GEOMETRIC ARVESON-DOUGLAS CONJECTURE FOR THE
HARDY SPACE AND A RELATED COMPACTNESS CRITERION

Yi Wang! and Jingbo Xia

Abstract. We consider a class of analytic subsets M of an open neighborhood of the
closed unit ball in C™. Such an M gives rise to a submodule R and a quotient module Q
of the Hardy module H?2(S) on the unit sphere S C C". We show that, as predicted by
the geometric Arveson-Douglas conjecture, the quotient module Q is p-essentially normal
for p > d = dimcM. We further show that, more interestingly, the quotient module
Q exhibits a behavior that is only found on the Bergman space and the Fock space: an
operator A in the Toeplitz algebra on Q is compact if and only if its Berezin transform
vanishes near M N S.

1. Introduction

Let S denote the unit sphere {z € C" : |z| = 1} in C". We write do for the standard
spherical measure on S, and we take the usual normalization o(S) = 1. The simplest
way to introduce the Hardy space H?2(S) is to say that it is the closure of Clzy, ..., 2,]
in L2(S,do). Nowadays, the Hardy space H?(S) is more commonly viewed as a Hilbert
module over the ring of analytic polynomials C[z1, ..., z,], and the same is true for the
other reproducing-kernel Hilbert spaces [7,11]. One of the reasons why we want to think
of these spaces as modules over C[zy, ..., z,] is that where there are modules, there are
submodules and quotient modules, which can be sources of very interesting and challenging
problems. A good example of such problems is the Arveson-Douglas conjecture, which in
recent years has been a very active area of research [3,6,12-15,18,22,28].

Suppose that N is either a submodule or a quotient module of the Hardy module
H?(S). Let Py : H*(S) — N be the orthogonal projection. Then we have the module
operators

(1.1) Zynj=PyM, N, j=1,...,n,

on N. Recall that A is said to be p-essentially normal if all commutators [Z3/ ;, Zx j],
1 <,7 < n, are in the Schatten class C,. The famous Arveson Conjecture [1,2] predicts
that every graded submodule of the Drury-Arveson module is p-essentially normal for
p > n. This was later refined by Douglas [10], who observed that in the case of the
quotient module it should really be p > d, where d is the complex dimension of the variety
involved. This conforms with the common view that quotient modules are rather “small”.

Keywords: Quotient module, essential normality, compactness criterion.
ISupported in part by National Science Foundation grant DMS-1900076.

1



In this paper we consider a very specific class of submodules and quotient modules.
Denote B = {z € C™ : |z| < 1}, the open unit ball in C". Let M be an analytic subset [9]
of an open neighborhood of B with 1 < dimcM <n—1. We will assume that M has no
singular points on S and that M intersects S transversely. Denote M = B N M. Then we
have a submodule

R={fcH*S): f=0o0n M}

of H?(S). The corresponding quotient module is
Q=H*S)oR.

Specialized to this particular setting, we have

Geometric Arveson-Douglas Conjecture. The quotient module Q is p-essentially
normal for every p > d = dimc M.

Since the Hardy module itself is p-essentially normal for p > n, the geometric Arveson-
Douglas conjecture implies that the submodule R is p-essentially normal for p > n.

The analogous problem in the case of the Bergman module L2 (B) was recently solved
[14,28]. This gives us confidence that the geometric Arveson-Douglas conjecture for the
Hardy module H?(S) can also be solved, although one should never take such things for
granted. Our experience with the Bergman module L2?(B) further tells us that it is the
quotient module that holds the key to everything [16]. Therefore in this paper we will focus
on Q, which turns out to be the right decision.

Let us now discuss our results. First of all, the prediction of the geometric Arveson-
Douglas conjecture is correct:

Theorem 1.1. The quotient module Q is p-essentially normal for everyp > d = dimc M.

Let @ denote the orthogonal projection from L?(S,do) onto Q. As it turns out,
everything we do in this paper depends on getting a good handle on the projection Q.
Even though an explicit integral formula for () is beyond reach, we manage to get the next
best thing:

Theorem 1.2. There is a measure j on M such that the corresponding Toeplitz operator
T,, satisfies the operator inequality

(1.2) cQ<T,<CQ

on L2(S,do) with coefficients 0 < ¢ < C < cc.

We remind the reader that the Toeplitz operator T}, is defined by the formula

(T,h)(z) = /M %dmw,

h € H%(S). Operator inequality (1.2) gives us enough control of the projection @ to prove
Theorem 1.1 and, more important, to do more.
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Recall that the normalized reproducing kernel for H?(S) is given by the formula

1 —|2|2 n/2
bo(w) = S
(1—(w,z))
z € B and w € B. From the reproducing property of the kernel it is easy to see that Q is
the closure of the linear span of {k, : z € M}.

Since we have a projection (), we can mimic the definition of the standard Toeplitz
operators to define “Toeplitz operators for the quotient module ©Q”. That is, for each
f € L>(S,do), we define

Qr = QM;y|Q.

We think of Q¢ as a Toeplitz operator for the quotient module Q. Let 7Q be the C*-
algebra generated by {Q : f € L*°(S,do)}. Obviously, 7 Q is the proper analogue on Q
of the usual Toeplitz algebra. Our next result is at least somewhat unexpected:

Theorem 1.3. Let A€ TQ. If

lim (Ak,,k,) =0,
zEM
|z|—1

then A is a compact operator.

We say that this is “at least somewhat unexpected” because, previously, results of this
genre have only been proven on the Bergman space and the Fock space [4,5,21,27,29,31].
What is more, this particular compactness criterion is known to fail for operators in the
Toeplitz algebra 7 on the one-variable Hardy space H? [19, Section 2]. That notwith-
standing, on the quotient module Q of the Hardy module H?(S), we have Theorem 1.3!

The original purpose of the Arveson-Douglas conjecture is to see how much of the
operator theory on the standard reproducing kernel Hilbert spaces, such as the Bergman
space, the Hardy space and the Drury-Arveson space, can be established on these submod-
ules and quotient modules, and to explore what is new on these submodules and quotient
modules. Thus Theorem 1.3 fits the context of the Arveson-Douglas conjecture very nicely.

The rest of the paper is organized as follows. In Section 2 we first record the precise
definitions of M, M, R, Q etc. We then introduce for each z € M near S the modified
tangent space T™°4, which is a copy of C%. The rest of Section 2 contains local analysis
on M, which includes the Forelli-Rudin estimates on M and more. Basically, the use of
Tmod allows us to convert the local analysis on M to analysis on C<.

Section 3 is devoted to the proof of Theorem 1.2, where the reader will see the precise
definition of the measure p. One can consider Section 4 as an operator version of the atomic
decomposition for the quotient module Q. More specifically, in Section 4 we introduce two
classes of operators on Q, Dy and D, both of which consist of discrete sums constructed
from normalized reproducing kernel over lattices in M, but Dy C D. In Proposition 4.3 we
show that T}, can be approximated in operator norm by operators in span(Dy), which is the
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atomic decomposition for Q. As consequences of Proposition 4.3, we obtain a compactness
test on Q and a membership test for C*(D), the C*-algebra generated by D. Both of these
tests will be needed in the proof of Theorem 1.3.

The main result in Section 5 is Lemma 5.3, which says in a very precise way that the
operators in C*(D) are localized. With Lemma 5.3 and a lot more work, in Section 6 we
show that for A € C*(D), if

lim (Ak,,k.) =0,

zeM
|z|—1

then A is a compact operator. Then in Section 7, we complete the proof of Theorem 1.3
by showing that 7Q C C*(D).

Finally, Section 8 contains the proof of Theorem 1.1, where Proposition 4.3 also plays
an essential role.
2. Local estimates

We begin with the Bergman-metric structure of the ball. As usual, we write [ for the
Bergman metric on B. That is,

B(z,w) = llong(w)|

, z,w € B.
2 71— |pa(w)]

We recall that the Mobius transform ¢, is given by the formula

@) )= s e a -l (w- S22 )

- 1—(w,z)

when z # 0, and ¢o(w) = —w. For each z € B and each a > 0, we define the corresponding
p-ball D(z,a) ={w € B: B(z,w) < a}.

Definition 2.1. (i) Let a be a positive number. A subset I' of B is said to be a-separated
if D(z,a) N D(w,a) = for all distinct elements z, w in T.
(ii) A subset I' of B is simply said to be separated if it is a-separated for some a > 0.

Next let us give the precise definitions of the analytic sets, submodules and quotient
modules that we consider in this paper.

Definition 2.2. [9] Let 2 be a complex manifold. A set A C Q is called a complex
analytic subset of € if for each point a € 2 there are a neighborhood U of a and functions
f1,---, fnv analytic in this neighborhood such that

ANU={z€U: fi(z) =---= fn(z) = 0}.

A point a € A is called regular if there is a neighborhood U of a in €2 such that ANU is a
complex submanifold of 2. A point a € A is called a singular point of A if it is not regular.

Definition 2.3. Let Y be a manifold and let X, Z be submanifolds of Y. We say that the
submanifolds X and Z intersect transverselyif for every x € XNZ, T, (X)+T,(Z) = T,(Y).
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Assumption 2.4. Let M be an analytic subset in an open neighborhood of the closed
ball B. Furthermore, M satisfies the following conditions:

(1) M intersects OB transversely.

(2) M has no singular points on dB.

(3) M is of pure dimension d, where 1 < d <n — 1.

Note that condition (3) implies that M has no isolated singularities in B. The reader
will see that our work actually allows a condition that is slightly broader than condition (3).
In fact, we could allow M to be the union of components C’l, .. C’m, where dlmCC’ =d;
for each 1 < i < m, with each d; satisfying 1 < d; < n — 1. But for simplicity, we have
decided to go with a single complex dimension d, as stated in (3).

Thus we emphasize that Assumption 2.4 will always be in force for the rest of the
paper. Given such an M, we fix M, R, Q and @ as follows.

Notation 2.5. (a) Let M = M N B.
(b) Denote R = {f € H*(S): f =0 on M}.
(c) Denote Q = H?(S) © R.
(d) Let @ be the orthogonal projection from L?(S,do) onto Q.

For z € C™ and r > 0, denote
B(z,r) ={we C": |z —w| < r}.
By Assumption 2.4, there is an s € (0, 1) such that
M={zeM:1-s5<|z|<1+s}
is a complex manifold of complex dimension d and of finite volume. Thus
K={zeM:1-(s/2)<|z| <1}

is a compact subset of the complex manifold M. By the standard facts known about such
a pair of M and K, for which we cite [23,24,25] as general references, the statements we
make below hold true with constants that are independent of z € K.

For each z € K, let T, be the tangent space to M at the point z, viewed as a natural
subspace of C". Then there are a > 0 and b > 0 such that for each z € K, there is a map

G.:T.NnB(0,a) > M

that biholomorphically maps T, N B(0,a) onto an open subset of M with the properties
that G,(0) = z and that

(2.2) {G.(w):weT,NB(0,a)} D MnN B(z,b).

Let DG, be the complex derivative of G,. For each w € T, N B(0,a), we have the local
Taylor expansion

(2.3)  Ga.(w+u) = G.(w) + (DG,)( u+/{DG )(w + tu) — (DG.)(w) budt,
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w+u € T,NB(0,a). In particular, at the point w = 0 we have
T, = (DG,)(0)T,

and
(24) G.(u)=z+ (DG,)(0)u+ /1{(DGZ)(tu) — (DG)(0)}udt for weT,NnB(0,a).
0

Reducing the values of @ and b if necessary, we may assume that there are constants
0 < a < B < oo such that for w € T, N B(0,a), the linear transformation inequality

(2.5) a < (DG.)" (w)(DG:)(w) < 5

holds on T3,.

For each z € K, let p. be the orthogonal projection of z on T.. Condition (1) in
Assumption 2.4 says that if z € M NS, then p, # 0. Thus, reducing the value of s € (0,1)
if necessary, we may assume that p, # 0 for every z € K. Thus for each z € K,

TzJ_ ={ueT.: (up:) =0}

is a linear subspace of T, of dimension d — 1. As a subspace of C", T:- is orthogonal to z.

