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Abstract. Continuing our earlier investigation [15] of the essential normality of sub-
modules generated by polynomials, the emphasis of this paper is on submodules of the
Drury-Arveson module H2

n. In the case of two complex variables, we show that for every
polynomial q ∈ C[z1, z2], the submodule [q] of H2

2 is p-essentially normal for p > 2. In the
case of three complex variables, we show that there is a significant class of q ∈ C[z1, z2, z3]
for which the submodule [q] of H2

3 is p-essentially for p > 3. The difficulties involved in
the proofs of these results are determined by the weight t (−n ≤ t < ∞) of the space
involved. Our earlier paper [15] covered the range −2 < t < ∞, which was enough to
settle the problem for all polynomial-generated submodules of the Hardy module H2(S).
In this paper we first solve the problem unconditionally for the weight range −3 < t ≤ −2,
a consequence of which is the H2

2 -result mentioned above. We then consider the weight
t = −3, which requires a substantial amount of additional work. At the moment we are
only able to solve the t = −3 problem under a technical restriction on q, giving us the
partial H2

3 -result mentioned above.

1. Introduction

This paper is a continuation of the investigation [15]. Here we pay particular attention
to the case of the Drury-Arveson space H2

n, a case that was left untouched in [15].

Let B be the open unit ball in Cn. Throughout the paper, the complex dimension n
is always assumed to be greater than or equal to 2. Recall that the Drury-Arveson space
H2
n is naturally a Hilbert module over the polynomial ring C[z1, . . . , zn]. A decade ago,

Arveson raised the question of whether graded submodulesM of H2
n are essentially normal

[2,4,5,8], which is now called the Arveson conjecture. That is, for the restricted operators

ZM,j = Mzj |M, 1 ≤ j ≤ n,

on M, do commutators [Z∗M,j , ZM,i] belong to the Schatten class Cp for p > n? Later in
[10], Douglas proposed analogous, but more refined essential normality problems for sub-
modules of the Bergman module L2

a(B, dv). Ever since, these essential normality problems
have become a very active area of research interest [3,9,11,13,14,18-20,23].

In a breakthrough [12], Douglas and Wang showed that for every q ∈ C[z1, . . . , zn], the
submodule [q] of the Bergman module L2

a(B, dv) is p-essentially normal for p > n. What
is remarkable about this result is that it is unconditional in the respect that it makes
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no assumptions about the polynomial q. This led to our earlier paper [15], where we
showed that the analogous essential normality also holds for every polynomial-generated
submodule [q] of the Hardy module H2(S).

One of the things that we figured out in [15] is that there is a real-valued “weight”
t, −n ≤ t < ∞, that is naturally associated with the essential normality problem. It is
the value of t that actually determines the level of difficulty of the problem: the more
negative the value of t, the harder it is to solve the corresponding problem. In fact, we
will see in this paper that the case t = −3 is much, much harder than the case t > −3.
The complex dimension n affects the level of difficulty only in the sense that in order to
solve the problem for the Drury-Arveson space H2

n, one must deal with the weight t = −n.
Thus for the essential normality problem, progress is measured by the value of t.

Recall that for each real number −n ≤ t <∞, in [15] we introduced the Hilbert space
H(t) of analytic functions on B with the reproducing kernel

(1.1)
1

(1− 〈ζ, z〉)n+1+t
.

Expanding (1.1), one can describe H(t) as the completion of C[z1, . . . , zn] with respect to
the norm ‖·‖t arising from the inner product 〈·, ·〉t defined according to the following rules:
〈zα, zβ〉t = 0 whenever α 6= β,

〈zα, zα〉t =
α!∏|α|

j=1(n+ t+ j)

if α ∈ Zn+\{0}, and 〈1, 1〉t = 1. Here and throughout the paper, we use the conventional

multi-index notation [22,page 3]. Accordingly, the standard orthonormal basis for H(t) is

{e(t)
α : α ∈ Zn+}, where

(1.2) e(t)
α (ζ) =

 1

α!

|α|∏
j=1

(n+ t+ j)

1/2

ζα, α 6= 0,

and e
(t)
0 (ζ) = 1.

The main interest of this paper, the Drury-Arveson space H2
n, is none other than

H(−n). In comparison, H(0) is just the Bergman space L2
a(B, dv), and H(−1) is the Hardy

space H2(S). More generally, for each t > −1, H(t) is a weighted Bergman space.

We emphasize that the weight t and the complex dimension n will always satisfy the
relation t ≥ −n in this paper. Thus, for example, if the weight of the space is assumed to
satisfy the condition t < −2, then the complex dimension n is automatically required to
be at least 3.

Let q ∈ C[z1, . . . , zn]. For each −n ≤ t <∞, let [q](t) denote the closure of

{qf : f ∈ C[z1, . . . , zn]}
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in H(t). Since H(t) is a Hilbert module over C[z1, . . . , zn], [q](t) is a submodule. For each
j ∈ {1, . . . , n}, define submodule operator

Z
(t)
q,j = Mzj |[q](t).

Recall that the submodule [q](t) is said to be p-essentially normal if the commutators

[Z
(t)∗
q,j , Z

(t)
q,i ], i, j ∈ {1, . . . , n}, all belong to the Schatten class Cp.

To motivate what we will do in this paper, let us recall

Theorem 1.1. [15,Theorem 1.1] Let q be an arbitrary polynomial in C[z1, . . . , zn]. Then
for each real number −2 < t < ∞, the submodule [q](t) of H(t) is p-essentially normal for
every p > n.

For this paper, the first order of business is to extend the above theorem to the weight
range −3 < t ≤ −2:

Theorem 1.2. Let q be an arbitrary polynomial in C[z1, . . . , zn]. Then for each real
number −3 < t ≤ −2, the submodule [q](t) of H(t) is p-essentially normal for every p > n.

Applying Theorem 1.2 to the case where n = 2 and t = −2, we obtain the first
unconditional essential normality in a Drury-Arveson space case:

Corollary 1.3. For every q ∈ C[z1, z2], the submodule [q] of the two-variable Drury-
Arveson module H2

2 is p-essentially normal for every p > 2.

Once we have Corollary 1.3, the obvious question is, what about the polynomial-
generated submodules of H2

n for n ≥ 3? This obviously forces us to deal with weights
t ≤ −3. In this paper we will only consider the case t = −3, and even for this case we need
to impose technical conditions on the polynomials involved.

For each q ∈ C[z1, . . . , zn], we write Z(q) for its zero locus. That is,

Z(q) = {z ∈ Cn : q(z) = 0}.

As usual, we write ∂1, . . . , ∂n for the differentiations with respect to the complex variables
z1, . . . , zn. Furthermore, we write R for the radial derivative in n variables, i.e,

(1.3) R = z1∂1 + · · ·+ zn∂n.

Let S denote the unit sphere S = {ξ ∈ Cn : |ξ| = 1} in Cn.

Definition 1.4. Let Gn be the collection of polynomials q ∈ C[z1, . . . , zn] satisfying the
following two conditions:
(a) The radial derivative Rq does not vanish on the set Z(q) ∩ S.
(b) The zero locus Z(q) intersects the unit sphere S transversely.

Note that condition (a) implies that the analytic gradient ∂q = (∂1q, . . . , ∂nq) does
not vanish on the set Z(q) ∩ S, which ensures that (b) makes sense. At every point in
S, the (real) co-dimension of the tangent space to S is 1. Thus condition (b) is simply
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equivalent to the condition that if ξ ∈ Z(q)∩S, then the tangent space to Z(q) at ξ is not
contained in the tangent space to S at ξ. In Section 7 we will show that the combination of
these two conditions is equivalent to a very simple inequality. From this simple inequality
we will see that the membership q ∈ Gn is stable under small perturbation. Consequently,
there are plenty of polynomials in Gn.

Here is what we can prove in the case t = −3:

Theorem 1.5. If q ∈ Gn, n ≥ 3, then the submodule [q](−3) of H(−3) is p-essentially
normal for every p > n.

In the case n = 3, we have H(−3) = H2
3 , the Drury-Arveson space in three variables.

Therefore the above implies

Corollary 1.6. If q ∈ G3, then the submodule [q] of H2
3 is p-essentially normal for every

p > 3.

Next let us explain the strategy for the proofs of Theorems 1.2 and 1.5, and give a
brief outline of the organization of the paper. The reader will see that, as the weight t goes
down the negative scale, more and more analysis is required to prove the desired essential
normality. In particular, all the analysis from [15] will be needed in this paper. For that
reason, we begin our proofs by recalling the necessary propositions in Section 2.

Given the material in Section 2, the central issue in the proofs of Theorems 1.2 and
1.5 revolves around just one single inequality. The best way to explain this is to introduce

Definition 1.7. Suppose that −n ≤ t < ∞ and 0 ≤ ε < 1. Then a polynomial q ∈
C[z1, . . . , zn] is said to be in the class Pn(t; ε) if there is a 0 < C = C(q) <∞ such that

(1.4) ‖fRq‖t+3 ≤ C‖qf‖t+1−ε

for every f ∈ C[z1, . . . , zn].

In Sections 3 and 4, we reduce the proofs of Theorems 1.2 and 1.5 to the proof of
(1.4). More precisely, the work in Sections 3 and 4 culminates in Proposition 4.4, which
tells us that for weights t ≥ −3, the membership q ∈ Pn(t; ε) implies the desired essential
normality for the submodule [q](t).

Then in Section 5, we show that for −3 < t ≤ −2, we have Pn(t; 0) = C[z1, . . . , zn].
This equality together with Proposition 4.4 imply Theorem 1.2. Obviously, we would like
to establish the equality

Pn(−3; 0) = C[z1, . . . , zn].

But this we are not able to do as of this writing. Instead, it takes the efforts of Sections
6, 7 and 8 to just show that Gn ⊂ Pn(−3; ε), 0 < ε < 1/2, giving us Theorem 1.5.

Finally, in Section 9 we show that there are plenty of polynomials in the class Gn.

2. Some known facts

This section serves two purposes. First, we collect a number of standard notations.
Second, we recall several propositions from [15] that will be needed in this paper.
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Following [12,15], for each pair of i 6= j in {1, . . . , n} we define

Li,j = z̄j∂i − z̄i∂j .

In addition to the n-variable radial derivative R given by (1.3), we will also need the
one-variable radial derivative. We will denote the one-variable radial derivative by R.

An alternate representation of the n-variable radial derivative is the number operator
N introduced by Arveson in [1]. Recall that, for a polynomial f(z) =

∑
α cαz

α,

(Nf)(z) =
∑
α

cα|α|zα.

Thus, in fact we have Nf = Rf for every f ∈ C[z1, . . . , zn]. But historically, both N and
R are standard fixtures in papers about the Drury-Arveson space, and that will be the
case for this paper.

Let dv be the volume measure on B with the normalization v(B) = 1. For each real
number t > −1, define

an,t =
1

n!

n∏
j=1

(t+ j).

Using the reproducing kernel and [22,Proposition 1.4.9], it is straightforward to verify that

(2.1) 〈f, g〉t = an,t

∫
f(ζ)g(ζ)(1− |ζ|2)tdv(ζ)

for f, g ∈ H(t), t > −1. In other words, if t > −1, then H(t) is the weighted Bergman
space L2

a(B, an,t(1− |ζ|2)tdv(ζ)).

Proposition 2.1. [15,Proposition 3.4] There is a constant 1 ≤ C2.1 < ∞ such that the
following estimate holds: Suppose that q ∈ C[z1, . . . , zn] and that deg(q) = K ≥ 1. Let
f ∈ C[z1, . . . , zn]. Then for every positive number t > 0 and all integers i 6= j in {1, . . . , n},
we have∫

|(Li,jq)(z)f(z)|2(1− |z|2)tdv(z) ≤ C2.12t(K!)2

∫
|q(ζ)f(ζ)|2(1− |ζ|2)t−1dv(ζ).

One can interpret Proposition 2.1 as saying that each Li,j carries a “weight” of −1.
In comparison, the “weight” of the radial derivative R is −2:

Proposition 2.2. [15,Proposition 3.5] There is a constant 1 ≤ C2.2 < ∞ such that the
following estimate holds: Suppose that q ∈ C[z1, . . . , zn] and that deg(q) = K ≥ 1. Let
f ∈ C[z1, . . . , zn]. Then for each pair of k ∈ N and t ∈ (0,∞) satisfying the condition
t− 2k > −1,∫

|(Rkq)(ζ)f(ζ)|2(1− |ζ|2)tdv(ζ) ≤ CK(k+t)
2.2 (K!)2

∫
|q(ζ)f(ζ)|2(1− |ζ|2)t−2kdv(ζ).

