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Abstract. Let Tf denote the Toeplitz operator with symbol function f on the Bergman
space L2

a(B, dv) of the unit ball in Cn. It is a natural problem in the theory of Toeplitz
operators to determine the norm closure of the set {Tf : f ∈ L∞(B, dv)} in B(L2

a(B, dv)).
We show that the norm closure of {Tf : f ∈ L∞(B, dv)} actually coincides with the Toeplitz
algebra T , i.e., the C∗-algebra generated by {Tf : f ∈ L∞(B, dv)}. A key ingredient in the
proof is the class of weakly localized operators recently introduced by Isralowitz, Mitkovski
and Wick. Our approach simultaneously gives us the somewhat surprising result that T
also coincides with the C∗-algebra generated by the class of weakly localized operators.

1. Introduction

We begin with a discussion of localized operators. Let B denote the open unit ball
{z ∈ Cn : |z| < 1} in Cn. The Bergman metric on B is given by the formula

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ B,

where ϕz is the Möbius transform of the ball given on page 25 in [10]. For each z ∈ B and
each r > 0, the corresponding β-ball will be denoted by D(z, r). That is,

D(z, r) = {w ∈ B : β(z, w) < r}.

Let dv be the volume measure on B with the normalization v(B) = 1. Then the formula

dλ(z) =
dv(z)

(1− |z|2)n+1

gives us the standard Möbius-invariant measure on B.

Recall that the Bergman space L2
a(B, dv) is the subspace

{h ∈ L2(B, dv) : h is analytic on B}

of L2(B, dv). It is well known that the normalized reproducing kernel for the Bergman
space is given by the formula

(1.1) kz(ζ) =
(1− |z|2)(n+1)/2

(1− 〈ζ, z〉)n+1
, z, ζ ∈ B.

Keywords: Localization, Bergman space, Toeplitz algebra, Fock space.
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It was first discovered in [14] that localization is a powerful tool for analyzing operators
on reproducing-kernel Hilbert spaces (more on this in Section 4). Recently, this idea was
further explored in [6]. More specifically, in [6] Isralowitz, Mitkovski and Wick introduced
the notion of weakly localized operators on the Bergman space. Below we give a slightly
more refined version of their definition. Our refinement lies in the realization that we can
define a class of localized operators for each given localization parameter s.

Definition 1.1. Let a positive number (n− 1)/(n+ 1) < s < 1 be given.
(a) A bounded operator B on the Bergman space L2

a(B, dv) is said to be s-weakly localized
if it satisfies the conditions

sup
z∈B

∫
|〈Bkz, kw〉|

(
1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) <∞,

sup
z∈B

∫
|〈B∗kz, kw〉|

(
1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) <∞,

lim
r→∞

sup
z∈B

∫
B\D(z,r)

|〈Bkz, kw〉|
(

1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) = 0 and

lim
r→∞

sup
z∈B

∫
B\D(z,r)

|〈B∗kz, kw〉|
(

1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) = 0.

(b) Let As denote the collection of s-weakly localized operators defined as above.
(c) Let C∗(As) denote the C∗-algebra generated by As.

For each (n−1)/(n+1) < s < 1, the simplest examples of s-weakly localized operators
are the Toeplitz operators, which, as we recall, are defined as follows. Let P : L2(B, dv)→
L2
a(B, dv) be the orthogonal projection. Then for f ∈ L∞(B, dv), the formula

Tfh = P (fh), h ∈ L2
a(B, dv),

defines the Toeplitz operator Tf . Also recall that the Toeplitz algebra T on L2
a(B, dv) is

the C∗-algebra generated by the collection of Toeplitz operators

{Tf : f ∈ L∞(B, dv)}.

It was shown in [6] that As ⊃ {Tf : f ∈ L∞(B, dv)}, hence C∗(As) ⊃ T .

In [13], Suárez showed that for A ∈ T , the condition

(1.2) lim
|z|↑1
〈Akz, kz〉 = 0

implies that A is compact. In [6], Isralowitz, Mitkovski and Wick showed that for A ∈
C∗(As), condition (1.2) also implies that A is compact. Moreover, the introduction of
the notion of weakly localized operators in [6] has the added virtue that it significantly
simplifies the work necessary to obtain the above result. Indeed the approach in [6] explains
why such results should hold true.
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The results in [6,13] certainly inspire further examinations of the inclusion relation

(1.3) T ⊂ C∗(As).

Given what we know about Toeplitz operators (see, e.g., [1-5,7,9,12,15]), the C∗-algebra
T is certainly much better understood than C∗(As). It is known, for example, that T
coincides with its commutator ideal [11,8]. Thus an obvious question is, is the C∗-algebra
C∗(As) structurally different from T ? In fact, one may raise the even more basic

Question 1.2. Is the inclusion in (1.3) proper for any (n− 1)/(n+ 1) < s < 1? Is there
any difference between C∗(As) and C∗(At) for s 6= t in the interval ((n− 1)/(n+ 1), 1)?

The answer, as it turns out, is somewhat surprising:

Theorem 1.3. For every (n− 1)/(n+ 1) < s < 1 we have C∗(As) = T .

An immediate consequence of Theorem 1.3 is, of course, that C∗(As) = C∗(At) for
all s, t ∈ ((n− 1)/(n+ 1), 1). We emphasize that this equality at the level of C∗-algebras
is obtained without knowing whether there is any kind of inclusion relation between the
classes As and At in the case s 6= t.

Although Question 1.2 was the original motivation for this paper, our approach to
this problem naturally leads us to a stronger result, a result that simultaneously settles a
much older question. Let us introduce

Definition 1.4. Let T (1) denote the closure of {Tf : f ∈ L∞(B, dv)} with respect to the
operator norm.

Below is our main result, which not only answers Question 1.2, but also tells us
something significant about the Toeplitz algebra T itself.

Theorem 1.5. For every (n− 1)/(n+ 1) < s < 1 we have T (1) = C∗(As). Consequently,
T (1) = T = C∗(As).

The documented history of interest in T (1) can be traced at least back to [3,4], where
Englǐs showed that it contains all the compact operators on L2

a(B, dv). In retrospect, this
was really a hint at the things to come.

Later in [12], Suárez took another look at T (1). There he introduced a sequence of
higher Berezin transforms B1, . . . , Bk, . . . , which are generalizations of the original Berezin
transform B0. At the end of the paper, Suárez expressed his belief that every operator S
in T is the limit in operator norm of the sequence of Toeplitz operators {TBk(S)}. If this

is true, then it certainly implies that T (1) = T . One can only speculate that, perhaps,
the equality T (1) = T was what Suárez had in mind all along, and the higher Berezin
transforms were his tools to try to prove it. While we still do not know if it is true that

lim
k→∞

‖TBk(S) − S‖ = 0

for every S ∈ T , the equality T (1) = T is now proven using completely different ideas.
From the proof of Theorem 1.5, the reader will see that the approximation of a general
S ∈ T by Toeplitz operators is quite complicated: it takes several stages.
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Let us give an outline for the proof of Theorem 1.5. Since each As is known to be a
∗-algebra that contains {Tf : f ∈ L∞(B, dv)} [6], it suffices to show that As ⊂ T (1). An
elementary C∗-algebraic argument further reduces this to the proof of the inclusion

TΦAsTΦ ⊂ T (1)

for a suitably chosen Toeplitz operator TΦ that is both positive and invertible. We can
pick the function Φ in such a way that for every B ∈ As, the operator TΦBTΦ is “resolved”
in the form

TΦBTΦ =

∫∫
D(0,2)×D(0,2)

EwBEzdλ(w)dλ(z),

where each Ez is a sum of rank-one operators over a lattice:

Ez =
∑
u∈L

kϕu(z) ⊗ kϕu(z).

A crucial ingredient in the proof is the norm estimate in Lemma 2.6 below. This estimate
has a number of implications, and one of the implications is that the map (w, z) 7→ EwBEz
is continuous with respect to the operator norm. This norm continuity immediately implies
that TΦBTΦ is contained in the norm closure of the linear span of

{EwBEz : w, z ∈ B}.

Thus we can complete the proof by showing that EwBEz ∈ T (1) for all z, w ∈ B. One can
think of EwBEz as an infinite matrix. The localization condition for B ensures that the
terms in EwBEz that are “far from the diagonal” form an operator of small norm. The
rest of the terms in EwBEz are a linear combination of operators in a special class D0 (see
Definition 3.1). In other words, EwBEz can be approximated in norm by operators in the
linear span of D0. Then, with several applications of the estimate in Lemma 2.6, we are
able to show that D0 ⊂ T (1), accomplishing our goal.

The rest of the paper is organized as follows. In Sections 2 and 3 we give the technical
details of the argument outlined above. In Section 4, we discuss the analogue of Theorem
1.5 on the Fock space.

2. Separated sets and norm estimates

The technical details begin with

Definition 2.1. A subset Γ of B is said to be separated if there is a δ = δ(Γ) > 0 such
that the inequality β(u, v) ≥ δ holds for all u 6= v in Γ.