Definition 2.6. (a) For each z € K, we define
Tl Z Tl 6 {6 g e C),

which we consider as the modified complex tangent space at z.
(b) For each z € K, let P, be the orthogonal projection from C™ onto T™°d.

Lemma 2.7. There exist by > 0 and co > 0 such that for every z € K, P, is a biholomor-
phic map from M N B(z,by) onto an open set in T™°4 that contains T™°Y N B(z, cg).

Proof. By (2.4), for z € K we can write

G.(w) =z + (DG,)(0)w + H,(w),
w € T, N B(0,a). We now make a change of variable on 7T,. That is, we define
(2.6) G.(w) =z+w+ H,(w), where H,(w)= H,((DG,)"*(0)w),

for w € (DG.)(0){T, N B(0,a)}. We have G (0) = z. By (2.4), (2.5), the mapping prop-

erties of G, and the compactness of K, there is an a; > 0 such that GG, biholomorphically
maps 1, N B(0,a;) onto an open subset of M. For each z € K, define

F.(w) = P,G.(w)
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for w € T, N B(0,a;). Obviously, F,(0) = P.G.(0) = P,z = z. We claim that there is an
ap € (0,a1) such that for each z € K, F, is a biholomorphic map between T, N B(0, ao)
and an open set in Tmod.

To find such an ag, we define v, = p./|p.|. Then every w € T, has the orthogonal
decomposition w = £v, + u, where ¢ € C and u € T;-. For a pair of ¢ € C and u € T;, if
€17 + [uf? < af, then

F.(v, +u) = z+ (|p:|/|2|)€e. + u + PZI:Iz(sz +u), where e, = z/|z|.

From (2.6) and (2.4) we see that (DP,H.)(w) = O(|w|). Using Taylor expansion again,
we see that are ag € (0,a1) and § > 0 such that

|F,(w) — Fo(w')] > §lw—w'| for w,w €T, N B(0,ap).

By the standard inverse mapping theorem, F; is biholomorphic on T, N B(0,ag). Since
G, is biholomorphic on T, N B(0,a;), by the standard open mapping theorem and the
compactness of K, there is a by > 0 such that

(2.7) {G.(w) :w e T,NB(0,a0)} D M N B(z,b)
for every z € K. Hence P, is biholomorphic on M N B(z,by). The existence of ¢y > 0 is
obtained by applying the open mapping theorem to the map P, on M N B(z,by). O

For z € K, let I, : T™°4N B(z,co) — M be the inverse of P,. For x € T™NB(z, cp),
the relation P,I,(x) = x leads to
(2.8) I.(x) =2+ h.(z), where h,(x)=I,(z)— P.,I,(x).

That is, for each z € K, h, maps T™°4N B(z, ¢q) into C*©T™°4, We now fix a 0 < ¢; < cg
By the analysis in the proof of Lemma 2.7, there are constants 0 < a(c1) < B(c1) < oo
such that the operator inequality

(2.9) a(cr) < (DI)"(x)(DI)(z) < B(e1)

holds on the linear space T™°? for all z € K and # € T™°4 N B(z,¢;). Applying the
standard open mapping theorem, there is a 0 < by < bg such that

(2.10) {L(z): 2 € T™NB(z,¢1)} D MN B(z,b).

Lemma 2.8. There is a constant 0 < Csg < oo such that for every z € K, if u €
T+ N B(0,¢1) (cf. Definition 2.6), then |h.(z + u)| < Caglul?.

Proof. Let such a pair of z and u be given. By (2.6) and (2.7), there is a w € T, N B(0, ap)

such that I,(z + u) = G,(w). Thus

z4+u=PlIl,(z+u)=P.G,(w) =2+ Pw+ Pzﬁz(w).
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We can write w in the form w = v, + 1 for some ¢ € C and n € T;-. Hence P,w =
&(v,,e)e, +n. Substituting this in the above, we find that

u = §<Uz762>6z +n+ PZI:—]Z(&JZ + 77)‘

Taking the inner product with v, on both sides and solving for £, we obtain

(211) 5 == _<Pzﬁ1z<§7)z + U),Uz>/|<vzv‘32>|2-

By (2.4) we have H,(z) = O(|z|?). Thus when |¢| and |5| are small enough, in order for
(2.11) to hold, we have to have |¢] < || at the very least. Consequently, £ = O(|n|?) and
u—mn=0(n?). Thus |n| = O(|u]) and £ = O(|u|?). We have
ztuth(z4u)=L(z+u) =G (0) =2+ v, +n+ H.(w)
=2+ (v — (v, €2)€:) +u+ f{z(w) - Pzﬁz(“’)-
That is, . .
ho(z+u) =&, — (v,,e,)e,) + H,(w) — P,H,(w).

Since |¢] < |n|, we have H,(w) = O(Jw|?) = O(|€v. + n|?) = O(|n>) = O(|u|?). This
completes the proof. [

Lemma 2.9. (1) Let r > 0 be given. For each ¢ > 0, there is a § = §(r,€) € (0,1) such
that if z € K satisfies the condition 1 — § < |z| < 1, then the inequality

B(w, P,w) < €

holds for every w € D(z,r) N M.
(2) Let z € M N K andr > 0 be such that D(z,r/2) C B(z,¢p) and f(w, P,w) < 1/3 for
every w € D(z,2r) N M. Then I.(D(z,r/2) NTm°d) C D(z,7) N M.

Proof. (1) We know that for a fixed r > 0, the Euclidean diameter of D(z,r) tends to 0 as
|z| T 1. By (2.10), for z € BN M that is sufficiently close to S, once a w € D(z,r) N M

is given, we can write it in the form w = I, (z) for some z € T™°4 N B(z,¢1). We have
x = P,I,(x) = P,w. That is, w = [,(P,w) = P,w + h,(P,w).

Now (2.1) gives us
pr.w(w) = —(1 = [Paw]?) "V (w = Pw) = —(1 = |Pow]?) " 2h. (Pw).
We have P,w = (w, e,)e, + u, where e, = z/|z| and u € T}. If we set ( = z + u, then
ppw(w)] < (1= [w*) "2 {|h.(Pow) = ho(O)] + [h= (O]}
Since ¢ = z + u with u € T*, Lemma 2.8 tells us that
h2(Q)] < Caglul* = Cog|Pow — (w,e.)e.* < Caslw — (w,e.)e.|*.
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On the other hand, we obviously have

|h. (Pyw) — h,(Q)| < Ch|Pyw — (| = C1[{w, e;)e, — z|.
Therefore
(2.12) (ppw()] < Co(l = [w|*) "2 {]z — (w, ex)e.| + |w — (w, ez)e. ).
Using (2.1) again, we have

|2 — (w, e;)e.|
1 —(w, 2)]

< |z (w)] < 1.

Combining this with the well-known identity

(L — =)@ — w]*)

1— . (w)]* =
|0z (w)] 1= (w2
[26, Theorem 2.2.2], we obtain
|2 = (w, ez)e| (1= =)'

219 (=P = (1 [P 72

Similarly, from (2.1) we obtain

1 Jsf? : 2
T (w, v~ (wesel” sle:(w)l” < 1.

Consequently
|w — <U), €z>ez|2 (1 — ’w|2)1/2 (7") (1 — ‘Z|2)1/2
1 —=[wP)72 = 1—fe-(w)]* 1= |z (w)[?’

where the second < follows from the fact that 8(z,w) < r. Combining this with (2.13)
and (2.12), we obtain the inequality

(1—|2*)'?

>

(2.14) [op.w(w)| < C3("’)w

The condition 5(z,w) < r obviously means that 1 — |, (w)|? > ¢(r) for some c(r) > 0 that
depends only on r. Substituting this lower bound in (2.14), (1) is proved.

(2) Suppose that there were some z* € D(z,7/2) N T™°¢ such that B(z, I, (z*)) > 7.
We will show that this leads to a contradiction. Since z* € D(z,r/2) N T™°4, there is a
geodesic v : [0,1] = D(z,7/2) N T™°4 with respect to the Bergman metric on T4 such
that y(0) = z and (1) = z*. Since 5(z,1.(v(1))) = B(z, I.(z*)) > r, there is a ty € [0, 1]
such that 5(z, I, (y(to))) = r. By the assumption on z and r, we have

BIL=(7(t0)),v(t0)) = B(L=(v(t0)), P=1-(v(t0))) < 7/3.
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Therefore B(z,7(t0) > B(z L (1(t0))) — B (v(to)), 2 (to)) > 7 — (r/3) = 2r/3, which
contradicts the fact that v(to) € D(z,7/2). O

For every z € K, T™°4 is a d-dimensional linear subspace of C". For convenience we
will write v for the natural volume measure on 7™°¢, even though for different z € K this
may be a different linear subspace of C™. But since volume depends only on the Euclidean
metric, which T2° inherits from C", such a simplification of notation is justified.

For each z € K, we have the Jacobian
(2.15) J.(x) = det{(DI,)"(x)(DI,)(x)},

r € T™°4N B(z,c1). Let vy denote the natural volume measure on M. Suppose that
z € K and U is an open set in M N B(z,b;). By (2.10), we have P,U C T™°4 N B(z,¢;).
For any positive, continuous function f on U, we have

(2.16) /Uf(w)de(w) = . f(z))J,(z)dv(z).

As we recall, this is in fact how volume is defined on M.

In addition to the volume measure vy on M, we define the measure vy, on M = MNB
by the formula vy (E) = va(E N M) for Borel sets E C M.

Lemma 2.10. Given any a > 0 and k > —1, there is a 0 < Cs.19 < 00 such that

/ (1= [z = Jw]*)"

1= (w, z)|dH1Hats

vy (w) < Caap

for every z € M.

Proof. (1) First we suppose that z € M N K. Recalling (2.10), let 0 < by < b; be a number
whose exact value will be determined below. With this b, we have

— |z 2\a (1 __ w Nk
/ M (|11 —| <L?zglld+1|+a|+z vy (w) = A(2) + B(2),

where

(1 -]z — Jw]?)"
Az :/ dvp(w) and
) MNMNB(z,b2) |1 - <w’z>’d+1+a+n

B(Z) _ /M (1 B |Z| )a 1 - |U)| )Hd’UM(’w)

(
\{MNB(zbs)} |1 — (W, z)|dHiTats

We estimate A(z) and B(z) separately.

For A(z), note that every x € T™°? has the representation x = (& + i)z + u, where
£1,& € R and u € T, We will identify the vector u with its real version. Then

(12[&1, 2|62, w)
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is a set of 2d-dimensional real coordinates for z = (& + i&2)z +u € T4 N B(z,¢1). Let
0 < ¢3 < ¢1 be a number whose exact value will be determined below. Define

U = {(lzl&1, 12&2, u) : (&1 +i&)z +u € T N B(z, )},

and let L be the 2d-dimensional real linear space that is the linear span of U. We now
define the map
F:U—L

by the formula

(2.17) F(|z|€1, |2|€2,u) = (1 — |L((& +i&)z + uw)|?, |2|€2, u).

We claim that if ¢y is small enough, then there are 0 < o < 8 < oo such that

(2.15) 0 < |0 |L((& + i)z + )| < B
1

for (|z|€1, |2]€2,u) € U. To prove this, we use (2.8), which tells us that h,(z) L z. Hence
(61 + i€2)z + u)|* = (& + &3)[2° + |uf® + [ha((&1 +i&2)7 +u)[*.

Consequently,

8%@((51 i)z +u)f? = 2612 + a%mz«& ig)z )P

Since P,z = z, we have I,(z) = z, i.e., h,(z) = 0. Thus the second term on the right-hand
side is of the form O(|(&§; — 1+ i&2)z + u|). For the first term on the right-hand side, recall
that for this part we assume z € M N K. Hence (2.18) holds if ¢y is small enough.

