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Abstract. We consider a class of submodules R of the Bergman module L2
a(B) that are

associated with analytic sets M̃ ⊂ Cn with dimCM̃ = d. In analogue to the usual Toeplitz
operator on L2

a(B), we have the “Toeplitz operator for the submodule” Rϕ on R. We show
that the Helton-Howe trace formula holds for the antisymmetric sum [Rf1 , Rf2 , . . . , Rf2n ],
f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n].

1. Introduction

Given any bounded operators A1, . . . , Ak on a Hilbert space H, one has the antisym-
metric sum

[A1, . . . , Ak] =
∑
σ∈Sk

sgn(σ)Aσ(1) · · ·Aσ(k),

which naturally generalizes the notion of commutator. This was first introduced by Helton
and Howe in [14], and has since become an important part of non-commutative geometry.
See [5,10] in particular. As it turns out, operators on reproducing-kernel Hilbert spaces
provide some of the particularly interesting examples of antisymmetric sums.

Let B be the unit ball {z ∈ Cn : |z| < 1} in Cn. As usual, we write L2
a(B) for

the Bergman space. Let P : L2(B) → L2
a(B) be the orthogonal projection. Given a

ϕ ∈ L∞(B), we have the familiar Toeplitz operator Tϕ defined by the formula

(1.1) Tϕf = P (ϕf), f ∈ L2
a(B).

This paper is mainly motivated by the following classic result of Helton and Howe:

Theorem 1.1. [14, Theorem 7.2] For f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], the antisym-
metric sum [Tf1 , Tf2 , . . . , Tf2n ] is in the trace class. Moreover,

(1.2) tr[Tf1 , Tf2 , . . . , Tf2n ] =
n!

(2πi)n

∫
B

df1 ∧ df2 ∧ · · · ∧ df2n.

See Roger Howe’s retrospective [19, pages 1678-1679] for the historical context for this
result. More than four decades later, this result still commands considerable interest, for
several reasons.

One of these reasons is the Arveson-Douglas Conjecture [1,2,6,7], which has been the
subject of very active research [3,8,9,11,12,15]. Indeed advances on the Arveson-Douglas
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Conjecture have made it possible for one to consider the analogue of Theorem 1.1 on
submodules or even quotient modules. A first step in that direction was taken in [18].
Although it was not explicitly mentioned in [18], even a casual reader would notice that
[18] left an obvious question unanswered: does the analogue of trace formula (1.2) hold
on the submodules considered in that paper? The purpose of this paper is to report the
affirmative answer to this question.

At this point, it will be helpful to recall the setting in [18]. First of all, we will use the
same notations as those in [18] whenever possible. Let M̃ be an analytic set in Assumption
1.1 in [18]. Throughout the paper, we denote d = dimCM̃ . As in [18], we always assume
1 ≤ d ≤ n− 1. Denote M = M̃ ∩B. Then

R = {f ∈ L2
a(B) : f = 0 on M}

is a submodule of the Bergman module L2
a(B). Let R : L2(B) → R be the orthogonal

projection. Mimicking (1.1), given a ϕ ∈ L∞(B) we define

Rϕf = R(ϕf), f ∈ R.

We think of Rϕ as a “Toeplitz operator for the submodule R”. It was proved in [18] that
for any f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], the antisymmetric sum [Rf1 , Rf2 , . . . , Rf2n ] is
in the trace class. The question that was not explicitly stated in [18], but was obvious to
even the casual reader, was

Question 1.2. Does the trace formula

tr[Rf1 , Rf2 , . . . , Rf2n ] =
n!

(2πi)n

∫
B

df1 ∧ df2 ∧ · · · ∧ df2n,

f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], hold on the submodule R?

We were not able to compute tr[Rf1 , Rf2 , . . . , Rf2n ] in [18], but, after many attempts,
we are finally able to do this computation now, which is the main result of the paper:

Theorem 1.3. The trace formula

tr[Rf1 , Rf2 , . . . , Rf2n ] =
n!

(2πi)n

∫
B

df1 ∧ df2 ∧ · · · ∧ df2n

holds for all f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n].

Although Question 1.2 is about the submodule R, it is the corresponding quotient
module that holds the key to the answer. Recall that

Q = L2
a(B)	R

is the quotient module that corresponds to R. Let Q : L2(B) → Q be the orthogonal
projection. Recall that Q was the focus of both [11] and [18]. Mimicking (1.1), we have
“Toeplitz operators for the quotient module Q”. That is, for each ϕ ∈ L∞(B), we define

Qϕf = Q(ϕf), f ∈ Q.
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For f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], the relation P = R+Q leads to

(1.3) [Tf1 , Tf2 , . . . , Tf2n ] = [Rf1 , Rf2 , . . . , Rf2n ] + [Qf1 , Qf2 , . . . , Qf2n ] +G.

We already know that the antisymmetric sum [Qf1 , Qf2 , . . . , Qf2n ] is in the trace class with
zero trace [18, Theorem 1.8]. Thus to show that Question 1.2 has an affirmative answer,
it suffices to prove that G has zero trace.

The fact that tr(G) = 0 can be directly verified in some particular cases, and direct
verification was how we began our effort to answer Question 1.2. For example, if we either
assume d < (2/3)n or n ∈ {2, 3, 4}, then we can directly verify that tr(G) = 0, although
such verifications are very tedious. Tedious though direct verifications may be, the results
do suggest that we should try to answer Question 1.2 in the affirmative in general. On the
other hand, the direct-verification method has its limitations. For example, if one tries to
directly verify that tr(G) = 0 in the case where n = 5 and d = 4, one runs into what seem
to be insurmountable obstacles.

We took these obstacles as a hint that, perhaps, the general result tr(G) = 0 needs to
be proved in a round-about way, not by a “frontal assault” in the way of direct verification.
After various attempts, we managed to find a way to show tr(G) = 0 by an indirect route.
The main idea is this: we approximate the orthogonal projection Q by a sequence of finite-
rank positive operators in a very specific way. These finite-rank approximations are then
“dilated” to orthogonal projections on L2(B)⊕L2(B). These dilations and the orthogonal
projection R′ = R⊕0 give rise to various “deformed Toeplitz operators”. Analysis of these
operators eventually leads to the desired result,

tr[Rf1 , Rf2 , . . . , Rf2n ] = tr[Tf1 , Tf2 , . . . , Tf2n ]

for f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n].

The rest of the paper is organized as follows. First of all, Section 2 collects a number
of necessary preliminaries for the rest of the paper. Then, with the efforts in Sections 3
and 4, we construct a sequence {Am}∞m=1 of finite-rank operators such that

0 ≤ Am ≤ Q

and such that they have the right approximation property:

lim
m→∞

‖[Q−Am,Mf ]‖p = 0

for 2d < p < ∞ and f ∈ C[z1, z̄1, . . . , zn, z̄n], and more. In Section 5, these operators are
dilated to orthogonal projections Q(m) on L2(B) ⊕ L2(B). With the projections P (m) =

R′ +Q(m), we have “deformed Toeplitz operators” T
(m)
f . In Section 6, we first show that

these “deformed Toeplitz operators” approximate the real ones in the way that matters:

lim
m→∞

tr[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

] = tr[Tf1 , Tf2 , . . . , Tf2n ]
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for f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n]. The punch line of Section 6 is that in the “de-
formed version” of (1.3), the G does have zero trace, which finishes the proof of Theorem
1.3.

