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Abstract. We consider a class of analytic subsets M̃ of an open neighborhood of the
closed unit ball in Cn. Such an M̃ gives rise to a submodule R and a quotient module Q
of the Hardy module H2(S) on the unit sphere S ⊂ Cn. We show that, as predicted by
the geometric Arveson-Douglas conjecture, the quotient module Q is p-essentially normal
for p > d = dimCM̃ . We further show that, more interestingly, the quotient module
Q exhibits a behavior that is only found on the Bergman space and the Fock space: an
operator A in the Toeplitz algebra on Q is compact if and only if its Berezin transform
vanishes near M̃ ∩ S.

1. Introduction

Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. We write dσ for the standard
spherical measure on S, and we take the usual normalization σ(S) = 1. The simplest
way to introduce the Hardy space H2(S) is to say that it is the closure of C[z1, . . . , zn]
in L2(S, dσ). Nowadays, the Hardy space H2(S) is more commonly viewed as a Hilbert
module over the ring of analytic polynomials C[z1, . . . , zn], and the same is true for the
other reproducing-kernel Hilbert spaces [7,11]. One of the reasons why we want to think
of these spaces as modules over C[z1, . . . , zn] is that where there are modules, there are
submodules and quotient modules, which can be sources of very interesting and challenging
problems. A good example of such problems is the Arveson-Douglas conjecture, which in
recent years has been a very active area of research [3,6,12-15,18,22,28].

Suppose that N is either a submodule or a quotient module of the Hardy module
H2(S). Let PN : H2(S) → N be the orthogonal projection. Then we have the module
operators

(1.1) ZN ,j = PNMzj |N , j = 1, . . . , n,

on N . Recall that N is said to be p-essentially normal if all commutators [Z∗N ,i,ZN ,j ],
1 ≤ i, j ≤ n, are in the Schatten class Cp. The famous Arveson Conjecture [1,2] predicts
that every graded submodule of the Drury-Arveson module is p-essentially normal for
p > n. This was later refined by Douglas [10], who observed that in the case of the
quotient module it should really be p > d, where d is the complex dimension of the variety
involved. This conforms with the common view that quotient modules are rather “small”.
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In this paper we consider a very specific class of submodules and quotient modules.
Denote B = {z ∈ Cn : |z| < 1}, the open unit ball in Cn. Let M̃ be an analytic subset [9]
of an open neighborhood of B with 1 ≤ dimCM̃ ≤ n− 1. We will assume that M̃ has no
singular points on S and that M̃ intersects S transversely. Denote M = B ∩ M̃ . Then we
have a submodule

R = {f ∈ H2(S) : f = 0 on M}

of H2(S). The corresponding quotient module is

Q = H2(S)	R.

Specialized to this particular setting, we have

Geometric Arveson-Douglas Conjecture. The quotient module Q is p-essentially
normal for every p > d = dimCM̃ .

Since the Hardy module itself is p-essentially normal for p > n, the geometric Arveson-
Douglas conjecture implies that the submodule R is p-essentially normal for p > n.

The analogous problem in the case of the Bergman module L2
a(B) was recently solved

[14,28]. This gives us confidence that the geometric Arveson-Douglas conjecture for the
Hardy module H2(S) can also be solved, although one should never take such things for
granted. Our experience with the Bergman module L2

a(B) further tells us that it is the
quotient module that holds the key to everything [16]. Therefore in this paper we will focus
on Q, which turns out to be the right decision.

Let us now discuss our results. First of all, the prediction of the geometric Arveson-
Douglas conjecture is correct:

Theorem 1.1. The quotient module Q is p-essentially normal for every p > d = dimCM̃ .

Let Q denote the orthogonal projection from L2(S, dσ) onto Q. As it turns out,
everything we do in this paper depends on getting a good handle on the projection Q.
Even though an explicit integral formula for Q is beyond reach, we manage to get the next
best thing:

Theorem 1.2. There is a measure µ on M such that the corresponding Toeplitz operator
Tµ satisfies the operator inequality

(1.2) cQ ≤ Tµ ≤ CQ

on L2(S, dσ) with coefficients 0 < c ≤ C <∞.

We remind the reader that the Toeplitz operator Tµ is defined by the formula

(Tµh)(z) =

∫
M

h(w)

(1− 〈z, w〉)n
dµ(w),

h ∈ H2(S). Operator inequality (1.2) gives us enough control of the projection Q to prove
Theorem 1.1 and, more important, to do more.
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Recall that the normalized reproducing kernel for H2(S) is given by the formula

kz(w) =
(1− |z|2)n/2

(1− 〈w, z〉)n
,

z ∈ B and w ∈ B. From the reproducing property of the kernel it is easy to see that Q is
the closure of the linear span of {kz : z ∈M}.

Since we have a projection Q, we can mimic the definition of the standard Toeplitz
operators to define “Toeplitz operators for the quotient module Q”. That is, for each
f ∈ L∞(S, dσ), we define

Qf = QMf |Q.

We think of Qf as a Toeplitz operator for the quotient module Q. Let T Q be the C∗-
algebra generated by {Qf : f ∈ L∞(S, dσ)}. Obviously, T Q is the proper analogue on Q
of the usual Toeplitz algebra. Our next result is at least somewhat unexpected:

Theorem 1.3. Let A ∈ T Q. If

lim
z∈M
|z|→1

〈Akz, kz〉 = 0,

then A is a compact operator.

We say that this is “at least somewhat unexpected” because, previously, results of this
genre have only been proven on the Bergman space and the Fock space [4,5,21,27,29,31].
What is more, this particular compactness criterion is known to fail for operators in the
Toeplitz algebra T on the one-variable Hardy space H2 [19, Section 2]. That notwith-
standing, on the quotient module Q of the Hardy module H2(S), we have Theorem 1.3!

The original purpose of the Arveson-Douglas conjecture is to see how much of the
operator theory on the standard reproducing kernel Hilbert spaces, such as the Bergman
space, the Hardy space and the Drury-Arveson space, can be established on these submod-
ules and quotient modules, and to explore what is new on these submodules and quotient
modules. Thus Theorem 1.3 fits the context of the Arveson-Douglas conjecture very nicely.

The rest of the paper is organized as follows. In Section 2 we first record the precise
definitions of M̃ , M , R, Q etc. We then introduce for each z ∈ M near S the modified
tangent space Tmod

z , which is a copy of Cd. The rest of Section 2 contains local analysis
on M , which includes the Forelli-Rudin estimates on M and more. Basically, the use of
Tmod
z allows us to convert the local analysis on M to analysis on Cd.

Section 3 is devoted to the proof of Theorem 1.2, where the reader will see the precise
definition of the measure µ. One can consider Section 4 as an operator version of the atomic
decomposition for the quotient module Q. More specifically, in Section 4 we introduce two
classes of operators on Q, D0 and D, both of which consist of discrete sums constructed
from normalized reproducing kernel over lattices in M , but D0 ⊂ D. In Proposition 4.3 we
show that Tµ can be approximated in operator norm by operators in span(D0), which is the
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atomic decomposition for Q. As consequences of Proposition 4.3, we obtain a compactness
test on Q and a membership test for C∗(D), the C∗-algebra generated by D. Both of these
tests will be needed in the proof of Theorem 1.3.

The main result in Section 5 is Lemma 5.3, which says in a very precise way that the
operators in C∗(D) are localized. With Lemma 5.3 and a lot more work, in Section 6 we
show that for A ∈ C∗(D), if

lim
z∈M
|z|→1

〈Akz, kz〉 = 0,

then A is a compact operator. Then in Section 7, we complete the proof of Theorem 1.3
by showing that T Q ⊂ C∗(D).

Finally, Section 8 contains the proof of Theorem 1.1, where Proposition 4.3 also plays
an essential role.

2. Local estimates

We begin with the Bergman-metric structure of the ball. As usual, we write β for the
Bergman metric on B. That is,

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ B.

We recall that the Möbius transform ϕz is given by the formula

(2.1) ϕz(w) =
1

1− 〈w, z〉

{
z − 〈w, z〉

|z|2
z − (1− |z|2)1/2

(
w − 〈w, z〉

|z|2
z

)}
when z 6= 0, and ϕ0(w) = −w. For each z ∈ B and each a > 0, we define the corresponding
β-ball D(z, a) = {w ∈ B : β(z, w) < a}.

Definition 2.1. (i) Let a be a positive number. A subset Γ of B is said to be a-separated
if D(z, a) ∩D(w, a) = ∅ for all distinct elements z, w in Γ.
(ii) A subset Γ of B is simply said to be separated if it is a-separated for some a > 0.

Next let us give the precise definitions of the analytic sets, submodules and quotient
modules that we consider in this paper.

Definition 2.2. [9] Let Ω be a complex manifold. A set A ⊂ Ω is called a complex
analytic subset of Ω if for each point a ∈ Ω there are a neighborhood U of a and functions
f1, · · · , fN analytic in this neighborhood such that

A ∩ U = {z ∈ U : f1(z) = · · · = fN (z) = 0}.

A point a ∈ A is called regular if there is a neighborhood U of a in Ω such that A∩U is a
complex submanifold of Ω. A point a ∈ A is called a singular point of A if it is not regular.

Definition 2.3. Let Y be a manifold and let X,Z be submanifolds of Y . We say that the
submanifoldsX and Z intersect transversely if for every x ∈ X∩Z, Tx(X)+Tx(Z) = Tx(Y ).
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Assumption 2.4. Let M̃ be an analytic subset in an open neighborhood of the closed
ball B. Furthermore, M̃ satisfies the following conditions:

(1) M̃ intersects ∂B transversely.
(2) M̃ has no singular points on ∂B.
(3) M̃ is of pure dimension d, where 1 ≤ d ≤ n− 1.

Note that condition (3) implies that M̃ has no isolated singularities in B. The reader
will see that our work actually allows a condition that is slightly broader than condition (3).
In fact, we could allow M̃ to be the union of components C̃1, . . . , C̃m, where dimCC̃i = di
for each 1 ≤ i ≤ m, with each di satisfying 1 ≤ di ≤ n − 1. But for simplicity, we have
decided to go with a single complex dimension d, as stated in (3).

Thus we emphasize that Assumption 2.4 will always be in force for the rest of the
paper. Given such an M̃ , we fix M , R, Q and Q as follows.

Notation 2.5. (a) Let M = M̃ ∩B.
(b) Denote R = {f ∈ H2(S) : f = 0 on M}.
(c) Denote Q = H2(S)	R.
(d) Let Q be the orthogonal projection from L2(S, dσ) onto Q.

For z ∈ Cn and r > 0, denote

B(z, r) = {w ∈ Cn : |z − w| < r}.

By Assumption 2.4, there is an s ∈ (0, 1) such that

M = {z ∈ M̃ : 1− s < |z| < 1 + s}

is a complex manifold of complex dimension d and of finite volume. Thus

K = {z ∈ M̃ : 1− (s/2) ≤ |z| ≤ 1}

is a compact subset of the complex manifoldM. By the standard facts known about such
a pair of M and K, for which we cite [23,24,25] as general references, the statements we
make below hold true with constants that are independent of z ∈ K.

For each z ∈ K, let Tz be the tangent space toM at the point z, viewed as a natural
subspace of Cn. Then there are a > 0 and b > 0 such that for each z ∈ K, there is a map

Gz : Tz ∩B(0, a)→M

that biholomorphically maps Tz ∩ B(0, a) onto an open subset of M with the properties
that Gz(0) = z and that

(2.2) {Gz(w) : w ∈ Tz ∩B(0, a)} ⊃ M∩B(z, b).

Let DGz be the complex derivative of Gz. For each w ∈ Tz ∩ B(0, a), we have the local
Taylor expansion

(2.3) Gz(w + u) = Gz(w) + (DGz)(w)u+

∫ 1

0

{(DGz)(w + tu)− (DGz)(w)}udt,

5



w + u ∈ Tz ∩B(0, a). In particular, at the point w = 0 we have

Tz = (DGz)(0)Tz

and

(2.4) Gz(u) = z + (DGz)(0)u+

∫ 1

0

{(DGz)(tu)− (DGz)(0)}udt for u ∈ Tz ∩B(0, a).

Reducing the values of a and b if necessary, we may assume that there are constants
0 < α ≤ β <∞ such that for w ∈ Tz ∩B(0, a), the linear transformation inequality

(2.5) α ≤ (DGz)
∗(w)(DGz)(w) ≤ β

holds on Tz.

For each z ∈ K, let pz be the orthogonal projection of z on Tz. Condition (1) in
Assumption 2.4 says that if z ∈ M̃ ∩S, then pz 6= 0. Thus, reducing the value of s ∈ (0, 1)
if necessary, we may assume that pz 6= 0 for every z ∈ K. Thus for each z ∈ K,

T⊥z = {u ∈ Tz : 〈u, pz〉 = 0}

is a linear subspace of Tz of dimension d− 1. As a subspace of Cn, T⊥z is orthogonal to z.

Definition 2.6. (a) For each z ∈ K, we define

Tmod
z = T⊥z ⊕ {ξz : ξ ∈ C},

which we consider as the modified complex tangent space at z.
(b) For each z ∈ K, let Pz be the orthogonal projection from Cn onto Tmod

z .

Lemma 2.7. There exist b0 > 0 and c0 > 0 such that for every z ∈ K, Pz is a biholomor-
phic map from M∩B(z, b0) onto an open set in Tmod

z that contains Tmod
z ∩B(z, c0).

Proof. By (2.4), for z ∈ K we can write

Gz(w) = z + (DGz)(0)w +Hz(w),

w ∈ Tz ∩B(0, a). We now make a change of variable on Tz. That is, we define

(2.6) G̃z(w) = z + w + H̃z(w), where H̃z(w) = Hz((DGz)
−1(0)w),

for w ∈ (DGz)(0){Tz ∩ B(0, a)}. We have G̃z(0) = z. By (2.4), (2.5), the mapping prop-
erties of Gz, and the compactness of K, there is an a1 > 0 such that G̃z biholomorphically
maps Tz ∩B(0, a1) onto an open subset of M. For each z ∈ K, define

Fz(w) = PzG̃z(w)
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for w ∈ Tz ∩ B(0, a1). Obviously, Fz(0) = PzG̃z(0) = Pzz = z. We claim that there is an
a0 ∈ (0, a1) such that for each z ∈ K, Fz is a biholomorphic map between Tz ∩ B(0, a0)
and an open set in Tmod

z .

To find such an a0, we define vz = pz/|pz|. Then every w ∈ Tz has the orthogonal
decomposition w = ξvz + u, where ξ ∈ C and u ∈ T⊥z . For a pair of ξ ∈ C and u ∈ T⊥z , if
|ξ|2 + |u|2 < a2

1, then

Fz(ξvz + u) = z + (|pz|/|z|)ξez + u+ PzH̃z(ξvz + u), where ez = z/|z|.