We now apply the inverse mapping theorem to F'. Reducing the value of ¢, if necessary,
we may assume that F'U is open and that the map F' : U — FU is invertible. Furthermore,
from (2.18) we deduce that there is a 0 < C; < oo such that

(2.19) |det{(DF~")(y)}| < C1 for every y € FU,

where F~1 : FU — U is the inverse of F.

With ¢, determined in the above, the open mapping theorem provides a 0 < b < by
such that

(2.20) {L(z): 2z € T™ N B(z,¢2)} D MNB(z,by).

We emphasize that these constants are determined by the property of the manifold M and
are independent of the z € K that we are considering.
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Having found the desired by, we will now estimate A(z). By (2.20), there is an open
set V(z) € T4 N B(z,cy) such that I,V (z) = M N M N B(z,by). By (2.16), we have
(2.21)

Az) = /I . B w) = /V O < /V OB

where ) )
A=) = Jwl?)”

P(w) = 11— (w, z)|[dt1+ats

Let = (& +i&)z+u € T™°9N B(z,cy), where &1,& € R and v € T, By (2.8), we have
2 = L((& +i&)z +u)* = (1 — & —i&)2]? + [uf® + |ha((&1 + i)z + u)f?
and (I,(x),z) = (z, z). Thus from the identity
A1 = (w,2)* = (1 = [2]* +1 = [w] + |2 — w[*)? + 4(Im(w, ))*
we deduce
(2.22) 81 —(L((&1 +1i2)z +u), 2)] = 1= [ + 1= |L((&1 +i€2)z +u)* + ul* + 2]&||2[*.
On the linear space L we define the function
(1 — |2f?)et"
(1= 2> + 1 + [2][€a| + |u[?) @ Hats

G(t, |z|€2,u) =
From (2.17) and (2.22) we obtain

O(L((§1 +1i62)z + u)) < CuG(F (|61, |2[€2, u)).
Write V(2) = {(|2|€1, |2]€2,u) : (&1 + &)z +u € V(2)}. Continuing with (2.21), we have

A(z) < C2Cy | G(F(|2]81, 282, w))dv(|2[€1, |2[€2, u)

Vi(z)

(2.23) yexer /F o, GO ) £ C00 /F o, GO

where the second < follows from (2.19). Obviously,

2(1 = |2f2)t
dmag—z(u)déadt,
/FV(Z) / / /de 2 (1= |22+t 4 & + |u|?)dt1tats 2d—2(u)dS2

where dmsy_o denotes the Lebesgue measure on R?2¢2_ and where we assume d > 1. Using
the radial-spherical coordinates on R2¢~2 we have

1_ |Z| )atmp2d 3
G(y)dv(y) < C / / / dpdedt
/FV(Z) ; (1- ]z|2 +t + & 4 p2)dtitats 2
(1= )t
- d&adt
06/ / (1-— |z|2 + 1+ &y)2tats §2
o (1 — |z]?)t~ /OO "
=7 dt =C 7 4
/0 (1— [2]2 + t)l+ats 7 . I qs)itets s,
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where the last step is the substitution s = ¢/(1 — |2]?). Since @ > 0 and K > —1, the
s-integral above is finite. Combining this with (2.23), we find that A(z) is bounded in the
case d > 1. In the case d = 1, we omit the integral on R?%~2 and the rest of the argument
is still valid. Hence A(z) is bounded on M N K in all cases of 1 < d <n — 1.

As for B(z), observe that once by is fixed, we have

B(z) < Cs /M(l - |w|2)”de(w).

By (2.18), the function 1 — |w|? serves as one of the 2d real coordinates for w € M near
S. Hence the above integral is finite. This proves the desired bound on B(z). Thus the
lemma is proved for z € M N K.

(2) Suppose that z € M\ K. For such a z we obviously have

1— 2|1 — |w[?)" o
/M (|1 _| <,L)7)Z§|d+1’—|—a‘+f)-c dvpr(w) < Cy /M(1 — |w[®)" dvp (w).

As we have already explained, the right-hand side is finite. This completes the proof of
the lemma. [

Lemma 2.11. Given any a > 0 and k > —1, there are § > 0 and 0 < Cy.11(d) < oo such
that

(L= 21 = Jw[?)"

—26r
(2.24) /M\D(z T (o e dvpr(w) < Ca11(d)e

for all z € M and r > 0.

Proof. Given any a > 0 and k > —1, we pick a § > 0 such that the quantities '’ = a — ¢
and k' = k — ¢ also satisfy the conditions a’ > 0 and &’ > —1. We have

(1= [’ = wf?)°

T = L les())” < 40e720e,

Thus from the factorization

(L= —wP)® (A=) —fwl?)’ (= [=)" (1~ w)*

1= (w,2) [Tt = T (w, )P [ = (w, z) [

we obtain

Sl ol Ul il oo [ Qo BP0 o)
d <4 d .
/M\mz,m 1= (w, prrers Wule) ST | T e @)

Applying Lemma 2.10 with the values @’ > 0 and £’ > —1, (2.24) is proved. [J
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Definition 2.12. We define the measure p on M by the formula
(2.25) dp(w) = (1 — |w>)" " 4dvps (w).

We further extend p to a measure on B by setting pu(B\M) = 0.
Proposition 2.13. The p defined above is a Carleson measure for the Hardy space H?(S).
Proof. For each pair of z € B and r > 0, define

Qz,r) ={weB: |1 —(w,z2)| <r}.
To show that p is a Carleson measure for H?(S), it suffices to find a C such that

(2.26) u(@Q(Cr)) < Cr

for all ¢ € S and » > 0. See [8,20]. Here, because the power n — 1 — d in (2.25) is
non-negative, we do not need to use 1 — |w|? as a coordinate, which saves a lot of trouble.

Let ( € Sand r > 0 be given. If Q({,7)NM = (), then u(Q(¢,r)) =0. T Q({,r)NM #
0, pick a z € Q(¢,r) N M. Recall that the quantity d(u,v) = [1 — (u,v)|*/? satisfies the
triangle inequality on the closed ball B [26]. Hence Q({,r) C Q(z,4r) and, consequently,

WQEC.)) < /MW (0 ol g ),

It suffices to prove (2.26) for r > 0 that is sufficiently small. Obviously, there is a p > 0
such that if 0 < r < p, then Q((,r) "M C K and Q(z,4r) N M C M N B(z,by). Suppose
that r satisfies the condition 0 < r < p. Then we can apply (2.10) and (2.16) to obtain

w@Qe) < [ (1= |L@) ) @) dv(a).

P.{Q(z,4r)NM}

As we recall, I (x) = x + h,(z) and h,(z) L z. Hence 1 — |I,(x)|* <1 — |z]?. Recalling
(2.9) and using the fact that n — 1 —d > 0, we now have

W(Q(C,m) < Cs / (1 = |o2) 1= du(x).

P.{Q(z,4r)NM}
Since (w, z) = (P,w, z), we have P,{Q(z,4r) N M} C Q.(z,4r), where Q,(z,4r) = {z €
Tmod ;|1 — (x,2)| < 4r and |z| < 1}. Therefore

WQC.r) < C /Q Ay ),

Note that the condition z € Q(¢,7) N M implies 1 — |z| < r. Since T™°? is a copy of C¢,
by a standard exercise, the integral on the right-hand side is dominated by Csr™. [J
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Also by a standard exercise, for each r > 0, there are 0 < ¢(r) < C(r) < oo such that
(2.27) c(r)(1 = |2 < w(D(z,r) NI < C(r)(1 = o)

for every z € M N K.

Proposition 2.14. (a) For each r > 1, there exist 0 < cg.14(7) < Co.14(r) < 0o such that
for every z € M N K, we have

(2.28) c21a(r)(1 = [2) S oar(D(2,1)) < Caaa(r)(1 = [2*)*.

(b) For eachr > 1, there exist 0 < ¢ 1,(r) < C4 14(r) < 0o such that for every z € M NK,

we have
¢y 14(r) (1 = [2[*)" < p(D(z,7)) < Cg 14 (r)(1 = |2*)".

Proof. (a) Let r > 1 be given. It suffices to find a 0 < p(r) < 1 and 0 < ¢g.14(r) <
C5.14(r) < oo such that (2.28) holds for z € M satisfying the condition |z| > p(r).

By definition, we have K D {z € M : |z| > p1} for some p; < 1. By Lemma 2.9(1),
there is a pa < 1 such that if z € M and |z| > p2, then

(2.29) B(w, P,w) <r/5 forevery w € D(z,2r)N M.

There is a p3 < 1 such that if p3 < |z| < 1, then D(z,2r) C B(z,min{b1,c1}) (cf. (2.10)).
Set p(r) = max{p1, p2, p3}. Let z € M be such that |z| > p(r). By (2.16), we have

(2.30) ont (D(z,7)) = / T (@) dv(x).

P.{D(z,r)NM}
We have (2.9) to bound J,(x), and (2.29) tells us that P,D(z,r) C D(z,2r). Hence
v (D(z,1)) < Cro(D(z,2r) NT) < Co(r) (1 = [22)*,

proving the upper bound in (2.28).
To prove the lower bound in (2.28), we recall Lemma 2.9(2), which says

L(D(z,7/2) N T™°Y) € D(z,r) N M.

That is, P,{D(z,7)N M} D D(z,r/2) N T4, Continuing with (2.30) and recalling (2.9),
we find that

vp (D(z,1)) > /D( P J.(x)dv(z) > civ(D(z,r/2) mTZmOd) > eo(r)(1 — ]z|2)d+1,

which proves the lower bound in (2.28) and completes the proof of (a).
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(b) Given any r > 0, there are 0 < ¢(r) < C(r) < oo such that
c(r)(1—|2*) <1—wf> < C(r)(1 - |2])
for every pair of z € B and w € D(z,r). By this inequality, (b) follows from (a). O

3. Measure i and the corresponding Toeplitz operator

With the measure p in Definition 2.12, we define the Toeplitz operator T}, on the
Hardy space H2(S) by the formula

T = [ %du(w),

f € H?(S). It is straightforward to verify that we can also write T}, as
(3'1) Tu = /Kw ® Kwdﬂ(w)u

where K, (z) = (1 — (z,w))™™, the reproducing kernel for H%(S). Thus T, is a positive
operator with

(TLf, f) = / 1 w) Pdp(w)

for each f € H?(S). By Proposition 2.13, the Toeplitz operator T}, is bounded. If we
consider each K,, as a vector in L?(S,do), then (3.1) automatically extends 7, to an
operator on L2(S,do).

In our next lemma, a subscript d indicates a set in C?. For example, By = {w € C? :
lw| < 1} and Dg(z,7) = {w € By : B(z,w) < r}. Let dv be the volume measure on C?.

Lemma 3.1. If f is an analytic function on By, then

(1 _ |w|2)n—1—d B . B
(32) [ S g o) = @)

for every z € By and every r > 0, where

— _ 2\n—1-d v )
C(d.r) = /D )

Proof. Let w = ¢,(¢). By the formulas from [26, Theorem 2.2.2], we have

1— |22

1— |21 —|¢%)
1- <27C> .

and 1_’902(C)‘2:( 11— (z,0)|?

1— <Z7 Soz(C» =
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Therefore the left-hand side of (3.2) equals

(1 — |z|2)(1 _ |C|2) n—1-—d 1— <Z’<.> n (1 _ |Z|2)d+1
/Dd((),r) f(%(())( 11— (2,02 ) < e ) = (z,C)|2d+2dv(O'

After the obvious cancellation, we find that

w (1- |w’2)n—1—d v(w) = M | 12yn—1-d gy,
/Dd(z’r) f( ) (1_ <Z’w>)n I ( ) /Dd(O,r) (1_ <C,Z>)n(1 |C| ) d (C)

With respect to the Euclidean metric, Dy(0,7) is also a ball centered at 0. Hence the
above equals C(d,r)f(¢.(0))(1 —(0,2)) " =C(d,r)f(z). O

Lemma 3.2. For each given 0 < r < oo, we have

1— |z

) li l1—- ——
(3:3) 3%?8“‘”{‘ AP

2| >t zeMandeD(z,r)ﬂszOd} =0

and

(3.4) ltiTnllsup{Uz(z) — J.(x)| : |2| > t, z€ M and x € D(z,7) N T™%} = 0.