2. Preliminaries

First, let us recall the precise definition of the submodules and quotient modules that
we consider in this paper.

Definition 2.1. [4,16] Let Ω be a complex manifold. A set A ⊂ Ω is called a complex
analytic subset of Ω if for each point a ∈ Ω there are a neighborhood U of a and functions
f1, · · · , fN analytic in this neighborhood such that

A ∩ U = {z ∈ U : f1(z) = · · · = fN (z) = 0}.

A point a ∈ A is called regular if there is a neighborhood U of a in Ω such that A∩U is a
complex submanifold of Ω. A point a ∈ A is called a singular point of A if it is not regular.

Definition 2.2. Let Y be a manifold and let X,Z be submanifolds of Y . We say that the
submanifoldsX and Z intersect transversely if for every x ∈ X∩Z, Tx(X)+Tx(Z) = Tx(Y ).

Assumption 2.3. [18, Assumption 1.1] Let M̃ be an analytic subset of an open neigh-
borhood of the closed ball B. Furthermore, M̃ satisfies the following conditions:

(1) M̃ intersects ∂B transversely.
(2) M̃ has no singular points on ∂B.
(3) dimCM̃ = d, where 1 ≤ d ≤ n− 1.

We emphasize that Assumption 2.3 will always be in force for the rest of the paper.
Given such an M̃ , we fix M , R, R, Q and Q as follows.

Notation 2.4 [18, Notation 1.2] (a) Let M = M̃ ∩B.
(b) Denote R = {f ∈ L2

a(B) : f = 0 on M}.
(c) Let R be the orthogonal projection from L2(B) onto R.
(d) Denote Q = L2

a(B)	R.
(e) Let Q be the orthogonal projection from L2(B) onto Q.

As we have already mentioned, the key to what we do in this paper is the projection
Q. We need to use everything we know about Q, starting with

Theorem 2.5. [11, Theorem 4.3] There exist a measure µ on M and 0 < c ≤ C <∞ such
that

(2.1) c‖f‖2 ≤
∫
M

|f(w)|2dµ(w) ≤ C‖f‖2

for every f ∈ Q.

For the rest of the paper, the symbol µ will be used exclusively for the measure given
in Theorem 2.5. On L2

a(B), this µ defines a Toeplitz operator via the formula

(2.2) (Tµf)(z) =

∫
M

f(w)

(1− 〈z, w〉)n+1
dµ(w).
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The two bounds in Theorem 2.5 translate to the operator inequality

(2.3) cQ ≤ Tµ ≤ CQ

on L2
a(B). Write Kw(z) = (1−〈z, w〉)−n−1, the reproducing kernel for the Bergman space

L2
a(B). Then straightforward verification gives us the formula

(2.4) Tµ =

∫
M

Kw ⊗Kwdµ(w)

on L2
a(B). By regarding each Kw as an element in L2(B), this automatically extends the

Toeplitz operator Tµ to an operator on the big space L2(B), by exactly the same integral
formula! Moreover, if we consider both Q and Tµ as operators on L2(B), then operator
inequality (2.3) holds on the big space L2(B).

Next, we review the operator ideals that will be involved in this paper. Given an
operator A, let s1(A), . . . , sk(A), . . . denote its s-numbers [13]. As usual, for 1 ≤ p < ∞,
we write Cp for the Schatten p-class. That is, Cp = {A : ‖A‖p < ∞}, where ‖A‖p =
(
∑∞
k=1{sk(A)}p)1/p.

Compared to the Schatten classes, there is another family of ideals that are more
user-friendly. These are the ideals C+

p , which are defined as follows. For each 1 ≤ p <∞,
the formula

‖A‖+p = sup
k≥1

s1(A) + s2(A) + · · ·+ sk(A)

1−1/p + 2−1/p + · · ·+ k−1/p

defines a symmetric norm for operators. On a Hilbert space H, the set

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

is a norm ideal. See Sections III.2 and III.14 in [13]. It is well known that C+
p contains the

Schatten class Cp and that C+
p 6= Cp. Moreover, we have C+

p ⊂ Cp′ for all 1 ≤ p < p′ <∞.

Lemma 2.6. [18, Lemma 2.8] Suppose T is in the weak operator closure of a set of
operators {Tα}α∈I . Assume Tα ∈ C+

p and

sup
α∈I
‖Tα‖+p ≤ C <∞.

Then T ∈ C+
p and ‖T‖+p ≤ C.

The reason why the C+
p ’s are the preferred ideals in the study of the Arveson-Douglas

conjecture is that norm estimates in these ideals are particularly easy:

Lemma 2.7. [18, Lemma 2.9] Given any positive numbers 0 < a ≤ b < ∞, there is a
constant 0 < B(a, b) <∞ such that the following holds true: Let H be a Hilbert space, and
suppose that F0, F1, . . . , Fk, . . . are operators on H such that the following two conditions
are satisfied for every k:

(1) ‖Fk‖ ≤ 2−ak,
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(2) rank(Fk) ≤ 2bk.
Then the operator F =

∑∞
k=0 Fk satisfies the estimate ‖F‖+b/a ≤ B(a, b). In particular,

F ∈ C+
b/a.

Lemma 2.8. Given any 1 ≤ r < p <∞, there is a constant C2.8 = C2.8(r, p) such that

‖A‖p ≤ C2.8‖A‖(p−r)/(4p)
(
‖A‖+r

)(3p+r)/(4p)
for every operator A.

Proof. Given any 1 ≤ r < p <∞, we set s = (p+r)/2 and t = (p+s)/2 = (3/4)p+(1/4)r.
Then 1 ≤ r < s < t < p. For any operator A and any k ∈ N, it follows from the definition
of ‖ · ‖+s that

ksk(A) ≤ s1(A) + · · ·+ sk(A) ≤ ‖A‖+s (1−1/s + · · ·+ k−1/s) ≤ C1‖A‖+s k1−(1/s).

Since ‖A‖+s ≤ ‖A‖+r , this implies

sk(A) ≤ C1‖A‖+r k−1/s

for every k ∈ N. Consequently,

∞∑
k=1

spk(A) ≤ ‖A‖p−t
∞∑
k=1

stk(A) ≤ ‖A‖p−t
(
C1‖A‖+r

)t ∞∑
k=1

k−t/s = C2‖A‖p−t
(
‖A‖+r

)t
.

Raising both sides to the power 1/p, the lemma is proved. �

We will need the following basic properties of Schatten classes.

Lemma 2.9. Let A ∈ Cp1 and B ∈ Cp2 , where p1, p2 ∈ [1,∞). If p1p2/(p1 + p2) ≥ 1, then
AB ∈ Cp1p2/(p1+p2) with

‖AB‖p1p2/(p1+p2) ≤ ‖A‖p1‖B‖p2 .

If p1p2/(p1 + p2) < 1, then AB ∈ C1.