From (2.6) and (2.4) we see that (DPzH̃z)(w) = O(|w|). Using Taylor expansion again,
we see that are a0 ∈ (0, a1) and δ > 0 such that

|Fz(w)− Fz(w′)| ≥ δ|w − w′| for w,w′ ∈ Tz ∩B(0, a0).

By the standard inverse mapping theorem, Fz is biholomorphic on Tz ∩ B(0, a0). Since
G̃z is biholomorphic on Tz ∩ B(0, a1), by the standard open mapping theorem and the
compactness of K, there is a b0 > 0 such that

(2.7) {G̃z(w) : w ∈ Tz ∩B(0, a0)} ⊃ M∩B(z, b0)

for every z ∈ K. Hence Pz is biholomorphic on M∩ B(z, b0). The existence of c0 > 0 is
obtained by applying the open mapping theorem to the map Pz on M∩B(z, b0). �

For z ∈ K, let Iz : Tmod
z ∩B(z, c0)→M be the inverse of Pz. For x ∈ Tmod

z ∩B(z, c0),
the relation PzIz(x) = x leads to

(2.8) Iz(x) = x+ hz(x), where hz(x) = Iz(x)− PzIz(x).

That is, for each z ∈ K, hz maps Tmod
z ∩B(z, c0) into Cn	Tmod

z . We now fix a 0 < c1 < c0
By the analysis in the proof of Lemma 2.7, there are constants 0 < α(c1) ≤ β(c1) < ∞
such that the operator inequality

(2.9) α(c1) ≤ (DIz)
∗(x)(DIz)(x) ≤ β(c1)

holds on the linear space Tmod
z for all z ∈ K and x ∈ Tmod

z ∩ B(z, c1). Applying the
standard open mapping theorem, there is a 0 < b1 < b0 such that

(2.10) {Iz(x) : x ∈ Tmod
z ∩B(z, c1)} ⊃ M∩B(z, b1).

Lemma 2.8. There is a constant 0 < C2.8 < ∞ such that for every z ∈ K, if u ∈
T⊥z ∩B(0, c1) (cf. Definition 2.6), then |hz(z + u)| ≤ C2.8|u|2.

Proof. Let such a pair of z and u be given. By (2.6) and (2.7), there is a w ∈ Tz ∩B(0, a0)
such that Iz(z + u) = G̃z(w). Thus

z + u = PzIz(z + u) = PzG̃z(w) = z + Pzw + PzH̃z(w).
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We can write w in the form w = ξvz + η for some ξ ∈ C and η ∈ T⊥z . Hence Pzw =
ξ〈vz, ez〉ez + η. Substituting this in the above, we find that

u = ξ〈vz, ez〉ez + η + PzH̃z(ξvz + η).

Taking the inner product with vz on both sides and solving for ξ, we obtain

(2.11) ξ = −〈PzH̃z(ξvz + η), vz〉/|〈vz, ez〉|2.

By (2.4) we have H̃z(x) = O(|x|2). Thus when |ξ| and |η| are small enough, in order for
(2.11) to hold, we have to have |ξ| ≤ |η| at the very least. Consequently, ξ = O(|η|2) and
u− η = O(|η|2). Thus |η| = O(|u|) and ξ = O(|u|2). We have

z + u+ hz(z + u) = Iz(z + u) = G̃z(w) = z + ξvz + η + H̃z(w)

= z + ξ(vz − 〈vz, ez〉ez) + u+ H̃z(w)− PzH̃z(w).

That is,
hz(z + u) = ξ(vz − 〈vz, ez〉ez) + H̃z(w)− PzH̃z(w).

Since |ξ| ≤ |η|, we have H̃z(w) = O(|w|2) = O(|ξvz + η|2) = O(|η|2) = O(|u|2). This
completes the proof. �

Lemma 2.9. (1) Let r > 0 be given. For each ε > 0, there is a δ = δ(r, ε) ∈ (0, 1) such
that if z ∈ K satisfies the condition 1− δ ≤ |z| < 1, then the inequality

β(w,Pzw) ≤ ε

holds for every w ∈ D(z, r) ∩M.
(2) Let z ∈ M ∩K and r > 0 be such that D(z, r/2) ⊂ B(z, c0) and β(w,Pzw) ≤ r/3 for
every w ∈ D(z, 2r) ∩M . Then Iz(D(z, r/2) ∩ Tmod

z ) ⊂ D(z, r) ∩M .

Proof. (1) We know that for a fixed r > 0, the Euclidean diameter of D(z, r) tends to 0 as
|z| ↑ 1. By (2.10), for z ∈ B ∩M that is sufficiently close to S, once a w ∈ D(z, r) ∩M
is given, we can write it in the form w = Iz(x) for some x ∈ Tmod

z ∩ B(z, c1). We have
x = PzIz(x) = Pzw. That is, w = Iz(Pzw) = Pzw + hz(Pzw).

Now (2.1) gives us

ϕPzw(w) = −(1− |Pzw|2)−1/2(w − Pzw) = −(1− |Pzw|2)−1/2hz(Pzw).

We have Pzw = 〈w, ez〉ez + u, where ez = z/|z| and u ∈ T⊥z . If we set ζ = z + u, then

|ϕPzw(w)| ≤ (1− |w|2)−1/2{|hz(Pzw)− hz(ζ)|+ |hz(ζ)|}.

Since ζ = z + u with u ∈ T⊥z , Lemma 2.8 tells us that

|hz(ζ)| ≤ C2.8|u|2 = C2.8|Pzw − 〈w, ez〉ez|2 ≤ C2.8|w − 〈w, ez〉ez|2.
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On the other hand, we obviously have

|hz(Pzw)− hz(ζ)| ≤ C1|Pzw − ζ| = C1|〈w, ez〉ez − z|.

Therefore

(2.12) |ϕPzw(w)| ≤ C2(1− |w|2)−1/2{|z − 〈w, ez〉ez|+ |w − 〈w, ez〉ez|2}.

Using (2.1) again, we have

|z − 〈w, ez〉ez|
|1− 〈w, z〉|

≤ |ϕz(w)| ≤ 1.

Combining this with the well-known identity

1− |ϕz(w)|2 =
(1− |z|2)(1− |w|2)

|1− 〈w, z〉|2

[26, Theorem 2.2.2], we obtain

(2.13)
|z − 〈w, ez〉ez|
(1− |w|2)1/2

≤ (1− |z|2)1/2

(1− |ϕz(w)|2)1/2
.

Similarly, from (2.1) we obtain

1− |z|2

|1− 〈w, z〉|2
|w − 〈w, ez〉ez|2 ≤ |ϕz(w)|2 ≤ 1.

Consequently
|w − 〈w, ez〉ez|2

(1− |w|2)1/2
≤ (1− |w|2)1/2

1− |ϕz(w)|2
≤ C(r)

(1− |z|2)1/2

1− |ϕz(w)|2
,

where the second ≤ follows from the fact that β(z, w) < r. Combining this with (2.13)
and (2.12), we obtain the inequality

(2.14) |ϕPzw(w)| ≤ C3(r)
(1− |z|2)1/2

1− |ϕz(w)|2
.

The condition β(z, w) < r obviously means that 1−|ϕz(w)|2 ≥ c(r) for some c(r) > 0 that
depends only on r. Substituting this lower bound in (2.14), (1) is proved.

(2) Suppose that there were some x∗ ∈ D(z, r/2) ∩ Tmod
z such that β(z, Iz(x

∗)) ≥ r.
We will show that this leads to a contradiction. Since x∗ ∈ D(z, r/2) ∩ Tmod

z , there is a
geodesic γ : [0, 1] → D(z, r/2) ∩ Tmod

z with respect to the Bergman metric on Tmod
z such

that γ(0) = z and γ(1) = x∗. Since β(z, Iz(γ(1))) = β(z, Iz(x
∗)) ≥ r, there is a t0 ∈ [0, 1]

such that β(z, Iz(γ(t0))) = r. By the assumption on z and r, we have

β(Iz(γ(t0)), γ(t0)) = β(Iz(γ(t0)), PzIz(γ(t0))) ≤ r/3.
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Therefore β(z, γ(t0)) ≥ β(z, Iz(γ(t0))) − β(Iz(γ(t0)), γ(t0)) ≥ r − (r/3) = 2r/3, which
contradicts the fact that γ(t0) ∈ D(z, r/2). �

For every z ∈ K, Tmod
z is a d-dimensional linear subspace of Cn. For convenience we

will write v for the natural volume measure on Tmod
z , even though for different z ∈ K this

may be a different linear subspace of Cn. But since volume depends only on the Euclidean
metric, which Tmod

z inherits from Cn, such a simplification of notation is justified.

For each z ∈ K, we have the Jacobian

(2.15) Jz(x) = det{(DIz)∗(x)(DIz)(x)},

x ∈ Tmod
z ∩ B(z, c1). Let vM denote the natural volume measure on M. Suppose that

z ∈ K and U is an open set in M∩ B(z, b1). By (2.10), we have PzU ⊂ Tmod
z ∩ B(z, c1).

For any positive, continuous function f on U , we have

(2.16)

∫
U

f(w)dvM(w) =

∫
PzU

f(Iz(x))Jz(x)dv(x).

As we recall, this is in fact how volume is defined on M.

In addition to the volume measure vM onM, we define the measure vM on M = M̃∩B
by the formula vM (E) = vM(E ∩M) for Borel sets E ⊂M .

Lemma 2.10. Given any a > 0 and κ > −1, there is a 0 < C2.10 <∞ such that∫
M

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ C2.10

for every z ∈M .

Proof. (1) First we suppose that z ∈M ∩K. Recalling (2.10), let 0 < b2 < b1 be a number
whose exact value will be determined below. With this b2 we have∫

M

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) = A(z) +B(z),

where

A(z) =

∫
M∩M∩B(z,b2)

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM(w) and

B(z) =

∫
M\{M∩B(z,b2)}

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w).

We estimate A(z) and B(z) separately.

For A(z), note that every x ∈ Tmod
z has the representation x = (ξ1 + iξ2)z + u, where

ξ1, ξ2 ∈ R and u ∈ T⊥z . We will identify the vector u with its real version. Then

(|z|ξ1, |z|ξ2, u)
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is a set of 2d-dimensional real coordinates for x = (ξ1 + iξ2)z + u ∈ Tmod
z ∩ B(z, c1). Let

0 < c2 < c1 be a number whose exact value will be determined below. Define

U = {(|z|ξ1, |z|ξ2, u) : (ξ1 + iξ2)z + u ∈ Tmod
z ∩B(z, c2)},

and let L be the 2d-dimensional real linear space that is the linear span of U . We now
define the map

F : U → L

by the formula

(2.17) F (|z|ξ1, |z|ξ2, u) = (1− |Iz((ξ1 + iξ2)z + u)|2, |z|ξ2, u).

We claim that if c2 is small enough, then there are 0 < α ≤ β <∞ such that

(2.18) α ≤
∣∣∣∣ ∂∂ξ1 |Iz((ξ1 + iξ2)z + u)|2

∣∣∣∣ ≤ β
for (|z|ξ1, |z|ξ2, u) ∈ U . To prove this, we use (2.8), which tells us that hz(x) ⊥ x. Hence

|Iz((ξ1 + iξ2)z + u)|2 = (ξ2
1 + ξ2

2)|z|2 + |u|2 + |hz((ξ1 + iξ2)z + u)|2.

Consequently,

∂

∂ξ1
|Iz((ξ1 + iξ2)z + u)|2 = 2ξ1|z|2 +

∂

∂ξ1
|hz((ξ1 + iξ2)z + u)|2.

Since Pzz = z, we have Iz(z) = z, i.e., hz(z) = 0. Thus the second term on the right-hand
side is of the form O(|(ξ1− 1 + iξ2)z+u|). For the first term on the right-hand side, recall
that for this part we assume z ∈M ∩K. Hence (2.18) holds if c2 is small enough.

We now apply the inverse mapping theorem to F . Reducing the value of c2 if necessary,
we may assume that FU is open and that the map F : U → FU is invertible. Furthermore,
from (2.18) we deduce that there is a 0 < C1 <∞ such that

(2.19) |det{(DF−1)(y)}| ≤ C1 for every y ∈ FU,

where F−1 : FU → U is the inverse of F .

With c2 determined in the above, the open mapping theorem provides a 0 < b2 < b1
such that

(2.20) {Iz(x) : x ∈ Tmod
z ∩B(z, c2)} ⊃ M∩B(z, b2).

We emphasize that these constants are determined by the property of the manifoldM and
are independent of the z ∈ K that we are considering.
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Having found the desired b2, we will now estimate A(z). By (2.20), there is an open
set V (z) ⊂ Tmod

z ∩B(z, c2) such that IzV (z) = M ∩M∩B(z, b2). By (2.16), we have
(2.21)

A(z) =

∫
IzV (z)

Φ(w)dvM(w) =

∫
V (z)

Φ(Iz(x))Jz(x)dv(x) ≤ C2

∫
V (z)

Φ(Iz(x))dv(x),

where

Φ(w) =
(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
.

Let x = (ξ1 + iξ2)z+u ∈ Tmod
z ∩B(z, c2), where ξ1, ξ2 ∈ R and u ∈ T⊥z . By (2.8), we have

|z − Iz((ξ1 + iξ2)z + u)|2 = |(1− ξ1 − iξ2)z|2 + |u|2 + |hz((ξ1 + iξ2)z + u)|2

and 〈Iz(x), z〉 = 〈x, z〉. Thus from the identity

4|1− 〈w, z〉|2 = (1− |z|2 + 1− |w|2 + |z − w|2)2 + 4(Im〈w, z〉)2

we deduce

(2.22) 8|1−〈Iz((ξ1 + iξ2)z+u), z〉| ≥ 1−|z|2 + 1−|Iz((ξ1 + iξ2)z+u)|2 + |u|2 + 2|ξ2||z|2.

On the linear space L we define the function

G(t, |z|ξ2, u) =
(1− |z|2)atκ

(1− |z|2 + t+ |z||ξ2|+ |u|2)d+1+a+κ
.

From (2.17) and (2.22) we obtain

Φ(Iz((ξ1 + iξ2)z + u)) ≤ C4G(F (|z|ξ1, |z|ξ2, u)).

