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Abstract. We consider a class of analytic subsets M̃ of an open neighborhood of the
closed unit ball in Cn. Such an M̃ gives rise to a submodule R and a quotient module Q of
the Drury-Arveson module H2

n in n variables. The geometric Arveson-Douglas conjecture
predicts that the quotient module Q is p-essentially normal for p > d = dimCM̃ . We prove
this conjecture for the case of dimension d = 1. In fact, we prove that if d = 1, then Q is
1-essentially normal, which is a stronger result than the original prediction.

1. Introduction

Let B denote the open unit ball {z ∈ Cn : |z| < 1} in Cn. Throughout the paper,
the complex dimension n is always assumed to be greater than or equal to 2. Recall that
the Drury-Arveson space H2

n is the Hilbert space of analytic functions on B that has the
function

(1.1) Kz(ζ) =
1

1− 〈ζ, z〉

as its reproducing kernel [1,16]. Equivalently, H2
n can be described as the Hilbert space of

analytic functions on B where the inner product is given by

〈h, g〉 =
∑
α∈Zn

+

α!

|α|!
aαbα

for

h(ζ) =
∑
α∈Zn

+

aαζ
α and g(ζ) =

∑
α∈Zn

+

bαζ
α.

Here and throughout, we follow the standard multi-index notation [26, page 3].

Nowadays, it is common to view H2
n as a Hilbert module over the polynomial ring

C[ζ1, . . . , ζn] [6,12]. Thus H2
n has submodules and quotient modules.

Suppose that N is either a submodule or a quotient module of the Drury-Arveson
module H2

n. Let PN : H2
n → N be the orthogonal projection. Then we have the module

operators

ZN ,j = PNMζj

∣∣N , j = 1, . . . , n,

Keywords: Drury-Arveson space, quotient module, essential normality.
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on N . Recall that N is said to be p-essentially normal if all commutators [ZN ,i,Z∗N ,j ],
1 ≤ i, j ≤ n, are in the Schatten class Cp.

The famous Arveson Conjecture [2-4] predicts that every graded submodule of H2
n⊗Cr

is p-essentially normal for p > n. To date, the best results on the Arveson Conjecture are
due to Guo and K. Wang [20].

In addition to graded submodules, quotient modules of the form H2
n/[I], where I is a

homogeneous ideal in C[ζ1, . . . , ζn], were also studied in [20]. Motived by the results in [20],
Douglas observed in [10] that for quotient modules the essential normality should really
be p > d, where d is the complex dimension of the variety involved. This more refined
conjecture is now called Arveson-Douglas Conjecture. See [5,11,13-15,17,19,20-22,27-29]
for the tremendous progress that has been made in this direction.

In this paper we consider a very specific class of submodules and the corresponding
quotient modules. Our focus is on the quotient modules, because that is where things
become really interesting. Let M̃ be an analytic subset [8] of an open neighborhood of B
with 1 ≤ dimCM̃ ≤ n − 1. We will assume that M̃ has no singular points on the sphere
S = {z ∈ Cn : |z| = 1} and that M̃ intersects S transversely. Denote M = B ∩ M̃ . Then
we have a submodule

R = {f ∈ H2
n : f = 0 on M}

of H2
n. The corresponding quotient module is

Q = H2
n 	R.

In this setting, we have

Geometric Arveson-Douglas Conjecture. The quotient module Q is p-essentially
normal for every p > d = dimCM̃ .

Since the Drury-Arverson module H2
n itself is known to be p-essentially normal for

p > n [1], by a well-known result of Arveson [2], the geometric Arveson-Douglas conjecture
implies that the submodule R is p-essentially normal for p > n.

The analogous problems for the Bergman module L2
a(B) and the Hardy module H2(S)

were recently solved [15,27,28]. Thus it is logical for us to consider the Arveson-Douglas
conjecture for H2

n. But the case of the Drury-Arverson space H2
n poses significant chal-

lenges. In fact, it is very easy to describe the main difficulty. Note that the power for the
denominator on the right-hand side of (1.1) is only 1. By contrast, the reproducing kernels
for Bergman space L2

a(B) and the Hardy space H2(S) are

KBerg
z (ζ) =

1

(1− 〈ζ, z〉)n+1
and KHar

z (ζ) =
1

(1− 〈ζ, z〉)n
,

which have powers n+ 1 and n for the denominator respectively. Because of the necessary
estimates involved, the smaller the power of the reproducing kernel, the harder it is to
prove essential normality. Indeed by a comparison of [15,27] with [28], we can already see
a significant rise of the level of difficulty when that power is reduced from n+ 1 to n.
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The challenge we face in this paper is to reduce the power of the reproducing kernel
from n all the way to 1 and still prove essential normality. As of this writing, we have
managed to overcome this challenge only in the case d = 1. But the case d = 1 is also
arguably the most interesting one, for in this case we have a stronger result than the
prediction of the Arveson-Douglas conjecture:

Theorem 1.1. Suppose that dimCM̃ = 1. Then the quotient module Q is 1-essentially
normal, i.e., every commutator [ZQ,i,Z∗Q,j ] is in the trace class C1, i, j ∈ {1, . . . , n}.

The rest of the paper is devoted to the long proof of this result. We conclude the
Introduction with a brief discussion of the main steps in the proof and the organization of
the paper, which should give the reader some idea why the proof is as long as it is.

Our proof of Theorem 1.1 begins with the preliminaries in Section 2. Specifically, in
Section 2 we first record the precise definitions of M̃ , R, Q, etc, and then we collect a
number of previously-established results that will be needed in the subsequent sections.

As we have already mentioned, a major difficulty we face is that the power in (1.1) is
too small. Our main idea of dealing with this is to increase the power of the denominator
by differentiation. Since we only consider the case d = 1 in the proof of Theorem 1.1,
one order of derivative will increase the power of the denominator to 2, which should be
enough based on dimensional considerations. But derivative has to be taken very carefully
in the following sense. For z ∈M , we have Kz ∈ Q, and differentiation modifies the kernel
Kz. We must make sure that the modified kernel still belongs to the quotient module Q.
Thus we can only differentiate in the directions tangential to M .

To carry out the idea explained above, starting Section 3 we assume d = 1. We
consider a smooth part M of M̃ near S. For each w ∈ M, let pw be the orthogonal
projection of w on the tangent space Tw. The transversality of M̃ implies that pw 6= 0 if
w ∈ M̃ ∩ S. Thus if M is a part of M̃ sufficiently near S, then pw 6= 0 for every w ∈ M.
This gives us a non-vanishing cross section w 7→ pw of the complex tangent bundle of M.
For w ∈M∩B, the kernel

Kw,pw(ζ) =
〈ζ, pw〉

(1− 〈ζ, w〉)2

reproduces the derivative in the direction of pw. That is, 〈f,Kw,pw〉 = (∂pwf)(w) for
f ∈ H2

n. Moreover, because pw ∈ Tw, we have Kw,pw ∈ Q. Specific to the case d = 1, we
introduce the measure

dµ(w) = (1− |w|2)dvM (w)

on M . This naturally leads to the operator

T1 =

∫
M(t0)

Kw,pw ⊗Kw,pwdµ(w)

on H2
n, where M (t0) is a carefully chosen subset of M∩B. A major step in the proof of

Theorem 1.1 is Theorem 3.5, which says that the spectrum of the positive operator T1 does
not intersect the interval (0, c) for some c > 0. Note that even though the cross section
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w 7→ pw is non-vanishing on M, in general it is not analytic. But the condition d = 1
means that, locally, w 7→ pw is an analytic cross section multiplied by a scalar function.
We will use this fact in the proof of Theorem 3.5.

In addition to T1, in Section 4 we introduce the more conventional operator

T2 =

∫
M(t0)

Kw ⊗Kwdµ(w).

For our purpose, the operator that really matters is T = T1 + T2. Theorem 3.5 allows us
to show that there is a c′ > 0 such that the spectrum of T does not intersect (0, c′), and
that Q, the orthogonal projection from H2

n onto Q, equals the spectral projection of T
corresponding to the interval [c′,∞). In other words, we have a practical control of the
orthogonal projection Q : H2

n → Q through the operators T1 and T2, which are given by
explicit formulas.

We then introduce a particular Hilbert space L in Section 4, which can be thought of
as a collection of functions on M (t0) with a particular norm ‖ · ‖#. Let P be the closure
of the analytic polynomials C[ζ1, . . . , ζn] in L. The norm ‖ · ‖# has the property that

〈Tf, f〉 = ‖f‖2#

for every f ∈ H2
n. This leads to the operator J , which take each f ∈ H2

n to the same
function f in P. We think of J as restricting each f ∈ H2

n to the set M (t0). The above
identity means that

J∗J = T.

Thus it follows from the properties of T that J : Q → P is invertible. We call P the range
space of the restriction operator J . One can think of P as a representation of the quotient
module Q that is more accessible.

Accordingly, the operators T1 and T2 also have their representations T̂1 and T̂2 on L.
Individually, the operators T̂1 and T̂2 are not self-adjoint on L. It is, therefore, something
of a miracle that the sum T̂ = T̂1 + T̂2 actually is self-adjoint on L. From this self-
adjointness it follows that, with respect to the space decomposition L = P ⊕P⊥, we have
the operator decomposition T̂ = T̃ ⊕ 0, where T̃ = JJ∗. This means that the orthogonal
projection P : L → P can be expressed in the form P = ξ(T̂ ) for some ξ ∈ C∞c (R).
This converts the proof of the 1-essential normality in Theorem 1.1 to a problem in terms
of commutators and double commutators on L that are much more accessible than the
ones on the Drury-Arveson space H2

n. But the actual handling of these commutators and
double commutators on L is quite tedious: it takes the work in Sections 5, 6 and 7 to
finally obtain the 1-essential normality promised in Theorem 1.1.

There is a major difference between proving essential normality in the case of H2
n and

the corresponding task in the case of the Bergman space L2
a(B) or the Hardy space H2(S).

In the two latter cases, the commuting tuple (Mζ1 , . . . ,Mζn) is jointly subnormal, i.e., it
extends to a tuple of multiplication operators (Mζ1 , . . . ,Mζn) on an L2-space. On the
L2-space, we have M∗ζj = Mζ̄j , 1 ≤ j ≤ n. More to the point, Mζj commutes with M∗ζi on
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the L2-space, which is a fact heavily involved in [27,28]. In contrast, on the Drury-Arveson
space H2

n, the tuple (Mζ1 , . . . ,Mζn) is known not to be jointly subnormal [1]. This creates
an additional obstacle to the proof of essential normality on H2

n.

Because (Mζ1 , . . . ,Mζn) is not jointly subnormal on H2
n, the only way to obtain the

desired essential normality for Q is through the pair of spaces P ⊂ L. We have the tuple
of multiplication operators (Mζ1 , . . . ,Mζn) on P with the relation

MζiJ = JZQ,i,

1 ≤ i ≤ n. The tuple (Mζ1 , . . . ,Mζn) on P naturally extends to the commuting tuple

(M̂ζ1 , . . . , M̂ζn) on L. On L, we still have M̂∗ζi 6= M̂ζ̄i , but the difference M̂∗ζi − M̂ζ̄i can be
computed explicitly. In fact, the handling of this difference is a significant part of Sections
5, 6 and 7. But what matters is the fact that in the end, this approach does lead to a
proof of Theorem 1.1.

Acknowledgement. The author wishes to thank Yi Wang for discussions related to this
work. The author thanks the referee for the careful reading of the manuscript and for the
valuable suggestions.

2. Preliminaries

Although the actual work of this paper only concerns the case dimCM̃ = 1, due to the
need to cite a number of existing results, it is necessary to introduce the general technical
framework. Much of the material in this section is cited from [28, Section 2].

We begin with the precise definitions of the analytic sets, submodules and quotient
modules that we consider in this paper.

Definition 2.1. [8] Let Ω be a complex manifold. A set A ⊂ Ω is called a complex
analytic subset of Ω if for each point a ∈ Ω there are a neighborhood U of a and functions
f1, · · · , fN analytic in this neighborhood such that

A ∩ U = {z ∈ U : f1(z) = · · · = fN (z) = 0}.

A point a ∈ A is called regular if there is a neighborhood U of a in Ω such that A∩U is a
complex submanifold of Ω. A point a ∈ A is called a singular point of A if it is not regular.

Definition 2.2. Let Y be a manifold and let X,Z be submanifolds of Y . We say that the
submanifoldsX and Z intersect transversely if for every x ∈ X∩Z, Tx(X)+Tx(Z) = Tx(Y ).

Assumption 2.3. Let M̃ be an analytic subset in an open neighborhood of the closed
ball B. Furthermore, M̃ satisfies the following conditions:

(1) M̃ intersects ∂B transversely.
(2) M̃ has no singular points on ∂B.
(3) M̃ is of pure dimension d, where 1 ≤ d ≤ n− 1.

Note that condition (3) implies that M̃ has no isolated singularities in B.
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We emphasize that Assumption 2.3 will always be in force for the rest of the paper.
Given such an M̃ , we fix M , R, Q and Q as follows.

Notation 2.4. (a) Let M = M̃ ∩B.
(b) Denote R = {f ∈ H2

n : f = 0 on M}.
(c) Denote Q = H2

n 	R.
(d) Let Q be the orthogonal projection from H2

n onto Q.

In addition, we will simplify the notation for module operators used in the Introduc-
tion. Namely, we will write Qζj = ZQ,j for j = 1, . . . , n. That is,

Qζj = QMζj

∣∣Q,
j = 1, . . . , n. Thus the goal of the paper is to show that under the condition d = 1, we
have [Qζi , Q

∗
ζj

] ∈ C1 for all i, j ∈ {1, . . . , n}. But this will take a very long journey.

Denote S = {z ∈ Cn : |z| = 1}, the unit sphere in Cn. For z ∈ Cn and r > 0, denote

B(z, r) = {w ∈ Cn : |z − w| < r}.

By Assumption 2.3, there is an s ∈ (0, 1) such that

(2.1) M = {z ∈ M̃ : 1− s < |z| < 1 + s}

is a complex manifold of complex dimension d and of finite volume.

For each z ∈M, let Tz be the tangent space toM at the point z, viewed as a natural
subspace of Cn. For each z ∈M, let pz be the orthogonal projection of z on Tz. Condition
(1) in Assumption 2.3 says that if z ∈ M̃ ∩ S, then pz 6= 0. Thus, reducing the value of
s ∈ (0, 1) if necessary, we may assume that there is a γ > 0 such that

(2.2) |pz| ≥ γ for every z ∈M.

Denote

(2.3) K = {z ∈ M̃ : 1− (s/2) ≤ |z| ≤ 1}.

Then K is a compact subset of the complex manifold M. By the standard facts known
about such a pair ofM and K [23-25], the statements below hold true with constants that
are independent of z ∈ K.

There are a > 0 and b > 0 such that for each z ∈ K, there is a map

(2.4) Gz : Tz ∩B(0, a)→M

that biholomorphically maps Tz ∩ B(0, a) onto an open subset of M with the properties
that Gz(0) = z and that

(2.5) {Gz(w) : w ∈ Tz ∩B(0, a)} ⊃ M∩B(z, b).
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Let DGz be the complex derivative of Gz. For each w ∈ Tz ∩ B(0, a), we have the local
Taylor expansion

Gz(w + u) = Gz(w) + (DGz)(w)u+

∫ 1

0

{(DGz)(w + tu)− (DGz)(w)}udt,

w + u ∈ Tz ∩B(0, a). In particular, at the point w = 0 we have

Tz = (DGz)(0)Tz

and

Gz(u) = z + (DGz)(0)u+

∫ 1

0

{(DGz)(tu)− (DGz)(0)}udt for u ∈ Tz ∩B(0, a).

Reducing the values of a and b if necessary, we may assume that there are constants
0 < α ≤ β <∞ such that for w ∈ Tz ∩B(0, a), the linear transformation inequality

α ≤ (DGz)
∗(w)(DGz)(w) ≤ β

holds on Tz.

For each z ∈ K,
T⊥z = {u ∈ Tz : 〈u, pz〉 = 0}

is a linear subspace of Tz of dimension d− 1. As a subspace of Cn, T⊥z is orthogonal to z.

Definition 2.5. (a) For each z ∈ K, we define

Tmod
z = T⊥z ⊕ {ξz : ξ ∈ C},

which we consider as the modified complex tangent space at z.
(b) For each z ∈ K, let Pz be the orthogonal projection from Cn onto Tmod

z .

Lemma 2.6. [28, Lemma 2.7] There exist b0 > 0 and c0 > 0 such that for every z ∈ K,
Pz is a biholomorphic map from M ∩ B(z, b0) onto an open set in Tmod

z that contains
Tmod
z ∩B(z, c0).

For z ∈ K, let Iz : Tmod
z ∩B(z, c0)→M be the inverse of Pz. For x ∈ Tmod

z ∩B(z, c0),
the relation PzIz(x) = x leads to

(2.6) Iz(x) = x+ hz(x), where hz(x) = Iz(x)− PzIz(x).

That is, for each z ∈ K, hz maps Tmod
z ∩B(z, c0) into Cn	Tmod

z . We now fix a c1 ∈ (0, c0).
By the analysis on page 8 in [28], there are constants 0 < α(c1) ≤ β(c1) < ∞ such that
the operator inequality

(2.7) α(c1) ≤ (DIz)
∗(x)(DIz)(x) ≤ β(c1)
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holds on the linear space Tmod
z for all z ∈ K and x ∈ Tmod

z ∩ B(z, c1). Applying the
standard open mapping theorem, there is a 0 < b1 < b0 such that

(2.8) {Iz(x) : x ∈ Tmod
z ∩B(z, c1)} ⊃ M∩B(z, b1).

Our analysis also involves the Bergman-metric structure of the ball. As usual, we
write β for the Bergman metric on B. That is,

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ B.

We recall that the Möbius transform ϕz is given by the formula

ϕz(w) =
1

1− 〈w, z〉

{
z − 〈w, z〉

|z|2
z − (1− |z|2)1/2

(
w − 〈w, z〉

|z|2
z

)}
when z 6= 0, and ϕ0(w) = −w. For each z ∈ B and each a > 0, we define the corresponding
β-ball D(z, a) = {w ∈ B : β(z, w) < a}.

