n−1 βj)!

=
β1! · · ·βn−1!

(n− 1 + β1 + · · ·+ βn−1)!
(4.3)
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for all β1, . . . , βn−1 ∈ Z+. (In the case n = 3, the
∏

2<j≤n−1 t
βj
j above is interpreted to be

1, and the
∑

2<j≤n−1 βj is interpreted to be 0.) By the Stone-Weierstrass approximation
theorem, from (4.2) and (4.3) we deduce the identity

(4.4)

∫
∆

ξdVn−1 =

∫
Σ

(∫ 1

0

ξ(st2, (1− s)t2, t3, . . . , tn−1)ds

)
t2dt2 · · · dtn−1

for every ξ ∈ C(∆).

Lemma 4.2. Given any 0 < δ ≤ 1/2, there is a constant 0 < C4.2(δ) < ∞ such that if α
and α+ ε1 − ε2 both belong to Zδ (see Definition 3.2), then∫

∆

|uα − uα+ε1−ε2 |dVn−1 ≤
C4.2(δ)

|α|1/4
.

Proof. If n = 2, then this lemma is just Lemma 4.1 stated in another way. Thus it suffices
to consider the case n ≥ 3. Suppose that α = (α1, . . . , αn) and denote

ϕ = |uα − uα+ε1−ε2 |.

Then

ϕ(st2, (1− s)t2, . . . , tn−1) =
(n− 1 + |α|)!

(α+ ε1)!
tα1+α2
2 tα3

3 · · · t
αn−1

n−1 (1− t2 − · · · − tn−1)αn

× |(α1 + 1)(1− s)− α2s|sα1(1− s)α2−1

= h(t2, . . . , tn−1)w(s),(4.5)

where

h(t2, . . . , tn−1) =
(n− 1 + |α|)!

(α1 + α2 + 1)!α3! · · ·αn!
tα1+α2
2 tα3

3 · · · t
αn−1

n−1 (1− t2 − · · · − tn−1)αn and

w(s) =
(α1 + α2 + 1)!

(α1 + 1)!α2!
|(α1 + 1)(1− s)− α2s|sα1(1− s)α2−1.

Note that∫ 1

0

w(s)ds =

∫ 1

0

|vα1+α2,α1
(s)− vα1+α2,α1+1(s)|ds ≤ C1

(α1 + α2)1/4
≤ C2

|α|1/4

by Lemma 4.1. On the other hand, since n− 1 + |α| = n− 2 + |α|+ 1, (3.1) implies∫
Σ

h(t2, . . . , tn−1)t2dt2 · · · dtn−1 = 1.

11



Combining this with (4.4) and (4.5), we find that∫
∆

ϕdVn−1 =

∫
Σ

(∫ 1

0

ϕ(st2, (1− s)t2, t3, . . . , tn−1)ds

)
t2dt2 · · · dtn−1

=

∫
Σ

h(t2, . . . , tn−1)t2dt2 · · · dtn−1

∫ 1

0

w(s)ds =

∫ 1

0

w(s)ds ≤ C2

|α|1/4
.

This completes the proof. �

Proposition 4.3. Let 0 < δ ≤ 1/2 be given. For any i 6= j in {1, . . . , n}, if α and α+εi−εj
both belong to Zδ, then ∫

S

||eα|2 − |eα+εi−εj |2|dσ ≤
C4.2(δ)

|α|1/4
,

where C4.2(δ) is the constant provided by Lemma 4.2.

Proof. Performing a permutation of the variables z1, . . . , zn if necessary, it suffices to
consider the case where i = 1 and j = 2.

Define ũα = uα/(n− 1)! for α ∈ Zn+. It is easy to verify that

||eα|2 − |eα+ε1−ε2 |2| = S|ũα − ũα+ε1−ε2 |

on S (see (2.3)). Thus by (2.4),∫
S

||eα|2 − |eα+ε1−ε2 |2|dσ =

∫
S

S|ũα − ũα+ε1−ε2 |dσ = (n− 1)!

∫
∆

|ũα − ũα+ε1−ε2 |dVn−1

=

∫
∆

|uα − uα+ε1−ε2 |dVn−1.

Now an application of Lemma 4.2 completes the proof. �

Lemma 4.4. Suppose that α, β ∈ Zδ,m for some 0 < δ ≤ 1/2 and m ∈ N. Also, suppose
that α 6= β. Then there exist γ1, . . . , γk ∈ Zδ,m which satisfy the following conditions:

(a) γ1 = α and γk = β.
(b) For every 1 ≤ ν < k, there exist i = i(ν) and j = j(ν) such that γν+1 = γν+εi−εj .

Proof. First of all, for each w = (w1, . . . , wn) ∈ Zn, we define

|w| = |w1|+ · · ·+ |wn|.

