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Abstract. We establish, in the context of Dixmier trace, the analogues of two classic
trace formulas.

1. Introduction

The purpose of this paper is to develop for Dixmier trace analogues of certain im-
portant formulas that are well known in the case of the ordinary trace. We will refer to
these formulas for the ordinary trace as the classic case. To motivate the analogues, it is
appropriate to first review the classic case.

Suppose that A, B are bounded self-adjoint operators such that the commutator [A,B]
is in the trace class. In [15], Helton and Howe showed that there is a compactly-supported,
real-valued regular Borel measure dP on R2 such that

(1.1) tr([p(A,B), q(A,B)]) = i

∫
{p, q}dP

for all p, q ∈ C[x, y]. Here, {p, q} is the Poisson bracket for p, q. That is,

{p, q}(x, y) =
∂p

∂x
(x, y)

∂q

∂y
(x, y)− ∂p

∂y
(x, y)

∂q

∂x
(x, y).

Carey and Pincus [21,22,2,4,5] took this trace formula one step further by showing that
there is a g ∈ L1(R2), which is called the principal function for the pair A, B, such that

(1.2) tr([p(A,B), q(A,B)]) =
i

2π

∫∫
{p, q}(x, y)g(y, x)dxdy

for all p, q ∈ C[x, y]. In other words, (1.2) tells us that the measure on the right-hand
side is absolutely continuous with respect to the two-dimensional Lebesgue measure on
R2. In fact, g is supported on a bounded set in R2, and, by functional calculus, (1.2)
extends to a much larger class of functions than C[x, y]. For an irreducible pair A, B with
rank([A,B]) = 1, the principal function g is a complete unitary invariant.

Conversely, every real-valued g ∈ L1(R2) with a bounded support is the principal
function of a pair of self-adjoint operators A, B with trace-class commutator [3].

Keywords: Dixmier trace, principal measure, spectral shift.
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The analogue of (1.2) also holds in type-II von Neumann algebras [5]. Once the door
of generalization is open, it does not take too much imagination to think about other
possibilities.

The motivation for this paper is a very simple question: is there an analogue of (1.2)
where the ordinary trace tr is replaced by a Dixmier trace?

The case of Dixmier trace is somewhat different, because Dixmier trace is a singular
trace, meaning that one cannot compute Dixmier trace by finite-rank approximation. By
contrast, the traces in both type-I and type-II von Neumann algebras are normal. Thus if
we want to consider the analogue of (1.2) in the context of Dixmier trace, then new way
of thinking is required. On the other hand, one can take advantage of the singular nature
of Dixmier trace to simplify certain arguments [6,7]. In any case, the analogue of (1.2) in
the context of Dixmier trace is certainly something that is worth exploring.

We are pleased to report the analogue of formulas (1.1-2) for Dixmier trace, as follows.
Let A, B be self-adjoint operators such that the commutator [A,B] is in the ideal C+1 , which
is the domain of every Dixmier trace. Suppose that the spectra of A, B are contained in
[a, b] and [c, d] respectively. Given a Dixmier trace Trω, there is a real-valued regular Borel
measure µ on R = [a, b]× [c, d] such that

(1.3) Trω([p(A,B), q(A,B)]) =
i

2π

∫∫
R

{p, q}(x, y)dµ(x, y)

for all p, q ∈ C[x, y]. Moreover, the total variation of µ does not exceed 4π‖[A,B]‖+1 ,
and the support of µ is contained in the essential spectrum of A + iB under the natural
identification R2 ∼= C. If i[B,A] is non-negative, then so is the measure µ.

Since there are many Dixmier traces, we should be mindful of the possibility that the
measure µ in (1.3) may depend on the choice of Trω. Nonetheless, following the terminology
in the classic case, we will call the measure µ in (1.3) the principal measure for the triple
A, B and Trω.

Given (1.3), the first question that comes to mind is, is the principal measure µ
absolutely continuous with respect to the two-dimensional Lebesgue measure dxdy? The
general answer is negative. We think that this is one aspect where the singular nature of
Dixmier trace asserts itself. As we mentioned above, in the classic case, every real-valued,
boundedly supported g ∈ L1(R2) is the principal function for some pair with trace-class
commutator. In the case of Dixmier trace, we will prove the following. Let µ be any
compactly-supported regular Borel measure on R2. Then there exist self-adjoint operators
A, B with [A,B] ∈ C+1 such that for every Dixmier trace Trω, we have

(1.4) Trω([p(A,B), q(A,B)]) =
i

2π

∫∫
{p, q}(x, y)dµ(x, y)

for all p, q ∈ C[x, y]. In other words, every compactly-supported regular Borel measure on
R2 is the principal measure for some pair of self-adjoint operators A, B in the context of
Dixmier trace. This is a sharp contrast to the case of ordinary trace.
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A closely related topic in the classic case is Krein’s trace formula and spectral shift.
Suppose that A is a bounded self-adjoint operator and K is a self-adjoint operator of the
trace class. Then a famous theorem of Krein tells us that there is a ξ ∈ L1(R) with a
bounded support such that for every z ∈ C\R,

(1.5) tr((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
ξ(t)dt.

If we further assume that K is non-negative, then so is ξ. See [18,19,1,27] for these well-
known facts. The function ξ in (1.5) is called the spectral shift for the perturbation problem
A→ A+K. By now, it is a standard exercise to deduce from (1.5) that

(1.6) tr(η(A+K)− η(A)) =

∫
η′(t)ξ(t)dt

for every η ∈ C∞c (R).

Spectral shifts play an extremely important role in the perturbation theory of self-
adjoint operators [13,23]. And not coincidentally, analogues of (1.5) and (1.6) hold in type
II von Neumann algebras [5]. Thus, again, a natural question presents itself: is there an
analogue of (1.5) and (1.6) in the context of Dixmier trace?

We have an answer for this question too. Let A and K be bounded self-adjoint
operators with K ∈ C+1 . Let any Dixmier trace Trω be given. Then there is a compactly-
supported, real-valued regular Borel measure µ on R such that

(1.7) Trω((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
dµ(t)

for every z ∈ C\R. Moreover, the total variation of µ does not exceed Trω(|K|). We will
call the measure µ the spectral shift for the triple A, A+K and Trω.

Again, the existence of spectral shift in the context of Dixmier trace leads to more
questions: Is the µ in (1.7) absolutely continuous with respect to the Lebesgue measure
on R? Or, does every compactly-supported regular Borel measure show up in (1.7) for
some triple A, A + K and Trω? And again, the latter turns out to be the case: Let µ be
a regular Borel measure on [a, b], where −∞ < a < b < ∞. Let A be any bounded self-
adjoint operator whose spectrum contains [a, b]. We will show that there is a non-negative,
self-adjoint operator K ∈ C+1 such that for every Dixmier trace Trω and every z ∈ C\R,
we have

(1.8) Trω((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
dµ(t).

Moreover, this K satisfies the estimate ‖K‖+1 ≤ 2(log 2)µ([a, b]).

The rest of the paper is organized as follows. We prove (1.3), (1.4) and (1.7) in
Sections 2, 3 and 4 respectively. We divide the proof of statement (1.8) into two steps,
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which take up Sections 5 and 6. In Section 7 we examine a commutator property that
demonstrates a crucial difference between Dixmier trace and the ordinary trace.

2. Dixmier trace and Poisson brackets

First of all, we cite [9,7] as general references for Dixmier trace. Any discussion of
Dixmier trace needs to start from its domain, the operator ideal C+1 . Given an operator
T , write s1(T ), . . . , sk(T ), . . . for its s-numbers [14]. The formula

‖T‖+1 = sup
k≥1

s1(T ) + s2(T ) + · · ·+ sk(T )

1−1 + 2−1 + · · ·+ k−1

defines a symmetric norm for operators. On a Hilbert space H, the set

C+1 = {T ∈ B(H) : ‖T‖+1 <∞}

is a norm ideal. See Sections III.2 and III.14 in [14]. In particular, if T ∈ C+1 and X is a
bounded operator, then

‖XT‖+1 ≤ ‖X‖‖T‖
+
1 .

This fact will play a prominent role below.

To define Dixmier trace on the ideal C+1 , one starts with a Banach limit ω on `∞(N)
that has the following “doubling” property:

ω({ak}k∈N) = ω({a1, a1, a2, a2, . . . , ak, ak, . . . })

for every {ak}k∈N ∈ `∞(N). Such an ω can be easily constructed. For example, one can
start with the doubling operator D : `∞(N)→ `∞(N). That is,

D{a1, a2, . . . , ak, . . . } = {a1, a1, a2, a2, . . . , ak, ak, . . . }

for {ak}k∈N ∈ `∞(N). Take any Banach limits (cf. [8, Section III.7]) L1 and L2, distinct
or identical. An elementary exercise shows that the formula

ω(a) = L2

({
1

k

k∑
j=1

L1(Dja)

}
k∈N

)
,

a ∈ `∞(N), defines a Banach limit that has the doubling property stated above.

Given such an ω, for a positive operator E ∈ C+1 , its Dixmier trace is defined to be

Trω(E) = ω

({
1

log(k + 1)

k∑
j=1

sj(E)

}
k∈N

)
.

The doubling property of ω ensures the additivity Trω(E + F ) = Trω(E) + Trω(F ) for
positive operators E,F ∈ C+1 . Thus Trω naturally extends to a linear functional on C+1 .
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Then the unitary invariance of Trω leads to the identity Trω(XT ) = Trω(TX) for every
T ∈ C+1 and every bounded operator X, which is what one expects of a trace.