Write Ṽ (z) = {(|z|ξ1, |z|ξ2, u) : (ξ1 + iξ2)z + u ∈ V (z)}. Continuing with (2.21), we have

A(z) ≤ C2C4

∫
Ṽ (z)

G(F (|z|ξ1, |z|ξ2, u))dv(|z|ξ1, |z|ξ2, u)

= C2C4

∫
FṼ (z)

G(y)dv(F−1(y)) ≤ C2C4C1

∫
FṼ (z)

G(y)dv(y),(2.23)

where the second ≤ follows from (2.19). Obviously,∫
FṼ (z)

G(y)dv(y) ≤
∫ ∞

0

∫ ∞
0

∫
R2d−2

2(1− |z|2)atκ

(1− |z|2 + t+ ξ2 + |u|2)d+1+a+κ
dm2d−2(u)dξ2dt,

where dm2d−2 denotes the Lebesgue measure on R2d−2, and where we assume d > 1. Using
the radial-spherical coordinates on R2d−2, we have∫

FṼ (z)

G(y)dv(y) ≤ C5

∫ ∞
0

∫ ∞
0

∫ ∞
0

(1− |z|2)atκρ2d−3

(1− |z|2 + t+ ξ2 + ρ2)d+1+a+κ
dρdξ2dt

= C6

∫ ∞
0

∫ ∞
0

(1− |z|2)atκ

(1− |z|2 + t+ ξ2)2+a+κ
dξ2dt

= C7

∫ ∞
0

(1− |z|2)atκ

(1− |z|2 + t)1+a+κ
dt = C7

∫ ∞
0

sκ

(1 + s)1+a+κ
ds,
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where the last step is the substitution s = t/(1 − |z|2). Since a > 0 and κ > −1, the
s-integral above is finite. Combining this with (2.23), we find that A(z) is bounded in the
case d > 1. In the case d = 1, we omit the integral on R2d−2 and the rest of the argument
is still valid. Hence A(z) is bounded on M ∩K in all cases of 1 ≤ d ≤ n− 1.

As for B(z), observe that once b2 is fixed, we have

B(z) ≤ C8

∫
M

(1− |w|2)κdvM (w).

By (2.18), the function 1 − |w|2 serves as one of the 2d real coordinates for w ∈ M near
S. Hence the above integral is finite. This proves the desired bound on B(z). Thus the
lemma is proved for z ∈M ∩K.

(2) Suppose that z ∈M\K. For such a z we obviously have∫
M

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ C9

∫
M

(1− |w|2)κdvM (w).

As we have already explained, the right-hand side is finite. This completes the proof of
the lemma. �

Lemma 2.11. Given any a > 0 and κ > −1, there are δ > 0 and 0 < C2.11(δ) < ∞ such
that

(2.24)

∫
M\D(z,r)

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ C2.11(δ)e−2δr

for all z ∈M and r > 0.

Proof. Given any a > 0 and κ > −1, we pick a δ > 0 such that the quantities a′ = a − δ
and κ′ = κ− δ also satisfy the conditions a′ > 0 and κ′ > −1. We have

(1− |z|2)δ(1− |w|2)δ

|1− 〈w, z〉|2δ
= (1− |ϕz(w)|2)δ ≤ 4δe−2δβ(z,w).

Thus from the factorization

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
=

(1− |z|2)δ(1− |w|2)δ

|1− 〈w, z〉|2δ
· (1− |z|2)a

′
(1− |w|2)κ

′

|1− 〈w, z〉|d+1+a′+κ′

we obtain∫
M\D(z,r)

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ 4δe−2δr

∫
M

(1− |z|2)a
′
(1− |w|2)κ

′

|1− 〈w, z〉|d+1+a′+κ′
dvM (w).

Applying Lemma 2.10 with the values a′ > 0 and κ′ > −1, (2.24) is proved. �
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Definition 2.12. We define the measure µ on M by the formula

(2.25) dµ(w) = (1− |w|2)n−1−ddvM (w).

We further extend µ to a measure on B by setting µ(B\M) = 0.

Proposition 2.13. The µ defined above is a Carleson measure for the Hardy space H2(S).

Proof. For each pair of z ∈ B and r > 0, define

Q(z, r) = {w ∈ B : |1− 〈w, z〉| < r}.

To show that µ is a Carleson measure for H2(S), it suffices to find a C such that

(2.26) µ(Q(ζ, r)) ≤ Crn

for all ζ ∈ S and r > 0. See [8,20]. Here, because the power n − 1 − d in (2.25) is
non-negative, we do not need to use 1− |w|2 as a coordinate, which saves a lot of trouble.

Let ζ ∈ S and r > 0 be given. If Q(ζ, r)∩M = ∅, then µ(Q(ζ, r)) = 0. If Q(ζ, r)∩M 6=
∅, pick a z ∈ Q(ζ, r) ∩M . Recall that the quantity d(u, v) = |1 − 〈u, v〉|1/2 satisfies the
triangle inequality on the closed ball B [26]. Hence Q(ζ, r) ⊂ Q(z, 4r) and, consequently,

µ(Q(ζ, r)) ≤
∫
M∩Q(z,4r)

(1− |w|2)n−1−ddvM (w).

It suffices to prove (2.26) for r > 0 that is sufficiently small. Obviously, there is a ρ > 0
such that if 0 < r ≤ ρ, then Q(ζ, r) ∩M ⊂ K and Q(z, 4r) ∩M ⊂M∩B(z, b1). Suppose
that r satisfies the condition 0 < r ≤ ρ. Then we can apply (2.10) and (2.16) to obtain

µ(Q(ζ, r)) ≤
∫
Pz{Q(z,4r)∩M}

(1− |Iz(x)|2)n−1−dJz(x)dv(x).

As we recall, Iz(x) = x + hz(x) and hz(x) ⊥ x. Hence 1 − |Iz(x)|2 ≤ 1 − |x|2. Recalling
(2.9) and using the fact that n− 1− d ≥ 0, we now have

µ(Q(ζ, r)) ≤ C2

∫
Pz{Q(z,4r)∩M}

(1− |x|2)n−1−ddv(x).

Since 〈w, z〉 = 〈Pzw, z〉, we have Pz{Q(z, 4r) ∩M} ⊂ Qz(z, 4r), where Qz(z, 4r) = {x ∈
Tmod
z : |1− 〈x, z〉| < 4r and |x| < 1}. Therefore

µ(Q(ζ, r)) ≤ C2

∫
Qz(z,4r)

(1− |x|2)n−1−ddv(x).

Note that the condition z ∈ Q(ζ, r) ∩M implies 1− |z| < r. Since Tmod
z is a copy of Cd,

by a standard exercise, the integral on the right-hand side is dominated by C3r
n. �
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Also by a standard exercise, for each r > 0, there are 0 < c(r) ≤ C(r) <∞ such that

(2.27) c(r)(1− |z|2)d+1 ≤ v(D(z, r) ∩ Tmod
z ) ≤ C(r)(1− |z|2)d+1

for every z ∈M ∩K.

Proposition 2.14. (a) For each r ≥ 1, there exist 0 < c2.14(r) ≤ C2.14(r) <∞ such that
for every z ∈M ∩K, we have

(2.28) c2.14(r)(1− |z|2)d+1 ≤ vM (D(z, r)) ≤ C2.14(r)(1− |z|2)d+1.

(b) For each r ≥ 1, there exist 0 < c′2.14(r) ≤ C ′2.14(r) <∞ such that for every z ∈M ∩K,
we have

c′2.14(r)(1− |z|2)n ≤ µ(D(z, r)) ≤ C ′2.14(r)(1− |z|2)n.

Proof. (a) Let r ≥ 1 be given. It suffices to find a 0 < ρ(r) < 1 and 0 < c2.14(r) ≤
C2.14(r) <∞ such that (2.28) holds for z ∈M satisfying the condition |z| ≥ ρ(r).

By definition, we have K ⊃ {z ∈ M : |z| ≥ ρ1} for some ρ1 < 1. By Lemma 2.9(1),
there is a ρ2 < 1 such that if z ∈M and |z| ≥ ρ2, then

(2.29) β(w,Pzw) ≤ r/5 for every w ∈ D(z, 2r) ∩M.

There is a ρ3 < 1 such that if ρ3 ≤ |z| < 1, then D(z, 2r) ⊂ B(z,min{b1, c1}) (cf. (2.10)).
Set ρ(r) = max{ρ1, ρ2, ρ3}. Let z ∈M be such that |z| ≥ ρ(r). By (2.16), we have

vM (D(z, r)) =

∫
Pz{D(z,r)∩M}

Jz(x)dv(x).(2.30)

We have (2.9) to bound Jz(x), and (2.29) tells us that PzD(z, r) ⊂ D(z, 2r). Hence

vM (D(z, r)) ≤ C1v(D(z, 2r) ∩ Tmod
z ) ≤ C2(r)(1− |z|2)d+1,

proving the upper bound in (2.28).

To prove the lower bound in (2.28), we recall Lemma 2.9(2), which says

Iz(D(z, r/2) ∩ Tmod
z ) ⊂ D(z, r) ∩M.

That is, Pz{D(z, r) ∩M} ⊃ D(z, r/2) ∩ Tmod
z . Continuing with (2.30) and recalling (2.9),

we find that

vM (D(z, r)) ≥
∫
D(z,r/2)∩Tmod

z

Jz(x)dv(x) ≥ c1v(D(z, r/2) ∩ Tmod
z ) ≥ c2(r)(1− |z|2)d+1,

which proves the lower bound in (2.28) and completes the proof of (a).
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(b) Given any r > 0, there are 0 < c(r) ≤ C(r) <∞ such that

c(r)(1− |z|2) ≤ 1− |w|2 ≤ C(r)(1− |z|2)

for every pair of z ∈ B and w ∈ D(z, r). By this inequality, (b) follows from (a). �

3. Measure µ and the corresponding Toeplitz operator

With the measure µ in Definition 2.12, we define the Toeplitz operator Tµ on the
Hardy space H2(S) by the formula

(Tµf)(z) =

∫
f(w)

(1− 〈z, w〉)n
dµ(w),

f ∈ H2(S). It is straightforward to verify that we can also write Tµ as

(3.1) Tµ =

∫
Kw ⊗Kwdµ(w),

where Kw(z) = (1 − 〈z, w〉)−n, the reproducing kernel for H2(S). Thus Tµ is a positive
operator with

〈Tµf, f〉 =

∫
|f(w)|2dµ(w)

for each f ∈ H2(S). By Proposition 2.13, the Toeplitz operator Tµ is bounded. If we
consider each Kw as a vector in L2(S, dσ), then (3.1) automatically extends Tµ to an
operator on L2(S, dσ).

In our next lemma, a subscript d indicates a set in Cd. For example, Bd = {w ∈ Cd :
|w| < 1} and Dd(z, r) = {w ∈ Bd : β(z, w) < r}. Let dv be the volume measure on Cd.

Lemma 3.1. If f is an analytic function on Bd, then

(3.2)

∫
Dd(z,r)

f(w)
(1− |w|2)n−1−d

(1− 〈z, w〉)n
dv(w) = C(d, r)f(z)

for every z ∈ Bd and every r > 0, where

C(d, r) =

∫
Dd(0,r)

(1− |ζ|2)n−1−ddv(ζ).

Proof. Let w = ϕz(ζ). By the formulas from [26, Theorem 2.2.2], we have

1− 〈z, ϕz(ζ)〉 =
1− |z|2

1− 〈z, ζ〉
and 1− |ϕz(ζ)|2 =

(1− |z|2)(1− |ζ|2)

|1− 〈z, ζ〉|2
.
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Therefore the left-hand side of (3.2) equals∫
Dd(0,r)

f(ϕz(ζ))

(
(1− |z|2)(1− |ζ|2)

|1− 〈z, ζ〉|2

)n−1−d(
1− 〈z, ζ〉
1− |z|2

)n
(1− |z|2)d+1

|1− 〈z, ζ〉|2d+2
dv(ζ).

After the obvious cancellation, we find that∫
Dd(z,r)

f(w)
(1− |w|2)n−1−d

(1− 〈z, w〉)n
dv(w) =

∫
Dd(0,r)

f(ϕz(ζ))

(1− 〈ζ, z〉)n
(1− |ζ|2)n−1−ddv(ζ).

With respect to the Euclidean metric, Dd(0, r) is also a ball centered at 0. Hence the
above equals C(d, r)f(ϕz(0))(1− 〈0, z〉)−n = C(d, r)f(z). �

Lemma 3.2. For each given 0 < r <∞, we have

(3.3) lim
t↑1

sup

{∣∣∣∣1− 1− |x|2

1− |Iz(x)|2

∣∣∣∣ : |z| ≥ t, z ∈M and x ∈ D(z, r) ∩ Tmod
z

}
= 0

and

(3.4) lim
t↑1

sup{|Jz(z)− Jz(x)| : |z| ≥ t, z ∈M and x ∈ D(z, r) ∩ Tmod
z } = 0.

Proof. By Lemma 2.9, if |z| is sufficiently close to 1, then Iz(x) ∈ D(z, 2r) ∩M for every
x ∈ D(z, r) ∩ Tmod

z . Since PzIz(x) = x, it now follows from Lemma 2.9 that

(3.5) lim
t↑1

sup{β(Iz(x), x) : |z| ≥ t, z ∈M and x ∈ D(z, r) ∩ Tmod
z } = 0.

On the other hand, for any pair of a, b ∈ B, if we write c = ϕa(b), then b = ϕa(c) and

1− |a|2

1− |b|2
=
|1− 〈a, c〉|2

1− |c|2
= 1 +O(|c|)

when |c| is small. Since β(0, c) = β(a, b), we see that (3.5) implies (3.3).

With the a, b ∈ B and c = ϕa(b), we also have

|a− b|2 ≤ 2|1− 〈a, b〉| = 2
1− |a|2

|1− 〈a, c〉|
.

Hence for any given 0 < r <∞,

(3.6) lim
t↑1

sup{|z − x| : |z| ≥ t, z ∈M and x ∈ D(z, r) ∩ Tmod
z } = 0.

Recall that Jz(x) = det{(DIz)∗(x)(DIz)(x)}. By the construction in Section 2, the conti-
nuity of the map x 7→ DIz(x) is uniform as z varies over K. Obviously, (3.4) follows from
this uniform continuity and (3.6). �
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Lemma 3.3. Define the operators B and Br on L2(M,dµ) by the formulas

(Bf)(z) =

∫
M

f(w)

|1− 〈z, w〉|n
dµ(w) and

(Brf)(z) =

∫
M\D(z,r)

f(w)

|1− 〈z, w〉|n
dµ(w)

for f ∈ L2(M,dµ), r > 0. Then ‖B‖ <∞ and ‖Br‖ → 0 as r →∞.

Proof. We set a = 1/2 and κ = n − 1 − d − (1/2). Then κ ≥ −1/2 and we have
n = d+ 1 + a+ κ. Define h(w) = (1− |w|2)−1/2, w ∈M . Then

(Brh)(z) =

∫
M\D(z,r)

(1− |w|2)κ

|1− 〈z, w〉|d+1+a+κ
dvM (w).

By Lemma 2.11, we have (Brh)(z) ≤ C2.11(δ)e−2δr(1−|z|2)−a = C2.11(δ)e−2δrh(z), z ∈M .
Since the kernel function |1− 〈z, w〉|−n is symmetric with respect to z and w, we can now
apply the Schur test to conclude that ‖Br‖ ≤ C2.11(δ)e−2δr. Hence ‖Br‖ → 0 as r →∞.

Similarly, by Lemma 2.10 we have (Bh)(z) ≤ C2.10h(z), z ∈M . Thus it follows from
the Schur test that ‖B‖ ≤ C2.10. This completes the proof. �

Proposition 3.4. There is a c3.4 > 0 such that the operator inequality

(3.7) T 2
µ ≥ c3.4Tµ

holds on L2(S, dσ).