5



Proposition 2.3. [15,Proposition 3.6] There is a constant 1 ≤ C2.3 < ∞ such that the
following estimate holds: Suppose that q ∈ C[z1, . . . , zn] and that deg(q) = K ≥ 1. Let
f ∈ C[z1, . . . , zn]. Then for each t ∈ (1,∞) and each j ∈ {1, . . . , n}, we have∫

|(∂jq)(ζ)f(ζ)|2(1− |ζ|2)tdv(ζ) ≤ CKt2.3(K!)2

∫
|q(ζ)f(ζ)|2(1− |ζ|2)t−2dv(ζ).

For each t ≥ −n and each polynomial q, we write M
(t)
q for the operator of multipli-

cation by q on the space H(t). Keep in mind that the operation of taking adjoint “∗” is

t-specific: M
(t)∗
q means the adjoint of M

(t)
q with respect to the inner product 〈·, ·〉t.

Proposition 2.4. [15,Proposition 5.1] Let q ∈ C[z1, . . . , zn], 1 ≤ j ≤ n and t ≥ −n. For
f ∈ C[z1, . . . , zn] satisfying the condition f(0) = 0, we have

M (t)∗
zj M (t)

q f −M (t)
q M (t)∗

zj f =
∞∑
k=0

(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f.

Proposition 2.5. [15,Proposition 5.2] Let t ≥ −n and ` ∈ N.
(1) For each f ∈ C[z1, . . . , zn] satisfying the condition (∂αf)(0) = 0 for |α| < ` and each
non-negative integer k, we have

‖(N + 1 + n+ t)−k−1f‖2t ≤
(n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)2k+2
‖f‖22k+2+t.

(2) For each f ∈ C[z1, . . . , zn] satisfying the condition (∂αf)(0) = 0 for |α| < ` + 1, each
non-negative integer k and each 1 ≤ j ≤ n, we have

‖(N +1+n+ t)−k−1(M (t)∗
zj −M

(t+2k+2)∗
zj )f‖2t ≤ (2k+4)4 (n+ 2k + 4 + t+ `)2`

(`+ 1 + n+ t)2k+2
‖f‖22k+4+t.

Let us recall Stirling’s asymptotic expansion for r(r + 1) · · · (r + k), r > 0, which will
be needed for several estimates in this paper. Indeed from the identity

1

2
{f(1) + f(0)} =

∫ 1

0

f(x)dx− 1

2

∫ 1

0

(x2 − x)f ′′(x)dx

for C2-functions one derives the formula

k∑
j=0

log(r + j) =
1

2
{log r + log(r + k)}+

∫ k

0

log(r + x)dx+
1

2

k−1∑
j=0

∫ 1

0

x2 − x
(r + j + x)2

dx,

k ∈ N. Evaluating the integral
∫ k

0
and then exponentiating both sides, we find that

(2.2)

k∏
j=0

(r + j) = (r + k)r+k+(1/2)e−kec(r;k),

6



where c(r; k) has a finite limit (which depends on r) as k →∞.

Next we turn to a class of Lorentz-like ideals that are naturally involved in the inves-
tigation of essential normality. For a bounded operator A, let s1(A), . . . , sk(A), . . . denote
its s-numbers. Recall that, for each 1 ≤ p <∞, the formula

(2.3) ‖A‖+p = sup
k≥1

s1(A) + s2(A) + · · ·+ sk(A)

1−1/p + 2−1/p + · · ·+ k−1/p

defines a symmetric norm for operators [17,Section III.14]. On any Hilbert space H, the
set C+

p = {A ∈ B(H) : ‖A‖+p <∞} is a norm ideal [17,Section III.2]. It is well known that
if p < p′, then C+

p is contained in the Schatten class Cp′ .

For a non-increasing sequence of non-negative numbers {a1, . . . , ak, . . . }, if a1 + · · ·+
ak ≤ C(1−1/p + · · · + k−1/p), then kak ≤ C(1−1/p + · · · + k−1/p). It follows that if p > 1
and if T ∈ C+

p , then there is a 0 < C(T ) <∞ such that sk(T ) ≤ C(T )k−1/p for every k ∈
N. Thus if p > 1 and if B is a bounded operator such that B∗B ∈ C+

p , then B ∈ C+
2p.

Our next proposition is a slight improvement of Proposition 4.2 in [15]. The improve-
ment lies in the incorporation of an extra “ε”, which will appear in the proof of Theorem
1.5, and which we believe will be important for future investigations.

Proposition 2.6. Let 0 ≤ ε < 1. Suppose that E is a linear subspace of C[z1, . . . , zn] and
that t ≥ −n. Let E(t) be the closure of E in H(t), and let E(t) be the orthogonal projection
from H(t) to E(t). Suppose that A ∈ B(H(t)), and suppose that there is a C such that

(2.4) ‖Ag‖t ≤ C‖g‖t+1−ε

for every g ∈ E. Then AE(t) ∈ C+
2n/(1−ε).

Proof. Given 0 ≤ ε < 1 and t ≥ −n, let J : H(t) → H(t+1−ε) be the natural embedding
operator. An elementary calculation using (1.2) shows that

(2.5) J∗Je(t)
α = cαe

(t)
α , α ∈ Zn+,

where

cα =

∏|α|
j=1(n+ t+ j)∏|α|

j=1(n+ t+ 1− ε+ j)

for α 6= 0 and c0 = 1. By (2.2), there is a 0 < C1 <∞ that is determined by the values of
n+ t (≥ 0) and 1− ε (> 0) such that

(2.6) cα ≤
C1

(|α|+ 1)1−ε

for every α ∈ Zn+. Since {e(t)
α : α ∈ Zn+} is an orthonormal basis for H(t), (2.5) gives us all

the s-numbers of J∗J . Thus it follows from (2.6) and (2.3) that J∗J ∈ C+
n/(1−ε).
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Let E, E(t) and A be the same as in the statement of the proposition. Then (2.4)
implies that the operator inequality

(AE(t))∗AE(t) ≤ C2E(t)J∗JE(t)

holds on the Hilbert space H(t). Hence sk((AE(t))∗AE(t)) ≤ sk(C2E(t)J∗JE(t)) for every
k ∈ N [17,Lemma II.1.1]. Since J∗J ∈ C+

n/(1−ε), it follows that (AE(t))∗AE(t) ∈ C+
n/(1−ε).

Since n/(1− ε) ≥ n ≥ 2 > 1, this implies the membership AE(t) ∈ C+
2n/(1−ε). �

We conclude this section with an elementary inequality that will be needed in the
sequel. For each −n ≤ t <∞, there exist constants 0 < c(t) ≤ C(t) <∞ such that

(2.7) c(t)‖f‖2t ≤ |f(0)|2 + ‖Rf‖2t+2 ≤ C(t)‖f‖2t

for every f ∈ C[z1, . . . , zn]. This follows easily from (1.2).

3. Commutation relations

We will see that, given the propositions in Section 2, the proofs of Theorems 1.2 and
1.5 are easily reduced to norm estimates for fRq, f∂jq and fLj,kq for the range of weights
−3 ≤ t ≤ −2. The purpose of this section is to further reduce these estimates to just one,
namely that for norm of fRq alone. In other words, in this section we want to show that
the desired norm bound for fRq implies the desired norm bounds for fLj,kq and f∂jq. For
this we must deal with the commutation relations of the differential operators involved,
and the work in this section is unfortunately very repetitive and tedious.

We will consider ∂1, . . . , ∂n also as operators on the linear space C∞(B) in the usual
way. That is, for each j ∈ {1, . . . , n},

∂j =
1

2

(
∂

∂xj
− i ∂

∂yj

)
,

where xj + iyj = zj , the j-th complex variable. Similarly, Mz1 , . . . ,Mzn and Mz̄1 , . . . ,Mz̄n

will be regarded as operators on C∞(B). If j 6= k, then ∂j commutes with both Mzk and
Mz̄k . For each j ∈ {1, . . . , n}, we have

[∂j ,Mzj ] = 1 while [∂j ,Mz̄j ] = 0.

The radial derivative R = z1∂1 + · · · + zn∂n also acts on C∞(B). Moreover, the above
commutation relations lead to

(3.1) [R,Mzj ] = Mzj while [R,Mz̄j ] = 0,

j ∈ {1, . . . , n}. Recall that for j 6= k in {1, . . . , n}, Lj,k = z̄k∂j − z̄j∂k. Since [∂j , R] = ∂j ,
we have

(3.2) [Lj,k, R] = Lj,k
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for each pair of j 6= k. Also recall that the class Pn(t; ε) was defined in Definition 1.7.

Lemma 3.1. Suppose that t ≥ −3 and 0 ≤ ε < 1. Then for every q ∈ Pn(t; ε), there is a
constant 0 < C3.1(q) <∞ such that∫

|(R(fLj,kq))(z)|2(1− |z|2)t+4dv(z) ≤ C3.1(q)‖qf‖2t+1−ε

for all f ∈ C[z1, . . . , zn] and j 6= k in {1, . . . , n}.

Proof. Since R(fLj,kq) = Rf · Lj,kq + fRLj,kq, we have

(3.3)

∫
|(R(fLj,kq))(z)|2(1− |z|2)t+4dv(z) ≤ 2(X + Y ),

where

X =

∫
|(Rf)(z)(Lj,kq)(z)|2(1− |z|2)t+4dv(z) and

Y =

∫
|(RLj,kq)(z)f(z)|2(1− |z|2)t+4dv(z).

We estimate X and Y separately.

For X, since t+ 4 ≥ −3 + 4 = 1, we can apply Proposition 2.1 to q to obtain

(3.4) X ≤ C1

∫
|q(z)(Rf)(z)|2(1− |z|2)t+3dv(z).

Note that qRf = R(qf)− fRq. Therefore (3.4) implies

X ≤ 2C1(X1 +X2),

where

X1 =

∫
|(R(qf))(z)|2(1− |z|2)t+3dv(z) and

X2 =

∫
|(Rq)(z)f(z)|2(1− |z|2)t+3dv(z).

By (2.7) and (2.1) we have

X1 ≤ C2‖qf‖2t+1 and X2 = C3‖fRq‖2t+3,

where C3 = a−1
n,t+3. By the membership q ∈ Pn(t; ε), ‖fRq‖t+3 ≤ C‖qf‖t+1−ε. Hence

X2 ≤ C3C
2‖qf‖2t+1−ε. Since ‖qf‖t+1 ≤ ‖qf‖t+1−ε, combining the above, we obtain

(3.5) X ≤ 2C1(C2 + C3C
2)‖qf‖2t+1−ε.
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To estimate Y , note that (3.2) gives us RLj,kq = Lj,kRq − Lj,kq. Hence

Y ≤ 2(Y1 + Y2),

where

Y1 =

∫
|(Lj,kRq)(z)f(z)|2(1− |z|2)t+4dv(z) and

Y2 =

∫
|(Lj,kq)(z)f(z)|2(1− |z|2)t+4dv(z).

Applying Proposition 2.1 to Rq and then using the membership q ∈ Pn(t; ε), we have

Y1 ≤ C1

∫
|(Rq)(z)f(z)|2(1− |z|2)t+3dv(z) = C1C3‖fRq‖2t+3 ≤ C1C3C

2‖qf‖2t+1−ε.

An application of Proposition 2.1 to q then gives us

Y2 ≤ C1

∫
|q(z)f(z)|2(1− |z|2)t+3dv(z) = C1C3‖qf‖2t+3 ≤ C1C3‖qf‖2t+1−ε.

Consequently,
Y ≤ 2(C1C3C

2 + C1C3)‖qf‖2t+1−ε.

Combining this with (3.5) and (3.3), we find that∫
|(R(fLj,kq))(z)|2(1− |z|2)t+4dv(z) ≤ 4{C1(C2 + C3C

2) + C1C3C
2 + C1C3}‖qf‖2t+1−ε.

This proves the lemma. �

Lemma 3.2. Suppose that t ≥ −3 and 0 ≤ ε < 1. Then for every q ∈ Pn(t; ε), there is a
constant 0 < C3.2(q) <∞ such that∫

|(R∂jq)(z)f(z)|2(1− |z|2)t+5dv(z) ≤ C3.2(q)‖qf‖2t+1−ε

for all f ∈ C[z1, . . . , zn] and j ∈ {1, . . . , n}.