An important property of the Dixmier trace Trω is that Trω(T ) = 0 whenever T is
in the trace class. Because of this property, the computation of Dixmier trace cannot
be done through finite-dimensional approximation. Consequently, Trω is often called a
singular trace. Interestingly, this is also the property on which many previous calculations
of Dixmier trace depended. See, e.g., [6,10,11,12,24]. We will also take advantage of this
and other properties of Dixmier trace.

In addition to C+1 , we also need the ideal C+(0)
1 , which is the ‖ · ‖+1 -closure in C+1 of

the collection of finite-rank operators. It is well known that C+(0)
1 is a proper subset of

C+1 [14]. Indeed we can see that C+(0)
1 6= C+1 from the following obvious fact: For every

T ∈ C+(0)
1 and every Dixmier trace Trω, we have

Trω(T ) = 0.

Lemma 2.1. If K ∈ C+1 and E is a compact operator, then Trω(EK) = 0 for every
Dixmier trace Trω.

Proof. If K ∈ C+1 and E is a compact operator, then we obviously have EK ∈ C+(0)
1 . �

Lemma 2.2. Let A, B be self-adjoint operators that essentially commute, i.e., [A,B] is
compact. Suppose that the spectra of A, B are contained in finite intervals [a, b] and [c, d]
respectively. Let K ∈ C+1 , and let Trω be any Dixmier trace. Then for all f1, . . . , fn ∈ C[a, b]
and g1, . . . , gn ∈ C[c, d], n ∈ N, we have∣∣∣∣Trω

( n∑
i=1

fi(A)gi(B)K

)∣∣∣∣ ≤ 2‖K‖+1 sup
(x,y)∈[a,b]×[c,d]

∣∣∣∣ n∑
i=1

fi(x)gi(y)

∣∣∣∣.
Proof. Let f1, . . . , fn ∈ C[a, b] and g1, . . . , gn ∈ C[c, d] be given. Denote

C = max{‖g1‖∞, . . . , ‖gn‖∞}.

Let ε > 0 also be given. By the continuity of f1, . . . , fn, there is a partition

a = x0 < x1 < · · · < xm−1 < xm = b

such that the resulting intervals I1 = [x0, x1], I2 = [x1, x2], · · · , Im = [xm−1, xm] have the
property that the inequality

(2.1) sup
x,x′∈Ij∪Ij+1

|fi(x)− fi(x′)| ≤
ε

n(1 + C)

holds for every pair of 1 ≤ j < m and 1 ≤ i ≤ n.
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Let η0, η1, . . . , ηm be a partition of the unity by continuous functions on [a, b] such
that η0 = 0 on [a, b]\I1, ηm = 0 on [a, b]\Im, and ηj = 0 on [a, b]\{Ij ∪ Ij+1} for every
1 ≤ j < m. It follows from (2.1) that for each 1 ≤ i ≤ n, we have∥∥∥∥fi(A)−

m∑
j=0

fi(xj)ηj(A)

∥∥∥∥ ≤ ε

n(1 + C)
.

Obviously, we also have the bound ‖gi(B)‖ ≤ C for every 1 ≤ i ≤ n. Therefore

(2.2)

∥∥∥∥ n∑
i=1

fi(A)gi(B)−
n∑
i=1

m∑
j=0

fi(xj)ηj(A)gi(B)

∥∥∥∥ ≤ ε.
Let us denote

(2.3) Xj =
n∑
i=1

fi(xj)gi(B)

for each 0 ≤ j ≤ m. Then we can rewrite (2.2) as∥∥∥∥ n∑
i=1

fi(A)gi(B)−
m∑
j=0

ηj(A)Xj

∥∥∥∥ ≤ ε.
Since ε > 0 is arbitrary, to prove the lemma, it suffices to show that for every Trω, we have

(2.4)

∣∣∣∣Trω

( m∑
j=0

ηj(A)XjK

)∣∣∣∣ ≤ 2‖K‖+1 sup
(x,y)∈[a,b]×[c,d]

∣∣∣∣ n∑
i=1

fi(x)gi(y)

∣∣∣∣.
To prove this, we use the assumption that A, B essentially commute. A consequence of

this essential commutativity is that for every 0 ≤ j ≤ m, the commutator [η
1/2
j (A), Xj ] is

compact. Hence we can apply Lemma 2.1 to conclude that

Trω

( m∑
j=0

ηj(A)XjK

)
= Trω

( m∑
j=0

η
1/2
j (A)Xjη

1/2
j (A)K

)
.

Thus (2.4) will follow if we can show that

(2.5)

∥∥∥∥ m∑
j=0

η
1/2
j (A)Xjη

1/2
j (A)

∥∥∥∥ ≤ 2 sup
(x,y)∈[a,b]×[c,d]

∣∣∣∣ n∑
i=1

fi(x)gi(y)

∣∣∣∣.
Let E and F respectively denote the collection of the even numbers and the collection of
the odd numbers in {0, 1, . . . ,m}. Our partition of unity was designed so that for j 6= k

in E, we have η
1/2
j η

1/2
k = 0. Thus by the spectral decomposition of A, we have∥∥∥∥∑

j∈E
η
1/2
j (A)Xjη

1/2
j (A)

∥∥∥∥ = max
j∈E
‖η1/2j (A)Xjη

1/2
j (A)‖ ≤ max

j∈E
‖Xj‖.
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That is, there is a j∗ ∈ {0, 1, . . . ,m} such that∥∥∥∥∑
j∈E

η
1/2
j (A)Xjη

1/2
j (A)

∥∥∥∥ ≤ ‖Xj∗‖.

But by (2.3) we have

‖Xj∗‖ ≤ sup
y∈[c,d]

∣∣∣∣ n∑
i=1

fi(xj∗)gi(y)

∣∣∣∣.
These two inequalities obviously imply

(2.6)

∥∥∥∥∑
j∈E

η
1/2
j (A)Xjη

1/2
j (A)

∥∥∥∥ ≤ sup
(x,y)∈[a,b]×[c,d]

∣∣∣∣ n∑
i=1

fi(x)gi(y)

∣∣∣∣.
Similarly, by design we have η

1/2
j η

1/2
k = 0 for every pair of j 6= k in F . Thus the same

argument shows that

(2.7)

∥∥∥∥∑
j∈F

η
1/2
j (A)Xjη

1/2
j (A)

∥∥∥∥ ≤ sup
(x,y)∈[a,b]×[c,d]

∣∣∣∣ n∑
i=1

fi(x)gi(y)

∣∣∣∣.
From (2.6) and (2.7) we obtain (2.5). This completes the proof. �

Theorem 2.3. Let A, B be self-adjoint operators on a Hilbert space H such that [A,B] is
compact. Suppose that the spectra of A, B are contained in finite intervals [a, b] and [c, d]
respectively. Given any self-adjoint operator K ∈ C+1 and any Dixmier trace Trω, there
is a real-valued regular Borel measure µ on [a, b] × [c, d] such that for all f ∈ C[a, b] and
g ∈ C[c, d],

(2.8) Trω(f(A)g(B)K) =
1

2

∫ b

a

∫ d

c

f(x)g(y)dµ(x, y).

Moreover, the following three statements hold true for µ:
(i) The total variation of µ does not exceed 4‖K‖+1 .
(ii) If K is non-negative, then so is the measure µ.
(iii) Under the natural identification C ∼= R2, the support of µ is contained in the essential
spectrum of A+ iB.

Proof. Denote R = [a, b]× [c, d]. Let E be the collection of functions of the form

(2.9) F (x, y) =
n∑
i=1

fi(x)gi(y)

on R, where n ∈ N, f1, . . . , fn ∈ C[a, b] and g1, . . . , gn ∈ C[c, d] are arbitrary. Then E is a
linear subspace of C(R) that is dense with respect to the norm ‖ · ‖∞. We now define a
Φ : E → C by the formula

(2.10) Φ(F ) = Trω

( n∑
i=1

fi(A)gi(B)K

)
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for the F given by (2.9). Then Lemma 2.2 tells us that

|Φ(F )| ≤ 2‖K‖+1 ‖F‖∞.

Thus Φ is well defined on E . By this bound and the density of E in C(R), Φ uniquely extends
to a bounded linear functional on C(R) with ‖Φ‖ ≤ 2‖K‖+1 . By the Riesz representation
theorem, there is a complex-valued regular Borel measure µ on R such that

Φ(G) =
1

2

∫ b

a

∫ d

c

G(x, y)dµ(x, y)

for every G ∈ C(R). (We put the coefficient 1/2 on the right-hand side by design.)
Combining this with (2.10), we have shown that (2.8) holds for this µ. Statement (i)
follows from the fact that the total variation of µ equals 2‖Φ‖.

Next we show that µ is real valued, and that statement (ii) holds. By (2.8), the first
assertion will follow if we can show that for real-valued f ∈ C[a, b] and g ∈ C[c, d],

(2.11) Trω(f(A)g(B)K) ∈ R.

By the usual combination of continuous function, it suffices to prove (2.11) for non-negative
f ∈ C[a, b] and g ∈ C[c, d]. But for non-negative f ∈ C[a, b] and g ∈ C[c, d], by the essential
commutativity of A, B and Lemma 2.1, we have

Trω(f(A)g(B)K) = Trω(f1/2(A)g(B)f1/2(A)K)

= Trω({f1/2(A)g(B)f1/2(A)}1/2K{f1/2(A)g(B)f1/2(A)}1/2).