Proof. For each 0 < t < 1 we define

M (t) = {z ∈M : 1− |z|2 < t}.

There is a τ0 > 0 such that if 0 < t ≤ τ0, then M (t) ⊂ K. We will show that there is a
small enough t > 0 such that the inequality

(3.8)

∫
M(t)

|(Tµf)(z)|2dµ(z) +
δ

2

∫
M

|f(w)|2dµ(w) ≥ δ
∫
M(t)

|f(z)|2dµ(z)

holds for a constant δ > 0 and for all f ∈ H2(S).

We begin with the choice of δ. By (2.9), there is an a > 0 such that

(3.9) Jz(z) ≥ a

for every z ∈ K. We set

C(d) =

∫
Bd

(1− |ζ|2)n−1−ddv(ζ) and δ =
{aC(d)/2}2

3
.
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There is an R > 0 such that if r ≥ R, then C(d, 2r) ≥ C(d)/2 (cf. Lemma 3.1). That is,
if r ≥ R, then

(3.10) {aC(d, 2r)}2/3 ≥ δ.

Lemma 3.3 allows us to pick an r ≥ R such that

(3.11) ‖Br‖2 ≤ δ/4.

With r so fixed, there is a 0 < τ1 ≤ τ0 such that if 0 < t ≤ τ1, then for z ∈ M (t) we have
D(z, 2r) ⊂ B(z,min{b1, c1}) (cf. (2.10)). By Lemma 2.9(1), there is a 0 < τ2 ≤ τ1 such
that if 0 < t ≤ τ2, then for z ∈ M (t) and w ∈ D(z, r) ∩M we have β(w,Pzw) < r. Thus
Pzw ∈ D(z, 2r) ∩ Tmod

z and Iz(Pzw) = w ∈ D(z, r) ∩M . That is, if 0 < t ≤ τ2, then

(3.12) Iz(D(z, 2r) ∩ Tmod
z ) ⊃ D(z, r) ∩M for every z ∈M (t).

We write U(z) = Iz(D(z, 2r) ∩ Tmod
z ) for z ∈M (t). Let f ∈ H2(S) be given. Then

(Tµf)(z) = A(z) +B(z),

where

A(z) =

∫
U(z)

f(w)
(1− |w|2)n−1−d

(1− 〈z, w〉)n
dvM (w) and

B(z) =

∫
M\U(z)

f(w)
(1− |w|2)n−1−d

(1− 〈z, w〉)n
dvM (w),

z ∈M (t). Since PzU(z) = D(z, 2r) ∩ Tmod
z , by (2.16) we have

A(z) =

∫
D(z,2r)∩Tmod

z

f(Iz(x))
(1− |Iz(x)|2)n−1−d

(1− 〈z, Iz(x)〉)n
Jz(x)dv(x).

Recall from (2.8) that 〈z, Iz(x)〉 = 〈z, x〉. Writing

F (z, x) = 1−
(

1− |x|2

1− |Iz(x)|2

)n−1−d

· Jz(z)
Jz(x)

,

we have
A(z) = A1(z) +A2(z),

where

A1(z) = Jz(z)

∫
D(z,2r)∩Tmod

z

f(Iz(x))
(1− |x|2)n−1−d

(1− 〈z, x〉)n
dv(x) and

A2(z) =

∫
D(z,2r)∩Tmod

z

f(Iz(x))
(1− |Iz(x)|2)n−1−d

(1− 〈z, Iz(x)〉)n
F (z, x)Jz(x)dv(x).
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Being a local inverse of Pz, the map Iz is analytic. Therefore Lemma 3.1 tells us that

(3.13) A1(z) = C(d, 2r)Jz(z)f(Iz(z)) = C(d, 2r)Jz(z)f(z).

Define

ε(r, t) = sup
z∈M(t)

{
sup

x∈D(z,2r)∩Tmod
z

|F (z, x)|
}
.

Applying (2.16) again, we have

|A2(z)| ≤ ε(r, t)
∫
D(z,2r)∩Tmod

z

|f(Iz(x))| (1− |Iz(x)|2)n−1−d

|1− 〈z, Iz(x)〉|n
Jz(x)dv(x)

≤ ε(r, t)
∫
M

|f(w)|
|1− 〈z, w〉|n

(1− |w|2)n−1−ddvM (w).

Thus it follows from Lemma 3.3 that

(3.14)

∫
M(t)

|A2(z)|2dµ(z) ≤ {ε(r, t)}2‖B‖2
∫
M

|f(w)|2dµ(w).

Finally, from (3.12) we obtain

|B(z)| ≤
∫
M\D(z,r)

|f(w)|
|1− 〈z, w〉|n

dµ(w)

for z ∈M (t). Using the operator Br in Lemma 3.3, we have

(3.15)

∫
M(t)

|B(z)|2dµ(z) ≤ ‖Br‖2
∫
M

|f(w)|2dµ(w).

Recalling (3.13), for z ∈M (t) we have

C(d, 2r)Jz(z)f(z) = A1(z) = (Tµf)(z)−A2(z)−B(z).

Combining this with (3.9), (3.14) and (3.15), we see that

{aC(d, 2r)}2

3

∫
M(t)

|f(z)|2dµ(z) ≤
∫
M(t)

|(Tµf)(z)|2dµ(z)

+ ({ε(r, t)}2‖B‖2 + ‖Br‖2)

∫
M

|f(w)|2dµ(w).(3.16)

Since r is fixed, by (3.9), Lemma 3.2, and Lemma 3.3, we can pick a 0 < t ≤ τ2 such that
{ε(r, t)}2‖B‖2 ≤ δ/4. With this t, (3.8) follows from (3.16), (3.10) and (3.11).

Recall that vM is concentrated on M ∩ M = M ∩ B. If ∆ is a compact set in
M∩M , then ∆ can be covered by open sets U1, . . . , Um in M∩M such that each Uj is
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biholomorphically equivalent to Bd. By the Bergman integral formula, there is a constant
0 < C(∆) <∞ such that

(3.17) |g(z)|2 ≤ C(∆)

∫
M

|g(w)|2dµ(w)

for all g ∈ H2(S) and z ∈ ∆. Let P denote the closure of H2(S) in L2(M,dµ).

By our choice of t, {w ∈M : |w| = t} is a compact subset ofM∩M . As we mentioned
before, Assumption 2.4(3) implies that M̃ has no isolated singularities in B. Thus it follows
from the maximum principle and (3.17) that there is a 0 < C1 <∞ such that

(3.18) sup
z∈M\M(t)

|g(z)|2 ≤ C1

∫
M

|g(w)|2dµ(w)

for every g ∈ H2(S). Hence for each z ∈ M\M (t), the map g 7→ g(z) extends to a linear

functional on P whose norm is at most C
1/2
1 . Thus if {uk} is a sequence in P that converges

to 0 weakly, then

(3.19) lim
k→∞

|uk(z)| = 0

for every z ∈M\M (t).

Let dE be the spectral measure for the positive operator Tµ. That is,

Tµ =

∫ ‖Tµ‖
0

λdE(λ).

Obviously, (3.7) is equivalent to the statement that there is a c > 0 such that E(0, c) = 0.
Suppose that such a c did not exist. We will show that this leads to a contradiction. In
fact, the supposed non-existence of such a c allows us to pick, for each k ∈ N, a vector
fk ∈ E(0, 1/k)H2(S) such that 〈Tµfk, fk〉 = 1. That is,

(3.20)

∫
M

|fk(w)|2dµ(w) = 1.

Obviously, the sequence {T 1/2
µ fk} weakly converges to 0 in H2(S). Let R : H2(S) →

L2(M,dµ) be the restriction operator. Then R∗R = Tµ, and consequently R = V T
1/2
µ for

some partial isometry V . Hence the sequence {Rfk} weakly converges to 0 in the space P
introduced above. By (3.19), (3.18) and the dominated convergence theorem, we have

(3.21) lim
k→∞

∫
M\M(t)

|fk(w)|2dµ(w) = 0.

It follows from (3.20) and (3.21) that

(3.22) lim
k→∞

∫
M(t)

|fk(w)|2dµ(w) = 1.
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Since fk ∈ E(0, 1/k)H2(S), we have 〈TµTµfk, Tµfk〉 ≤ k−2〈Tµfk, fk〉 = k−2. Thus

(3.23) lim
k→∞

∫
M(t)

|(Tµfk)(z)|2dµ(z) ≤ lim
k→∞

〈TµTµfk, Tµfk〉 = 0.

Substituting (3.20), (3.22) and (3.23) in (3.8), we see the contradiction that δ/2 ≥ δ. Hence
there is a c > 0 such that E(0, c) = 0, which proves the proposition. �

Theorem 3.5. There are scalars 0 < c ≤ C <∞ such that the operator inequality

cQ ≤ Tµ ≤ CQ

holds on L2(S, dσ).

Proof. We already know from Proposition 2.13 that Tµ is bounded. Thus the upper bound
Tµ ≤ CQ simply reflects the fact that range(Tµ) ⊂ Q, which is obviously true.

To prove the lower bound, we again consider the spectral decomposition

Tµ =

∫ ‖Tµ‖
0

λdE(λ)

of Tµ on L2(S, dσ). By Proposition 3.4 we have T 2
µ ≥ c3.4Tµ, which implies E(0, c3.4) = 0.

Therefore
Tµ ≥ c3.4E[c3.4,∞) = c3.4E(0,∞).

Thus the desired lower bound will follow if we can show that E(0,∞) = Q, i.e., if we can
show that range(Tµ) is dense in Q. Equivalently, it suffices to show that {h ∈ Q : Tµh =
0} = {0}. Let h ∈ Q be such that Tµh = 0. Using the M (t) in (3.18), the condition
〈Tµh, h〉 = 0 implies that h vanishes on both M (t) and M\M (t). That is, h(w) = 0 for
every w ∈ M . This means that h ⊥ Q. Since h ∈ Q, h is the zero element. This proves
the density of range(Tµ) in Q and completes the proof. �

4. Discrete sums

We will approximate the Toeplitz operator Tµ by discrete sums constructed from the
reproducing kernel for H2(S).

Lemma 4.1. There are constants t4.1 > 0 and 0 < C4.1 < ∞ such that for every z ∈ M
satisfying the condition 1− |z|2 < t4.1 and every f ∈ H2(S), we have

(4.1) |f(z)| ≤ C4.1

(1− |z|2)d+1

∫
D(z,1)∩M

|f(u)|dvM (u)

and

(4.2) |f(z)− f(w)| ≤ C4.1
β(z, w)

(1− |z|2)d+1

∫
D(z,1)∩M

|f(u)|dvM (u)
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if w ∈ D(z, 1/4) ∩M .

Proof. We pick a t4.1 > 0 satisfying the following four requirements:
(1) M (t4.1) = {z ∈M : 1− |z|2 < t4.1} ⊂ K.
(2) If z ∈M (t4.1) and w ∈ D(z, 1/4), then Pzw ∈ D(z, 1/3).
(3) For each z ∈M (t4.1), we have Iz(D(z, 1/2) ∩ Tmod

z ) ⊂ D(z, 1) ∩M .
(4) For each z ∈M (t4.1), D(z, 1) ⊂ B(z,min{b2, c2}).

Note that requirements (2) and (3) are justified by Lemma 2.9.

Let f ∈ H2(S) be given. Given a z ∈ M (t4.1), we define the analytic function g(x) =
f(Iz(x)) on Tmod

z ∩D(z, 1) (cf. (4) above and (2.20)). We have

|f(z)| = |g(z)| = |g(ϕz(0))| ≤ C1

∫
D(0,1/2)∩Tmod

z

|g(ϕz(ζ))|dv(ζ)

= C1

∫
D(z,1/2)∩Tmod

z

|g(x)| (1− |z|2)d+1

|1− 〈x, z〉|2d+2
dv(x)

≤ C1C2

(1− |z|2)d+1

∫
D(z,1/2)∩Tmod

z

|f(Iz(x))|Jz(x)dv(x),

where for the last step we use (2.9) and the fact that 1− |z|2 ≤ 2|1− 〈x, z〉|. Applying (3)
above and (2.16), we obtain

|f(z)| ≤ C1C2

(1− |z|2)d+1

∫
D(z,1)∩M

|f(u)|dvM (u),

which proves (4.1).

To prove (4.2), consider any z ∈ M (t4.1) and w ∈ D(z, 1/4) ∩M . By (2), there is a
ξ ∈ D(z, 1/3) ∩ Tmod

z such that w = Iz(ξ). Furthermore, there is an η ∈ D(0, 1/3) ∩ Tmod
z

such that ξ = ϕz(η). Using the function g(x) = f(Iz(x)) again, we have

|f(z)− f(w)| = |g(ϕz(0))− g(ϕz(η))| ≤ C3β(0, η)

∫
D(0,1/2)∩Tmod

z

|g(ϕz(ζ))|dv(ζ),

where the ≤ follows from the fact that |y| ≈ β(0, y) for y ∈ D(0, 1/3). Note that β(0, η) =
β(z, ξ) = β(z, Pzw). Since ϕz(Pzw) = Pzϕz(w), we have β(z, Pzw) ≤ β(z, w). Thus

(4.3) |f(z)− f(w)| ≤ C3β(z, w)

∫
D(0,1/2)∩Tmod

z

|g(ϕz(ζ))|dv(ζ).

In the proof for (4.1) above, we showed that∫
D(0,1/2)∩Tmod

z

|g(ϕz(ζ))|dv(ζ) ≤ C2

(1− |z|2)d+1

∫
D(z,1)∩M

|f(u)|dvM (u).

Combining this with (4.3), (4.2) is proved. �
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Lemma 4.2. There is a constant 0 < C4.2 <∞ such that if Γ is a 1-separated set contained
in M and if {cz : z ∈ Γ} is a bounded set of coefficients, then∥∥∥∥∑

z∈Γ

czkz ⊗ ez
∥∥∥∥ ≤ C4.2 sup

z∈Γ
|cz|,

where {ez : z ∈ Γ} is any orthonormal set.

Proof. There is an ` ∈ N such that if Γ is a 1-separated set contained in M , then
card(Γ ∩ {M\M (t4.1)}) ≤ `. Hence it suffices to consider a 1-separated set Γ contained in
M (t4.1). Let such a Γ be given and denote

A =
∑
z∈Γ

czkz ⊗ ez.

For any f ∈ H2(S), we have

‖A∗f‖2 =
∑
z∈Γ

|cz|2(1− |z|2)n|f(z)|2.

Applying Lemma 4.1, the Cauchy-Schwarz inequality and Proposition 2.14, we have

‖A∗f‖2 ≤ C1

∑
z∈Γ

|cz|2(1− |z|2)n−1−d
∫
D(z,1)∩M

|f(u)|2dvM (u)

≤ C2 sup
z∈Γ
|cz|2

∑
z∈Γ

∫
D(z,1)∩M

|f(u)|2(1− |u|2)n−1−ddvM (u)

≤ C2 sup
z∈Γ
|cz|2

∫
M

|f(u)|2(1− |u|2)n−1−ddvM (u)

= C2 sup
z∈Γ
|cz|2〈Tµf, f〉 ≤ C2 sup

z∈Γ
|cz|2‖Tµ‖‖f‖2.