Proof. By (7.9) on page 63 in [13], for every k ∈ N, the inequality

s1(AB) + · · ·+ sk(AB) ≤ s1(A)s1(B) + · · ·+ sk(A)sk(B)

holds. By [13, Lemma III.3.1], this implies that for each 1 ≤ p <∞, we have

∞∑
j=1

{sj(AB)}p ≤
∞∑
j=1

{sj(A)sj(B)}p.

Then an application of appropriate Hölder’s inequality completes the proof. �

Our proof of Theorems 1.3 relies on the following vanishing principle for trace:
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Lemma 2.10. [14, Lemma 1.3] Suppose that X is a self-adjoint operator and C is a
compact operator. If [X,C] is in the trace class, then tr[X,C] = 0.

Recall the following Schatten-class memberships for commutators:

Theorem 2.11. [18, Theorem 3.1] For each f ∈ C[z1, z̄1, . . . , zn, z̄n], the commutator
[Mf , Tµ] is in the Schatten class Cp for every p > 2d.

Theorem 2.12. [18, Theorem 3.6] For each f ∈ C[z1, z̄1, . . . , zn, z̄n], the commutator
[Mf , Q] is in the Schatten class Cp for every p > 2d.

As in [18], we also have to deal with double commutators:

Proposition 2.13. [18, Proposition 5.11] For f, g ∈ C[z1, z̄1, . . . , zn, z̄n], the double com-
mutator [Mf , [Mg, Q]] belongs to C+

2d/(1+ε) for every 0 < ε < 1/n.

3. Restriction of the measure µ to subsets of M

For each natural number m ∈ N, we define the subset

M (m) = {z ∈M : 1− 2−2m ≤ |z| < 1}

of M . Recall that the measure µ in Theorem 2.5 is concentrated on M . For each m ∈ N,
by restricting µ to M (m) and M\M (m) we obtain two measures. That is, we define the
measures µ(m) and λ(m) by the formulas

(3.1) µ(m)(E) = µ(E ∩M (m)) and λ(m)(E) = µ(E ∩ {M\M (m)})

for Borel sets E. We have, of course, µ = µ(m) + λ(m) for each m. The measures µ(m) and
λ(m) give rise to Toeplitz operators Tµ(m) and Tλ(m) . More precisely, we have

(Tµ(m)f)(z) =

∫
f(w)

(1− 〈z, w〉)n+1
dµ(m)(w) and

(Tλ(m)f)(z) =

∫
f(w)

(1− 〈z, w〉)n+1
dλ(m)(w)

for f ∈ L2
a(B). In this section we will focus on Tµ(m) , and in the next section we will

consider the functional calculus of Tλ(m) .

Recall that the proof of Theorem 2.11 relied on the discretization scheme in [18,
Section 3]. We will now use the same scheme to deal with the commutator [Mf , Tµ(m) ]
for f ∈ C[z1, z̄1, . . . , zn, z̄n] and m ∈ N. More specifically, we need to know how this
commutator behaves as m increases. Fortunately, we can use the techniques from [18,
Section 3] to find the answer.

Let β denote the Bergman metric on B. That is,

β(z, w) =
1

2
log

1 + |ϕw(z)|
1− |ϕw(z)|

, z, w ∈ B,
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where ϕw is the Möbius transform of B [17, Section 2.2]. For each z ∈ B and each a > 0,
we define the corresponding β-ball D(z, a) = {w ∈ B : β(z, w) < a}.

We choose a subset L ⊂M that is maximal with respect to the property that

D(z, 1) ∩D(w, 1) = ∅ for all z 6= w in L.

As in [18], we write it in the form L = {zi}∞i=1. It follows from the maximality of L that

∞⋃
i=1

D(zi, 2) ⊃M.

There exist Borel sets ∆1,∆2, . . . ,∆i, . . . in B satisfying the following three requirements:
(1) D(zi, 1) ⊂ ∆i ⊂ D(zi, 2) for every i.
(2) ∆i ∩∆i′ = ∅ for i 6= i′.
(3) ∪∞i=1∆i = ∪∞i=1D(zi, 2) ⊃M .

As usual, we write

kw(z) =
(1− |w|2)(n+1)/2

(1− 〈z, w〉)n+1
, z, w ∈ B,

which is the normalized reproducing kernel for the Bergman space L2
a(B).

Let m ∈ N. Similar to the ci defined on bottom of page 1073 in [18], we now define

c
(m)
i =

∫
∆i

(1− |w|2)−(n+1)dµ(m)(w),

i ≥ 1. As was explained in [18], because µ is a Carleson measure for L2
a(B), there is a

constant 0 < C <∞ such that c
(m)
i ≤ C for all i and m.

Define N (m) = {i ∈ N : µ(m)(∆i) 6= 0} = {i ∈ N : c
(m)
i > 0}. For each i ∈ N (m), we

define the measure dµ
(m)
i to be the restriction of the measure (c

(m)
i )−1(1−|w|2)−(n+1)dµ(m)

to the set ∆i. Obviously, µ
(m)
i (∆i) = 1 if i ∈ N (m). Observe that

Tµ(m) =

∫
Kw ⊗Kwdµ

(m)(w) =
∞∑
i=1

∫
∆i

Kw ⊗Kwdµ
(m)(w)

=
∑

i∈N(m)

c
(m)
i

∫
∆i

kw ⊗ kwdµ(m)
i (w).

Since µ(m) is supported on M (m), for each i ∈ N (m), the probability measure µ
(m)
i can

be approximated in the weak-* topology by measures of the form 1
k

∑k
j=1 δwj , where wj ∈

∆i ∩M (m). Therefore each operator
∫

∆i
kw ⊗ kwdµ(m)

i (w) can be approximated in the
weak operator topology by operators of the form

1

k

k∑
j=1

kwj ⊗ kwj , wj ∈ ∆i ∩M (m).
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Hence Tµ(m) can be weakly approximated by operators of the form

∑
i∈F

c
(m)
i

1

k

k∑
j=1

kwi,j ⊗ kwi,j =
1

k

k∑
j=1

∑
i∈F

c
(m)
i kwi,j ⊗ kwi,j ,

where F is a finite subset of N (m), k ∈ N, and wi,j ∈ ∆i∩M (m). We summarize the above
analysis as follows, which is just [18, Lemma 3.2] restated for the present situation:

Lemma 3.1. For each m ∈ N, the Toeplitz operator Tµ(m) is in the weak closure of the
convex hull of operators of the form∑

i∈F
c
(m)
i kwi ⊗ kwi ,

where F is any finite subset of N (m) = {i ∈ N : µ(m)(∆i) 6= 0}, wi ∈ ∆i ∩M (m) and

0 < c
(m)
i ≤ C. Moreover, the finite bound C depends only on µ.

Proposition 3.2. Given any 0 < ε < 1/2, there are constants 0 < C ′ < ∞ and 0 < C ′′

< ∞ such that the following holds true: Let m ∈ N and consider any finite subset F of
N (m) = {i ∈ N : µ(m)(∆i) 6= 0}. Suppose that for each i ∈ F , we have wi ∈ ∆i∩M (m) and
0 ≤ ci ≤ C, where C is the constant in Lemma 3.1. Define ν =

∑
i∈F ci(1− |wi|2)n+1δwi

and
Tν =

∑
i∈F

cikwi ⊗ kwi .