Since K is assumed to be self-adjoint, the above is a real number. This proves (2.11).
If K ≥ 0, then the above is a non-negative number. By (2.8), this means that µ is
non-negative whenever K is non-negative. This proves (ii).

To prove (iii), consider any finite open rectangle

E = {x+ iy : α < x < β and u < y < v}

that does not intersect the essential spectrum of A+ iB. It suffices to show that µ(E) = 0.
Let ξ, η be arbitrary continuous functions on R such that ξ = 0 on R\(α, β) and η = 0 on
R\(u, v). The fact µ(E) = 0 will follow if we can show that∫∫

ξ(x)η(y)dµ(x, y) = 0.

By (2.8), this is reduced to the proof of the assertion that

Trω(ξ(A)η(B)K) = 0.
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By Lemma 2.1, it suffices to show that the operator ξ(A)η(B) is compact. To prove this
compactness, consider the Calkin algebra Q = B(H)/K(H). Write Â and B̂ for the images
of A and B in Q respectively. Since [A,B] is compact, Â + iB̂ is a normal element in Q.
Define the function

h(x+ iy) = ξ(x)η(y).

Since h = 0 on C\E and since E does not intersect the spectrum of Â + iB̂, we have
h(Â + iB̂) = 0, i.e., ξ(Â)η(B̂) = 0. Since ξ(Â) and η(B̂) are, respectively, the images of
ξ(A) and η(B) in Q, we conclude that ξ(A)η(B) is compact. This completes the proof. �

Recall that for F,G ∈ C1(R2), the Poisson bracket {F,G} is defined by the formula

{F,G}(x, y) =
∂F

∂x
(x, y)

∂G

∂y
(x, y)− ∂F

∂y
(x, y)

∂G

∂x
(x, y).

For any p ∈ C[x, y] and any two operators A, B, we define

p(A,B) =
∑

(j,k)∈E

cj,kA
jBk if p(x, y) =

∑
(j,k)∈E

cj,kx
jyk,

where E is a finite subset of Z2
+. For A and B that do not commute, this definition of

p(A,B) seems rather contrived and artificial. But for what we are doing here, this does
not matter, by the following trivial observation: If A, B, X, Y and Z have the properties
that [A,B] ∈ C+1 , [XABY,Z] ∈ C+1 and [XBAY,Z] ∈ C+1 , then

Trω([XABY,Z]) = Trω([XBAY,Z]).

We are now ready to establish (1.3).

Theorem 2.4. Let A, B be self-adjoint operators such that [A,B] ∈ C+1 . Suppose that
the spectra of A, B are contained in finite intervals [a, b] and [c, d] respectively. Given a
Dixmier trace Trω, there is a real-valued regular Borel measure µ on [a, b]× [c, d] such that

(2.12) Trω([p(A,B), q(A,B)]) =
i

2π

∫ b

a

∫ d

c

{p, q}(x, y)dµ(x, y)

for all p, q ∈ C[x, y]. Moreover, the following three statements hold true for µ:
(i) The total variation of µ does not exceed 4π‖[A,B]‖+1 .
(ii) If i[B,A] is non-negative, then so is the measure µ.
(iii) Under the natural identification C ∼= R2, the support of µ is contained in the essential
spectrum of A+ iB.

Proof. We write [B,A] = K/πi. Then K = πi[B,A] is a self-adjoint operator in C+1 . We
apply Theorem 2.3 to this K and the given Dixmier trace Trω. Thus we have a real-valued
regular Borel measure µ on [a, b]× [c, d] such that for all f ∈ C[a, b] and g ∈ C[c, d],

(2.13) πiTrω(f(A)g(B)[B,A]) =
1

2

∫ b

a

∫ d

c

f(x)g(y)dµ(x, y).
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Moreover, statements (i), (ii) and (iii) follow from the corresponding ones in Theorem 2.3.
What remains is to show that (2.12) holds for this µ.

By linearity, to prove (2.12), it suffices to consider monomials p(x, y) = xmyn and
q(x, y) = xjyk, where m,n, j, k ∈ Z+, m+ j ≥ 1, and n+ k ≥ 1. Obviously,

(2.14) [AmBn, AjBk] = Am[Bn, Aj ]Bk +Aj [Am, Bk]Bn.

By Lemma 2.1, for all bounded operators X, Y , Z we have

Trω(XABY [A,B]Z) = Trω(XBAY [A,B]Z).

Because of this, easy algebra now leads to

Trω(Am[Bn, Aj ]Bk) = njTrω(Am+j−1Bn+k−1[B,A]) and(2.15)

Trω(Aj [Am, Bk]Bn) = mkTrω(Am+j−1Bn+k−1[A,B]).(2.16)

Combining these two identities with (2.14) and (2.13), we find that

Trω([AmBn, AjBk]) = (nj −mk)Trω(Am+j−1Bn+k−1[B,A])

=
nj −mk

2πi

∫ b

a

∫ d

c

xm+j−1yn+k−1dµ(x, y)

=
i

2π

∫ b

a

∫ d

c

{p, q}(x, y)dµ(x, y),

where p(x, y) = xmyn and q(x, y) = xjyk. This completes the proof. �

3. Prescribing principal measure

In the classic case for a pair of bounded self-adjoint operators A, B with trace-class
commutator [21,2,4,5], the associated principal function g is in L1(R) for some rectangle R
in R2. In other words, the “principal measure” for A, B associated with the ordinary trace
is always absolutely continuous with respect to the two-dimensional Lebesgue measure. In
fact, this absolute continuity is a hallmark of the Carey-Pincus theory for pairs with
trace-class commutator. What is more, this absolute continuity even holds in type-II von
Neumann algebras [5].

Given what we know in the classic case, once Theorem 2.4 is proved, the most pressing
question is, is the measure µ in that theorem always absolutely continuous with respect to
the two-dimensional Lebesgue measure? Put differently, in the case of Dixmier trace, do
we also get a “principal function” rather than just a “principal measure”? The answer is
negative. The purpose of this section is to show that, in fact, every compactly-supported
regular Borel measure on R2 is the principal measure for some triple A, B and Trω.

We will use the singular integral operators of the classic case as the building blocks for
the construction of our desired pair A, B. The main idea is that we can take orthogonal
sums of appropriate operators to produce what we want.
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Denote I = [0, 1]. On the Hilbert space L2(I), we define

(Uf)(x) = xf(x) and (V f)(x) =
1

2
f(x) +

1

2πi
p.v.

∫
I

f(t)

t− x
dt

for every f ∈ L2(I). The spectrum of U is, of course, I. We have V = (1/2)(1+V0), where

(V0f)(x) =
1

πi
p.v.

∫
I

f(t)

t− x
dt,

f ∈ L2(I). If we view L2(I) as a subspace of L2(R), then V0 is the compression of the
Hilbert transform to L2(I). Thus the spectrum of V0 is contained in [−1, 1]. Consequently,
the spectrum of V is contained in I. Moreover,

(3.1) [V,U ] =
1

2πi
χI ⊗ χI .

Here and in what follows, we write χI for the constant function 1 on the interval I = [0, 1].
For the rest of the section, the symbols U , V will always denote the two self-adjoint
operators defined above. This pair U , V will be the fundamental building block in our
construction.

Lemma 3.1. Let µ be a regular Borel measure on a rectangle R = [a, b] × [c, d], where
−∞ < a < b <∞ and −∞ < c < d <∞. Suppose that µ has the property that

(3.2) µ(L) = 0

for every vertical line L in R and every horizontal line L in R. Let any ε > 0 be given.
Then there exist self-adjoint operators A, B satisfying the following four conditions:
(1) The spectra of A and B are contained in [a, b+ ε] and [c, d+ ε] respectively.
(2) [A,B] ∈ C+1 with ‖[A,B]‖+1 ≤ 2π−1(log 4)µ(R).
(3)
√
−1[B,A] ≥ 0.

(4) For every Dixmier trace Trω and every pair of p, q ∈ C[x, y], we have

Trω([p(A,B), q(A,B)]) =

√
−1

2π

∫∫
R

{p, q}(x, y)dµ(x, y).

Proof. Write M = µ(R), the total mass of µ. We assume that M > 0, for otherwise there
is nothing to prove. Given an ε > 0, there is a k0 ∈ N such that 2−k0(M log 4)1/2 < ε.

For each k ≥ k0, we decompose R according to the following scheme. First of all,
using property (3.2) for vertical lines, there is a partition

a = s0;k < s1;k < s2;k < · · · < s2k−1;k < s2k;k = b

of the interval [a, b] such that

(3.3) µ([a, si;k]× [c, d]) =
i

2k
M for every 0 ≤ i ≤ 2k.
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By this and (3.2), we have µ([si−1;k, si;k] × [c, d]) = 2−kM for every 1 ≤ i ≤ 2k. Thus,
using (3.2) for horizontal lines, for every pair of k ≥ k0 and 1 ≤ i ≤ 2k, there is a partition

c = ti,0;k < ti,1;k < · · · < ti,2k−1;k < ti,2k;k = d

of the interval [c, d] such that

(3.4) µ([si−1;k, si;k]× [c, ti,j;k]) =
j

4k
M for every 0 ≤ j ≤ 2k.

With si;k and ti,j;k chosen as above, we are ready to define our operators.