Recall that for each z ∈ B\{0}, the Möbius transform ϕz is given by the formula

ϕz(ζ) =
1

1− 〈ζ, z〉

{
z − 〈ζ, z〉

|z|2
z − (1− |z|2)1/2

(
ζ − 〈ζ, z〉

|z|2
z

)}
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[10,page 25]. Also, we define ϕ0(ζ) = −ζ. Recall that each ϕz is an involution, i.e.,
ϕz ◦ϕz = id [10,Theorem 2.2.2]. Let us list some of the elementary properties of separated
sets that will be used repeatedly in the sequel.

Lemma 2.2. Let Γ be a separated set in B.
(a) For each 0 < R < ∞, there is a natural number N = N(Γ, R) such that card{v ∈ Γ :
β(u, v) ≤ R} ≤ N for every u ∈ Γ.
(b) For every pair of z ∈ B and ρ > 0, there is a finite partition Γ = Γ1∪· · ·∪Γm such that
for every i ∈ {1, . . . ,m}, the conditions u, v ∈ Γi and u 6= v imply β(ϕu(z), ϕv(z)) > ρ.

Proof. By definition, there is a δ > 0 such that β(u, v) ≥ δ for all u 6= v in Γ. Thus

D(u, δ/2) ∩D(v, δ/2) = ∅ for all u 6= v in Γ.

Let R > 0 be given. Then for every pair of u, v ∈ Γ, the condition β(u, v) ≤ R implies
D(v, δ/2) ⊂ D(u,R+ (δ/2)). By the Möbius invariance of the Bergman metric β and the
the measure dλ, we have

λ(D(v, δ/2)) = λ(ϕv(D(0, δ/2))) = λ(D(0, δ/2)).

Therefore if we write N(u) for the cardinality of the set {v ∈ Γ : β(u, v) ≤ R}, then

N(u)λ(D(0, δ/2)) =
∑
v∈Γ

β(u,v)≤R

λ(D(v, δ/2)) ≤ λ(D(u,R+ (δ/2))) = λ(D(0, R+ (δ/2))).

That is, N(u) ≤ λ(D(0, R+ (δ/2)))/λ(D(0, δ/2)), which proves (a).

To prove (b), let z ∈ B and ρ > 0 be given, and set r = ρ + 2β(z, 0). By (a),
there is an m ∈ N such that card{v ∈ Γ : β(u, v) ≤ r} ≤ m for every u ∈ Γ. By a
standard maximality argument, there is a partition Γ = Γ1 ∪ · · · ∪ Γm such that for every
i ∈ {1, . . . ,m}, the conditions u, v ∈ Γi and u 6= v imply β(u, v) > r. But if u, v satisfy
the condition β(u, v) > r, then by the Möbius invariance of β we have

β(ϕu(z), ϕv(z)) ≥ β(u, v)− β(ϕu(z), u)− β(v, ϕv(z))

= β(u, v)− β(ϕu(z), ϕu(0))− β(ϕv(0), ϕv(z))

= β(u, v)− β(z, 0)− β(0, z) > r − 2β(z, 0) = ρ.

This completes the proof. �

Lemma 2.3. For all u, v, x, y ∈ B we have

(1− |ϕu(x)|2)1/2(1− |ϕv(y)|2)1/2

|1− 〈ϕu(x), ϕv(y)〉|
≤ 2eβ(x,0)+β(y,0) (1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|
.

Proof. For a, b ∈ B, we have 1 − |ϕa(b)|2 = (1 − |a|2)(1 − |b|2)/|1 − 〈a, b〉|2 [10,Theorem
2.2.2]. Thus if we write

α =
(1− |a|2)1/2(1− |b|2)1/2

|1− 〈a, b〉|
,
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then

log
1

α
≤ 1

2
log

1 + |ϕa(b)|
1− |ϕa(b)|

≤ log
2

α
.

Consequently

(2.1) e−β(a,b) ≤ (1− |a|2)1/2(1− |b|2)1/2

|1− 〈a, b〉|
≤ 2e−β(a,b).

For u, v, x, y ∈ B, by the Möbius invariance of the Bergman metric, we have

β(ϕu(x), ϕv(y)) ≥ β(u, v)− β(ϕu(x), u)− β(ϕv(y), v) = β(u, v)− β(x, 0)− β(y, 0).

Combining (2.1) with this inequality, we find that

(1− |ϕu(x)|2)1/2(1− |ϕv(y)|2)1/2

|1− 〈ϕu(x), ϕv(y)〉|
≤ 2e−β(ϕu(x),ϕv(y)) ≤ 2eβ(x,0)+β(y,0)e−β(u,v)

≤ 2eβ(x,0)+β(y,0) (1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|
.

This proves the lemma. �

Lemma 2.4. Let Γ be a separated set in B. Then there is a 0 < C(Γ) <∞ such that

∑
v∈Γ

(
(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|

)n+1

(1− |v|2)(4n+1)/8 ≤ C(Γ)(1− |ξ|2)(4n+1)/8

for every ξ ∈ B.

Proof. If Γ is a separated set in B, then there is a δ > 0 such that β(u, v) ≥ δ for all
u 6= v in Γ. Thus D(u, δ/2) ∩ D(v, δ/2) = ∅ for all u 6= v in Γ. If w ∈ D(v, δ/2), then
v ∈ D(w, δ/2) = ϕw(D(0, δ/2)). Thus if w ∈ D(v, δ/2), then there is a v′ ∈ D(0, δ/2) such
that v = ϕw(v′). Let ξ ∈ B. Since ξ = ϕξ(0), we can apply Lemma 2.4 to obtain

(2.2)
(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|
≤ 2eδ/2

(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

for every w ∈ D(v, δ/2). Also, since v = ϕw(v′) and v′ ∈ D(0, δ/2), we have

1− |v|2 = 1− |ϕw(v′)|2 =
(1− |v′|2)(1− |w|2)

|1− 〈v′, w〉|2
≤ 4

1− |v′|2
(1− |w|2)

≤ 4e2β(v′,0)(1− |w|2) ≤ 4eδ(1− |w|2).(2.3)

Set C1 = (2eδ/2)n+1(4eδ)(4n+1)/8. Then it follows from (2.2) and (2.3) that(
(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|

)n+1

(1− |v|2)(4n+1)/8

≤ C1

(
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+1

(1− |w|2)(4n+1)/8
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for every w ∈ D(v, δ/2). Hence for each ξ ∈ B we have

∑
v∈Γ

(
(1− |ξ|2)1/2(1− |v|2)1/2

|1− 〈ξ, v〉|

)n+1

(1− |v|2)(4n+1)/8

≤
∑
v∈Γ

C1

λ(D(v, δ/2))

∫
D(v,δ/2)

(
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+1

(1− |w|2)
4n+1

8 dλ(w)

≤ C1

λ(D(0, δ/2))

∫ (
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+1

(1− |w|2)
4n+1

8 dλ(w).

(2.4)

To estimate the last integral, note that

(1− |ξ|2)1/2(1− |ϕξ(ζ)|2)1/2

|1− 〈ξ, ϕξ(ζ)〉|
= (1− |ζ|2)1/2.

Thus, making the substitution w = ϕξ(ζ) and using the Möbius invariance of dλ, we have∫ (
(1− |ξ|2)1/2(1− |w|2)1/2

|1− 〈ξ, w〉|

)n+1

(1− |w|2)
4n+1

8 dλ(w)

=

∫
(1− |ζ|2)(n+1)/2(1− |ϕξ(ζ)|2)(4n+1)/8dλ(ζ)

=

∫
(1− |ζ|2)(n+1)/2

(
(1− |ξ|2)(1− |ζ|2)

|1− 〈ξ, ζ〉|2

)(4n+1)/8

dλ(ζ)

= (1− |ξ|2)(4n+1)/8

∫
dv(ζ)

|1− 〈ξ, ζ〉|n+(1/4)(1− |ζ|2)3/8
= (∗).

To further estimate (∗), let dσ be the standard spherical measure on the unit sphere
{x ∈ Cn : |x| = 1}. There is a constant C2 such that∫

dσ(x)

|1− 〈z, x〉|n+(1/4)
≤ C2

(1− |z|2)1/4

for every z ∈ B [10,Proposition 1.4.10]. Combining this with the radial-spherical decom-
position dv = 2nr2n−1drdσ of the volume measure, we have∫

dv(ζ)

|1− 〈ξ, ζ〉|n+(1/4)(1− |ζ|2)3/8
≤
∫ 1

0

C22nr2n−1dr

(1− r2)(1/4)+(3/8)
≤ nC2

∫ 1

0

dt

(1− t)5/8
=

8

3
nC2.

Therefore
(∗) ≤ 3nC2(1− |ξ|2)(4n+1)/8.

Substituting this in (2.4), we conclude that the desired inequality holds for the constant

C(Γ) =
3nC1C2

λ(D(0, δ/2))
.
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This completes the proof. �

Recall that each Toeplitz operator has an “integral representation” in terms of the
normalized reproducing kernel {kw : w ∈ B}. Indeed for each f ∈ L∞(B, dv), we have

(2.5) Tf =

∫
f(w)kw ⊗ kwdλ(w).

This formula is obtained through direct verification.