Lemma 2.7. [28, Lemma 2.9] (1) Let r > 0 be given. For each ε > 0, there is a δ = δ(r, ε)
∈ (0, 1) such that if z ∈ K satisfies the condition 1− δ ≤ |z| < 1, then the inequality

β(w,Pzw) ≤ ε

holds for every w ∈ D(z, r) ∩M.
(2) Let z ∈ M ∩K and r > 0 be such that D(z, r/2) ⊂ B(z, c0) and β(w,Pzw) ≤ r/3 for
every w ∈ D(z, 2r) ∩M . Then Iz(D(z, r/2) ∩ Tmod

z ) ⊂ D(z, r) ∩M .

For every z ∈ K, Tmod
z is a d-dimensional linear subspace of Cn. For convenience we

will write v for the natural volume measure on Tmod
z , even though for different z ∈ K this

may be a different linear subspace of Cn. But since volume depends only on the Euclidean
metric, which Tmod

z inherits from Cn, such a simplification of notation is justified.

For each z ∈ K, we have the Jacobian

(2.9) Jz(x) = det{(DIz)∗(x)(DIz)(x)},

x ∈ Tmod
z ∩ B(z, c1). Let vM denote the natural volume measure on M. Suppose that

z ∈ K and U is an open set in M∩ B(z, b1). By (2.8), we have PzU ⊂ Tmod
z ∩ B(z, c1).

For any positive, continuous function f on U , we have

(2.10)

∫
U

f(w)dvM(w) =

∫
PzU

f(Iz(x))Jz(x)dv(x).

Recall that this is in fact how volume is defined on M.

In addition to the volume measure vM onM, we define the measure vM on M = M̃∩B
by the formula vM (E) = vM(E ∩M) for Borel sets E ⊂M .
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Lemma 2.8. [28, Lemma 2.10] Given any a > 0 and κ > −1, there is a 0 < C2.8 < ∞
such that ∫

M

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ C2.8

for every z ∈M .

Moreover, it is known that if κ > −1, then∫
M

(1− |w|2)κdvM (w) <∞

[28, page 15]. This finiteness is due to the fact that we can use the function ρ(w) = 1−|w|2
as one of the 2d real coordinates on M for w ∈M near S.

Lemma 2.9. [28, Lemma 2.11] Given any a > 0 and κ > −1, there are δ > 0 and
0 < C2.9(δ) <∞ such that∫

M\D(z,r)

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ C2.9(δ)e−2δr

for all z ∈M and r > 0.

Following [28], we use a subscript d to indicate a set in Cd. For example, Bd = {w ∈
Cd : |w| < 1} and Dd(z, r) = {w ∈ Bd : β(z, w) < r}. Similarly, dvd denotes the volume
measure on Cd. In particular, dv1 is just the area measure on C.

Lemma 2.10. Let 0 < r < ∞. If f is a bounded analytic function on D1(z, r), z ∈ B1,
then

(2.11)

∫
D1(z,r)

f(w)
1− |w|2

(1− 〈z, w〉)3
dv1(w) = Φ(r)f(z)

where

Φ(r) =

∫
D1(0,r)

(1− |ζ|2)dv1(ζ).

Proof. Let w = ϕz(ζ). By the formulas from [26, Theorem 2.2.2], we have

1− 〈z, ϕz(ζ)〉 =
1− |z|2

1− 〈z, ζ〉
and 1− |ϕz(ζ)|2 =

(1− |z|2)(1− |ζ|2)

|1− 〈z, ζ〉|2
.

Therefore the left-hand side of (2.11) equals

∫
D1(0,r)

f(ϕz(ζ))
(1− |z|2)(1− |ζ|2)

|1− 〈z, ζ〉|2

(
1− 〈z, ζ〉
1− |z|2

)3
(1− |z|2)2

|1− 〈z, ζ〉|4
dv1(ζ).
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After the obvious cancellation, we find that∫
D1(z,r)

f(w)
1− |w|2

(1− 〈z, w〉)3
dv1(w) =

∫
D1(0,r)

f(ϕz(ζ))

(1− 〈ζ, z〉)3
(1− |ζ|2)dv1(ζ).

With respect to the Euclidean metric on C, D1(0, r) is a disc centered at 0. Hence the
above equals Φ(r)f(ϕz(0))(1− 〈0, z〉)−3 = Φ(r)f(z). �

Lemma 2.11. [28, Lemma 3.2] For each given 0 < r <∞, we have

lim
t↑1

sup

{∣∣∣∣1− 1− |x|2

1− |Iz(x)|2

∣∣∣∣ : |z| ≥ t, z ∈M and x ∈ D(z, r) ∩ Tmod
z

}
= 0

and
lim
t↑1

sup{|Jz(z)− Jz(x)| : |z| ≥ t, z ∈M and x ∈ D(z, r) ∩ Tmod
z } = 0.

Lemma 2.12. Let −1 < τ <∞. Then

dΩ(w) = (1− |w|2)n−d+τdvM (w)

is a Carleson measure for the weighted Bergman space L2
a,τ = L2

a(B, (1− |z|2)τdv(z)).

Proof. For each pair of ζ ∈ S and r > 0, define Q(ζ, r) = {z ∈ B : |1 − 〈z, ζ〉| < r}. By
the well-known [7, Theorem 1], to show that Ω is a Carleson measure for L2

a,τ , it suffices
to find a C1 such that

(2.12) Ω(Q(ζ, r)) ≤ C1r
n+1+τ

for all ζ ∈ S and r > 0. To prove this, note that

(1− |w|2)n−d+τ = (1− |w|2)1+τ · (1− |w|2)n−1−d

If w ∈ Q(ζ, r) ∩M , then 1− |w|2 ≤ 2r. Since 1 + τ > 0, we have

Ω(Q(ζ, r)) =

∫
Q(ζ,r)∩M

(1−|w|2)n−d+τdvM (w) ≤ (2r)1+τ

∫
Q(ζ,r)∩M

(1−|w|2)n−1−ddvM (w).

By inequality (2.26) in [28],∫
Q(ζ,r)∩M

(1− |w|2)n−1−ddvM (w) ≤ Crn

for all ζ ∈ S and r > 0. Thus (2.12) indeed holds. �

Under the usual identification of C with R2, we can also view Tz as a subspace of
R2n of real dimension 2d, equipped with the real inner product. Thus if z ∈ M and h is
a real-valued C1-function on an open neighborhood U of z in Cn ∼= R2n, then we define
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(∇Mh)(z) to be the orthogonal projection of the real vector (∇h)(z) onto the real subspace
Tz. If h is complex-valued, we can write h = h1 + ih2, where h1 and h2 are real valued.
In this case, we define (∇Mh)(z) = (∇Mh1)(z) + i(∇Mh2)(z). This defines the operation
∇M. We think of ∇M as the gradient in the directions tangent to M.

For each 0 < t ≤ 1, we define the sets

(2.13) M (t) = {z ∈M : 1− |z|2 < t} and N (t) = {z ∈M : 1− |z|2 > t},

which will appear frequently in the sequel. For each −1 < τ <∞, we denote

dντ (w) = (1− |w|2)τdvM (w).

Lemma 2.13. Given any −1 < τ < ∞ and 0 < t ≤ 1, there are constants 0 < a < b < t
and 0 < C <∞ such that the inequality∫

M(t)

|f(w)|2dντ (w) ≤ C
∫
M(b)

|(∇Mf)(w)|2(1− |w|2)2dντ (w)

+ C

∫
N(a)∩M(t)

|f(w)|2dντ (w)

holds for every C1 function f on any open set containing the closure of M (t).

The proof of this lemma is essentially the same as the proof of [29, Lemma 3.1]. For
that reason we leave the proof of Lemma 2.13 to Appendix 1.

As usual, we write ∂ = (∂1, . . . , ∂n), the analytic gradient on Cn. By the multi-index
convention that we follow, for α = (α1, . . . , αn) ∈ Zn+, ∂α denotes ∂α1

1 · · · ∂αnn .

Lemma 2.14. Let −1 < τ < ∞ and k ∈ N be given. There are constants 0 < a < b < 1
and 0 < C < ∞ such that if f is any analytic function on an open set containing the
closure of M , then∫

M

|f(w)|2dντ (w) ≤ C
∑
|α|=k

∫
M(b)

|(∂αf)(w)|2(1− |w|2)2kdντ (w)

+ C
∑

0≤|β|≤k−1

∫
N(a)

|(∂βf)(w)|2dντ (w).

Proof. This follows from Lemma 2.13 by an obvious induction on k. �

Let us recall the family of spaces H(t) introduced in [19]. For each −n ≤ t < ∞, let
H(t) be the Hilbert space of analytic functions on B which has the function

K(t)
w (z) =

1

(1− 〈z, w〉)n+1+t
, z, w ∈ B,
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as its reproducing kernel. Equivalently, H(t) is the completion of C[z1, . . . , zn] with respect
to the norm ‖ · ‖t arising from the inner product 〈·, ·〉t defined according to the following
rules: 〈zα, zβ〉t = 0 whenever α 6= β,

(2.14) 〈zα, zα〉t =
α!∏|α|

j=1(n+ t+ j)

if α ∈ Zn+\{0}, and 〈1, 1〉t = 1. It is well known that H2
n = H(−n) and that for each

−1 < t <∞, H(t) is a weighted Bergman space on B.

Recall that the formula

R = z1∂1 + · · ·+ zn∂n

defines the radial derivative on B. Let m ∈ N and −n ≤ t < ∞ satisfy the condition
2m+ t > −1. For such a pair of m and t, we define

‖f‖2m,t = |f(0)|2 +

∫
B

|(Rmf)(z)|2(1− |z|2)2m+tdv(z)

whenever f is an analytic function on B. The following is well known:

Lemma 2.15. Let m ∈ N and −n ≤ t <∞ satisfy the condition 2m+ t > −1. Then there
exist constants 0 < c ≤ C <∞ such that

c‖f‖m,t ≤ ‖f‖t ≤ C‖f‖m,t

for every analytic function f on B.

Proof. When α 6= β, we have 〈zα, zβ〉t = 0 by definition. When α 6= β, it is easy to see that
〈zα, zβ〉m,t = 0, where 〈·, ·〉m,t is the inner product that corresponds to the norm ‖ · ‖m,t
defined above. Thus it suffices to find constants 0 < c ≤ C <∞ such that

(2.15) c‖zα‖m,t ≤ ‖zα‖t ≤ C‖zα‖m,t

for every α ∈ Zn+. We have Rmzα = |α|mzα. Therefore, for any α 6= 0,

‖zα‖2m,t = |α|2m
∫
B

|zα|2(1− |z|2)2m+tdv(z)

=
|α|2m(n− 1)!α!

(n− 1 + |α|)!
2n

∫ 1

0

r2|α|+2n−1(1− r2)2m+tdr

=
|α|2mn!α!

(n− 1 + |α|)!

∫ 1

0

x|α|+n−1(1− x)2m+tdx

=
|α|2mn!α!

(n− 1 + |α|)!
· (|α|+ n− 1)!∏|α|+n

j=1 (2m+ t+ j)
=

|α|2mn!α!∏|α|+n
j=1 (2m+ t+ j)

.(2.16)
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By Stirling’s asymptotic formula (see, e.g., identity (3.3) in [18]), we have

|α|+n∏
j=1

(2m+ t+ j) ≈ (2m+ t+ |α|+ n)2m+t+|α|+n+(1/2)e−|α| whereas

|α|∏
j=1

(n+ t+ j) ≈ (n+ t+ |α|)n+t+|α|+(1/2)e−|α|.

Combining these formulas with (2.14) and (2.16), we obtain (2.15). �

Lemma 2.16. Given m ∈ N and t > −1, there is a constant 0 < C <∞ such that

(2.17)

∫
B

|(∂βf)(z)|2(1− |z|2)tdv(z) ≤ C
∫
B

|(Rmf)(z)|2(1− |z|2)tdv(z)

for every β ∈ Zn+ satisfying the condition |β| = m and every analytic function f on B.

Proof. Similar to what happened in the previous proof, it suffices to find a 0 < C < ∞
such that

(2.18)

∫
B

|∂βzα|2(1− |z|2)tdv(z) ≤ C
∫
B

|Rmzα|2(1− |z|2)tdv(z)

for every α ∈ Zn+. Write β = (β1, . . . , βn). Note that for any α = (α1, . . . , αn) ∈ Zn+, the
left-hand side of (2.18) is 0 unless αj ≥ βj for every j ∈ {1, . . . , n}. Suppose that this
condition is satisfied. Then α− β ∈ Zn+ and we have

∂βzα = zα−β
∏
βν>0

βν∏
iν=1

(αν − βν + iν).

Therefore∫
B

|∂βzα|2(1− |z|2)tdv(z) =
∏
βν>0

βν∏
iν=1

(αν − βν + iν)2

∫
B

|zα−β |2(1− |z|2)tdv(z)

=
∏
βν>0

βν∏
iν=1

(αν − βν + iν)2 · n!(α− β)!∏|α−β|+n
j=1 (t+ j)

≤
n!α!|α|m

∏|α|+n
j=|α−β|+n+1(t+ j)∏|α|+n
j=1 (t+ j)

.(2.19)

On the other hand, since Rmzα = |α|mzα, we have

(2.20)

∫
B

|Rmzα|2(1− |z|2)tdv(z) =
n!α!|α|2m∏|α|+n
j=1 (t+ j)

.
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Since |β| = m, we have |α| = |α−β|+m, and consequently
∏|α|+n
j=|α−β|+n+1(t+ j) ≤ C|α|m.

Combining this inequality with (2.19) and (2.20), we obtain (2.18). �

We end the section with one more notation. For any u = (u1, . . . , un) ∈ Cn, we write

(2.21) ∂u = u1∂1 + · · ·+ un∂n and ∂u = ū1∂̄1 + · · ·+ ūn∂̄n.

3. Spectral gap

For the rest of the paper, we assume d = 1. Accordingly, we define the measure

(3.1) dµ(w) = (1− |w|2)dvM (w).

We fix a t0 ∈ (0, 1) such that

(3.2) M (2t0) ⊂ K

(see (2.3) and (2.13)). Recall that for z ∈M, pz is the orthogonal projection of z on Tz.

Definition 3.1. For any C1 function f on an open set containing M , we define

‖f‖∗ =

{∫
M(t0)

|(∂pwf)(w)|2dµ(w)

}1/2

.

Proposition 3.2. There is a 0 < C <∞ such that

(3.3)

∫
M

|(∂jf)(w)|2dµ(w) ≤ C‖f‖2

for all f ∈ H2
n and 1 ≤ j ≤ n.

Proof. We pick a natural number m ≥ 2 such that 2m− n ≥ 0. Given an f ∈ H2
n, define

the function fr(w) = f(rw) for each 0 < r < 1. Each fr is analytic on an open ball
containing B. By Lemma 2.14, we have∫

M

|(∂jfr)(w)|2dµ(w) ≤ C1

∑
|α|=m−1

∫
M(b)

|(∂α∂jfr)(w)|2(1− |w|2)2m−2dµ(w)

+ C1

∑
0≤|β|≤m−2

∫
N(a)

|(∂β∂jfr)(w)|2dµ(w).

By the definition of N (a), the second term is dominated by C2‖fr‖2 ≤ C2‖f‖2. It follows
from Lemma 2.12 that for each α ∈ Zn+ with |α| = m− 1,∫

M(b)

|(∂α∂jfr)(w)|2(1− |w|2)2m−2dµ(w)

≤ C3

∫
B

|(∂α∂jfr)(w)|2(1− |w|2)2m−ndv(w) ≤ C4‖fr‖2 ≤ C4‖f‖2,
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where the second ≤ follows from Lemmas 2.15 and 2.16. Thus∫
M

|(∂jfr)(w)|2dµ(w) ≤ C5‖f‖2.

Applying Fatou’s lemma,∫
M

|(∂jf)(w)|2dµ(w) ≤ lim inf
r↑1

∫
M

|(∂jfr)(w)|2dµ(w) ≤ C5‖f‖2.

This completes the proof. �

We will now try to modify the reproducing kernel for H2
n given by (1.1). For each pair

of w ∈ B and u ∈ Cn, we define

(3.4) Kw,u(ζ) =
〈ζ, u〉

(1− 〈ζ, w〉)2
.

For w ∈ B, u ∈ Cn and f ∈ H2
n, it is easy to see that

(3.5) 〈f,Kw,u〉 =
d

dt
〈f,Kw+tu〉

∣∣
t=0

=
d

dt
f(w + tu)

∣∣
t=0

= (∂uf)(w).

That is, Kw,u is the reproducing kernel for the directional derivative ∂u.

Lemma 3.3. Let w ∈M (t0). If u ∈ Tw, then Kw,u ∈ Q.

Proof. Since u ∈ Tw, there is a smooth path γ : (−c, c) → M (t0) such that γ(0) = w and
γ′(0) = u. Thus

Kw,u =
d

dt
Kγ(t)

∣∣
t=0

.

Let f ∈ R. Since the range of γ is contained in M , we have 〈f,Kγ(t)〉 = 0 for every
t ∈ (−c, c). Therefore

〈f,Kw,u〉 =
d

dt
〈f,Kγ(t)〉

∣∣
t=0

=
d

dt
0
∣∣
t=0

= 0.

This shows that Kw,u ⊥ R. That is, Kw,u ∈ Q. �

We now define the operator

(3.6) T1 =

∫
M(t0)

Kw,pw ⊗Kw,pwdµ(w).

Proposition 3.4. The operator T1 defined above is bounded on the Drury-Arveson space
H2
n. Moreover, T1 maps H2

n into the quotient module Q.

Proof. By (3.5), for f ∈ H2
n we have 〈T1f, f〉 = ‖f‖2∗. Hence the boundedness of T1 follows

from Proposition 3.2. For w ∈M (t0), since pw ∈ Tw, Lemma 3.3 tells us that Kw,pw ∈ Q.
Therefore T1 maps H2

n into Q. �
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Obviously, T1 is a positive operator on H2
n. The main goal of this section is to prove

that there is an important gap in the spectrum of T1:

Theorem 3.5. There is a c > 0 such that the spectrum of T1 does not intersect (0, c).

The proof of Theorem 3.5 requires some preparations.