We begin with the Hilbert space

(3.5) H =
∞⊕

k=k0

2k⊕
i=1

2k⊕
j=1

Hi,j;k,

where
Hi,j;k = L2(I)

for every triple of k ≥ k0 and i, j ∈ {1, 2, . . . , 2k}. Thus the subscripts on the right-hand
side of (3.5) are there purely for the purpose of tracking the orthogonal summands. Now,
for each triple of k ≥ k0 and i, j ∈ {1, 2, . . . , 2k}, we define

(3.6) Ai,j;k = si;k + 2−k(M log 4)1/2U and Bi,j;k = ti,j;k + 2−k(M log 4)1/2V

on Hi,j;k. Then on the Hilbert space H we define

(3.7) A =
∞⊕

k=k0

2k⊕
i=1

2k⊕
j=1

Ai,j;k and B =
∞⊕

k=k0

2k⊕
i=1

2k⊕
j=1

Bi,j;k.

Let us verify that (1)-(4) hold for this pair of self-adjoint operators A, B.

First of all, since 2−k0(M log 4)1/2 < ε and since the spectra of U , V are contained
in [0, 1], condition (1) obviously holds for A, B. For every triple of k ≥ k0 and i, j ∈
{1, 2, . . . , 2k}, let ui,j;k denote the unit vector χI in Hi,j;k = L2(I). By (3.1), we have

(3.8) [B,A] =
M log 4

2π
√
−1

∞⊕
k=k0

4−k
2k⊕
i=1

2k⊕
j=1

ui,j;k ⊗ ui,j;k.

For every k′ ≥ k0, if
∑k′

k=k0
4k < ν ≤

∑k′+1
k=k0

4k, then

sν([B,A]) = 4−k
′−1(2π)−1M log 4 ≤ (4/ν)(2π)−1M log 4.

This verifies (2). Also, (3) is obvious.
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What remains it to verify condition (4), which takes a few steps. For any (s, t) ∈ R,
denote Rs,t = [a, s]× [c, t]. For (s, t) ∈ R and k ≥ k0, we define

Ek(s, t) = {(i, j) ∈ {1, . . . , 2k} × {1, . . . , 2k} : si;k ≤ s and ti,j;k ≤ t}.

Then define the operator

Ts,t = (log 4)M
∞⊕

k=k0

4−k
⊕

(i,j)∈Ek(s,t)

ui,j;k ⊗ ui,j;k.

The main step is to show that for every Dixmier trace Trω and every (s, t) ∈ R, we have

(3.9) Trω(Ts,t) = µ(Rs,t).

To prove this, we define the rectangle

Gi,j;k = [si−1;k, si;k]× [ti,j−1;k, ti,j;k]

for every triple of k ≥ k0 and i, j ∈ {1, . . . , 2k}. Note that

Ek(s, t) = {(i, j) ∈ {1, . . . , 2k} × {1, . . . , 2k} : Gi,j;k ⊂ Rs,t}.

For each k ≥ k0, we also introduce the set

Ck(s, t) = {(i, j) ∈ {1, . . . , 2k} × {1, . . . , 2k} : Gi,j;k ∩Rs,t 6= ∅}.

If (i, j) ∈ Ck(s, t)\Ek(s, t), then we have either si−1;k ≤ s < si;k or ti,j−1;k ≤ t < ti,j;k.
Thus

(3.10) card(Ck(s, t)\Ek(s, t)) ≤ 2× 2k.

By (3.4) and (3.2), we have µ(Gi,j;k) = 4−kM for every triple of k ≥ k0 and i, j ∈
{1, . . . , 2k}. Using (3.2) again, we have

M

4k
card(Ek(s, t)) = µ

( ⋃
(i,j)∈Ek(s,t)

Gi,j;k

)
≤ µ(Rs,t) ≤ µ

( ⋃
(i,j)∈Ck(s,t)

Gi,j;k

)

=
M

4k
card(Ck(s, t)).

Combining this with (3.10), we find that for every k ≥ k0,

(3.11)
M

4k
card(Ek(s, t)) ≤ µ(Rs,t) ≤

M

4k
{card(Ek(s, t)) + 2k+1}.

Consider the following two possibilities.
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(i) Suppose that µ(Rs,t) = 0. Then (3.11) tells us that, in this case, Ek(s, t) = ∅ for
every k ≥ k0. By definition, this means Ts,t = 0. Therefore (3.9) holds in this case.

(ii) Suppose that µ(Rs,t) > 0. Then by (3.11), for each sufficiently large ν ∈ N, there
is a k(ν) ≥ k0 such that

(3.12)

k(ν)∑
k=k0

card(Ek(s, t)) ≤ ν <
k(ν)+1∑
k=k0

card(Ek(s, t)).

Recalling the definition of Ts,t, we have

ν∑
`=1

s`(Ts,t) ≤ (log 4)M

k(ν)+1∑
k=k0

4−kcard(Ek(s, t)) ≤ (log 4)(k(ν) + 1)µ(Rs,t),

where the second ≤ follows from the lower bound in (3.11). Combining the lower bound
in (3.12) with the upper bound in (3.11), we find that

ν ≥ card(Ek(ν)(s, t)) ≥
µ(Rs,t)

M
4k(ν) − 2k(ν)+1.

Combining these two bounds, we find that

(3.13)
1

log(ν + 1)

ν∑
`=1

s`(Ts,t) ≤
(log 4)(k(ν) + 1)µ(Rs,t)

k(ν) log 4 + log({µ(Rs,t)/M} − 2−k(ν)+1)
.

By the lower bound in (3.12) and the upper bound in (3.11), we have

ν∑
`=1

s`(Ts,t) ≥ (log 4)M

k(ν)∑
k=k0

4−kcard(Ek(s, t)) ≥ (log 4)

k(ν)∑
k=k0

(
µ(Rs,t)−

2M

2k

)
≥ (log 4){(k(ν)− k0)µ(Rs,t)− 2M}.

Thus
1

log(ν + 1)

ν∑
`=1

s`(Ts,t) ≥
(log 4){(k(ν)− k0)µ(Rs,t)− 2M}

log
(
4k(ν)+2

) .

This and (3.13) together clearly give us the limit

lim
ν→∞

1

log(ν + 1)

ν∑
`=1

s`(Ts,t) = µ(Rs,t).

Therefore for every Dixmier trace Trω we have Trω(Ts,t) = µ(Rs,t). This completes the
proof of (3.9).
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Clearly, a consequence of (3.9) and (3.2) is that

(3.14) Trω

(
(log 4)M

∞⊕
k=k0

4−k
⊕

(si;k,ti,j;k)∈L

ui,j;k ⊗ ui,j;k
)

= 0

if L is either a vertical line or a horizontal line.

We are now ready to verify condition (4) for our pair A, B. By (2.14), (2.15) and
(2.16), to verify (4), it suffices to show that for all m,n ∈ Z+, we have

(3.15) Trω(AmBn[B,A]) =
1

2π
√
−1

∫∫
R

xmyndµ(x, y).

Recalling (3.7) and (3.8), for each pair of m,n ∈ Z+ we have

AmBn[B,A] =
M log 4

2π
√
−1

∞⊕
k=k0

4−k
2k⊕
i=1

2k⊕
j=1

Ami,j;kB
n
i,j;kui,j;k ⊗ ui,j;k.

By (3.6), given a pair of m,n ∈ Z+, there is a constant Cm,n such that

‖Ami,j;kBni,j;kui,j;k ⊗ ui,j;k − smi;ktni,j;kui,j;k ⊗ ui,j;k‖ ≤ Cm,n2−k

for every triple of k ≥ k0 and i, j ∈ {1, . . . , 2k}. Therefore if we define

Z(m,n) = (log 4)M
∞⊕

k=k0

4−k
2k⊕
i=1

2k⊕
j=1

smi;kt
n
i,j;kui,j;k ⊗ ui,j;k,

then AmBn[B,A]− (2π
√
−1)−1Z(m,n) is in the trace class. Thus the proof of (3.15) is now

reduced to that of

(3.16) Trω(Z(m,n)) =

∫∫
R

xmyndµ(x, y).

To prove this, pick a large ν ∈ N and divide the intervals [a, b] and [c, d] equally into ν
potions. That is, we have

a = x0 < x1 < · · · < xν = b and c = y0 < y1 < · · · < yν = d

with xr = a+ (r/ν)(b− a) and yr = c+ (r/ν)(d− c) for every 0 ≤ r ≤ ν. For every pair
of r, ` ∈ {1, . . . , ν}, we define the rectangle

Wr,` = (xr−1, xr]× (y`−1y`].
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Accordingly, we define the operators

Sr,` = (log 4)M

∞⊕
k=k0

4−k
⊕

(si;k,ti,j;k)∈Wr,`

ui,j;k ⊗ ui,j;k and

Z
(m,n)
r,` = (log 4)M

∞⊕
k=k0

4−k
⊕

(si;k,ti,j;k)∈Wr,`

smi;kt
n
i,j;kui,j;k ⊗ ui,j;k,

r, ` ∈ {1, . . . , ν}. From (3.9) and (3.14) it is easy to deduce that

(3.17) Trω(Sr,`) = µ(Wr,`)

for all r, ` ∈ {1, . . . , ν}. If (si;k, ti,j;k) ∈Wr,`, then |smi;ktni,j;k − xmr yn` | = O(1/ν). Hence

(3.18) |Trω(Z
(m,n)
r,` )− xmr yn` Trω(Sr,`)| = O(1/ν)Trω(Sr,`)

for all r, ` ∈ {1, . . . , ν}. Combining (3.17) and (3.18), we now have

Trω(Z(m,n)) =
ν∑

r,`=1

Trω(Z
(m,n)
r,` ) =

ν∑
r,`=1

(xmr y
n
` +O(1/ν))Trω(Sr,`)

=

( ν∑
r,`=1

xmr y
n
` µ(Wr,`)

)
+O(1/ν)µ(R).