Proof. By the commutation relation R∂j = ∂jR− ∂j , we have

(3.6)

∫
|(R∂jq)(z)f(z)|2(1− |z|2)t+5dv(z) ≤ 2(X + Y ),

where

X =

∫
|(∂jRq)(z)f(z)|2(1− |z|2)t+5dv(z) and

Y =

∫
|(∂jq)(z)f(z)|2(1− |z|2)t+5dv(z).
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Since t+ 5 ≥ 2, applying Proposition 2.3 to Rq, we obtain

X ≤ C1

∫
|(Rq)(z)f(z)|2(1− |z|2)t+3dv(z) = C1C2‖fRq‖2t+3,

where C2 = a−1
n,t+3. Since q ∈ Pn(t; ε), we have ‖fRq‖t+3 ≤ C‖qf‖t+1−ε. Therefore

(3.7) X ≤ C1C2C
2‖qf‖2t+1−ε.

Also by Proposition 2.3, we have

Y ≤ C1

∫
|q(z)f(z)|2(1− |z|2)t+3dv(z) = C1C2‖qf‖2t+3 ≤ C1C2‖qf‖2t+1−ε.

Combining this with (3.7) and (3.6), we find that∫
|(R∂jq)(z)f(z)|2(1− |z|2)t+5dv(z) ≤ 2(C1C2C

2 + C1C2)‖qf‖2t+1−ε,

proving the lemma. �

Lemma 3.3. Suppose that t ≥ −3 and 0 ≤ ε < 1. Then for every q ∈ Pn(t; ε), there is a
constant 0 < C3.3(q) <∞ such that∫

|(∂jq)(z)f(z)|2(1− |z|2)t+3dv(z) ≤ C3.3(q)‖qf‖2t+1−ε

for every f ∈ C[z1, . . . , zn] satisfying the condition f(0) = 0 and every j ∈ {1, . . . , n}.

Proof. By (2.7), there is a constant C1 such that∫
|g(z)|2(1− |z|2)t+3dv(z) ≤ C1

∫
|(Rg)(z)|2(1− |z|2)t+5dv(z)

for every g ∈ C[z1, . . . , zn] satisfying the condition g(0) = 0. Since (∂jq)(0)f(0) =
(∂jq)(0)× 0 = 0, it follows that∫

|(∂jq)(z)f(z)|2(1− |z|2)t+3dv(z) ≤ C1

∫
|(R(f∂jq))(z)|2(1− |z|2)t+5dv(z).

Now, R(f∂jq) = Rf · ∂jq + fR∂jq. Therefore

(3.8)

∫
|(∂jq)(z)f(z)|2(1− |z|2)t+3dv(z) ≤ 2C1(X + Y ),

where

X =

∫
|(∂jq)(z)(Rf)(z)|2(1− |z|2)t+5dv(z) and

Y =

∫
|(R∂jq)(z)f(z)|2(1− |z|2)t+5dv(z).
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By Lemma 3.2, we have

(3.9) Y ≤ C3.2(q)‖qf‖2t+1−ε.

On the other hand, by Proposition 2.3,

X ≤ C2

∫
|q(z)(Rf)(z)|2(1− |z|2)t+3dv(z).

Since qRf = R(qf)− fRq, we have X ≤ 2C2(X1 +X2), where

X1 =

∫
|(R(qf))(z)|2(1− |z|2)t+3dv(z) and

X2 =

∫
|(Rq)(z)f(z)|2(1− |z|2)t+3dv(z).

Since q ∈ Pn(t; ε), we have X2 = C3‖fRq‖2t+3 ≤ C3C
2‖qf‖2t+1−ε. By (2.7),

X1 ≤ C4‖qf‖2t+1 ≤ C4‖qf‖2t+1−ε.

Therefore

X ≤ 2C2(C4 + C3C
2)‖qf‖2t+1−ε.

Combining this with (3.9) and (3.8), we find that∫
|(∂jq)(z)f(z)|2(1− |z|2)t+3dv(z) ≤ 2C1{2C2(C4 + C3C

2) + C3.2(q)}‖qf‖2t+1−ε.

This completes the proof. �

Lemma 3.4. Suppose that t ≥ −3. Then there is a constant C3.4 that depends only on t
and the complex dimension n such that the following estimate holds: Let h ∈ C[z1, . . . , zn]
satisfy the condition (∂αh)(0) = 0 for all α ∈ Zn+ such that |α| ≤ 1. Let g ∈ C[z1, . . . , zn]
be such that g(0) = 0. Then for every j ∈ {1, . . . , n} we have

‖g −M (t+4)∗
zj h‖2t+2 ≤ C3.4

∫
{|(Rg)(z)− z̄j(Rh)(z)|2 + |h(z)|2}(1− |z|2)t+4dv(z).

Proof. First of all, by (2.7) there is a constant C1 such that

‖f‖2t+2 ≤ C1

∫
|(Rf)(z)|2(1− |z|2)t+4dv(z)

for every f ∈ C[z1, . . . , zn] satisfying the condition f(0) = 0. We will show that the
constant C3.4 = 2C1 works for the lemma. Note that if h ∈ C[z1, . . . , zn] is such that
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(∂αh)(0) = 0 for all α ∈ Zn+ satisfying the condition |α| ≤ 1, then (M
(t+4)∗
zj h)(0) = 0.

Hence if g ∈ C[z1, . . . , zn] satisfies the condition g(0) = 0, then

‖g −M (t+4)∗
zj h‖2t+2 ≤ C1

∫
|(Rg)(z)− (RM (t+4)∗

zj h)(z)|2(1− |z|2)t+4dv(z).

Recall from (3.1) that [R,Mzj ] = Mzj . Taking the adjoint on the Hilbert space H(t+4), we

find that RM
(t+4)∗
zj = M

(t+4)∗
zj R−M (t+4)∗

zj . Thus if we set C3.4 = 2C1, then

(3.10) ‖g −M (t+4)∗
zj h‖2t+2 ≤ C3.4(X + Y ),

where

X =

∫
|(Rg)(z)− (M (t+4)∗

zj Rh)(z)|2(1− |z|2)t+4dv(z) and

Y =

∫
|(M (t+4)∗

zj h)(z)|2(1− |z|2)t+4dv(z).

If we write P (t+4) for the orthogonal projection from L2(B, dvt+4) to the weighted Bergman
space L2

a(B, dvt+4), where dvt+4(z) = an,t+4(1− |z|2)t+4dv(z), then

Rg −M (t+4)∗
zj Rh = P (t+4)(Rg −Mz̄jRh).

Hence

(3.11) X ≤
∫
|(Rg)(z)− z̄j(Rh)(z)|2(1− |z|2)t+4dv(z).

Similarly, M
(t+4)∗
zj h = P (t+4)Mz̄jh. Therefore

Y ≤
∫
|z̄jh(z)|2(1− |z|2)t+4dv(z) ≤

∫
|h(z)|2(1− |z|2)t+4dv(z).

Combining this with (3.10) and (3.11), the lemma follows. �

We are now ready to tackle the main objective of the section:

Proposition 3.5. Suppose that t ≥ −3 and that 0 ≤ ε < 1. Then for every q ∈ Pn(t; ε),
there is a constant C3.5(q) such that

‖(M (t+2)
∂jq

−M (t+4)∗
zj M

(t+2)
Rq )f‖2t+2 ≤ C3.5(q)‖qf‖2t+1−ε

for every f ∈ C[z1, . . . , zn] satisfying the condition f(0) = 0 and every j ∈ {1, . . . , n}.

Proof. Note that (Rq)(0) = 0. Thus for f ∈ C[z1, . . . , zn] satisfying the condition f(0) = 0,
we also have (∂i(fRq))(0) = 0 for i = 1, . . . , n. Hence, applying Lemma 3.4 to the case
where g = f∂jq and h = fRq, we obtain

(3.12) ‖(M (t+2)
∂jq

−M (t+4)∗
zj M

(t+2)
Rq )f‖2t+2 ≤ C3.4(X + Y ),
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where

X =

∫
|(R(f∂jq))(z)− z̄j(R(fRq))(z)|2(1− |z|2)t+4dv(z) and

Y =

∫
|(Rq)(z)f(z)|2(1− |z|2)t+4dv(z).

Obviously,

(3.13) Y ≤
∫
|(Rq)(z)f(z)|2(1− |z|2)t+3dv(z) = C1‖fRq‖2t+3 ≤ C1C

2‖qf‖2t+1−ε,

where the second ≤ is due to the membership q ∈ Pn(t; ε).

To estimate X, note that R commutes with Mz̄j . Consequently,

R(f∂jq)− z̄jR(fRq) = R(f∂jq)−R(fz̄jRq) = R{f(∂jq − z̄jRq)}.

We have ∂j − z̄jR = (1− |z|2)∂j +
∑
k 6=j zkLj,k. Therefore

(3.14) X ≤ n(X1 + · · ·+Xn),

where

Xk =

∫
|(R(fzkLj,kq))(z)|2(1− |z|2)t+4dv(z) for k 6= j and

Xj =

∫
|(R((1− |z|2)f∂jq))(z)|2(1− |z|2)t+4dv(z).

By the product rule, R(fzkLj,kq) = zkfLk,jq + zkR(fLj,kq). Hence if k 6= j, then

Xk ≤ 2(Ak +Bk),

where

Ak =

∫
|(Lj,kq)(z)f(z)|2(1− |z|2)t+4dv(z) and

Bk =

∫
|(R(fLj,kq))(z)|2(1− |z|2)t+4dv(z).

Since t+ 4 ≥ −3 + 4 = 1, we can apply Proposition 2.1 to obtain

Ak ≤ C1

∫
|q(z)f(z)|2(1− |z|2)t+3dv(z) = C1C2‖qf‖2t+3 ≤ C1C2‖qf‖2t+1−ε.

Since q ∈ Pn(t; ε), by Lemma 3.1 we have Bk ≤ C3.1(q)‖qf‖2t+1−ε. Therefore

(3.15) Xk ≤ 2(C1C2 + C3.1(q))‖qf‖2t+1−ε
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for every k 6= j.

To estimate Xj , again apply the product rule, and note that R|z|2 = |z|2. We have

Xj ≤ 3(U + V +W ),

where

U =

∫
|(∂jq)(z)(Rf)(z)|2(1− |z|2)t+6dv(z),

V =

∫
|(∂jq)(z)f(z)|2(1− |z|2)t+4dv(z) and

W =

∫
|(R∂jq)(z)f(z)|2(1− |z|2)t+6dv(z).

Applying Proposition 2.3, we have

U ≤ C3

∫
|q(z)(Rf)(z)|2(1− |z|2)t+4dv(z) ≤ 2C3(U1 + U2),

where

U1 =

∫
|(R(qf))(z)|2(1− |z|2)t+4dv(z) and

U2 =

∫
|(Rq)(z)f(z)|2(1− |z|2)t+4dv(z).

By (2.7), U1 ≤ C4‖qf‖2t+2 ≤ C4‖qf‖2t+1−ε. Also, U2 ≤ C5‖fRq‖2t+3 ≤ C5C
2‖qf‖2t+1−ε.

Therefore
U ≤ 2C3(C4 + C5C

2)‖qf‖2t+1−ε.

Applying Lemma 3.2 to W and Lemma 3.3 to V , we have

V +W ≤ (C3.3(q) + C3.2(q))‖qf‖2t+1−ε.

Consequently,

Xj ≤ 3{2C3(C4 + C5C
2) + C3.3(q) + C3.2(q)}‖qf‖2t+1−ε.

Recalling (3.14) and (3.15), we see that

X ≤ n{2(n− 1)(C1C2 + C3.1(q)) + 6C3(C4 + C5C
2) + 3C3.3(q) + 3C3.2(q)}‖qf‖2t+1−ε.

Finally, combining this inequality with (3.13) and (3.12), the proposition is proved. �

4. Essential normality
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Our goal for this section is very clear: we want to show that for weights t ≥ −3, the
membership q ∈ Pn(t; ε) implies the desired essential normality for the submodule [q](t).

Lemma 4.1. Let f ∈ C[z1, . . . , zn] be such that f(0) = 0. Then for every t ≥ −n and

every j ∈ {1, . . . , n} we have ‖(M (t)∗
zj −M

(t+4)∗
zj )f‖2t+2 ≤ 28‖f‖2t+4.

