
INTEGRAL OPERATORS ASSOCIATED WITH
THE GENERALIZED FUGLEDE PROPERTY

Jingbo Xia

Abstract. We consider a class of integral operators TK,µ that arise from various problems
studied in the past, one of which is the generalized Fuglede commutation property. We
show that under a rather general growth condition on the measure µ, the operator TK,µ
belongs to the Lorentz ideal C+

1 . This naturally leads to the challenge of computing the
Dixmier trace of TK,µ. In the case where µ is the restriction of the Lebesgue measure mn

to a bounded Borel set in Rn, we show that the Dixmier trace of TK,µ is 0.

1. Introduction

In this paper we study integral operators of the type

(TK,µf)(x) =

∫
K(x− y)f(y)dµ(y),

where K is a homogeneous function of degree 0. Ordinarily, one might call TK,µ a singular
integral operator. But since we are considering homogeneous kernel K of degree 0, the
word “singular” is not quite appropriate here. So we will just call TK,µ an integral operator.

Throughout the paper, we will always assume that K is a C∞ function on Rn\{0}.
The assumption that K is a homogeneous function of degree 0 means that K(λu) = K(u)
for all u ∈ Rn\{0} and 0 < λ <∞.

Our consideration of TK,µ is primarily motivated by its connection with the generalized
Fuglede commutation property [1,5,9-11,15]. We will leave the discussion of the Fuglede
property and its connection with TK,µ to a latter part of the Introduction. Let us first
focus on TK,µ, which turns out to be interesting in its own right.

Our first result is the membership of this operator in the Lorentz ideal C+
1 . Before

we discuss the membership, let us recall the definition of this class of ideals. Let H be a
Hilbert space. Consider any 1 ≤ p <∞. Then the formula

‖A‖+p = sup
j≥1

s1(A) + s2(A) + · · ·+ sj(A)

1−1/p + 2−1/p + · · ·+ j−1/p

defines a norm for bounded operators on H. Here and in what follows, we write s1(A),
s2(A), . . . , sj(A), . . . for the s-numbers [6] of the operator A. It is well known that the
collection of operators

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

Keywords: Fuglede property, integral operator, Dixmier trace.
2020 Mathematics Subject Classification: 47B10, 47G10.

1



form a norm ideal, for which we cite [6] as our primary reference. In particular, we mention
the well-known fact that C+

p is not separable with respect to the norm ‖ · ‖+p . The ideal

C+
1 deserves special attention, for it is the domain of every Dixmier trace [2,4].

For x ∈ Rn and r > 0, we write B(x, r) = {y ∈ Rn : |x − y| < r} as usual. Here is
our first result:

Theorem 1.1. Let µ be a compactly-supported regular Borel measure on Rn. Suppose that
there are constants 0 < α <∞ and 0 < C <∞ such that

(1.1) µ(B(x, r)) ≤ Crα

for all x ∈ Rn and r > 0. Let K be a homogeneous function of degree 0 on Rn\{0}. Define
the operator TK,µ on L2(dµ) by the formula

(1.2) (TK,µf)(x) =

∫
K(x− y)f(y)dµ(y),

f ∈ L2(dµ). Then we have TK,µ ∈ C+
1 .

The point of Theorem 1.1 is that in the case of homogeneous kernel of degree 0, no
matter what α ∈ (0,∞) is, one always ends up with the same membership TK,µ ∈ C+

1 .
This is completely different from the result for homogeneous kernels of degree −1, which
is well-known:

Theorem 1.2. [3] Let 1 < p <∞. Let µ be a compactly-supported regular Borel measure
on Rn. Suppose that there is a constant 0 < C <∞ such that

(1.3) µ(B(x, r)) ≤ Crp

for all x ∈ Rn and r > 0. Let K be a homogeneous function of degree −1 on Rn\{0}.
Define the singular integral operator T on L2(dµ) by the formula

(Tf)(x) =

∫
K(x− y)f(y)dµ(y),

f ∈ L2(dµ). Then T ∈ C+
q , where q = p/(p− 1).

See [17] for related results.

Let us now explain where the integral operators TK,µ come from. This involves both
historical and mathematical background. For convenience of discussion, all operators are
assumed to be bounded for the rest of the paper.

In [15], Weiss proved the remarkable identity

(1.4) ‖[N,X]‖2 = ‖[N∗, X]‖2,

where N is any normal operator and ‖ · ‖2 is the Hilbert-Schmidt norm. In particular, for
a normal operator N , if [N,X] is a Hilbert-Schmidt operator, then so is [N∗, X]. This is
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called the Fuglede commutation property modulo the Hilbert-Schmidt class. In light of
this, it makes perfectly good sense to consider the Fuglede commutation property modulo
the trace class. Thus Weiss raised the following:

Question 1.3. [15] If N is a normal operator and X is a compact operator such that the
commutator [N,X] is in the trace class, must the trace of [N,X] be zero?

Immediately after raising this question, Weiss explained its connection with the gen-
eralized Fuglede commutation property:

Proposition 1.4. [15, page 15] Let X be a compact operator and let T be any operator
such that [T,X] is in the trace class. If tr[T,X] 6= 0, then [T ∗, X] is not in the trace class.

Proof. Write T = A + iB, where A, B are self-adjoint operators. If it were true that
[T ∗, X] is also in the trace class, then the commutators [A,X] and [B,X] would be in the
trace class. But since X is compact and A, B are self-adjoint, by a well-know result of
Helton and Howe [7, Lemma 1.3], we would have tr[A,X] = 0 and tr[B,X] = 0. Since
T = A+ iB, this contradicts the condition that tr[T,X] 6= 0. �

Shortly after [15], this issue was revisited in the form

Question 1.5. [9, page 524] Does there exist a normal operator N and a compact operator
X such that [N,X] is in the trace class but [N∗, X] is not?

Both questions were answered by Shulman and Turowska:

Example 1.6. [11, Example 8.5] Consider the Hilbert space L2(D, dA), where D = {z ∈
C : |z| < 1}, the unit disc in C, and dA is the area measure on C. Let N be the normal
operator on L2(D, dA) defined by the formula

(1.5) (Nf)(z) = zf(z),

f ∈ L2(D, dA). Define the operator

(1.6) (Xf)(z) =

∫
D

f(w)

z − w
dA(w),

f ∈ L2(D, dA). Then X is in the Schatten p-class for every p > 2. (In fact, Theorem 1.2
tells us that X is in the Lorentz ideal C+

2 ). It is obvious that the commutator [N,X] is
the rank-one operator 1⊗ 1 on L2(D, dA). Thus tr[N,X] 6= 0, which answers Question 1.3
in the negative. Furthermore, by Proposition 1.4, [N∗, X] is not in the trace class, which
also answers Question 1.5. �

For this pair of N and X, what intrigues us is the commutator [N∗, X]. Knowing that
[N∗, X] is not in the trace class, what else can we say about this commutator?