We begin with γ1 = α. By an induction on the | · | defined above, it suffices to find
a γ2 ∈ Zδ,m such that γ2 = γ1 + εi − εj for some i 6= j in {1, . . . , n} and such that
|γ2 − β| < |γ1 − β|.

Suppose that α = (α1, . . . , αn) and β = (β1, . . . , βn). Since |α| = m = |β| and since
α 6= β, there exist i 6= j in {1, . . . , n} such that αi < βi and αj > βj . We define

γ2 = (γ2,1, . . . , γ2,n)
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such that γ2,i = αi + 1, γ2,j = αj − 1 and γ2,ν = αν for every ν ∈ {1, . . . , n}\{i, j}.
Obviously, |γ2| = |α| = m, γ2 = γ1 + εi − εj , and |γ2 − β| < |γ1 − β|. Thus the only thing
that needs further verification is the membership γ2 ∈ Zδ.

Since α, β ∈ Zδ,m and αi < βi, we have

δm ≤ αi < αi + 1 = γ2,i ≤ βi ≤ (1− δ)m.

Since α, β ∈ Zδ,m and αj > βj , we also have

δm ≤ βj ≤ αj − 1 = γ2,j < αj ≤ (1− δ)m.

Hence γ2 ∈ Zδ. This completes the proof. �

With all this preparation, we can now prove our main result.

Proof of Theorem 1.1. Let f be a real-valued function in R. It is obvious that the spectrum
of Tf is contained in [ess inf f, ess sup f ]. To prove the theorem, it suffices to show that
for every pair of a, b satisfying the condition

(4.6) ess inf f < a < b < ess sup f,

the interval (a, b) contains an eigenvalue of Tf . In other words, we need to find an α ∈ Zn+
such that 〈feα, eα〉 ∈ (a, b).

Note that (4.6) means that there is an ε > 0 such that

ess inf f + ε < a < b < ess sup f − ε.

For this ε, we apply Proposition 3.2. Thus there are 0 < δ ≤ 1/2 and 0 < M < ∞ such
that if m ≥M , then there exist α(m), α

(m) ∈ Zδ,m which have the properties

〈feα(m)
, eα(m)

〉 ≤ ess inf f + ε and 〈feα(m) , eα(m)〉 ≥ ess sup f − ε.

Hence

(4.7) 〈feα(m)
, eα(m)

〉 < a < b < 〈feα(m) , eα(m)〉.

We now take an m ≥M such that

(4.8) ‖f‖∞
C4.2(δ)

m1/4
≤ 1

2
(b− a),

where C4.2(δ) is the constant provided by Lemma 4.2.

By (4.7), we obviously have α(m) 6= α(m). Applying Lemma 4.4 to the pair α(m), α
(m)

in Zδ,m, we obtain γ1, . . . , γk ∈ Zδ,m satisfying the following conditions:
(i) γ1 = α(m) and γk = α(m).
(ii) For every 1 ≤ ν < k, there exist i(ν) and j(ν) such that γν+1 = γν + εi(ν) − εj(ν).
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By (4.7) and (i), we have

(4.9) 〈feγ1 , eγ1〉 < a < b < 〈feγk , eγk〉.
Applying (ii), Proposition 4.3 and (4.8), for every 1 ≤ ν < k we have

|〈feγν , eγν 〉 − 〈feγν+1 , eγν+1〉| ≤ ‖f‖∞
∫
S

||eγν |2 − |eγν+1 |2|dσ

= ‖f‖∞
∫
S

||eγν |2 − |eγν+εi(ν)−εj(ν) |
2|dσ

≤ ‖f‖∞
C4.2(δ)

m1/4
≤ 1

2
(b− a).(4.10)

Define ν∗ = max{ν : 〈feγν , eγν 〉 ≤ a}. Then it follows from (4.9) that ν∗ < k. The
definition of ν∗ ensures that 〈feγν∗+1

, eγν∗+1
〉 > a. By the condition 〈feγν∗ , eγν∗ 〉 ≤ a and

(4.10), we have 〈feγν∗+1
, eγν∗+1

〉 < b. That is,

〈feγν∗+1
, eγν∗+1

〉 ∈ (a, b).

This completes the proof. �

Appendix

The purpose of this appendix is to justify the approximation of continuous functions
on ∆ by multi-variable Berntein polynomials in the proof of Lemma 3.1.

As defined in Section 2, we have the compact subset

∆ = {(t1, . . . , tn−1) ∈ Rn−1 : t1 + · · ·+ tn−1 ≤ 1 and t1 ≥ 0, . . . , tn−1 ≥ 0}
of Rn−1. Borrowing an idea from probability theory, each point t = (t1, . . . , tn−1) ∈ ∆
gives rise to what might be called a “multinomial distribution”, as follows.