Proof. Let ej be the element in Zn+ whose j-th component is 1 and whose other components
are 0. Using (1.2), straightforward calculation gives us

(4.1) M (t)∗
zj zα =

αj
n+ t+ |α|

zα−ej

whenever the j-th component αj of α is greater than 0. Hence

(M (t)∗
zj −M

(t+4)∗
zj )zα =

4αj
(n+ t+ |α|)(n+ t+ 4 + |α|)

zα−ej = 4M (t+4)∗
zj (N + n+ t)−1zα.

Recall that we denote the number operator by N . Since f(0) = 0, (N + n+ t)−1f is well
defined. Thus we can define

f̃ = (N + 1 + n+ t+ 2)(N + n+ t)−1f.

Obviously, ‖f̃‖τ ≤ 4‖f‖τ for every τ ≥ −n and f̃(0) = 0. From the above we see that

(M (t)∗
zj −M

(t+4)∗
zj )f = 4M (t+4)∗

zj (N + 1 + n+ t+ 2)−1f̃ .

By (4.1), we have ‖M (t+4)∗
zj g‖t+2 ≤ ‖M (t+2)∗

zj g‖t+2 ≤ ‖g‖t+2, g ∈ C[z1, . . . , zn]. Hence

(4.2) ‖(M (t)∗
zj −M

(t+4)∗
zj )f‖2t+2 ≤ 24‖(N + 1 + n+ t+ 2)−1f̃‖2t+2.

Applying Proposition 2.5(1) to the case ` = 1 and k = 0, we have

‖(N + 1 + n+ t+ 2)−1f̃‖2t+2 ≤
n+ 2 + t+ 2 + 1

(1 + 1 + n+ t+ 2)2
‖f̃‖2t+4 ≤ ‖f̃‖2t+4 ≤ 24‖f‖2t+4.

Combining this with (4.2), the lemma follows. �

Lemma 4.2. Suppose that t ≥ −3 and that 0 ≤ ε < 1. Then for every q ∈ Pn(t; ε), there
is a constant C4.2(q) such that

‖(N + 1 + n+ t)−1(M
(t)
∂jq
−M (t)∗

zj M
(t)
Rq)f‖2t ≤ C4.2(q)‖qf‖2t+1−ε

for every f ∈ C[z1, . . . , zn] satisfying the condition f(0) = 0 and every j ∈ {1, . . . , n}.

Proof. Since f(0) = 0 and (Rq)(0) = 0, we have ((M
(t)
∂jq
−M (t)∗

zj M
(t)
Rq)f)(0) = 0. Thus

another application of Proposition 2.5(1) to the case ` = 1 and k = 0 gives us

‖(N + 1 + n+ t)−1(M
(t)
∂jq
−M (t)∗

zj M
(t)
Rq)f‖2t ≤ ‖(M

(t+2)
∂jq

−M (t)∗
zj M

(t+2)
Rq )f‖2t+2.
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Since M
(t)∗
zj = M

(t+4)∗
zj + (M

(t)∗
zj −M

(t+4)∗
zj ), we have

‖(N + 1 + n+ t)−1(M
(t)
∂jq
−M (t)∗

zj M
(t)
Rq)f‖2t ≤ 2(X + Y ),

where

X = ‖(M (t+2)
∂jq

−M (t+4)∗
zj M

(t+2)
Rq )f‖2t+2 and Y = ‖(M (t)∗

zj −M
(t+4)∗
zj )fRq‖2t+2.

By Proposition 3.5, we have X ≤ C3.5(q)‖qf‖2t+1−ε. Applying Lemma 4.1,

Y ≤ 28‖fRq‖2t+4 ≤ 28‖fRq‖2t+3.

Then the membership q ∈ Pn(t; ε) gives us Y ≤ 28C2‖qf‖2t+1−ε. Hence

‖(N + 1 + n+ t)−1(M
(t)
∂jq
−M (t)∗

zj M
(t)
Rq)f‖2t ≤ 2(C3.5(q) + 28C2)‖qf‖2t+1−ε,

proving the lemma. �

Lemma 4.3. Suppose that t ≥ −3 and that 0 ≤ ε < 1. For each q ∈ Pn(t; ε), there
is a constant C4.3 = C4.3(q) such that the following estimate holds: Suppose that f ∈
C[z1, . . . , zn] satisfies the condition (∂αf)(0) = 0 for |α| ≤ ` + 1, where ` ∈ N. Then for
every natural number k ≥ 1 and every j ∈ {1, . . . , n},

‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f‖t

≤ (n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

4.3 ‖qf‖t+1−ε.

Proof. This is similar to the proof of [15,Proposition 5.3], but involves more steps because
we now allow t ≥ −3. Also note that this lemma only considers k ≥ 1. Since

M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
= (M

(t)

∂jRkq
−M (2k+2+t)∗

zj M
(t)

Rk+1q
)− (M (t)∗

zj −M
(2k+2+t)∗
zj )M

(t)

Rk+1q
,

we have

(4.3) ‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f‖t ≤ A+B,

where

A = ‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (2k+2+t)∗

zj M
(t)

Rk+1q
)f‖t and

B = ‖(N + 1 + n+ t)−k−1(M (t)∗
zj −M

(2k+2+t)∗
zj )M

(t)

Rk+1q
f‖t.

For A, we apply Proposition 2.5(1), which gives us

(4.4) A ≤ (n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)k+1
‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t.
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Since k ≥ 1 and t ≥ −3, H(2k+2+t) is a weighted Bergman space, and we have

‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t

≤ a1/2
n,2k+2+t

(∫
|{(∂jRkq)(z)− z̄j(Rk+1q)(z)}f(z)|2(1− |z|2)2k+2+tdv(z)

)1/2

.

The identity ∂j − z̄jR = (1− |z|2)∂j +
∑
i 6=j ziLj,i then leads to

‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t

≤ a1/2
n,2k+2+t

(∫
|(∂jRkq)(z)f(z)|2(1− |z|2)2k+4+tdv(z)

)1/2

+ a
1/2
n,2k+2+t

∑
i 6=j

(∫
|(Lj,iRkq)(z)f(z)|2(1− |z|2)2k+2+tdv(z)

)1/2

.(4.5)

Suppose that the degree of q equals K ≥ 1. Applying Proposition 2.3 to the polynomial
Rkq and Proposition 2.2 to Rq, we obtain∫

|(∂jRkq)(z)f(z)|2(1− |z|2)2k+4+tdv(z)

≤ CK(2k+4+t)
2.3 (K!)2

∫
|(Rkq)(z)f(z)|2(1− |z|2)2k+2+tdv(z)

≤ (C2.3C2.2)K(3k+4+t)(K!)4

∫
|(Rq)(z)f(z)|2(1− |z|2)4+tdv(z)

≤ (C2.3C2.2)K(3k+4+t)(K!)4‖fRq‖2t+3.

Since q ∈ Pn(t; ε), we now have

(4.6)

∫
|(∂jRkq)(z)f(z)|2(1− |z|2)2k+4+tdv(z) ≤ (C2.3C2.2)K(3k+4+t)(K!)4C2‖qf‖2t+1−ε.

Similarly, we apply Propositions 2.1 and 2.2 to obtain∫
|(Lj,iRkq)(z)f(z)|2(1− |z|2)2k+2+tdv(z)

≤ C2.122k+2+t(K!)2

∫
|(Rkq)(z)f(z)|2(1− |z|2)2k+1+tdv(z)

≤ C2.1(2C2.2)K(3k+2+t)(K!)4

∫
|(Rq)(z)f(z)|2(1− |z|2)3+tdv(z).

Applying the membership q ∈ Pn(t; ε) to bound the last integral, we have
(4.7)∫

|(Lj,iRkq)(z)f(z)|2(1− |z|2)2k+2+tdv(z) ≤ C2.1(2C2.2)K(3k+2+t)(K!)4C2‖qf‖2t+1−ε.
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Note that an,2k+2+t ≤ (n!)−1(n + 2k + 2 + t)n. Combining (4.5), (4.6) and (4.7), we see
that there is a C1 that depends only on n, t and q ∈ Pn(t; ε) such that

‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t ≤ Ck+1

1 ‖qf‖t+1−ε.

Recalling (4.4), this gives us

(4.8) A ≤ (n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)k+1
Ck+1

1 ‖qf‖t+1−ε.

By Proposition 2.5(2), we have

B ≤ (n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
‖M (t)

Rk+1q
f‖2k+4+t.

Applying Proposition 2.2 to the polynomial Rq, we obtain

‖M (t)

Rk+1q
f‖22k+4+t = an,2k+4+t

∫
|(RkRq)(z)f(z)|2(1− |z|2)2k+4+tdv(z)

≤ an,2k+4+tC
K(3k+4+t)
2.2 (K!)2

∫
|(Rq)(z)f(z)|2(1− |z|2)4+tdv(z).

Hence

‖M (t)

Rk+1q
f‖22k+4+t ≤ an,2k+4+tC

K(3k+4+t)
2.2 (K!)2‖fRq‖2t+3

≤ an,2k+4+tC
K(3k+4+t)
2.2 (K!)2C2‖qf‖2t+1−ε.

Thus there is a C2 that depends only on n, t and q ∈ Pn(t; ε) such that

‖M (t)

Rk+1q
f‖2k+4+t ≤ Ck+1

2 ‖qf‖t+1−ε.

Consequently,

B ≤ (n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

2 ‖qf‖t+1−ε.

Combining this with (4.8) and (4.3), the proof of the lemma is complete. �

Proposition 4.4. Suppose that t ≥ −3 and that 0 ≤ ε < 1. Let q ∈ Pn(t; ε). Then the
submodule [q](t) of H(t) is essentially normal. More precisely, the submodule operators

Z
(t)
q,j = Mzj |[q](t), 1 ≤ j ≤ n,

have the property [Z
(t)∗
q,j , Z

(t)
q,i ] ∈ C

+
n/(1−ε) for all j, i ∈ {1, . . . , n}.
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Proof. Given q ∈ Pn(t; ε), let C4.3 = C4.3(q) be the constant provided by Lemma 4.3. We
then pick an ` ∈ N satisfying the condition

(4.9) `+ 1 + n+ t > 2C4.3.

With this `, we define

E = {qf : f ∈ C[z1, . . . , zn], (∂αf)(0) = 0 for |α| ≤ `+ 1}.

Let Q(t) be the orthogonal projection from H(t) onto H(t) 	 [q](t). Let j ∈ {1, . . . , n}, and
let f ∈ C[z1, . . . , zn] be such that (∂αf)(0) = 0 for |α| ≤ `+ 1. Then

Q(t)M (t)∗
zj qf = Q(t)M (t)∗

zj M (t)
q f = Q(t)(M (t)∗

zj M (t)
q −M (t)

q M (t)∗
zj )f.

Applying Propositions 2.4, we have

‖Q(t)M (t)∗
zj qf‖t ≤

∞∑
k=0

‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f‖t.

For the sum on the right-hand side, we apply Lemma 4.2 to the term k = 0 and Lemma
4.3 to the terms k ≥ 1. The result of this is

‖Q(t)M (t)∗
zj qf‖t ≤ C1/2

4.2 (q)‖qf‖t+1−ε +
∞∑
k=1

(n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

4.3 ‖qf‖t+1−ε.

That is,

(4.10) ‖Q(t)M (t)∗
zj g‖t ≤ C‖g‖t+1−ε for every g ∈ E,

where

C = C
1/2
4.2 (q) +

∞∑
k=1

(n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

4.3 .

Note that (4.9) ensures that C < ∞. Let E(t) be the closure of E in H(t), and let
E(t) : H(t) → E(t) be the orthogonal projection. By Proposition 2.6, (4.10) implies that

Q(t)M (t)∗
zj E

(t) ∈ C+
2n/(1−ε).

Let P (t) be the orthogonal projection from H(t) onto [q](t). Since E(t) is a subspace of
[q](t) of finite codimension, we have rank(P (t) − E(t)) <∞. Therefore

Q(t)M (t)∗
zj P (t) ∈ C+

2n/(1−ε).