Note that for the operators N and X defined by (1.5) and (1.6), we have

(1.7) ([N∗, X]f)(z) =

∫
D

z̄ − w̄
z − w

f(w)dA(w),
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f ∈ L2(D, dA). What stands out is the fact that (z̄− w̄)/(z−w) is a homogeneous kernel
of degree 0. That is, [N∗, X] is an example of the kind of integral operators in Theorem
1.1. In fact, (1.7) is the motivating example for our study of TK,µ in this paper. Another
connection of TK,µ will be explained in Section 4.

Since the conclusion of Theorem 1.1 is TK,µ ∈ C+
1 , a followup question naturally

presents itself: can we compute the Dixmier trace of TK,µ?

As of this writing, we are only able to compute the Dixmier trace of TK,µ under some
restrictions on the measure µ. In other words, at least for now, condition (1.1) seems to
be too general for the purpose of computing the Dixmier trace of TK,µ. A moment of
thought tells us that condition (1.1) allows strange behaviors by µ. The reader will see
that, in comparison with the proof of Theorem 1.1, computation of the Dixmier trace of
TK,µ requires additional estimates of the ‖ · ‖+1 -norm. At the moment, we are not able to
do the additional estimates without restrictions on µ. But fortunately, what we can do at
the moment covers the connection with the Fuglede commutation property.

We write mn for the Lebesgue measure on Rn. Even though our techniques can
handle more than just the Lebesgue measure, for simplicity we only present our Dixmier-
trace result in the following case:

Theorem 1.7. Let E be a bounded Borel set in Rn. Let K be a homogeneous function of
degree 0 on Rn\{0}. Define the operator TK,E on L2(E, dmn) by the formula

(1.8) (TK,Ef)(x) =

∫
E

K(x− y)f(y)dmn(y),

f ∈ L2(E, dmn). Then for every Dixmier trace Trω, we have Trω(TK,E) = 0.

The rest of the paper is organized as follows:

We prove Theorems 1.1 and 1.7 in Sections 2 and 3 respectively.

In Section 4 we discuss the applications of Theorems 1.1 and 1.7 to the motivating
examples of TK,µ.

In Section 5, we conclude the paper with some thoughts on the Fuglede commutation
property itself.

2. Membership in C+
1

The proof of Theorem 1.1 will be based on the duality between C+
1 and the Mačaev

ideal C−∞. First of all, recall that C−∞ = {A ∈ B(H) : ‖A‖−∞ <∞}, where

‖A‖−∞ =
∞∑
j=1

sj(A)

j
.

This duality is better explained, and more conveniently used in proofs, if we bring the
relevant symmetric gauge functions (also called symmetric norming functions) into the
discussion.
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For this we follow the approach in [6]. Let ĉ denote the linear space of sequences
{aj}j∈N, where aj ∈ R and for every sequence the set {j ∈ N : aj 6= 0} is finite. A
symmetric gauge function is a map

Φ : ĉ→ [0,∞)

that has the following properties:
(a) Φ is a norm on ĉ.
(b) Φ({1, 0, . . . , 0, . . . }) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

See [6, page 71]. The domain of such a Φ is then extended to include every sequence
ξ = {ξj} by the formula

Φ(ξ) = sup
j≥1

Φ({ξ1, . . . , ξj , 0, . . . , 0, . . . }).

In the same spirit, each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
j≥1

Φ({s1(A), . . . , sj(A), 0, . . . , 0, . . . })

for bounded operators.

Given any {aj}j∈N ∈ ĉ, define

Φ+
1 ({aj}j∈N) = sup

j≥1

|aπ(1)|+ |aπ(2)|+ · · ·+ |aπ(j)|
1−1 + 2−1 + · · ·+ j−1

and Φ−∞({aj}j∈N) =
∞∑
j=1

|aπ(j)|
j

where π : N → N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥ · · · , which

exists because each {aj}j∈N ∈ ĉ only has a finite number of nonzero terms. Then Φ+
1 and

Φ−∞ are symmetric gauge functions on ĉ with the properties

‖A‖Φ+
1

= ‖A‖+1 and ‖A‖Φ−∞ = ‖A‖−∞

for operators. The symmetric gauge functions Φ+
1 and Φ−∞ are dual to each other in the

sense that for every {aj}j∈N ∈ ĉ, we have

Φ−∞({aj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {bj}j∈N ∈ ĉ,Φ+
1 ({bj}j∈N) ≤ 1

}
and

Φ+
1 ({aj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {bj}j∈N ∈ ĉ,Φ−∞({bj}j∈N) ≤ 1

}
.

See [6, pages 148, 149 and 125]. Thus it follows that for every T ∈ B(H),

(2.1) ‖T‖+1 = sup{|tr(TF )| : ‖F‖−∞ ≤ 1 and rank(F ) <∞}.
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The proof of Theorem 1.1 uses the system of dyadic decomposition in [17], which we
now recall. Denote

Q = [0, 1)n = [0, 1)× · · · × [0, 1),

the unit cube in Rn. For each ` ∈ N, we let W` be the set of words of length ` with {1,
2, 3, . . . , 2n} being the set of alphabet. That is,

W` = {w1 . . . w` : w1, . . . , w` ∈ {1, 2, 3, . . . , 2n}}.

Let Γ = {(s1, . . . , sn) : s1, . . . , sn ∈ {0, 1}} and let γ1, . . . , γ2n be an enumeration of the
elements in Γ. Given w = w1 . . . w` ∈W`, we define

Qw = Qw1...w` = [0, 2−`)n + 2−1γw1 + · · ·+ 2−`γw` .

It is clear that ∪w∈W`
Qw = Q and that Qw ∩Qw′ = ∅ for w 6= w′ in W`. Define

W = ∪∞`=1W`.

By the homogeneity of the kernel K(x − y) and an easy scaling transformation, it
suffices to prove Theorem 1.1 in the case where the measure µ is concentrated on Q.
Therefore, for the rest of the section we assume that µ is a regular Borel measure on Rn

such that µ(Rn\Q) = 0. To avoid total triviality, we assume µ(Q) 6= 0.

For each w ∈ W, we define the element ew ∈ L2(dµ) by the formula

ew =

 (µ(Qw))−1/2χQw if µ(Qw) > 0

0 if µ(Qw) = 0
.

Let
Λ = {(s1, . . . , sn) : s1, . . . , sn ∈ {−1, 0, 1}}.

Given w ∈ W` and λ ∈ Λ, we have either Qw + 2−`λ = Qw′ for some w′ ∈ W` or
Qw + 2−`λ ⊂ Rn\Q. Thus for w ∈W` and λ ∈ Λ, we define the element e(w, λ) ∈ L2(dµ)
as follows:

e(w, λ) =

 ew′ if Qw + 2−`λ = Qw′ , w
′ ∈W`

0 if Qw + 2−`λ ⊂ Rn\Q
.