Proof. By Lemma 2.9, if |z| is sufficiently close to 1, then I,(z) € D(z,2r) N M for every
x € D(z,7)NT™4. Since P,I,(z) = =, it now follows from Lemma 2.9 that

(3.5) lg%lllsup{ﬁ(fz(x),x) |zl >t, z€ M and x € D(z,r) N T™°} = 0.

On the other hand, for any pair of a,b € B, if we write ¢ = 4 (b), then b = ¢,(c) and

1—la* _1—{a,0)?

— -1

when |c| is small. Since (0, c) = B(a,b), we see that (3.5) implies (3.3).
With the a,b € B and ¢ = ¢, (b), we also have

1— 2
la — b < 2|1 — (a,b)| = 2i.
|1 - (a,c>|
Hence for any given 0 < r < oo,
(3.6) lti%rllsupﬂz —x|:|z| >t, z€ M and z € D(z,7) N T} = 0.

Recall that J,(z) = det{(DI.)*(z)(DI1.)(z)}. By the construction in Section 2, the conti-
nuity of the map = — DI, (z) is uniform as z varies over K. Obviously, (3.4) follows from
this uniform continuity and (3.6). O
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Lemma 3.3. Define the operators B and B, on L?*(M,du) by the formulas

B = [ du(w) and

B = [ fw)

dp(w)
M\D(z,r) |1 = (z,w)|"

for f € LA(M,du), r > 0. Then ||B|| < oo and ||B,|| — 0 as r — oc.

Proof. We set a = 1/2 and k = n—1—d — (1/2). Then k > —1/2 and we have
n=d+1+a+ k. Define h(w) = (1 — |w|?>)™'/2, w € M. Then

1 — |w|?)*
(Brh)(z) = /M\D(Z’T) 1 _(<Z,w|>|cl+)1+a+ﬁ dvpr(w).

By Lemma 2.11, we have (B,.h)(z) < C2.11(8)e™2"(1—2]?)7% = C2.11(8)e 2" h(2), z € M.
Since the kernel function |1 — (z, w)|~™ is symmetric with respect to z and w, we can now
apply the Schur test to conclude that || B,|| < Co.11(8)e™2°". Hence ||B,|| — 0 as r — oc.

Similarly, by Lemma 2.10 we have (Bh)(z) < Cs.10h(z), z € M. Thus it follows from
the Schur test that ||B]|| < Cs.109. This completes the proof. [J

Proposition 3.4. There is a c3.4 > 0 such that the operator inequality
(3.7) T3 > c3.4T),
holds on L?(S,do).
Proof. For each 0 <t < 1 we define
MY ={zeM:1-|z]*<t}.

There is a 79 > 0 such that if 0 < ¢t < 79, then M) ¢ K. We will show that there is a
small enough ¢ > 0 such that the inequality

4
68) [ AmNEPEE + 5 [ P =5 [ ) Pdu)
M) M M®
holds for a constant 6 > 0 and for all f € H?(S).
We begin with the choice of §. By (2.9), there is an a > 0 such that
(3.9) J.(2) > a

for every z € K. We set

c@)= [ (=) and 5= LD
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There is an R > 0 such that if » > R, then C(d,2r) > C(d)/2 (cf. Lemma 3.1). That is,
if r > R, then

(3.10) {aC(d,2r)}?/3 > 6.

Lemma 3.3 allows us to pick an r > R such that

(3.11) 1B, < 8/

With r so fixed, there is a 0 < 71 < 79 such that if 0 < ¢t < 7y, then for z € M® we have

D(z,2r) C B(z,min{by,c1}) (cf. (2.10)). By Lemma 2.9(1), there is a 0 < 72 < 71 such

that if 0 < ¢ < 79, then for z € M and w € D(z,7) N M we have B(w, P,w) < r. Thus

Pow € D(z,2r)NTm°d and I, (P,w) = w € D(z,7) N M. That is, if 0 < t < 73, then

(3.12) L(D(z,2r)NT™Y) 5> D(z,7r) N M for every ze MW,

We write U(z) = I.(D(z,2r) N T™) for 2 € M. Let f € H?(S) be given. Then
(Tuf)(z) = A(z) + B(2),

where

-~ w (1= [w|?) 11
Alz) = U(z) (w) (1= (z,w))"

(1~ fwf)—

B = [ s S o),

z € M(t) Since PzU(z) = D(Z, 27’) mT;nOd7 by (216) we have

dvpr(w) and

. JIC A
A= e D T Gy

Recall from (2.8) that (z,I.(z)) = (z,x). Writing

B 1— 22 \"""% L(2)
ren= - (moe)Te

J.(z)dv(z).

we have

A(z) = Ai(2) + Aa(2),
where

= z T (1 — |x|2)n_l_d VX all
ME=E) [ ) S i)

= T (1 _ |IZ($)|2 e zZ, X X )av T
M= [ I S g P @),
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Being a local inverse of P,, the map I, is analytic. Therefore Lemma 3.1 tells us that
(3.13) Ai(2) = C(d, 2r)J:(2) f(1:(2)) = C(d, 2r)J.(2) f(2).

Define
e(r,t) = sup { sup |F(z,ac)|}

zeM® \ zeD(z,2r)NTmed

Applying (2.16) again, we have

(1~ L))
St [ ) S e
< e(rt) /M %(1 — Jw?)* "y, (w).
Thus it follows from Lemma 3.3 that
(319 | AP ) < et PIBIE [ 17w dutw),

Finally, from (3.12) we obtain

1 (w)|
B(2)| < / )

M\D(zr) 11— (2,0

for z € M® . Using the operator B, in Lemma 3.3, we have

(3.15) / |B(2)Pdp(z) < HBTHZ/ |f (w)[*dp(w).
M®) M
Recalling (3.13), for z € M® we have

C(d, 2r)J.(2) f(2) = A1(2) = (T).f)(2) — A2(2) — B(2).

Combining this with (3.9), (3.14) and (3.15), we see that

{aC(d, 27“)}2
BEGEE [ ek < [ 1006 P

M@®)

(3.16) T ({e(r O} |BI2 + 1B ) /M | w) Pdps(aw).

Since r is fixed, by (3.9), Lemma 3.2, and Lemma 3.3, we can pick a 0 < ¢t < 75 such that
{e(r,t)}?||B||* < 6/4. With this ¢, (3.8) follows from (3.16), (3.10) and (3.11).

Recall that vys is concentrated on M N M = M NB. If Ais a compact set in
M N M, then A can be covered by open sets Uy, ..., Uy, in M N M such that each Uj is
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biholomorphically equivalent to B;. By the Bergman integral formula, there is a constant
0 < C(A) < oo such that

(3.17) 9(2)2 < C(A) /M lg(w)Pdu(w)

for all g € H?(S) and z € A. Let P denote the closure of H2(S) in L?(M,dpu).

By our choice of ¢, {w € M : jw| = t} is a compact subset of MNM. As we mentioned
before, Assumption 2.4(3) implies that M has no isolated singularities in B. Thus it follows
from the maximum principle and (3.17) that there is a 0 < C; < oo such that

(3.18) sup [g(2) < €1 [ Jg(w)Pdutw
z€M\M®) M

for every g € H?(S). Hence for each z € M\M® the map g — g(z) extends to a linear

functional on P whose norm is at most C’l1 /2 Thus if {ur} is a sequence in P that converges
to 0 weakly, then

(3.19) lim |ug(2)| =0

k—o0

for every z € M\M®.

Let dE be the spectral measure for the positive operator 7),. That is,

1T
T, — / ME().
0

Obviously, (3.7) is equivalent to the statement that there is a ¢ > 0 such that E(0,¢) = 0.
Suppose that such a ¢ did not exist. We will show that this leads to a contradiction. In
fact, the supposed non-existence of such a c¢ allows us to pick, for each k € N, a vector

fx € E(0,1/k)H?(S) such that (T}, fx, fx) = 1. That is,
(3.20) [ 1)) = 1.
M

Obviously, the sequence {Tﬁﬂfk} weakly converges to 0 in H?(S). Let R : H?(S) —

L?*(M,du) be the restriction operator. Then R*R = T),, and consequently R = VTﬁ/2 for
some partial isometry V. Hence the sequence {Rf;} weakly converges to 0 in the space P
introduced above. By (3.19), (3.18) and the dominated convergence theorem, we have

(3.21) lim | fe(w)*dp(w) = 0.
k—oo M\M ()

It follows from (3.20) and (3.21) that

(3.22) Jim | fi (W) dp(w) = 1.
— 00 M)
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Since fi, € E(0,1/k)H?(S), we have (T, T, fx, Ty fi) < k= *(Tyfx, fx) = k~2. Thus

(3.23) Jim [ (T ) (2) (=) < i (T, T fe) = 0.
—oo J ) k— o0

Substituting (3.20), (3.22) and (3.23) in (3.8), we see the contradiction that /2 > §. Hence
there is a ¢ > 0 such that E(0,c) = 0, which proves the proposition. [J

Theorem 3.5. There are scalars 0 < ¢ < C' < oo such that the operator inequality
Q< T, <CQ

holds on L?(S,do).

Proof. We already know from Proposition 2.13 that T}, is bounded. Thus the upper bound
T, < CQ simply reflects the fact that range(7),) C Q, which is obviously true.

To prove the lower bound, we again consider the spectral decomposition

1T
T, — / ME(O)
0

of T, on L?(S,do). By Proposition 3.4 we have Ti > c3.4T),, which implies E(0,c3.4) = 0.
Therefore
T, > c3.4F[c3.4,00) = c3.4E(0, 00).

Thus the desired lower bound will follow if we can show that E(0,00) = @, i.e., if we can
show that range(7},) is dense in Q. Equivalently, it suffices to show that {h € Q : T),h =
0} = {0}. Let h € Q be such that T,h = 0. Using the M® in (3.18), the condition
(T,,h,h) = 0 implies that h vanishes on both M® and M\M®. That is, h(w) = 0 for
every w € M. This means that h L Q. Since h € Q, h is the zero element. This proves
the density of range(7),) in Q and completes the proof. [

4. Discrete sums

We will approximate the Toeplitz operator T}, by discrete sums constructed from the
reproducing kernel for H?(S).

Lemma 4.1. There are constants t41 > 0 and 0 < Cy41 < oo such that for every z € M
satisfying the condition 1 — |z|? < t41 and every f € H?(S), we have

Cya
(4.1) 16)) < = | g )
and
(4.2) £(2) = f(w)] < c% /D o )
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ifwe D(z,1/4) N M.

Proof. We pick a t41 > 0 satisfying the following four requirements:
(1) M) ={ze M:1— |22 <t4 1} C K,
(2) If z € M®*+1) and w € D(z,1/4), then P,w € D(z,1/3).
(3) For each z € M(*+1) we have I,(D(z,1/2) N T™°%) C D(z,1) N M.
(4) For each z € M*+1) D(2,1) C B(z, min{by, c3}).
Note that requirements (2) and (3) are justified by Lemma 2.9.

Let f € H%(S) be given. Given a z € M*+1) we define the analytic function g(z) =
f(I.(x)) on T™°4 N D(z,1) (cf. (4) above and (2.20)). We have

|f(2)] = 19(2)] = |g(¢-(0))] < 01/ 19(¢=(C))]dv(C)
D(0,1/2)NTmod
_ - (1= [z} ol
=G /0(2,1/2)m:rzmod € 11— <$,Z>|2d+2d (@)

CC,
1 [12\d+1 z z d y
< (1 — [z]2)d+1 /D(z,1/2)mT;nod |f(L=(2))| ]2 (z)dv(z)

where for the last step we use (2.9) and the fact that 1 — |z|?> < 2|1 — (z, 2)|. Applying (3)
above and (2.16), we obtain

C1Cy
|f(2)] < A= [2R)a /D(z,l)ﬁM |f(w)|dvrr (w),

which proves (4.1).