On the spaceH(t), it is well known that [M
(t)∗
zj ,M

(t)
zi ] ∈ C+

n . Thus it follows from a standard

argument that [Z
(t)∗
q,j , Z

(t)
q,i ] ∈ C

+
n/(1−ε), i, j ∈ {1, . . . , n}. This completes the proof. �
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5. Estimates of Dirichlet type

Having proved Proposition 4.4, our next goal is to establish the equality Pn(t; 0) =
C[z1, . . . , zn] for the range of weights −3 < t ≤ −2. This together with Proposition 4.4
will obviously imply Theorem 1.2.

Lemma 5.1. For each real number s < 1/2, there exists a constant 0 < C5.1(s) <∞ such
that the inequality

∞∑
i=1

∣∣∣∣∣∣ 1

is

∞∑
j=i

cj
j1−s

∣∣∣∣∣∣
2

≤ C5.1(s)
∞∑
i=1

|ci|2

holds for every {ci} ∈ `2(N).

Proof. This lemma is in fact a discrete variant of a well-known inequality of Hardy. See,
e.g., [6,Lemma 3.3.9]. But since its proof is easy enough, let us produce it here anyway.

Given s < 1/2, we set

C(s) = 22(1−s)
∫ ∞

1

1

y2(1−s) (2 + log y)
2
dy.

The condition s < 1/2 ensures that C(s) <∞. If j ≤ x ≤ j+1 with j ≥ 1, then 1/j ≤ 2/x.
Thus for each i ∈ N we have

(5.1)
1

i

∞∑
j=i

(
i

j

)2(1−s)(
2 + log

j

i

)2

≤ 1

i

∫ ∞
i

(
2i

x

)2(1−s) (
2 + log

x

i

)2

dx = C(s),

where the = is obtained by making the substitution y = x/i. By a similar argument, there
is a 0 < C1 <∞ such that the inequality

(5.2)

j∑
i=1

1

i(2 + log(j/i))2
≤ C1

holds for every j ∈ N. Suppose now that {ci} ∈ `2(N) is given. Then define

bi =
1

is

∞∑
j=i

cj
j1−s =

1

i

∞∑
j=i

(
i

j

)1−s

cj

for each i ∈ N. Applying the Cauchy-Schwarz inequality and (5.1), we have

|bi|2 ≤
1

i

∞∑
j=i

(
i

j

)2(1−s)(
2 + log

j

i

)2

· 1

i

∞∑
j=i

|cj |2

(2 + log(j/i))2
≤ C(s)

i

∞∑
j=i

|cj |2

(2 + log(j/i))2
.
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Therefore

∞∑
i=1

|bi|2 ≤
∞∑
i=1

C(s)

i

∞∑
j=i

|cj |2

(2 + log(j/i))2
= C(s)

∞∑
j=1

|cj |2
j∑
i=1

1

i(2 + log(j/i))2

≤ C(s)C1

∞∑
j=1

|cj |2,

where the second ≤ follows from (5.2). This completes the proof. �

Denote D = {z ∈ C : |z| < 1}, the open unit disc in the complex plane. Let dA be
the area measure on D with the normalization A(D) = 1. Let T denote the unit circle
{τ ∈ C : |τ | = 1}. For this section, we will write ∂ for the one-variable differentiation d/dz
on C. But we always write R for the one-variable radial derivative. That is, R = z∂.

For each −1 < t ≤ 1 and each one-variable polynomial f , define

(5.3) Nt(f) = |f(0)|2 +

∫
|(Rf)(z)|2(1− |z|2)tdA(z).

Keep in mind that Nt has the following rotation invariance: For any polynomial f and
any τ ∈ T, if we set fτ (z) = f(τz), then Nt(fτ ) = Nt(f).

Lemma 5.2. For each 0 < t ≤ 1, there is a 0 < C5.2(t) <∞ such that the inequality∫
|f(z)|2 (1− |z|2)t

|1− z|2
dA(z) ≤ C5.2(t)Nt(f)

holds for every one-variable polynomial f .

Proof. Let 0 < t ≤ 1 be given. Then an easy integration shows that

(5.4)

∫
|zk|2(1− |z|2)tdA(z) =

k!∏k
j=0(t+ 1 + j)

for each k ∈ Z+. It follows from the asymptotic formula (2.2) that there are positive
numbers α = α(t) and β = β(t) such that

(5.5)
α

(k + 1)1+t
≤
∫
|zk|2(1− |z|2)tdA(z) ≤ β

(k + 1)1+t

for every k ∈ Z+.

Given a one-variable polynomial f , we write it in the form f(z) =
∑∞
k=0 ukz

k, where
uk ∈ C, and uk = 0 for all but a finite number of k’s. Then

f(z)

1− z
=
∞∑
k=0

k∑
i=0

uiz
k,
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z ∈ D. Thus it follows from (5.5) that

∫
|f(z)|2 (1− |z|2)t

|1− z|2
dA(z) ≤

∞∑
k=0

β

(k + 1)1+t

∣∣∣∣∣
k∑
i=0

ui

∣∣∣∣∣
2

≤
∞∑
k=0

2β

(k + 1)1+t

∑
0≤i≤j≤k

|ui||uj |.

A change of the order of summation in the above gives us∫
|f(z)|2 (1− |z|2)t

|1− z|2
dA(z) ≤

∞∑
i=0

|ui|
∞∑
j=i

|uj |
∞∑
k=j

2β

(k + 1)1+t
≤ 8β

t

∞∑
i=0

|ui|
∞∑
j=i

|uj |
(j + 1)t

.

Now set s = (1− t)/2. Since t > 0, we have s < 1/2. For each i ∈ N, define ci = |ui−1|is =
|ui−1|i(1−t)/2. Since t+ s = (1 + t)/2 = 1− s, the above inequality can be rewritten as∫

|f(z)|2 (1− |z|2)t

|1− z|2
dA(z) ≤ 8β

t

∞∑
i=1

ci
is

∞∑
j=i

cj
j1−s .

By the Cauchy-Schwarz inequality, we now have

∫
|f(z)|2 (1− |z|2)t

|1− z|2
dA(z) ≤ 8β

t

( ∞∑
i=1

c2i

)1/2
 ∞∑
i=1

 1

is

∞∑
j=i

cj
j1−s


2


1/2

.

An application of Lemma 5.1 then gives us

(5.6)

∫
|f(z)|2 (1− |z|2)t

|1− z|2
dA(z) ≤ 8β

t
C

1/2
5.1 (s)

∞∑
i=1

c2i =
8β

t
C

1/2
5.1 (s)

∞∑
i=0

|ui|2(i+ 1)1−t.

On the other hand,

(Rf)(z) =

∞∑
k=1

kukz
k.

Applying (5.5), we have

|f(0)|2 +

∫
|(Rf)(z)|2(1− |z|2)tdA(z) ≥ |u0|2 +

∞∑
k=1

αk2|uk|2

(k + 1)1+t

≥ 1

4
min{α, 1}

∞∑
k=0

(k + 1)1−t|uk|2.

Combining this inequality with (5.6), the lemma follows. �

Lemma 5.3. For each 0 < t ≤ 1, there is a 0 < C5.3(t) <∞ such that the inequality

|f(w)|2(1− |w|2)t ≤ C5.3(t)Nt(f)
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holds for every w ∈ D and every one-variable polynomial f .

Proof. Let 0 < t ≤ 1 be given. Set c
(t)
0 = 1. For each k ∈ N, set

c
(t)
k =

(
k2

∫
|zk|2(1− |z|2)tdA(z)

)−1

.

For each w ∈ D, define

K(t)
w (z) =

∞∑
k=0

c
(t)
k w̄kzk.

We first show that

(5.7)

∫
|(RK(t)

w )(z)|2(1− |z|2)tdA(z) ≤ (6/t)

(1− |w|2)t

for every w ∈ D. Indeed since (RK(t)
w )(z) =

∑∞
k=1 kc

(t)
k w̄kzk, we have

∫
|(RK(t)

w )(z)|2(1− |z|2)tdA(z) =
∞∑
k=1

|kc(t)k w̄k|2
∫
|zk|2(1− |z|2)tdA(z) =

∞∑
k=1

c
(t)
k |w|

2k.

By (5.4), for each k ∈ N we have

c
(t)
k =

(t+ k)(t+ k + 1)

k2t
· 1

k!

k−1∏
j=0

(t+ j) ≤
(

6

t

)
1

k!

k−1∏
j=0

(t+ j).

Therefore ∫
|(RK(t)

w )(z)|2(1− |z|2)tdA(z) ≤ 6

t

∞∑
k=1

(|w|2)k

k!

k−1∏
j=0

(t+ j).

Comparing this with the power series expansion

1

(1− u)t
= 1 +

∞∑
k=1

uk

k!

k−1∏
j=0

(t+ j), u ∈ D,

(5.7) is proved.

Let a polynomial f be given, and again write it in the form f(z) =
∑∞
k=0 ukz

k. Then

for each w ∈ D, it follows from the definition of c
(t)
k that

f(w) = u0 +
∞∑
k=1

ukw
k = f(0)K

(t)
w (0) +

∫
(Rf)(z)(RK(t)

w )(z)(1− |z|2)tdA(z).
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Applying the Cauchy-Schwarz inequality and (5.7), we now have

|f(w)|2 ≤ 2|f(0)|2 + 2

∫
|(Rf)(z)|2(1− |z|2)tdA(z)

∫
|(RK(t)

w )(z)|2(1− |z|2)tdA(z)

≤ 2|f(0)|2 +
(12/t)

(1− |w|2)t

∫
|(Rf)(z)|2(1− |z|2)tdA(z) ≤ (12/t)

(1− |w|2)t
Nt(f).

This proves the lemma. �

For each a ∈ D, we define the disc D(a) = {w ∈ D : |w − a| < (1/2)(1− |a|)}.

Lemma 5.4. Let 0 < t ≤ 1 be given. Then there is a constant 0 < C5.4(t) <∞ such that
for every one-variable polynomial f and every a ∈ D, we have∫

D(a)

|f(z)|2(1− |z|2)tdA(z) ≤ C5.4(t)Nt(Φf,a),

where Φf,a(z) = (z − a)f(z).

Proof. For each a ∈ D, define W (a) = {w ∈ D : (3/4)(1− |a|) < |w− a| < (7/8)(1− |a|)}.
It is elementary that there is a C1 such that the inequality

sup
z∈D(a)

|f(z)|2 ≤ C1

(1− |a|)2

∫
W (a)

|f |2dA

holds for every a ∈ D and every polynomial f . If w ∈W (a), then (4/3)(1−|a|)−1|w−a| > 1
by definition. Therefore

sup
z∈D(a)

|f(z)|2 ≤ 2C1

(1− |a|)2

∫
W (a)

∣∣∣∣ w − a1− |a|
f(w)

∣∣∣∣2 dA(w) =
2C1

(1− |a|)4

∫
W (a)

|Φf,a|2dA.

If z ∈ D(a), then 1 − |z| ≤ 1 − |a| + |a − z| < (3/2)(1 − |a|). If w ∈ W (a), then
1− |w| ≥ 1− |a| − |a− w| ≥ (1/8)(1− |a|). Thus the inequality

1− |z| ≤ 12(1− |w|)

holds for every pair of z ∈ D(a) and w ∈W (a). Let 0 < t ≤ 1. Then the above yields

sup
z∈D(a)

|f(z)|2(1− |z|2)t ≤ 48C1

(1− |a|)4

∫
W (a)

|Φf,a(w)|2(1− |w|2)tdA(w).

Lemma 5.3 tells us that

|Φf,a(w)|2(1− |w|2)t ≤ C5.3(t)Nt(Φf,a)

for every w ∈ D. Therefore

sup
z∈D(a)

|f(z)|2(1− |z|2)t ≤ 48C1A(W (a))

(1− |a|)4
C5.3(t)Nt(Φf,a) ≤ 48C1

(1− |a|)2
C5.3(t)Nt(Φf,a).
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Consequently∫
D(a)

|f(z)|2(1− |z|2)tdA(z) ≤ 48C1A(D(a))

(1− |a|)2
C5.3(t)Nt(Φf,a) = 12C1C5.3(t)Nt(Φf,a).

This completes the proof. �

Lemma 5.5. Let 0 < t ≤ 1 be given. Then there is a constant 0 < C5.5(t) <∞ such that
for every one-variable polynomial f and every a ∈ C, we have∫

|f(z)|2(1− |z|2)tdA(z) ≤ C5.5(t)Nt(Φf,a),

where Φf,a(z) = (z − a)f(z) and Nt was defined by (5.3).