Similarly, for w ∈W` and λ ∈ Λ, we define

µ(w, λ) =

µ(Qw′) if Qw + 2−`λ = Qw′ , w
′ ∈W`

0 if Qw + 2−`λ ⊂ Rn\Q
.

By our assumption, K is a C∞ homogeneous function of degree 0 on Rn\{0}. Let
0 ≤ η̃ ≤ 1 be a C∞-function on [0,∞) such that η̃ = 1 on [0, 1/2] and η̃ = 0 on [5/8,∞).
Define η(r) = η̃(r)− η̃(2r), r ∈ [0,∞). It is easy to see that

(2.2) η = 0 on [0, 1/4] ∪ [5/8,∞) and η = 1 on [1/3, 1/2].
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Let `0 ∈ N be such that 2`0−1 >
√
n. Now

∑k′

`=−k η(2`r) = η̃(2−kr) − η̃(2k
′+1r). Since

|u| ≤
√
n < 2`0−1 for every u ∈ [−1, 1]n, we have

(2.3)
∞∑

`=−`0

η(2`|u|) = 1 if u ∈ [−1, 1]n and u 6= 0.

(2.2) implies that K(u)η(|u|) = 0 if 0 < |u| ≤ 1/4. Hence there is a periodic C∞-function
ϕ on Rn with (2`0+2Z)n as its period lattice such that

(2.4) ϕ(u) = K(u)η(|u|) if u ∈ [−2`0 , 2`0 ]n and u 6= 0.

Such a ϕ has a Fourier expansion

(2.5) ϕ(u) =
∑
z∈Zn

cz exp(2−`0−1iπ〈u, z〉) with
∑
z∈Zn

|cz| <∞.

For w ∈ W` and z ∈ Zn, we define fzw(x) = exp(2`−`0−1iπ〈x, z〉). For ` ∈ N, z ∈ Zn

and λ ∈ Λ, we then define the operator

(2.6) B`;z,λ =
∑
w∈W`

{µ(w, λ)µ(Qw)}1/2(fzwe(w, λ))⊗ (fzwew)

on L2(dµ).

Lemma 2.1. Under condition (1.1), there are constants 0 < C2.1 < ∞ and N ∈ N such
that for all ` ∈ N, z ∈ Zn and λ ∈ Λ and for every bounded operator F , we have

(2.7) |tr(B`;z,λF )| ≤ C2.12−α`
N [2α`]∑
j=1

sj(F ),

where [2α`] denotes the integer part of 2α`.

Proof. Since card(W`) = 2n`, we have rank(B`;z,λ) ≤ 2n`. Therefore

|tr(B`;z,λF )| ≤
2n`∑
j=1

sj(B`;z,λ)sj(F ).

Note that fzwew ⊥ fzw′ew′ for all w 6= w′ in W` and that fzwe(w, λ) ⊥ fzw′e(w
′, λ) for all

w 6= w′ in W` and any given λ. Thus the nonzero s-numbers of B`;z,λ are just a descending
arrangement of the nonzero values among {µ(w, λ)µ(Qw)}1/2, w ∈ W`. Hence there is an
enumeration

w(1), w(2), . . . , w(2n`)
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of the elements in W` such that

(2.8) |tr(B`;z,λF )| ≤
2n`∑
j=1

{µ(w(j), λ)µ(Qw(j))}1/2sj(F ).

For each w ∈ W`, there is an x(w) ∈ Q such that Qw ⊂ B(x(w),
√
n2−`). By (1.1), we

have µ(Qw) ≤ Cnα/22−α` for every w ∈W`. Consequently, writing C1 = Cnα/2, we have

(2.9) {µ(w, λ)µ(Qw)}1/2 ≤ C12−α`

for every w ∈W`. If it so happens that

(2.10)

2n`∑
j=1

{µ(w(j), λ)µ(Qw(j))}1/2 ≤ C12−α`,

then (2.7) certainly follows from (2.8). Suppose that (2.10) does not hold. Then by (2.9),
there is a partition

{1, 2, . . . , 2n`} = I0 ∪ I1 ∪ · · · ∪ Iν(`),

where I0 may be empty, such that

(2.11)
∑
j∈I0

{µ(w(j), λ)µ(Qw(j))}1/2 < C12−α`

and

(2.12) C12−α` ≤
∑
j∈Ii

{µ(w(j), λ)µ(Qw(j))}1/2 < 2C12−α`

for every 1 ≤ i ≤ ν(`). Combining (2.8), (2.11) and (2.12), we find that

(2.13) |tr(B`;z,λF )| ≤ 2C12−α`
ν(`)∑
i=0

max
j∈Ii

sj(F ) ≤ 2C12−α`
ν(`)∑
i=0

si+1(F ).

On the other hand, we have

µ(Q) ≥
( ∑
w∈W`

µ(w, λ)

)1/2( ∑
w∈W`

µ(Qw)

)1/2

≥
∑
w∈W`

{µ(w, λ)µ(Qw)}1/2

≥ C12−α`ν(`),

where the last ≥ follows from (2.12) and the fact that Ii ∩ Ii′ = ∅ for i 6= i′. This gives us
ν(`) ≤ {µ(Q)/C1}2α`. Substituting this in (2.13), the proof is complete. �
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For z ∈ Zn and λ ∈ Λ, we denote

(2.14) Az,λ =
∞∑
`=1

B`;z,λ.

It is easy to see that (1.1) implies the operator-norm bound ‖B`;z,λ‖ ≤ C02−α`. Therefore
the above sum converges with respect to operator norm.

Lemma 2.2. Under condition (1.1), there is a constant 0 < C2.2 <∞ such that

(2.15) ‖Az,λ‖+1 ≤ C2.2

for all z ∈ Zn and λ ∈ Λ.

Proof. Applying Lemma 2.1, for any finite-rank operator F we have

|tr(Az,λF )| ≤
∞∑
`=1

|tr(B`;z,λF )| ≤ C2.1

∞∑
`=1

2−α`
N [2α`]∑
j=1

sj(F )

= C2.1

∞∑
j=1

sj(F )
∑

N [2α`]≥j

2−α`.

Obviously,

∑
N [2α`]≥j

2−α` ≤
∑

N2α`≥j

2−α` =
∑

N/j≥2−α`

2−α` ≤ N

j

∞∑
ν=0

2−αν =
N

1− 2−α
· 1

j
.

From these two estimates we obtain

|tr(Az,λF )| ≤ NC2.1

1− 2−α

∞∑
j=1

sj(F )

j
=

NC2.1

1− 2−α
‖F‖−∞.