Recalling Proposition 2.13, the conclusion of the lemma follows from this. �

We define the measure dλ on M by the formula

dλ(w) =
dvM (w)

(1− |w|2)d+1
.

Obviously, this dλ tries to mimic the Möbius invariant measure on the ball. But keep in
mind that there are no Möbius transforms on M . Nonetheless, this dλ has all the right
properties for our analysis on M . In particular, we have the representation

(4.4) Tµ =

∫
M

kw ⊗ kwdλ(w).

24



Proposition 4.3. For each 0 < ε < 1, let Γε be a subset of M that is maximal with respect
to the property of being ε-separated. By a standard construction, there is a partition

(4.5) M =
⋃
w∈Γε

Ew

such that D(z, ε) ∩M ⊂ Ew ⊂ D(w, 2ε) ∩M for every w ∈ Γε. Define the operator

Tε =
∑
w∈Γε

λ(Ew)kw ⊗ kw.

Then we have
lim
ε↓0
‖Tµ − Tε‖ = 0.

Proof. Given (4.5), we partition the set Γε in the form Γε = Gε ∪Hε, where

Gε = {w ∈ Γε : Ew ∩ {M\M (t4.1)} = ∅} and

Hε = {w ∈ Γε : Ew ∩ {M\M (t4.1)} 6= ∅}.

Accordingly, we have the decomposition Tε = Vε +Wε, where

Vε =
∑
w∈Gε

λ(Ew)kw ⊗ kw and Wε =
∑
w∈Hε

λ(Ew)kw ⊗ kw.

Define the sets
Aε =

⋃
w∈Gε

Ew and Bε =
⋃
w∈Hε

Ew.

By (4.4), we have Tµ = Xε + Yε, where

Xε =

∫
Aε

kζ ⊗ kζdλ(ζ) and Yε =

∫
Bε

kζ ⊗ kζdλ(ζ).

Since the whole of Bε is within 4ε of M\M (t4.1) in terms of the Bergman distance, it is
elementary that ‖Yε −Wε‖ tends to 0 as ε descends to 0. Thus it suffices to show that

(4.6) lim
ε↓0
‖Xε − Vε‖ = 0.

To prove (4.6), consider any f ∈ H2(S). Then

(Xεf)(z)− (Vεf)(z) =
∑
w∈Gε

∫
Ew

(f(ζ)Kζ(z)(1− |ζ|2)n − f(w)Kw(z)(1− |w|2)n)dλ(ζ)

= pε(z) + qε(z),
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where

pε(z) =
∑
w∈Gε

∫
Ew

(f(ζ)− f(w))Kw(z)(1− |w|2)ndλ(ζ) and

qε(z) =
∑
w∈Gε

∫
Ew

f(ζ)(Kζ(z)(1− |ζ|2)n −Kw(z)(1− |w|2)n)dλ(ζ).

By Lemma 4.1, when 2ε < 1/4, we have

|f(ζ)− f(w)| ≤ C4.1
2ε

(1− |ζ|2)d+1

∫
D(ζ,1)∩M

|f(u)|dvM (u)

for ζ ∈ Ew, w ∈ Gε. Also, |Kw(z)| ≤ C1|Kζ(z)| and 1− |w|2 ≤ C2(1− |ζ|2). Therefore

|pε(z)| ≤ C3ε
∑
w∈Gε

∫
Ew

∫
D(ζ,1)∩M

|f(u)|dvM (u)|Kζ(z)|(1− |ζ|2)n−1−ddλ(ζ)

≤ C3ε

∫
M

|f(u)|
∫
D(u,1)∩M

|Kζ(z)|(1− |ζ|2)n−1−ddλ(ζ)dvM (u).

It follows from Proposition 2.14 that λ(D(u, 1) ∩M) ≤ C4. Hence

(4.7) |pε(z)| ≤ C5ε

∫
M

|f(u)| (1− |u|
2)n−1−d

|1− 〈z, u〉|n
dvM (u) = C5ε

∫
M

|f(u)|
|1− 〈z, u〉|n

dµ(u).

To estimate |qε(z)|, note that

Kζ(z)(1− |ζ|2)n −Kw(z)(1− |w|2)n =
(1− |ζ|2)n

(1− 〈z, ζ〉)n

{
1−

(
1− |w|2

1− |ζ|2

)n(
1− 〈z, ζ〉
1− 〈z, w〉

)n}
.

If ζ ∈ Ew, then ζ = ϕw(ξ) for some ξ ∈ D(0, 2ε). Thus by a standard exercise, we have

|Kζ(z)(1− |ζ|2)n −Kw(z)(1− |w|2)n| ≤ C6ε
(1− |ζ|2)n

|1− 〈z, ζ〉|n

for ζ ∈ Ew, w ∈ Gε. Therefore

|qε(z)| ≤ C6ε

∫
M

|f(ζ)| (1− |ζ|2)n

|1− 〈z, ζ〉|n
dλ(ζ) = C6ε

∫
M

|f(ζ)|
|1− 〈z, ζ〉|n

dµ(ζ).

Combining this with (4.7), if we write C7 = C5 + C6, then

|(Xεf)(z)− (Vεf)(z)| ≤ C7ε

∫
M

|f(u)|
|1− 〈z, u〉|n

dµ(u).
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Applying Lemma 3.3, we have

(4.8)

∫
M

|(Xεf)(z)− (Vεf)(z)|2dµ(z) ≤ (C7ε‖B‖)2〈Tµf, f〉 ≤ (C7ε‖B‖)2‖Tµ‖‖f‖2.

Theorem 3.5 tells us that ‖h‖2 ≤ (1/c)〈Tµh, h〉 for every h ∈ Q. Clearly, Xεf − Vεf ∈ Q.
Continuing with (4.8), we have

‖Xεf − Vεf‖2 ≤ (1/c)〈Tµ(Xεf − Vεf), Xεf − Vεf〉

= (1/c)

∫
M

|(Xεf)(z)− (Vεf)(z)|2dµ(z) ≤ (1/c)(C7ε‖B‖)2‖Tµ‖‖f‖2.

Since f ∈ H2(S) is arbitrary, we conclude that ‖Xε − Vε‖2 ≤ (1/c)(C7ε‖B‖)2‖Tµ‖. This
proves (4.6) and completes the proof of the proposition. �

Definition 4.4. (a) The class D0 consists of operators of the form∑
z∈Γ

czkz ⊗ kz,

where Γ ⊂M and Γ is a-separated for some a > 0, and where {cz : z ∈ Γ} is any bounded
set of complex coefficients.
(b) The class D consists of operators of the form∑

z∈Γ

czkz ⊗ kγ(z),

where Γ ⊂M and Γ is a-separated for some a > 0, where {cz : z ∈ Γ} is any bounded set
of complex coefficients, and where γ : Γ → M is a map for which there is a 0 < C < ∞
such that

β(z, γ(z)) ≤ C

for every z ∈ Γ.
(c) Let C∗(D) be the C∗-algebra generated by D.

Proposition 4.5. D0 contains an operator that is invertible on Q.

Proof. Let Tε be the operator defined in the statement of Proposition 4.3, 0 < ε < 1. Then
Tε ∈ D0 by definition. Theorem 3.5 tells us that Tµ is invertible on Q. It follows from the
invertibility of Tµ on Q and Proposition 4.3 that if ε is small enough, then Tε is invertible
on Q. �

This immediately leads to a compactness test and a membership test, both of which
will play an essential role later in the paper.

Corollary 4.6. Let A be a bounded operator on Q.
(a) If XAY is compact for all X,Y ∈ D0, then A is a compact operator.
(b) If XAY ∈ C∗(D) for all X,Y ∈ D0, then A ∈ C∗(D).
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Proof. (a) follows immediately from Proposition 4.5. (b) follows from Proposition 4.5 and
the fact that C∗(D) is a C∗-algebra. Specifically, it uses the property that if T ∈ C∗(D)
and if T is invertible on Q, then T−1 ∈ C∗(D). �

We end the section with the obvious:

Proposition 4.7. The norm closure of span(D) contains every compact operator on Q.

Proof. By definition, we have kz ⊗ kw ∈ D for all z, w ∈ M . Since Q is the closure of
span{kz : z ∈M}, for any f, g ∈ Q, f ⊗ g is in the closure of span(D) with respect to the
operator norm. Once this is clear, the proposition follows. �

5. The C∗-algebra C∗(D)

This section is devoted to estimates related to the C∗-algebra C∗(D).

Lemma 5.1. Let 0 ≤ η ≤ 1/4 be given. For any ε > 0, there is an r = r(η, ε) > 1 such that
the following holds true: Suppose that Γ and G are 1-separated sets contained in M ∩K,
and that E is a subset of Γ×G satisfying the condition

β(z, w) ≥ r for every (z, w) ∈ E.

Let {az,w : (z, w) ∈ E} be a set of complex coefficients such that

|az,w| ≤
(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η
for every (z, w) ∈ E.

Then for any orthonormal sets {ez : z ∈ Γ} and {uw : w ∈ G}, we have∥∥∥∥ ∑
(z,w)∈E

az,wez ⊗ uw
∥∥∥∥ ≤ ε.

Proof. We will bring the Schur test to bear. Define h(w) = (1 − |w|2)(n−1)/2 for w ∈ G.
For w ∈ G and ζ ∈ D(w, 1), we have 1−|ζ|2 ≤ C1(1−|w|2) and |1−〈z, ζ〉| ≤ C2|1−〈z, w〉|
Thus for each z ∈ Γ,∑

w∈G\D(z,r)

(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η
h(w)

≤ C3

∑
w∈G\D(z,r)

(1− |w|2)n

µ(D(w, 1) ∩M)

∫
D(w,1)∩M

(1− |z|2)(n/2)−η(1− |ζ|2)−(1/2)−η

|1− 〈z, ζ〉|n−2η
dµ(ζ).

Since G is 1-separated, from this inequality and Proposition 2.14 we obtain∑
w∈G\D(z,r)

(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η
h(w)

≤ C4

∫
M\D(z,r−1)

(1− |z|2)(n/2)−η(1− |ζ|2)−(1/2)−η

|1− 〈z, ζ〉|n−2η
dµ(ζ)

= C4h̃(z)

∫
M\D(z,r−1)

(1− |z|2)a(1− |ζ|2)κ

|1− 〈z, ζ〉|d+1+a+κ
dvM (ζ),
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where a = (1/2)− η, κ = n− 1− d− (1/2)− η and h̃(z) = (1− |z|2)(n−1)/2 for z ∈ Γ. We
have a > 0 and κ > −1. Applying Lemma 2.11, we obtain

∑
w∈G\D(z,r)

(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η
h(w) ≤ C4C2.11(δ)e−2δ(r−1)h̃(z)

for every z ∈ Γ. Similarly, for each w ∈ G we have

∑
z∈Γ\D(w,r)

(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η
h̃(z) ≤ C4C2.11(δ)e−2δ(r−1)h(w).

From these two inequalities and the Schur test it now follows that∥∥∥∥ ∑
(z,w)∈E

az,wez ⊗ uw
∥∥∥∥ ≤ C4C2.11(δ)e−2δ(r−1).

This completes the proof. �

Proposition 5.2. The C∗-algebra C∗(D) is the closure with respect to the operator norm
of the linear span of D.

Proof. Suppose that Γ is a separated set in B and that γ : Γ → B is a map for which
there is a 0 < C <∞ such that β(z, γ(z)) ≤ C for every z ∈ Γ. Then there is a partition
Γ = Γ1 ∪ · · · ∪ Γm such that for each 1 ≤ j ≤ m, we have D(γ(z), 1) ∩ D(γ(z′), 1) = ∅
for all z 6= z′ in Γj . This implies that if A is in the linear span of D, so is A∗. Therefore
the proof will be complete if we can show that for all A,B ∈ D, the product AB is in the
closure with respect to the operator norm of the linear span of D.

Recalling Proposition 4.7, it suffices to consider A,B ∈ D with representations

A =
∑
z∈Γ

azkz ⊗ kγ(z) and B =
∑
w∈G

bwkw ⊗ kg(w),

where Γ and G are 1-separated sets in M ∩K, {az : z ∈ Γ} and {bw : w ∈ G} are bounded
sets of coefficients, and γ : Γ → M and g : G → M are maps for which there is a C such
that β(z, γ(z)) ≤ C for every z ∈ Γ and β(w, g(w)) ≤ C for every w ∈ G. Moreover,
partitioning G by a finite number of subsets if necessary, we may further assume that
D(g(w), 1) ∩D(g(w′), 1) = ∅ for all w 6= w′ in G.

For each r > 0, we have the partition Γ×G = Er ∪ Fr, where

Er = {(z, w) ∈ Γ×G : β(z, g(w)) ≥ r} and Fr = {(z, w) ∈ Γ×G : β(z, g(w)) < r}.

Accordingly, AB = Sr + Tr, where

Sr =
∑

(z,w)∈Er

azbw〈kw, kγ(z)〉kz ⊗ kg(w) and Tr =
∑

(z,w)∈Fr

azbw〈kw, kγ(z)〉kz ⊗ kg(w).
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By definition, if (z, w) ∈ Fr, then β(z, g(w)) < r. Also, if (z, w) ∈ Fr, then

β(z, w) ≤ β(z, g(w)) + β(g(w), w) ≤ r + C.

Since G is 1-separated, there is a C1(r) such that for every z ∈ Γ we have card{w ∈ G :
(z, w) ∈ Fr} ≤ C1(r). Therefore Tr is in the linear span of D.

To complete the proof, we will show that ‖Sr‖ is small when r is large. To do that
we pick orthonormal sets {ez : z ∈ Γ} and {uw : w ∈ G}. We then define

X =
∑
z∈Γ

azkz ⊗ ez and Y =
∑
w∈G

bwuw ⊗ kg(w).

Then Sr = XS′rY , where

S′r =
∑

(z,w)∈Er

〈kw, kγ(z)〉ez ⊗ uw.

By Lemma 4.2, we have ‖X‖ ≤ C4.2a and ‖Y ‖ ≤ C4.2b, where a = supz∈Γ |az| and
b = supw∈G |bw|. Thus it suffices to show that ‖S′r‖ is small when r is large.