Since we now assume d = 1, B1(0, r) = {ξ ∈ C : |ξ| < r}, r > 0. SinceM is a complex
manifold with dimCM = 1, for each y ∈ M, there is an open subset Vy of M containing
y and a biholomorphic map

ρy : B1(0, 2)→ Vy

such that ρy(0) = y. For each ξ ∈ B1(0, 2), ρ′y(ξ) is obviously a complex tangent vec-
tor to M at the point ρy(ξ), and we have ρ′y(ξ) 6= 0 since ρy is biholomorphic. Since
dimC(Tρy(ξ)) = 1, we have Tρy(ξ) = Cρ′y(ξ) for every ξ ∈ B1(0, 2). Define

ηy(w) = ρ′y(ρ−1
y (w)), w ∈ Vy.

Then Tw = Cηy(w) for every w ∈ Vy. The important fact to keep in mind is that ηy is
analytic on Vy. Since pw is the orthogonal projection of w onto Tw, there is a continuous
function sy : Vy → C such that

(3.7) pw = sy(w)ηy(w) for every w ∈ Vy.

This identity embodies one of our main observations: modulo continuous scalar multiples,
pw is locally analytic. This fact will be crucial for the proof of Theorem 3.5.

We now define Uy = ρyB1(0, 1), which is an open subset ofM containing y. Obviously,
Uy is a compact subset of Vy. Thus sy is uniformly continuous on Uy. By (2.2), the infimum
of |sy| on the set Uy is greater than 0. Since K is a compact subset ofM, there is a finite
subset F of K such that ⋃

y∈F
Uy ⊃ K.

By general topology, this implies

Lemma 3.6. There is an ε > 0 such that for each ζ ∈ K, there is a y = y(ζ) ∈ F for
which the containment {w ∈M : |ζ − w| < ε} ⊂ Uy holds.

Lemma 3.7. For each y ∈ M (t0), there is an open neighborhood Ny of y in M (t0) which

has the following property. Let {fk} be a sequence in H2
n. If the sequence {T 1/2

1 fk} weakly
converges to 0, then

lim
k→∞

sup{|(∂pwfk)(w)| : w ∈ Ny} = 0.

Proof. For each y ∈M (t0), consider the biholomorphic map ρy : B1(0, 2)→ Vy introduced
above. Recall that ρy(0) = y. Since y is now in M (t0), there are ε = ε(y) > 0 and
r = r(y) ∈ (0, 1) such that ρy(B1(0, r)) ⊂ {w ∈ M (t0) : 1 − |w|2 > ε}. We will show that
the lemma holds for the open set Ny = ρy(B1(0, r/2)).
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We begin with the Bergman space L2
a(B1(0, r), dv1). For each f ∈ H2

n, define

(Gf)(ξ) = (∂ρ′y(ξ)f)(ρy(ξ)), ξ ∈ B1(0, r).

Using the conditions r < 1 and (3.7), we have∫
B1(0,r)

|(Gf)(ξ)|2dv1(ξ) ≤ C1

∫
B1(0,r)

|sy(ρy(ξ))|2|(∂ρ′y(ξ)f)(ρy(ξ))|2|ρ′y(ξ)|2dv1(ξ)

= C1

∫
ρy(B1(0,r))

|(∂pwf)(w)|2dvM (w)

≤ C1ε
−1

∫
ρy(B1(0,r))

|(∂pwf)(w)|2(1− |w|2)dvM (w)

= C1ε
−1

∫
ρy(B1(0,r))

|(∂pwf)(w)|2dµ(w)

≤ C1ε
−1〈T1f, f〉 = C1ε

−1‖T 1/2
1 f‖2.(3.8)

Thus there is a bounded operator W : H2
n → L2

a(B1(0, r), dv1) such that G = WT
1/2
1 .

Now let {fk} be any sequence in H2
n such that {T 1/2

1 fk} weakly converges to 0. Since

G = WT
1/2
1 , the sequence {Gfk} weakly converges to 0 in L2

a(B1(0, r), dv1). Using the
reproducing kernel for the Bergman space, we have

lim
k→∞

sup{|(∂ρ′y(ξ)fk)(ρy(ξ))| : ξ ∈ B1(0, r/2)} = 0.

By (3.7) and the boundedness of sy ◦ ρy on B1(0, r/2), the above limit implies

lim
k→∞

sup{|(∂pwfk)(w)| : w ∈ Ny} = 0

as promised. �

Lemma 3.8. Define the operators B and Br on L2(M,dµ) by the formulas

(Bf)(z) =

∫
M

f(w)

|1− 〈z, w〉|3
dµ(w) and

(Brf)(z) =

∫
M\D(z,r)

f(w)

|1− 〈z, w〉|3
dµ(w)

for f ∈ L2(M,dµ), r > 0. Then ‖B‖ <∞ and ‖Br‖ → 0 as r →∞.

Proof. We set a = 1/2 and κ = 1/2. Define h(w) = (1− |w|2)−1/2, w ∈M . Then

(Brh)(z) =

∫
M\D(z,r)

(1− |w|2)κ

|1− 〈z, w〉|1+1+a+κ
dvM (w).
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By Lemma 2.9, we have (Brh)(z) ≤ C2.9(δ)e−2δr(1 − |z|2)−a = C2.9(δ)e−2δrh(z), z ∈ M .
Since the kernel function |1− 〈z, w〉|−3 is symmetric with respect to z and w, we can now
apply the Schur test to conclude that ‖Br‖ ≤ C2.9(δ)e−2δr. Hence ‖Br‖ → 0 as r →∞.

Similarly, by Lemma 2.8 we have (Bh)(z) ≤ C2.8h(z), z ∈ M . Thus it follows from
the Schur test that ‖B‖ ≤ C2.8. This completes the proof. �

For each f ∈ H2
n, define

(Xf)(z) =

∫
M(t0)

(∂pwf)(w)〈pz, w〉〈z, pw〉
(1− 〈z, w〉)3

dµ(w), z ∈ B.

Lemma 3.9. Given any δ > 0, there exist constants 0 < τ < t0 and 0 < C <∞ such that∫
M(t)

|(∂pzf)(z)|2dµ(z) ≤ C
∫
M(t)

|(Xf)(z)|2dµ(z) + δ‖f‖2∗

for all 0 < t ≤ τ and f ∈ H2
n.

Proof. We begin with a large 1 ≤ r < ∞, whose exact value will be determined below.
With such an r, there is a 0 < τ1 ≤ t0 such that if 0 < t ≤ τ1, then for z ∈ M (t) we have
D(z, 2r) ⊂ B(z,min{b1, c1}) (see (2.8)). By Lemma 2.7(1), there is a 0 < τ2 ≤ τ1 such
that if 0 < t ≤ τ2, then for z ∈ M (t) and w ∈ D(z, r) ∩M we have β(w,Pzw) < r. Thus
Pzw ∈ D(z, 2r) ∩ Tmod

z and Iz(Pzw) = w ∈ D(z, r) ∩M . That is, if 0 < t ≤ τ2, then

(3.9) Iz(D(z, 2r) ∩ Tmod
z ) ⊃ D(z, r) ∩M for every z ∈M (t).

By (2.7), there is a constant 1 ≤ C1 <∞ such that the inequality

(3.10) |Iz(x)− Iz(x′)| ≤ C1|x− x′|

holds for every triple of z ∈ K and x, x′ ∈ Tmod
z ∩B(z, c1). Therefore there is a 0 < τ3 ≤ τ2

such that

(3.11) Iz(D(z, 2r) ∩ Tmod
z ) ⊂M (t0) if z ∈M (τ3).

Let us write U(z) = Iz(D(z, 2r) ∩ Tmod
z ) for z ∈M (τ3).

Let f ∈ H2
n be given. By (3.11), for z ∈M (τ3) we have

(Xf)(z) = 〈pz, z〉A(z) +B(z) + C(z),

where

A(z) =

∫
U(z)

(∂pwf)(w)〈z, pw〉
1− |w|2

(1− 〈z, w〉)3
dvM (w),

B(z) =

∫
U(z)

(∂pwf)(w)〈pz, w − z〉〈z, pw〉
1− |w|2

(1− 〈z, w〉)3
dvM (w) and

C(z) =

∫
M(t0)\U(z)

(∂pwf)(w)〈pz, w〉〈z, pw〉
1− |w|2

(1− 〈z, w〉)3
dvM (w).
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Since PzU(z) = D(z, 2r) ∩ Tmod
z , z ∈M (τ3), by (2.10) we have

A(z) =

∫
D(z,2r)∩Tmod

z

(∂pIz(x)f)(Iz(x))〈z, pIz(x)〉
1− |Iz(x)|2

(1− 〈z, Iz(x)〉)3
Jz(x)dv1(x).

Recall from (2.6) that 〈z, Iz(x)〉 = 〈z, x〉. Writing

F (z, x) = 1− 1− |x|2

1− |Iz(x)|2
· Jz(z)
Jz(x)

,

we have A(z) = A1(z) +A2(z), where

A1(z) = Jz(z)

∫
D(z,2r)∩Tmod

z

(∂pIz(x)f)(Iz(x))〈z, pIz(x)〉
1− |x|2

(1− 〈z, x〉)3
dv1(x) and

A2(z) =

∫
D(z,2r)∩Tmod

z

(∂pIz(x)f)(Iz(x))〈z, pIz(x)〉
1− |Iz(x)|2

(1− 〈z, Iz(x)〉)3
F (z, x)Jz(x)dv1(x).

Let us first consider A1(z).

There is a 0 < τ4 ≤ τ3 such that if 0 < t ≤ τ4, then for each z ∈ M (t), D(z, 3r) ⊂
B(z,min{c1, C−1

1 ε}), where ε is the constant in Lemma 3.6. Recall that Iz(z) = z. Thus
by (3.10) and Lemma 3.6, if 0 < t ≤ τ4 and z ∈M (t), then there is a y(z) in the finite set
F such that Iz(D(z, 3r) ∩ Tmod) ⊂ Uy(z). Applying (3.7), we now have

(3.12) pIz(x) = sy(z)(Iz(x))ηy(z)(Iz(x))

for every x ∈ D(z, 3r) ∩ Tmod
z . Define

λz(x) = sy(z)(Iz(x))〈z, pIz(x)〉 − sy(z)(z)〈z, pz〉
= |sy(z)(Iz(x))|2〈z, ηy(z)(Iz(x))〉 − |sy(z)(z)|2〈z, ηy(z)(z)〉,

x ∈ D(z, 2r) ∩ Tmod
z . By the uniform continuity of ηy and sy on Uy, y ∈ F , if we denote

δ(r, t) = sup
z∈M(t)

sup
x∈D(z,2r)∩Tmod

z

|λz(x)|,

then

(3.13) lim
t↓0

δ(r, t) = 0

for every given 1 ≤ r <∞.

By (3.12) and the definition of λz(x), we have A1(z) = A11(z) +A12(z), where

A11(z) = Jz(z)sy(z)(z)〈z, pz〉
∫
D(z,2r)∩Tmod

z

(∂ηy(z)(Iz(x))f)(Iz(x))
1− |x|2

(1− 〈z, x〉)3
dv1(x) and

A12(z) = Jz(z)

∫
D(z,2r)∩Tmod

z

λz(x)(∂ηy(z)(Iz(x))f)(Iz(x))
1− |x|2

(1− 〈z, x〉)3
dv1(x).
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Being a local inverse of Pz, the map Iz is analytic. Thus the map x 7→ ηy(z)(Iz(x)) is

analytic on D(z, 3r) ∩ Tmod
z . Therefore it follows from Lemma 2.10 that

A11(z) = Φ(2r)Jz(z)sy(z)(z)〈z, pz〉(∂ηy(z)(Iz(z))f)(Iz(z))

= Φ(2r)Jz(z)sy(z)(z)〈z, pz〉(∂ηy(z)(z)f)(z)

= Φ(2r)Jz(z)〈z, pz〉(∂pzf)(z),

where the last = follows from (3.12). Recalling (2.2), (2.9) and (2.7), we see that there is
a 0 < C2 <∞ such that

(3.14) |(∂pzf)(z)| ≤ C2|〈pz, z〉A11(z)|

for z ∈M (t), 0 < t ≤ τ4.

By Lemma 2.11, there is a 0 < τ5 ≤ τ4 such that if z ∈M (τ5), then

1− |x|2 ≤ 2(1− |Iz(x)|2) for every x ∈ D(z, 2r) ∩ Tmod
z .

Thus, applying (2.7) and the bounds for |sy| on Uy, for z ∈M (τ5) we have

|A12(z)| ≤ C3δ(r, t)

∫
D(z,2r)∩Tmod

z

|(∂ηy(z)(Iz(x))f)(Iz(x))| 1− |x|2

|1− 〈z, x〉|3
dv1(x)

≤ C4δ(r, t)

∫
D(z,2r)∩Tmod

z

|(∂ηy(z)(Iz(x))f)(Iz(x))| 1− |Iz(x)|2

|1− 〈z, Iz(x)〉|3
Jz(x)dv1(x)

= C4δ(r, t)

∫
U(z)

|(∂ηy(z)(w)f)(w)| 1− |w|2

|1− 〈z, w〉|3
dvM (w)

≤ C5δ(r, t)

∫
M(t0)

|(∂pwf)(w)| 1

|1− 〈z, w〉|3
dµ(w).

Using the operator B in Lemma 3.8, for 0 < t ≤ τ5 we have∫
M(t)

|A12(z)|2dµ(z) ≤ {C5δ(r, t)‖B‖}2
∫
M(t0)

|(∂pwf)(w)|2dµ(w)

= {C5δ(r, t)‖B‖}2‖f‖2∗.(3.15)

Denote

ε(r, t) = sup
z∈M(t)

{
sup

x∈D(z,2r)∩Tmod
z

|F (z, x)|
}
,

0 < t ≤ τ3. By the definition of F (z, x), we can rewrite it in the form

F (z, x) =

(
1− 1− |x|2

1− |Iz(x)|2

)
+

1− |x|2

1− |Iz(x)|2
· 1

Jz(x)
· (Jz(x)− Jz(z)).
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From (2.7) and (2.9) we obtain an upper bound for 1/Jz(x). Therefore it follows from
Lemma 2.11 that

(3.16) lim
t↓0

ε(r, t) = 0

for every 1 ≤ r <∞. Applying (2.10) again, we have

|A2(z)| ≤ ε(r, t)
∫
D(z,2r)∩Tmod

z

|(∂pIz(x)f)(Iz(x))| 1− |Iz(x)|2

|1− 〈z, Iz(x)〉|3
Jz(x)dv1(x)

≤ ε(r, t)
∫
M(t0)

|(∂pwf)(w)| 1

|1− 〈z, w〉|3
dµ(w)

for z ∈M (t), 0 < t ≤ τ3. Thus it follows from Lemma 3.8 that if 0 < t ≤ τ3, then∫
M(t)

|A2(z)|2dµ(z) ≤ {ε(r, t)‖B‖}2
∫
M(t0)

|(∂pwf)(w)|2dµ(w)

= {ε(r, t)‖B‖}2‖f‖2∗.(3.17)

For 1 ≤ r <∞ and 0 < t ≤ τ3, we define

σ(r, t) = sup
z∈M(t)

sup{|w − z| : w ∈ Iz(D(z, 2r) ∩ Tmod
z )}.

Recalling (2.7), we have

(3.18) lim
t↓0

σ(r, t) = 0

for any given 1 ≤ r <∞. By (3.11), we have

|B(z)| ≤ σ(r, t)

∫
U(z)

|(∂pwf)(w)| 1− |w|2

|1− 〈z, w〉|3
dvM (w) ≤ σ(r, t)

∫
M(t0)

|(∂pwf)(w)|
|1− 〈z, w〉|3

dµ(w)

for z ∈M (t), 0 < t ≤ τ3. Applying Lemma 3.8, for each 0 < t ≤ τ3 we now have∫
M(t)

|B(z)|2dµ(z) ≤ {σ(r, t)‖B‖}2
∫
M(t0)

|(∂pwf)(w)|2dµ(w)

= {σ(r, t)‖B‖}2‖f‖2∗.(3.19)

Finally, from (3.9) we obtain

|C(z)| ≤
∫
M(t0)\D(z,r)

|(∂pwf)(w)| 1

|1− 〈z, w〉|3
dµ(w),
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z ∈M (τ3). Using the operator Br in Lemma 3.8, for 0 < t ≤ τ3 we have

(3.20)

∫
M(t)

|C(z)|2dµ(z) ≤ ‖Br‖2
∫
M(t0)

|(∂pwf)(w)|2dµ(w) = ‖Br‖2‖f‖2∗.

Retracing the above steps, we have

〈pz, z〉A11(z) = (Xf)(z)− 〈pz, z〉(A12(z) +A2(z))−B(z)− C(z).

Thus, for 0 < t ≤ τ5, it follows from (3.14), (3.15), (3.17), (3.19) and (3.20) that∫
M(t)

|(∂pzf)(z)|2dµ(z) ≤ 5C2
2

∫
M(t)

|(Xf)(z)|2dµ(z)

+ 5C2
2 ({C5δ(r, t)‖B‖}2 + {ε(r, t)‖B‖}2 + {σ(r, t)‖B‖}2 + ‖Br‖2)‖f‖2∗.(3.21)

Let a δ > 0 be given. By Lemma 3.8, we can first pick an r ∈ [1,∞) such that 5C2
2‖Br‖2 ≤

δ/2. With r so fixed, by (3.13), (3.16) and (3.18), we can pick a 0 < τ ≤ τ5 such that

5C2
2 ({C5δ(r, t)‖B‖}2 + {ε(r, t)‖B‖}2 + {σ(r, t)‖B‖}2) ≤ δ/2

for every 0 < t ≤ τ . Substituting these bounds in (3.21), the lemma is proved. �

For each f ∈ H2
n, define

(Y f)(z) =

∫
M(t0)

(∂pwf)(w)〈pz, pw〉
(1− 〈z, w〉)2

dµ(w), z ∈ B.

Lemma 3.10. Given any δ > 0, there is a 0 < ρ < t0 such that

(3.22)

∫
M(t)

|(Y f)(z)|2dµ(z) ≤ δ
∫
M(t0)

|(∂pwf)(w)|2dµ(z)

for all 0 < t ≤ ρ and f ∈ H2
n.