Since this holds for every finite-rank operator F , from (2.1) we see that (2.15) holds for
the constant C2.2 = (1− 2−α)−1NC2.1. �

Lemma 2.3. The integral operator (1.2) admits a decomposition

TK,µ = RK,µ +
∑
λ∈Λ

∑
z∈Zn

czAz,λ,

where RK,µ is a trace class operator and Az,λ and cz are given in (2.14) and (2.5) respec-
tively.

Proof. For each ` ≥ 1, define V`(u) = K(u)η(2`|u|), u ∈ Rn\{0}. Then define

U(u) =
0∑

`=−`0

K(u)η(2`|u|) and V (u) =
∞∑
`=1

V`(u).
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Since µ(Rn\Q) = 0, we only need to consider x, y ∈ Q. But for any x, y ∈ Q, we have
x− y ∈ (−1, 1)n. Hence it follows from (2.3) that

TK,µ = RK,µ + SK,µ,

where the operators RK,µ and SK,µ are respectively defined by the formulas

(RK,µf)(x) =

∫
U(x− y)f(y)dµ(y) and (SK,µf)(x) =

∫
V (x− y)f(y)dµ(y),

f ∈ L2(dµ). Since K is a homogeneous function of degree 0, we have K(u)η(2`|u|) =
K(2`u)η(2`|u|). By (2.4), we have

(RK,µf)(x) =
0∑

`=−`0

∫
ϕ(2`(x− y))f(y)dµ(y),

f ∈ L2(dµ). Applying (2.5), we see that RK,µ is in the trace class.

For each ` ≥ 1, consider the operator

(S`f)(x) =

∫
V`(x− y)f(y)dµ(y), f ∈ L2(dµ).

By (2.2), for each ` ∈ N, η(2`|x − y|) 6= 0 only if 2`(x − y) ∈ (−1, 1)n, i.e., only if
x ∈ y + (−2−`, 2−`)n. Hence if y ∈ Qw, w ∈ W`, then η(2`|x − y|) 6= 0 only if x ∈
∪λ∈Λ(Qw + 2−`λ). On the other hand, if y ∈ Qw, w ∈ W`, and x ∈ ∪λ∈Λ(Qw + 2−`λ),
then 2`(x− y) ∈ [−2, 2]n and, therefore, K(2`(x− y))η(2`|x− y|) = ϕ(2`(x− y)). By this
analysis and the homogeneity of K, for x 6= y in Q we have

V`(x− y) = K(x− y)η(2`|x− y|) = K(2`(x− y))η(2`|x− y|)

=
∑
λ∈Λ

∑
w∈W`

χQw+2−`λ(x)K(2`(x− y))η(2`|x− y|)χQw(y)

=
∑
λ∈Λ

∑
w∈W`

χQw+2−`λ(x)ϕ(2`(x− y))χQw(y)

=
∑
z∈Zn

cz
∑
λ∈Λ

∑
w∈W`

exp(2−`0−1iπ〈2`(x− y), z〉)χQw+2−`λ(x)χQw(y)

where the last = follows from (2.5). Combining this with (2.6), we have

S` =
∑
z∈Zn

cz
∑
λ∈Λ

B`;z,λ,

` ∈ N. Recalling (2.14), we obtain

SK,µ =

∞∑
`=1

S` =
∑
z∈Zn

cz
∑
λ∈Λ

∞∑
`=1

B`;z,λ =
∑
λ∈Λ

∑
z∈Zn

czAz,λ
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as promised. �

Proof of Theorem 1.1. Applying Lemmas 2.3, 2.2 and (2.5), we have

‖TK,µ‖+1 ≤ ‖RK,µ‖
+
1 +

∑
λ∈Λ

∑
z∈Zn

|cz|‖Az,λ‖+1 ≤ ‖RK,µ‖
+
1 + 3n

∑
z∈Zn

|cz|C2.2 <∞.

�

3. Computing Dixmier trace

Before we compute the Dixmier trace of integral operators, it is appropriate to first
review the basics of Dixmier trace. First, let us cite [2,4] as general references. To define the
Dixmier trace, one starts with a Banach limit ω on `∞(N). But in addition to the properties
that Banach limits possess in general, ω is required to have the following “doubling”
property:

(D) For each {ak}k∈N ∈ `∞(N), ω({ak}k∈N) = ω({a1, a1, a2, a2, . . . , ak, ak, . . . }).
Such an ω can be easily constructed. One way to achieve this is to use the doubling
operator D : `∞(N)→ `∞(N). That is, we define

D{a1, a2, . . . , ak, . . . } = {a1, a1, a2, a2, . . . , ak, ak, . . . }

for {ak}k∈N ∈ `∞(N). Take any Banach limits L1 and L2, distinct or identical. Then an
elementary exercise shows that the formula

ω(a) = L2

({
1

k

k∑
j=1

L1(Dja)

}
k∈N

)
,

a ∈ `∞(N), defines a Banach limit that has the doubling property (D).

With such an ω, for any positive operator A ∈ C+
1 , its Dixmier trace is defined to be

Trω(A) = ω

({
1

log(k + 1)

k∑
j=1

sj(A)

}
k∈N

)
.

The doubling property of ω ensures the additivity Trω(A + B) = Trω(A) + Trω(B) for
positive operators A,B ∈ C+

1 . Thus Trω naturally extends to a linear functional on C+
1 .

This definition guarantees unitary invariance: Trω(U∗TU) = Trω(T ) for every T ∈ C+
1 and

every unitary operator U . Since UT is unitarily equivalent to TU , we have Trω(UT ) =
Trω(TU). From this it follows that Trω(XT ) = Trω(TX) for every T ∈ C+

1 and every
bounded operator X, which is what one expects of a trace.

One basic property of Dixmier trace is that if A is a trace-class operator, then
Trω(A) = 0. In addition to this, we also need the following vanishing principles:

Lemma 3.1. [8, Lemma 7.1] Let A ∈ C+
1 . If the kernel of A contains its range, then

Trω(A) = 0.
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Lemma 3.2. [8, Lemma 7.2] Let Y1, . . . , Yj , . . . be operators in C+
1 such that

∑∞
j=1 ‖Yj‖

+
1

< ∞. Define Y =
∑∞
j=1 Yj . If Trω(Yj) = 0 for every j ∈ N, then Trω(Y ) = 0.

We also need the following facts:

Lemma 3.3. Let A, B be bounded operators such that A∗A ∈ C+
1 and B∗B ∈ C+

1 . Then
we have AB ∈ C+

1 , BA ∈ C+
1 and Trω(AB) = Trω(BA) for every Dixmier trace Trω.

Proof. First of all, since A∗A and AA∗ have the same s-numbers, we have ‖A∗A‖+1 =
‖AA∗‖+1 and Trω(A∗A) = Trω(AA∗) for every Dixmier trace Trω.