Let L be a subset of B which is maximal with respect to the property that

(2.6) D(u, 1) ∩D(v, 1) = ∅ for all u 6= v in L.

This L will be fixed for the rest of the paper. The maximality of L implies that

(2.7)
⋃
u∈L

D(u, 2) = B.

Now, for each z ∈ B, define

(2.8) Ez =
∑
u∈L

kϕu(z) ⊗ kϕu(z).

Define the function

(2.9) Φ =
∑
u∈L

χD(u,2)

on B. By (2.6) and Lemma 2.2(a), there is a natural number N ∈ N such that

card{v ∈ L : D(u, 2) ∩D(v, 2) 6= ∅} ≤ N

for every u ∈ L. This and (2.7) together tell us that the inequality

(2.10) 1 ≤ Φ ≤ N

holds on the unit ball B. By (2.5) and the Möbius invariance of β and dλ, we have

TΦ =

∫
Φ(w)kw⊗kwdλ(w) =

∑
u∈L

∫
D(u,2)

kw⊗kwdλ(w) =
∑
u∈L

∫
D(0,2)

kϕu(z)⊗kϕu(z)dλ(z).

That is, we have

(2.11) TΦ =

∫
D(0,2)

Ezdλ(z).
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Lemma 2.5. There is a constant 0 < C2.5 < ∞ such that ‖Ez‖ ≤ C2.5 for every z ∈
D(0, 2).

Proof. By Lemma 2.3, for u, v, z ∈ B we have

|〈kϕv(z), kϕu(z)〉| =
(

(1− |ϕv(z)|2)1/2(1− |ϕu(z)|2)1/2

|1− 〈ϕu(z), ϕv(z)〉|

)n+1

≤ (2e2β(z,0))n+1

(
(1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

)n+1

.(2.12)

Let {εu : u ∈ L} be an orthonormal set. For each z ∈ B, define the operator

(2.13) Fz =
∑
u∈L

εu ⊗ kϕu(z).

Since Ez = F ∗z Fz and ‖F ∗z Fz‖ = ‖FzF ∗z ‖, it suffices to estimate the later. We have

FzF
∗
z =

∑
u,v∈L

〈kϕv(z), kϕu(z)〉εu ⊗ εv.

Now suppose that z ∈ D(0, 2) and write C1 = (2e4)n+1. By (2.12), for every vector
x =

∑
u∈L xuεu we have

〈FzF ∗z x, x〉 ≤
∑
u,v∈L

|〈kϕv(z), kϕu(z)〉||xu||xv|

≤ C1

∑
u,v∈L

(
(1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

)n+1

|xu||xv|

= C1

∑
u∈L
|xu|yu,(2.14)

where

yu =
∑
v∈L

(
(1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

)n+1

|xv|

for each u ∈ L. Next we apply the Schur test. Indeed by the Cauchy-Schwarz inequality
and Lemma 2.4, we have

y2
u ≤ C(L)(1− |u|2)

4n+1
8

∑
v∈L

(
(1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

)n+1 |xv|2

(1− |v|2)
4n+1

8

.

Applying Lemma 2.4 again, we have∑
u∈L

y2
u ≤ C(L)

∑
v∈L

|xv|2

(1− |v|2)
4n+1

8

∑
u∈L

(1− |u|2)
4n+1

8

(
(1− |u|2)1/2(1− |v|2)1/2

|1− 〈u, v〉|

)n+1

≤ C2(L)
∑
v∈L

|xv|2

(1− |v|2)
4n+1

8

(1− |v|2)
4n+1

8 = C2(L)
∑
v∈L
|xv|2.
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Combining this with (2.14), we find that

〈FzF ∗z x, x〉 ≤ C1C(L)
∑
v∈L
|xv|2 = C1C(L)‖x‖2.

Since the vector x is arbitrary, we conclude that ‖Ez‖ = ‖FzF ∗z ‖ ≤ C1C(L) for every z ∈
D(0, 2). This completes the proof. �

Recall that for each z ∈ B, the formula

(2.15) (Uzh)(ζ) = kz(ζ)h(ϕz(ζ)), ζ ∈ B and h ∈ L2
a(B, dv),

defines a unitary operator. These unitary operators will play an essential role in this paper.

As usual, we write H∞(B) for the collection of bounded analytic functions on B.
Also, we write ‖h‖∞ = supζ∈B |h(ζ)| for h ∈ H∞(B). Naturally, we consider H∞(B) as a
subset of the Bergman space L2

a(B, dv).

Lemma 2.6. Given any separated set Γ in B, there exists a constant 0 < B(Γ) < ∞
such that the following estimate holds: Let {hu : u ∈ Γ} be functions in H∞(B) such that
supu∈Γ ‖hu‖∞ <∞, and let {eu : u ∈ Γ} be any orthonormal set. Then∥∥∥∥∥∑

u∈Γ

(Uuhu)⊗ eu

∥∥∥∥∥ ≤ B(Γ) sup
u∈Γ
‖hu‖∞.

Proof. Given Γ, {hu : u ∈ Γ} and {eu : u ∈ Γ} as in the statement, let us write

A =
∑
u∈Γ

(Uuhu)⊗ eu

for convenience. By (2.10), the self-adjoint Toeplitz operator TΦ is invertible with ‖T−1
Φ ‖

≤ 1. Therefore ‖A‖ = ‖T−1
Φ TΦA‖ ≤ ‖TΦA‖. Combining this with (2.11), we see that

(2.16) ‖A‖ ≤ λ(D(0, 2)) sup
z∈D(0,2)

‖EzA‖.

Thus it suffices to estimate ‖EzA‖ for z ∈ D(0, 2). Let Fz be the operator defined by

(2.13). Then Lemma 2.5 implies that ‖F ∗z ‖ ≤ C
1/2
2.5 for z ∈ D(0, 2). Hence

(2.17) ‖EzA‖ ≤ C1/2
2.5 ‖FzA‖, z ∈ D(0, 2).

Consequently, we only need to estimate ‖FzA‖.

To estimate ‖FzA‖, let us denote

H = sup
u∈Γ
‖hu‖∞.

10



Let z ∈ D(0, 2). Then note that

(2.18) FzA =
∑
u∈L

∑
v∈Γ

〈Uvhv, kϕu(z)〉εu ⊗ ev.

Since Uvhv = kv · hv ◦ ϕv, the reproducing property of kϕu(z) gives us

〈Uvhv, kϕu(z)〉 = hv(ϕv(ϕu(z)))〈kv, kϕu(z)〉,

which is one of the key facts on which this paper depends. Thus

|〈Uvhv, kϕu(z)〉| ≤ H|〈kv, kϕu(z)〉| = H

(
(1− |v|2)1/2(1− |ϕu(z)|2)1/2

|1− 〈ϕu(z), v〉|

)n+1

.

Since v = ϕv(0) and z ∈ D(0, 2), an application of Lemma 2.3 gives us

(2.19) |〈Uvhv, kϕu(z)〉| ≤ C1H

(
(1− |v|2)1/2(1− |u|2)1/2

|1− 〈v, u〉|

)n+1

,

where C1 = (2e2)n+1. Now consider vectors

x =
∑
v∈Γ

xvev and y =
∑
u∈L

yuεu.

It follows from (2.18) and (2.19) that

|〈FzAx, y〉| ≤ C1H
∑
u∈L

∑
v∈Γ

(
(1− |v|2)1/2(1− |u|2)1/2

|1− 〈v, u〉|

)n+1

|xv||yu|

= C1H
∑
u∈L

bu|yu|,(2.20)

where

bu =
∑
v∈Γ

(
(1− |v|2)1/2(1− |u|2)1/2

|1− 〈v, u〉|

)n+1

|xv|,

u ∈ L. We apply the Schur test as we did in the proof of Lemma 2.5. By the Cauchy-
Schwarz inequality and the bound given in Lemma 2.4, we have

b2u ≤ C(Γ)(1− |u|)
4n+1

8

∑
v∈Γ

(
(1− |v|2)1/2(1− |u|2)1/2

|1− 〈v, u〉|

)n+1 |xv|2

(1− |v|2)
4n+1

8

,

u ∈ L. Applying Lemma 2.4 again, we obtain

∑
u∈L

b2u ≤ C(Γ)
∑
v∈Γ

∑
u∈L

(1− |u|)
4n+1

8

(
(1− |v|2)1/2(1− |u|2)1/2

|1− 〈v, u〉|

)n+1 |xv|2

(1− |v|2)
4n+1

8

≤ C(Γ)C(L)
∑
v∈Γ

(1− |v|2)
4n+1

8
|xv|2

(1− |v|2)
4n+1

8

= C(Γ)C(L)‖x‖2.
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Combining this with (2.20), we obtain

|〈FzAx, y〉| ≤ C1{C(Γ)C(L)}1/2H‖x‖‖y‖.

Since the vectors x and y are arbitrary, this means

‖FzA‖ ≤ C1{C(Γ)C(L)}1/2H

for z ∈ D(0, 2). Recalling (2.16) and (2.17), we see that the lemma holds for the constant

B(Γ) = λ(D(0, 2))C
1/2
2.5 C1{C(Γ)C(L)}1/2.