Proof. On the Hilbert space L2(M,dµ), define the operator

(Lϕ)(z) =

∫
M(t0)

ϕ(w)〈pz, pw〉
(1− 〈z, w〉)2

dµ(w)

ϕ ∈ L2(M,dµ). It follows from Lemma 2.8 that∫∫
1

|1− 〈z, w〉|4
dµ(w)dµ(z) =

∫∫
(1− |z|2)(1− |w|2)

|1− 〈z, w〉|4
dvM (w)dvM (z) <∞.

Hence L is a Hilbert-Schmidt operator on L2(M,dµ). Thus for any given δ > 0, there is
a 0 < ρ < t0 such that ‖Mχ

M(ρ)
L‖ ≤ δ1/2, where Mχ

M(ρ)
is the operator of multiplication

by the function χM(ρ) on L2(M,dµ). Obviously, (3.22) holds for this ρ. �
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Corollary 3.11. Given any δ > 0, there exist 0 < t < t0 and 0 < C <∞ such that

(3.23)

∫
M(t)

|(∂pzf)(z)|2dµ(z) ≤ C‖T1f‖2∗ + δ‖f‖2∗

for every f ∈ H2
n.

Proof. Let δ > 0 be given. Applying Lemma 3.9 to δ/2, we obtain constants 0 < τ ≤ t0
and 0 < C <∞ such that

(3.24)

∫
M(t)

|(∂pzf)(z)|2dµ(z) ≤ C
∫
M(t)

|(Xf)(z)|2dµ(z) +
δ

2
‖f‖2∗

for all 0 < t ≤ τ and f ∈ H2
n. For each f ∈ H2

n, we have

(T1f)(z) =

∫
M(t0)

(∂pwf)(w)〈z, pw〉
(1− 〈z, w〉)2

dµ(w), z ∈ B.

By straightforward differentiation,

(∂pzT1f)(z) = 2(Xf)(z) + (Y f)(z).

Thus from (3.24) we obtain the inequality

(3.25)

∫
M(t)

|(∂pzf)(z)|2dµ(z) ≤ C‖T1f‖2∗ + C

∫
M(t)

|(Y f)(z)|2dµ(z) +
δ

2
‖f‖2∗

for all 0 < t ≤ τ and f ∈ H2
n. By Lemma 3.10, there is a 0 < ρ < t0 such that

(3.26) C

∫
M(t)

|(Y f)(z)|2dµ(z) ≤ δ

2
‖f‖2∗

for all 0 < t ≤ ρ and f ∈ H2
n. Combining (3.25) and (3.26), we see that (3.23) holds for

every 0 < t ≤ min{τ, ρ}. �

Lemma 3.12. There exist a finite number of open subsets W1, . . . ,Wm of M (t0) such that

W1 ∪ · · · ∪Wm ⊃M (t∗)

for some 0 < t∗ < t0 and such that the following hold true for every 1 ≤ j ≤ m:
(1) Wj = Gj((0, cj)× (−bj , bj)), where 0 < cj < t0, bj > 0, and
Gj : (0, cj)× (−bj , bj)→ Cn is a one-to-one C∞ map.
(2) There are 0 < εj ≤Mj <∞ such that DGj , the derivative of Gj , satisfies the
inequality εj ≤ (DGj)

∗(x, y)(DGj)(x, y) ≤Mj for all (x, y) ∈ (0, cj)× (−bj , bj).
(3) If w = Gj(x, y) for some (x, y) ∈ (0, cj)×(−bj , bj), then x = 1−|w|2. Equivalently,
for each w ∈Wj , there is a unique yw ∈ (−bj , bj) such that w = Gj(1− |w|2, yw).

23



Proof. Consider the function ρ(w) = 1 − |w|2. Since M intersects ∂B transversely, the
vector ∇Mρ does not vanish nearM∩∂B. Thus we can use ρ as one of the real coordinates
on M near ∂B. More precisely, if ζ ∈ M∩ ∂B, then ζ has an open neighborhood Nζ in
M that has the following properties:

(α) Nζ = G((−c, c)× (−b, b)), where 0 < c < t0, b > 0 and
G : (−c, c)× (−b, b)→ Cn is a one-to-one C∞ map.
(β) There are 0 < ε ≤M <∞ such that DG, the derivative of G, satisfies the matrix
inequality ε ≤ (DG)∗(x, y)(DG)(x, y) ≤M for all (x, y) ∈ (−c, c)× (−b, b).
(γ) If w = G(x, y) for some (x, y) ∈ (−c, c)× (−b, b), then x = 1− |w|2. Equivalently,
for each w ∈ Nζ , there is a unique yw ∈ (−b, b) such that w = G(1− |w|2, yw).

We then define Wζ = Nζ ∩B. By (γ) and (α), we have Wζ = G((0, c)× (−b, b)) ⊂M (t0).
SinceM∩∂B is compact, there is a finite subset Z ofM∩∂B such that ∪ζ∈ZNζ ⊃M∩∂B.
Since ∪ζ∈ZNζ is an open subset of M, there is a 0 < t∗ < t0 such that ∪ζ∈ZNζ ⊃ M (t∗).
Obviously, if we re-enumerate the finite family of sets {Wζ : ζ ∈ Z} as {W1, . . . ,Wm},
then the lemma holds. �

Proposition 3.13. The dimension of {f ∈ Q : T1f = 0} is finite.

Proof. Let g ∈ H2
n. If T1g = 0, then∫

M(t0)

|(∂pwg)(w)|2dµ(w) = 0.

Let y ∈M (t0). By the argument in the proof of Lemma 3.7 (see (3.8)), the above equality
implies that (g ◦ ρy)′ = 0 on B1(0, r) for some r = r(y) > 0. That is, g ◦ ρy is a constant
on B1(0, r). Equivalently, g is a constant on an open subset of M (t0) containing y.

Let W1, . . . ,Wm be the open subsets of M (t0) provided by Lemma 3.12. For each
1 ≤ j ≤ m, since Wj is homeomorphic to (0, cj) × (−bj , bj), it is a connected subset of
M (t0). Thus by the conclusion of the preceding paragraph, if g ∈ H2

n and T1g = 0, then g
is a constant on Wj for every 1 ≤ j ≤ m.

Thus we can define a linear map L : {f ∈ Q : T1f = 0} → Cm by the formula

Lf = (f
∣∣W1, . . . , f

∣∣Wm),

where f
∣∣Wj means the constant value of f on Wj , 1 ≤ j ≤ m. If h is in the kernel of L,

then h = 0 on W1 ∪ · · · ∪Wm. By the fact W1 ∪ · · · ∪Wm ⊃ M (t∗) and the maximum
modulus principle [8, pages 72,73], we have h = 0 on M . That is, h ⊥ Q. Since h ∈ Q,
this means h = 0. Hence dim{f ∈ Q : T1f = 0} ≤ m. �

Proof of Theorem 3.5. Let t∗ ∈ (0, t0) be the number provided by Lemma 3.12. By
Corollary 3.11, there are 0 < t < t∗ and 0 < C <∞ such that∫

M(t)

|(∂pzf)(z)|2dµ(z) ≤ C‖T1f‖2∗ +
1

2
‖f‖2∗
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for every f ∈ H2
n. After the obvious cancellation, we obtain the inequality

(3.27)
1

2

∫
M(t)

|(∂pzf)(z)|2dµ(z) ≤ C‖T1f‖2∗ +
1

2

∫
M(t0)\M(t)

|(∂pzf)(z)|2dµ(z)

for every f ∈ H2
n.

Pick a positive number t1 > 0 satisfying the condition t1 < min{t, c1, . . . , cm}, where
c1, . . . , cm are the same as in Lemma 3.12. With this t1, we define the operator

Φ =

∫
N(t1)

Kw ⊗Kwdµ(w)

(see (2.13)). Then Φ is obviously a positive operator, and we have

tr(Φ) =

∫
N(t1)

1

1− |w|2
dµ(w) ≤

∫
M

1dvM (w) <∞.

Thus Φ is in the trace class, but here we only need the compactness of Φ. Define

S1 = T1 + Φ.

We claim that there is an a > 0 such that the spectrum of S1 does not intersect the
interval (0, a). Postponing the proof of this claim for a moment, we first show that this
claim implies the conclusion of Theorem 3.5.

Of course, both T1 and Φ map Q into itself. Since T1 and Φ are both positive, we
have {f ∈ Q : S1f = 0} ⊂ {f ∈ Q : T1f = 0}. Thus it follows from Proposition 3.13 that
dim{f ∈ Q : S1f = 0} <∞. If the spectrum of S1 does not intersect (0, a) for some a > 0,
then 0 is not in the essential spectrum of the restricted operator S1

∣∣Q. Since Φ is compact,

this means that 0 is not in the essential spectrum of the restricted operator T1

∣∣Q. Thus

there is a c > 0 such that the spectrum of T1

∣∣Q does not intersect (0, c). Since T1 = 0 on
Q⊥, it follows that the spectrum of T1 does not intersect (0, c).

Thus we have reduced the proof of Theorem 3.5 to the proof of the claim that there
is an a > 0 such that the spectrum of S1 does not intersect (0, a). To prove this claim, let
dE be the spectral measure for the positive operator S1. That is,

S1 =

∫ ‖S1‖

0

λdE(λ).

Suppose that E(0, a) 6= 0 for every a > 0. We will complete the proof by showing that this
leads to a contradiction. For each k ∈ N, since E(0, 1/k) 6= 0, we pick an fk ∈ E(0, 1/k)H2

n

such that 〈S1fk, fk〉 = 1. That is,

(3.28)

∫
M(t0)

|(∂pwfk)(w)|2dµ(w) +

∫
N(t1)

|fk(w)|2dµ(w) = 1
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for every k. Obviously, the sequence {S1/2
1 fk} weakly converges to 0 in H2

n. Since T1 ≤ S1,

there is a contraction A such that T
1/2
1 = AS

1/2
1 . Hence the sequence {T 1/2

1 fk} also weakly
converges to 0.

Let 0 < ε < min{t1, t0 − t1}. Then the closure of N (t1−ε) ∩M (t1+ε) is a compact
subset of M (t0). By Lemma 3.7 and a usual covering argument, the weak convergence to

0 of the sequence {T 1/2
1 fk} implies

(3.29) lim
k→∞

sup{|(∂pzfk)(z)| : z ∈ N (t1−ε) ∩M (t1+ε)} = 0.

Denote ∆ = {z ∈M : 1− |z|2 = t1 + (ε/2)}. By the choices of t1 and ε above, ∆ is a
compact set in {w ∈M : 1−|w|2 > t1}. Thus ∆ can be covered by a finite number of open
sets D1, . . . , D` in {w ∈M : 1−|w|2 > t1} in such a way that each Di is biholomorphically
equivalent to the unit disc D = {ξ ∈ C : |ξ| < 1}. By the Bergman integral formula, there
is a constant 0 < C1 <∞ such that

(3.30) sup
z∈∆
|g(z)|2 ≤ C1

∫
N(t1)

|g(w)|2dµ(w)

for every g ∈ H2
n. Combining this with (3.28), we see that

(3.31) sup
z∈∆
|fk(z)|2 ≤ C1 for every k.

For k ∈ N, 1 ≤ j ≤ m, s ∈ (−bj , bj) and u ∈ [t1 − (ε/2), t1 + (ε/2)], we can write

(3.32) fk(Gj(u, s)) = fk(Gj(t1 + (ε/2), s))−
∫ t1+(ε/2)

u

d

dr
fk(Gj(r, s))dr,

where Gj and bj are the same as in Lemma 3.12. Taking the derivative in the integral,
combining (3.32) with (3.31), (3.29) and Lemma 3.12, and using the fact dimCTz = 1 and
lower bound (2.2), we deduce that there is a 0 < C2 <∞ such that

sup{|fk(z)| : z ∈ N (t1−(ε/2)) ∩M (t1+(ε/2))} ≤ C2 for every k.

By the maximum modulus principle, this implies that

(3.33) sup{|fk(z)| : z ∈ N (t1−(ε/2))} ≤ C2 for every k.

If ϕ is a bounded analytic function on D, then

ϕ′(0) =
1

π

∫ π

−π

∫ 1

0

ϕ(reiθ)e−iθdrdθ.

Using this identity and (3.33), and using the bounds for sy, y ∈ F , again, we obtain a
0 < C3 <∞ such that

(3.34) sup{|(∂pzfk)(z)| : z ∈ N (t1−(ε/3)) ∩M (t0)} ≤ C3 for every k.
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Since the sequence {T 1/2
1 fk} weakly converges to 0, Lemma 3.7 tells us that

lim
k→∞

(∂pwfk)(w) = 0 for every w ∈M (t0).

Combining this pointwise convergence with (3.34) and with the dominated convergence
theorem, we have

(3.35) lim
k→∞

∫
M(t0)\M(t)

|(∂pwfk)(w)|2dµ(w) = 0.

Similar to (3.30), for each t1 < u < t0 there is a 0 < C(u) <∞ such that

sup{|g(z)|2 : z ∈M and 1− |z|2 = u} ≤ C(u)

∫
N(t1)

|g(w)|2dµ(w) for every g ∈ H2
n.

Again by the maximum modulus principle, the above implies that for each t1 < u < t0,

sup{|g(z)|2 : z ∈M and 1− |z|2 ≥ u} ≤ C(u)

∫
N(t1)

|g(w)|2dµ(w) for every g ∈ H2
n.

Let H be the closure of H2
n in L2(N (t1), dµ). The above bound means that for each

z ∈ N (t1), the map g 7→ g(z) extends to a bounded linear functional on H. Since {S1/2
1 fk}

weakly converges to 0 and Φ ≤ S1, the sequence {Φ1/2fk} also weakly converges to 0 in
H2
n. For any h ∈ H2

n, we have∫
N(t1)

fk(w)h(w)dµ(w) = 〈Φ1/2fk,Φ
1/2h〉, k ∈ N.

Thus in the Hilbert space H, the sequence {fk} weakly converges to 0. Hence

lim
k→∞

fk(z) = 0

for every z ∈ N (t1). Combining this pointwise convergence with (3.33) and with the
dominated convergence theorem, we obtain

lim
k→∞

∫
N(t1)

|fk(w)|2dµ(w) = 0.

From this limit and (3.28), (3.35) it follows that

(3.36) lim
k→∞

∫
M(t)

|(∂pwfk)(w)|2dµ(w) = 1.

Next we show that

(3.37) lim
k→∞

‖T1fk‖2∗ = 0.
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Indeed for each k ∈ N, we have

(3.38) ‖T1fk‖2∗ = 〈T1T1fk, T1fk〉 = 〈T1S1fk, S1fk〉 − 〈T1Φfk, T1fk〉 − 〈T1S1fk,Φfk〉.

Since T1 ≤ S1, fk ∈ E(0, 1/k)H2
n and ‖S1/2

1 fk‖ = 1, we have

(3.39) 〈T1S1fk, S1fk〉 ≤ 〈S1S1fk, S1fk〉 = ‖S3/2
1 fk‖2 ≤ k−2‖S1/2

1 fk‖2 = k−2.

Since the sequence {Φ1/2fk} weakly converges to 0 and Φ1/2 is compact, the sequence
{Φfk} converges to 0 strongly, i.e.,

(3.40) lim
k→∞

‖Φfk‖ = 0.

By (3.39), the first term on the right-hand side of (3.38) tends to 0 as k →∞. Since ‖T1fk‖
≤ ‖T 1/2

1 ‖‖T 1/2
1 fk‖ ≤ ‖T 1/2

1 ‖, it follows from (3.40) that the second term on the right-hand

side of (3.38) tends to 0 as k →∞. Since ‖S1fk‖ ≤ ‖S1/2
1 ‖‖S1/2

1 fk‖ = ‖S1/2
1 ‖, (3.40) also

implies that the third term on the right-hand side of (3.38) tends to 0 as k → ∞. This
proves (3.37).

Now, recalling (3.27), we have

(3.41)
1

2

∫
M(t)

|(∂pzfk)(z)|2dµ(z) ≤ C‖T1fk‖2∗ +
1

2

∫
M(t0)\M(t)

|(∂pzfk)(z)|2dµ(z)

for every k ∈ N. But the combination of (3.41), (3.35), (3.36) and (3.37) gives us the
contradiction 1/2 ≤ 0. This proves our claim that there is an a > 0 such that the spectrum
of S1 does not intersect (0, a), which in turn completes the proof of Theorem 3.5. �

4. The range space

In addition to the operator T1 given by (3.6), we define the operator

(4.1) T2 =

∫
M(t0)

Kw ⊗Kwdµ(w).

Again, T2 is a positive operator on the Drury-Arveson space H2
n. We have

tr(T2) =

∫
M(t0)

1

1− |w|2
dµ(w) =

∫
M(t0)

1dvM (w) <∞.

This shows that T2 belongs to the trace class C1. Obviously, T2 maps H2
n into Q. We now

define the operator

(4.2) T = T1 + T2

on H2
n. Then T maps H2

n into Q.
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Proposition 4.1. There is a c′ > 0 such that the spectrum of T does not intersect the
interval (0, c′). Moreover, Q equals the spectral projection of T corresponding to the interval
[c′,∞).

Proof. It will be convenient to use the following notation for this proof: If A is an operator
on H2

n such that AQ ⊂ Q, we write A
∣∣Q for the restriction of A to Q.

Theorem 3.5 tells us that the spectrum of T1 does not intersect (0, c) for some c > 0.
By Proposition 3.13, dim{f ∈ Q : T1f = 0} <∞. Thus 0 is not in the essential spectrum
of T1

∣∣Q. Since T2

∣∣Q is in the trace class, we conclude that 0 is not in the essential spectrum

of T
∣∣Q. Consequently, there is a c′ > 0 such that the spectrum of T

∣∣Q does not intersect
the interval (0, c′). With respect to the orthogonal decomposition H2

n = R⊕Q, we have
T = 0 ⊕ (T

∣∣Q). Therefore the spectrum of T does not intersect (0, c′). Once this fact is
established, the assertion that Q equals the spectral projection of T corresponding to the
interval [c′,∞) is equivalent to the assertion that ker(T

∣∣Q) = {0}.

To prove this last assertion, let f ∈ Q be such that Tf = 0. Since both T1 and T2 are
positive operators, the condition Tf = 0 implies T2f = 0, i.e.,∫

M(t0)

|f(w)|2dµ(w) = 0.