We have ‖AB‖+1 ≤ {‖A∗A‖
+
1 ‖B∗B‖

+
1 }1/2 and ‖BA‖+1 ≤ {‖B∗B‖

+
1 ‖A∗A‖

+
1 }1/2 by [8,

Lemma 4.4]. From these inequalities one easily deduces that if A∗A ∈ C+
1 and B∗B ∈ C+

1 ,
then the correspondences

t 7→ (A+ eitB∗)(A∗ + e−itB) and t 7→ (A∗ + e−itB)(A+ eitB∗)

are continuous maps from [−π, π] into C+
1 with respect to the norm ‖ · ‖+1 . We have

AB =
1

2π

∫ π

−π
eit(A+ eitB∗)(A∗ + e−itB)dt whereas

BA =
1

2π

∫ π

−π
eit(A∗ + e−itB)(A+ eitB∗)dt.

Taking Trω on both sides of these two identities, the above-mentioned ‖ · ‖+1 -continuity
allows us to move Trω inside

∫ π
−π. Since Trω((A + eitB∗)(A∗ + e−itB)) = Trω((A∗ +

e−itB)(A+ eitB∗)) for every t ∈ [−π, π], the equality Trω(AB) = Trω(BA) follows. �

Lemma 3.4. [8, Lemma 7.3] Suppose that B is a set and that A is a subset of B. Let
h : A → B be an injective map which has the property that h(a) 6= a for every a ∈ A.
Then there is a partition A = E1 ∪ E2 ∪ E3 such that for every i ∈ {1, 2, 3}, we have
h(Ei) ∩ Ei = ∅.

Our starting point of computation is Lemma 2.3. By that lemma and (2.5), for every
Dixmier trace Trω we have

(3.1) Trω(TK,µ) =
∑
λ∈Λ

∑
z∈Zn

czTrω(Az,λ).

Thus our task is reduced to the computation of Trω(Az,λ) for each pair of λ ∈ Λ and
z ∈ Rn. As we mentioned in the Introduction, at the moment, we can do this computation
only for certain µ’s.

For the rest of the section, µ will denote the measure defined by the formula

(3.2) µ(B) = mn(B ∩ E) for Borel sets B ⊂ Rn,

where E is the set mentioned in Theorem 1.7. As it was the case in Section 2, by the
homogeneity of K and elementary scaling transformations, we only need to consider the
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case where E ⊂ Q. Thus we can and will use all the notations from Section 2, with the
proviso that µ is now given by (3.2).

To compute Trω(Az,λ), we need to decompose Az,λ. To do that, we pick an orthonor-
mal set {uw : w ∈ W}. For each pair of λ ∈ Λ and z ∈ Zn, we define the operator

(3.3) Gz,λ =
∑
w∈W
{µ(w, λ)}1/2(fzwe(w, λ))⊗ uw.

We further define

(3.4) Hz =
∑
w∈W
{µ(Qw)}1/2uw ⊗ (fzwew)

for each z ∈ Zn. It follows from (2.6) and (2.14) that

Az,λ = Gz,λHz

for all λ ∈ Λ and z ∈ Zn. Obviously, H∗zHz = Az,0. Thus by Lemma 2.2, we have H∗zHz ∈
C+

1 . Recall from Section 2 that for w ∈ W` and z ∈ Zn, fzw(x) = exp(2`−`0−1iπ〈x, z〉).
That is, fzw depends only on the length of w, not on the particular word w that has the
particular length. Hence a review of the relevant definitions gives us the operator inequality
Gz,λG

∗
z,λ ≤ Az,0. Thus from Lemma 2.2 we also deduce G∗z,λGz,λ ∈ C

+
1 for λ ∈ Λ and

z ∈ Zn. Applying Lemma 3.3, for every Dixmier trace Trω we have

(3.5) Trω(Az,λ) = Trω(Gz,λHz) = Trω(HzGz,λ).

It is Trω(HzGz,λ) that we will actually compute.

To compute Trω(HzGz,λ), we need to decompose Gz,λ and Hz. For each ` ∈ N, define

G`;z,λ =
∑
w∈W`

{µ(w, λ)}1/2(fzwe(w, λ))⊗ uw and

H`;z =
∑
w∈W`

{µ(Qw)}1/2uw ⊗ (fzwew),

λ ∈ Λ and z ∈ Zn. By (3.3) and (3.4), we now have

(3.6) HzGz,λ = Y
(0)
z,λ +

∞∑
k=1

(
Y

(k)
z,λ + Z

(k)
z,λ

)
,

where

Y
(k)
z,λ =

∞∑
`=1

H`+k;zG`;z,λ and Z
(k)
z,λ =

∞∑
`=1

H`;zG`+k;z,λ

for k ≥ 0. Our next lemma is a version of Lemma 2.1 improved for the µ given by (3.2).
It shows a “decay” with respect to k, which makes (3.6) useful for our purpose.
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Lemma 3.5. For all k ∈ Z+, ` ∈ N, z ∈ Zn and λ ∈ Λ and for every bounded operator
F , we have

|tr(H`+k;zG`;z,λF )| ≤ 2−nk/2 · 2−n`
2n`∑
j=1

sj(F ) and(3.7)

|tr(H`;zG`+k;z,λF )| ≤ 2−nk/2 · 2−n`
2n`∑
j=1

sj(F ).

Proof. Since the proofs for these two inequalities are similar, we will only present the proof
of (3.7). It is easy to see that for k ∈ Z+, ` ∈ N, z ∈ Zn and λ ∈ Λ,

(3.8) H`+k;zG`;z,λ =
∑

v∈W`+k

∑
w∈W`

ak;`;z,λ(v, w)uv ⊗ uw,

where
ak;`;z,λ(v, w) = {µ(Qv)}1/2{µ(w, λ)}1/2〈fzwe(w, λ), fzv ev〉.

A review of the definitions in Section 2 tells us that ak;`;z,λ(v, w) 6= 0 only if Qv ⊂
Qw + 2−`λ. Thus we can rewrite (3.8) in the form

H`+k;zG`;z,λ =
∑
w∈W`

hk;`;z,λ(w)⊗ uw,

where
hk;`;z,λ(w) =

∑
v∈W`+k : Qv⊂Qw+2−`λ

ak;`;z,λ(v, w)uv.

For v ∈W`+k and w ∈W`, (3.2) gives us the bound

|ak;`;z,λ(v, w)| ≤ µ(Qv) ≤ mn(Qv) = 2−n(`+k).

Moreover, for each w ∈ W`, the cardinality of the set {v ∈ W`+k : Qv ⊂ Qw + 2−`λ} is
either 2nk or 0. Since {uv : v ∈ W} is an orthonormal set, this gives us

(3.9) ‖hk;`;z,λ(w)‖ ≤ 2−nk/2 · 2−n`.