This completes the proof. �

Proposition 2.7. Suppose that Γ is a separated set in B. Furthermore, suppose that
{cu : u ∈ Γ} are complex numbers satisfying the condition

(2.21) sup
u∈Γ
|cu| <∞.

Then for each z ∈ B, the operator

(2.22) Yz =
∑
u∈Γ

cukϕu(z) ⊗ kϕu(z)

is bounded on the Bergman space. Moreover, the map z 7→ Yz from B into B(L2
a(B, dv)) is

continuous with respect to the operator norm.

Proof. For u, z ∈ B, simple computation shows that

(2.23) Uukz =

(
|1− 〈u, z〉|
1− 〈u, z〉

)n+1

kϕu(z).

Therefore
kϕu(z) ⊗ kϕu(z) = (Uukz)⊗ (Uukz).

Let {eu : u ∈ Γ} be an orthonormal set. Then for every z ∈ B we have the factorization

Yz = AzB
∗
z ,

where
Az =

∑
u∈Γ

cu(Uukz)⊗ eu and Bz =
∑
u∈Γ

(Uukz)⊗ eu.

Applying Lemma 2.6 to the case hu = cukz, u ∈ Γ, we see that each Az is a bounded
operator. Similarly, each Bz is also bounded. Hence Yz = AzB

∗
z is bounded.

To show that the map z 7→ Yz is continuous with respect to the operator norm, it
suffices to show that the maps z 7→ Az and z 7→ Bz are continuous with respect to the
operator norm. Since Bz is just a special case of Az, it suffices to consider the map z 7→ Az.
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For any z, w ∈ B, we have

Az −Aw =
∑
u∈Γ

cu{Uu(kz − kw)} ⊗ eu.

Applying Lemma 2.6 to the case where hu = cu(kz − kw), u ∈ Γ, we find that

‖Az −Aw‖ ≤ B(Γ)C‖kz − kw‖∞,

where C = supu∈Γ |cu|. For each z ∈ B, it is elementary that

lim
w→z
‖kz − kw‖∞ = 0.

Hence the map z 7→ Az is continuous with respect to operator norm. This completes the
proof. �

Let us recall two known facts aboutAs. First, for each given (n−1)/(n+1) < s < 1, we
have As ⊃ {Tf : f ∈ L∞(B, dv)} [6,Proposition 2.2]. Indeed by (2.5), this is a consequence
of the fact

lim
r→∞

sup
z∈B

∫
B\D(z,r)

∫
|〈kz, kx〉||〈kx, kw〉|dλ(x)

(
1− |w|2

1− |z|2

) s(n+1)
2

dλ(w) = 0.

To prove this limit, the idea in [6] is to split the inner x-integral above as the sum of the
part on D(z, r/2) and the part on B\D(z, r/2). With such split, this limit follows from
the Rudin-Forelli estimate [6,Lemma 2.1].

Second, each As is a ∗-algebra [6,Proposition 2.3]. In this case, the gist of the matter
is the limit

(2.24) lim
r→∞

sup
z∈B

∫
B\D(z,r)

∫
|〈Tkz, kx〉||〈kx, S∗kw〉|dλ(x)

(
1− |w|2

1− |z|2

) s(n+1)
2

dλ(w) = 0

for S, T ∈ As. To prove this, [6] splits the inner x-integral in the same way as above. Then
it is easy to see that (2.24) follows from the localization condition for S and T .

Next comes the most crucial step in the proof of Theorem 1.5:

Proposition 2.8. Let (n − 1)/(n + 1) < s < 1. If B ∈ As, then EwBEz ∈ T (1) for all
z, w ∈ B.

The proof of Proposition 2.8 will be the task of Section 3. But assuming Proposition
2.8, we have

Proof of Theorem 1.5. Let (n − 1)/(n + 1) < s < 1 be given. By the fact that As is a
∗-algebra mentioned above, C∗(As) is just the norm closure of As. Since we also know
that As ⊃ {Tf : f ∈ L∞(B, dv)}, Theorem 1.5 will follow if we can show that As ⊂ T (1).
We prove this inclusion into two steps.
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(1) Let B ∈ As be given. As the first step, let us show that TΦBTΦ ∈ T (1). Indeed it
follows from (2.11) that

(2.25) TΦBTΦ =

∫∫
D(0,2)×D(0,2)

EwBEzdλ(w)dλ(z).

Consider the map

(2.26) (w, z) 7→ EwBEz

from B × B into B(L2
a(B, dv)). Proposition 2.8 tells us that the range of map (2.26)

is contained in T (1). Hence every Riemann sum corresponding to the integral in (2.25)
belongs to T (1). On the other hand, by Proposition 2.7, the map z 7→ Ez is continuous
with respect to the operator norm. Hence map (2.26) is also continuous with respect to
the operator norm. Since the closure of D(0, 2) ×D(0, 2) is a compact subset of B × B,
the norm continuity of (2.26) means that the integral in (2.25) is the limit with respect to
the operator norm of a sequence of Riemann sums s1, s2, . . . , sk, . . . . Since each sk belongs
to T (1), so does TΦBTΦ.

(2) Given B ∈ As, we will now show that B ∈ T (1). Since TΦ ∈ As and since As is
an algebra, we have T jΦBT

k
Φ ∈ As for all j, k ∈ Z+. Thus it follows from (1) that

(2.27) T j+1
Φ BT k+1

Φ ∈ T (1) for all integers j ≥ 0 and k ≥ 0.

Let C∗(TΦ) be the unital C∗-algebra generated by TΦ. Since TΦ is self-adjoint, (2.27)
implies that

TΦXBTΦX ∈ T (1) for every X ∈ C∗(TΦ).

We again use the invertibility of TΦ, which is guaranteed by (2.10). It is elementary that
the inverse T−1

Φ , once it exists, must belong to the C∗-algebra C∗(TΦ). Thus, letting
X = T−1

Φ in the above, we obtain B ∈ T (1). This completes the proof of Theorem 1.5. �

3. Membership in T (1)

As we already mentioned, our goal for this section is to prove Proposition 2.8. For
convenience, let us introduce

Definition 3.1. (a) Let D0 denote the collection of operators of the form∑
u∈Γ

cuku ⊗ kγ(u),

where Γ is any separated set in B, {cu : u ∈ Γ} is any bounded set of complex coefficients,
and γ : Γ→ B is any map for which there is a 0 < C <∞ such that

(3.1) β(u, γ(u)) ≤ C

for every u ∈ Γ.
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(b) Let D denote the operator-norm closure of the linear span of D0.

With D0 and D we can divide the proof of Proposition 2.8 into two independent parts:

Proposition 3.2. Let (n − 1)/(n + 1) < s < 1. If B ∈ As, then for every pair of z, w ∈
B we have EwBEz ∈ D.

Proposition 3.3. We have D0 ⊂ T (1).

Since T (1) is a norm closed linear subspace of B(L2
a(B, dv)), Proposition 2.8 follows

immediately from Propositions 3.2 and 3.3.

We will see that the proofs of these two propositions are based on different ideas.
More specifically, the proof of Proposition 3.3 relies on the estimate provided by Lemma
2.6, whereas the proof of Proposition 3.2 takes advantage of the localization condition of
the operators in As. The proof of Proposition 3.2 begins with

Lemma 3.4. Let (n − 1)/(n + 1) < s < 1 be given. If B ∈ As, then for every separated
set Γ in B and every pair of z, w ∈ B we have

lim
R→∞

sup
u∈Γ

∑
v∈Γ

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|
(

1− |v|2

1− |u|2

)s(n+1)/2

= 0 and(3.2)

lim
R→∞

sup
u∈Γ

∑
v∈Γ

β(u,v)>R

|〈kϕu(z), Bkϕv(w)〉|
(

1− |v|2

1− |u|2

)s(n+1)/2

= 0.(3.3)

Proof. Given such s and B ∈ As, by Definition 1.1 we have

lim
r→∞

sup
x∈B

∫
B\D(x,r)

|〈Bkx, kζ〉|
(

1− |ζ|2

1− |x|2

)s(n+1)/2

dλ(ζ) = 0 and(3.4)

lim
r→∞

sup
x∈B

∫
B\D(x,r)

|〈B∗kx, kζ〉|
(

1− |ζ|2

1− |x|2

)s(n+1)/2

dλ(ζ) = 0.(3.5)

Let Γ, z and w also be given as in the lemma. Denote G = D(0, 1) and Gw = ϕw(G).
Then it is easy to see that Gw ⊂ D(0, 1 + β(w, 0)). For h ∈ L2

a(B, dv) and v ∈ Γ, we have

h(ϕv(w)) = (h ◦ ϕv ◦ ϕw)(0) =
1

λ(G)

∫
G

h ◦ ϕv ◦ ϕwdλ =
1

λ(G)

∫
(ϕv◦ϕw)(G)

hdλ

=
1

λ(G)

∫
ϕv(Gw)

hdλ =
1

λ(G)

∫
ϕv(Gw)

〈h, kζ〉
(1− |ζ|2)(n+1)/2

dλ(ζ).