Proof. Given an a ∈ C, write it in the form a = ρτ , where ρ ∈ [0,∞) and τ ∈ T. (1) First
suppose that a /∈ D, i.e., ρ ≥ 1. This leads to the inequality

|z − ρ| ≥ |z − 1|

for every z ∈ D. Given a polynomial f , define h(z) = (τz − a)f(τz) = τ(z − ρ)f(τz).
Using the rotation invariance of dA and applying Lemma 5.2 to h, we have∫

|f(z)|2(1− |z|2)tdA(z) =

∫
|f(τz)|2(1− |z|2)tdA(z) =

∫
|h(z)|2 (1− |z|2)t

|z − ρ|2
dA(z)

≤
∫
|h(z)|2 (1− |z|2)t

|z − 1|2
dA(z) ≤ C5.2(t)Nt(h) = C5.2(t)Nt(Φf,a),

where the last = follows from the relation h(z) = Φf,a(τz) and the rotation invariance of
Nt. This proves the lemma in the case a /∈ D.

(2) Now let us suppose that a ∈ D, i.e., ρ ∈ [0, 1). Given a polynomial f , we again
define h(z) = (τz − a)f(τz). We have

(5.8)

∫
|f(z)|2(1− |z|2)tdA(z) = X + Y,

where

X =

∫
D(a)

|f(z)|2(1− |z|2)tdA(z) and Y =

∫
D\D(a)

|f(z)|2(1− |z|2)tdA(z).

Since Lemma 5.4 tells us that

(5.9) X ≤ C5.4(t)Nt(Φf,a),

we only need to estimate Y . For this, note that |τ − a| = 1 − ρ = 1 − |a|. Thus, by the
definition of D(a), if z /∈ D(a), then |z − a| ≥ (1/2)|τ − a|. Hence for each z ∈ D\D(a),

|z − a| = 1

3
|z − a|+ 2

3
|z − a| ≥ 1

3
{|z − a|+ |τ − a|} ≥ 1

3
|z − τ |.
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Consequently,

Y =

∫
D\D(a)

|(z − a)f(z)|2 (1− |z|2)t

|z − a|2
dA(z) ≤ 9

∫
|(z − a)f(z)|2 (1− |z|2)t

|z − τ |2
dA(z)

= 9

∫
|h(z)|2 (1− |z|2)t

|τz − τ |2
dA(z) = 9

∫
|h(z)|2 (1− |z|2)t

|z − 1|2
dA(z).

Applying Lemma 5.2 to h, we have

Y ≤ 9C5.2(t)Nt(h) = 9C5.2(t)Nt(Φf,a),

where the = is again due to the relation h(z) = Φf,a(τz) and the rotation invariance of
Nt. Combining this with (5.8) and (5.9), the proof is now complete. �

Proposition 5.6. Suppose that 0 < t ≤ 1. Let g and f be one-variable polynomials. If the
degree of g equals K ≥ 1, then∫

|(∂g)(z)f(z)|2(1− |z|2)tdA(z) ≤ C5.5(t)K2Nt(gf),

where C5.5(t) is the constant given in Lemma 5.5.

Proof. If the degree of g equals K, then there are c, a1, . . . , aK ∈ C such that

g(z) = c(z − a1) · · · (z − aK).

By the product rule for differentiation, ∂g = g1 + · · ·+ gK , where

gj(z) = c
∏
i 6=j

(z − ai).

By the Cauchy-Schwarz inequality, we have

(5.10)

∫
|(∂g)(z)f(z)|2(1− |z|2)tdA(z) ≤ K

K∑
j=1

∫
|gj(z)f(z)|2(1− |z|2)tdA(z).

For each 1 ≤ j ≤ K, note that if we define Φgjf,aj (z) = (z − aj)(gjf)(z) as before, then
Φgjf,aj = gf . Thus, applying Lemma 5.5 to gjf and aj , we obtain∫

|gj(z)f(z)|2(1− |z|2)tdA(z) ≤ C5.5(t)Nt(Φgjf,aj ) = C5.5(t)Nt(gf).

Combining this with (5.10), the proposition follows. �

Let dσ be the positive, regular Borel measure on S that is invariant under the orthog-
onal group O(2n), i.e., the group of isometries on Cn ∼= R2n that fix 0. We take the usual
normalization σ(S) = 1. If h is a function on B, for each ξ ∈ S we define the function

hξ(z) = h(zξ), z ∈ D,
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on the unit disc. For each ξ ∈ S, hξ is often called a “slice” of h. Since dv = 2nr2n−1drdσ,
dA = 2rdrdm, and since dσ is invariant under rotation, we have

(5.11)

∫
Gdv = n

∫ (∫
Gξ(z)|z|2n−2dA(z)

)
dσ(ξ)

for every G that is continuous on the closure of B.

Lemma 5.7. There is a constant 0 < C5.7 <∞ such that the inequality∫ (∫
|fξ(z)|2(1− |z|2)tdA(z)

)
dσ(ξ) ≤ C5.7

∫
|f(ζ)|2(1− |ζ|2)tdv(ζ)

holds for every f ∈ C[z1, . . . , zn] and every 0 < t ≤ 1.

Proof. First of all, it is an easy exercise to show that there is a constant 0 < C <∞ such
that the inequality∫

|z|<1/2

|ϕ(z)|2dA(z) ≤ C
∫

1/2≤|z|<1

|ϕ(z)|2(1− |z|2)dA(z)

holds for every one-variable polynomial ϕ. Thus for each f ∈ C[z1, . . . , zn] and each
0 < t ≤ 1, we have∫ ∫

|fξ(z)|2(1− |z|2)tdA(z)dσ(ξ) ≤ (1 + C)

∫ ∫
1/2≤|z|<1

|fξ(z)|2(1− |z|2)tdA(z)dσ(ξ)

≤ (1 + C)22n−2

∫ ∫
1/2≤|z|<1

|fξ(z)|2(1− |zξ|2)t|z|2n−2dA(z)dσ(ξ).

Combining this with (5.11), the lemma follows. �

Recall that for each g ∈ C[z1, . . . , zn] and each ξ ∈ S, we have the relation (Rgξ)(z) =
(Rg)ξ(z), z ∈ C.

Lemma 5.8. For each 0 < t ≤ 1, there is a constant 0 < C5.8(t) <∞ such that

(5.12)

∫
Nt(fξ)dσ(ξ) ≤ C5.8(t)‖f‖2t−2

for every f ∈ C[z1, . . . , zn].

Proof. For f ∈ C[z1, . . . , zn] and 0 < t ≤ 1, Lemma 5.7 gives us∫ ∫
|(Rfξ)(z)|2(1− |z|2)tdA(z)dσ(ξ) =

∫ ∫
|(Rf)ξ(z)|2(1− |z|2)tdA(z)dσ(ξ)

≤ C5.7

∫
|(Rf)(ζ)|2(1− |ζ|2)tdv(ζ).

28



Combining this with (5.3) and (2.7), we obtain (5.12). �

Proposition 5.9. For each 0 < t ≤ 1, there is a constant 0 < C5.9(t) < ∞ such that the
following estimate holds: Let q, f ∈ C[z1, . . . , zn]. If the degree of q equals K ≥ 1, then∫

|(Rq)(ζ)f(ζ)|2(1− |ζ|2)tdv(ζ) ≤ C5.9(t)K2‖qf‖2t−2.

Proof. Let 0 < t ≤ 1 and q, f ∈ C[z1, . . . , zn]. If deg(q) = K, then Proposition 5.6 gives us∫
|(Rq)ξ(z)fξ(z)|2(1− |zξ|2)tdA(z) =

∫
|(Rqξ)(z)fξ(z)|2(1− |z|2)tdA(z)

≤ C5.5(t)K2Nt(qξfξ) = C5.5(t)K2Nt((qf)ξ)

for every ξ ∈ S. Integrating both side with respect to dσ and applying (5.11) and Lemma
5.8, we have∫

|(Rq)(ζ)f(ζ)|2(1− |ζ|2)tdv(ζ) ≤ n
∫ ∫

|(Rq)ξ(z)fξ(z)|2(1− |zξ|2)tdA(z)dσ(ξ)

≤ nC5.5(t)K2

∫
Nt((qf)ξ)dσ(ξ) ≤ nC5.5(t)K2C5.8(t)‖qf‖2t−2

as promised. �

Proposition 5.10. For each −3 < t ≤ −2 we have Pn(t; 0) = C[z1, . . . , zn].

Proof. Let q ∈ C[z1, . . . , zn] and suppose that the degree of q equals K. If −3 < t ≤ −2,
then 0 < t+ 3 ≤ 1. Thus we can apply Proposition 5.9 to obtain∫

|(Rq)(ζ)f(ζ)|2(1− |ζ|2)3+tdv(ζ) ≤ C‖qf‖23+t−2 = C‖qf‖2t+1

for every f ∈ C[z1, . . . , zn], where C = C5.9(t+ 3)K2. Since t+ 3 > 0, we have

‖fRq‖2t+3 = an,t+3

∫
|(Rq)(ζ)f(ζ)|2(1− |ζ|2)3+tdv(ζ).

Therefore ‖fRq‖2t+3 ≤ an,t+3C‖qf‖2t+1 for every f ∈ C[z1, . . . , zn]. By Definition 1.7, this
means q ∈ Pn(t; 0), completing the proof. �

Proof of Theorem 1.2. This follows immediately from Propositions 5.10 and 4.4. �

6. The weight t = −3

In view of the proof of Theorem 1.2 above, for the case t = −3 we obviously would like
to establish the equality Pn(−3; 0) = C[z1, . . . , zn], or at least Pn(−3; ε) = C[z1, . . . , zn] for
0 < ε < 1. But unfortunately we are not able to do that at the moment. This is because
the approach in Section 5 breaks down for the weight t = −3. In fact, the breakdown
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occurs in one-variable estimates. Namely, in order to prove the analogue of Proposition
5.10 for t = −3 using the approach in Section 5, one would have to prove Proposition 5.6
for the case t = 0. That is, one would have to prove an inequality of the form

(6.1)

∫
|(∂g)(z)f(z)|2dA(z) ≤ CN0(gf),

where C is independent of f . But if one simply tries g(z) = 1 − z and f(z) = 1 + rz +
· · ·+ (rz)k for 0 < r < 1 and k ∈ N, one sees that (6.1) in general fails.

At first, this failure might suggest that the case t = −3 is hopeless. But if one carefully
analyzes how (6.1) fails, one sees that it is still possible to show that Pn(−3; ε) contains a
substantial subset of C[z1, . . . , zn].

Indeed a careful analysis shows that the example we gave above is already the worst
case scenario for (6.1), namely g has a zero on the unit circle T. Recall from Section 5 that
g represents the slices qξ, ξ ∈ S, of the n-variable polynomial q under consideration. Thus
our analysis tells us that if the circle

{τξ : τ ∈ T}

runs through the zero locus Z(q), then qξ is a bad slice for q. But fortunately, there are
not too many such bad slices for each q ∈ Gn, and the other slices of such a q are all
“salvageable”. This is the idea behind the proof of Theorem 1.5. But it takes quite a bit
of work to bring this idea to fruition.

Lemma 6.1. Given any 0 < ε < 1, there is a 0 < C6.1(ε) <∞ such that the inequality∫
|f(z)|2

|z − a|2
dA(z) ≤ C6.1(ε)

(|a| − 1)ε
N0(f)

holds for every a ∈ C with |a| > 1 and every one-variable polynomial f .

Proof. Let 0 < ε < 1 be given. Since N0(f) = N0(fτ ) for τ ∈ T, where fτ (z) = f(τz), it
suffices to consider the case where a is real and a > 1. For such an a, we have

1

|z − a|2
≤ 1

(a− 1)ε
· 1

|z − a|2−ε
≤ 1

(a− 1)ε
· 1

|1− z|2−ε

for every z ∈ D. Therefore

(6.2)

∫
|f(z)|2

|z − a|2
dA(z) ≤ 1

(a− 1)ε

∫
|f(z)|2

|1− z|2−ε
dA(z).

On the unit disc D, we have the power series expansion

1

(1− z)1−(ε/2)
=
∞∑
j=0

bjz
j , where bj =

1

j!

j−1∏
i=0

(1− (ε/2) + i) for j ≥ 1.
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By the asymptotic expansion (2.2), there is a constant C such that

bj ≤
C

(j + 1)ε/2
for every j ≥ 0.