For w 6= w′ in W`, if v, v′ ∈ W`+k, Qv ⊂ Qw + 2−`λ and Qv′ ⊂ Qw′ + 2−`λ, then v 6= v′.
Thus hk;`;z,λ(w) ⊥ hk;`;z,λ(w′) for w 6= w′ in W`.

By this orthogonality, there is an enumeration

w(1), w(2), . . . , w(2n`)

of the elements in W` such that for any bounded operator F ,

|tr(H`+k;zG`;z,λF )| ≤
2n`∑
j=1

‖hk;`;z,λ(w(j))‖sj(F ).
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Substituting (3.9) in this inequality, the proof is complete. �

Lemma 3.6. For all k ∈ Z+, z ∈ Zn and λ ∈ Λ, we have

‖Y (k)
z,λ ‖

+
1 ≤ (1− 2−n)−12−nk/2 and ‖Z(k)

z,λ‖
+
1 ≤ (1− 2−n)−12−nk/2.

Proof. This lemma is derived from Lemma 3.5 in the same way Lemma 2.2 is derived from
Lemma 2.1. Indeed for any finite-rank operator F , Lemma 3.5 gives us

|tr(Y (k)
z,λ F )| ≤

∞∑
`=1

|tr(H`+k;zG`;z,λF )| ≤ 2−nk/2
∞∑
`=1

2−n`
2n`∑
j=1

sj(F )

= 2−nk/2
∞∑
j=1

sj(F )
∑

2n`≥j

2−n` ≤ 2−nk/2
∞∑
j=1

sj(F )

j

∞∑
ν=0

2−nν =
2−nk/2

1− 2−n
‖F‖−∞.

By (2.1), this proves the lemma for Y
(k)
z,λ . The case for Z

(k)
z,λ is similar and will be omitted.

�

Lemma 3.7. Let Trω be any Dixmier trace.

(a) If k ≥ 1, then Trω(Y
(k)
z,λ ) = 0 and Trω(Z

(k)
z,λ) = 0 for all z ∈ Zn and λ ∈ Λ.

(b) If λ ∈ Λ\{0}, then Trω(Y
(0)
z,λ ) = 0 for every z ∈ Zn.

Proof. (a) Let k ≥ 1 be given. Then h(`) = ` + k is an injective map from N into itself
that has the property that h(`) 6= ` for every ` ∈ N. By Lemma 3.4, there is a partition
N = N1 ∪N2 ∪N3 such that

(3.10) {`+ k : ` ∈ Ni} ∩Ni = ∅

for i = 1, 2, 3. Now define the orthogonal projections

Pi =
∑
`∈Ni

∑
w∈W`

uw ⊗ uw,

i = 1, 2, 3. Then we have Y
(k)
z,λ = Y

(k)
z,λ (P1 +P2 +P3). From (3.8) we see that (3.10) implies

PiY
(k)
z,λ Pi = 0 for each i ∈ {1, 2, 3}. Hence

Trω(Y
(k)
z,λ ) =

3∑
i=1

Trω(Y
(k)
z,λ Pi) =

3∑
i=1

Trω(PiY
(k)
z,λ Pi) =

3∑
i=1

Trω(0) = 0.

Similarly, Z
(k)
z,λ = (P1 + P2 + P3)Z

(k)
z,λ, and (3.10) implies PiZ

(k)
z,λPi = 0 for i = 1, 2, 3.

Therefore Trω(Z
(k)
z,λ) = 0 as well.

(b) Let λ ∈ Λ\{0} be given. For each ` ∈ N, define W
(λ)
` = {w ∈ W` : Qw + 2−`λ =

Qw′ for some w′ ∈ W`}. Furthermore, for each w ∈ W
(λ)
` we define λ(w) = w′ for the
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w′ ∈ W` with the property that Qw′ = Qw + 2−`λ. Then another chase of the definitions
reveals that

(3.11) Y
(0)
z,λ =

∞∑
`=1

∑
w∈W (λ)

`

µ(Qλ(w))uλ(w) ⊗ uw.

Since λ 6= 0, for each ` ∈ N, the injective map w 7→ λ(w) from W
(λ)
` into W` has the

property that λ(w) 6= w for every w ∈W (λ)
` . Thus Lemma 3.4 provides, for each ` ∈ N, a

partition W
(λ)
` = W

(λ,1)
` ∪W (λ,2)

` ∪W (λ,3)
` such that

(3.12) {λ(w) : w ∈W (λ,i)
` } ∩W (λ,i)

` = ∅

for i = 1, 2, 3. This time, we define the orthogonal projections

Qi =

∞∑
`=1

∑
w∈W (λ,i)

`

uw ⊗ uw,

i = 1, 2, 3. Then from (3.11) we see that Y
(0)
z,λ = Y

(0)
z,λ (Q1 +Q2 +Q3), and (3.12) translates

to QiY
(0)
z,λQi = 0 for i = 1, 2, 3. By the reasoning in (a), these facts imply Trω(Y

(0)
z,λ ) = 0.

This completes the proof. �

Finally, we consider the case where k = 0 and λ = 0:

Lemma 3.8. Given a Dixmier trace Trω, there is a non-negative number a = a(E,ω) such

that Trω(Y
(0)
z,0 ) = a for every z ∈ Zn.

Proof. Recall from Section 2 that for every z ∈ Zn, fzw(x) = exp(2`−`0−1iπ〈x, z〉) if w ∈W`.
Thus 〈fzwew, fzwew〉 = ‖ew‖2 for all w ∈ W and z ∈ Zn. Consequently,

Y
(0)
z,0 =

∑
w∈W

µ(Qw)uw ⊗ uw.

That is, Y
(0)
z,0 is actually independent of z ∈ Zn. Hence the conclusion is trivial. �

Proof of Theorem 1.7. First of all, it follows from Lemma 3.6 that

(3.13) ‖Y (0)
z,λ ‖

+
1 +

∞∑
k=1

(
‖Y (k)

z,λ ||
+
1 + ‖Z(k)

z,λ‖
+
1

)
<∞

for every pair of z ∈ Zn and λ ∈ Λ. Let Trω be any Dixmier trace. If λ 6= 0, Lemma 3.7

tells us that Trω(Y
(k)
z,λ ) = 0 for every k ≥ 0 and Trω(Z

(k)
z,λ) = 0 for every k ≥ 1. Thus for

λ ∈ Λ\{0}, we can apply Lemma 3.2 to (3.6) to conclude that

(3.14) Trω(HzGz,λ) = Trω(Y
(0)
z,λ ) + Trω

( ∞∑
k=1

(
Y

(k)
z,λ + Z

(k)
z,λ

))
= 0
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for every z ∈ Zn. Lemma 3.7 also tells us that if k ≥ 1, then Trω(Y
(k)
z,0 ) = 0 and Trω(Z

(k)
z,0 ) =

0. Hence by (3.13) and Lemma 3.2, we have

Trω

( ∞∑
k=1

(
Y

(k)
z,0 + Z

(k)
z,0

))
= 0

for every z ∈ Zn. Combining this with (3.6) and Lemma 3.8, we obtain

(3.15) Trω(HzGz,0) = Trω(Y
(0)
z,0 ) + Trω

( ∞∑
k=1

(
Y

(k)
z,0 + Z

(k)
z,0

))
= a+ 0 = a

for every z ∈ Zn. According to (3.5), we can rewrite (3.14) and (3.15) as

Trω(Az,λ) =

 0 if λ 6= 0

a if λ = 0
,

z ∈ Zn. Substituting this in (3.1), we find that

Trω(TK,µ) = a
∑
z∈Zn

cz.