Thus

〈h, kϕv(w)〉 =
1

λ(G)

∫
ϕv(Gw)

〈h, kζ〉
(

1− |ϕv(w)|2

1− |ζ|2

)(n+1)/2

dλ(ζ).
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If ζ ∈ ϕv(Gw), then ζ = ϕv(ξ) for some ξ ∈ Gw ⊂ D(0, 1 + β(w, 0)), which means

1− |ζ|2 = 1− |ϕv(ξ)|2 =
(1− |v|2)(1− |ξ|2)

|1− 〈ξ, v〉|2
≥ 1

4
(1− |ξ|2)(1− |v|2).

On the other hand,

1− |ϕv(w)|2 =
(1− |v|2)(1− |w|2)

|1− 〈w, v〉|2
≤ 2

1− |w|
(1− |v|2).

Hence there is a 0 < C1 <∞ which depends only on n and w such that

|〈h, kϕv(w)〉|(1− |v|2)s(n+1)/2 ≤ C1

λ(G)

∫
ϕv(Gw)

|〈h, kζ〉|(1− |ζ|2)s(n+1)/2dλ(ζ)

for all h ∈ L2
a(B, dv) and v ∈ Γ. Applying this inequality to the case where h = Bkϕu(z),

u ∈ Γ, we have

|〈Bkϕu(z),kϕv(w)〉|
(

1− |v|2

1− |u|2

)s(n+1)/2

≤ C1

λ(G)

∫
ϕv(Gw)

|〈Bkϕu(z), kζ〉|
(

1− |ζ|2

1− |u|2

)s(n+1)/2

dλ(ζ),

v ∈ Γ. Since

1− |ϕu(z)|2 =
(1− |u|2)(1− |z|2)

|1− 〈z, u〉|2
≤ 2

1− |z|
(1− |u|2),

there is a 0 < C2 <∞ which depends only on n and z such that

|〈Bkϕu(z),kϕv(w)〉|
(

1− |v|2

1− |u|2

)s(n+1)/2

≤ C1C2

λ(G)

∫
ϕv(Gw)

|〈Bkϕu(z), kζ〉|
(

1− |ζ|2

1− |ϕu(z)|2

)s(n+1)/2

dλ(ζ),(3.6)

u, v ∈ Γ. Set L = 1 + β(w, 0) + β(z, 0) and consider any R > L. If u, v ∈ Γ are such that
β(u, v) > R, then for every ζ ∈ ϕv(Gw) ⊂ ϕv(D(0, 1 + β(w, 0))) we have

(3.7) β(ϕu(z), ζ) ≥ β(u, v)− β(v, ζ)− β(u, ϕu(z)) > R− 1− β(w, 0)− β(z, 0) = R− L.

Thus the combination of (3.6) and (3.7) gives us

∑
v∈Γ

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|
(

1− |v|2

1− |u|2

)s(n+1)/2

≤ C1C2

λ(G)

∫
β(ϕu(z),ζ)>R−L

∑
v∈Γ

χϕv(Gw)(ζ)|〈Bkϕu(z), kζ〉|
(

1− |ζ|2

1− |ϕu(z)|2

)s(n+1)/2

dλ(ζ),

(3.8)
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u ∈ Γ. By the Möbius invariance of β and the fact that Gw ⊂ D(0, 1 + β(w, 0)), we have
ϕv(Gw) ⊂ D(v, 1 +β(w, 0)). Since Γ is separated, it follows from Lemma 2.2(a) that there
is an N ∈ N which depends only on Γ and w such that the inequality∑

v∈Γ

χϕv(Gw) ≤ N

holds on B. Substituting this in (3.8), we conclude that

∑
v∈Γ

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|
(

1− |v|2

1− |u|2

)s(n+1)/2

≤ C1C2N

λ(G)

∫
β(ϕu(z),ζ)>R−L

|〈Bkϕu(z), kζ〉|
(

1− |ζ|2

1− |ϕu(z)|2

)s(n+1)/2

dλ(ζ)

for every u ∈ Γ. By this inequality, (3.2) follows from (3.4). Since

〈kϕu(z), Bkϕv(w)〉 = 〈B∗kϕu(z), kϕv(w)〉,

(3.3) follows from (3.5) by the same argument. This completes the proof. �

Proof of Proposition 3.2. Let (n− 1)/(n+ 1) < s < 1. For B ∈ As and z, w ∈ B, we have

EwBEz =
∑
u,v∈L

kϕv(w) ⊗ kϕv(w) ·B · kϕu(z) ⊗ kϕu(z)

=
∑
u,v∈L

〈Bkϕu(z), kϕv(w)〉kϕv(w) ⊗ kϕu(z).

Thus for any R > 0, we can write EwBEz = VR +WR, where

VR =
∑
u,v∈L

β(u,v)≤R

〈Bkϕu(z), kϕv(w)〉kϕv(w) ⊗ kϕu(z) and

WR =
∑
u,v∈L

β(u,v)>R

〈Bkϕu(z), kϕv(w)〉kϕv(w) ⊗ kϕu(z).

Obviously, the proposition will follow if we can prove the following two statements:
(1) limR→∞ ‖WR‖ = 0.
(2) VR ∈ span(D0) for every R > 0.

To prove (1), note that by (2.23) and Lemma 2.6, there are constants C1, C2 such that

(3.9)
∑
u∈L
|〈h, kϕu(z)〉|2 ≤ C1‖h‖2 and

∑
v∈L
|〈h, kϕv(w)〉|2 ≤ C2‖h‖2
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for every h ∈ L2
a(B, dv). Given h, g ∈ L2

a(B, dv), we have

(3.10) |〈WRh, g〉| ≤
∑
u,v∈L

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|sutv,

where
su = |〈h, kϕu(z)〉| and tv = |〈kϕv(w), g〉|.

We apply the Schur test one more time. Indeed for each u ∈ L, let us write

(3.11) yu =
∑
v∈L

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|tv.

Then for each u ∈ L, the Cauchy-Schwarz inequality gives us

y2
u ≤

∑
v∈L

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|(1− |v|2)
s(n+1)

2

∑
v∈L

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|
t2v

(1− |v|2)
s(n+1)

2

≤ H(R)
∑
v∈L

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|
(

1− |u|2

1− |v|2

) s(n+1)
2

t2v,

where

H(R) = sup
ξ∈L

∑
v∈L

β(ξ,v)>R

|〈Bkϕξ(z), kϕv(w)〉|
(

1− |v|2

1− |ξ|2

) s(n+1)
2

.

Therefore

∑
u∈L

y2
u ≤ H(R)

∑
u∈L

∑
v∈L

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|
(

1− |u|2

1− |v|2

) s(n+1)
2

t2v

= H(R)
∑
v∈L

t2v
∑
u∈L

β(u,v)>R

|〈Bkϕu(z), kϕv(w)〉|
(

1− |u|2

1− |v|2

) s(n+1)
2

≤ H(R)G(R)
∑
v∈L

t2v,

where

G(R) = sup
ξ∈L

∑
u∈L

β(u,ξ)>R

|〈Bkϕu(z), kϕξ(w)〉|
(

1− |u|2

1− |ξ|2

) s(n+1)
2

.
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By (3.10) and (3.11), we now have

|〈WRh, g〉| ≤
∑
u∈L

suyu ≤

(∑
u∈L

s2
u

)1/2(∑
u∈L

y2
u

)1/2

≤ {H(R)G(R)}1/2
(∑
u∈L

s2
u

)1/2(∑
u∈L

t2u

)1/2

.

Combining this with (3.9), we find that

|〈WRh, g〉| ≤ {C1C2H(R)G(R)}1/2‖h‖‖g‖.

Since h, g ∈ L2
a(B, dv) are arbitrary, this means

‖WR‖ ≤ {C1C2H(R)G(R)}1/2.

Applying Lemma 3.4, we have limR→∞H(R) = 0 and limR→∞G(R) = 0. Therefore
limR→∞ ‖WR‖ = 0 as promised.

We now turn to the proof of (2). First of all, given an R > 0, for each v ∈ L we define

Fv = {u ∈ L : β(u, v) ≤ R}.