Since this holds for arbitrarily large ν ∈ N, (3.16) follows. This completes the proof. �

Proposition 3.2. Let µ be a compactly-supported regular Borel measure on R2. Suppose
that µ has no point masses. Then there exist bounded self-adjoint operators A, B satisfying
the following three conditions:
(1) [A,B] ∈ C+1 with ‖[A,B]‖+1 ≤ 2π−1(log 4)µ(R2).
(2) i[B,A] ≥ 0.
(3) For every Dixmier trace Trω and every pair of p, q ∈ C[x, y], we have

Trω([p(A,B), q(A,B)]) =
i

2π

∫∫
{p, q}(x, y)dµ(x, y).

Proof. For each θ ∈ [0, π), let Rθ be the counter-clockwise rotation of R2 of the angle θ.
We define the measure µθ on R2 by the formula

µθ(E) = µ(RθE)

for every Borel set E ⊂ R2. Then

(3.19)

∫∫
f(cos θx− sin θy, sin θx+ cos θy)dµθ(x, y) =

∫∫
f(x, y)dµ(x, y)
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for every f ∈ C(R2). Since µ has no point masses, there are at most countably many
lines L in R2 that have the property that µ(L) 6= 0. Since [0, π) is uncountable, there is a
θ0 ∈ [0, π) such that the measure µθ0 has the property that

µθ0(L) = 0

for every vertical line L in R2 and every horizontal line L in R2. That is, µθ0 has property
(3.2) required in Lemma 3.1. Thus by Lemma 3.1, there is a pair of bounded self-adjoint
operators Aθ0 , Bθ0 satisfying the following three conditions:
(α) [Aθ0 , Bθ0 ] ∈ C+1 with ‖[Aθ0 , Bθ0 ]‖+1 ≤ 2π−1(log 4)µθ0(R2) = 2π−1(log 4)µ(R2).
(β) i[Bθ0 , Aθ0 ] ≥ 0.
(γ) For every Dixmier trace Trω and every pair of p, q ∈ C[x, y], we have

Trω([p(Aθ0 , Bθ0), q(Aθ0 , Bθ0)]) =
i

2π

∫∫
{p, q}(x, y)dµθ0(x, y).

From (2.15) and (γ) we obtain

(3.20) Trω(Ajθ0B
k
θ0 [Bθ0 , Aθ0 ]) =

1

2πi

∫∫
xjykdµθ0(x, y)

for all j, k ∈ Z+. We now define the self-adjoint operators

A = cos θ0Aθ0 − sin θ0Bθ0 and B = sin θ0Aθ0 + cos θ0Bθ0 .

Then

(3.21) [A,B] = [Aθ0 , Bθ0 ].

Thus (1) and (2) follow from (α) and (β) respectively. It follows from (3.21), Lemma 2.1,
(3.20) and (3.19) that for every pair of m,n ∈ Z+, we have

Trω(AmBn[B,A]) = Trω((cos θ0Aθ0 − sin θ0Bθ0)m(sin θ0Aθ0 + cos θ0Bθ0)n[Bθ0 , Aθ0 ])

=
1

2πi

∫∫
(cos θ0x− sin θ0y)m(sin θ0x+ cos θ0y)ndµθ0(x, y)

=
1

2πi

∫∫
xmyndµ(x, y).

By (2.14), (2.15) and (2.16), this implies condition (3) for the pair A, B. This completes
the proof. �

Proposition 3.3. Consider the measure Mδξ, where 0 < M < ∞, ξ = (u, v) is a point
in R2, and δξ is the unit point mass at ξ. Let ε > 0 be given. Then there exist bounded
self-adjoint operators A, B satisfying the following four conditions:
(1) The spectra of A, B are contained in the intervals [u, u+ ε] and [v, v + ε] respectively.
(2) [A,B] ∈ C+1 with ‖[A,B]‖+1 ≤ (2π)−1M .
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(3) i[B,A] ≥ 0.
(4) For every Dixmier trace Trω and every pair of p, q ∈ C[x, y], we have

Trω([p(A,B), q(A,B)]) =
iM

2π

∫∫
{p, q}(x, y)dδξ(x, y) =

iM

2π
{p, q}(u, v).

Proof. This follows the idea in the proof of Lemma 3.1, but the actual construction is
much simpler. Let k0 ∈ N be such that (M/k0)1/2 < ε. Define the Hilbert space

(3.22) H =
∞⊕

k=k0

Hk,

where
Hk = L2(I)

for every k ≥ k0. Thus, again, the subscript on the right-hand side of (3.22) is just for
tracking the orthogonal summands. On each Hk, k ≥ k0, we define

Ak = u+ (M/k)1/2U and Bk = v + (M/k)1/2V.

We then define the operators

A =
∞⊕

k=k0

Ak and B =
∞⊕

k=k0

Bk

on H. Obviously, condition (1) is ensured by the choice (M/k0)1/2 < ε. For each k ≥ k0,
let uk denote the unit vector χI in Hk. By (3.1) we have

[B,A] =
M

2πi

∞⊕
k=k0

1

k
uk ⊗ uk.

Thus conditions (2) and (3) are obviously satisfied.

To verify condition (4), we introduce the operators

Xk = (M/k)1/2U and Yk = (M/k)1/2V

on Hk, k ≥ k0. We then define the operators

X =
∞⊕

k=k0

Xk and Y =
∞⊕

k=k0

Yk

on H. Then A = u+X and B = v + Y . Observe that the operators X[B,A] and Y [B,A]
are in the trace class. Therefore for any m,n ∈ Z+, we have

AmBn[B,A] = umvn[B,A] + Tm,n,
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where Tm,n is in the trace class. Thus for every Dixmier trace Trω,

Trω(AmBn[B,A]) = umvnTrω([B,A]) =
M

2πi
umvn =

M

2πi

∫∫
xmyndδξ(x, y),

m, n ∈ Z+. By (2.14), (2.15) and (2.16), this implies condition (4) for the pair A, B. This
completes the proof. �

With the above preparation, we can now show that every compactly-supported regular
Borel measure on R2 is the principal measure for some pair of self-adjoint operators.

Theorem 3.4. Let µ be a compactly-supported regular Borel measure on R2. Then there
exists a pair of bounded self-adjoint operators A, B satisfying the following three conditions:
(1) [A,B] ∈ C+1 with ‖[A,B]‖+1 ≤ 2π−1(log 4)µ(R2).
(2) i[B,A] ≥ 0.
(3) For every Dixmier trace Trω and every pair of p, q ∈ C[x, y], we have

Trω([p(A,B), q(A,B)]) =
i

2π

∫∫
{p, q}(x, y)dµ(x, y).

Proof. There is a (possibly empty) subset E of N with which µ has the decomposition

µ = µ0 +
∑
k∈E

µk,

where µ0 has no point masses and for each k ∈ E, µk is a mass at a single point ξk ∈ R2.
We apply Proposition 3.2 to µ0 and Proposition 3.3 with ε = 1 to µk for each k ∈ E. Thus
we have a pair of bounded self-adjoint operators Ak, Bk for each k ∈ {0} ∪ E such that
the following hold true:
(a) [Ak, Bk] ∈ C+1 with ‖[Ak, Bk]‖+1 ≤ 2π−1(log 4)µk(R2).
(b) i[Bk, Ak] ≥ 0.
(c) For every Dixmier trace Trω and every pair of p, q ∈ C[x, y], we have

Trω([p(Ak, Bk), q(Ak, Bk)]) =
i

2π

∫∫
{p, q}(x, y)dµk(x, y).

Define the operators

A =
⊕

k∈{0}∪E

Ak and B =
⊕

k∈{0}∪E

Bk.

One then easily deduces (1), (2) and (3) from (a), (b) and (c). �

4. Spectral shift for Dixmier trace

Having established the analogue of principal function in the case of Dixmier trace,
it is logical to take a look at possible analogue of Krein’s spectral shift, which plays an
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extremely important role in the perturbation theory of self-adjoint operators. We begin
with a review of the classic case.

Suppose that A is a bounded self-adjoint operator and K is a self-adjoint operator
of the trace class. A famous theorem of Krein tells us that there is a ξ ∈ L1(R) with a
support contained in a finite interval [a, b] such that for every z ∈ C\R,

tr((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
ξ(t)dt.

If we further assume that K is non-negative, then so is ξ. See [18,19,1,27] for these well-
known facts.

In this section we will establish the analogue of spectral shift for Dixmier trace. We
will see that for Dixmier trace, instead of ξ(t)dt, we get a real-valued Borel measure dµ(t)
in the formula. We consider this measure dµ(t) as the analogue of spectral shift in the
setting of Dixmier trace. Later we will show that every regular Borel measure dµ(t) on a
finite interval [a, b], a < b, is the spectral shift with respect to Dixmier trace for a pair of
self-adjoint operators. Moreover, the A in the pair can be any self-adjoint operator whose
spectrum contains [a, b]. At a fundamental level, this phenomenon reflects the fact that
Dixmier trace is a singular trace.

Lemma 4.1. Let K be a non-negative self-adjoint operator in C+1 . Then for any bounded
operator S we have K1/2SK1/2 ∈ C+1 and

Trω(K1/2SK1/2) = Trω(SK)

for each Dixmier trace Trω.