To estimate ‖S′r‖, note that

|〈kw, kγ(z)〉| =
(1− |γ(z)|2)n/2(1− |w|2)n/2

|1− 〈γ(z), w〉|n
≤ C2

(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, w〉|n

for (z, w) ∈ Er, where the ≤ follows from the condition β(z, γ(z)) ≤ C. Also,

β(z, w) ≥ β(z, g(w))− β(g(w), w) ≥ r − C

for (z, w) ∈ Er. That is, Er ⊂ {(z, w) ∈ Γ × G : β(z, w) ≥ r − C}. Thus it follows from
Lemma 5.1 that ‖S′r‖ → 0 as r →∞. This completes the proof. �

Lemma 5.3. Let A ∈ C∗(D) be given. Then for every ε > 0, there is an r > 1 such that
the following holds true: Suppose that Γ and G are 1-separated sets contained in M ∩K,
and that {ez : z ∈ Γ} and {uw : w ∈ G} are orthonormal sets. Denote

X =
∑
z∈Γ

ez ⊗ kz and Y =
∑
w∈G

kw ⊗ uw.

If Γ and G satisfy the condition β(z, w) ≥ r for every (z, w) ∈ Γ×G, then ‖XAY ‖ ≤ ε.

Proof. First of all, Lemma 4.2 provides the bounds ‖X‖ ≤ C4.2 and ‖Y ‖ ≤ C4.2. Because
of these bounds, by the approximation in Proposition 5.2 we only need to consider A ∈ D.
More specifically, we assume

A =
∑
ξ∈E

cξkξ ⊗ kγ(ξ)
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where E is a 1-separated set in M , γ : E → M is a map for which there is a C such that
β(ξ, γ(ξ)) ≤ C for every ξ ∈ E, and supξ∈E |cξ| <∞.

Multiplying out the product, we have

XAY =
∑
z∈Γ

∑
w∈G

az,wez ⊗ uw,

where
az,w =

∑
ξ∈E

cξ〈kξ, kz〉〈kw, kγ(ξ)〉

for z ∈ Γ and w ∈ G. We have the partition E = E1 ∪ E2, where E1 = E ∩ K and

E2 = E ∩ {M\K}. Accordingly, az,w = a
(1)
z,w + a

(2)
z,w, where

a(i)
z,w =

∑
ξ∈Ei

cξ〈kξ, kz〉〈kw, kγ(ξ)〉

for i = 1, 2 and (z, w) ∈ Γ×G.

Writing c = supξ∈E |cξ|, we have

|a(1)
z,w| ≤ c

∑
ξ∈E1

{(1− |ξ|2)(1− |z|2)(1− |w|2)(1− |γ(ξ)|2)}n/2

|1− 〈z, ξ〉|n|1− 〈γ(ξ), w〉|n

≤ C1c
∑
ξ∈E1

(1− |ξ|2)n(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, ξ〉|n|1− 〈ξ, w〉|n
,

where for the second ≤ we use the fact that β(ξ, γ(ξ)) ≤ C for every ξ ∈ E. Thus

|a(1)
z,w| ≤ C2c

∑
ξ∈E1

(1− |ξ|2)n

µ(D(ξ, 1) ∩M)

∫
D(ξ,1)∩M

(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, ζ〉|n|1− 〈ζ, w〉|n
dµ(ζ)

≤ C3c

∫
M

(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, ζ〉|n|1− 〈ζ, w〉|n
dµ(ζ),(5.1)

where the second ≤ follows from Proposition 2.14 and the fact that E is 1-separated. The
fact that E is 1-separated also ensures card(E2) ≤ C4. Therefore it is trivial that

|a(2)
z,w| ≤ C5c

∫
M

(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, ζ〉|n|1− 〈ζ, w〉|n
dµ(ζ).

Combining this with (5.1), we see that

(5.2) |az,w| ≤ C6c

∫
M

(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, ζ〉|n|1− 〈ζ, w〉|n
dµ(ζ)
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for all z ∈ Γ and w ∈ G.

Recall that we have the triangle inequality

(5.3) |1− 〈z, w〉|1/2 ≤ |1− 〈z, ζ〉|1/2 + |1− 〈ζ, w〉|1/2

[26, Proposition 5.1.2]. Thus if we define

Uz,w = {ζ ∈M : |1− 〈z, ζ〉| ≥ (1/4)|1− 〈z, w〉|} and

Vz,w = {ζ ∈M : |1− 〈ζ, w〉| ≥ (1/4)|1− 〈z, w〉|},

then Uz,w ∪ Vz,w = M . Using this decomposition of M in (5.2), we obtain

|az,w| ≤ C7c
(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, w〉|n−(1/9)
×(∫

M

1

(1− |ζ|2)1/9|1− 〈ζ, w〉|n
dµ(ζ) +

∫
M

1

|1− 〈z, ζ〉|n(1− |ζ|2)1/9
dµ(ζ)

)
.

By Lemma 2.10, we have∫
M

1

(1− |ζ|2)1/9|1− 〈ζ, w〉|n
dµ(ζ) =

∫
M

(1− |ζ|2)n−1−d−(1/9)

|1− 〈ζ, w〉|n
dvM (ζ)

≤ 2n−1−d
∫
M

(1− |ζ|2)−1/9

|1− 〈ζ, w〉|d+1
dvM (ζ) ≤ C8(1− |w|2)−1/9.

Similarly, ∫
M

1

|1− 〈z, ζ〉|n(1− |ζ|2)1/9
dµ(ζ) ≤ C8(1− |z|2)−1/9.

Therefore

|az,w| ≤ C9c
(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, w〉|n−(1/9)
((1− |w|2)−1/9 + (1− |z|2)−1/9)

≤ C10c
(1− |z|2)(n/2)−(1/9)(1− |w|2)(n/2)−(1/9)

|1− 〈z, w〉|n−(2/9)
.

Recall that we assume that β(z, w) ≥ r for every (z, w) ∈ Γ×G. Thus, applying Lemma
5.1 with η = 1/9, we see that ‖XAY ‖ is small when r is large. �

6. Compactness criterion for operators in C∗(D)

In this section, our goal is to prove

Theorem 6.1. Let A ∈ C∗(D). If

lim
z∈M
|z|→1

〈Akz, kz〉 = 0,
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then A is a compact operator.

In addition to the material from the previous section, the proof of this theorem requires
more preparations, not the least of which is the radial-spherical decomposition of the unit
ball from [30, Section 4]. We begin the proof with a review of this decomposition.

In the spherical direction, the decomposition begins with the metric

d(u, ξ) = |1− 〈u, ξ〉|1/2, u, ξ ∈ S,

defined on S [26, page 66]. For any pair of u ∈ S and r > 0, we write

S(u, r) = {ξ ∈ S : d(u, ξ) < r}.

There is a constant A0 ∈ (2−n,∞) such that

(6.1) 2−nr2n ≤ σ(S(u, r)) ≤ A0r
2n

for all u ∈ S and 0 < r ≤
√

2 [26, Proposition 5.1.4].

In the radial direction of the ball, we set

ρk = 1− 2−2k

for every k ∈ Z+. For each pair of natural numbers m ≥ 6 and j ∈ N, let us denote

(6.2) αm,j = m(1− ρ2
jm)1/2 = m · 2−jm · (2− 2−2jm)1/2.

Note that 8αm,j ≤
√

2 for all m ≥ 6 and j ∈ N. For each pair of m ≥ 6 and j ∈ N, let
Em,j be a subset of S that is maximal with respect to the property

(6.3) S(u, αm,j/2) ∩ S(v, αm,j/2) = ∅ for all u 6= v in Em,j .

It follows from the maximality of Em,j that

(6.4)
⋃

u∈Em,j

S(u, αm,j) = S.

For each triple of m ≥ 6, j ∈ N and u ∈ Em,j , we define

Am,j,u = {rξ : ξ ∈ S(u, αm,j), r ∈ [ρ(j+2)m, ρ(j+3)m]} and

Bm,j,u = {rξ : ξ ∈ S(u, 3αm,j), r ∈ [ρjm, ρ(j+5)m]}.(6.5)

Then it follows from (6.4) that

(6.6)

∞⋃
j=1

⋃
u∈Em,j

Am,j,u = {z ∈ B : ρ3m ≤ |z| < 1}.
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Lemma 6.2. [30, Lemma 4.3] For each triple of m ≥ 6, j ∈ N and u ∈ Em,j , define

(6.7) zm,j,u = ρjmu.

Then we have Bm,j,u ⊂ D(zm,j,u, Rm), where Rm = 2 + 5m+ log
(
1 + 210m × 18m2

)
.

By (6.1) and (6.3), there is a natural number N0 such that for every triple of m ≥ 6,
j ∈ N and u ∈ Em,j , we have

(6.8) card{v ∈ Em,j : d(u, v) < 7αm,j} ≤ N0.

By a standard maximality argument, each Em,j admits a partition

Em,j = E
(1)
m,j ∪ · · · ∪ E

(N0)
m,j

such that for every ν ∈ {1, . . . , N0}, we have d(u, v) ≥ 7αm,j for all u 6= v in E
(ν)
m,j . This

number N0 and the above partition will be fixed for the rest of the section.

Lemma 6.3. [30, Lemma 4.2] (a) Let m ≥ 6, j ∈ N and ν ∈ {1, . . . , N0}. If u, v ∈ E(ν)
m,j

and u 6= v, then we have β(z, w) > 2 for all z ∈ Bm,j,u and w ∈ Bm,j,v.
(b) Let m ≥ 6. If u ∈ Em,j , v ∈ Em,k and k ≥ j + 6, then we have β(z, w) > 3 for all
z ∈ Bm,j,u and w ∈ Bm,k,v.
(c) Let m ≥ 6, j ∈ N and u ∈ Em,j . Then β(z, w) ≥ 2 logm for all z ∈ B\Bm,j,u and
w ∈ Am,j,u.

Definition 6.4. Let m ≥ 6 be given. (a) For each pair of κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈
{1, . . . , N0}, where N0 is the integer that appears in (6.8), let I

(ν,κ)
m denote the collection

of all triples m, 6i+ κ, u satisfying the conditions i ∈ Z+ and u ∈ E(ν)
m,6i+κ.

(b) For κ ∈ {1, 2, 3, 4, 5, 6}, ν ∈ {1, . . . , N0} and J ∈ N, let I
(ν,κ)
m,J denote the collection of

all triples m, 6i+ κ, u satisfying the conditions 0 ≤ i ≤ J and u ∈ E(ν)
m,6i+κ.

(c) Denote Im = ∪6
κ=1 ∪

N0
ν=1 I

(ν,κ)
m .

As in [30], we will try to avoid triple subscripts when possible. That is, we use ω to
represent (m, j, u) ∈ Im and write Aω and Bω for Am,j,u and Bm,j,u respectively.

From Definition 6.4(a) and Lemma 6.3(a), (b) we immediately obtain

Corollary 6.5. Given any κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈ {1, . . . , N0}, if ω, ω′ ∈ I(ν,κ)
m and

ω 6= ω′, then for every pair of z ∈ Bω and w ∈ Bω′ we have β(z, w) > 2.

Lemma 6.6. Let U1, . . . , U` be subsets of B such that Uj ∩Uk = ∅ for all j 6= k. For each
1 ≤ k ≤ `, let Ek and Fk be finite subsets of Uk. Denote E = ∪`k=1Ek and F = ∪`k=1Fk.
Suppose that {ez : z ∈ E} and {εw : w ∈ F} are orthonormal sets in Hilbert spaces H1 and
H2 respectively. Define

Xk =
∑
z∈Ek

ez ⊗ kz and Yk =
∑
w∈Fk

kw ⊗ εw
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for each 1 ≤ k ≤ `. Let A be any bounded operator on the Hardy space H2(S). Then there
exists a subset L of {1, . . . , `} such that if we define

X =
∑
k∈L

Xk, Y =
∑
k∈L

Yk, X ′ =
∑

k∈{1,...,`}\L

Xk and Y ′ =
∑

k∈{1,...,`}\L

Yk,

then ∥∥∥∥∑
j 6=k

XjAYk

∥∥∥∥ ≤ 4{‖XAY ′‖+ ‖X ′AY ‖}.

Proof. We may assume that H1 = `2(E), H2 = `2(F ), and that {ez : z ∈ E} and
{εw : w ∈ F} are the standard orthonormal bases for `2(E) and `2(F ) respectively. For a
function f defined on B, we define the multiplication operator Mf on `2(E) and `2(F ) by
the formulas

Mf

∑
z∈E

azez =
∑
z∈E

f(z)azez and Mf

∑
w∈F

bwεw =
∑
w∈F

f(w)bwεw

respectively. The rest of the proof is an adaptation of the proof of [30, Lemma 5.1].

It suffices to consider the case ` ≥ 2. Write

Z =
∑
j 6=k

XjAYk and Zθ =
∑
j 6=k

ei(j−k)θXjAYk, θ ∈ R.

Then obviously we have

Z =
1

2π

∫ 2π

0

(Z − Zθ)dθ.

This shows that there is a θ∗ ∈ [0, 2π] such that ‖Z‖ ≤ ‖Z − Zθ∗‖.

Write γk = eikθ
∗

for every k ∈ {1, . . . , `}. Define the operators

B =
∑̀
j=1

∑̀
k=1

XjAYk and B′ =
∑̀
j=1

∑̀
k=1

γj γ̄kXjAYk

from `2(F ) to `2(E). Also, define the function

ψ =
∑̀
k=1

γkχUk

on B. Since Ek ⊂ Uk, Fk ⊂ Uk and Uj ∩ Uk = ∅ for j 6= k, we have

B −B′ = B −MψBMψ̄ = Mψ(Mψ̄B −BMψ̄).
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For each k ∈ {1, . . . , `}, let us write γk = ck + idk, where ck, dk ∈ [−1, 1]. Define

p =
∑̀
k=1

ckχUk and q =
∑̀
k=1

dkχUk .

Then the above gives us B −B′ = MψV − iMψW , where

V = MpB −BMp and W = MqB −BMq.

Since γkγ̄k = 1 for every k ∈ {1, . . . , `}, we have Z−Zθ∗ = B−B′. Consequently, we have
either ‖Z‖ ≤ ‖Z − Zθ∗‖ ≤ 2‖V ‖ or ‖Z‖ ≤ ‖Z − Zθ∗‖ ≤ 2‖W‖.

In the case ‖Z‖ ≤ 2‖V ‖, consider c1, . . . , c`, which are real numbers in [−1, 1]. There
is a permutation τ(1), . . . , τ(`) of the integers 1, . . . , ` such that

cτ(j) ≥ cτ(j−1) for every j ∈ {2, . . . , `}.

For each j ∈ {1, . . . , `}, define the subset Lj = {τ(k) : j ≤ k ≤ `} of {1, . . . , `}. Then

p =
∑̀
k=1

cτ(k)χUτ(k) = cτ(1)

∑
α∈L1

χUα +
∑̀
j=2

(cτ(j) − cτ(j−1))
∑
α∈Lj

χUα .