To prove (4.2), consider any z € M(41) and w € D(z,1/4) N M. By (2), there is a
¢ € D(2,1/3) N T4 such that w = I,(€). Furthermore, there is an n € D(0,1/3) NTmed
such that £ = ¢,(n). Using the function g(x) = f(I.(x)) again, we have

|ﬂ@—fmn=mw4m%wwxmn§@mam/‘ 19((O)]du(©),

D(0,1/2)NTmod
where the < follows from the fact that |y| ~ 3(0,y) for y € D(0,1/3). Note that 5(0,7) =
B(z,§) = B(z, P,w). Since ¢, (P.,w) = P,p,(w), we have 8(z, P,w) < B(z,w). Thus

(4.3) Iﬂ@—fWNSCw@wO/ 19(-(0)) ().

D(0,1/2)NTmed
In the proof for (4.1) above, we showed that

Co
L(O)|dv(¢) < ——2 p |
/19(0,1/2)0szod 19(=(0))]dv(C) < PR /D(z,l)mM‘f(UN o (w)

Combining this with (4.3), (4.2) is proved. [J
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Lemma 4.2. There is a constant 0 < Cy.o < o0 such that if I is a 1-separated set contained
in M and if {c, : z € T'} is a bounded set of coefficients, then

Zczk ® e,

zel

< Cy. qup .|,

where {e, : z € I'} is any orthonormal set.

Proof. There is an ¢ € N such that if ' is a 1-separated set contained in M, then
card(T' N {M\M@+1)}) < £. Hence it suffices to consider a 1-separated set I' contained in
M (41 Let such a T’ be given and denote

A= Zczkz R e,.

zel

For any f € H?(S), we have

1A fI? = les (1 )"If ()P,

zel

Applying Lemma 4.1, the Cauchy-Schwarz inequality and Proposition 2.14, we have

142 < C1 S Jea (1 — [22)nid / () Pdvar ()
zel D(z,1)NnM
< Cysup e, |? Z/ 1F(w)|>(1 = |u?)" " dvn, (u)
zel D(z,1)NnM
2\n—1—d
< CzSUIF)|Cz| [f(w)|*(1 = [uf?) dvops (u)
=€

= Cysup |c;|? <Tuf, f) < Cosup e *| Tl I
zel zel

Recalling Proposition 2.13, the conclusion of the lemma follows from this. [J

We define the measure dA on M by the formula

dvpr(w)

P = e

Obviously, this d\ tries to mimic the Mobius invariant measure on the ball. But keep in
mind that there are no Md&bius transforms on M. Nonetheless, this d\ has all the right
properties for our analysis on M. In particular, we have the representation

(4.4) T, = / kw @ kwdA(w).
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Proposition 4.3. For each0 < e < 1, let "¢ be a subset of M that is maximal with respect
to the property of being e-separated. By a standard construction, there is a partition

(4.5) M= |] E,

wel

such that D(z,e) "M C E,, C D(w,2€) N M for every w € T'.. Define the operator

=Y MEu)k

weTl.

Then we have
lim HTH — T =0.
€l0

Proof. Given (4.5), we partition the set I'c in the form I'. = G U H,, where

Ge={wel. : E,n{M\M®*1} =0} and
H.={weT,: E,Nn{M\M¥1} £}

Accordingly, we have the decomposition T, = V. + W, where

V. = Z AME ko and W= Y MEy)ky ® ky.

Define the sets

By (4.4), we have T),, = X + Y¢, where
X, = / ke @ kedA\(() and Y, = / ke @ kedA(Q).
Ae Be

Since the whole of B, is within 4e of M\M (1) in terms of the Bergman distance, it is
elementary that ||Y. — W,|| tends to 0 as € descends to 0. Thus it suffices to show that

(4.6) lim || X, — V|| = 0.
€l0

To prove (4.6), consider any f € H?(S). Then

(Xef)(2) — -y / (- 12" — Flw) K ()L — [w2)™)dAQ)

weG,
= pe( ) + QE(Z)a
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where

= 5 [ (0= FD Ko - P aAQ) and
weG e

=2 / FQOE()1 = A" = Ku(2)(1 = [w])")Ax(Q).
weGe

By Lemma 4.1, when 2¢ < 1/4, we have

2¢
1(0) = £(0)] < Cor =y /D g e

for ¢ € By, w € G.. Also, |Ky(2)| < C1|K¢(2)] and 1 — |w|? < Ca(1 — [¢]?). Therefore

c Cse ) dvons ()| K¢ (2)|(1 = [¢]*)" ' %dA
b < Cre 3 [ MO I = G0
<O [ 1001 I I A )

It follows from Proposition 2.14 that A(D(u,1) N M) < C4. Hence

(1 _ |u|2)n—1—d

d —
T (s, qp (W) = Cse

(A7) Ipe(2)] < Cse /M F(w)

To estimate |g.(z)|, note that

Ke(2)(1 = [¢3)" = Ku(z)(1 = [wf?)" = %{1 - (11:||7f||22 )(11 - <<5)>>>}

If ¢ € Ey, then ¢ = ¢, (§) for some £ € D(0,2¢). Thus by a standard exercise, we have

‘1 - <Z, C>|n
for ( € F,,, w € G.. Therefore
|C | / |f
<
Combining this with (4.7), if we write C7 = C5 + Cg, then
|f(u)]

[(Xef)(2) = (Vef)(2)] < Cre |ndu(U)-

M ‘1 - <Z,U>
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Applying Lemma 3.3, we have
/M (Xef)(2) = (Vef)(2)Pdu(z) < (Crel BIVHTuf, £) < (Crel BII Tl

Theorem 3.5 tells us that ||h]|* < (1/c)(T,,h, h) for every h € Q. Clearly, X.f — V.f € Q.
Continuing with (4.8), we have

IXef = VefII? < (/N Tu(Xef = Vef), Xef = Vef)
= (1/¢) / (Xef)(2) = (Vef)(2)Pdp(z) < (1/e)(Crel BID* T,

Since f € H?(S) is arbitrary, we conclude that || X. — V¢||? < (1/¢)(Cre||B||)?||T}||- This
proves (4.6) and completes the proof of the proposition. [J

Definition 4.4. (a) The class Dy consists of operators of the form

Y ek @k,

zel

where I' C M and T is a-separated for some a > 0, and where {c, : z € I'} is any bounded
set of complex coeflicients.
(b) The class D consists of operators of the form

Z Czkz & kfy(z)v
zel

where I' C M and T is a-separated for some a > 0, where {c, : z € I'} is any bounded set
of complex coefficients, and where v : I' — M is a map for which there is a 0 < C < o0
such that

B(z,(2)) <C

for every z € T'.
(c) Let C*(D) be the C*-algebra generated by D.

Proposition 4.5. Dy contains an operator that is invertible on Q.

Proof. Let T, be the operator defined in the statement of Proposition 4.3, 0 < € < 1. Then
T. € Dy by definition. Theorem 3.5 tells us that T}, is invertible on Q. It follows from the

invertibility of 7}, on Q and Proposition 4.3 that if € is small enough, then T is invertible
on Q. I

This immediately leads to a compactness test and a membership test, both of which
will play an essential role later in the paper.

Corollary 4.6. Let A be a bounded operator on Q.
(a) If XAY is compact for all X,Y € Dy, then A is a compact operator.
(b) If XAY € C*(D) for all X,Y € Dy, then A € C*(D).

27



Proof. (a) follows immediately from Proposition 4.5. (b) follows from Proposition 4.5 and
the fact that C*(D) is a C*-algebra. Specifically, it uses the property that if T € C*(D)
and if T is invertible on Q, then T—! € C*(D). O

We end the section with the obvious:
Proposition 4.7. The norm closure of span(D) contains every compact operator on Q.
Proof. By definition, we have k, ® k,, € D for all z,w € M. Since Q is the closure of
span{k, : z € M}, for any f,g € Q, f ® g is in the closure of span(D) with respect to the
operator norm. Once this is clear, the proposition follows. [J
5. The C*-algebra C*(D)
This section is devoted to estimates related to the C*-algebra C*(D).

Lemma 5.1. Let 0 < n < 1/4 be given. For any e > 0, there is anr = r(n,€) > 1 such that
the following holds true: Suppose that I' and G are 1-separated sets contained in M N K,
and that F is a subset of I' X G satisfying the condition

B(z,w) >1r for every (z,w) € E.
Let {ay., : (2,w) € E} be a set of complex coefficients such that
(1 [£f2) /D10 — fuwf2) /D

11— (z,w)[*=2

|az,w| < for every (z,w) € E.

Then for any orthonormal sets {e, : z € I'} and {u,, : w € G}, we have

‘ 5 Az wCz ) Uy

(z,w)EE
Proof. We will bring the Schur test to bear. Define h(w) = (1 — |w|?)"=Y/2 for w € G.
For w € G and ¢ € D(w, 1), we have 1 —[(|*> < C1(1—|w|?) and |1 —(z,¢)| < Ca|1 — (2, w)]
Thus for each z € T,
(1 )71 )/
2 11— (z,w)[*=2
weG\D(z,r)

R el (o L ol
w(D(w,1) N M) Jpwiynm 11— (z,)[m=2n

Since G is 1-separated, from this inequality and Proposition 2.14 we obtain
9 B 1 i

_ n—2n

<ee.

h(w)

<Cs dp(Q).

weG\D(z,r)

h(w)

1 — 512/ =n(] _ |¢[2)-(1/D—n
§C4/ (1—1z%) ( n|_C2| )
M\D(z,r—1) 11— (z,¢)["2n

A7 (1 — =) (@ = I¢P*)"
B C4h(Z) /M\D(z,?‘l) |1 - <Z, C>|d—i_l_|_a_'_".C dUM(C)7

du(¢)
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where a = (1/2) —n, k =n—1—d—(1/2) —n and h(z) = (1 — |2|2)»D/2 for z e T. We
have ¢ > 0 and x > —1. Applying Lemma 2.11, we obtain

2

weG\D(z,r)

(1= o)1 — )/

1= (z,w)[" =2

h(w) < C4C511(8)e 2=V h(2)

for every z € I'. Similarly, for each w € G we have

>

zeT\D(w,r)

1 — |212)(/2)=n(1 _ |0|2)(n/2)=n _
(|Z| )|1 —(# (w>|n|_1§7|7 : h(z) < CaCo11(8)e” > Vh(w).

From these two inequalities and the Schur test it now follows that

E Az wCz @) Uy

(z,w)EE

< 04011 (8)e” 2001,

This completes the proof. [

Proposition 5.2. The C*-algebra C*(D) is the closure with respect to the operator norm
of the linear span of D.

Proof. Suppose that I is a separated set in B and that v : I' — B is a map for which
there is a 0 < C' < oo such that 3(z,7(z)) < C for every z € I'. Then there is a partition
' =T;U---UT,, such that for each 1 < j < m, we have D(v(2),1) N D(y(2'),1) = 0
for all z # 2’ in I';. This implies that if A is in the linear span of D, so is A*. Therefore
the proof will be complete if we can show that for all A, B € D, the product AB is in the
closure with respect to the operator norm of the linear span of D.

Recalling Proposition 4.7, it suffices to consider A, B € D with representations

A= ak. @kyy and B= Y buky @ ko),
zel welG

where I and G are 1-separated sets in M N K, {a, : z € '} and {b,, : w € G} are bounded
sets of coefficients, and v : I' -+ M and g : G — M are maps for which there is a C' such
that B(z,7(z)) < C for every z € I' and B(w, g(w)) < C for every w € G. Moreover,
partitioning G by a finite number of subsets if necessary, we may further assume that

D(g(w),1) N D(g(w'),1) =0 for all w # w in G.
For each r > 0, we have the partition I' x G = E,. U F,., where

E. ={(z,w) eI'xG:p(z,9(w)) >r} and F,={(z,w) el xG:p(z9(w)) <r}.

Accordingly, AB = S,. + T;., where

Sr = Z azbw<kw7 k’y(z)>kz & kg(w) and T, = Z azbw<kw7 k’y(z)wfz & kg(w)-
(z,w)EE, (z,w)€EF,

29



By definition, if (z,w) € F., then B(z, g(w)) < r. Also, if (z,w) € F,., then

B(z,w) < B(z, g(w)) + Blg(w), w) <r+C.