Proof. By linearity, it suffices to consider the case where S is a non-negative self-adjoint
operator. For such an S, define the operator T = K1/2S1/2. We have T ∗T = S1/2KS1/2 ∈
C+1 by assumption. It is well known that T ∗T and TT ∗ have identical s-numbers. Therefore
K1/2SK1/2 = TT ∗ ∈ C+1 and by the properties of Dixmier trace,

Trω(K1/2SK1/2) = Trω(TT ∗) = Trω(T ∗T ) = Trω(S1/2KS1/2) = Trω(SK).

This completes the proof. �

Proposition 4.2. Let A and K be self-adjoint operators on a Hilbert space H. Suppose
that the spectrum of A is contained in the interval [a, b] for some −∞ < a < b < ∞.
Furthermore, suppose that K ∈ C+1 and that K is non-negative. Let a Dixmier trace Trω
also be given. Then there is a regular Borel measure µ on [a, b] such that

Trω((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
dµ(t)

for every z ∈ C\R. Moreover, µ([a, b]) = Trω(K).
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Proof. For any z ∈ C\R, we have

(A+K − z)−1 − (A− z)−1 = −(A+K − z)−1K(A− z)−1

= −(A− z)−1K(A− z)−1 +R,

where
R = (A+K − z)−1K(A− z)−1K(A− z)−1.

Let a Dixmier trace Trω be given. Then by Lemma 2.1, Trω(R) = 0. Consequently,

Trω((A+K − z)−1 − (A− z)−1) = −Trω((A− z)−1K(A− z)−1)

= −Trω((A− z)−2K).(4.1)

By assumption, we have the spectral decomposition

(A− z)−2 =

∫ b

a

1

(t− z)2
dEt

for A, where dEt is its spectral measure. For each m ∈ N, we define the intervals

I1,m =

[
a, a+

1

m
(b− a)

]
and Ij,m =

(
a+

j − 1

m
(b− a), a+

j

m
(b− a)

]
if 1 < j ≤ m. Pick a tj,m ∈ Ij,m for every pair of m ∈ N and 1 ≤ j ≤ m. Define

(4.2) Tm =

m∑
j=1

1

(tj,m − z)2
E(Ij,m),

m ∈ N. Then ‖(A− z)−2−Tm‖ → 0 as m→∞. Consequently, ‖(A− z)−2K−TmK‖+1 ≤
‖(A− z)−2 − Tm‖‖K‖+1 → 0 as m→∞ and

Trω((A− z)−2K) = lim
m→∞

Trω(TmK) = lim
m→∞

m∑
j=1

1

(tj,m − z)2
Trω(E(Ij,m)K)

= lim
m→∞

m∑
j=1

1

(tj,m − z)2
Trω(K1/2E(Ij,m)K1/2),(4.3)

where the second = follows from (4.2) and the third = from Lemma 4.1.

Let us consider dEt as a spectral measure on R by setting E(R\[a, b]) = 0. For s < t
in R, the operator inequality E(−∞, s] ≤ E(−∞, t] implies the operator inequality

K1/2E((−∞, s])K1/2 ≤ K1/2E((−∞, t])K1/2.

Thus we have a non-decreasing function

(4.4) t 7→ Trω(K1/2E((−∞, t])K1/2)
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on R, and from (4.3) we obtain

(4.5) Trω((A− z)−2K) =

∫
1

(t− z)2
dTrω(K1/2E((−∞, t])K1/2),

where the right-hand side is a Riemann-Stieltjes integral. The non-decreasing function in
(4.4) is a constant on each of the intervals (−∞, a) and (b,∞). Thus we can restate the
above as

(4.6) Trω((A− z)−2K) =

∫ b

a

1

(t− z)2
dµ(t),

where µ is a positive, regular Borel measure on [a, b] with

µ([a, b]) = Trω(K1/2E(R)K1/2) = Trω(K1/2 · 1 ·K1/2) = Trω(K).

Combining (4.6) with (4.1), the proof is now complete. �

Proposition 4.3. Let A and K be self-adjoint operators on a Hilbert space H. Suppose
that the spectrum of A is contained in the interval [a, b] for some −∞ < a < b < ∞.
Furthermore, suppose that K ∈ C+1 and that K is non-negative. Let a Dixmier trace Trω
also be given. Let µ be the regular Borel measure provided by Proposition 4.2 for this triple
of A, A+K and Trω. Then

Trω(η(A+K)− η(A)) =

∫
η′(t)dµ(t)

for every η ∈ C∞c (R).

Proof. This follows from Proposition 4.2 by a well-known argument, as follows. First of
all, it is obvious that the map

z 7→ −(A+K − z)−1K(A− z)−1 = (A+K − z)−1 − (A− z)−1

from C\R into C+1 is continuous with respect to the norm ‖ · ‖+1 . Since µ is supported in
the finite interval [a, b], combining the identity in Proposition 4.2 with this ‖·‖+1 -continuity
and with contour integration, we have

(4.7) Trω((A+K)k −Ak) = k

∫
tk−1dµ(t)

for every integer k ≥ 1. It is easy to see that there is a 0 < C <∞ such that

‖(A+K)k −Ak‖+1 ≤ 2kCk

for every k ≥ 1. Using this bound and the power series expansion for the exponential
function, from (4.7) we deduce that for every x ∈ R,

Trω(eix(A+K) − eixA) = ix

∫
eixtdµ(t).
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By the fundamental theorem of calculus,

(4.8) eix(A+K) − eixA =

∫ 1

0

d

ds
eisx(A+K)ei(1−s)xAds = ix

∫ 1

0

eisx(A+K)Kei(1−s)xAds.

Therefore

(4.9) ‖eix(A+K) − eixA‖+1 ≤ |x|‖K‖
+
1

for every x ∈ R. Given any η ∈ C∞c (R), let η̂ denote its Fourier transform. By the Fourier
inversion formula and the spectral decompositions of the self-adjoint operators A+K and
A, we have

η(A+K)− η(A) =
1√
2π

∫
{eix(A+K) − eixA}η̂(x)dx.

Using (4.8) and (4.9), it is straightforward to show that the integral on the right-hand
side is the limit with respect to the norm ‖ · ‖+1 of the corresponding Riemann sums. This
‖ · ‖+1 -convergence allows us to switch the order of taking Trω and integration to obtain

Trω(η(A+K)− η(A)) =
1√
2π

∫
Trω(eix(A+K) − eixA)η̂(x)dx

=
1√
2π

∫
ix

∫
eixtdµ(t)η̂(x)dx

=

∫
η′(t)dµ(t).

This completes the proof. �

Once Proposition 4.3 is proven, we can drop the condition that K be non-negative,
again by a well-known argument:

Theorem 4.4. Let A and K be self-adjoint operators on a Hilbert space H. Suppose that
A is bounded and that K ∈ C+1 . Let any Dixmier trace Trω be given. Then there is a
real-valued regular Borel measure µ supported on a finite interval in R such that

Trω(η(A+K)− η(A)) =

∫
η′(t)dµ(t)

for every η ∈ C∞c (R). Moreover, the total variation of µ does not exceed Trω(|K|).

Proof. Given any self-adjoint K ∈ C+1 , there are non-negative, self-adjoint operators K1

and K2 in C+1 such that K1 −K2 = K and K1 +K2 = |K|. For any η ∈ C∞c (R), we have

η(A+K)− η(A) = {η(A+K1)− η(A)} − {η(A+K +K2)− η(A+K)}.

Applying Proposition 4.3 to the two brackets on the right, the theorem follows. �

5. Prescribing spectral shift
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From now on, all Hilbert spaces are assumed to be separable and infinite dimensional.
We will show that we can prescribe arbitrary spectral shift for Dixmier trace by choosing
the right K. We will accomplish this goal in several steps.

First of all, the spirit of Section 3 also applies to the construction of spectral shift.
That is, if A1, A2 are bounded self-adjoint operators and if K1 and K2 are self-adjoint
operators in C+1 , then for every Dixmier trace Trω and every z ∈ C\R,

Trω(((A1⊕A2)+(K1⊕K2)−z)−1−((A1⊕A2)−z)−1) =
2∑
i=1

Trω((Ai+Ki−z)−1−(Ai−z)−1).

Thus we can construct spectral shifts additively.

Proposition 5.1. Consider any −∞ < a < b < ∞. Let µ be a regular Borel measure on
[a, b] that has no point masses. Let A be a bounded self-adjoint operator on a Hilbert space
H satisfying the following two conditions:

(1) A has a pure point spectrum.
(2) The spectrum of A contains [a, b].

Then there is a non-negative, self-adjoint operator K ∈ C+1 such that for every Dixmier
trace Trω and every z ∈ C\R, we have

(5.1) Trω((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
dµ(t).

Moreover, K satisfies the estimate ‖K‖+1 ≤ 2(log 2)µ([a, b]).

Proof. Write M = µ([a, b]), the total mass of µ. We assume that M > 0. For each k ∈ N,
since µ has no point masses, there are

a ≤ t0,k < t1,k < t2,k < · · · < t2k−1,k < t2k,k ≤ b

such that

(5.2) µ([a, tj,k]) =
j

2k
M for every 0 ≤ j ≤ 2k.

Note that such a tj,k may not be unique, but any tj,k satisfying (5.2) will do. By conditions
(1), (2) and the observation preceding the proposition, we only need to consider

A =

∞∑
i=1

λiei ⊗ ei,

where {ei : i ∈ N} is an orthonormal basis for H, λi 6= λi′ if i 6= i′, and {λi : i ∈ N} is a
dense subset of (a, b). Thus {λi : i ∈ N} contains pairwise disjoint subsets

Λ1,Λ2, . . . ,Λk . . .
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such that for each k ∈ N,

Λk = {λi(1,k), λi(2,k), . . . , λi(2k,k)},

where the elements satisfy the condition

(5.3) tj−1,k < λi(j,k) < tj,k for every 1 ≤ j ≤ 2k.