This means that f = 0 on M (t0). By the maximum modulus principle, we have f = 0 on
M . Thus f ⊥ Q. Since f ∈ Q, f is the zero element. This completes the proof. �

Let f be a C1 function on an open set containing the closure of M . We define

‖f‖# =

{∫
M(t0)

|(∂pwf)(w)|2dµ(w)+

∫
M(t0)

|(∂pwf)(w)|2dµ(w)+

∫
M(t0)

|f(w)|2dµ(w)

}1/2

(see (2.21)). Let L0 be the collection of all such f with the property ‖f‖# <∞. Then ‖·‖#
is a norm on L0. This norm is designed to have the symmetric property ‖f̄‖# = ‖f‖#,
which will be important later on.

Obviously, the norm ‖ · ‖# is induced by the inner product

〈f, g〉# =

∫
M(t0)

(∂pwf)(w)(∂pwg)(w)dµ(w) +

∫
M(t0)

(∂pwf)(w)(∂pwg)(w)dµ(w)

+

∫
M(t0)

f(w)g(w)dµ(w),

f, g ∈ L0. Let L denote the completion of L0 with respect to the norm ‖ · ‖#. Then L is
a Hilbert space.

Definition 4.2. (a) Let P be the closure of the analytic polynomials C[z1, . . . , zn] in L.
(b) Let P denote the orthogonal projection from L onto P.

Obviously, if f ∈ H2
n, then

(4.3) ‖f‖2# = 〈Tf, f〉 = ‖T 1/2f‖2.
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Since C[z1, . . . , zn] is dense in H2
n, every f ∈ H2

n is naturally an element in P.

Definition 4.3. Let J denote the operator that takes each f ∈ H2
n to the same f in P.

Thus we can rewrite (4.3) in the form of the operator identity

(4.4) J∗J = T.

Intuitively, we think of J as restricting each f ∈ H2
n to the set M (t0). We call P the range

space for the restriction operator J . If f ∈ R, then we obviously have Jf = 0. On the
other hand, by Proposition 4.1,

‖Jf‖# = ‖T 1/2f‖ ≥
√
c′‖f‖ for every f ∈ Q.

Thus J is an invertible operator that maps Q onto P.

We define the operators

(T̂1f)(z) =

∫
M(t0)

〈z, pw〉
(1− 〈z, w〉)2

(∂pwf)(w)dµ(w) and

(T̂2f)(z) =

∫
M(t0)

1

1− 〈z, w〉
f(w)dµ(w),

f ∈ L0.

Lemma 4.4. The operators T̂1 and T̂2 are bounded on L0. Therefore T̂1 and T̂2 naturally
extend to bounded operators on L.

Proof. By Lemma 2.8 and the Schur test, the kernels

〈pz, w〉〈z, pw〉
(1− 〈z, w〉)3

,
〈z, pw〉

(1− 〈z, w〉)2
,

〈pz, w〉
(1− 〈z, w〉)2

and
1

1− 〈z, w〉

define bounded operators on L2(M (t0), dµ). Let us verify the details for the case

K(z, w) =
〈pz, w〉〈z, pw〉
(1− 〈z, w〉)3

;

the other cases are similar.

Define the function h(z) = (1− |z|2)−1/2 on M (t0). By (3.1) and Lemma 2.8,∫
M(t0)

|K(z, w)|h(w)dµ(w) ≤
∫
M(t0)

(1− |w|2)1/2

|1− 〈z, w〉|1+1+(1/2)+(1/2)
dvM (w) ≤ C1h(z).

Similarly, ∫
M(t0)

|K(z, w)|h(z)dµ(z) ≤ C1h(w).
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Thus by the Schur test, the kernel K(z, w) represents a bounded operator on L2(M (t0), dµ).

Let f ∈ L0. Then

(∂pz T̂1f)(z) =

∫
M(t0)

2〈pz, w〉〈z, pw〉(∂pwf)(w)

(1− 〈z, w〉)3
dµ(w) +

∫
M(t0)

〈pz, pw〉(∂pwf)(w)

(1− 〈z, w〉)2
dµ(w).

Note that ∂pz T̂1f = 0. By the boundedness of the kernels mentioned in the first paragraph,

T̂1 is bounded on L0. Similarly, T̂2 is also bounded on L0. �

On the Hilbert space L we now define the operator

T̂ = T̂1 + T̂2.

Our next lemma is crucial to the proof of the 1-essential normality of Q. It deals with a
rarity in operator theory: a situation where self-adjointness is not so obvious.

Lemma 4.5. With respect to the inner product 〈·, ·〉#, the operator T̂ is self-adjoint.

Proof. For any f ∈ L0, straightforward differentiation gives us

(∂pz T̂1f)(z) =

∫
M(t0)

2〈pz, w〉〈z, pw〉(∂pwf)(w)

(1− 〈z, w〉)3
dµ(w) +

∫
M(t0)

〈pz, pw〉(∂pwf)(w)

(1− 〈z, w〉)2
dµ(w),

(∂pz T̂2f)(z) =

∫
M(t0)

〈pz, w〉
(1− 〈z, w〉)2

f(w)dµ(w).

Also, (∂pz T̂1f)(z) = 0 and (∂pz T̂2f)(z) = 0. Thus for f, g ∈ L0, we have

〈T̂ f, g〉# =

∫
M(t0)

(∂pz T̂1f)(z)(∂pzg)(z)dµ(z) +

∫
M(t0)

(∂pz T̂2f)(z)(∂pzg)(z)dµ(z)

+

∫
M(t0)

(T̂1f)(z)g(z)dµ(z) +

∫
M(t0)

(T̂2f)(z)g(z)dµ(z).(4.5)

By the integral formula for ∂pz T̂1f and a change of order of integration, we have

(4.6)

∫
M(t0)

(∂pz T̂1f)(z)(∂pzg)(z)dµ(z) =

∫
M(t0)

(∂pwf)(w)(∂pw T̂1g)(w)dµ(w).

It is obvious that

(4.7)

∫
M(t0)

(T̂2f)(z)g(z)dµ(z) =

∫
M(t0)

f(w)(T̂2g)(w)dµ(w).

Finally, by the formula for ∂pz T̂2f , we have

∫
M(t0)

(∂pz T̂2f)(z)(∂pzg)(z)dµ(z) =

∫
M(t0)

f(w)(T̂1g)(w)dµ(w) and

(4.8)

∫
M(t0)

(T̂1f)(z)g(z)dµ(z) =

∫
M(t0)

(∂pwf)(w)(∂pw T̂2g)(w)dµ(w).(4.9)
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Combining (4.5)-(4.9) with the fact that (∂pw T̂ g)(w) = 0, we see that 〈T̂ f, g〉# = 〈f, T̂ g〉#.
This completes the proof. �

From the above proof we see that the individual operators T̂1 and T̂2 are not self-
adjoint on L. But miraculously, somehow the sum T̂ = T̂1 + T̂2 is self-adjoint.

Proposition 4.6. (a) T̂ maps L into P.
(b) Let T̃ denote the restriction of T̂ to the subspace P. Then T̃ = JJ∗. In particular, T̃
is invertible on P.
(c) With respect to the orthogonal decomposition L = P ⊕ P⊥, we have T̂ = T̃ ⊕ 0.

Proof. (a) Recall that the kernels listed in the proof of Lemma 4.4 define bounded operators
on L2(M (t0), dµ). Therefore for any f ∈ L0, we have

lim
t↓0

∥∥∥∥∫
M(t)

(∂pwf)(w)JKw,pwdµ(w)

∥∥∥∥
#

= 0.

Since we already know that JH2
n ⊂ P, we have∫

M(t0)\M(t)

(∂pwf)(w)JKw,pwdµ(w) ∈ P

for every 0 < t < t0. Therefore

T̂1f =

∫
M(t0)

(∂pwf)(w)JKw,pwdµ(w) ∈ P.

A similar argument shows that T̂2f ∈ P for f ∈ L0. Thus T̂L0 ⊂ P. Since L0 is dense in
L and since T̂ is a bounded operator, it follows that T̂L ⊂ P.

(b) For each f ∈ Q, it is easy to see that T̃ Jf = JTf . Combining this with (4.4), we
have T̃ Jf = JTf = JJ∗Jf . Since JQ = P, this implies T̃ = JJ∗. Since J : Q → P and
J∗ : P → Q are invertible, so is T̃ .

(c) This follows from (a) and the self-adjointness of T̂ , which is provided by Lemma
4.5. �

In what follows, we write ζ1, . . . , ζn for the coordinate functions on Cn.

Definition 4.7. For ϕ ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n], M̂ϕ denotes the operator of multiplication
by the function ϕ on L.

Proposition 4.8. For each j ∈ {1, . . . , n}, P is an invariant subspace for M̂ζj .

Proof. Let f ∈ Q. Then Qζjf = ζjf − gj for some gj ∈ R. It follows from (4.4) that
Jgj = 0. Therefore

(4.10) JQζjf = Jζjf = ζjJf = M̂ζjJf.

That is, for each f ∈ Q, we have M̂ζjJf ∈ JQ = P, which proves the proposition. �
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Proposition 4.8 makes it possible for us to introduce

Definition 4.9. For each j ∈ {1, . . . , n}, let Mζj denote the restriction of the operator

M̂ζj to the invariant subspace P.

Thus we can restate (4.10) in the form

Corollary 4.10. We have JQζj = MζjJ for every j ∈ {1, . . . , n}.

We end the section with two crucial technical results, whose proofs will have to wait
until Section 6.

Proposition 4.11. For every ϕ ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n], we have [M̂ϕ, T̂ ] ∈ C2.

Proposition 4.12. For analytic polynomials q, r ∈ C[ζ1, . . . , ζn], we have

[M̂r̄, [M̂q, T̂ ]]P ∈ C1.

5. Operators on L2(M,dµ)

First, we recall the following:

Proposition 5.1. [29, Proposition 11.1] Under the assumption d = 1, there is a 0 < C <
∞ such that

|ζ − w| ≤ C|1− 〈ζ, w〉|

for all ζ, w ∈M .

Lemma 5.2. If G(z, w) is a bounded Borel function on M ×M , then the operator

(5.1) (AGϕ)(z) =

∫
M

G(z, w)

(1− 〈z, w〉)3
ϕ(w)dµ(w), ϕ ∈ L2(M,µ),

is bounded on L2(M,µ).

Proof. Consider the function h(w) = (1− |w|2)−1/2 on M . Recalling (3.1), we have∫
M

h(w)

∣∣∣∣ G(z, w)

(1− 〈z, w〉)3

∣∣∣∣dµ(w) ≤ ‖G‖∞
∫
M

(1− |w|2)1/2

|1− 〈z, w〉|1+1+(1/2)+(1/2)
dvM (w)

≤ C1‖G‖∞h(z),

where the last step is an application of Lemma 2.8 in the case d = 1. Similarly,∫
M

h(z)

∣∣∣∣ G(z, w)

(1− 〈z, w〉)3

∣∣∣∣dµ(z) ≤ C1‖G‖∞h(w).

Thus the Schur test gives us ‖AG‖ ≤ C1‖G‖∞. �

On the Hilbert space L2(M,dµ), we define the operator

(Zϕ)(z) =

∫
M

1

(1− 〈z, w〉)3
ϕ(w)dµ(w), ϕ ∈ L2(M,dµ).
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Lemma 5.3. If f is a Lipschitz function on M , then the commutator [Mf , Z] is a Hilbert-
Schmidt operator on L2(M,dµ).

Proof. Obviously, the kernel of [Mf , Z] equals (1−〈z, w〉)−3(f(z)−f(w)). If f is Lipschitz
on M , then it follows from Proposition 5.1 that∫∫ ∣∣∣∣ f(z)− f(w)

(1− 〈z, w〉)3

∣∣∣∣2dµ(w)dµ(z) ≤ C1

∫∫
1

|1− 〈z, w〉|2
dvM (w)dvM (z).

Note that∫∫
1

|1− 〈z, w〉|2
dvM (w)dvM (z) ≤

∫∫
21/2

|1− 〈z, w〉|1+1+(1/2)
dvM (w)dvM (z)

≤ C2

∫
1

(1− |z|2)1/2
dvM (z) <∞,

where the second ≤ is an application of Lemma 2.8. Hence [Mf , Z] ∈ C2. �

By Lemma 5.2, Z is a bounded operator on L2(M,dµ). Obviously, Z is self-adjoint.
What is less obvious is the following:

Lemma 5.4. We have Z ≥ 0 on L2(M,dµ).

Proof. To prove this we need the Hilbert space H(2−n) (see, e.g., [19]). Recall that, since
3 = n+ 1 + (2− n), H(2−n) is the Hilbert space of analytic functions on B which has

(5.2) K(2−n)
w (z) =

1

(1− 〈z, w〉)3
, z, w ∈ B,

as its reproducing kernel. That is, the space H(2−n) has “weight” 2− n [19].

For each 0 < α < 1,

Yα =

∫
N(α)

K(2−n)
w ⊗K(2−n)

w dµ(w)

is obviously a positive operator on H(2−n) (see (2.13)). For each 0 < α < 1, let Iα be
the operator that maps each f ∈ H(2−n) to the function f

∣∣N (α) in L2(N (α), dµ). Then

‖Iαf‖2 = 〈Yαf, f〉 for every f ∈ H(2−n). Therefore Yα = I∗αIα.

Given an f ∈ H(2−n), we have 〈f,K(2−n)
w 〉2−n = f(w), w ∈ B. Therefore

(IαYαf)(z) =

∫
N(α)

f(w)

(1− 〈z, w〉)3
dµ(w) for z ∈ N (α).

On the other hand, by the definitions of Z and Iα,

(Mχ
N(α)

ZIαf)(z) =

∫
N(α)

f(w)

(1− 〈z, w〉)3
dµ(w) for z ∈ N (α).
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Thus under the natural identification of L2(N (α), dµ) with {ϕ ∈ L2(M,dµ) : ϕ = 0 on
M\N (α)}, we have

IαYα = Mχ
N(α)

ZIα.

Therefore for each analytic polynomial q ∈ C[z1, . . . , zn],

〈ZIαq, Iαq〉 = 〈Mχ
N(α)

ZIαq, Iαq〉 = 〈IαYαq, Iαq〉 = 〈Yαq, I∗αIαq〉 = ‖Yαq‖2 ≥ 0.

Since this holds for every 0 < α < 1, we have 〈Zq, q〉 ≥ 0 for every q ∈ C[z1, . . . , zn]. Since
the range of Z is obviously contained in the closure of C[z1, . . . , zn] in L2(M,dµ) and since
Z is self-adjoint, we conclude that Z is positive on L2(M,dµ). �

Definition 5.5. (a) Let E denote the closure of C[z1, . . . , zn] in L2(M,dµ).
(b) Let E denote the orthogonal projection from L2(M,dµ) onto E .

Proposition 5.6. There is a γ > 0 such that the spectrum of Z does not intersect the
interval (0, γ). Moreover, the range of Z equals E .

The proof of Proposition 5.6 is similar to the work in Section 3, in particular to the
proof of Theorem 3.5. For this reason we will present the proof of Proposition 5.6 in
Appendix 2.

An immediate consequence of Lemma 5.4 and Proposition 5.6 is that we can write
the orthogonal projection E in the form E = h(Z) for some h ∈ C∞c (R). Applying the
standard smooth functional calculus [9], from Lemma 5.3 we obtain

Corollary 5.7. If f is a Lipschitz function on M , then the commutator [Mf , E] is a
Hilbert-Schmidt operator on L2(M,dµ).

We again need the function ρ(z) = 1− |z|2, z ∈ B.

Lemma 5.8. If r > 1/2, then MρrE is a Hilbert-Schmidt operator on L2(M,dµ).

Proof. We know that Z ≥ 0 from Lemma 5.4. Let Z̃ denote the restriction of Z to its
range E . Then Proposition 5.6 implies that Z̃ is invertible and that E = Z(Z̃−1 ⊕ 0).
Therefore it suffices to show that MρrZ ∈ C2 for 1/2 < r < 1.

For each f ∈ L2(M,dµ), we have

(MρrZf)(z) =

∫
M

(1− |z|2)r

(1− 〈z, w〉)3
f(w)dµ(w).

Moreover,∫∫ ∣∣∣∣ (1− |z|2)r

(1− 〈z, w〉)3

∣∣∣∣2dµ(w)dµ(z) ≤
∫∫

22+2r

|1− 〈z, w〉|4−2r
dvM (w)dvM (z)

=

∫∫
22+2r

|1− 〈z, w〉|1+1+2(1−r) dvM (w)dvM (z) ≤
∫

C1

(1− |z|2)2(1−r) dvM (z),
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where the second ≤ follows from Lemma 2.8. For r > 1/2, we have 2(1− r) < 1, and the
above is finite. Therefore MρrZ ∈ C2. �

Lemma 5.9. For all f, g ∈ Lip(M) and 0 < r < 1, we have Mρ−r [Mf , [Mg, Z]] ∈ C2.

Proof. It suffices to show that∫∫
{ρ−r(z)}2 |(f(z)− f(w))(g(z)− g(w))|2

|1− 〈z, w〉|6
dµ(w)dµ(z) <∞.

By the Lipschitz condition for f , g and Proposition 5.1, the left-hand side does not exceed

C1

∫∫
(1− |z|2)−2r |1− 〈z, w〉|4

|1− 〈z, w〉|6
dµ(w)dµ(z) ≤ 2C1

∫∫
(1− |z|2)dvM (w)dvM (z)

(1− |z|2)2r|1− 〈z, w〉|

= 2C1

∫∫
1

(1− |z|2)r
· (1− |z|2)1−r

|1− 〈z, w〉|
dvM (w)dvM (z)

≤ 4C1

∫∫
dvM (w)dvM (z)

(1− |z|2)r(1− |w|2)r
,

which is finite because r < 1. This completes the proof. �

Lemma 5.10. For f, g ∈ Lip(M), the operators E[Mf , [Mg, Z]] and [Mf , [Mg, Z]]E are in
the trace class C1.

Proof. Take any 1/2 < r < 1. We have the factorization

E[Mf , [Mg, Z]] = EMρr ·Mρ−r [Mf , [Mg, Z]].

Applying Lemmas 5.8 and 5.9, we obtain the membership E[Mf , [Mg, Z]] ∈ C1. Then note
that [Mf , [Mg, Z]]E = {E[[Z,Mḡ],Mf̄ ]}∗ ∈ C1. �

Proposition 5.11. For all f, g ∈ Lip(M), the double commutator [Mf , [Mg, Z]] is in the
trace class.