Imagine that there is an n-sided coin which has the property that on a random toss,
the probability of it landing on the j-th side is tj for 1 ≤ j ≤ n− 1, and the probability of
it landing on the n-th side is 1− t1 − · · · − tn−1.

Now consider m tosses of this coin. For any β = (β1, . . . , βn−1) ∈ Zn−1
+ with |β| ≤ m,

the quantity

pβ =
m!

β!(m− |β|)!
tβ1

1 · · · t
βn−1

n−1 (1− t1 − · · · − tn−1)m−|β|

is the probability of the coin landing on the j-th side βj times for all 1 ≤ j ≤ n − 1. For
each 1 ≤ j ≤ n− 1, let Xj be the random variable that counts the number of times of the
coin landing on the j-th side in a random sequence of m tosses. For each k ≥ 1, we have

E(Xk
1 ) =

∑
|β|≤m

βk1pβ =

m∑
ν=0

νktν1
m!

ν!

×
∑

β2+···+βn−1≤m−ν

tβ2

2 · · · t
βn−1

n−1 (1− t1 − · · · − tn−1)m−ν−β2−···−βn−1

β2! · · ·βn−1!(m− ν − β2 − · · · − βn−1)!

=
m∑
ν=0

νk
m!

ν!(m− ν)!
tν1(1− t1)m−ν .
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Obviously, the same calculation is valid for every 1 ≤ j ≤ n− 1. Therefore

E(Xk
j ) =

m∑
ν=0

νk
m!

ν!(m− ν)!
tνj (1− tj)m−ν

for all 1 ≤ j ≤ n− 1 and k ≥ 1. That is, each Xj actually satisfies a binomial distribution.
Thus we know from every textbook in probability theory that E((Xj−mtj)2) = mtj(1−tj)
for every 1 ≤ j ≤ n− 1. Equivalently,

(A.1) E(((Xj/m)− tj)2) =
tj(1− tj)

m

for every 1 ≤ j ≤ n− 1.

Note that (A.1) can also be proved by a much simpler argument, as follows. Obviously,
the single-toss version of Xj has expectation value tj and variance tj(1 − tj). Since the
tosses are independent of each other, the variance in the case of m tosses equals mtj(1−tj),
i.e., E((Xj −mtj)2) = mtj(1− tj).

For every pair of m ∈ N and β = (β1, . . . , βn−1) ∈ Zn−1
+ satisfying the condition

|β| ≤ m, we now define the (n− 1)-variable polynomial

ψm,β(t1, . . . , tn−1) =
m!

β!(m− |β|)!
tβ1

1 · · · t
βn−1

n−1 (1− t1 − · · · − tn−1)m−|β|.

For any function h on ∆, we define its m-th Bernstein polynomial by the formula

(A.2) hm(t) =
∑
|β|≤m

h(β/m)ψm,β(t), t ∈ ∆.

Proposition A.1. For every f ∈ C(∆), we have

lim
m→∞

‖f − fm‖∞ = 0.

Proof. We know that Lipschitz functions are dense in C(∆) with respect to the norm
‖ · ‖∞. Combining this density with the obvious fact that ‖hm‖∞ ≤ ‖h‖∞ for h ∈ C(∆),
it suffices to prove the proposition for Lipschitz functions on ∆.

Let f be a Lipschitz function on ∆, and write L for its Lipschitz constant. Since

fm(t) =
∑
|β|≤m

f(β/m)ψm,β(t),

we have

|f(t)− fm(t)| =
∣∣∣∣ ∑
|β|≤m

(f(t)− f(β/m))ψm,β(t)

∣∣∣∣ ≤ ∑
|β|≤m

|f(t)− f(β/m)|ψm,β(t)

≤ L
∑
|β|≤m

|t− (β/m)|ψm,β(t) ≤ L
( ∑
|β|≤m

|t− (β/m)|2ψm,β(t)

)1/2

,(A.3)
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where the last ≤ follows from the Cauchy-Schwarz inequality. For t = (t1, . . . , tn−1) and
β = (β1, . . . , βn−1), we have

|t− (β/m)|2 = (t1 − (β1/m))2 + · · ·+ (tn−1 − (βn−1/m))2.

Therefore for every t = (t1, . . . , tn−1) ∈ ∆, it follows from (A.3) and (A.1) that

|f(t)− fm(t)| ≤ L
( n−1∑
j=1

∑
|β|≤m

(tj − (βj/m))2ψm,β(t)

)1/2

= L

( n−1∑
j=1

tj(1− tj)
m

)1/2

≤ L
√
n− 1

4m
.

This completes the proof. �
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