By Lemma 2.2(a), there is an N ∈ N such that

card(Fv) ≤ N

for every v ∈ L. Also, by Lemma 2.2(b), for the given w ∈ B, there is a partition

L = L1 ∪ · · · ∪ Lm

such that for each i ∈ {1, . . . ,m}, if v, v′ ∈ Li and v 6= v′, then β(ϕv(w), ϕv′(w)) ≥ 1.
That is, for each i ∈ {1, . . . ,m}, the set

Ki = {ϕv(w) : v ∈ Li}

is separated. We have VR = X1 + · · ·+Xm, where

Xi =
∑

ϕv(w)∈Ki

∑
u∈Fv

〈Bkϕu(z), kϕv(w)〉kϕv(w) ⊗ kϕu(z),

i ∈ {1, . . . ,m}. To prove (2), if suffices to show that Xi ∈ span(D0) of every i ∈ {1, . . . ,m}.
For this purpose we further decompose each Ki. Indeed for each pair of i ∈ {1, . . . ,m}
and j ∈ {1, . . . , N}, we define

Li,j = {v ∈ Li : card(Fv) = j} and Ki,j = {ϕv(w) : v ∈ Li,j}.
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Then Xi = Xi,1 + · · ·+Xi,N , where

Xi,j =
∑

ϕv(w)∈Ki,j

∑
u∈Fv

〈Bkϕu(z), kϕv(w)〉kϕv(w) ⊗ kϕu(z),

i ∈ {1, . . . ,m} and j ∈ {1, . . . , N}. Thus it suffices to show that Xi,j ∈ span(D0) for every
such pair of i, j. But it is obvious that given a pair of such i, j, we can define maps

γ
(1)
i,j , · · · , γ

(j)
i,j : Ki,j → B

such that
{ϕu(z) : u ∈ Fv} = {γ(1)

i,j (ϕv(w)), · · · , γ(j)
i,j (ϕv(w))}

for every v ∈ Li,j . Thus Xi,j = X
(1)
i,j + · · ·+X

(j)
i,j , where for each ν ∈ {1, . . . , j} we have

X
(ν)
i,j =

∑
ξ∈Ki,j

〈Bk
γ
(ν)
i,j

(ξ)
, kξ〉kξ ⊗ kγ(ν)

i,j
(ξ)
.

Hence the proof will be complete if we can show that X
(ν)
i,j ∈ D0 for every triple of indices

i ∈ {1, . . . ,m}, j ∈ {1, . . . , N} and ν ∈ {1, . . . , j}.

By the above definitions, for every such triple of i, j, ν, if ξ ∈ Ki,j , then there exist

v ∈ Li,j and u ∈ Fv such that ξ = ϕv(w) and γ
(ν)
i,j (ξ) = ϕu(z). Therefore

β(ξ, γ
(ν)
i,j (ξ)) = β(ϕv(w), ϕu(z))

≤ β(ϕv(w), v) + β(v, u) + β(u, ϕu(z)) ≤ β(w, 0) +R+ β(0, z).

This shows that the map γ
(ν)
i,j : Ki,j → B satisfies condition (3.1). By Definition 3.1(a),

we have X
(ν)
i,j ∈ D0. This completes the proof of Proposition 3.2. �

Next we turn to the proof of Proposition 3.3, which involves a few steps.

Proposition 3.5. Suppose that Γ is a separated set in B. Furthermore, suppose that
{cu : u ∈ Γ} are complex numbers for which (2.21) holds. Then for each z ∈ B, the
operator Yz defined by (2.22) belongs to T (1).

Proof. (1) Let us first show that Y0 ∈ T (1). Since Γ is separated, there is a δ > 0 such that
β(u, v) ≥ δ for all u 6= v in Γ. That is, if u, v ∈ Γ and u 6= v, then D(u, δ/2)∩D(v, δ/2) = ∅.
For each 0 < ε < δ/2, define the operator

Aε =
1

λ(D(0, ε))

∫
D(0,ε)

Yzdλ(z).

By the norm continuity of the map z 7→ Yz provided by Proposition 2.7, we have

lim
ε↓0
‖Y0 −Aε‖ = 0.
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Thus to prove the membership Y0 ∈ T (1), it suffices to show that each Aε is a Toeplitz
operator with a bounded symbol. Indeed by the Möbius invariance of β and dλ, we have

Aε =
1

λ(D(0, ε))

∑
u∈Γ

cu

∫
D(0,ε)

kϕu(z) ⊗ kϕu(z)dλ(z)

=
1

λ(D(0, ε))

∑
u∈Γ

cu

∫
D(u,ε)

kw ⊗ kwdλ(w) =

∫
fε(w)kw ⊗ kwdλ(w),

where

fε =
1

λ(D(0, ε))

∑
u∈Γ

cuχD(u,ε).

Since, 0 < ε < δ/2, we have D(u, ε) ∩D(v, ε) = ∅ for u 6= v in Γ. Hence fε ∈ L∞(B, dv).
By (2.5), we have Aε = Tfε . This proves the membership Y0 ∈ T (1).

(2) Now consider an arbitrary z ∈ B. By Lemma 2.2(b), there is a partition Γ =
Γ1 ∪ · · · ∪ Γm such that for every i ∈ {1, . . . ,m}, the conditions u, v ∈ Γi and u 6= v imply
β(ϕu(z), ϕv(z)) ≥ 1. That is, for each i ∈ {1, . . . ,m}, the set

Gi = {ϕu(z) : u ∈ Γi}

is separated. Obviusly, Yz = Yz,1 + · · ·+ Yz,m, where

Yz,i =
∑

ϕu(z)∈Gi

cukϕu(z) ⊗ kϕu(z),

i = 1, . . . ,m. By (1) we have Yz,i ∈ T (1) for every i ∈ {1, . . . ,m}. Hence Yz ∈ T (1). �

In addition to the normalized reproducing kernel kz given by (1.1), it will be convenient
for our next step to use the unnormalized reproducing kernel

Kz(ζ) =
1

(1− 〈ζ, z〉)n+1
, z, ζ ∈ B,

and other kernel-like functions. This involves monomials in the complex variables ζ1, . . . ,
ζn and the standard multi-index convention (see, e.g., [10,page 3]). For each pair of α ∈ Zn+
and z ∈ B, we define

(3.12) Kz;α(ζ) =
ζα

(1− 〈ζ, z〉)n+1+|α| ,

ζ ∈ B. Note that Kz = Kz;0 for every z ∈ B.

Proposition 3.6. Let Γ be a separated set in B and suppose that {cu : u ∈ Γ} is a bounded
set of complex coefficients. Then for every pair of α ∈ Zn+ and z ∈ B, we have∑

u∈Γ

cu(UuKz)⊗ (UuKz;α) ∈ T (1).
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Proof. We prove the proposition by an induction on |α|. If |α| = 0, i.e. α = 0, then

(UuKz)⊗ (UuKz;0) = (UuKz)⊗ (UuKz) =
1

(1− |z|2)n+1
kϕu(z) ⊗ kϕu(z).

Hence the case where |α| = 0 follows from Proposition 3.5. Suppose that k ∈ Z+ and that
the proposition holds true for every α ∈ Zn+ satisfying the condition |α| ≤ k. Now consider
the case where α ∈ Zn+ is such that |α| = k + 1. Then we can decompose α in the form

α = a+ b,

where |a| = k and |b| = 1. That is, there is some ν ∈ {1, . . . , n} such that the ν-th
component of b is 1 and the other components of b are all 0. We will also consider b as a
vector in Cn. By the induction hypothesis, we have

(3.13)
∑
u∈Γ

cu(UuKz)⊗ (UuKz;a) ∈ T (1) for every z ∈ B.

Let z ∈ B be given. Then there is an ε = ε(z) > 0 such that z + c ∈ B for every c ∈ Cn

satisfying the condition |c| ≤ ε. For each t ∈ [0, ε], define the operators

At =
∑
u∈Γ

cu(UuKz+tb)⊗ (UuKz+tb;a) and Bt =
∑
u∈Γ

cu(UuKz+itb)⊗ (UuKz+itb;a).

Also, we define

X =
∑
u∈Γ

cu{(n+ 1 + k)(UuKz)⊗ (UuKz;α) + (n+ 1)(UuKz;b)⊗ (UuKz;a)} and

Y =
∑
u∈Γ

cu{(n+ 1 + k)(UuKz)⊗ (UuKz;α)− (n+ 1)(UuKz;b)⊗ (UuKz;a)}.

We will show that

lim
t↓0

∥∥∥∥1

t
(At −A0)−X

∥∥∥∥ = 0 and(3.14)

lim
t↓0

∥∥∥∥ 1

it
(Bt −B0)− Y

∥∥∥∥ = 0.(3.15)

Before getting to their proofs, let us first see the consequence of these limits. By (3.13)
we have At ∈ T (1) and Bt ∈ T (1) for all t ∈ [0, ε]. Hence it follows from (3.14) and (3.15)
that X,Y ∈ T (1). Thus∑

u∈Γ

cu(UuKz)⊗ (UuKz;α) =
1

2(n+ 1 + k)
(X + Y ) ∈ T (1),

completing the induction on |α|.
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Let us now turn to the proof of (3.14). Note that t−1(At −A0) = Gt +Ht, where

Ht =
1

t

∑
u∈Γ

cu(UuKz+tb)⊗ {Uu(Kz+tb;a −Kz;a)} and

Gt =
1

t

∑
u∈Γ

cu{Uu(Kz+tb −Kz)} ⊗ (UuKz;a).

Similarly, we write X = V +W , where

V =
∑
u∈Γ

cu(n+ 1 + k)(UuKz)⊗ (UuKz;α) and

W =
∑
u∈Γ

cu(n+ 1)(UuKz;b)⊗ (UuKz;a).

Since ‖t−1(At −A0)−X‖ ≤ ‖Ht − V ‖+ ‖Gt −W‖, (3.14) will follow if we can show

lim
t↓0
‖Ht − V ‖ = 0 and(3.16)

lim
t↓0
‖Gt −W‖ = 0.(3.17)

To prove (3.16), for 0 < t ≤ ε we write Ht − V = St + Tt, where

St =
∑
u∈Γ

cu(UuKz+tb)⊗ {Uu(t−1(Kz+tb;a −Kz;a)− (n+ 1 + k)Kz;α)} and

Tt = (n+ 1 + k)
∑
u∈Γ

cu{Uu(Kz+tb −Kz)} ⊗ (UuKz;α).