Given a one-variable polynomial f , we write it in the form f(z) =
∑∞
k=0 ukz

k, where uk ∈
C, and uk = 0 for all but a finite number of k’s. Then

f(z)

(1− z)1−(ε/2)
=

∞∑
k=0

k∑
i=0

uibk−iz
k,

z ∈ D. Consequently,

∫
|f(z)|2

|1− z|2−ε
dA(z) =

∞∑
k=0

1

k + 1

∣∣∣∣∣
k∑
i=0

uibk−i

∣∣∣∣∣
2

≤
∞∑
k=0

2C2

k + 1

∑
0≤i≤j≤k

|ui||uj |
(k − i+ 1)ε/2(k − j + 1)ε/2

.

A change of the order of summation in the above gives us∫
|f(z)|2

|1− z|2−ε
dA(z) ≤

∞∑
i=0

|ui|
∞∑
j=i

|uj |
∞∑
k=j

2C2

(k + 1)(k − i+ 1)ε/2(k − j + 1)ε/2
.

Obviously, for all integers k ≥ j ≥ i ≥ 0 we have

∞∑
k=j

1

(k + 1)1−(ε/2)(k − i+ 1)ε/2(k − j + 1)ε/2
≤
∞∑
k=0

1

(k + 1)1+(ε/2)
= C1 <∞.

Therefore ∫
|f(z)|2

|1− z|2−ε
dA(z) ≤ C2

∞∑
i=0

|ui|
∞∑
j=i

|uj |
(j + 1)ε/2

,

where C2 = 2C2C1. Set s = (1− (ε/2))/2. Since ε > 0, we have s < 1/2. For each i ∈ N,
define ci = |ui−1|is = |ui−1|i(1−(ε/2))/2. Since (ε/2) + s = (1 + (ε/2))/2 = 1− s, the above
inequality can be rewritten as∫

|f(z)|2

|1− z|2−ε
dA(z) ≤ C2

∞∑
i=1

ci
is

∞∑
j=i

cj
j1−s .

As in the proof of Lemma 5.2, an application of Lemma 5.1 now gives us∫
|f(z)|2

|1− z|2−ε
dA(z) ≤ C2C

1/2
5.1 (s)

∞∑
i=1

c2i = C2C
1/2
5.1 (s)

∞∑
i=0

|ui|2(i+ 1)1−(ε/2).
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On the other hand,

N0(f) = |f(0)|2 +

∫
|(Rf)(z)|2dA(z) = |u0|2 +

∞∑
k=1

k2|uk|2

k + 1
≥ 1

4

∞∑
k=0

(k + 1)|uk|2.

Thus ∫
|f(z)|2

|1− z|2−ε
dA(z) ≤ 4C2C

1/2
5.1 (s)N0(f).

Combining this inequality with (6.2), the lemma follows. �

Lemma 6.2. Given any 0 < ε < 1, there is a 0 < C6.2(ε) <∞ such that

(6.3)

∫
|f(z)|2dA(z) ≤ C6.2(ε)

||a| − 1|ε
N0(Φf,a)

for every a ∈ C\T and every one-variable polynomial f , where Φf,a(z) = (z − a)f(z).

Proof. In the case |a| > 1, since f(z) = Φf,a(z)/(z − a), (6.3) is obtained by applying
Lemma 6.1 to Φf,a. Thus let us suppose that |a| < 1. That is, a = reiθ for some r ∈ [0, 1)
and θ ∈ R. We define

b = (1 + (1− r))eiθ = (2− r)eiθ.

Recall that D(a) = {w ∈ D : |w − a| < (1/2)(1− |a|)}. Now, if z ∈ D\D(a), then

|z − b| ≤ |z − a|+ |b− a| = |z − a|+ 2(1− |a|) ≤ |z − a|+ 4|z − a| = 5|z − a|.

That is, 5|z − a|/|z − b| ≥ 1 for z ∈ D\D(a). By this inequality and Lemma 6.1, we have∫
D\D(a)

|f(z)|2dA(z) ≤ 25

∫
D\D(a)

|Φf,a(z)|2

|z − b|2
dA(z)

≤ 25C6.1(ε)

(|b| − 1)ε
N0(Φf,a) =

25C6.1(ε)

(1− |a|)ε
N0(Φf,a).(6.4)

On the other hand, by Lemma 5.4, we have∫
D(a)

|f(z)|2(1− |z|2)εdA(z) ≤ C5.4(ε)Nε(Φf,a) ≤ C5.4(ε)N0(Φf,a).

But if z ∈ D(a), then 1− |z| ≥ 1− |a| − |z − a| ≥ (1/2)(1− |a|). Hence the above implies∫
D(a)

|f(z)|2dA(z) ≤ 2C5.4(ε)

(1− |a|)ε
N0(Φf,a).

Combining this with (6.4), the lemma follows. �

Definition 6.3. For a one-variable polynomial g of degree at least 1, we write

∆(g) = inf{|a− τ | : g(a) = 0, τ ∈ T}.
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Proposition 6.4. Suppose that 0 < ε < 1. Let g and f be one-variable polynomials. If the
degree of g equals K ≥ 1 and if g has no zeros on the unit circle T, then∫

|(∂g)(z)f(z)|2dA(z) ≤ C6.2(ε)

(∆(g))ε
K2N0(gf),

where C6.2(ε) is the constant given in Lemma 6.2.

Proof. Since ∆(g) = min{||a| − 1| : g(a) = 0}, this proposition is derived from Lemma 6.2
in exactly the same way that Proposition 5.6 was derived from Lemma 5.5. �

The estimate in Proposition 6.4 tells us how to proceed. First, let us introduce

Definition 6.5. Let q ∈ C[z1, . . . , zn].
(1) Set B(q) = {τζ : ζ ∈ S ∩ Z(q), τ ∈ T}.
(2) For each ξ ∈ S, let ∆(q; ξ) = inf{|τξ − ζ| : τ ∈ T, ζ ∈ Z(q)}.

In other words, ∆(q; ξ) is the distance between the circular slice {τξ : τ ∈ T} and the
zero locus Z(q) of q. In the case where Z(q) = ∅, i.e., when q is a nonzero constant, we
interpret ∆(q; ξ) as ∞ and 1/∆(q; ξ) as 0.

For our purpose, B(q) is the bad set for q, hence the notation. This set is bad because
if ξ ∈ B(q), then Proposition 6.4 is useless for the slice {zξ : z ∈ D}.

Recalling Definition 1.7, in the case t = −3 we need to estimate ‖fRq‖−3+3 = ‖fRq‖0.
By (5.11) and the relation (Rq)ξ(z) = (Rqξ)(z), z ∈ C, we have

‖fRq‖20 =

∫
|(Rq)(ζ)f(ζ)|2dv(ζ) ≤ n

∫ ∫
|(Rqξ)(z)fξ(z)|2dA(z)dσ(ξ).

If the polynomial q somehow has the property σ(B(q)) = 0, then

‖fRq‖20 ≤ n
∫
S\B(q)

∫
|(Rqξ)(z)fξ(z)|2dA(z)dσ(ξ).

Let 0 < ε < 1. For each ξ ∈ S\B(q), since qξ does not vanish on T, Proposition 6.4 is
applicable. Since ∆(q; ξ) ≤ ∆(qξ), ξ ∈ S, Proposition 6.4 gives us

‖fRq‖20 ≤ nC6.2(ε)K2

∫
S\B(q)

N0(qξfξ)

(∆(q; ξ))ε
dσ(ξ) = nC6.2(ε)K2

∫
S\B(q)

N0((qf)ξ)

(∆(q; ξ))ε
dσ(ξ)

= nC6.2(ε)K2

∫
S\B(q)

(
|q(0)f(0)|2 +

∫
|(R(qf)ξ)(z)|2dA(z)

)
1

(∆(q; ξ))ε
dσ(ξ)

= nC6.2(ε)K2

∫
S\B(q)

(
|q(0)f(0)|2 +

∫
|(R(qf))(zξ)|2dA(z)

)
1

(∆(q; ξ))ε
dσ(ξ),(6.5)

where K is the degree of q. This tells us to further introduce
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Definition 6.6. Given any q ∈ C[z1, . . . , zn] and 0 < ε < 1, we let µq;ε be the measure on
S given by the formula

µq;ε(A) =

∫
A\B(q)

1

(∆(q; ξ))ε
dσ(ξ)

for Borel sets A ⊂ S.

Proposition 6.7. For q ∈ C[z1, . . . , zn] and 0 < ε < 1/2, we have q ∈ Pn(−3; ε) whenever
the following two conditions are satisfied:
(1) σ(B(q)) = 0.
(2) There is a constant C such that∫ ∫

|h(zξ)|2dA(z)dµq;2ε(ξ) ≤ C
∫
|h(ζ)|2(1− |ζ|2)−εdv(ζ)

for every h ∈ C[z1, . . . , zn].

Proof. First of all, condition (2) implies µq;2ε(S) <∞. Continuing with (6.5), if we apply
condition (2) to the polynomial h = R(qf), f ∈ C[z1, . . . , zn], then

‖fRq‖20 ≤ nC6.2(2ε)K2

(
µq;2ε(S)|q(0)f(0)|2 + C

∫
|(R(qf))(ζ)|2(1− |ζ|2)−εdv(ζ)

)
,

where K is the degree of q. On the other hand, (2.7) tells us that

|q(0)f(0)|2 +

∫
|(R(qf))(ζ)|2(1− |ζ|2)−εdv(ζ) ≤ C1‖qf‖2−ε−2 = C1‖qf‖2−3+1−ε.

Thus the membership q ∈ Pn(−3; ε) follows from these two inequalities. �

7. A growth condition for µq;ε

From Propositions 4.4 and 6.7 we see the roadmap for the proof of Theorem 1.5: it
suffices to show that if q ∈ Gn, n ≥ 3, then q satisfies conditions (1) and (2) in Proposition
6.7 for 0 < ε < 1/2. But this will take a few steps. Our goal for this section is to show
that the membership q ∈ Gn implies a certain growth condition for the measure µq;ε.

For ζ ∈ Cn and r > 0, let E(ζ, r) be the corresponding Euclidian ball in Cn. That is,

E(ζ, r) = {w ∈ Cn : |w − ζ| < r}.

We begin this section with a consequence of condition (a) in Definition 1.4.

Lemma 7.1. Let q ∈ C[z1, . . . , zn] and suppose that q satisfies condition (a) in Definition
1.4. That is, suppose that Rq does not vanish on the set Z(q) ∩ S. Then for every given
1 ≤ C <∞, there exist L,M ∈ N such that for every pair of ` ≥ L and ξ ∈ S, we have

card{k ∈ Z+ : 0 ≤ k ≤ `− 1, E(e2kπi/`ξ, C/`) ∩ Z(q) 6= ∅} ≤M.
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Proof. Let q be given as in the statement. We divide the proof into five steps.

(1) Since Rq does not vanish on Z(q) ∩ S and since (Rq)ξ(z) = (Rqξ)(z), z ∈ C,
there is no ξ ∈ S for which the one-variable polynomial qξ is identically zero. Thus, by the
compactness of S, there is a c > 0 such that maxτ∈T |qξ(τ)| ≥ c for every ξ ∈ S.

(2) Suppose that the deg(q) = K ≥ 1. For each ξ ∈ S, we factor qξ in the form

(7.1) qξ(z) = b(ξ)

K(ξ)∏
j=1

(z − aj(ξ)), z ∈ C,

where K(ξ) ≤ K and b(ξ), a1(ξ), . . . , aK(ξ)(ξ) ∈ C. Accordingly, we have the partition

{1, . . . ,K(ξ)} = X(ξ) ∪ Y (ξ),

where

X(ξ) = {j ∈ {1, . . . ,K(ξ)} : |aj(ξ)| < 2} and

Y (ξ) = {j ∈ {1, . . . ,K(ξ)} : |aj(ξ)| ≥ 2}.

Set c1 = 3−Kc. We claim that

(7.2) min
τ∈T
|b(ξ)|

∏
j∈Y (ξ)

|τ − aj(ξ)| ≥ c1 for every ξ ∈ S.

(For any ξ ∈ S for which Y (ξ) = ∅, the above simply means |b(ξ)| ≥ c1, which is in keeping
with the usual convention that

∏
j∈∅ · · · means 1. In fact, the same convention also applies

to the product in (7.1) and to the products below.) To prove this, note that if a ∈ C and
|a| ≥ 2, then for any pair of τ, ω ∈ T we have

(7.3) |τ − a| ≥ |a| − 1 ≥ 1

2
|a| = 1

2
(|a|+ 1− 1) ≥ 1

2
· 2

3
(|a|+ 1) ≥ 1

3
|ω − a|.