Obviously, MχUj
Xk = 0 when j 6= k and MχUk

Xk = Xk. Thus

∑̀
k=1

ckXk = Mp

∑̀
k=1

Xk = cτ(1)S1 +
∑̀
j=2

(cτ(j) − cτ(j−1))Sj , where Sj =
∑
α∈Lj

Xα

for every 1 ≤ j ≤ `. Similarly,

∑̀
k=1

ckYk =
∑̀
k=1

YkMp = cτ(1)T1 +
∑̀
j=2

(cτ(j) − cτ(j−1))Tj , where Tj =
∑
α∈Lj

Yα

for every 1 ≤ j ≤ `. Note that L1 = {1, . . . , `}. Therefore

V = MpB −BMp =
∑̀
j=1

cjXjAT1 − S1A
∑̀
j=1

cjYj

=
∑̀
j=2

(cτ(j) − cτ(j−1))(SjAT1 − S1ATj) =
∑̀
j=2

(cτ(j) − cτ(j−1))(SjAT
′
j − S′jATj),

where

S′j = S1 − Sj =
∑

α∈{1,...,`}\Lj

Xα and T ′j = T1 − Tj =
∑

α∈{1,...,`}\Lj

Yα,
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1 ≤ j ≤ `. Since (cτ(2) − cτ(1)) + · · ·+ (cτ(`) − cτ(`−1)) = cτ(`) − cτ(1) ≤ 2, we have

‖V ‖ ≤
∑̀
j=2

(cτ(j) − cτ(j−1))‖SjAT ′j − S′jATj‖ ≤ 2 max
2≤j≤`

(‖SjAT ′j‖+ ‖S′jATj‖).

Thus there is a j0 ∈ {2, . . . , `} such that

‖V ‖ ≤ 2(‖Sj0AT ′j0‖+ ‖S′j0ATj0‖).

If we simply let L = Lj0 , then X = Sj0 , Y = Tj0 , X ′ = S′j0 and Y ′ = T ′j0 . This proves the
lemma in the case where ‖Z‖ ≤ 2‖V ‖.

In the case ‖Z‖ ≤ 2‖W‖, we just apply the argument in the preceding paragraph with
d1, . . . , d` in place of c1, . . . , c`. This completes the proof of the lemma. �

Proposition 6.7. Let A be a bounded operator on Q. If

(6.9) lim
z∈M
|z|→1

〈Akz, kz〉 = 0,

then for every 0 < r <∞ we have

lim
z∈M
|z|→1

sup{|〈Akz, kw〉| : w ∈ D(z, r) ∩M} = 0.

Proof. Assuming the contrary, we would have an r > 0 and sequences {zj} and {wj} in
M satisfying the following three conditions:

(1) limj→∞ |zj | = 1;
(2) β(zj , wj) < r for every j;
(3) limj→∞〈Akzj , kwj 〉 = a 6= 0.

We will show that this leads to a contradiction.

Combining (1) above with Lemma 2.9, discarding a finite number of j’s if necessary,
we may further assume that D(zj , 3r) ∩ Tmod

zj ⊂ B(zj , c0) ∩ Tmod
zj (cf. (2.8)),

Izj (D(zj , 2r) ∩ Tmod
zj ) ⊃ D(zj , r) ∩M and Izj (D(zj , 3r) ∩ Tmod

zj ) ⊂ D(zj , 6r) ∩M

for every j. There are 0 < s < t < 1 such that

ϕzj (B(0, s) ∩ Tmod
zj ) = D(zj , 2r) ∩ Tmod

zj and ϕzj (B(0, t) ∩ Tmod
zj ) = D(zj , 3r) ∩ Tmod

zj

for every j. For each j, let Vj : Cd → Cn be an isometry such that

VjC
d = Tmod

zj .
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Recall that we write Bd for the unit ball in Cd. For each j, define the map αj : Bd →M
by the formula

αj(ξ) = Izj (ϕzj (tVjξ)),

ξ ∈ Bd. Obviously, each αj is analytic, and we have αj(0) = zj . By (2), for each j there
is a ξj ∈ Bd(0, s/t) = {ζ ∈ Cd : |ζ| < s/t} such that αj(ξj) = wj .

For each j, we now define the analytic function Fj on Bd ×Bd by the formula

Fj(ξ, η) = (1− |zj |2)n〈AKαj(ξ)
,Kαj(η)〉, (ξ, η) ∈ Bd ×Bd.

A review of the above finds that αj(ξ) ∈ D(zj , 6r) ∩M for all j and ξ ∈ Bd. Therefore
there are 0 < c1 ≤ C1 <∞ such that

c1(1− |αj(ξ)|2) ≤ 1− |zj |2 ≤ C1(1− |αj(ξ)|2) for all j and ξ ∈ Bd.

Thus |Fj(ξ, η)| ≤ C2 for all j, ξ and η. Hence there exist a subsequence {Fjν} of {Fj} and
an analytic function F on Bd × Bd such that {Fjν} uniformly converges to F on every
compact subset of Bd ×Bd. For each ξ ∈ Bd, since β(αj(ξ), zj) < 6r, it follows from (1)
that limj→∞ |αj(ξ)| = 1. By (6.9), we have

F (ξ, ξ) = lim
ν→∞

Fjν (ξ, ξ) = lim
ν→∞

(1− |zjν |2)n〈AKαjν (ξ),Kαjν (ξ)〉 = 0.

Since this holds for every ξ ∈ Bd, it is well known that it implies that F is identically 0 on
Bd ×Bd. Therefore {Fjν} uniformly converges to 0 on every compact subset of Bd ×Bd.
Since ξjν ∈ Bd(0, s/t) for every ν, in particular we have

(6.10) lim
ν→∞

Fjν (0, ξjν ) = 0.

On the other hand, since αjν (0) = zjν and αjν (ξjν ) = wjν , we have

Fjν (0, ξjν ) = (1− |zjν |2)n〈AKzjν
,Kwjν

〉 =

(
1− |zjν |2

1− |wjν |2

)n/2
〈Akzjν , kwjν 〉.

Since 1− |zjν |2 ≥ c1(1− |wjν |2), (6.10) contradicts (3). This completes the proof. �

Lemma 6.8. Let Γ be a separated set contained in M , and let γ : Γ → M be a map for
which there is a 0 < C <∞ such that β(z, γ(z)) ≤ C for every z ∈ Γ. Suppose that A is a
bounded operator on Q which has the property

(6.11) lim
z∈M
|z|→1

〈Akz, kz〉 = 0.

Then for every bounded set of coefficients {cz : z ∈ Γ}, the operator∑
z∈Γ

cz〈Akγ(z), kz〉kz ⊗ kγ(z)
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is compact.

Proof. Let {ez : z ∈ Γ} be an orthonormal set. We have the factorization∑
z∈Γ

cz〈Akγ(z), kz〉kz ⊗ kγ(z) = XTY,

where

X =
∑
z∈Γ

czkz ⊗ ez, T =
∑
z∈Γ

〈Akγ(z), kz〉ez ⊗ ez and Y =
∑
z∈Γ

ez ⊗ kγ(z).

By Lemma 4.2, X and Y are bounded operators. Since γ has the property that β(z, γ(z)) ≤
C for every z ∈ Γ, Proposition 6.7 tells us that (6.11) implies

lim
z∈Γ
|z|→1

〈Akγ(z), kz〉 = 0.

Hence T is a compact operator. This completes the proof. �

Proof of Theorem 6.1. By Corollary 4.6, it suffices to show that for any given X,Y ∈ D0,
the operator XAY is compact. Furthermore, it suffices to assume that

X =
∑
z∈Γ

azkz ⊗ kz and Y =
∑
w∈G

bwkw ⊗ kw,

where Γ and G are 1-separated sets in M ∩K and the sets of coefficients {az : z ∈ Γ} and
{bw : w ∈ G} are bounded. We will decompose X and Y using the sets in Definition 6.4.

Let a large m ≥ 6 be given. Define

Fm = {z ∈ Γ : |z| < ρ3m} and Γm = {z ∈ Γ : |z| ≥ ρ3m}.

Then X = Tm +Xm, where

Tm =
∑
z∈Fm

azkz ⊗ kz and Xm =
∑
z∈Γm

azkz ⊗ kz.

Obviously, rank(Tm) < ∞. We need to further decompose Xm. By (6.6) and Definition
6.4, we have ∪ω∈ImAω ⊃ Γm. Therefore there is a partition

(6.12) Γm =
⋃
ω∈Im

Γω such that Γω ⊂ Aω for every ω ∈ Im.

Accordingly, for each ω ∈ Im we define

(6.13) Xω =
∑
z∈Γω

azkz ⊗ kz.
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Also, for each pair of κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈ {1, . . . , N0} we define

(6.14) X(ν,κ)
m =

∑
ω∈I(ν,κ)m

Xω.

Thus

X = Tm +
6∑

κ=1

N0∑
ν=1

X(ν,κ)
m .

Because N0 is a constant (see (6.8)), and because rank(Tm) < ∞, to complete the proof,

it suffices to show that for each pair of κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈ {1, . . . , N0}, X(ν,κ)
m AY

is the sum of a compact operator and an operator of small norm when m is large.

To do that, let a pair of κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈ {1, . . . , N0} be given. We will
decompose Y accordingly. Define

(6.15) B(ν,κ)
m =

⋃
ω∈I(ν,κ)m

Bω.

Then
Y = S(ν,κ)

m + Y (ν,κ)
m ,

where

S(ν,κ)
m =

∑
w∈G\B(ν,κ)

m

bwkw ⊗ kw and Y (ν,κ)
m =

∑
w∈G∩B(ν,κ)

m

bwkw ⊗ kw.

Let us first show that ‖X(ν,κ)
m AS

(ν,κ)
m ‖ is small when m is large. By (6.12) and (6.15), if

z ∈ Γω for some ω ∈ I(ν,κ)
m and if w ∈ G\B(ν,κ)

m , then w /∈ Bω. By Lemma 6.3(c), we have

(6.16) β(z, w) ≥ 2 logm.

In other words, if we define

Γ(ν,κ)
m =

⋃
ω∈I(ν,κ)m

Γω,

then (6.16) holds for every pair of z ∈ Γ
(ν,κ)
m and w ∈ G\B(ν,κ)

m . Since the union in (6.12)
is a partition, i.e., Γω ∩ Γω′ = ∅ if ω 6= ω′, from (6.13) and (6.14) we see that

X(ν,κ)
m =

∑
z∈Γ

(ν,κ)
m

azkz ⊗ kz.

Recall that we assume A ∈ C∗(D). Hence it follows from (6.16) and Lemmas 5.3 and 4.2

that ‖X(ν,κ)
m AS

(ν,κ)
m ‖ is small when m is large.
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Thus what remains is to show that X
(ν,κ)
m AY

(ν,κ)
m is the sum of a compact operator

and an operator of small norm when m is large. To accomplish that goal, we partition the

set G ∩B(ν,κ)
m in the form

G ∩B(ν,κ)
m =

⋃
ω∈I(ν,κ)m

Gω, where Gω ⊂ Bω for each ω ∈ I(ν,κ)
m .

Accordingly, we have

Y (ν,κ)
m =

∑
ω∈I(ν,κ)m

Yω, where Yω =
∑
w∈Gω

bwkw ⊗ kw for each ω ∈ I(ν,κ)
m .

Recalling (6.14), we now have X
(ν,κ)
m AY

(ν,κ)
m = D +W , where

D =
∑

ω∈I(ν,κ)m

XωAYω and W =
∑

ω,ω′∈I(ν,κ)m

ω 6=ω′

XωAYω′ .

Obviously,

D =
∑

ω∈I(ν,κ)m

∑
(z,w)∈Γω×Gω

azbw〈Akw, kz〉kz ⊗ kw.

Recall from Lemma 6.2 that Bω ⊂ D(zω, Rm) for every ω ∈ I(ν,κ)
m . Since Γω ⊂ Aω and

Gω ⊂ Bω, we have β(z, w) < 2Rm for every (z, w) ∈ Γω × Gω, ω ∈ I(ν,κ)
m . Since G is 1-

separated, there is a constant Cm such that card(Gω) ≤ Cm for every ω ∈ I(ν,κ)
m . Therefore

it follows from Lemma 6.8 that D is a compact operator.

As the last step of the proof, we need to show that ‖W‖ is small when m is large. To

that end, we pick orthonormal sets {ez : z ∈ Γ
(ν,κ)
m } and {uw : w ∈ G ∩B(ν,κ)

m }. Define

(6.17) Kω =
∑
z∈Γω

ez ⊗ kz and Lω =
∑
w∈Gω

kw ⊗ uw

for each ω ∈ I(ν,κ)
m . We also define

U =
∑

z∈Γ
(ν,κ)
m

azkz ⊗ ez and V =
∑

w∈G∩B(ν,κ)
m

bwuw ⊗ kw.

Then we can factor W in the form W = UHV , where

H =
∑

ω,ω′∈I(ν,κ)m

ω 6=ω′

KωALω′ .
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By Lemma 4.2 we have ‖U‖ ≤ C4.2a and ‖V ‖ ≤ C4.2b, where a = supz∈Γ |az| and b =
supw∈G |bw|. Hence the proof will be complete if we can show that ‖H‖ is small when m
is large. To estimate ‖H‖, for each J ∈ N we define

HJ =
∑

ω,ω′∈I(ν,κ)
m,J

ω 6=ω′

KωALω′

(cf. Definition 6.4(b)). We have the strong convergence HJ → H as J → ∞. Therefore

there is a J∗ ∈ N such that ‖H‖ ≤ 2‖HJ∗‖. Since I
(ν,κ)
m,J∗ is a finite set, and since Corollary

6.5 tells us that Bω ∩ Bω′ = ∅ for ω 6= ω′ in I
(ν,κ)
m,J∗ , by Lemma 6.6, there is a subset F of

I
(ν,κ)
m,J∗ such that if we define

Σ =
∑
ω∈F

Kω, Λ =
∑
ω∈F

Lω, Σ′ =
∑

ω∈I(ν,κ)
m,J∗\F

Kω and Λ′ =
∑

ω∈I(ν,κ)
m,J∗\F

Lω,

then
‖H‖ ≤ 2‖HJ∗‖ ≤ 8{‖ΣAΛ′‖+ ‖Σ′AΛ‖}.

By (6.17), we have

Σ =
∑
ω∈F

∑
z∈Γω

ez ⊗ kz and Λ′ =
∑

ω∈I(ν,κ)
m,J∗\F

∑
w∈Gω

kw ⊗ uw.

Recall that Γω ⊂ Aω and Gω′ ⊂ Bω′ . Again, for any pair of ω ∈ F and ω′ ∈ I(ν,κ)
m,J∗\F , we

have Bω ∩ Bω′ = ∅ by Corollary 6.5. Thus by Lemma 6.3(c), for such a pair of ω and ω′,
if z ∈ Γω and w ∈ Gω′ , then β(z, w) ≥ 2 logm. Since A ∈ C∗(D), we can apply Lemma
5.3 to conclude that ‖ΣAΛ′‖ is small when m is large. Similarly, ‖Σ′AΛ‖ is small when m
is large. Therefore ‖H‖ is small when m is large. This completes the proof. �

7. Compactness criterion in the Toeplitz algebra T Q

Recall that for any f ∈ L∞(S, dσ), we define the “Toeplitz operator”

Qfh = Q(fh), h ∈ Q,

on the quotient module Q. We write T Q for the C∗-algebra generated by {Qf : f ∈
L∞(S, dσ)}. We think of T Q as the “Toeplitz algebra” on the quotient module.