Then we have ‖[Tν ,Mzj ]‖+2d/(1−2ε) ≤ C ′ and ‖[Tν ,Mzj ]‖ ≤ C ′′2−(1−2ε)m for every j ∈
{1, . . . , n}.

Proof. As in [18], for each k ≥ 0 we define

Mk = {z ∈M : 1− 2−2k ≤ |z| < 1− 2−2(k+1)}

and we define νk to be the restriction of ν to Mk. That is,

νk =
∑

i∈F,wi∈Mk

ci(1− |wi|2)n+1δwi .

Also, write

Fk = [Tνk ,Mzj ] =
∑

i∈F,wi∈Mk

ci[kwi ⊗ kwi ,Mzj ]

for k ≥ 0. Let 0 < ε < 1/2 be given. As was shown in [18] (see (3.4) and (3.5) in that
paper), there are constants C1 and C2 such that

(3.2) ‖Fk‖ ≤ C12−(1−2ε)k

and
rank(Fk) ≤ C222dk
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for every k ≥ 0. Since wi ∈ ∆i ∩M (m) for each i ∈ F , if 0 ≤ k ≤ m− 1, then νk = 0 and,
consequently, Tνk = 0. Thus F0 = · · · = Fm−1 = 0 and

∑∞
k=m Fk = [Tν ,Mzj ]. It follows

from the above two estimates and Lemma 2.7 that

‖[Tν ,Mzj ]‖+2d/(1−2ε) ≤ C1(1 + C2)B(1− 2ε, 2d).

Thus the constant C ′ = C1(1 + C2)B(1− 2ε, 2d) suffices for the ‖ · ‖+2d/(1−2ε)-bound. The

bound on ‖[Tν ,Mzj ]‖ follows from the inequality ‖[Tν ,Mzj ]‖ ≤
∑∞
k=m ‖Fk‖ and (3.2). �

Proposition 3.3. For all 2d < p <∞ and f ∈ C[z1, z̄1, . . . , zn, z̄n], we have

(3.3) lim
m→∞

‖[Tµ(m) ,Mf ]‖p = 0.

Proof. Given any p ∈ (2d,∞), we pick an ε ∈ (0, 1/2) such that 2d < 2d/(1− 2ε) < p. For
each m ∈ N, Lemma 3.1 tells us that Tµ(m) is in the weak closure of the convex hull of the
operators Tν given in Proposition 3.2. Therefore by Lemma 2.6 and Proposition 3.2, for
each j ∈ {1, . . . , n} we have

‖[Tµ(m) ,Mzj ]‖+2d/(1−2ε) ≤ C
′ and ‖[Tµ(m) ,Mzj ]‖ ≤ C ′′2−(1−2ε)m.

Applying Lemma 2.8 with r = 2d/(1− 2ε), we find that

‖[Tµ(m) ,Mzj ]‖p ≤ C2.8

(
C ′′2−(1−2ε)m

)(p−{2d/(1−2ε)})/(4p)(
C ′
)(3p+{2d/(1−2ε)})/(4p)

.

Therefore we have

(3.4) lim
m→∞

‖[Tµ(m) ,Mzj ]‖p = 0

for each j ∈ {1, . . . , n}. Obviously, (3.3) follows from (3.4) and the “product rule” for
commutators, [Tµ(m) , AB] = [Tµ(m) , A]B +A[Tµ(m) , B]. �

4. Functional calculus

Let us recall the standard smooth functional calculus for self-adjoint operators. Sup-
pose that ϕ ∈ C∞c (R). Then the Fourier inversion formula reads

ϕ(x) =
1√
2π

∫
ϕ̂(y)eiyxdy, x ∈ R,

where ϕ̂ is the Fourier transform of ϕ. Let T be a self-adjoint operator. It follows from
the above formula and the spectral decomposition of T that

ϕ(T ) =
1√
2π

∫
ϕ̂(y)eiyT dy.
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Thus if X is any bounded operator, then

[ϕ(T ), X] =
1√
2π

∫
ϕ̂(y)[eiyT , X]dy.

Since [eiyT , X] = (eiyTXe−iyT − X)eiyT , an application of the fundamental theorem of
calculus leads to

(4.1) [ϕ(T ), X] =
i√
2π

∫
ϕ̂(y)y

∫ 1

0

eityT [T,X]ei(1−t)yT dtdy.

Recall that for each m ∈ N, the measure λ(m) was given in (3.1).

Proposition 4.1. Let ϕ ∈ C∞c (R). Then for every f ∈ C[z1, z̄1, . . . , zn, z̄n] and every
2d < p <∞ we have

lim
m→∞

‖[ϕ(Tµ),Mf ]− [ϕ(Tλ(m)),Mf ]‖p = 0.

Proof. From (4.1) we obtain the decomposition

[ϕ(Tµ),Mf ]− [ϕ(Tλ(m)),Mf ] = Gm +Hm,

where

Gm =
i√
2π

∫
ϕ̂(y)y

∫ 1

0

(
eityTµ [Tµ,Mf ]ei(1−t)yTµ − eityTλ(m) [Tµ,Mf ]ei(1−t)yTλ(m)

)
dtdy,

Hm =
i√
2π

∫
ϕ̂(y)y

∫ 1

0

eityTλ(m) [Tµ − Tλ(m) ,Mf ]ei(1−t)yTλ(m)dtdy.

By (3.1) we have Tµ − Tλ(m) = Tµ(m) . Therefore ‖Hm‖p ≤ C1‖[Tµ(m) ,Mf ]‖p. Since we
assume 2d < p <∞, it follows from Proposition 3.3 that ‖Hm‖p → 0 as m→∞.

From the definition of M (m) it is clear that Tµ(m) → 0 strongly as m→∞. That is,

(4.2) lim
m→∞

Tλ(m) = Tµ

in the strong operator topology. This implies the strong convergence

lim
m→∞

eisTλ(m) = eisTµ

for every s ∈ R. Since [Tµ,Mf ] ∈ Cp (cf. Theorem 2.11), this strong convergence leads to

lim
m→∞

‖eityTµ [Tµ,Mf ]ei(1−t)yTµ − eityTλ(m) [Tµ,Mf ]ei(1−t)yTλ(m) ‖p = 0

11



for each y ∈ R and each t ∈ [0, 1]. Then there is the obvious bound

‖eityTµ [Tµ,Mf ]ei(1−t)yTµ − eityTλ(m) [Tµ,Mf ]ei(1−t)yTλ(m)‖p ≤ 2‖[Tµ,Mf ]‖p.

Since

‖Gm‖p ≤
∫
|ϕ̂(y)y|

∫ 1

0

‖eityTµ [Tµ,Mf ]ei(1−t)yTµ − eityTλ(m) [Tµ,Mf ]ei(1−t)yTλ(m) ‖pdtdy,

it now follows from the dominated convergence theorem that ‖Gm‖p → 0 as m→∞. This
completes the proof. �

For the rest of the paper, c and C will denote the two scalars in (2.3). It follows from
(2.3) that the spectrum of Tµ is contained in {0} ∪ [c, C], and that the spectral projection
of Tµ corresponding to the interval [c, C] equals Q. Thus we can write Q = h(Tµ) for some
smooth function h. Obviously, there are many smooth functions h on R that achieve the
same result, h(Tµ) = Q. But for the purpose of this paper, a casually picked h will not
do; we must choose our h carefully.