By (2.2) and (2.4), the C∞ function ϕ vanishes in a neighborhood of 0. Thus from (2.5)
we obtain ∑

z∈Zn
cz = ϕ(0) = 0.

Therefore for the measure µ given by (3.2), we have Trω(TK,µ) = 0 as promised. This
completes the proof. �

We end this section with one of the implications of Theorem 1.7:

Corollary 3.9. For the operator TK,E defined by (1.8), we have

Trω(TK,EMg) = 0

for every bounded measurable function g on E and every Dixmier trace Trω.

Proof. Let ∆ be any Borel subset of E. Then note that Mχ∆
TK,EMχ∆

= TK,∆, where
TK,∆ is the operator on the subspace L2(∆, dmn) given by the formula

(TK,∆f)(x) =

∫
∆

K(x− y)f(y)dmn(y).

Applying Theorem 1.7 to TK,∆, we have

Trω(TK,EMχ∆
) = Trω(Mχ∆

TK,EMχ∆
) = Trω(TK,∆) = 0.
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Now it suffices to mention the elementary fact that if g is a bounded measurable function
on E, then g can be approximated with respect to ‖ · ‖∞ by functions in the linear span
of {χ∆ : ∆ is any Borel subset of E}. �

4. Applications to examples

Recall that for the operators N and X defined by (1.5) and (1.6), we have

(4.1) ([N∗, X]f)(z) =

∫
D

z̄ − w̄
z − w

f(w)dA(w),

f ∈ L2(D, dA). As we have already explained, (4.1) is the motivating example for our
study of TK,µ in this paper. As a result, Theorems 1.1 and 1.7 give us

Corollary 4.1. For the N and X defined by (1.5) and (1.6), we have [N∗, X] ∈ C+
1 and

Trω[N∗, X] = 0 for every Dixmier trace Trω.

More can be said about the pair N , X defined by (1.5) and (1.6). Note that for any
bounded measurable function ϕ on D, we have ϕ(N) = Mϕ, the operator of multiplication
by the function ϕ on L2(D, dA).

Proposition 4.2. Let X be operator defined by (1.6) and let ϕ ∈ C∞(C). Then [Mϕ, X] ∈
C+

1 . Moreover, we have Trω([Mϕ, X]) = 0 for every Dixmier trace Trω.

Proof. If ϕ ∈ C∞(C), then there is a ψ ∈ C∞c (C) such that ϕ = ψ on D. Therefore we
only need to consider ϕ ∈ C∞c (C). For such a ϕ, let ϕ̂ be its Fourier transform. Let N be
the operator defined by (1.5). Then it follows from the Fourier inversion formula that

Mϕ = ϕ(N) =
1

2π

∫
C

ϕ̂(w)eiRe(w̄N)dA(w),

where Re(w̄N) = (1/2)(w̄N + wN∗). Consequently,

(4.2) [Mϕ, X] =
1

2π

∫
C

ϕ̂(w)[eiRe(w̄N), X]dA(w).

We have

[eiRe(w̄N), X] =

∫ 1

0

d

dt
eitRe(w̄N)Xei(1−t)Re(w̄N)dt

=
i

2

∫ 1

0

eitRe(w̄N)[w̄N + wN∗, X]ei(1−t)Re(w̄N)dt.(4.3)

Since [N∗, X] ∈ C+
1 and rank([N,X]) = 1, the above gives us the bound ‖[eiRe(w̄N), X]‖+1

≤ C|w| for w ∈ C. Combining this bound with the rapid decay of |ϕ̂|, from (4.2) we obtain
the membership [Mϕ, X] ∈ C+

1 .
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Furthermore, by (4.3), the correspondence w 7→ [eiRe(w̄N), X] is a map from C into
C+

1 that is continuous with respect to the norm ‖ · ‖+1 . Thus from (4.2) we also obtain

(4.4) Trω([Mϕ, X]) =
1

2π

∫
C

ϕ̂(w)Trω([eiRe(w̄N), X])dA(w)

for every Dixmier trace Trω. Applying Trω on both sides of (4.3), we have

Trω([eiRe(w̄N), X]) =
i

2

∫ 1

0

Trω(eitRe(w̄N)[w̄N + wN∗, X]ei(1−t)Re(w̄N))dt

= (iw/2)Trω([N∗, X]eiRe(w̄N)).(4.5)

For each w ∈ C, eiRe(w̄N) is the operator of multiplication by the function eiRe(w̄z) on
L2(D, dA). Hence it follows from (4.5), (4.1) and Corollary 3.9 that Trω([eiRe(w̄N), X]) = 0
for every w ∈ B. Substituting this in (4.4), we obtain Trω([Mϕ, X]) = 0 as promised. �

In light of Corollary 4.1, perhaps we should consider the following:

Question 4.3. Let N be a normal operator and let X be any operator. If [N,X] ∈ C+
1 ,

does it follow that [N∗, X] ∈ C+
1 ? In other words, does the ideal C+

1 have the generalized
Fuglede property?

The integral operator TK,µ studied in Sections 1-3 also has connection to the problem
of diagonalization of tuples of operators modulo ideals [3,12-14,16-18]. More precisely, it is
related to the obstruction to such diagonalization. Recall the following result due to David
and Voiculescu:

Example 4.4. [3] Let µ be a compactly-supported regular Borel measure on Rn. Suppose
that µ satisfies (1.3) and that µ(Rn) 6= 0. For each j ∈ {1, . . . , n}, define the self-adjoint
operator

(Njf)(x) = xjf(x), f ∈ L2(dµ).