The point is that this defines the subscript i(j, k) for every pair of k ∈ N and 1 ≤ j ≤ 2k.
With these i(j, k) so chosen, we now define

(5.4) K =
∞∑
k=1

M log 2

2k

2k∑
j=1

ei(j,k) ⊗ ei(j,k).

It is easy to see that if 2k ≤ ν < 2k+1 for some k ∈ N, then

sν(K) ≤ (log 2)M

2k
<

2(log 2)M

ν
.

It follows that ‖K‖+1 ≤ 2(log 2)M . What remains it to show that (5.1) holds for this K.

Let E denote the spectral measure for A. Obviously, for each t ∈ R,

E((−∞, t]) =
∑
λi≤t

ei ⊗ ei.

By (4.5) and (4.1), to verify (5.1) for the K defined by (5.4), it suffices to show that

(5.5) Trω(K1/2E((−∞, τ ])K1/2) = µ([a, τ ])

for every a ≤ τ ≤ b. Let such a τ be given.

(i) First, we consider the case where 0 < µ([a, τ ]) < M . There is a k0 ∈ N such that
if k ≥ k0, then 2−kM < µ([a, τ ]) and µ([a, τ ]) + 2−k+1M < M . Thus for each k ≥ k0,
there is a 1 ≤ J(k) < 2k − 2 such that

(5.6)
J(k)

2k
M < µ([a, τ ]) ≤ J(k) + 1

2k
M.

By (5.2), this means

(5.7) tJ(k),k < τ < tJ(k)+2,k.

By (5.3) and (5.4), we have

K1/2E((−∞, τ ])K1/2 = E((−∞, τ ])K ≥ G,
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where we denote

G =
∞∑

k=k0

M log 2

2k

J(k)∑
j=1

ei(j,k) ⊗ ei(j,k).

Consider any natural number m ≥ 2k0 . Then there is a k(m) ≥ k0 such that

(5.8)

k(m)∑
k=k0

J(k) ≤ m <

k(m)+1∑
k=k0

J(k).

Thus

(5.9)
1

log(m+ 1)

m∑
ν=1

sν(G) ≥ log 2

log
(
2k(m)+2

) k(m)∑
k=k0

J(k)

2k
M.

By the upper bound in (5.6), we have

k(m)∑
k=k0

J(k)

2k
M ≥ (k(m)− k0)µ([a, τ ])−M.

Substituting this in (5.9), for sufficiently large m we have

1

log(m+ 1)

m∑
ν=1

sν(G) ≥ (log 2){(k(m)− k0)µ([a, τ ])−M}
(log 2){k(m) + 2}

.

Thus

Trω(K1/2E((−∞, τ ])K1/2) ≥ Trω(G)

≥ lim inf
m→∞

1

log(m+ 1)

m∑
ν=1

sν(G) ≥ µ([a, τ ]).(5.10)

On the other hand, by (5.7), (5.3) and (5.4), we have

K1/2E((−∞, τ ])K1/2 = E((−∞, τ ])K ≤ F +H

where rank(F ) <∞ and where we denote

H =
∞∑

k=k0

M log 2

2k

J(k)+2∑
j=1

ei(j,k) ⊗ ei(j,k).

Using (5.8) again, for sufficiently large m we have

(5.11)
1

log(m+ 1)

m∑
ν=1

sν(H) ≤ log 2

log
(∑k(m)

k=k0
J(k)

) k(m)+1∑
k=k0

J(k) + 2

2k
M.
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By the lower bound in (5.6), we have

k(m)+1∑
k=k0

J(k) + 2

2k
M ≤ {k(m) + 1}µ([a, τ ]) + 2M.

By the upper bound in (5.6), we have

k(m)∑
k=k0

J(k) ≥ J(k(m)) ≥ µ([a, τ ])

M
2k(m) − 1.

Substituting these in (5.11), we find that for sufficiently large m, we have

1

log(m+ 1)

m∑
ν=1

sν(H) ≤ (log 2)({k(m) + 1}µ([a, τ ]) + 2M)

log
(
{µ([a, τ ])/M}2k(m) − 1

) .

Thus

Trω(K1/2E((−∞, τ ])K1/2) ≤ Trω(F +H) = Trω(H)

≤ lim sup
m→∞

1

log(m+ 1)

m∑
ν=1

sν(H) ≤ µ([a, τ ]).

Combining this with (5.10), (5.5) is proved in the case where 0 < µ([a, τ ]) < M .

(ii) Let us consider the case where µ([a, τ ]) = 0. By (5.2) and (5.3), we have τ < λi(j,k)
for every pair of k ∈ N and 2 ≤ j ≤ 2k. Therefore

K1/2E((−∞, τ ])K1/2 = E((−∞, τ ])K ≤ X,

where

X =
∞∑
k=1

M log 2

2k
ei(1,k) ⊗ ei(1,k).

Obviously, X is a trace-class operator. Thus

Trω(K1/2E((−∞, τ ])K1/2) ≤ Trω(X) = 0

as promised.

(iii) Finally, we consider the case where µ([a, τ ]) = M . It suffices to show that

(5.12) Trω(K1/2E((−∞, τ ])K1/2) = Trω(K) = M.

By (5.2) and (5.3), we have λi(j,k) < τ for every pair of k ∈ N and 1 ≤ j ≤ 2k − 1. Thus

K1/2E((−∞, τ ])K1/2 = E((−∞, τ ])K ≥ Y,
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where

Y =
∞∑
k=1

M log 2

2k

2k−1∑
j=1

ei(j,k) ⊗ ei(j,k).

Obviously, K − Y is a trace-class operator. Therefore

(5.13) Trω(K) ≥ Trω(K1/2E((−∞, τ ])K1/2) ≥ Trω(Y ) = Trω(K).

Thus we need to compute Trω(K), which is an easier version of the computation in (i).
For each sufficiently large m ∈ N, there is a κ(m) ∈ N such that

κ(m)∑
k=1

2k ≤ m <

κ(m)+1∑
k=1

2k.

Therefore, by (5.4),

(log 2)Mκ(m)

log
(
2κ(m)+2

) ≤ 1

log(m+ 1)

m∑
ν=1

sν(K) ≤ (log 2)M{κ(m) + 1}
log
(
2κ(m)

) .

This obviously implies

lim
m→∞

1

log(m+ 1)

m∑
ν=1

sν(K) = M.

Therefore Trω(K) = M , and (5.12) follows from this fact and (5.13).

Summarizing (i), (ii) and (iii) above, we have proved (5.5) for every a ≤ τ ≤ b. This
completes the proof of the proposition. �

Lemma 5.2. Let −∞ < a < b <∞. Suppose that A is a bounded self-adjoint operator on
a Hilbert space H satisfying the following two conditions:

(1) A has a pure point spectrum.
(2) The spectrum of A contains [a, b].

Then A admits an orthogonal decomposition

A =

∞⊕
k=1

Ak

such that every Ak satisfies the same two conditions.

This lemma is completely elementary. Therefore its proof will be omitted.

Proposition 5.3. Consider any −∞ < a < b < ∞. Let µ be a regular Borel measure on
[a, b] that consists purely of point masses. That is, there is a countable subset C of [a, b]
such that µ([a, b]\C) = 0. Let A be a bounded self-adjoint operator on a Hilbert space H
satisfying the following two conditions:

(1) A has a pure point spectrum.
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(2) The spectrum of A contains [a, b].
Then there is a non-negative, self-adjoint operator K ∈ C+1 such that for every Dixmier
trace Trω and every z ∈ C\R, we have

Trω((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
dµ(t).

Moreover, K satisfies the estimate ‖K‖+1 ≤ µ([a, b]).

Proof. By Lemma 5.2 and by the norm bound ‖K‖+1 ≤ µ([a, b]), it suffices to consider the
case where µ is a single point mass. That is, we only need to prove the proposition for
µ = Mδx, where 0 < M <∞, x ∈ [a, b], and δx is the unit point mass at x.

By the two conditions, there is a sequence of mutually distinct eigenvalues {λi} of A
in [a, b] such that |λi−x| → 0 as i→∞. Passing to a subsequence if necessary, we further
require that

(5.14)
∞∑
i=1

|λi − x| <∞.

For each i, let ei be a unit eigenvector of A corresponding to the eigenvalue λi. Since the
λi’s are mutually distinct, {ei : i ∈ N} is an orthonormal set in H. Let H′ be the closure
of span{ei : i ∈ N}. Then both H′ and H′′ = H	H′ are invariant subspaces for A. With
respect to the orthogonal decomposition H = H′ ⊕H′′, we have A = A′ ⊕A′′, where

A′ =
∞∑
i=1

λiei ⊗ ei.

Accordingly, we define

K ′ = M
∞∑
i=1

1

i
ei ⊗ ei

on H′ and K = K ′ ⊕ 0 on H. Obviously, we have

‖K‖+1 = ‖K ′‖+1 = M.

Let us also define

B′ = x
∞∑
i=1

ei ⊗ ei.

By (5.14), A′ −B′ is in the trace class.