Thus the proof of (3.16) is reduced to the proof of the fact that ‖St‖ → 0 and ‖Tt‖ → 0
as t descends to 0. To prove this, we pick an orthonormal set {eu : u ∈ Γ} and factor St
in the form St = S

(1)
t S

(2)∗
t , where

S
(1)
t =

∑
u∈Γ

cu(UuKz+tb)⊗ eu and

S
(2)
t =

∑
u∈Γ

{Uu(t−1(Kz+tb;a −Kz;a)− (n+ 1 + k)Kz;α)} ⊗ eu.

Set C = supu∈Γ |cu|. Then it follows from Lemma 2.6 that

‖S(1)
t ‖ ≤ CB(Γ)‖Kz+tb‖∞ and

‖S(2)
t ‖ ≤ B(Γ)‖t−1(Kz+tb;a −Kz;a)− (n+ 1 + k)Kz;α‖∞.

Since a+ b = α and k = |a|, by (3.12) and elementary algebra, we have

lim
t↓0
‖t−1(Kz+tb;a −Kz;a)− (n+ 1 + k)Kz;α‖∞ = 0.
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Also, it is trivial that ‖Kz+tb‖∞ remains bounded as t descends to 0. Hence

‖St‖ ≤ ‖S(1)
t ‖‖S

(2)
t ‖

≤ C(B(Γ))2‖Kz+tb‖∞‖t−1(Kz+tb;a −Kz;a)− (n+ 1 + k)Kz;α‖∞ → 0

as t descends to 0. For Tt, we have the factorization Tt = T
(1)
t T (2)∗, where

T
(1)
t = (n+ 1 + k)

∑
u∈Γ

cu{Uu(Kz+tb −Kz)} ⊗ eu and

T (2) =
∑
u∈Γ

(UuKz;α)⊗ eu.

By Lemma 2.6, ‖T (1)
t ‖ ≤ (n+1+k)CB(Γ)‖Kz+tb−Kz‖∞, and T (2) is a bounded operator.

It is obvious that
lim
t↓0
‖Kz+tb −Kz‖∞ = 0.

Hence ‖Tt‖ ≤ ‖T (1)
t ‖‖T (2)‖ → 0 as t descends to 0. This completes the proof of (3.16).

To prove (3.17), note that

Gt −W =
∑
u∈Γ

cu{Uu(t−1(Kz+tb −Kz)− (n+ 1)Kz;b)} ⊗ (UuKz;a) = ZtT
(2)∗,

where
Zt =

∑
u∈Γ

cu{Uu(t−1(Kz+tb −Kz)− (n+ 1)Kz;b)} ⊗ eu.

Applying Lemma 2.6 again, we have

‖Zt‖ ≤ CB(Γ)‖t−1(Kz+tb −Kz)− (n+ 1)Kz;b‖∞.

Another easy exercise shows that

lim
t↓0
‖t−1(Kz+tb −Kz)− (n+ 1)Kz;b‖∞ = 0.

Hence ‖Gt −W‖ ≤ ‖Zt‖‖T (2)‖ → 0 as t descends to 0, proving (3.17). Thus we have
completed the proof of (3.14).

The proof of (3.15) uses essentially the same argument as above, and the only addi-
tional care that needs to be taken is the following: The rank-one operator f ⊗ g is linear
with respect to f and conjugate linear with respect to g. Moreover, the inner product
〈ζ, z〉 on Cn is conjugate linear with respect to z. These are the properties that determine
the + and − signs in each term cu{· · · } in the sum that defines the operator Y . This
completes the proof of the proposition. �
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Proposition 3.7. Let Γ be a separated set in B and let {cu : u ∈ Γ} be a bounded set of
complex coefficients. Then for every w ∈ B we have

(3.18)
∑
u∈Γ

cuku ⊗ kϕu(w) ∈ T (1).

Proof. For each α ∈ Zn+, define the monomial function

pα(ζ) = ζα

on B. Given a w ∈ B, let us define

du(w) = cu

(
1− 〈w, u〉
|1− 〈w, u〉|

)n+1

,

u ∈ Γ. Note that K0;α = pα for every α ∈ Zn+. Also, UuK0 = Uu1 = ku for every u ∈ Γ.
Thus, applying Proposition 3.6 to the case where z = 0, we have

(3.19)
∑
u∈Γ

du(w)ku ⊗ (Uupα) ∈ T (1)

for every α ∈ Zn+. Define the function

gw(ζ) = 〈ζ, w〉, ζ ∈ B.

For each j ∈ Z+, define the operator

Aj =
∑
u∈Γ

du(w)ku ⊗ (Uug
j
w).

Since each gjw is in the linear span of {pα : α ∈ Zn+}, (3.19) implies that Aj ∈ T (1) for
every j ∈ Z+. Let {eu : u ∈ Γ} be an orthonormal set. Then we have the factorization
Aj = TB∗j for each j ∈ Z+, where

T =
∑
u∈Γ

du(w)ku ⊗ eu and Bj =
∑
u∈Γ

(Uug
j
w)⊗ eu.

Lemma 2.6 tells us that T is a bounded operator. Define

G =
∑
u∈Γ

(UuKw)⊗ eu.

It also follows from Lemma 2.6 that

(3.20)

∥∥∥∥∥∥G−
k∑
j=0

(n+ j)!

n!j!
Bj

∥∥∥∥∥∥ ≤ B(Γ)

∥∥∥∥∥∥Kw −
k∑
j=0

(n+ j)!

n!j!
gjw

∥∥∥∥∥∥
∞
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for every k ∈ Z+. By the expansion formula

1

(1− c)n+1
=
∞∑
j=0

(n+ j)!

n!j!
cj , |c| < 1,

and the fact that |w| < 1, we have

lim
k→∞

∥∥∥∥∥∥Kw −
k∑
j=0

(n+ j)!

n!j!
gjw

∥∥∥∥∥∥
∞

= 0.

Combining this with (3.20), we obtain

lim
k→∞

∥∥∥∥∥∥TG∗ −
k∑
j=0

(n+ j)!

n!j!
Aj

∥∥∥∥∥∥ = lim
k→∞

∥∥∥∥∥∥TG∗ − T
k∑
j=0

(n+ j)!

n!j!
B∗j

∥∥∥∥∥∥ = 0.

Since each Aj belongs to T (1), we conclude that∑
u∈Γ

du(w)ku ⊗ (UuKw) = TG∗ ∈ T (1).

Since kw = (1− |w|2)(n+1)/2Kw, this implies

(3.21)
∑
u∈Γ

du(w)ku ⊗ (Uukw) ∈ T (1).

Recalling the definition of du(w) and (2.23), we see that (3.21) implies (3.18). �

Proof of Proposition 3.3. Let Γ be a separated set in B, let {cu : u ∈ Γ} be a bounded set of
coefficients, and let γ : Γ→ B be a map satisfying (3.1). Let K = {w ∈ B : β(0, w) ≤ C},
where C is the constant that appears in (3.1). We want to show that the operator

T =
∑
u∈Γ

cuku ⊗ kγ(u)

belongs to T (1). For this purpose, define

ψ(u) = ϕu(γ(u)), u ∈ Γ.

Since β(u, γ(u)) ≤ C, by the Möbius invariance of β and the fact ϕu(u) = 0, we have
β(0, ψ(u)) = β(u, γ(u)) ≤ C for every u ∈ Γ. That is, ψ(u) ∈ K for every u ∈ Γ. Since
ϕu(ψ(u)) = γ(u), u ∈ Γ, by (2.23) we have

T =
∑
u∈Γ

duku ⊗ (Uukψ(u)),
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where |du| = |cu| for every u ∈ Γ. Let {eu : u ∈ Γ} be an orthonormal set. Then we have
the factorization T = AB∗, where

A =
∑
u∈Γ

duku ⊗ eu and B =
∑
u∈Γ

(Uukψ(u))⊗ eu.

We again use the fact that the map z 7→ kz is ‖ · ‖∞-continuous. That is,

lim
w→z
‖kz − kw‖∞ = 0 for every z ∈ B.

Let ε > 0 be given. Since K is compact, there are non-empty open sets Ω1, . . . ,Ωm in B
and zi ∈ Ωi, i = 1, . . . ,m, such that

(3.22) Ω1 ∪ · · · ∪ Ωm ⊃ K

and
‖kzi − kw‖∞ < ε whenever w ∈ Ωi,

i = 1, . . . ,m. From the open cover (3.22) we obtain a partition

K = E1 ∪ · · · ∪ Em

such that Ei ⊂ Ωi for every i ∈ {1, . . . ,m}. We now define

Γi = {u ∈ Γ : ψ(u) ∈ Ei},

i = 1, . . . ,m. Then ‖kzi − kψ(u)‖∞ < ε if u ∈ Γi. For every i ∈ {1, . . . ,m}, we also define

Bi =
∑
u∈Γi

(Uukzi)⊗ eu.