Proof. Let us write A ∼1 B if A−B ∈ C1. By Lemma 5.10, we have

[Mf , [Mg, Z]] ∼1 (1− E)[Mf , [Mg, Z]] ∼1 (1− E)[Mf , [Mg, Z]](1− E).

Then note that (1− E)Z = 0 and Z(1− E) = 0. Therefore

(1− E)[Mf ,[Mg, Z]](1− E) = −(1− E)MfZMg(1− E)− (1− E)MgZMf (1− E)

= −[1− E,Mf ]Z[Mg, 1− E]− [1− E,Mg]Z[Mf , 1− E]

= [Mf , E]Z[Mg, E] + [Mg, E]Z[Mf , E],

which, according to Corollary 5.7, is in the trace class. �

On the Hilbert space L2(M,dµ), we also define the operator

(Λϕ)(z) =

∫
M

1

(1− 〈z, w〉)2
ϕ(w)dµ(w), ϕ ∈ L2(M,dµ).
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Lemma 5.12. We have Λ ∈ C2. Moreover, E[Mf ,Λ] ∈ C1 and [Mf ,Λ]E ∈ C1 for every
f ∈ Lip(M).

Proof. We have∫∫
1

|1− 〈z, w〉|4
dµ(w)dµ(z) ≤

∫∫
23/2

|1− 〈z, w〉|1+1+(1/2)
dvM (w)dvM (z)

≤
∫

C1

(1− |z|2)1/2
dvM (z) <∞,

where the second ≤ is an application of Lemma 2.8. Therefore Λ ∈ C2. Similar to what
we saw in the proof of Lemma 5.9, we have

Mρ−r [Mf ,Λ] ∈ C2

for f ∈ Lip(M) and 1/2 < r < 1. Combining this membership with the factorization

E[Mf ,Λ] = EMρr ·Mρ−r [Mf ,Λ]

and with Lemma 5.8, we obtain the membership E[Mf ,Λ] ∈ C1. By the relation [Mf ,Λ]E
= {E[Λ,Mf̄ ]}∗, we also have [Mf ,Λ]E ∈ C1. �

Proposition 5.13. For every f ∈ Lip(M) we have [Mf ,Λ] ∈ C1.

Proof. Note that (1− E)Λ = 0 and Λ(1− E) = 0. Applying Lemma 5.12, we have

[Mf ,Λ] ∼1 (1− E)[Mf ,Λ] ∼1 (1− E)[Mf ,Λ](1− E) = 0,

i.e., [Mf ,Λ] ∈ C1. �

Lemma 5.14. Write ‖ ·‖2−n for the norm on the reproducing-kernel Hilbert space H(2−n).
There is a 0 < C <∞ such that∫

M

|f(w)|2dµ(w) ≤ C‖f‖22−n

for every f ∈ H(2−n). In other words, dµ is a Carleson measure for H(2−n).

Proof. This is an easier version of Proposition 3.2. We pick a natural number m ≥ 2 such
that 2m− n ≥ 0. By Lemma 2.14, we have∫

M

|f(w)|2dµ(w) ≤ C1

∑
|α|=m−1

∫
M(b)

|(∂αf)(w)|2(1− |w|2)2m−2dµ(w)

+ C1

∑
0≤|β|≤m−2

∫
N(a)

|(∂βf)(w)|2dµ(w),
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f ∈ H(2−n). Recalling (2.13), the second term is dominated by C2‖f‖22−n. It follows from
Lemma 2.12 that for each α ∈ Zn+ with |α| = m− 1,∫

M(b)

|(∂αf)(w)|2(1− |w|2)2m−2dµ(w)

≤ C3

∫
B

|(∂αf)(w)|2(1− |w|2)2m−ndv(w) ≤ C4‖f‖22−n,

where the second ≤ follows from Lemmas 2.15 and 2.16. �

6. Proofs of Propositions 4.11 and 4.12

Let I : L → L2(M (t0), dµ) be the natural embedding. Obviously, ‖I‖ ≤ 1.

As usual, we identify L2(M (t0), dµ) with the subspace {f ∈ L2(M,dµ) : f = 0 on
M\M (t0)} of L2(M,dµ).

Lemma 6.1. If r < 1, then the operator Mρ−rI is bounded.

Proof. Denote τ = 1− 2r. If r < 1, then τ > −1, and therefore we can apply Lemma 2.13
to the measure dντ . By that lemma, there are 0 < a < b < t0 and 0 < C < ∞ such that
for each f ∈ L0, we have∫

M(t0)

|ρ−r(w)f(w)|2dµ(w) =

∫
M(t0)

|f(w)|2dντ (w)

≤ C
∫
M(b)

|(∇Mf)(w)|2(1− |w|2)2dντ (w) + C

∫
N(a)∩M(t0)

|f(w)|2dντ (w).

It follows from (2.2) that if f is real-valued, then |(∇Mf)(w)| ≤ (2/γ)|(∂pwf)(w)|, w ∈
M (t0). Substituting this in the above and noting that 2 + τ > 1, we have∫

M(t0)

|ρ−r(w)f(w)|2dµ(w)

≤ (2/γ)2C

∫
M(b)

|(∂pwf)(w)|2dµ(w) + a−2C

∫
N(a)∩M(t0)

|f(w)|2dµ(w)

for real-valued f ∈ L0. Hence there is a 0 < C1 < ∞ such that ‖Mρ−rIf‖ ≤ C1‖f‖# for
real-valued f ∈ L.

Now we use the fact that the norm ‖ · ‖# has the symmetry ‖ḡ‖# = ‖g‖# for every
g ∈ L. Thus if g = f1 + if2, where f1 and f2 are real-valued, then ‖f1‖# ≤ ‖g‖# and
‖f2‖# ≤ ‖g‖#. Combining this fact with the conclusion of the preceding paragraph, we
see that ‖Mρ−rIg‖ ≤ 2C1‖g‖# for every g ∈ L. �

Lemma 6.2. If ϕ ∈ L∞(M (t0), dµ), then EMϕI is a Hilbert-Schmidt operator.

Proof. Take any 1/2 < r < 1 and factor EMϕI in the form

EMϕI = EMρr ·Mϕ ·Mρ−rI.
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Since EMρr = (MρrE)∗, it follows from Lemmas 5.8 and 6.1 that EMϕI is a Hilbert-
Schmidt operator. �

We will write I for the restriction of I to the subspace P.

Lemma 6.3. The embedding I : P → L2(M (t0), dµ) is a Hilbert-Schmidt operator.

Proof. Recall from Section 4 that the operator J : Q → P is invertible. Thus it suffices to
show that IJ : Q → L2(M (t0), dµ) is a Hilbert-Schmidt operator. By Lemma 2.13, there
are 0 < a < b < 1 and 0 < C <∞ such that∫

M

|f(w)|2dµ(w) ≤ C
∫
M(b)

|(∇Mf)(w)|2(1− |w|2)2dµ(w) + C

∫
N(a)

|f(w)|2dµ(w)

for every f ∈ H2
n. Therefore∫

M

|f(w)|2dµ(w)

≤ 2C

n∑
j=1

∫
M

|(∂jf)(w)|2(1− |w|2)2dµ(w) +
C

a2

∫
M

|f(w)|2(1− |w|2)2dµ(w).(6.1)

Write ‖ · ‖2−n for the norm on H(2−n). Then it is well known that ‖∂jg‖2−n ≤ C1‖g‖ for
all g ∈ H2

n and 1 ≤ j ≤ n. Moreover, ‖g‖2−n ≤ ‖g‖ for g ∈ H2
n. Combining these bounds

with Lemma 5.14, we see that

Af = (∂1f, . . . , ∂nf, f), f ∈ Q,

is a bounded operator that maps Q into E [n+1], the orthogonal sum of n + 1 copies of E .
Let {MρE}[n+1] denote the orthogonal sum of n + 1 copies of MρE. By (6.1), there is a
bounded operator B : {L2(M,dµ)}[n+1] → L2(M (t0), dµ) such that

IJ = B{MρE}[n+1]A.

By Lemma 5.8, {MρE}[n+1] is a Hilbert-Schmidt operator. Therefore so is IJ : Q →
L2(M (t0), dµ). This completes the proof. �

For each f ∈ L0, we define

(Df)(z) = (∂pzf)(z) and (Df)(z) = (∂pzf)(z).

We consider D and D as operators from L0 into L2(M (t0), dµ). By the definition of ‖ · ‖#,
D and D are contractions on L0. Thus D and D naturally extend to contractions form L
to L2(M (t0), dµ).

We will write D for the restriction of D to the subspace P. Note that the restriction
of D to P is 0.

Notation 6.4. For the rest of the paper, ψi(ζ) denotes the i-the component of the vector
pζ , ζ ∈M and 1 ≤ i ≤ n.
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Lemma 6.5. If ϕ ∈ L∞(M (t0), dµ), then I∗MϕDT̂1 ∈ C2 and I∗MϕDT̂2 ∈ C2.

Proof. For f ∈ L0, straightforward differentiation gives us

(DT̂1f)(z) = 2(Af)(z) + (Bf)(z),

where

(Af)(z) =

∫
M(t0)

〈pz, w〉〈z, pw〉
(1− 〈z, w〉)3

(∂pwf)(w)dµ(w) and

(Bf)(z) =

∫
M(t0)

〈pz, pw〉
(1− 〈z, w〉)2

(∂pwf)(w)dµ(w).

Thus

A =
n∑
j=1

n∑
i=1

Mχ
M(t0)

MψjMζiZMζ̄jMψ̄iD and B =
n∑
i=1

Mχ
M(t0)

MψiΛMψ̄iD.

Since Z = EZ, for 1 ≤ i, j ≤ n we have

I∗MϕMχ
M(t0)

MψjMζiZ = I∗Mϕχ
M(t0)ψjζiEZ = (EMϕ̄χ

M(t0) ψ̄j ζ̄i
I)∗Z.

Thus from Lemma 6.2 we see that I∗MϕA is a Hilbert-Schmidt operator. On the other
hand, it follows from Lemma 5.12 that B is a Hilbert-Schmidt operator. Therefore
I∗MϕDT̂1 = I∗Mϕ(2A+B) is a Hilbert-Schmidt operator.

Straightforward differentiation gives us

(DT̂2f)(z) =

∫
M(t0)

〈pz, w〉
(1− 〈z, w〉)2

f(w)dµ(w),

f ∈ L0. That is,

DT̂2 =
n∑
i=1

MψiΛMζ̄iI.

By Lemma 5.12, DT̂2 is a Hilbert-Schmidt operator, and so is I∗MϕDT̂2. This completes
the proof. �

Since L is not an L2-space, the adjoint of M̂ζj is not M̂ζ̄j , 1 ≤ j ≤ n. But using the

operators I, D and D, we can give a formula for M̂∗ζj :

Proposition 6.6. For each 1 ≤ j ≤ n, we have M̂∗ζj = M̂ζ̄j + I∗Mψ̄jD −D
∗
Mψ̄jI.
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Proof. For all f, g ∈ L0 and j ∈ {1, . . . , n}, we have

〈f,M̂∗ζjg〉# = 〈M̂ζjf, g〉# =

∫
M(t0)

(∂pwM̂ζjf)(w)(∂pwg)(w)dµ(w)

+

∫
M(t0)

(∂pwM̂ζjf)(w)(∂pwg)(w)dµ(w) +

∫
M(t0)

wjf(w)g(w)dµ(w)

=

∫
M(t0)

wj(∂pwf)(w)(∂pwg)(w)dµ(w) +

∫
M(t0)

wj(∂pwf)(w)(∂pwg)(w)dµ(w)

+

∫
M(t0)

ψj(w)f(w)(∂pwg)(w)dµ(w) +

∫
M(t0)

wjf(w)g(w)dµ(w)

=

∫
M(t0)

(∂pwf)(w)(∂pwM̂ζ̄jg)(w)dµ(w) +

∫
M(t0)

(∂pwf)(w)(∂pwM̂ζ̄jg)(w)dµ(w)

+

∫
M(t0)

f(w)(M̂ζ̄jg)(w)dµ(w)

+

∫
M(t0)

ψj(w)f(w)(∂pwg)(w)dµ(w)−
∫
M(t0)

ψj(w)(∂pwf)(w)g(w)dµ(w)

= 〈f, M̂ζ̄jg〉# + 〈MψjIf,Dg〉 − 〈MψjDf, Ig〉

= 〈f, M̂ζ̄jg〉# + 〈f, I∗Mψ̄jDg〉# − 〈f,D
∗
Mψ̄jIg〉#.

This completes the proof. �

Lemma 6.7. If ϕ ∈ L∞(M (t0), dµ), then [I∗MϕD, T̂ ] ∈ C2 and [D∗MϕI, T̂ ] ∈ C2.

Proof. We have I∗MϕDT̂ ∈ C2 by Lemma 6.5. On the other hand, by Lemma 6.3, T̂I∗ =

(IT̂ )∗ = (IPT̂ )∗ ∈ C2. Therefore [I∗MϕD, T̂ ] ∈ C2.

Similarly, IT̂ = IPT̂ ∈ C2 by Lemma 6.3. Then note that T̂D∗ = (DT̂ )∗ = 0. Hence

[D∗MϕI, T̂ ] ∈ C2. �

Lemma 6.8. For every 1 ≤ j ≤ n, we have [M̂ζ̄j , T̂ ](1− P ) ∈ C2.

Proof. It follows from Proposition 6.6 that

[M̂ζ̄j , T̂ ](1− P ) = [M̂∗ζj , T̂ ](1− P )− [I∗Mψ̄jD, T̂ ](1− P ) + [D∗Mψ̄jI, T̂ ](1− P ).

By Lemma 6.7, the last two terms on the right-hand side are in C2. Then note that

[M̂∗ζj , T̂ ](1− P ) = {(1− P )[T̂ , M̂ζj ]}∗ = 0.

This completes the proof. �

Lemma 6.9. Let A ∈ B(L). For any 1 ≤ p < ∞, if the operators DA,DA, IA : L →
L2(M (t0), dµ) are in the Schatten p-class, then A is in the Schatten p-class.

Proof. By the definition of ‖ · ‖#, the formula

V f = Df ⊕Df ⊕ If,
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f ∈ L, defines an isometry that maps L into L2(M (t0), dµ)⊕L2(M (t0), dµ)⊕L2(M (t0), dµ).
Thus we can factor any operator A on L in the form

A = V ∗(DA⊕DA⊕ IA)W,

where W : L → L⊕L⊕L is the operator defined by the formula Wf = f ⊕ f ⊕ f , f ∈ L.
Obviously, the desire conclusion follows from this factorization. �

Lemma 6.10. For each ϕ ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n], the operator T̂2M̂ϕP is in the trace class.

Proof. Let ϕ ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n]. By Lemma 6.9, it suffices to show that the operators
DT̂2M̂ϕ : P → L2(M (t0), dµ) and IT̂2M̂ϕ : P → L2(M (t0), dµ) are in the trace class.

For each f ∈ P, we have

(DT̂2M̂ϕf)(z) =

∫
M(t0)

〈pz, w〉
(1− 〈z, w〉)2

ϕ(w)f(w)dµ(w).

This obviously translates to the operator identity

DT̂2M̂ϕP =
n∑
i=1

Mχ
M(t0)

MψiΛMζ̄iMϕI.

Thus it follows from Lemmas 5.12 and 6.3 that DT̂2M̂ϕP is in the trace class. On the
other hand, since (1− 〈z, w〉)−1 = (1− 〈z, w〉)−2 · (1− 〈z, w〉), we have

IT̂2M̂ϕP = Mχ
M(t0)

ΛMϕI −
n∑
i=1

Mχ
M(t0)

MζiΛMζ̄iMϕI.

By Lemmas 5.12 and 6.3, IT̂2M̂ϕP is also in the trace class. �

Proof of Proposition 4.11. We begin with a sequence of reductions of our task.

By the linearity of commutators, to prove that [M̂ϕ, T̂ ] ∈ C2 for an arbitrary ϕ ∈
C[ζ1, ζ̄1, . . . , ζn, ζ̄n], it suffices to show that [M̂ζαζ̄β , T̂ ] ∈ C2 for all α, β ∈ Zn+. Since

[A1A2 · · ·Aν , T̂ ] = [A1, T̂ ]A2 · · ·Aν +A1[A2, T̂ ]A3 · · ·Aν + · · ·+A1 · · ·Aν−1[Aν , T̂ ],

our task is reduced to the proof of the fact that [M̂ζk , T̂ ] ∈ C2 and [M̂ζ̄k , T̂ ] ∈ C2 for each
1 ≤ k ≤ n. By Proposition 6.6, we have

[T̂ , M̂ζk ]∗ = [M̂∗ζk , T̂ ] = [M̂ζ̄k , T̂ ] + [I∗Mψ̄kD, T̂ ]− [D∗Mψ̄kI, T̂ ].

Lemma 6.7 tells us that the last two terms on the right-hand side are in C2. Therefore, to
prove Proposition 4.11, it suffices to show that [M̂ζ̄k , T̂ ] ∈ C2 for every 1 ≤ k ≤ n. Lemma

6.8 further reduces this task to the proof of the membership [M̂ζ̄k , T̂ ]P ∈ C2, 1 ≤ k ≤ n.
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By Lemma 6.10, we actually have [M̂ζ̄k , T̂2]P ∈ C1, 1 ≤ k ≤ n. Since T̂ = T̂1 + T̂2, we only

need to show that [M̂ζ̄k , T̂1] ∈ C2 for every 1 ≤ k ≤ n.

By Lemma 6.9, to prove that [M̂ζ̄k , T̂1] ∈ C2, it suffices to show that D[M̂ζ̄k , T̂1],

D[M̂ζ̄k , T̂1] and I[M̂ζ̄k , T̂1] are Hilbert-Schmidt operators. For f ∈ L0, we have

([M̂ζ̄k , T̂1]f)(z) =

∫
M(t0)

z̄k − w̄k
(1− 〈z, w〉)2

〈z, pw〉(∂pwf)(w)dµ(w).