To find the desired h, we begin with a C∞ function η on R satisfying the following
three conditions:

(1) 0 ≤ η ≤ 1 on R.
(2) η = 1 on (−∞, c/3] ∪ [C + 2,∞).
(3) η = 0 on [c/2, C + 1].

With this η so chosen, we define

(4.3) h = 1− η2.

Obviously, the C∞ function h has the following properties:
(α) 0 ≤ h ≤ 1 on R.
(β) h = 1 on [c/2, C + 1].
(γ) h = 0 on (−∞, c/3] ∪ [C + 2,∞).

Combining (β) and (γ) with (2.3), we have h(Tµ) = Q. Furthermore, (γ) tells us that
h ∈ C∞c (R). The above care was taken so that the following holds true:

Lemma 4.2. For the h defined above, we have (1− h2)1/2h ∈ C∞c (R).

Proof. By (γ), what needs to be proved is that (1 − h2)1/2 is a C∞ function on R. But
1− h2 = (1 + h)(1− h) = (1 + h)η2. Hence (1− h2)1/2 = (1 + h)1/2η, whose smoothness
is ensured by the fact that h ≥ 0 on R. �

With the function h given by (4.3), we now define

(4.4) Am = h(Tλ(m)),

m ∈ N. Since the measure λ(m) is concentrated on M\M (m), the Toeplitz operator Tλ(m)

is compact. Since h = 0 on (−∞, c/3], we conclude that

(4.5) rank(Am) <∞
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for every m ∈ N. We have 0 ≤ Tλ(m) ≤ Tµ ≤ CQ. Since h vanishes on a neighborhood
of 0, h(Tλ(m)) is the limit in operator norm of operators of the form Tλ(m)q(Tλ(m)), where
q are polynomials. Hence for each m ∈ N, the range of Am is contained in the quotient
module Q = QL2

a(B). In particular, we have AmQ = Am = QAm and AmR = 0 = RAm.
These facts and (4.5) will be important for the next two sections.

Since the range of Am is contained in Q and since 0 ≤ h ≤ 1 on R, we have the
operator inequality

(4.6) 0 ≤ Am ≤ Q

for every m ∈ N. Thus we have a sequence of positive, finite-rank operators {Am}∞m=1

that approximate the projection Q in the sense of Proposition 4.1.

5. Projections galore

If the finite-rank operators Am defined by (4.4) were projections, then the proof of
Theorem 1.3 would be much more straightforward. Instead, the best we can construct
are the finite-rank positive contractions Am that approximate Q from below. It is even
possible that there are obstructions to the existence of finite-rank projections that satisfy
(4.6) and still approximate Q in the sense of Proposition 4.1. In any case, we do not have
at our disposal the kind of finite-rank projections on Q that we wish we had.

Then, came the idea that, perhaps, we can take the operators that are at our disposal
and dilate them to projections on a bigger space. The hope is that that can also lead to a
proof of Theorem 1.3. As luck would have it, this idea works!

First of all, it is easy to dilate a positive contraction to an orthogonal projection.
Observe that for any 0 ≤ x ≤ 1, the 2× 2 matrix x2 (1− x2)1/2x

(1− x2)1/2x 1− x2


is an idempotent. As mentioned earlier, QAm = Am = AmQ for every m ∈ N. Thus by
the spectral decomposition of Am, the operator

Q(m) =

 A2
m (1−A2

m)1/2Am

(1−A2
m)1/2Am Q−A2

m


is an orthogonal projection on L2(B)⊕ L2(B). Alternately, we can write

(5.1) Q(m) =

h2(Tλ(m)) ψ(Tλ(m))

ψ(Tλ(m)) Q− h2(Tλ(m))

 ,
where ψ = (1− h2)1/2h, which is in C∞c (R) according to Lemma 4.2.
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Our approach involves more projections. On L2(B)⊕ L2(B), we define

R′ =

[
R 0
0 0

]
, Q′ =

[
Q 0
0 0

]
, P ′ =

[
P 0
0 0

]
and Q′′ =

[
0 0
0 Q

]
.

Since P = R + Q, we have P ′ = R′ + Q′. Note that the ranges of R′ and Q(m) are
orthogonal to each other. Thus for each m ∈ N, we define the orthogonal projection

P (m) = R′ +Q(m).

For each f ∈ C[z1, z̄1, . . . , zn, z̄n], we define

Df =

[
Mf 0
0 Mf

]
on L2(B) ⊕ L2(B). We can alternatively write R′ = R ⊕ 0, Q′ = Q ⊕ 0, P ′ = P ⊕ 0,
Q′′ = 0⊕Q and Df = Mf ⊕Mf . Since rank(Am) <∞, we have

(5.2) Q(m) = Q′′ + Lm with rank(Lm) <∞.

Lemma 5.1. For all m ∈ N and f ∈ C[z1, z̄1, . . . , zn, z̄n], the ranks of R′DfQ
(m) and

Q(m)DfR
′ are finite.

Proof. It is obvious that R′DfQ
′′ = 0 and Q′′DfR

′ = 0 for every f ∈ C[z1, z̄1, . . . , zn, z̄n].
The lemma follows from this fact and (5.2). �

Lemma 5.2. (1) For all m ∈ N and f ∈ C[z1, z̄1, . . . , zn, z̄n], we have [Df , Q
(m)] ∈ Cp for

every p > 2d.
(2) For all m ∈ N and f, g ∈ C[z1, z̄1, . . . , zn, z̄n], we have [Df , [Dg, Q

(m)]] ∈ C+
2d/(1+ε) for

every 0 < ε < 1/n.

Proof. By (5.2), [Df , Q
(m)] is a finite-rank perturbation of [Df , Q

′′] = 0 ⊕ [Mf , Q].
Conclusion (1) follows from this fact and Theorem 2.12. Similarly, (5.2) tells us that
[Df , [Dg, Q

(m)]] is a finite-rank perturbation of [Df , [Dg, Q
′′]] = 0 ⊕ [Mf , [Mg, Q]]. Con-

clusion (2) follows from this fact and Proposition 2.13. �

Proposition 5.3. For all f ∈ C[z1, z̄1, . . . , zn, z̄n] and 2d < p <∞, we have

lim
m→∞

‖[Q′, Df ]− [Q(m), Df ]‖p = 0 and lim
m→∞

‖[P ′, Df ]− [P (m), Df ]‖p = 0.