For any z ∈ C\R and any Dixmier trace Trω, we have

Trω((A+K − z)−1 − (A− z)−1) = Trω((A′ +K ′ − z)−1 − (A′ − z)−1)

= Trω((B′ +K ′ + (A′ −B′)− z)−1 − (B′ + (A′ −B′)− z)−1).
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Since A′ −B′ is in the trace class, the above gives us

Trω((A+K − z)−1 − (A− z)−1) = Trω((B′ +K ′ − z)−1 − (B′ − z)−1)

= Trω

( ∞∑
i=1

{
1

x+ (M/i)− z
− 1

x− z

}
ei ⊗ ei

)

= −Trω

( ∞∑
i=1

{
1

(x+ (M/i)− z)(x− z)

}
M

i
ei ⊗ ei

)
.

Combining this with the fact that

∞∑
i=1

∣∣∣∣ 1

(x+ (M/i)− z)(x− z)
− 1

(x− z)2

∣∣∣∣Mi <∞,

we now have

Trω((A+K − z)−1 − (A− z)−1)

= −Trω

(
1

(x− z)2
∞∑
i=1

M

i
ei ⊗ ei

)
=

−M
(x− z)2

= M

∫
−1

(t− z)2
dδx(t).

This completes the proof. �

6. Arbitrary spectrum for A

The condition that A have a pure point spectrum in Section 5, while serving nicely
as a stepping stone toward our goal, is not necessary for the end result. In this section we
will remove this condition. That is, we will show that A can have any kind of spectrum,
so long as its spectrum, as a set, contains [a, b].

Recall that we write C+(0)
1 for the ‖ · ‖+1 -closure in C+1 of the collection of finite-rank

operators. Because of the property that

(6.1) Trω(T ) = 0

for every T ∈ C+(0)
1 and every Dixmier trace Trω, the ideal C+(0)

1 played an important role

in previous sections. In addition to (6.1), here we need another property of C+(0)
1 , namely

that every self-adjoint operator can be diagonalized modulo it. More precisely, let A be a
bounded self-adjoint operator. Then, because ‖ · ‖+1 is strictly weaker than the trace norm,

by a famous theorem of Kuroda [20,17], there is a self-adjoint operator X ∈ C+(0)
1 such

that A+X is a diagonal operator. That is, A+X has a pure point spectrum.

Here is our main result on spectral shift:

Theorem 6.1. Let µ be any regular Borel measure on [a, b], where −∞ < a < b < ∞.
Let A be any bounded self-adjoint operator whose spectrum contains [a, b]. Then there is
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a non-negative, self-adjoint operator K ∈ C+1 such that for every Dixmier trace Trω and
every z ∈ C\R, we have

Trω((A+K − z)−1 − (A− z)−1) =

∫
−1

(t− z)2
dµ(t).

Moreover, K satisfies the estimate ‖K‖+1 ≤ 2(log 2)µ([a, b]).

Proof. (i) Any µ described above admits a decomposition µ = µc + µp where µc has no
point masses and µp either consists purely of point masses or is 0. If A has a pure point
spectrum, then by Lemma 5.2 we can apply Proposition 5.1 to µc and Proposition 5.3 to
µp. Thus the theorem follows from these two propositions if A has a pure point spectrum.

(ii) Suppose that A is an arbitrary bounded self-adjoint operator whose spectrum

contains [a, b]. By Kuroda’s theorem cited above, there is a self-adjoint operator X ∈ C+(0)
1

such that A + X has a pure point spectrum. Obviously, [a, b] is a part of the essential
spectrum of A. Therefore the essential spectrum of A+X also contains [a, b]. In particular,
the spectrum of A+X contains [a, b]. Applying part (i) to A+X, we obtain a non-negative
self-adjoint operator K ∈ C+1 with ‖K‖+1 ≤ 2(log 2)µ([a, b]) such that

(6.2) Trω((A+X +K − z)−1 − (A+X − z)−1) =

∫
−1

(t− z)2
dµ(t)

for every Dixmier trace Trω and every z ∈ C\R. Since X ∈ C+(0)
1 , the difference

{(A+K − z)−1 − (A− z)−1} − {(A+X +K − z)−1 − (A+X − z)−1}

is in the ideal C+(0)
1 . Hence

Trω((A+K − z)−1 − (A− z)−1) = Trω((A+X +K − z)−1 − (A+X − z)−1).

Combining this identity with (6.2), the theorem follows. �

7. Commutators of compact operators

Having established the analogues of two classic trace formulas in the context of Dixmier
trace, we will now examine a commutator property where Dixmier trace and the ordinary
trace behave quite differently. We begin with a classic result of Helton and Howe:

Proposition 7.1. [16, Lemma 1.3] Suppose that X is a self-adjoint operator and C is a
compact operator. If [X,C] is in the trace class, then tr([X,C]) = 0.

This vanishing principle for the ordinary trace is an important tool in operator theory.
See [26] for a recent example of its application. If C is a compact self-adjoint operator,
then the spectrum of C is discrete, and therefore singular with respect to the Lebesgue
measure. In this respect, Proposition 7.1 has a stronger version due to Voiculescu:
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Proposition 7.2. [25, Proposition 2.1] Let X and C be bounded self-adjoint operators
such that [X,C] is in the trace class. If the spectral measure of C is purely singular with
respect to the Lebesgue measure, then tr([X,C]) = 0.

From the results in Section 3 we can see that Proposition 7.2 does not generalize to
the context of Dixmier trace. In fact, take any bounded self-adjoint operators A, B with
[A,B] ∈ C+1 and Trω([A,B]) 6= 0 (Theorem 3.4 provides plenty of such pairs). By Kuroda’s

theorem [20,17], there are self-adjoint operators K,L ∈ C+(0)
1 such that A+K and B + L

have pure point spectra. In particular, the spectra of A+K and B+L are purely singular

with respect to the Lebesgue measure. On the other hand, since K,L ∈ C+(0)
1 , we have

Trω([A+K,B + L]) = Trω([A,B]) 6= 0.

Digging a little deeper, we find that Proposition 7.1, too, does not generalize to the context
of Dixmier trace:

Proposition 7.3. There exist compact self-adjoint operators X, C such that [X,C] ∈ C+1
and Trω([X,C]) 6= 0 for every Dixmier trace Trω.

Proof. For each n ∈ N, let Hn = Cn+1. Let Tn be the (n + 1) × (n + 1) matrix whose
diagonal entries are all 0 and whose other entries are all 1. As usual, we consider Tn as an
operator on Hn. We have

Tn = Sn − 1,

where Sn is the (n + 1) × (n + 1) matrix whose entries are all equal to 1. Therefore the
eigenvalues of Tn are n (with multiplicity 1) and −1 (with multiplicity n).

Define the Hilbert space

H =
∞⊕
n=1

Hn.

Corresponding to this orthogonal sum, we define the operator

T =
∞⊕
n=1

1

n2
Tn.

By the discussion in the first paragraph, we have T = A−B with

(7.1) A =
∞∑
n=1

1

n
un ⊗ un and B =

∞∑
n=1

1

n2

n∑
i=1

vn,i ⊗ vn,i,

where {un : n ∈ N} and {vn,i : 1 ≤ i ≤ n and n ∈ N} are orthonormal sets. It is obvious
that for every Dixmier trace Trω, we have Trω(A) = 1. Next we compute Trω(B).

For a sufficiently large k ∈ N, there is an nk ∈ N such that

(7.2)

nk∑
n=1

n ≤ k <
nk+1∑
n=1

n.
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Thus
k∑
j=1

sj(B) <

nk+1∑
n=1

1

n
whereas log k ≥ log

(
n2k
2

)
= 2 log nk − log 2.

That is,

(7.3)
1

log(k + 1)

k∑
j=1

sj(B) ≤ 1

2 log nk − log 2

nk+1∑
n=1

1

n
,

which in particular means that B ∈ C+1 . Similarly, from (7.1) and (7.2) we obtain

(7.4)
1

log(k + 1)

k∑
j=1

sj(B) ≥ 1

2 log(nk + 2)

nk∑
n=1

1

n
.

From (7.3) and (7.4) we see that

lim
k→∞

1

log(k + 1)

k∑
j=1

sj(B) =
1

2
.

This implies that Trω(B) = 1/2 for every Dixmier trace Trω. Consequently, Trω(T ) =
Trω(A)− Trω(B) = 1− (1/2) = 1/2.

Thus to complete the proof, it suffices to find a pair of compact self-adjoint operators
X, C such that

√
−1[X,C] = T . To do this, consider any n ∈ N. We first write Tn as

a commutator. Let Xn be the (n + 1) × (n + 1) diagonal matrix whose diagonal entries,

from the upper-left corner to the lower-right corner, are 0, 1, . . . , n. Let Cn = [c
(n)
i,j ] be

the (n + 1) × (n + 1) matrix such that c
(n)
i,i = 0 for every 1 ≤ i ≤ n + 1 and such that

c
(n)
i,j = (j − i)−1

√
−1 for all i 6= j in {1, 2, . . . , n+ 1}. It is easy to verify that

(7.5)
√
−1[Xn, Cn] = Tn.

We now define

X =
∞⊕
n=1

1

n3/2
Xn and C =

∞⊕
n=1

1

n1/2
Cn

on H. Then from (7.5) we obtain
√
−1[X,C] = T . What remains is to show that the

self-adjoint operators X and C are compact.

First of all, we have ‖Xn‖ = n for every n ∈ N, from which the compactness of X
easily follows. Then note that Cn is the (n+ 1)× (n+ 1) Toeplitz matrix with

1√
−1

∞∑
k=1

1

k

(
ek
√
−1x − e−k

√
−1x
)

=
∞∑
k=1

2

k
sin(kx) = π − x

33



as its “symbol function”, 0 < x < 2π. Therefore ‖Cn‖ ≤ π for every n ∈ N. Thus C is
also compact. This completes the proof of the proposition. �
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