Lemma 7.1. Given any 0 < η < 1, there is a constant 0 < C7.1. <∞ such that

(7.1)

∫
S

|kz(u)||kw(u)|dσ(u) ≤ C7.1
(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η

for all z, w ∈ B.
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Proof. Given any z, w ∈ B, let us write x = ϕw(z). For u ∈ S, we have

1− 〈ϕw(u), w〉 =
1− |w|2

1− 〈u,w〉
and 1− 〈ϕw(u), z〉 =

(1− |w|2)(1− 〈u, x〉)
(1− 〈u,w〉)(1− 〈w, x〉)

.

Therefore
1− 〈ϕw(u), w〉
1− 〈ϕw(u), z〉

=
1− 〈w, x〉
1− 〈u, x〉

.

Let 0 < η < 1 be given. Starting with the unnormalized Kz and Kw, we have∫
|Kz(u)Kw(u)|dσ(u) =

1

(1− |w|2)n

∫
|Kz(u)K−1

w (u)||kw(u)|2dσ(u)

=
1

(1− |w|2)n

∫
|Kz(ϕw(u))K−1

w (ϕw(u))|dσ(u)

=
|1− 〈w, x〉|n

(1− |w|2)n

∫
1

|1− 〈u, x〉|n
dσ(u) ≤ |1− 〈w, x〉|

n

(1− |w|2)n
· C1

(1− |x|2)η
,(7.2)

where for the ≤ we cite [26, Proposition 1.4.10]. Since x = ϕw(z), we have

|1− 〈w, x〉|n

(1− |w|2)n
=

1

|1− 〈w, z〉|n
and

1

(1− |x|2)η
=

|1− 〈w, z〉|2η

(1− |w|2)η(1− |z|2)η
.

Substituting these identities in (7.2), (7.1) follows. �

Proposition 7.2. We have T Q ⊂ C∗(D).

Proof. It suffices to show that Qf ∈ C∗(D) for every f ∈ L∞(S, dσ). By Corollary 4.6(b),
we only need to show that XQfY ∈ C∗(D) for every pair of X,Y ∈ D0. As in the proof
of Theorem 6.1, we can be more specific about X and Y ; we assume that

X =
∑
z∈Γ

azkz ⊗ kz and Y =
∑
w∈G

bwkw ⊗ kw,

where Γ and G are 1-separated sets in M ∩K and the sets of coefficients {az : z ∈ Γ} and
{bw : w ∈ G} are bounded. Denote a = supz∈Γ |az| and b = supw∈G |bw|.

We can regard Qf , X, Y as operators on L2(S, dσ). Thus

XQfY = XMfY =
∑

(z,w)∈Γ×G

azbwcz,wkz ⊗ kw,

where
cz,w = 〈Mfkw, kz〉.

For any r > 0, we have the partition Γ×G = Er ∪ Fr, where

Er = {(z, w) ∈ Γ×G : β(z, w) ≤ r} and Fr = {(z, w) ∈ Γ×G : β(z, w) > r}.
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Accordingly, XQfY = Dr +Wr, where

Dr =
∑

(z,w)∈Er

azbwcz,wkz ⊗ kw and Wr =
∑

(z,w)∈Fr

azbwcz,wkz ⊗ kw.

Obviously, the set {azbwcz,w : (z, w) ∈ Γ × G} is bounded. There is a C(r) such that for
every z ∈ Γ, card{w ∈ G : β(z, w) ≤ r} ≤ C(r). Hence Dr is in the linear span of D. Thus
the proof will be complete if we can show that ‖Wr‖ is small when r is large.

To that end, we pick orthonormal sets {ez : z ∈ Γ}, {uw : w ∈ G} and factor Wr in
the form Wr = UHrV , where

U =
∑
z∈Γ

azkz ⊗ ez, Hr =
∑

(z,w)∈Fr

cz,wez ⊗ uw and V =
∑
w∈G

bwuw ⊗ kw.

By Lemma 4.2, we have ‖U‖ ≤ C4.2a and ‖V ‖ ≤ C4.2b. Let 0 < η ≤ 1/4 be chosen. Then
from Lemma 7.1 we obtain

|cz,w| ≤ ‖f‖∞〈|kz|, |kw|〉 ≤ C7.1‖f‖∞
(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η

for all (z, w) ∈ Γ×G. Recalling the definition of Fr, from Lemma 5.1 we see that ‖Hr‖ is
small when r is large. Thus ‖Wr‖ is small when r is large. This completes the proof. �

Below is the most significant application of Theorem 6.1:

Theorem 7.3. Let A ∈ T Q. If

lim
z∈M
|z|→1

〈Akz, kz〉 = 0,

then A is a compact operator.

Proof. This is an immediate consequence of Proposition 7.2 and Theorem 6.1. �

8. Essential normality

We will now show that the quotient module Q is p-essentially normal for p > d. For
this purpose, just as in [28], it will be convenient to get certain Lorentz-like ideals involved.

For each 1 ≤ p <∞, the formula

‖A‖+p = sup
k≥1

s1(A) + s2(A) + · · ·+ sk(A)

1−1/p + 2−1/p + · · ·+ k−1/p

defines a symmetric norm for operators. On a Hilbert space H, the set

C+
p = {A ∈ B(H) : ‖A‖+p <∞}
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is a norm ideal. See Sections III.2 and III.14 in [17]. It is well known that C+
p ⊂ Cp′ for all

1 ≤ p < p′ <∞.

The reason why the C+
p ’s are the preferred ideals in the study of the Arveson-Douglas

conjecture is that norm estimates in these ideals are particularly easy:

Lemma 8.1. [28, Lemma 2.9] Given any positive numbers 0 < a ≤ b < ∞, there is a
constant 0 < B(a, b) <∞ such that the following holds true: Let H be a Hilbert space, and
suppose that F0, F1, . . . , Fk, . . . are operators on H such that the following two conditions
are satisfied for every k:

(1) ‖Fk‖ ≤ 2−ak,
(2) rank(Fk) ≤ 2bk.

Then the operator F =
∑∞
k=0 Fk satisfies the estimate ‖F‖+b/a ≤ B(a, b). In particular,

F ∈ C+
b/a.

Lemma 8.2. Given any ε > 0, there is a constant 0 < C8.2 = C8.2(ε) < ∞ such that
the following holds true: Let Γ be a 1-separated set in M ∩K and let {ez : z ∈ Γ} be an
orthonormal set in a Hilbert space H. Then the operator

T =
∑
z,w∈Γ

(1− |z|2)(d+ε)/2(1− |w|2)(d+ε)/2

|1− 〈z, w〉|d+ε
ez ⊗ ew

satisfies the estimate ‖T‖ ≤ C8.2.

Proof. Recall from Proposition 2.14 that (1−|w|2)d+1 ≤ C1vM (D(w, 1)∩M) for w ∈M∩K.
Also, if ξ ∈ D(w, 1) ∩M , then

(1− |w|2)−1+(ε/2)

|1− 〈z, w〉|d+ε
≤ C2

(1− |ξ|2)−1+(ε/2)

|1− 〈z, ξ〉|d+ε
.

Define h(w) = (1− |w|2)d/2 for w ∈ Γ. For each z ∈ Γ we have

∑
w∈Γ

(1− |z|2)(d+ε)/2(1− |w|2)(d+ε)/2

|1− 〈z, w〉|d+ε
h(w)

≤ C3

∑
w∈Γ

∫
D(w,1)∩M

(1− |z|2)(d+ε)/2(1− |ξ|2)−1+(ε/2)

|1− 〈z, ξ〉|d+ε
dvM (ξ)

≤ C3(1− |z|2)d/2
∫
M

(1− |z|2)ε/2(1− |ξ|2)−1+(ε/2)

|1− 〈z, ξ〉|d+1+(ε/2)−1+(ε/2)
dvM (ξ)

≤ C4(1− |z|2)d/2 = C4h(z),

where the third ≤ follows from Lemma 2.10. By the Schur test, we have ‖T‖ ≤ C4. �

Proposition 8.3. Let X ∈ D0, which we also consider as an operator on L2(S, dσ). If f
is a Lipschitz function on S, then [Mf , X] is in the Schatten class Cp for every p > 2d.

45



Proof. As before, we can be more specific about X. That is, we only need to consider

X =
∑
z∈Γ

czkz ⊗ kz,

where Γ is a 1-separated set in M ∩K and the set {cz : z ∈ Γ} is bounded. Let p > 2d be
given. Then pick an 0 < ε < 1/2 such that

(8.1) 2d/(1− ε) < p.

Given an f ∈ Lip(S), we have [Mf , X] = F −G, where

F =
∑
z∈Γ

cz{(f − f(z/|z|))kz} ⊗ kz and G =
∑
z∈Γ

czkz ⊗ {(f − f(z/|z|))kz}.

Since G∗ is just another F , it suffices to deal with F .

For each k ≥ 0, define

Mk = {z ∈M : 1− 2−2k ≤ |z| < 1− 2−2(k+1)}

and Γk = Γ ∩Mk. For each k ≥ 0, we further define

Fk =
∑
z∈Γk

cz{(f − f(z/|z|))kz} ⊗ kz.

Since F =
∑∞
k=0 Fk, our goal is to apply Lemma 8.1. For this purpose, we need to estimate

‖Fk‖ and rank(Fk). But since the estimate for rank(Fk) only involves card(Γk), it is the
same as that in the proof of [28, Proposition 3.5]. In fact, by (3.5) in [28], we have

(8.2) rank(Fk) ≤ C22dk

for every k ≥ 0. (See [28, page 1080] for the proof.) But the estimate for ‖Fk‖ is different,
because we are now working on the Hardy space, not the Bergman space in [28].

Let {ez : z ∈ Γ} be an orthonormal set. Then we have Fk = AkH, where

Ak =
∑
z∈Γk

{(f − f(z/|z|))kz} ⊗ ez and H =
∑
z∈Γ

czez ⊗ kz.

By Lemma 4.2, ‖H‖ ≤ C4.2c, where c = supz∈Γ |cz|. For each k ≥ 0, we have

A∗kAk =
∑

z,w∈Γk

az,wez ⊗ ew,

where
az,w = 〈(f − f(w/|w|))kw, (f − f(z/|z|))kz〉
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for z, w ∈ Γ. For z ∈ Γ and u ∈ S, we have

|f(u)− f(z/|z|)| ≤ L(f)|u− (z/|z|)|
≤
√

2L(f)|1− 〈u, z/|z|〉|1/2 ≤ 2L(f)|1− 〈u, z〉|1/2,

where L(f) is the Lipschitz constant for f . Thus for every pair of z, w ∈ Γ,

|az,w| ≤ C1

∫
S

(1− |z|2)n/2(1− |w|2)n/2

|1− 〈u, z〉|n−(1/2)|1− 〈u,w〉|n−(1/2)
dσ(u).

Note that n− (1/2) = {n− 1 + ε}+ {(1/2)− ε}. Using triangle inequality (5.3) again, by
the argument following it in the proof of Lemma 5.3, this time we have

|az,w| ≤ C2
(1− |z|2)n/2(1− |w|2)n/2

|1− 〈z, w〉|n−1+ε
,

z, w ∈ Γ. Since d ≤ n− 1, this means

|az,w| ≤ C3
(1− |z|2)(d+1)/2(1− |w|2)(d+1)/2

|1− 〈z, w〉|d+ε

= C3
(1− |z|2)(d+ε)/2(1− |w|2)(d+ε)/2

|1− 〈z, w〉|d+ε
(1− |z|2)(1−ε)/2(1− |w|2)(1−ε)/2.

But for z, w ∈ Γk specifically, this means

|az,w| ≤ C3
(1− |z|2)(d+ε)/2(1− |w|2)(d+ε)/2

|1− 〈z, w〉|d+ε
(2−2k+1)1−ε.

Combining this with Lemma 8.2, we find that ‖A∗kAk‖ ≤ C3C8.2(2−2k+1)1−ε. Thus

‖Fk‖ ≤ ‖Ak‖‖H‖ ≤ C42−(1−ε)k

for every k ≥ 0. Recalling (8.2), we can now apply Lemma 8.1 to conclude that F ∈
C+

2d/(1−ε). By (8.1), this means F ∈ Cp as promised. This completes the proof. �

Proposition 8.4. For any Lipschitz function f on S, the commutator [Mf , Q] is in the
Schatten class Cp for every p > 2d.

Proof. Again, consider the operator Tε defined in the statement of Proposition 4.3, 0 <
ε < 1. As we explained in the proof of Proposition 4.5, if ε is small enough, then it follows
from Theorem 3.5 and Proposition 4.3 that Tε is invertible on Q. This means that on
L2(S, dσ), the spectrum of the positive operator Tε is contained in {0} ∪ [c, C] for some
0 < c < C < ∞, and that the spectral measure of Tε corresponding to the interval [c, C]
equals Q. Therefore there is an h ∈ C∞c (R) such that Q = h(Tε).
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We have Tε ∈ D0 by definition. Therefore, by Proposition 8.3, if f ∈ Lip(S), then
[Mf , Tε] ∈ Cp for every p > 2d. By the well-known facts about smooth functional calculus,
we have [Mf , h(Tε)] ∈ Cp for every p > 2d. Since h(Tε) = Q, this completes the proof. �

We end the paper with

Theorem 8.5. The quotient module Q is p-essentially normal for every p > d.

Proof. Recalling (1.1), for i, j ∈ {1, . . . , n} we have

[Z∗Q,i,ZQ,j ] = QMz̄iQMzjQ−QMzjQMz̄iQ

= [Q,Mzj ](1−Q)[Mz̄i , Q]− [Q,Mz̄i ](1−Q)[Mzj , Q].

Proposition 8.4 tells us that [Q,Mz̄i ] and [Mzj , Q] are in the Schatten class Ct for every
t > 2d. Consequently, [Z∗Q,i,ZQ,j ] is in the Schatten class Cp for every p > d. �
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20. L. Hörmander, Lp Estimates for (pluri-) harmonic functions, Math. Scand. 20 (1967),
65-78.
21. J. Isralowitz, M. Mitkovski and B. Wick, Localization and compactness in Bergman
and Fock spaces, Indiana Univ. Math. J. 64 (2015), 1553-1573.
22. M. Kennedy and O. Shalit, Essential normality and the decomposability of algebraic
varieties, New York J. Math. 18 (2012), 877-890.
23. S. Krantz, Function theory of several complex variables. Pure and Applied Mathe-
matics. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1982.
24. J. Munkres, Analysis on manifolds, Addison-Wesley Publishing Company, Advanced
Book Program, Redwood City, CA, 1991.
25. R. Range, Holomorphic functions and integral representations in several complex
variables. Graduate Texts in Mathematics 108, Springer-Verlag, New York, 1986.
26. W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York, 1980.
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