By straightforward differentiation,

(D[M̂ζ̄k , T̂1]f)(z) = (Y1f)(z) + (Y2f)(z),

where

(Y1f)(z) = 2

∫
M(t0)

z̄k − w̄k
(1− 〈z, w〉)3

〈pz, w〉〈z, pw〉(∂pwf)(w)dµ(w) and

(Y2f)(z) =

∫
M(t0)

z̄k − w̄k
(1− 〈z, w〉)2

〈pz, pw〉(∂pwf)(w)dµ(w).

It is easy to see that

Y1 = 2
n∑
i=1

n∑
j=1

Mχ
M(t0)

MψiMζj [Mζ̄k , Z]Mζ̄iMψ̄jD and

Y2 =
n∑
j=1

Mχ
M(t0)

Mψj [Mζ̄k ,Λ]Mψ̄jD.

By Lemma 5.3, Y1 is a Hilbert-Schmidt operator. By Lemma 5.12, Y2 is also a Hilbert-
Schmidt operator. Hence D[M̂ζ̄k , T̂1] = Y1 + Y2 is a Hilbert-Schmidt operator.

Again by differentiation,

(D[M̂ζ̄k , T̂1]f)(z) =

∫
M(t0)

ψ̄k(z)

(1− 〈z, w〉)2
〈z, pw〉(∂pwf)(w)dµ(w)

for f ∈ L0. That is,

D[M̂ζ̄k , T̂1] =
n∑
j=1

Mχ
M(t0)

Mψ̄kMζjΛMψ̄jD.

Thus it follows from Lemma 5.12 that D[M̂ζ̄k , T̂1] is a Hilbert-Schmidt operator.

It is easy to see that

I[M̂ζ̄k , T̂1] =
n∑
i=1

Mχ
M(t0)

Mζi [Mζ̄k ,Λ]Mψ̄iD,
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which is in C2 according to Lemma 5.12. Combining this with the results of the previous
two paragraphs, we obtain the membership [M̂ζ̄k , T̂1] ∈ C2. This completes the proof. �

Corollary 6.11. For every ϕ ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n], we have [M̂ϕ, P ] ∈ C2.

Proof. By Proposition 4.6, there is an h ∈ C∞c (R) such that P = h(T̂ ). Thus the mem-
bership [M̂ϕ, P ] ∈ C2 follows from Proposition 4.11 and the standard smooth functional
calculus. �

The proof of Proposition 4.11 gives us a taste of what is to come. For Proposition
4.12, because it involves double commutators, the proof will be more tedious for an obvious
reason: more terms will have to be examined.

Proof of Proposition 4.12. Let q, r ∈ C[ζ1, . . . , ζn] be given. By the relation T̂ = T̂1 + T̂2

and Lemma 6.10, it suffices to prove that [M̂r̄, [M̂q, T̂1]]P ∈ C1.

For f ∈ L0, we have

([M̂q, T̂1]f)(z) = (X1f)(z)− (X2f)(z),

where

(X1f)(z) =

∫
M(t0)

q(z)− q(w)

(1− 〈z, w〉)2
〈z, pw〉(∂pwf)(w)dµ(w) and

(X2f)(z) =

∫
M(t0)

(∂pwq)(w)

(1− 〈z, w〉)2
〈z, pw〉f(w)dµ(w).

Denote A1 = [M̂r̄, X1]P . For f ∈ P, we have

(A1f)(z) =

∫
M(t0)

(q(z)− q(w))(r̄(z)− r̄(w))

(1− 〈z, w〉)2
〈z, pw〉(∂pwf)(w)dµ(w).

We again use the operators D, D and I. By differentiation, we have

(DA1f)(z) = (Y11f)(z) + (Y12f)(z) + (Y13f)(z),

where

(Y11f)(z) = 2

∫
M(t0)

(q(z)− q(w))(r̄(z)− r̄(w))

(1− 〈z, w〉)3
〈pz, w〉〈z, pw〉(∂pwf)(w)dµ(w),

(Y12f)(z) =

∫
M(t0)

(∂pzq)(z)(r̄(z)− r̄(w))

(1− 〈z, w〉)2
〈z, pw〉(∂pwf)(w)dµ(w) and

(Y13f)(z) =

∫
M(t0)

(q(z)− q(w))(r̄(z)− r̄(w))

(1− 〈z, w〉)2
〈pz, pw〉(∂pwf)(w)dµ(w),
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f ∈ P. Denote η(z) = (∂pzq)(z). We can rewrite the above as the operator identities

Y11 = 2
n∑
i=1

n∑
j=1

Mχ
M(t0)

MζjMψi [Mr̄, [Mq, Z]]Mζ̄iMψ̄jD,

Y12 =
n∑
j=1

Mχ
M(t0)

MηMζj [Mr̄,Λ]Mψ̄jD and

Y13 =
n∑
j=1

Mχ
M(t0)

Mψj [Mr̄, [Mq,Λ]]Mψ̄jD.

It follows from Proposition 5.11 that Y11 ∈ C1. By Proposition 5.13, we have Y12 ∈ C1 and
Y13 ∈ C1. Hence DA1 is in the trace class.

On the other hand,

(DA1f)(z) =

∫
M(t0)

q(z)− q(w)

(1− 〈z, w〉)2
(∂pzr)(z)〈z, pw〉(∂pwf)(w)dµ(w)

for f ∈ P. Denote ξ(z) = (∂pzr)(z). Then the above translates to the operator identity

DA1 =

n∑
j=1

Mχ
M(t0)

Mξ̄Mζj [Mq,Λ]Mψ̄jD.

Applying Proposition 5.13, we conclude that DA1 is in the trace class.

It is easy to see that

IA1 =
n∑
j=1

Mχ
M(t0)

Mζj [Mr̄, [Mq,Λ]]Mψ̄jD.

Applying Proposition 5.13 again, we see that IA1 is in the trace class. Lemma 6.9 now
allows us to conclude that [M̂r̄, X1]P = A1 ∈ C1.

Let us now consider A2 = [M̂r̄, X2]P . For each f ∈ P,

(A2f)(z) =

∫
M(t0)

(r̄(z)− r̄(w))(∂pwq)(w)

(1− 〈z, w〉)2
〈z, pw〉f(w)dµ(w).

Thus
(DA2f)(z) = (Y21f)(z) + (Y22f)(z),

where

(Y21f)(z) = 2

∫
M(t0)

(r̄(z)− r̄(w))(∂pwq)(w)

(1− 〈z, w〉)3
〈pz, w〉〈z, pw〉f(w)dµ(w) and

(Y22f)(z) =

∫
M(t0)

(r̄(z)− r̄(w))(∂pwq)(w)

(1− 〈z, w〉)2
〈pz, pw〉f(w)dµ(w).
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It is easy to see that

Y21 = 2

n∑
i=1

n∑
j=1

Mχ
M(t0)

MζjMψi [Mr̄, Z]Mζ̄iMψ̄jMηI and

Y22 =

n∑
j=1

Mχ
M(t0)

Mψj [Mr̄,Λ]Mψ̄jMηI.

Thus it follows from Lemmas 5.3 and 6.3 that Y21 ∈ C1. Applying Proposition 5.13 again,
we have Y22 ∈ C1. Hence DA2 ∈ C1.

On the other hand,

(DA2f)(z) =

∫
M(t0)

1

(1− 〈z, w〉)2
(∂pzr)(z)(∂pwq)(w)〈z, pw〉f(w)dµ(w),

f ∈ P. Thus

DA2 =

n∑
j=1

Mχ
M(t0)

Mξ̄MζjΛMψ̄jMηI.

Applying Lemmas 5.12 and 6.3, we obtain the membership DA2 ∈ C1.

Finally, it is easy to see that

IA2 =

n∑
j=1

Mχ
M(t0)

Mζj [Mr̄,Λ]Mψ̄jMηI.

Thus we have IA2 ∈ C1 by Proposition 5.13. Having proved the memberships of DA2,
DA2, IA2 in C1, Lemma 6.9 allows us to conclude that [M̂r̄, X2]P = A2 ∈ C1. Since
X1 −X2 = [M̂q, T̂1], we have [M̂r̄, [M̂q, T̂1]]P ∈ C1 as promised. �

7. Proof of Theorem 1.1

Recall from Section 4 that we write Mζ1 , . . . , Mζn for the restrictions of M̂ζ1 , . . . ,

M̂ζn to P. Thus for each 1 ≤ j ≤ n, M∗ζj means the adjoint of Mζj on P.

Lemma 7.1. (a) For each 1 ≤ j ≤ n, M∗ζj = PM̂ζ̄jP + I∗Mψ̄jD.

(b) For each 1 ≤ j ≤ n, we have M∗ζj − PM̂ζ̄jP ∈ C2.

Proof. Since M∗ζj = PM̂∗ζjP and PD∗ = (DP )∗ = 0, (a) follows from Proposition 6.6.

Lemma 6.3 tells us that I ∈ C2. Thus (b) follows from (a). �

Proposition 7.2. For every pair of i, j ∈ {1, . . . , n}, we have [Mζi ,M
∗
ζj
− PM̂ζ̄jP ] ∈ C1.

Proof. By Lemma 7.1, this is equivalent to the assertion that [Mζi , I
∗Mψ̄jD] ∈ C1 for all

i, j ∈ {1, . . . , n}. Note that DMζi = MζiD +MψiI. Therefore

[Mζi , I
∗Mψ̄jD] = (MζiI

∗ − I∗Mζi)Mψ̄jD − I
∗Mψ̄jMψiI.
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It follows from Lemma 6.3 that I∗Mψ̄jMψiI ∈ C1. Thus it suffices to show that MζiI
∗ −

I∗Mζi is in the trace class. Equivalently, it suffices to show that IM∗ζi −Mζ̄iI is in the

trace class. By Lemmas 7.1 and 6.3, I(M∗ζi −PM̂ζ̄iP ) is in the trace class. Hence our task

is reduced to the proof that IPM̂ζ̄iP −Mζ̄iI is in the trace class.

Then note that Mζ̄iI = Mζ̄iIP = IM̂ζ̄iP . Hence

IPM̂ζ̄iP −Mζ̄iI = −I(1− P )M̂ζ̄iP = −I[M̂ζ̄i , P ]P.

To prove that this is in the trace class, we recall Proposition 4.6, which implies that
P = T̂ (T̃−1 ⊕ 0). Thus

(7.1) I[M̂ζ̄i , P ]P = I[M̂ζ̄i , T̂ ](T̃−1 ⊕ 0)P + IT̂ [M̂ζ̄i , T̃
−1 ⊕ 0]P.

Let us first consider the second term on the right-hand side. Since the range of T̂ is
contained in P, it follows from Lemma 6.3 that IT̂ is a Hilbert-Schmidt operator. By
Proposition 4.6, there is a ξ ∈ C∞c (R) such that T̃−1 ⊕ 0 = ξ(T̂ ). Therefore it follows
from Proposition 4.11 and smooth functional calculus that [M̂ζ̄i , T̃

−1 ⊕ 0] ∈ C2. Thus the
second term on the right-hand side of (7.1) is in the trace class.

The remaining task is to show that the first term on the right-hand side of (7.1) is in
the trace class. Since T̂ = T̂1 + T̂2, the proof of the proposition will be complete once we
show that both I[M̂ζ̄i , T̂1] and I[M̂ζ̄i , T̂2] are in the trace class.

For this purpose, we define

(T ◦1 ϕ)(z) =

∫
M(t0)

〈z, pw〉
(1− 〈z, w〉)2

ϕ(w)dµ(w) and

(T ◦2 ϕ)(z) =

∫
M(t0)

1

1− 〈z, w〉
ϕ(w)dµ(w),

ϕ ∈ L2(M (t0), dµ), which are operators on the space L2(M (t0), dµ). Note that IT̂1 = T ◦1D.
Since ζ̄i is conjugate analytic, we have DM̂ζ̄i = Mζ̄iD. Also, IM̂ζ̄i = Mζ̄iI. Thus

I[M̂ζ̄i , T̂1] = [Mζ̄i , T
◦
1 ]D.

It is easy to see that

[Mζ̄i , T
◦
1 ] =

n∑
`=1

Mχ
M(t0)

Mζ` [Mζ̄i ,Λ]Mψ̄`Mχ
M(t0)

.

Since [Mζ̄i ,Λ] = [Λ,Mζi ]
∗, it follows from these identities and Proposition 5.13 that

I[M̂ζ̄i , T̂1] is in the trace class. It is also easy to see that

I[M̂ζ̄i , T̂2] = [Mζ̄i , T
◦
2 ]I = Mχ

M(t0)
[Mζ̄i ,Λ]I −

n∑
`=1

Mχ
M(t0)

Mζ` [Mζ̄i ,Λ]Mζ̄`I.

47



By Proposition 5.13, I[M̂ζ̄i , T̂2] is also in the trace class. This completes the proof. �

After so much preparation, we are finally able to deal with essential normality.

Proposition 7.3. On the space P, the commuting tuple (Mζ1 , . . . ,Mζn) is 1-essentially
normal. That is, for all i, j ∈ {1, . . . , n}, we have [Mζi ,M

∗
ζj

] ∈ C1.

Proof. In view of Proposition 7.2, it suffices to show that [Mζi , PM̂ζ̄jP ] ∈ C1 for i, j ∈
{1, . . . , n}. Since M̂ζi commutes with M̂ζ̄j , we have

[Mζi , PM̂ζ̄jP ] = [PM̂ζiP, PM̂ζ̄jP ] = PM̂ζ̄j (1− P )M̂ζiP − PM̂ζi(1− P )M̂ζ̄jP

= [P, M̂ζ̄j ](1− P )[M̂ζi , P ]− [P, M̂ζi ](1− P )[M̂ζ̄j , P ].

By Corollary 6.11, this is in the trace class. �

Lemma 7.4. We have [Mζi , T̃ ] ∈ C2 for every 1 ≤ i ≤ n.

Proof. Obviously, we have [Mζi , T̃ ] = P [M̂ζi , T̂ ]P . Thus the membership [Mζi , T̃ ] ∈ C2 is
a consequence of Proposition 4.11. �

Proposition 7.5. For all i, j ∈ {1, . . . , n}, we have [Mζi , [M
∗
ζj
, T̃ ]] ∈ C1.

Proof. It follows from Proposition 7.2 and Lemmas 7.1 and 7.4 that [Mζi , [M
∗
ζj
−PM̂ζ̄jP, T̃ ]]

∈ C1 for all i, j ∈ {1, . . . , n}. Therefore it suffices to show that [Mζi , [PM̂ζ̄jP, T̃ ]] ∈ C1,
i, j ∈ {1, . . . , n}. Again, let us write A ∼1 B when A−B ∈ C1. We have

[Mζi , [PM̂ζ̄jP, T̃ ]] = P [M̂ζi , P [M̂ζ̄j , T̂ ]P ]P ∼1 P [M̂ζi , [M̂ζ̄j , T̂ ]]P = P [M̂ζ̄j , [M̂ζi , T̂ ]]P,

where the ∼1 follows from Proposition 4.11 and Corollary 6.11. Now an application of
Proposition 4.12 completes the proof. �

Corollary 7.6. For all i, j ∈ {1, . . . , n}, we have [Mζi , [M
∗
ζj
, T̃ 1/2]] ∈ C1.

Proof. By Proposition 4.6, there are 0 < c < C < ∞ such that the spectrum of T̃ is
contained in the interval [c, C]. Consider H+ = {λ ∈ C : Re(λ) > 0}, the right half-plane.
Let γ be a simple Jordan curve in H+\[c, C] whose winding number about every x ∈ [c, C]
is 1. Taking advantage of the fact that the square-root function λ1/2 is analytic on H+,
from the Riesz functional calculus we obtain

(7.2) T̃ 1/2 =
1

2πi

∫
γ

λ1/2(λ− T̃ )−1dλ.

Therefore

[Mζi , [M
∗
ζj , T̃

1/2]] =
1

2πi

∫
γ

λ1/2{A(λ) +B(λ) + C(λ)}dλ,

where

A(λ) = (λ− T̃ )−1[Mζi , T̃ ](λ− T̃ )−1[M∗ζj , T̃ ](λ− T̃ )−1,

B(λ) = (λ− T̃ )−1[Mζi , [M
∗
ζj , T̃ ]](λ− T̃ )−1 and

C(λ) = (λ− T̃ )−1[M∗ζj , T̃ ](λ− T̃ )−1[Mζi , T̃ ](λ− T̃ )−1.
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Applying Proposition 7.5 to B(λ) and Lemma 7.4 to A(λ) and C(λ), we obtain the mem-
bership [Mζi , [M

∗
ζj
, T̃ 1/2]] ∈ C1. �

Corollary 7.7. We have [Mζi , T̃
1/2] ∈ C2 for every 1 ≤ i ≤ n.

Proof. This follows obviously from Lemma 7.4 and identity (7.2). �

Finally, we can accomplish the main goal of the paper:

Proof of Theorem 1.1. Recall from Section 4 that the operator J : Q → P is invertible.
Therefore the operator J∗ : P → Q is also invertible. By the standard polarization,

J∗ = U |J∗|,

where U : P → Q is a unitary operator and |J∗| = (JJ∗)1/2 = T̃ 1/2 (see Proposition 4.6).
Recall from Corollary 4.10 that JQζj = MζjJ for every j ∈ {1, . . . , n}. Therefore

Qζj = J−1MζjJ = UT̃−1/2Mζj T̃
1/2U∗ = UMζjU

∗ +Kj ,

j ∈ {1, . . . , n}, where
Kj = UT̃−1/2[Mζj , T̃

1/2]U∗.

Thus for any i, j ∈ {1, . . . , n}, we have

[Qζi , Q
∗
ζj ] = U [Mζi ,M

∗
ζj ]U

∗ + [UMζiU
∗,K∗j ] + [Ki, UM

∗
ζjU
∗] + [Ki,K

∗
j ].

By Proposition 7.3 and Corollary 7.7, the first term and the last term on the right-hand
side are in the trace class. What remains is to show that the two middle terms on the
right-hand side are also in the trace class.

We have

[UMζiU
∗,K∗j ] = U [Mζi , {T̃−1/2[Mζj , T̃

1/2]}∗]U∗ = U [Mζi , [T̃
1/2,M∗ζj ]T̃

−1/2]U∗

= U [Mζi , [T̃
1/2,M∗ζj ]]T̃

−1/2U∗ + U [T̃ 1/2,M∗ζj ]T̃
−1/2[T̃ 1/2,Mζi ]T̃

−1/2U∗

= A+B.