Since G is 1-separated, there is a Cy(r) such that for every z € I" we have card{w € G :
(z,w) € F,.} < Ci(r). Therefore T, is in the linear span of D.

To complete the proof, we will show that |.S,| is small when r is large. To do that
we pick orthonormal sets {e, : z € T'} and {u,, : w € G}. We then define

X = Zazkz ®e, and Y = Z bty @ Kg(w)-
zel weqG

Then S, = XS\Y, where

S; = Z <kw,k7(z)>ez & Uy -

(z,w)EE,

By Lemma 4.2, we have || X| < Ciza and [|Y| < Cy2b, where a = sup,cr |a.| and
b = sup,cq |bw|- Thus it suffices to show that ||.S;.|| is small when 7 is large.

To estimate [|.S].||, note that

(1~ R — )2 (1= [2P)2(1— fuf)?
T s e gy v

for (z,w) € E,, where the < follows from the condition 5(z,v(z)) < C. Also,

|<k5w= k'y(z)>| =

Bz, w) = Bz, 9(w)) = Blg(w), w) =1 = C

for (z,w) € E,. That is, E, C {(z,w) € I' x G : B(z,w) > r — C}. Thus it follows from
Lemma 5.1 that ||S]|| — 0 as r — oo. This completes the proof. [J

Lemma 5.3. Let A € C*(D) be given. Then for every e > 0, there is an r > 1 such that
the following holds true: Suppose that I' and G are 1-separated sets contained in M N K,
and that {e, : z € I'} and {uy, : w € G} are orthonormal sets. Denote

X:Zez@)kz and Y = ka@)uw.
zel weG

If T and G satisfy the condition 5(z,w) > r for every (z,w) € I' X G, then || XAY|| <e.

Proof. First of all, Lemma 4.2 provides the bounds || X || < C42 and ||Y]| < Cy.2. Because
of these bounds, by the approximation in Proposition 5.2 we only need to consider A € D.
More specifically, we assume

A= Z ceke @ ki)
¢EelE
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where E is a 1-separated set in M, v : E — M is a map for which there is a C such that
B(§,7(§)) < C for every £ € E, and supgcf |ce| < oo.

Multiplying out the product, we have

XAY =33 a2 we: ® ty,

zel'wed@

where

Qo = Y celke, ka) (R, o))
(el

for z € I' and w € G. We have the partition ¥ = F; U E5, where £F; = EF N K and
E;, = EN{M\K}. Accordingly, a, ., = a% + a,(z q)u, where

al), =Y celke, k) (ku, ye))
(erl;

fori =1,2 and (z,w) € T x G.

Writing ¢ = supg¢ g [c¢|, we have

al)| < e Z {1 =1~ |21 = [w>) (1 = |y(€)]?)}/?

2 1T ) i
(1~ 3" (1 ~ 2200~ fwf2)/?
= e g,;l - EOrL- Cwr

where for the second < we use the fact that 5(&,v(£)) < C for every £ € E. Thus

o) (1 —1¢F) (1= |22)"/2(1 — |w|?)"/2
s X oty QI (G

éeb, e |1

a —|z\2>”/2<1—|w|2>"/2
(5:1) <Cye | 1= (Ol = Gy O

where the second < follows from Proposition 2.14 and the fact that E is 1-separated. The
fact that E is 1-separated also ensures card(Fy) < Cy. Therefore it is trivial that

(1 27721 — Juf2)?
o< Coe | T (= O = (G w4

Combining this with (5.1), we see that

(1= o)~ u)?
1= (= QL= (Cull”
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for all z eI and w € G.

Recall that we have the triangle inequality
(5.3) 11— (z,w)[V? < 1= (2, O + 1 = (¢, w)['/?
[26, Proposition 5.1.2]. Thus if we define

Uew ={C€M:[1=(z,([ = 1/l = (z,w)|} and
Vew ={C€ M : [1 = (¢, w)| = (1/4)|1 = (z,w)[},

then U, UV, = M. Using this decomposition of M in (5.2), we obtain

(1= [=[)"2(1 = Jw[*)"
@zl < Cre

1 1
(/;<1—¢<Pwﬂ41—<au»wd““’*1[Q|1—<a<ﬂna——mwﬁ/“”“o>‘

By Lemma 2.10, we have

1 B (1 _ |C‘2)n—1—d—(1/9) .
‘@u—mmwu—mww@@‘ﬁf 1=y omld)

1 — (c12)-1/9
< gn—i-d /M |(1 — <|<C|u3>|d+1 dop(¢) < Cg(1 — \w|2)_1/9.

Similarly,

/M 11— <Z,C)|”1(1 — |<‘|2)1/9d/~b(§) < Cs(1— |22)~ V0.

Therefore

(1= 2™ (1 = w]*)"/?
11— (2, w)[n=(1/9)

(1 — |22)/D=(/9) (1 — |gp[2)(n/2)=(1/9)

11— (2, w)[n=(2/9) '

lasw| < Coc (1= Jw]?) ™2+ (1= [2)719)

< Chpc

Recall that we assume that B(z,w) > r for every (z,w) € I' x G. Thus, applying Lemma
5.1 with n = 1/9, we see that | X AY|| is small when r is large. [J
6. Compactness criterion for operators in C*(D)

In this section, our goal is to prove

Theorem 6.1. Let A € C*(D). If

lim (Ak.,k.) = 0,
zEM
|z|—1
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then A is a compact operator.

In addition to the material from the previous section, the proof of this theorem requires
more preparations, not the least of which is the radial-spherical decomposition of the unit
ball from [30, Section 4]. We begin the proof with a review of this decomposition.

In the spherical direction, the decomposition begins with the metric
d(u, &) = [1 = (w,&'?,  w,E €S,
defined on S [26, page 66]. For any pair of u € S and r > 0, we write
S(u,r)={¢€S:du,&) <r}.
There is a constant Ap € (27", 00) such that
(6.1) 272 < g (S(u, 1)) < Agr®™

for all u € S and 0 < r < /2 [26, Proposition 5.1.4].

In the radial direction of the ball, we set
pp=1-—272*
for every k € Z . For each pair of natural numbers m > 6 and j € N, let us denote
(6.2) m,j =m(1—p )2 =m- 279 (2 - 272m)1/2,

Note that 8a,, ; < V2 for all m > 6 and j € N. For each pair of m > 6 and j € N, let
E,, ; be a subset of S that is mazimal with respect to the property

(6.3) Sty Qi /2) N S(V, i /2) =0 forall u#v in B, ;.

It follows from the maximality of E,, ; that

(6.4) U S am;) =S5

ueEm,j

For each triple of m > 6, j € N and u € F,, ;, we define

Apju = {r&: € € S(u, am ), 7 € [p(j12ym, Pi+3)ym]} and
(6.5) B ju = 1€ : £ € S(u,30m,5),7 € [pjm, P(j4+5)m] }-

Then it follows from (6.4) that
(6.6) U U Apiw=1{2€B:psm < |z] <1}
J=1uEE,,

33



Lemma 6.2. [30, Lemma 4.3] For each triple of m > 6, j € N and u € E,, ;, define

(67) Zm,ju = PjmU-

Then we have By, ju C D(2m,j.u; Rm), where Ry, = 2+ 5m + log (1 + 210m 18m2).

By (6.1) and (6.3), there is a natural number Ny such that for every triple of m > 6,
j € Nand u e E,, ;, we have

(6.8) card{v € E, ; : d(u,v) < Tay, j} < Np.
By a standard maximality argument, each E,, ; admits a partition
@ (No)

such that for every v € {1,..., No}, we have d(u,v) > Tay, ; for all u # v in Ef:)j This
number Ny and the above partition will be fixed for the rest of the section.

Lemma 6.3. [30, Lemma 4.2] (a) Let m > 6, j € N andv € {1,...,No}. Ifu,v € Eﬁ:)]
and u # v, then we have B(z,w) > 2 for all z € By, j. and w € By, j . ’

(b) Let m > 6. Ifu € Ep, j, v € Ep i and k > j + 6, then we have B(z,w) > 3 for all
2 € By ju and w € By, o

(c) Let m > 6, j € N and u € E,, ;. Then f(z,w) > 2logm for all z € B\B,, ;. and
w e Am,j,u-

Definition 6.4. Let m > 6 be given. (a) For each pair of k € {1,2,3,4,5,6} and v €
{1,..., No}, where Ny is the integer that appears in (6.8), let 18" denote the collection
(v)

m,6i+kK"

(b) For k € {1,2,3,4,5,6}, v € {1,...,No} and J € N, let Ir(ny,’f;) denote the collection of
all triples m, 617 + K, u satisfying the conditions 0 <7 < J and u € Eg,)ﬁwﬂ-
(c) Denote I,,, = US_, Ulfl\fil L(ny’ﬁ).

of all triples m, 67 + k, u satisfying the conditions i € Z and v € E

As in [30], we will try to avoid triple subscripts when possible. That is, we use w to
represent (m,j,u) € I, and write A, and B, for A,, ;. and B,, ;. respectively.

From Definition 6.4(a) and Lemma 6.3(a), (b) we immediately obtain
Corollary 6.5. Given any k € {1,2,3,4,5,6} and v € {1,...,No}, if w,w’ € L(ﬁ"'i) and
w # W', then for every pair of z € B, and w € B, we have B(z,w) > 2.

Lemma 6.6. Let Uy, ..., U, be subsets of B such that U; N Uy, = 0 for all j # k. For each
1 <k <V, let Ex, and Fy be finite subsets of U,. Denote E = U‘,;ZlEk and F = Uilek.
Suppose that {e, : z € E} and {e, : w € F'} are orthonormal sets in Hilbert spaces Hy and
Ho respectively. Define

X, = Z e, @k, and Y= Z kw @ €
zeFEy we Fy,
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for each 1 < k < {. Let A be any bounded operator on the Hardy space H?(S). Then there
exists a subset L of {1,...,¢} such that if we define

X=X, Y=Y X'= > X ad Y= > Y,

kel kel ke{l,.. .00\ L ke{l,.. .00\ L

then
<4 XAY| + | X"AY ||}

> X;AY;

J#k

Proof. We may assume that H; = (*(E), Hy = (*(F), and that {e, : z € E} and
{ew : w € F} are the standard orthonormal bases for ¢2(E) and ¢?(F) respectively. For a
function f defined on B, we define the multiplication operator My on ¢*(E) and ¢*(F) by
the formulas

M; Z a,e, = Z f(z)aze, and My Z buw€w = Z f(w)by ey

zEE z€EE weF weF

respectively. The rest of the proof is an adaptation of the proof of [30, Lemma 5.1].
It suffices to consider the case ¢ > 2. Write
Z=> X;AY, and Zy=) UMIX;AY;, 6€cR.
i#k i#k
Then obviously we have
1 27

e
2 0

(Z — Zy)db.

This shows that there is a 6* € [0, 27] such that || Z]|| < ||Z — Ze«||.

Write 7, = e for every k € {1,...,¢}. Define the operators

0 I
B= Z Y X;AY, and B =) ) XAV

j=1k=1 j=1k=1

from ¢2(F) to £%(E). Also, define the function

¢
U= Exu,
k=1
on B. Since E, C Uy, Fy, C Uy and U; N Uy, = 0 for j # k, we have
B— B =B~ My,BM; = My(M;B — BMj).
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For each k € {1,...,£}, let us write v = ¢ + idg, where ¢y, dy € [—1,1]. Define

4 J4
p=> cxv, and g=) dixu,.
k=1 k=1

Then the above gives us B — B’ = M,V — iM, W, where
V=M,B—BM, and W = M,B — BM,.

Since v,y = 1 for every k € {1,...,¢}, we have Z — Zy« = B— B’. Consequently, we have
cither [|Z| < [|Z = Zo-|| < 2|V or |Z]] < |1Z — Zo-|| < 2|W].