Proof. By Lemma 4.2, the function ψ = (1− h2)1/2h is in C∞c (R). Using (5.1), it follows
from Proposition 4.1 that if f ∈ C[z1, z̄1, . . . , zn, z̄n] and 2d < p <∞, then

lim
m→∞

‖[X,Df ]− [Q(m), Df ]‖p = 0,
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where

(5.3) X =

h2(Tµ) ψ(Tµ)

ψ(Tµ) Q− h2(Tµ)

 .
Since h(Tµ) = Q and Q2 = Q, we have h2(Tµ) = Q. By (β) and (γ) in Section 4, the
function ψ = (1−h2)1/2h vanishes on (−∞, c/3]∪ [c/2, C+ 1]. As we explained in Section
4, the spectrum of Tµ is contained in {0} ∪ [c, C]. Hence ψ(Tµ) = 0. That is, X = Q′,
which proves the first limit. For the second limit, observe that P ′ − P (m) = Q′ −Q(m). �

Lemma 5.4. We have
lim
m→∞

Q(m) = Q′

in the strong operator topology.

Proof. By (4.2) and (5.1), we have the strong limit

lim
m→∞

Q(m) = X,

where X is given by (5.3). But we showed in the preceding proof that X = Q′. �

With the projections P ′, R′, P (m) and Q(m), we now define more “Toeplitz operators”.
That is, given any f ∈ C[z1, z̄1, . . . , zn, z̄n], we define

T ′f = P ′DfP
′, R′f = R′DfR

′, T
(m)
f = P (m)DfP

(m) and Q
(m)
f = Q(m)DfQ

(m),

m ∈ N. It is obvious that T ′f = Tf ⊕ 0 and R′f = Rf ⊕ 0. We think of Q
(m)
f and T

(m)
f as

“deformed versions” of Qf ⊕ 0 and Tf ⊕ 0 respectively.

Proposition 5.5. For all f, g ∈ C[z1, z̄1, . . . , zn, z̄n] and 2nd/(n+ d) < p <∞, we have

lim
m→∞

‖[T ′f , T ′g]− [T
(m)
f , T (m)

g ]‖p = 0.

Proof. By elementary algebra,

[T ′f , T
′
g] = P ′Dg(1− P ′)DfP

′ − P ′Df (1− P ′)DgP
′

= [P ′, Df ](1− P ′)[P ′, Dg]− [P ′, Dg](1− P ′)[P ′, Df ].(5.4)

Similarly,

[T
(m)
f , T (m)

g ] = [P (m), Df ](1− P (m))[P (m), Dg]− [P (m), Dg](1− P (m))[P (m), Df ].

Thus it suffices to prove that for 2nd/(n+ d) < p <∞ and f, g ∈ C[z1, z̄1, . . . , zn, z̄n],

(5.5) lim
m→∞

‖[P ′, Df ](1− P ′)[P ′, Dg]− [P (m), Df ](1− P (m))[P (m), Dg]‖p = 0.
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We will prove this through a number of reduction steps.

First, observe that since p > 2nd/(n + d), there are s > 2d and t > 2n such that
st/(s+ t) < p. We further require that s < t. By Proposition 5.3, we have

(5.6) lim
m→∞

‖[P ′, Df ]− [P (m), Df ]‖s = 0.

It is well known that [P,Mg] ∈ Ct. Thus [P ′, Dg] = [P,Mg]⊕0 ∈ Ct. Combining (5.6) with
Lemma 2.9, we obtain

(5.7) lim
m→∞

‖[P ′, Df ](1− P (m))[P ′, Dg]− [P (m), Df ](1− P (m))[P ′, Dg]‖st/(s+t) = 0.

Since t > s, it follows from (5.6) that there is a C1 such that ‖[P (m), Df ]‖t ≤ C1 for every
m ∈ N. Replacing f by g in (5.6) and applying Lemma 2.9 again, we have

(5.8) lim
m→∞

‖[P (m), Df ](1− P (m))[P ′, Dg]− [P (m), Df ](1− P (m))[P (m), Dg]‖st/(s+t) = 0.

Recall that P ′ − P (m) = Q′ − Q(m). Since p > st/(s + t), with (5.7) and (5.8) already
established, we see that (5.5) will follow if we can show that

(5.9) lim
m→∞

‖[P ′, Df ](Q′ −Q(m))[P ′, Dg]‖st/(s+t) = 0.

But by the membership [P ′, Dg] = [P,Mg] ⊕ 0 ∈ Ct and Lemma 2.9, the proof of (5.9) is
further reduced to that of

(5.10) lim
m→∞

‖[P ′, Df ](Q′ −Q(m))‖s = 0.

To prove this, note that [Q′, Df ] = [Q,Mf ]⊕ 0 ∈ Cs (cf. Theorem 2.12). By this member-
ship and Lemma 5.4, we have

(5.11) lim
m→∞

‖[Q′, Df ](Q′ −Q(m))‖s = 0.

On the other hand, since R′Q′ = 0 and R′Q(m) = 0, we have [R′, Df ](Q′ − Q(m)) =
R′Df (Q′ −Q(m)) = R′[Df , Q

′ −Q(m)]. Therefore from Proposition 5.3 we obtain

(5.12) lim
m→∞

‖[R′, Df ](Q′ −Q(m))‖s = lim
m→∞

‖R′[Df , Q
′ −Q(m)]‖s = 0.

Since P ′ = R′ +Q′, (5.10) follows from (5.11) and (5.12). This completes the proof. �

Proposition 5.6. If f1, . . . , fn, g1, . . . , gn ∈ C[z1, z̄1, . . . , zn, z̄n], then

(5.13) lim
m→∞

‖[T ′f1 , T
′
g1 ] · · · [T ′fn , T

′
gn ]− [T

(m)
f1

, T (m)
g1 ] · · · [T (m)

fn
, T (m)
gn ]‖1 = 0.
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Proof. Since d ≤ n− 1, we have 2dn/(n+ d) < n. This allows us to pick a p satisfying the
condition

2dn/(n+ d) < p < n.

Since {1/p}+ {(n− 1)/n} > 1, we can pick an ε > 0 such that

(5.14)
1

p
+
n− 1

n+ ε
> 1.

Let f, . . . , fn, g1, . . . , gn ∈ C[z1, z̄1, . . . , zn, z̄n] be given. By Proposition 5.5, we have

(5.15) lim
m→∞

‖[T ′fj , T
′
gj ]− [T

(m)
fj

, T (m)
gj ]‖p = 0,

1 ≤ j ≤ n. It is well known that [Tfj , Tgj ] ∈ Cn+ε. Thus [T ′fj , T
′
gj ] = [Tfj , Tgj ]⊕ 0 ∈ Cn+ε.

By this membership, it now follows from (5.15), (5.14) and Lemma 2.9 that

(5.16) lim
m→∞

‖([T ′f1 , T
′
g1 ]− [T

(m)
f1

, T (m)
g1 ])[T ′f2 , T

′
g2 ] · · · [T ′fn , T

′
gn ]‖1 = 0.

Since p < n < n+ε, from (5.15) we obtain a constant C1 such that ‖[T (m)
fj

, T
(m)
gj ]‖n+ε ≤ C1

for all m ∈ N and 1 ≤ j ≤ n. Combining this bound with the membership [T ′fj , T
′
gj ] ∈ Cn+ε

and with (5.15), (5.14) and Lemma 2.9, we have

lim
m→∞

‖[T (m)
f1

, T (m)
g1 ] · · · [T (m)

fi−1
, T (m)
gi−1

]([T ′fi , T
′
gi ]− [T

(m)
fi

, T (m)
gi ])[T ′fi+1

, T ′gi+1
] · · · [T ′fn , T

′
gn ]‖1

= 0(5.17)

if 2 ≤ i ≤ n− 1 and

(5.18) lim
m→∞

‖[T (m)
f1

, T (m)
g1 ] · · · [T (m)

fn−1
, T (m)
gn−1

]([T ′fn , T
′
gn ]− [T

(m)
fn

, T (m)
gn ])‖1 = 0.