For each i ∈ {1, . . . ,m} we have

AB∗i =
∑
u∈Γi

duku ⊗ (Uukzi) =
∑
u∈Γi

du,iku ⊗ kϕu(zi),

where |du,i| = |du| for u ∈ Γi. Thus it follows from Proposition 3.7 that

(3.23) {AB∗1 , . . . , AB∗m} ⊂ T (1).

On the other hand, we have

B − (B1 + · · ·+Bm) =
m∑
i=1

∑
u∈Γi

{Uu(kψ(u) − kzi)} ⊗ eu.
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Since the sets Γ1, . . . ,Γm form a partition of Γ, i.e., Γi ∩ Γj = ∅ whenever i 6= j, Lemma
2.6 tells us that

‖B − (B1 + · · ·+Bm)‖ ≤ B(Γ) max
1≤i≤m

sup
u∈Γi

‖kψ(u) − kzi‖∞ ≤ B(Γ)ε.

Lemma 2.6 also tells us that A is a bounded operator. Hence

‖T−(AB∗1 + · · ·+AB∗m)‖ = ‖AB∗ − (AB∗1 + · · ·+AB∗m)‖
≤ ‖A‖‖B∗ − (B∗1 + · · ·+B∗m)‖ = ‖A‖‖B − (B1 + · · ·+Bm)‖
≤ ‖A‖B(Γ)ε.

Since ε > 0 is arbitrary, combining this inequality with (3.23), we conclude that T ∈ T (1).
This completes the proof of Proposition 3.3. �

4. Analogue on the Fock space

The analogue of Theorem 1.5 also holds in the setting of the Fock space. To discuss
the details, let us first recall the necessary definitions.

Let dµ be the Gaussian measure on Cn. It is well known that, in terms of the standard
volume measure dV on Cn, we have

dµ(z) = π−ne−|z|
2

dV (z).

Recall that the Fock space H2(Cn, dµ) is defined to be the subspace {h ∈ L2(Cn, dµ) : h is
analytic on Cn} of L2(Cn, dµ). In this section, the symbol kz will denote the normalized
reproducing kernel for H2(Cn, dµ). That is,

kz(ζ) = e〈ζ,z〉e−|z|
2/2, z, ζ ∈ Cn.

In [14], the notion of sufficiently localized operators was introduced:

Definition 4.1. A bounded operator B on H2(Cn, dµ) is said to be sufficiently localized
if there exist constants 2n < β <∞ and 0 < C <∞ such that

|〈Bkz, kw〉| ≤
C

(1 + |z − w|)β

for all z, w ∈ Cn.

Let C∗(SL) be the C∗-algebra generated by the collection of sufficiently localized
operators on H2(Cn, dµ). Combining localization properties with a new approach, it was
shown in [14] that for A ∈ C∗(SL),

(4.1) the condition lim
|z|→∞

〈Akz, kz〉 = 0 implies that A is compact.
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This was the result that motivated Isralowitz, Mitkovski and Wick to introduce the notion
of weakly localized operators in [6]. On the Fock space, weakly localized operators are
defined as follows.

Definition 4.2. [6] A bounded operator T on H2(Cn, dµ) is said to be weakly localized
if it satisfies the conditions

sup
z∈Cn

∫
|〈Tkz, kw〉|dV (w) <∞, sup

z∈Cn

∫
|〈T ∗kz, kw〉|dV (w) <∞,

and

lim
r→∞

sup
z∈Cn

∫
|z−w|≥r

|〈Tkz, kw〉|dV (w) = 0, lim
r→∞

sup
z∈Cn

∫
|z−w|≥r

|〈T ∗kz, kw〉|dV (w) = 0.

It is easy to see that any sufficiently localized operator is weakly localized. Moreover,
it was shown in [6] that (4.1) also holds true if A is in the C∗-algebra generated by the
weakly localized operators on H2(Cn, dµ).

Replacing the class As by the class of operators defined in Definition 4.2, one can
prove the analogue of Theorem 1.5 on the Fock space H2(Cn, dµ). The proof is in fact
easier in the Fock space case. This is because, compared with the Bergman space, the
structure of the Fock space is much simpler, and one generally gets much better “decaying
rate” in estimates.

For example, instead of general separated sets, in the Fock space setting we only need
to be concerned with the standard lattice

Z2n = {(j1 + ik1, . . . , jn + ikn) : j1, . . . , jn, k1, . . . , kn ∈ Z}

and its subsets. What replaces D(0, 2) is the fundamental cube

S = {(x1 + iy1, . . . , xn + iyn) : x1, . . . , xn, y1, . . . , yn ∈ [0, 1)}

in Cn. With Z2n and S we have

(4.2)
⋃

u∈Z2n

{u− S} = Cn,

which is a tiling of the space, meaning that there is no overlap between u − S and v − S
for u 6= v in Z2n. Compared with the covering scheme (2.7), the tiling scheme (4.2)
offers considerable advantages. For example, the Toeplitz operator TΦ used in the proof of
Theorem 1.5 can simply be replaced by the identity operator 1 in the case of Fock space.

There is, however, one technical issue in the Fock space case that warrants mentioning.
This stems from the fact that there are no bounded analytic functions on Cn other than
constants. Thus the straightforward analogue of Lemma 2.6 on H2(Cn, dµ), while true, is
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not very useful. In the Fock-space setting, the supremum norm ‖ · ‖∞ must be replaced
by something else.

Definition 4.3. For an analytic function h on Cn, we write

‖h‖∗ =

(∫
|h(ζ)|2e−(1/2)|ζ|2dV (ζ)

)1/2

.

Let H∗ be the collection of analytic functions h on Cn satisfying the condition ‖h‖∗ <∞.

For each z ∈ Cn, let Uz be the unitary operator defined by the formula

(4.3) (Uzf)(ζ) = f(z − ζ)kz(ζ), ζ ∈ Cn,

f ∈ H2(Cn, dµ). The following is what replaces Lemma 2.6 in the Fock-space setting:

Lemma 4.4. There is a constant 0 < C4.4 <∞ such that the following estimate holds: Let
{eu : u ∈ Z2n} be any orthonormal set and let hu ∈ H∗, u ∈ Z2n, be functions satisfying
the condition supu∈Z2n ‖hu‖∗ <∞. Then∥∥∥∥∥ ∑

u∈Z2n

(Uuhu)⊗ eu

∥∥∥∥∥ ≤ C4.4 sup
u∈Z2n

‖hu‖∗.

Proof. Let us first estimate |〈Uuhu, Uvhv〉|. By (4.3), for u, v ∈ Z2n we have

(4.4) 〈Uuhu, Uvhv〉 =

∫
hu(u− ζ)hv(v − ζ)ku(ζ)kv(ζ)e−|ζ|

2

dV (ζ).

Moreover,

(4.5)
∣∣∣ku(ζ)kv(ζ)

∣∣∣ e−|ζ|2 = e−(1/2)(|u−ζ|2+|v−ζ|2),

ζ ∈ Cn. Observe that

|u− ζ|2 + |v − ζ|2 ≥ 1

2
(|u− ζ|+ |v − ζ|)2 ≥ 1

2
|u− v|2.

Thus, splitting the 1/2 in (4.5) as (1/4) + (1/4), we find that∣∣∣ku(ζ)kv(ζ)
∣∣∣ e−|ζ|2 ≤ e−(1/8)|u−v|2e−(1/4)|u−ζ|2e−(1/4)|v−ζ|2 .

Combining this with (4.4) and applying the Cauchy-Schwarz inequality, we obtain

(4.6) |〈Uuhu, Uvhv〉| ≤ e−(1/8)|u−v|2‖hu‖∗‖hv‖∗ ≤ e−(1/8)|u−v|2H2
∗ ,
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where
H∗ = sup

u∈Z2n

‖hu‖∗.

Write
A =

∑
u∈Z2n

(Uuhu)⊗ eu

and consider any vector x =
∑
u∈Z2n xueu. By (4.6), we have

‖Ax‖2 ≤
∑

u,v∈Z2n

|〈Uvhv, Uuhu〉||xu||xv| ≤ H2
∗

∑
u,v∈Z2n

e−(1/8)|u−v|2 |xu||xv|.

Applying the Schur test to the right-hand side, we find that

‖Ax‖2 ≤ CH2
∗

∑
u∈Z2n

|xu|2 = CH2
∗‖x‖2,

where C =
∑
z∈Z2n e−(1/8)|z|2 , which is finite. Since the vector x is arbitrary, we conclude

that ‖A‖ ≤ C1/2H∗. Thus the lemma holds for the constant C4.4 = C1/2. �

In the proof of the Fock-space analogue of Theorem 1.5, the ‖ · ‖∞-continuities of the
previous sections are replaced by the corresponding ‖ · ‖∗-continuities. For example, for
the normalized reproducing kernel of the Fock space one easily verifies that

lim
w→z
‖kz − kw‖∗ = 0

for every z ∈ Cn. Thus, using Lemma 4.4 in place of Lemma 2.6, the analogue of Theorem
1.5 on the Fock space can be obtained by following the argument in the previous sections.
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