In the case ||Z| < 2||V]|, consider ¢y, ..., ¢, which are real numbers in [—1,1]. There
is a permutation 7(1),...,7(¢) of the integers 1,..., ¢ such that

Cr(j) = Cr(j—1) forevery je€{2,...,/(}.
For each j € {1,...,¢}, define the subset L; = {7(k) : j <k </} of {1,...,¢}. Then
¢ ¢
p = ZCT(k)XUT(k) = CT(l) Z XUa + Z(CT(j) — CT(j—l)) Z XUa‘
k=1 aELl j:2 CYGLJ‘

Obviously, MXUj Xy =0 when j # k and M,,, Xy = Xj. Thus

l J4 I4
DoaXp =M,y Xp=cySi+ ) (erg) —Cr(-n)Sj, where Sj= )  Xq
k=1 k=1 j=2 aEL;

for every 1 < j < /. Similarly,
¢ ¢ ¢
ZCkYk = ZYkMp = Cr(l)Tl + Z(CT(j) - CT(j_l))Tj, where Tj = Z Ya
k=1 k=1 j=2 a€L;
for every 1 < j < {. Note that Ly = {1,...,¢}. Therefore

12 L
V=M,B-BM,=Y ¢;X;ATy - $1A) Y,

j=1 j=1
12 12
= Z(CT(j) — CT(j—l))(SjATl — SlATj) = Z(CT(]) — CT(]_l))(S]ATJ/ — SJIATJ),
j=2 Jj=2

where

S=s-8= ¥ X owd T-Ti-T- ¥ W
ac{l,...,0}\L; a€{l,... L}\L;
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1 <45 < /. Since (07(2) - CT(l)) + -+ (CT(g) — CT(E—l)) = Cr(e) — Cr(1) < 2, we have
4

V1< D (ertn = oty 1S/ AT) ~ SIAT | <2 g (1S, AT + 1547
J:

Thus there is a jo € {2,...,¢} such that

IVIF< 201850 AT, | + 1155, ATj0|1)-
If we simply let L = Lj,, then X = S5;,, Y =T}, X' =5 and Y’ =T} . This proves the
lemma in the case where || Z|| < 2||V||.

In the case || Z]| < 2||W||, we just apply the argument in the preceding paragraph with
dy,...,dy in place of ¢q,...,cp. This completes the proof of the lemma. []

Proposition 6.7. Let A be a bounded operator on Q. If

(69) 2116% <Akz7 kz> =0,
|z|]—1

then for every 0 < r < oo we have

he% sup{|(A4k,, ky)| :w € D(z,r) N M} = 0.

|z|—1

Proof. Assuming the contrary, we would have an r > 0 and sequences {z;} and {w,} in
M satisfying the following three conditions:

(1) limy o0 [25] = 15

(2) B(zj,w;) < r for every j;

(3) limj o0 (AK.;, ky,;) = a # 0.
We will show that this leads to a contradiction.

Combining (1) above with Lemma 2.9, discarding a finite number of j’s if necessary,
we may further assume that D(z;,3r) N TZH;Od C B(zj,c0) N Tzr?‘)d (cf. (2.8)),

L;(D(z,2r) VT2 D D(z5,r) "M and L, (D(z;,3r) N'T2°Y) C D(z;,6r) N M
for every j. There are 0 < s <t < 1 such that
@2, (B(0,s) N Tzr;‘c’d) = D(z;,2r)N Tzr;“)d and . (B(0,t)N TZr?Od) = D(z,3r)N Tzr?c’d
for every j. For each j, let V; : C? — C™ be an isometry such that
V;C? =170,
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Recall that we write B, for the unit ball in C?. For each j, define the map «; : By — M
by the formula

Q; (f) = Izj (szj (t%g)),

¢ € By. Obviously, each «; is analytic, and we have a,;(0) = z;. By (2), for each j there
is a & € By(0,s/t) = {¢ € C%: || < s/t} such that a;(&;) = w;.

For each j, we now define the analytic function F; on B4 x By by the formula
Fi(§m) =1~ |Zj|2)n<AKaj(g),Kaj(n)), (§&,m) € Bg x Bg.

A review of the above finds that «o;(§) € D(z;,6r) N M for all j and & € By. Therefore
there are 0 < ¢; < €7 < oo such that

cr(l—a;(€)*) <1— 2> <Ci1(1 —|a;(§)[?) for all j and ¢ € By

Thus |F;(€,n)] < Cq for all j, & and n. Hence there exist a subsequence {F}, } of {F;} and
an analytic function F' on By x By such that {F}, } uniformly converges to F' on every
compact subset of By x Bg. For each § € By, since 8(a;(§), 2;) < 6r, it follows from (1)
that lim;_, |a;(§)| = 1. By (6.9), we have

F(E€) = lim F; (§,§) = lim (1|2, [*)"(AK,, (o), Ka,, ) = 0.
Since this holds for every £ € By, it is well known that it implies that F' is identically 0 on
By x Bgy. Therefore {F}, } uniformly converges to 0 on every compact subset of By x By.
Since §;, € Bq(0, s/t) for every v, in particular we have

(6.10) lim Fj, (0,&;,) = 0.

V—00
On the other hand, since «;, (0) = z;, and «;, (§;,) = w;,, we have

1—|z,|?

n/2
By, (0,6,,) = (1= |2y, P) AK., Ky, ) = ( ) (ks k).

1= fuw;, |2
Since 1 —|z;, % > ¢1(1 — |wy, |?), (6.10) contradicts (3). This completes the proof. [J

Lemma 6.8. Let I' be a separated set contained in M, and let v : I' — M be a map for
which there is a 0 < C' < oo such that B(z,v(z)) < C for every z € I'. Suppose that A is a
bounded operator on Q which has the property

(6.11) lim (A k.) = 0.
|z|—1

Then for every bounded set of coefficients {c, : z € I'}, the operator

Z Cy <Ak,y(z), k?z>k‘z & kV(Z)

zell
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18 compact.

Proof. Let {e, : z € I'} be an orthonormal set. We have the factorization

Z C; <Ak‘7(z), ]{Zz>k’z & kﬁ(z) = XTY,

zel

where

X:Zczkz®ez, T:Z<Ak'y(z)akz>€z®€z and Y:Ze»z@kv(z)'
zel zel zel

By Lemma 4.2, X and Y are bounded operators. Since 7 has the property that (z,v(z)) <
C for every z € I', Proposition 6.7 tells us that (6.11) implies

ilenll <Ak‘7(z), k}z> =0.
|z]—1

Hence T is a compact operator. This completes the proof. [

Proof of Theorem 6.1. By Corollary 4.6, it suffices to show that for any given X,Y € Dy,
the operator X AY is compact. Furthermore, it suffices to assume that

X=) ak.@k and Y= byky® ke,
zel weqG

where I and G are 1-separated sets in M N K and the sets of coefficients {a, : z € I'} and
{by : w € G} are bounded. We will decompose X and Y using the sets in Definition 6.4.

Let a large m > 6 be given. Define
Fn={2€Tl:|z|<psm} and T,,={z€T:|z] > p3m}
Then X =1T,, + X,,,, where

T, = Z a k., ®k, and X,, = Z ak, @k,.
zeF,, zel'y,

Obviously, rank(7;,) < co. We need to further decompose X,,. By (6.6) and Definition
6.4, we have U,er, A, D I'y,. Therefore there is a partition

(6.12) r, = U ', such that I, C A, for every w € I,,.
w€el,

Accordingly, for each w € I,,, we define

(6.13) Xo= )Y ak.®k..
zel'y,
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Also, for each pair of k € {1,2,3,4,5,6} and v € {1,..., No} we define

(6.14) X = 3" X,

welﬁff’“)

Thus
6 No
XT30S X
r=1v=1
Because Ny is a constant (see (6.8)), and because rank(T,,) < oo, to complete the proof,
it suffices to show that for each pair of k € {1,2,3,4,5,6} and v € {1,..., Np}, anu’“)AY
is the sum of a compact operator and an operator of small norm when m is large.
To do that, let a pair of k € {1,2,3,4,5,6} and v € {1,..., Nyo} be given. We will
decompose Y accordingly. Define

(6.15) By = ) B..
wEI,Sf’K)
Then
Y =8 4y,
where
SEm = 3" byky @ ke and YV = > bk, ® k.

Let us first show that ||X7SZ’R)AS7(7;”K)|| is small when m is large. By (6.12) and (6.15), if
z €T, for some w € I and if w € G\Bfﬁ"{), then w ¢ B,,. By Lemma 6.3(c), we have

(6.16) B(z,w) > 2logm.

In other words, if we define
™= |J T

weI”(:v”)

then (6.16) holds for every pair of z € T and w € G\Bf,:"{). Since the union in (6.12)
is a partition, i.e., Iy, N Ty = 0 if w # W', from (6.13) and (6.14) we see that

X = N k. @k..

2er)

Recall that we assume A € C*(D). Hence it follows from (6.16) and Lemmas 5.3 and 4.2
that ||X7(,§/’H)AS7(,«LV"{) || is small when m is large.
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Thus what remains is to show that X,(f{ "{)AYT%V’K) is the sum of a compact operator
and an operator of small norm when m is large. To accomplish that goal, we partition the

set G N Bfﬁ’”) in the form

GnN Bfﬁ”“) = U Gy, where G, C B, for each w € Iﬁ;”“).

we]ﬁ,ﬂf"@)

Accordingly, we have

Yn(;’”‘) = Z Y,, whereY, = Z bwkw ® ky for each w € qu;”").

we[y(rzvﬁ) wEGw

Recalling (6.14), we now have Xf#'{)AYT%V’K) = D + W, where

D= Z X,AY, and W = Z X, AY,,.

we[f:’"“) w,w/EIﬁr/’;’“)
wHw

Obviously,

D= > > by (Aky, k2)k ® Ky
wEI;:’K) (z,w)€l, XGy
Recall from Lemma 6.2 that B, C D(z,, R,,) for every w € IT(,Z{’R). Since I', C A, and
G, C B,, we have 5(z,w) < 2R,, for every (z,w) € Ty, X G, w € 19" Since G is 1-
separated, there is a constant C,, such that card(G,,) < C,, for every w € Iy(ny %) Therefore
it follows from Lemma 6.8 that D is a compact operator.

As the last step of the proof, we need to show that ||IW]| is small when m is large. To
that end, we pick orthonormal sets {e, : z € T} and {u, : w € G N BY™}. Define

(6.17) Ko=)Y e.®k and Ly= Y ky®uy
Zerw 'LUEGw

for each w € I,Sf ’F”). We also define

U= g ak,®e, and V = E buwlUw @ k.
zeTy™) weGNBY™

Then we can factor W in the form W = UHV, where

H= Z K, AL, .

w,wlelﬁg"ﬁ)

w#w’
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By Lemma 4.2 we have ||U|| < Cy2a and ||[V| < Cy2b, where a = sup,pla;| and b =
SUP,,cc |bw|. Hence the proof will be complete if we can show that || H|| is small when m
is large. To estimate ||H]||, for each J € N we define

Hy= Y  K,AL.,
w,wlelfrf”;)
w#w'
(cf. Definition 6.4(b)). We have the strong convergence H; — H as J — oo. Therefore
there is a J* € N such that |H| < 2||H«||. Since If:ﬁ is a finite set, and since Corollary

6.5 tells us that B, N By = 0 for w # ' in 1) by Lemma 6.6, there is a subset F' of

m,J*?
I r(:;) such that if we define

S=) K, A=) L, Y= > K, and AN= Y L,

weF weF (v,k) (v;r)
welm‘J*\F welmyJ*\F

then
| HI| < 2[H -

< S{|2AN| + AN}
By (6.17), we have

Z:ZZeZQQkZ and A = Z ka@)uw.

w€eF zel', WGI,(::;A)«\F weG,,

Recall that ', C A, and G, C B,. Again, for any pair of w € F and w’ € Ir(:’ﬁ \F, we
have B, N B, = () by Corollary 6.5. Thus by Lemma 6.3(c), for such a pair of w and W',
if ze T, and w € G, then f(z,w) > 2logm. Since A € C*(D), we can apply Lemma
5.3 to conclude that ||[XAA’|| is small when m is large. Similarly, ||X'AA|| is small when m
is large. Therefore ||H|| is small when m is large. This completes the proof. [J

7. Compactness criterion in the Toeplitz algebra 7 Q

Recall that for any f € L*°(S,do), we define the “Toeplitz operator”

Qrh=Q(fh), heQ,

on the quotient module Q. We write 7Q for the C*-algebra generated by {Q; : f €
L*>°(S,do)}. We think of TQ as the “Toeplitz algebra” on the quotient module.