By an obvious telescoping sum, (5.13) follows from (5.16), (5.17) and (5.18). �

6. Antisymmetric sums

We will now consider antisymmetric sums that are made of the “Toeplitz operators”
defined in Section 5. First, we have the following limit with respect to the norm of the
trace class:

Proposition 6.1. For any f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], we have

(6.1) lim
m→∞

‖[T ′f1 , T
′
f2 , . . . , T

′
f2n ]− [T

(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

]‖1 = 0.

Proof. For each 1 ≤ j ≤ n, let τj : {1, 2, . . . , 2n} → {1, 2, . . . , 2n} be the transposition such
that τj(2j−1) = 2j, τj(2j) = 2j−1 and τj(k) = k for every k ∈ {1, 2, . . . , 2n}\{2j−1, 2j}.
Let T2n be the subgroup of S2n generated by τ1, . . . , τn. Then there is a subset E2n of S2n
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such that S2n = ∪λ∈E2nλT2n and such that λT2n ∩ λ′T2n = ∅ for all λ 6= λ′ in E2n. Given
f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], we have

[T ′f1 , T
′
f2 , . . . , T

′
f2n ] =

∑
λ∈E2n

sgn(λ)
∑
σ∈T2n

sgn(σ)T ′fλ(σ(1))T
′
fλ(σ(2))

· · ·T ′fλ(σ(2n))

=
∑
λ∈E2n

sgn(λ)[T ′fλ(1) , T
′
fλ(2)

] · · · [T ′fλ(2n−1)
, T ′fλ(2n)

].

Similarly,

[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

] =
∑
λ∈E2n

sgn(λ)[T
(m)
fλ(1)

, T
(m)
fλ(2)

] · · · [T (m)
fλ(2n−1)

, T
(m)
fλ(2n)

]

for each m ∈ N. With these identities, (6.1) follows from Proposition 5.6. �

Corollary 6.2. For any f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], we have

lim
m→∞

tr[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

] = tr[Tf1 , Tf2 , . . . , Tf2n ].

Proof. Applying Proposition 6.1, we have

lim
m→∞

tr[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

] = tr[T ′f1 , T
′
f2 , . . . , T

′
f2n ] = tr([Tf1 , Tf2 , . . . , Tf2n ]⊕ 0)

= tr[Tf1 , Tf2 , . . . , Tf2n ].

�

Lemma 6.3. (a) If p > d, then [Q
(m)
f , Q

(m)
g ] ∈ Cp for all f, g ∈ C[z1, z̄1, . . . , zn, z̄n] and

m ∈ N.
(b) Suppose that d ≥ 2. If p > 2nd/(2n + 1), then [Q

(m)
h , [Q

(m)
f , Q

(m)
g ]] ∈ Cp for all

f, g, h ∈ C[z1, z̄1, . . . , zn, z̄n] and m ∈ N.

(c) Suppose that d = 1. Then the double commutator [Q
(m)
h , [Q

(m)
f , Q

(m)
g ]] is in the trace

class for all f, g, h ∈ C[z1, z̄1, . . . , zn, z̄n] and m ∈ N.

Proof. The elementary algebra that gave us (5.4), now gives us

[Q
(m)
f , Q(m)

g ] = [Q(m), Df ](1−Q(m))[Q(m), Dg]− [Q(m), Dg](1−Q(m))[Q(m), Df ].

Conclusion (a) follows from this identity and Lemmas 5.2(1) and 2.9. Then note that

[Q
(m)
h , [Q

(m)
f , Q(m)

g ]] = Q(m)[Dh, [Q
(m)
f , Q(m)

g ]]Q(m)

= Q(m)[Dh, [Q
(m), Df ](1−Q(m))[Q(m), Dg]]Q

(m)

−Q(m)[Dh, [Q
(m), Dg](1−Q(m))[Q(m), Df ]]Q(m).

Combining this identity with the “product rule” for commutators, conclusions (b) and (c)
now follow from Lemmas 5.2(2), 5.2(1) and 2.9. �
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Proposition 6.4. Let ν ≥ d. Then for all f, g, f1, f2, . . . , f2ν ∈ C[z1, z̄1, . . . , zn, z̄n] and
m ∈ N, the operator

[Q
(m)
f , Q(m)

g [Q
(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2ν

]]

is in the trace class with zero trace.

Proof. For convenience, denote

Y = [Q
(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2ν

].

As we saw in the proof of Proposition 6.1, there is a subset E2ν of S2ν such that

(6.2) Y =
∑
λ∈E2ν

sgn(λ)[Q
(m)
fλ(1)

, Q
(m)
fλ(2)

] · · · [Q(m)
fλ(2ν−1)

, Q
(m)
fλ(2ν)

].

Since ν ≥ d, it follows from Lemma 6.3(a) and Lemma 2.9 that Y ∈ Cp for every p > 1.

Lemma 6.3(a) also tells us that [Q
(m)
f , Q

(m)
g ] ∈ Cd+ε if ε > 0. Hence [Q

(m)
f , Q

(m)
g ]Y ∈ C1.

Next we show that [Q
(m)
f , Y ] ∈ C1. If d = 1, then this is a direct consequence of

(6.2) and Lemma 6.3(c). Suppose that d ≥ 2. In this case, Lemma 6.3(b) tells us that

[Q
(m)
f , [Q

(m)
fλ(2i−1)

, Q
(m)
fλ(2i)

]] ∈ Cp for every p > 2nd/(2n + 1), where 1 ≤ i ≤ ν and λ ∈ E2ν .

Since 2nd/(2n + 1) < d and since for every j 6= i we have [Q
(m)
fλ(2j−1)

, Q
(m)
fλ(2j)

] ∈ Cd+ε for

every ε > 0, it follows that [Q
(m)
f , Y ] ∈ C1.

From the last two paragraphs we obtain the membership [Q
(m)
f , Q

(m)
g Y ] ∈ C1. Simi-

larly, [(Q
(m)
f )∗, Q

(m)
g Y ] = [Q

(m)

f̄
, Q

(m)
g Y ] ∈ C1 since f̄ is also in C[z1, z̄1, . . . , zn, z̄n]. Since

Y is compact, it follows from Lemma 2.10 that

tr[Q
(m)
f + (Q

(m)
f )∗, Q(m)

g Y ] = 0 = tr[Q
(m)
f − (Q

(m)
f )∗, Q(m)

g Y ].

From this we obtain tr[Q
(m)
f , Q

(m)
g Y ] = 0 as promised. �

Thus we have the following analogue of [18, Theorem 1.8]:

Proposition 6.5. Let ν ≥ d. Then for all f1, f2, . . . , f2ν+1, f2ν+2 ∈ C[z1, z̄1, . . . , zn, z̄n]
and m ∈ N, the antisymmetric sum

(6.3) [Q
(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2ν+1

, Q
(m)
f2ν+2

]

is in the trace class with zero trace.