Also define the singular integral operators

(Xjf)(x) =

∫
xj − yj
|x− y|2

f(y)dµ(y), f ∈ L2(dµ),

j = 1, . . . , n. Then
∑n
j=1[Nj , Xj ] is the rank-one operator 1⊗ 1 on L2(dµ). Theorem 1.2

provides the membership Xj ∈ C+
p/(p−1), 1 ≤ j ≤ n. This and the fact tr(

∑n
j=1[Nj , Xj ]) 6=

0 together imply that the commuting tuple of self-adjoint operators (N1, . . . , Nn) cannot
be diagonalized modulo the Lorentz ideal C−p [14]. �

The relevance of Example 4.4 to Sections 1-3 is this: Note that each individual com-
mutator [Nj , Xj ], 1 ≤ j ≤ n, is an integral operator with a homogeneous kernel of degree
0, and so is any partial sum

SJ =
∑
j∈J

[Nj , Xj ],
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J ⊂ {1, . . . , n}. In other words, these are natural examples of the TK,µ studied in Sections
1-3. Thus we learn quite a bit about these commutators from Theorems 1.1 and 1.7:

Corollary 4.5. For the Nj and Xj in Example 4.4, we have [Nj , Xj ] ∈ C+
1 , 1 ≤ j ≤ n. If

µ is given by (3.2), then Trω([Nj , Xj ]) = 0 for every Dixmier trace Trω, 1 ≤ j ≤ n.

5. More on the Fuglede commutation property

Since the Fuglede commutation property is one of the original motivations for this
paper, we conclude the paper with some thoughts on this property itself.

Weiss’s identity (1.4) was later generalized to an inequality for Schatten p-norms for
1 < p <∞. That is, for each 1 < p <∞, there is a constant Cp such that

‖[N∗, X]‖p ≤ Cp‖[N,X]‖p

whenever N is a normal operator. This was proved by Abdessemed and Davies for the case
2 < p < ∞ in [1] and by Shulman for the case 1 < p < 2 in [10]. Furthermore, Example
1.6 tells us that for ‖ · ‖1, the norm of the trace class, such an inequality does not hold.
But it is actually more interesting to take a look at the other end of the scale, namely the
operator norm ‖ · ‖.

Question 5.1. Is there a finite constant C such that the operator-norm inequality

(5.1) ‖[N∗, X]‖ ≤ C‖[N,X]‖

holds whenever N is a normal operator?

In a way, Fuglede’s original theorem [5] is really about the operator norm, which makes
(5.1) very relevant as a question. At the moment, we do not have an answer to Question
5.1, although we are inclined to think that its answer should be negative.

Inequality (5.1) is reminiscent of a “Lipschitz condition”. By this analogy, a weaker
version of (5.1) would be a “uniform continuity”, i.e., an ε-δ condition, which does hold:

Theorem 5.2. Let N be the collection of normal operators N satisfying the condition
‖N‖ ≤ 1 and let X be the collection of all operators X satisfying the condition ‖X‖ ≤ 1.
For every ε > 0, there is a δ = δ(ε) > 0 such that if N ∈ N and X ∈ X satisfy the condition
‖[N,X]‖ ≤ δ, then ‖[N∗, X]‖ ≤ ε.

To prove Theorem 5.2, we first establish

Lemma 5.3. Let a > 0 and b > 0 be any positive numbers. Suppose that there are N ∈ N
and X ∈ X such that

(5.2) ‖[N,X]‖ ≤ a and ‖[N∗, X]‖ ≥ b.

Then there are finite-rank operators M ∈ N and Y ∈ X such that

‖[M,Y ]‖ ≤ 2a and ‖[M∗, Y ]‖ ≥ b/2.
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Proof. Denote c = (1/6) min{a, b}. By the spectral decomposition of N , there is a normal
operator N ′ ∈ N with a finite spectrum such that ‖N − N ′‖ ≤ c. Thus from (5.2) we
obtain

‖[N ′, X]‖ ≤ 2a and ‖[(N ′)∗, X]‖ ≥ 2b/3.

Since the spectrum of N ′ consists of a finite number of eigenvalues, there is a finite-rank
orthogonal projection F such that [F,N ′] = 0 and ‖F [(N ′)∗, X]F‖ ≥ (3/4)‖[(N ′)∗, X]‖.
Define M = N ′F and Y = FXF . By the condition [F,N ′] = 0, M is a normal operator,
and we have [M∗, Y ] = F [(N ′)∗, X]F and [M,Y ] = F [N ′, X]F . Thus

‖[M∗, Y ]‖ = ‖F [(N ′)∗, X]F‖ ≥ (3/4)‖[(N ′)∗, X]‖ ≥ (3/4) · (2b/3) = b/2

and
‖[M,Y ]‖ = ‖F [N ′, X]F‖ ≤ ‖[N ′, X]‖ ≤ 2a.

This completes the proof. �

Proof of Theorem 5.2. Suppose that there were an ε0 > 0 for which no desired δ = δ(ε0)
exists. We will show that this leads to a contradiction. The non-existence of δ(ε0) in
particular means that for each k ∈ N, 1/k is not a δ(ε0). That is, for each k ∈ N, there
are Nk ∈ N and Xk ∈ X such that

‖[Nk, Xk]‖ ≤ 1/k while ‖[N∗k , Xk]‖ > ε0.

Applying Lemma 5.3, we obtain finite-rank Mk ∈ N and Yk ∈ X such that

‖[Mk, Yk]‖ ≤ 2/k and ‖[M∗k , Yk]‖ ≥ ε0/2

for each k ∈ N. Define

M =
∞⊕
k=1

Mk and Y =
∞⊕
k=1

Yk.

Obviously, M is a normal operator. By the memberships Mk ∈ N and Yk ∈ X , k ∈ N, we
have ‖M‖ ≤ 1 and ‖Y ‖ ≤ 1. Furthermore,

[M,Y ] =
∞⊕
k=1

[Mk, Yk].

Since rank([Mk, Yk]) < ∞ for every k ∈ N and since ‖[Mk, Yk]‖ → 0 as k → ∞, the
commutator [M,Y ] is compact. On the other hand, we have

[M∗, Y ] =
∞⊕
k=1

[M∗k , Yk].

Since ‖[M∗k , Yk]‖ ≥ ε0/2 for every k ∈ N, the commutator [M∗, Y ] is not compact.
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Let M̂ and Ŷ respectively be the images of M and Y in the Calkin algebra. Then the
compactness of [M,Y ] implies [M̂, Ŷ ] = 0, while the non-compactness of [M∗, Y ] implies
[M̂∗, Ŷ ] 6= 0. Since M̂ is a normal element, this contradicts Fuglede’s theorem for the
Calkin algebra. �

Note added in proof. Since the acceptance of the paper, the author has learned that the
answer to Question 5.1 is negative, which was a result due to B. Johnson and J. Williams,
Pacific J. Math. 58 (1975), 105-122. The author has shown that the answer to Question
4.3 is also negative, and details will appear elsewhere.
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