By Corollary 7.6, we have A ∈ C1. By Corollary 7.7, we have B ∈ C1. Hence [UMζiU
∗,K∗j ]

∈ C1. Since [Ki, UM
∗
ζj
U∗] = [UMζjU

∗,K∗i ]∗, we also have [Ki, UM
∗
ζj
U∗] ∈ C1. This

completes the proof of Theorem 1.1. �

Appendix 1

The purpose of this appendix is to give a proof for Lemma 2.13. With minor changes
of details, this is essentially the same as the proof of [29, Lemma 3.1].

Let −1 < τ <∞ be given. Then for any f ∈ C1
c [0,∞), we have

(A1.1)

∫ ∞
0

|f(x)|2xτdx ≤
(

2

τ + 1

)2 ∫ ∞
0

|xf ′(x)|2xτdx.
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See inequality (3.1) in [29].

Let 0 < b < t ≤ 1 be such that M (b) ⊂ M. Consider the function ρ(w) = 1 − |w|2.
SinceM intersects S = {ζ ∈ Cn : |ζ| = 1} transversely, ∇Mρ does not vanish nearM∩S.
Thus we can use ρ as one of the real coordinates onM near S. More precisely, if ζ ∈M∩S,
then ζ has an open neighborhood Uζ in M that has the following properties:

(1) Uζ = G((−c, c)× V ), where 0 < c < b, V is a bounded open set in R2d−1 and
G : (−c, c)× V → Cn is a one-to-one C∞ map.
(2) there are 0 < δ < C <∞ such that DG, the derivative of G, satisfies the matrix
inequality δ ≤ (DG)∗(x, y)(DG)(x, y) ≤ C for all x ∈ (−c, c) and y ∈ V .
(3) If w = G(x, y) for some x ∈ (−c, c) and y ∈ V , then x = 1− |w|2. Equivalently,
for each w ∈ Uζ , there is a unique yw ∈ V such that w = G(1− |w|2, yw).

Obviously, (3) implies Uζ ∩M = G((0, c)× V ) ⊂M (b).

Once we have this c, by the standard technique of using a smooth cutoff function, we
can truncate inequality (A1.1) to the interval [0, c]. That is, there are C1 and C2 such that

(A1.2)

∫ c

0

|h(x)|2xτdx ≤ C1

∫ c

0

|xh′(x)|2xτdx+ C2

∫ c

c/2

|h(x)|2xτdx

for every h ∈ C1[0, c]. Let f be any C1 function on an open set containing the closure of
M (t). By the definition of dντ and property (3) above,∫

Uζ∩M
|f(w)|2dντ (w) =

∫
Uζ∩M

|f(w)|2(1− |w|2)τdvM (w)

=

∫
V

∫ c

0

|f(G(x, y))|2xτJ(x, y)dxdy ≤ C3

∫
V

∫ c

0

|f(G(x, y))|2xτdxdy

≤ C4

∫
V

∫ c

0

∣∣∣∣x d

dx
f(G(x, y))

∣∣∣∣2xτdxdy + C5

∫
V

∫ c

c/2

|f(G(x, y))|2xτdxdy,(A1.3)

where the second ≤ is an application of (A1.2). By the chain rule for differentiation,

d

dx
f(G(x, y)) = 〈(∇f)(G(x, y)), τ(x, y)〉,

where τ(x, y) is a (real) tangent vector to M at the point G(x, y). Moreover, (2) implies
the bound |τ(x, y)| ≤ C1/2. Hence |df(G(x, y))/dx| ≤ C1/2|(∇Mf)(G(x, y))|. Thus∫

V

∫ c

0

∣∣∣∣x d

dx
f(G(x, y))

∣∣∣∣2xτdxdy ≤ C ∫
V

∫ c

0

|(∇Mf)(G(x, y))|2x2+τdxdy

≤ C6

∫
V

∫ c

0

|(∇Mf)(G(x, y))|2x2+τJ(x, y)dxdy

= C6

∫
Uζ∩M

|(∇Mf)(w)|2(1− |w|2)2+τdvM (w)

= C6

∫
Uζ∩M

|(∇Mf)(w)|2(1− |w|2)2dντ (w),
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where the third step uses property (3). Combining this with (A1.3), we find that∫
Uζ∩M

|f(w)|2dντ (w) ≤ C7

∫
Uζ∩M

|(∇Mf)(w)|2(1− |w|2)2dντ (w)

+ C8

∫
N(c/2)∩M(t)

|f(w)|2dντ (w).(A1.4)

Since M∩ S is compact, there are ζ1, . . . , ζk ∈ M∩ S such that the corresponding open
sets Uζ1 , . . . , Uζk have the property Uζ1 ∪ · · · ∪ Uζk ⊃ M∩ S = {w ∈ M : 1 − |w|2 = 0}.
Thus Uζ1 ∪· · ·∪Uζk ⊃M (σ) for some 0 < σ < 1. Combining this containment with (A1.4),
Lemma 2.13 is proved.

Appendix 2

The purpose of this appendix is to give a proof of Proposition 5.6. One can characterize
the material in this appendix as an easier version of parts of Sections 3 and 4.

Recall that H(2−n) is the Hilbert space of analytic functions on B which has (5.2) as
its reproducing kernel. We begin with an easier version of Lemma 3.9:

Lemma A2.1. Given any δ > 0, there exist 0 < τ < t0 and 0 < C <∞ such that∫
M(t)

|f(z)|2dµ(z) ≤ C
∫
M(t)

|(Zf)(z)|2dµ(z) + δ

∫
M(t0)

|f(z)|2dµ(z)

for all 0 < t ≤ τ and f ∈ H(2−n).

Proof. As in the proof of Lemma 3.9, we begin with a large 1 ≤ r <∞, whose exact value
will be determined later. For such an r, let 0 < τ3 ≤ τ2 ≤ τ1 ≤ t0 be the same as in the
proof of Lemma 3.9. Thus if 0 < t ≤ τ2, then

(A2.1) Iz(D(z, 2r) ∩ Tmod
z ) ⊃ D(z, r) ∩M for every z ∈M (t).

And if 0 < t ≤ τ3, then

(A2.2) Iz(D(z, 2r) ∩ Tmod
z ) ⊂M (t0) for every z ∈M (t).

Write U(z) = Iz(D(z, 2r) ∩ Tmod
z ) as before, z ∈M (τ3). Let f ∈ H(2−n) be given. Then

(Zf)(z) = A(z) +B(z),

where

A(z) =

∫
U(z)

f(w)
1− |w|2

(1− 〈z, w〉)3
dvM (w) and

B(z) =

∫
M(t0)\U(z)

f(w)
1− |w|2

(1− 〈z, w〉)3
dvM (w),
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z ∈M (τ3). Since PzU(z) = D(z, 2r) ∩ Tmod
z , by (2.10) we have

A(z) =

∫
D(z,2r)∩Tmod

z

f(Iz(x))
1− |Iz(x)|2

(1− 〈z, Iz(x)〉)3
Jz(x)dv1(x).

Recall from (2.6) that 〈z, Iz(x)〉 = 〈z, x〉. Writing

F (z, x) = 1− 1− |x|2

1− |Iz(x)|2
· Jz(z)
Jz(x)

,

we have A(z) = A1(z) +A2(z), where

A1(z) = Jz(z)

∫
D(z,2r)∩Tmod

z

f(Iz(x))
1− |x|2

(1− 〈z, x〉)3
dv1(x) and

A2(z) =

∫
D(z,2r)∩Tmod

z

f(Iz(x))
1− |Iz(x)|2

(1− 〈z, Iz(x)〉)3
F (z, x)Jz(x)dv1(x).

Let us analyze A1(z), and A2(z) and B(z).

Being a local inverse of Pz, the map Iz is analytic. Thus the function x 7→ f(Iz(x)) is
analytic on D(z, 3r) ∩ Tmod

z . Therefore it follows from Lemma 2.10 that

A1(z) = Φ(2r)Jz(z)f(Iz(z)) = Φ(2r)Jz(z)f(z).

Recalling (2.9) and (2.7), we see that there is a 0 < C1 <∞ such that

(A2.3) |f(z)| ≤ C1|A1(z)| for z ∈M (t), 0 < t ≤ τ3.

Denote

ε(r, t) = sup
z∈M(t)

{
sup

x∈D(z,2r)∩Tmod
z

|F (z, x)|
}
.

As we explained in the proof of Lemma 3.9,

(A2.4) lim
t↓0

ε(r, t) = 0

for every 1 ≤ r <∞. Applying (2.10) again, we have

|A2(z)| ≤ ε(r, t)
∫
D(z,2r)∩Tmod

z

|f(Iz(x))| 1− |Iz(x)|2

|1− 〈z, Iz(x)〉|3
Jz(x)dv(x)

≤ ε(r, t)
∫
M(t0)

|f(w)| 1

|1− 〈z, w〉|3
dµ(w).

Thus it follows from Lemma 3.8 that

(A2.5)

∫
M(t)

|A2(z)|2dµ(z) ≤ {ε(r, t)}2‖B‖2
∫
M(t0)

|f(w)|2dµ(w).
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Finally, from (A2.1) we obtain

|B(z)| ≤
∫
M(t0)\D(z,r)

|f(w)| 1

|1− 〈z, w〉|3
dµ(w)

for z ∈M (t), 0 < t ≤ τ3. Using the operator Br in Lemma 3.8, we have

(A2.6)

∫
M(t)

|B(z)|2dµ(z) ≤ ‖Br‖2
∫
M(t0)

|f(w)|2dµ(w).

Retracing the above steps, we have

A1(z) = (Zf)(z)− (A2(z) +B(z)).

Thus it follows from (A2.3), (A2.5) and (A2.6) that∫
M(t)

|f(z)|2dµ(z) ≤ 3C2
1

∫
M(t)

|(Zf)(z)|2dµ(z)

+ 3C2
1 ({ε(r, t)}2‖B‖2 + ‖Br‖2)

∫
M(t0)

|f(z)|2dµ(z).(A2.7)

Let any δ > 0 be given. By Lemma 3.8, we can first pick an r ∈ [1,∞) such that
3C2

1‖Br‖2 ≤ δ/2. With r so fixed, by (A2.4), we can pick a 0 < τ ≤ τ3 such that

3C2
1{ε(r, t)}2‖B‖2 ≤ δ/2

for every 0 < t ≤ τ . Substitution these bounds in (A2.7), the lemma is proved. �

On the space H(2−n), we now define the operator

T † =

∫
M

K(2−n)
w ⊗K(2−n)

w dµ(w).

By (5.2) and the reproducing property of K
(2−n)
w , we have

(A2.8) (T †f)(z) = (Zf)(z) for z ∈M,

f ∈ H(2−n). Write 〈·, ·〉2−n for the inner product on H(2−n). Then

(A2.9) 〈T †f, f〉2−n =

∫
M

|f(w)|2dµ(w),

f ∈ H(2−n). Thus it follows from Lemma 5.14 that

〈T †f, f〉2−n ≤ C‖f‖22−n for every f ∈ H(2−n).
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In other words, T † is a bounded operator on H(2−n). Obviously, T † ≥ 0.

Lemma A2.2. For each y ∈M∩M =M∩B, there is an open neighborhood Ny of y in
M∩M which has the following property. Let {fk} be a sequence in H(2−n). If the sequence
{(T †)1/2fk} weakly converges to 0, then

lim
k→∞

sup{|fk(w)| : w ∈ Ny} = 0.

Proof. This is very similar to the proof of Lemma 3.7. Indeed we again use the bi-
holomorphic map ρy : B1(0, 2) → Vy introduced in Section 3, y ∈ M. Recall that
ρy(0) = y. For each y ∈ M ∩ M , there are ε = ε(y) > 0 and r = r(y) ∈ (0, 2) such
that ρy(B1(0, r)) ⊂ {w ∈ M∩M : 1− |w|2 > ε}. We will show that the lemma holds for
the open set Ny = ρy(B1(0, r/2)).

Again, consider the Bergman space L2
a(B1(0, r), dv1). This time, we define

(Gf)(ξ) = f(ρy(ξ)), ξ ∈ B1(0, r),

f ∈ H(2−n). By the condition r < 2, we have∫
B1(0,r)

|(Gf)(ξ)|2dv1(ξ) ≤ C1

∫
B1(0,r)

|f(ρy(ξ))|2|ρ′y(ξ)|2dv1(ξ)

= C1

∫
ρy(B1(0,r))

|f(w)|2dvM (w)

≤ C1ε
−1

∫
ρy(B1(0,r))

|f(w)|2(1− |w|2)dvM (w)

= C1ε
−1

∫
ρy(B1(0,r))

|f(w)|2dµ(w)

≤ C1ε
−1〈T †f, f〉2−n = C1ε

−1‖(T †)1/2f‖22−n.

Thus G = W (T †)1/2, where W : H(2−n) → L2
a(B1(0, r), dv1) is a bounded operator.

Now let {fk} be any sequence in H(2−n) such that {(T †)1/2fk} weakly converges to
0. Since G = W (T †)1/2, the sequence {Gfk} weakly converges to 0 in L2

a(B1(0, r), dv1).
Using the reproducing kernel for the Bergman space, we have

lim
k→∞

sup{|fk(ρy(ξ))| : ξ ∈ B1(0, r/2)} = 0.

Since Ny = ρy(B1(0, r/2)), the proof is complete. �

Proposition A2.3. There is a γ > 0 such that the spectrum of T † does not intersect the
interval (0, γ).

Proof. By Lemma A2.1, there are 0 < t < t0 and 0 < C <∞ such that∫
M(t)

|f(z)|2dµ(z) ≤ C
∫
M(t)

|(Zf)(z)|2dµ(z) +
1

2

∫
M(t0)

|f(z)|2dµ(z)
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for every f ∈ H(2−n). After the obvious cancellation, we have

1

2

∫
M(t)

|f(z)|2dµ(z) ≤ C
∫
M(t)

|(Zf)(z)|2dµ(z) +
1

2

∫
M(t0)\M(t)

|f(z)|2dµ(z).

Combining this with (A2.8) and (A2.9), we find that

(A2.10)
1

2

∫
M(t)

|f(z)|2dµ(z) ≤ C‖(T †)3/2f‖22−n +
1

2

∫
M(t0)\M(t)

|f(z)|2dµ(z)

for every f ∈ H(2−n).

Let dE be the spectral measure for the positive operator T †. Suppose that E(0, γ) 6= 0
for every γ > 0. We will complete the proof by showing that this leads to a contradic-
tion. For each k ∈ N, since E(0, 1/k) 6= 0, we pick an fk ∈ E(0, 1/k)H(2−n) such that
〈T †fk, fk〉2−n = 1. By (A2.9). this means

(A2.11)

∫
M

|fk(w)|2dµ(w) = 1

for every k. Obviously, the sequence {(T †)1/2fk} weakly converges to 0 in H(2−n).

Let H be the closure of M (t0)\M (t). Then H is a compact subset of M∩M . By
Lemma A2.2 and a usual covering argument, the weak convergence to 0 of the sequence
{(T †)1/2fk} implies

lim
k→∞

sup{|fk(z)| : z ∈ H} = 0.

By the maximum modulus principle, this implies

lim
k→∞

sup{|fk(z)| : z ∈M\M (t)} = 0.

Therefore

(A2.12) lim
k→∞

∫
M\M(t)

|fk(z)|2dµ(z) = 0.

Combining this with (A2.11), we find that

(A2.13) lim
k→∞

∫
M(t)

|fk(z)|2dµ(z) = 1.

Since fk ∈ E(0, 1/k)H(2−n), we have

(A2.14) ‖(T †)3/2f‖22−n ≤ k−2〈T †fk, fk〉 = k−2,

k ∈ N. On the other hand, specializing (A2.10) to each fk, we see that

(A2.15)
1

2

∫
M(t)

|fk(z)|2dµ(z) ≤ C‖(T †)3/2fk‖22−n +
1

2

∫
M(t0)\M(t)

|fk(z)|2dµ(z),
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k ∈ N. Obviously, the combination of (A2.15) with (A2.12), (A2.13) and (A2.14) leads to
the contradiction 1/2 ≤ 0. This completes the proof. �

Define
R(2−n) = {f ∈ H(2−n) : f = 0 on M}.

Then R(2−n) is a submodule of the Hilbert module H(2−n), just as R is a submodule of
the Drury-Arveson module H2

n.

Proof of Proposition 5.6. Define

Q(2−n) = H(2−n) 	R(2−n),

which is the quotient module of H(2−n) corresponding to the submodule R(2−n). Let
J (2−n) denote the operator that takes each f ∈ H(2−n) to the same f in L2(M,dµ). That
is, J (2−n)f is the restriction of f ∈ H(2−n) to the subset M of B. Then (A2.9) translates
to the operator identity

(A2.16) (J (2−n))∗J (2−n) = T †.

If f ∈ R(2−n), then we obviously have J (2−n)f = 0. By (A2.9) and the maximum modulus
principle, we have ker(T †) = R(2−n). Therefore it follows from Proposition A2.3 that∫

M

|(J (2−n)f)(w)|2dµ(w) = 〈T †f, f〉2−n ≥ γ‖f‖2n−2 for every f ∈ Q(2−n).

Thus J (2−n) is an invertible operator that maps Q(2−n) onto E .

Obviously, E contains the range of the self-adjoint operator Z. Therefore Z = 0 on
E⊥ = L2(M,dµ)	E . Let Z̃ denote the restriction of Z to the invariant subspace E . Then
we have the operator decomposition

(A2.17) Z = Z̃ ⊕ 0

corresponding to the space decomposition L2(M,dµ) = E ⊕E⊥. For each f ∈ Q(2−n), it is
obvious that Z̃J (2−n)f = J (2−n)T †f . Combining this with (A2.16), we have

Z̃J (2−n)f = J (2−n)T †f = J (2−n)(J (2−n))∗J (2−n)f.

Since J (2−n)Q(2−n) = E , this implies Z̃ = J (2−n)(J (2−n))∗. Since J (2−n) : Q(2−n) → E and
(J (2−n))∗ : E → Q(2−n) are invertible, Z̃ is invertible on E . Combining this invertibility
with (A2.17), the proof of Proposition 5.6 is complete. �
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