Proof. Since 2ν + 2 is even, [14, Proposition 1.1] tells us that (6.3) is a linear combination
of terms of the form

[Q
(m)
fσ(1)

, Q
(m)
fσ(2)

[Q
(m)
fσ(3)

, Q
(m)
fσ(4)

, · · · , Q(m)
fσ(2ν+1)

, Q
(m)
fσ(2ν+2)

]],
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where σ runs over a certain subset of the symmetric group S2ν+2. Thus this proposition
is a direct consequence of Proposition 6.4. �

Definition 6.6. Given any m ∈ N, we let Z(m) denote the collection of (2n + 1)-tuples
(X0, . . . , X2n) satisfying the following two conditions:

(1) For each j ∈ {0, 1, . . . , 2n}, Xj is either R′ or Q(m).
(2) For each (X0, . . . , X2n), there is at least one i ∈ {0, 1, . . . , 2n} such that Xi = R′

and at least one j ∈ {0, 1, . . . , 2n} such that Xj = Q(m).

Lemma 6.7. Let (X0, . . . , X2n) ∈ Z(m), m ∈ N, and f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n]
be given. Then the following hold true:
(a) The rank of the operator X0Df1X1Df2X2 · · ·X2n−1Df2nX2n is finite.
(b) If X0 = X2n, then (X1, X2, . . . , X2n, X1) ∈ Z(m) and

tr(X0Df1X1Df2X2 · · ·X2n−1Df2nX2n) = tr(X1Df2X2 · · ·X2n−1Df2nX2nDf1X1).

(c) If X0 6= X2n, then tr(X0Df1X1Df2X2 · · ·X2n−1Df2nX2n) = 0.

Proof. (a) By (2) in Definition 6.6, there is a 0 ≤ j ≤ 2n− 1 such that Xj 6= Xj+1. Thus
by (1) in Definition 6.6, we have either XjDfj+1

Xj+1 = R′Dfj+1
Q(m) or XjDfj+1

Xj+1 =

Q(m)Dfj+1R
′. In either case, Lemma 5.1 tells us that rank(XjDfj+1Xj+1) <∞.

(b) Suppose that X0 = X2n. Then by (2) in Definition 6.6, there is a 1 ≤ j ≤ 2n− 1
such that Xj 6= Xj+1. Hence (X1, X2, . . . , X2n, X1) ∈ Z(m). Define

A = X0Df1X1 and B = X1Df2X2 · · ·X2n−1Df2nX2n.

By the argument in (a), we have rank(B) <∞. Hence tr(AB) = tr(BA). Since

X0Df1X1Df2X2 · · ·X2n−1Df2nX2n = AB whereas

X1Df2X2 · · ·X2n−1Df2nX2nDf1X1 = BA,

the conclusion follows.

(c) Suppose that X0 6= X2n. Then X0 and X2n are orthogonal projections with the
property X2nX0 = 0. Thus the conclusion is obvious. �

Proposition 6.8. For all m ∈ N and f1, f2, . . . , f2n ∈ C[z1, z̄1, . . . , zn, z̄n], we have

tr[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

] = tr[Rf1 , Rf2 , . . . , Rf2n ].

Proof. From the identity P (m) = R′ +Q(m) we obtain

[T
(m)
f1

, T
(m)
f2

, . . . , T
(m)
f2n

] = [R′f1 , R
′
f2 , . . . , R

′
f2n ] + [Q

(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2n

] + SOT,

where SOT stands for “sum of the other terms”. Obviously,

tr[R′f1 , R
′
f2 , . . . , R

′
f2n ] = tr([Rf1 , Rf2 , . . . , Rf2n ]⊕ 0) = tr[Rf1 , Rf2 , . . . , Rf2n ].
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Also, Proposition 6.5 tells us that

tr[Q
(m)
f1

, Q
(m)
f2

, . . . , Q
(m)
f2n

] = 0.

Therefore the proposition will follow if we can show that tr(SOT) = 0.

Since P (m) = R′ +Q(m), a review of Definition 6.6 tells us that

SOT =
∑

(X0,X1,...,X2n)∈Z(m)

∑
σ∈S2n

sgn(σ)X0Dfσ(1)X1Dfσ(2)X2 · · ·X2n−1Dfσ(2n)
X2n,

which, according to Lemma 6.7(a), is a finite-rank operator. We have the partition

Z(m) = X (m) ∪ Y(m),

where

X (m) = {(X0, X1, . . . , X2n) ∈ Z(m) : X0 = X2n} and

Y(m) = {(X0, X1, . . . , X2n) ∈ Z(m) : X0 6= X2n}.

Accordingly,
SOT = U + V,

where

U =
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σ)X0Dfσ(1)X1Dfσ(2)X2 · · ·X2n−1Dfσ(2n)
X2n and

V =
∑

(X0,X1,...,X2n)∈Y(m)

∑
σ∈S2n

sgn(σ)X0Dfσ(1)X1Dfσ(2)X2 · · ·X2n−1Dfσ(2n)
X2n.

Lemma 6.7(c) tells us that tr(V ) = 0. Thus what remains is to show that tr(U) = 0.

To do that, we first apply Lemma 6.7(b), which gives us

tr(U) =
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σ)tr(X0Dfσ(1)X1Dfσ(2)X2 · · ·X2n−1Dfσ(2n)
X2n)

=
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σ)tr(X1Dfσ(2)X2 · · ·X2n−1Dfσ(2n)
X2nDfσ(1)X1).

Let δ be the cyclic permutation on {1, 2, . . . , 2n} such that δ(i) = i+ 1 for 1 ≤ i ≤ 2n− 1
and δ(2n) = 1. Since 2n is even, δ is an odd permutation, i.e., sgn(δ) = −1. Thus

tr(U)

=
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σ)tr(X1Dfσδ(1)X2 · · ·X2n−1Dfσδ(2n−1)
X2nDfσδ(2n)

X1)

= −
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σδ)tr(X1Dfσδ(1)X2 · · ·X2n−1Dfσδ(2n−1)
X2nDfσδ(2n)

X1)

= −
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σ)tr(X1Dfσ(1)X2 · · ·X2n−1Dfσ(2n−1)
X2nDfσ(2n)

X1).

(6.4)
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Then observe that on the set X (m), the map

(X0, X1, . . . , X2n) 7→ (X1, X2, . . . , X2n, X1)

is injective, hence surjective. Therefore we can rewrite U in the form

U =
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σ)X1Dfσ(1)X2Dfσ(2)X3 · · ·X2nDfσ(2n)
X1.

Consequently,

(6.5) tr(U) =
∑

(X0,X1,...,X2n)∈X (m)

∑
σ∈S2n

sgn(σ)tr(X1Dfσ(1)X2Dfσ(2)X3 · · ·X2nDfσ(2n)
X1).

Comparing (6.5) with (6.4), we see that tr(U) = −tr(U). That is, tr(U) = 0 as desired.
This completes the proof. �

After so many steps, we finally have the proof of our main result.

Proof of Theorem 1.3. It follows immediately from Corollary 6.2 and Proposition 6.8. �
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