Lemma 7.1. Given any 0 < n < 1, there is a constant 0 < C7.1. < oo such that

i i G Y G

11— (z,w)[*=2

(7.1) / e ()] e () (1) < Cor
S
for all z,w € B.
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Proof. Given any z,w € B, let us write x = ¢,,(2). For u € S, we have

1 — {pyp(u),w) = —11—_<|uU,J'|w> and 1 — (pw(u),2) = (fl__@l;jz‘u;)((ll__(z;ﬁ;)))

Therefore
1— (pu(u),w) _ 1— (w,a)
1_<90w(u)7z> 1—<U,I>.

Let 0 < n < 1 be given. Starting with the unnormalized K, and K,,, we have

[ 1Ko (w)do(w) = / K. () () (1))
T / Ko 1)) K (o))

|1—(w x) 1 — (w,z)|™ Cq

= T lwP)r -/ T S o T

where for the < we cite [26, Proposition 1.4.10]. Since x = ¢,,(z), we have

(7.2)

11— (w, z)|" _ 1 and 1 _ 11— (w, )|
(I—fw)™ 1= (w,z)| (L—=[z[®)7 (1= |w?)7(1 = [z>)7

Substituting these identities in (7.2), (7.1) follows. [J
Proposition 7.2. We have TQ C C*(D).

Proof. 1t suffices to show that Qy € C*(D) for every f € L*(S,do). By Corollary 4.6(b),
we only need to show that XQ¢Y € C*(D) for every pair of X,Y € Dy. As in the proof
of Theorem 6.1, we can be more specific about X and Y'; we assume that

X = Zazkz@;kz and Y = Z bwkw @ kuw,
zel wedG

where I and G are 1-separated sets in M N K and the sets of coefficients {a, : z € I'} and
{bw : w € G} are bounded. Denote a = sup,cr |a.| and b = sup,,cq |bw-

We can regard Qf, X, Y as operators on L?(S,do). Thus

XQY =XM;Y = Y abuCzwk: @ ku,
(z,w)er'xG

where

Cz,w = <Mfk’w, kz>
For any r > 0, we have the partition I' x G = FE,. U F}., where

E.={(z,w) eT'xG:p(z,w) <r} and F.={(z,w) el xG:p(z,w)>r}.
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Accordingly, XQ¢Y = D, + W,, where

D, = Z azbwcz,wkz ® kw and W, = Z azbwcz’wk?z & k‘w.
(2,w)€EE, (z,w)€eF,

Obviously, the set {a,byc, . @ (2,w) € ' X G} is bounded. There is a C(r) such that for
every z € I', card{w € G : B(z,w) <r} < C(r). Hence D, is in the linear span of D. Thus
the proof will be complete if we can show that ||W,|| is small when r is large.

To that end, we pick orthonormal sets {e, : z € T'}, {u, : w € G} and factor W, in
the form W, = UH,V, where

U:Zazkz(}bez, H, = Z Cow€z @ Uy and V = Z bty Q ky,.

zell (z,w)€EF, welG

By Lemma 4.2, we have ||U|| < Cy2a and |V|| < Cy2b. Let 0 < n < 1/4 be chosen. Then
from Lemma 7.1 we obtain

i i O Y G

zZ,w S oo k27kw SC oo
€2 ] < [l Flloo IRz [Fuwl) < Crallf] = (2 w) [

for all (z,w) € T x G. Recalling the definition of F;., from Lemma 5.1 we see that | H,|| is
small when 7 is large. Thus ||W,.|| is small when r is large. This completes the proof. [J

Below is the most significant application of Theorem 6.1:

Theorem 7.3. Let A€ TQ. If

lim (Ak.,k.) =0,
zeM
|z|—1

then A is a compact operator.

Proof. This is an immediate consequence of Proposition 7.2 and Theorem 6.1. [J

8. Essential normality

We will now show that the quotient module Q is p-essentially normal for p > d. For
this purpose, just as in [28], it will be convenient to get certain Lorentz-like ideals involved.

For each 1 < p < 00, the formula

o (A () et ()
HAHp _igli 1—1/p+2—1/p_|_+k—1/10

defines a symmetric norm for operators. On a Hilbert space H, the set
+ . +
C, ={AeB(H):[All, <o}
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is a norm ideal. See Sections II1.2 and III.14 in [17]. Tt is well known that C,/ C C, for all
1<p<yp <o0.

The reason why the C;' ’s are the preferred ideals in the study of the Arveson-Douglas
conjecture is that norm estimates in these ideals are particularly easy:

Lemma 8.1. [28, Lemma 2.9] Given any positive numbers 0 < a < b < oo, there is a
constant 0 < B(a,b) < oo such that the following holds true: Let H be a Hilbert space, and
suppose that Fy, Fy, ..., F),... are operators on H such that the following two conditions
are satisfied for every k:

1) |1 Fi < 27,

(2) rank(F},) < 2°k.
Then the operator F = Y7 | Fy; satisfies the estimate ||F||8L/a < B(a,b). In particular,

F e Cj/a.

Lemma 8.2. Given any ¢ > 0, there is a constant 0 < Cgo = Cgo(€) < 0o such that
the following holds true: Let T' be a 1-separated set in M N K and let {e, : z € I'} be an
orthonormal set in a Hilbert space H. Then the operator

>

z,wel

(1 o) 9721 — )2
1= (2w

€, X ey

satisfies the estimate ||T|| < Csg.a.
Proof. Recall from Proposition 2.14 that (1—|w|?)4* < Crvp (D (w, 1)NM) forw € MNK.
Also, if £ € D(w,1) N M, then
|2y 14(€/2) _1e]2)—14(e/2)
(1 — |wl?) <o, L)
11— (2, w)|**e 1= (z,8)|%*

Define h(w) = (1 — |w|?)#? for w € T. For each z € I' we have

(1= o) 9/2(1 — )02
T Gl

h(w)
wel’
(1= =)0/ (1 — fgf2)1+er

<.y [
’ Z D(w,1)NM 11— (z,&)|d+e

wel’
_ 2\e/2 1 — |£]2 —1+(e/2)
e [ A )A€
S 03(1 |Z| ) /];4 |1 _ <Z,€>|d+1+(6/2)—1+(6/2) dUM(f)

< Cy(1 = [2]*)%? = Cyh(z),

dvpr (§)

where the third < follows from Lemma 2.10. By the Schur test, we have ||T|| < Cy. O

Proposition 8.3. Let X € Dy, which we also consider as an operator on L*(S,do). If f
is a Lipschitz function on S, then [My, X] is in the Schatten class C,, for every p > 2d.
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Proof. As before, we can be more specific about X. That is, we only need to consider

X = Zczk:z ® k.,

zel

where T is a 1-separated set in M N K and the set {c, : z € T'} is bounded. Let p > 2d be
given. Then pick an 0 < € < 1/2 such that

(8.1) 2d/(1 —¢€) < p.

Given an f € Lip(S), we have [My, X| = F — G, where

F:ZCZ{(f—f(z/]z]))kz}@)kz and G:Zczkz®{(f—f(z/\z\))k:z}.

zel zel

Since G* is just another F', it suffices to deal with F.
For each k > 0, define

My={zeM:1-27%F < |z| <1—2720+11

and 'y, = I' N Mj,. For each k > 0, we further define

Fo= Y ed(f = [/ sk} @ e

ZEFk

Since F' = ZZO:O Fy, our goal is to apply Lemma 8.1. For this purpose, we need to estimate
| Fr|| and rank(F})). But since the estimate for rank(Fj) only involves card(I'y), it is the
same as that in the proof of [28, Proposition 3.5]. In fact, by (3.5) in [28], we have

(8.2) rank(Fy) < €229

for every k > 0. (See [28, page 1080] for the proof.) But the estimate for || Fy|| is different,
because we are now working on the Hardy space, not the Bergman space in [28].

Let {e, : z € I'} be an orthonormal set. Then we have Fj, = Ay H, where

Ap =) A(f = f(z/1z])k:} @e. and H= c.e.®k..

zel'y zel

By Lemma 4.2, ||[H|| < Cy.2c¢, where ¢ = sup,p |c.|. For each k > 0, we have

AZAk - E Az w€z & €qps

z,wel'y

where

azw = ((f = f(w/[w])kw, (f = f(z/]2]))k=)
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for z,w eTl. For z € I' and v € S, we have

|f(u) = f(z/12])] < L(f)lu— (2/]2])]
< V2L = {u, 2/ |2 Y2 < 2L(f)]L — (u, 2)[*/,

where L(f) is the Lipschitz constant for f. Thus for every pair of z,w € T,

ool <0, [ U PPl
B Y S R ORI ERR

do(u).

Note that n — (1/2) = {n — 1+ €} + {(1/2) — €}. Using triangle inequality (5.3) again, by
the argument following it in the proof of Lemma 5.3, this time we have

(1= |22 = Jw*)"/2
1= (z,w)fr=tte

|az,w| S C12

z,w € I'. Since d < n — 1, this means

(1 _ |Z|2)(d+1)/2(1 _ |w|2)(d—|—1)/2
11— (z,w)|dte

(1= |22 49/2(1 — Juw|?) ()2
11— (2, w)|ote

|az,w| S 03

=} (1- |Z|2)(1_e)/2(1 _ |w|2)(1—e)/2.

But for z,w € I'y specifically, this means

(1= o) 97201 — [wf?) /2

<C
B e e

(2—2k+1)1—e.

Combining this with Lemma 8.2, we find that || A} Ax|| < C3Cs.2(272%+1)1=¢. Thus
1l < ARl H]| < Cq27 (%

for every k > 0. Recalling (8.2), we can now apply Lemma 8.1 to conclude that F' €
C;_d/(l—e)' By (8.1), this means F' € C, as promised. This completes the proof. [J

Proposition 8.4. For any Lipschitz function f on S, the commutator [My, Q] is in the
Schatten class Cp, for every p > 2d.

Proof. Again, consider the operator T, defined in the statement of Proposition 4.3, 0 <
€ < 1. As we explained in the proof of Proposition 4.5, if € is small enough, then it follows
from Theorem 3.5 and Proposition 4.3 that 7T, is invertible on Q. This means that on
L?(S,do), the spectrum of the positive operator T, is contained in {0} U [c, C] for some
0 < ¢ < C < oo, and that the spectral measure of T, corresponding to the interval [c, C|
equals Q). Therefore there is an h € C2°(R) such that Q = h(T¢).
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We have T, € Dy by definition. Therefore, by Proposition 8.3, if f € Lip(S), then
[My,T¢] € C, for every p > 2d. By the well-known facts about smooth functional calculus,
we have [M¢, h(T¢)] € C, for every p > 2d. Since h(T,) = @), this completes the proof. O

We end the paper with
Theorem 8.5. The quotient module Q is p-essentially normal for every p > d.

Proof. Recalling (1.1), for ¢,5 € {1,...,n} we have

[Zé,ia ZQ,j] = QMZZQMZJQ - QMZJ QMZQ
= [Qv sz](l - Q)[MENQ] - [Q’ Mii](l - Q)[sza Q]

Proposition 8.4 tells us that [@Q, Mz,] and [M.,,Q] are in the Schatten class C; for every
t > 2d. Consequently, [Z5 ;, Zg ;] is in the Schatten class C, for every p > d. [J
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