For each ξ ∈ S, by (1) there is an ω = ω(ξ) ∈ T such that |qξ(ω)| ≥ c. For each j ∈ X(ξ),
we have |ω − aj(ξ)| ≤ 3. Therefore

|b(ξ)|
∏

j∈Y (ξ)

|ω − aj(ξ)| ≥ 3−card(X(ξ))|qξ(ω)| ≥ 3−card(X(ξ))c.

Clearly, (7.2) follows from this inequality and (7.3).

(3) We claim that there is a 0 < d < 1/2 such that for each ξ ∈ S, if j, k are distinct
elements in X(ξ) and if both aj(ξ) and ak(ξ) belong to the annulus

{z ∈ C : 1− d ≤ |z| ≤ 1 + d},
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then ∣∣∣∣ aj(ξ)|aj(ξ)|
− ak(ξ)

|ak(ξ)|

∣∣∣∣ ≥ d.
Indeed if such a d did not exist, then for each integer ν ≥ 3, there would be a ξν ∈ S and
a pair of jν 6= kν in X(ξν) such that

|1− |ajν (ξν)|| ≤ 1/ν, |1− |akν (ξν)|| ≤ 1/ν, and

∣∣∣∣ ajν (ξν)

|ajν (ξν)|
− akν (ξν)

|akν (ξν)|

∣∣∣∣ ≤ 1/ν.

Thus there exist a subsequence {ν1, . . . , νi, . . . } of {3, 4, 5, . . . } and ξ0 ∈ S and a0 ∈ T
such that |ξνi − ξ0| → 0 and |ajνi (ξνi) − a0| → 0 as i → ∞. By the above inequalities,
we also have |akνi (ξνi) − a0| → 0 as i → ∞. Since jν 6= kν , this means that for any open
neighborhood U of a0, if i is sufficiently large, then the one-variable polynomial qξνi has
at least two zeros (counting multiplicity) in U . Since

lim
i→∞

sup
|z|≤2

|qξνi (z)− qξ0(z)| = 0,

by the argument principle, a0 is a zero of multiplicity at least 2 for qξ0 . Thus we have both
qξ0(a0) = 0 and (Rqξ0)(a0) = 0. Since qξ0(a0) = q(a0ξ0) and (Rqξ0)(a0) = (Rq)ξ0(a0) =
(Rq)(a0ξ0), this means the point a0ξ0 ∈ S is a zero for both q and Rq. This contradicts
the assumption that Rq does not vanish on Z(q) ∩ S.

(4) With the d from (3), for each ξ ∈ S, we have the partition

X(ξ) = A(ξ) ∪B(ξ),

where

A(ξ) = {j ∈ X(ξ) : 1− d ≤ |aj(ξ)| ≤ 1 + d} and

B(ξ) = {j ∈ X(ξ) : either |aj(ξ)| < 1− d or |aj(ξ)| > 1 + d}.

Obviously, we have

(7.4)
∏

j∈B(ξ)

|τ − aj(ξ)| ≥ dcard(B(ξ))

for all ξ ∈ S and τ ∈ T. For each j ∈ A(ξ), we factor aj(ξ) in the form

aj(ξ) = |aj(ξ)|τj(ξ), where τj(ξ) ∈ T.

Then |τj(ξ)− τk(ξ)| ≥ d for all j 6= k in A(ξ). Moreover, for each j ∈ A(ξ) we define

Ij(ξ) = {τ ∈ T : |τ − τj(ξ)| ≤ d/2}.
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It is elementary that if u ∈ C, |u| ≤ 1, and 0 ≤ r ≤ 1, then 2|1− ru| ≥ |1− u|. Therefore
for every pair of k ∈ A(ξ) and τ ∈ T\ ∪j∈A(ξ) Ij(ξ) we have

|τ − ak(ξ)| ≥ (1/2)|τ − τk(ξ)| ≥ d/4.

Combining this with (7.2) and (7.4), we conclude that

(7.5) |qξ(τ)| ≥ c2 whenever τ ∈ T
∖
∪j∈A(ξ)Ij(ξ) ,

where c2 = (d/4)Kc1. Let j, k ∈ A(ξ) and suppose that j 6= k. If τ ∈ Ij(ξ), then

|τ − ak(ξ)| ≥ 1

2
|τ − τk(ξ)| ≥ 1

2
(|τj(ξ)− τk(ξ)| − |τ − τj(ξ)|) ≥

1

2
(d− (1/2)d) =

1

4
d.

Combining this again with (7.2) and (7.4), we obtain

|qξ(τ)| ≥ c2|τ − τj(ξ)| if τ ∈ Ij(ξ), j ∈ A(ξ).

Thus, by (7.5), for each 0 < r < c2 we have

{τ ∈ T : |qξ(τ)| ≤ r} ⊂
⋃

j∈A(ξ)

{τ ∈ Ij(ξ) : |τ − τj(ξ)| ≤ (r/c2)}.

Letm be the Lebesgue measure on T with the normalizationm(T) = 1. Since card(A(ξ)) ≤
K(ξ) ≤ K, from the above inclusion we deduce that there is a constant C1 such that

(7.6) m({τ ∈ T : |qξ(τ)| ≤ r}) ≤ C1r for all ξ ∈ S and 0 < r < c2.

(5) Let 1 ≤ C < ∞ be given. Obviously, q satisfies a Lipschitz condition on the ball
{ζ ∈ Cn : |ζ| ≤ 1 + C}. To be more precise, there is a C2 such that

(7.7) |q(ζ)− q(w)| ≤ C2|ζ − w| if |ζ| ≤ 1 + C and |w| ≤ 1 + C.

For ` ∈ N and 0 ≤ j ≤ `− 1, define the arc

I`,j = {eiθ : 2jπ/` ≤ θ < 2(j + 1)π/`}.

If ` ∈ N and 0 ≤ j ≤ `− 1, then for all ξ ∈ S and τ ∈ I`,j we have |τξ − e2jπi/`ξ| ≤ 2π/`.
Thus if 0 ≤ j ≤ `− 1 is such that E(e2jπi/`ξ, C/`) ∩ Z(q) 6= ∅, then (7.7) implies that

|qξ(τ)| = |q(τξ)| ≤ C2(C + 2π)/` for every τ ∈ I`,j .

For each ξ ∈ S, define J`(ξ) = {j : 0 ≤ j ≤ `− 1, E(e2jπi/`ξ, C/`)∩Z(q) 6= ∅}. Let L ∈ N
be such that C2(C + 2π)/L < c2. For each ` ≥ L, we have

crad(J`(ξ))(1/`) = m
(
∪j∈J`(ξ)I`,j

)
≤ m({τ ∈ T : |qξ(τ)| ≤ C2(C + 2π)/`}) ≤ C1C2(C + 2π)/`,
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where the second ≤ follows from (7.6). Cancelling out 1/` from both sides, we find that
card(J`(ξ)) ≤ C1C2(C+2π). That is, for the above choice of L, any integer M ≥ C1C2(C+
2π) works for the lemma. �

To proceed further, we need a better understanding of the two conditions in Definition
1.4. Given a q ∈ C[z1, . . . , zn], consider the real-valued functions

(7.8)

u(x1, y1, . . . , xn, yn) = Re{q(x1 + iy1, . . . , xn + iyn)},

v(x1, y1, . . . , xn, yn) = Im{q(x1 + iy1, . . . , xn + iyn)}

on R2n. Condition (b) in Definition 1.4 is equivalent to the condition that for every
ξ = (x1 + iy1, . . . , xn + iyn) in S ∩Z(q), the real normal vector (x1, y1, . . . , xn, yn) to S is
not contained in the real linear span of the real gradient vectors

(∇u)(x1, y1, . . . , xn, yn) and (∇v)(x1, y1, . . . , xn, yn),

which are nonzero because of (a). Note that by the Cauchy-Riemann equations, we have

(7.9) (∇u)(x) ⊥ (∇v)(x) and |(∇u)(x)| = |(∇v)(x)|

for every x ∈ R2n. Hence if x ∈ R2n is such that (∇u)(x) 6= 0, then the condition x ∈
span{(∇u)(x), (∇v)(x)} is equivalent to Parseval’s identity

〈x, (∇u)(x)〉2 + 〈x, (∇v)(x)〉2 = |x|2|(∇u)(x)|2.

Combining this fact with the Cauchy-Riemann equations, we see that the two conditions
in Definition1.4 together are simply equivalent to the strict inequality

(7.10) 0 < |(Rq)(ξ)| < |(∂q)(ξ)| for every ξ ∈ S ∩ Z(q),

where, as we recall, ∂q denotes the analytic gradient (∂1q, . . . , ∂nq).

For ξ ∈ S and r > 0, let us denote

S(ξ, r) = E(ξ, r) ∩ S.

Obviously, there is a constant Cn determined by the complex dimension n such that
σ(S(ξ, r)) ≤ Cnr2n−1 for all ξ ∈ S and r > 0. With this in mind, we have

Lemma 7.2. For each q ∈ Gn, there exist r0 > 0 and 0 < C <∞ such that the inequality

σ({w ∈ S(ξ, r) : ∆(q;w) < ρ}) ≤ Cr2n−2ρ

holds for all ξ ∈ S and 0 < ρ ≤ r < r0.

Proof. The idea for the proof is actually quite simple. Namely, for sufficiently small
0 < ρ ≤ r, we can cover the set {w ∈ S(ξ, r) : ∆(q;w) < ρ} with a family of balls {Eν
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: ν ∈ N} in the Euclidian metric, where the radius of each Eν is on the order of ρ and
where the cardinality of N is on the order of (r/ρ)2n−2. Then, since σ(S ∩ Eν) is on the
order of ρ2n−1, the desired estimate follows. The key to the proof is a counting argument,
which is unfortunately quite complicated in details as shown below. We alert the reader
that in the proof, we will freely switch between Cn and its real version, R2n.

Let q ∈ Gn, and let u and v be the same as in (7.8). Consider an arbitrary x ∈ Z(q)∩S.
By (7.9) and (7.10), we have |(∇u)(x)| = |(∇v)(x)| > 0. Set

e(x) =
1

|(∇u)(x)|
(∇u)(x) and f(x) =

1

|(∇v)(x)|
(∇v)(x).

Then {e(x), f(x)} is an orthonormal basis for span{(∇u)(x), (∇v)(x)}. Define the subspace

Tx = R2n 	 span{(∇u)(x), (∇v)(x)}.

Let p(x) be the orthogonal projection of the real vector x on the subspace Tx. Condition
(b) in Definition 1.4 implies that p(x) is not the zero vector. This enables us to define

(7.11) g(x) =
1

|p(x)|
p(x).

We then complete the single unit vector g(x) to an orthonormal basis

{g(x), g2, . . . , g2n−2}

for the linear subspace Tx. Define the isometry A : R2n−2 → Tx by the formula

A(s1, s2, . . . , s2n−2) = s1g(x) + s2g2 + · · ·+ s2n−2g2n−2.

Also, define the isometry B : R2 → span{(∇u)(x), (∇v)(x)} by the formula

B(η1, η2) = η1e(x) + η2f(x).

The vector x has the orthogonal decomposition

(7.12) x = a1g(x) + b1e(x) + b2f(x).

Thus if we define a = (a1, 0, . . . , 0) in R2n−2 and b = (b1, b2) in R2, then

x = Aa+Bb.

Finally, define the map Q from R2n−2 ×R2 = R2n to R2 by the formula

Q(s, η) = (u(As+Bη), v(As+Bη)),

s ∈ R2n−2 and η ∈ R2. We have Q(a, b) = (u(x), v(x)) = 0.
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By the standard inverse function theorem and implicit function theorem (see, e.g.,
[21,Sections 8 and 9]), there is a d = d(x) > 0 such that the following hold true:

(i) There is a C∞-map h from {s ∈ R2n−2 : |s− a| < d} into R2 such that h(a) = b
and Q(s, h(s)) = 0 for every s ∈ R2n−2 satisfying the condition |a− s| < d.
(ii) If s ∈ R2n−2 and η ∈ R2 satisfy the conditions |a− s| < d and |b− η| < d,
and if Q(s, η) = 0, then η = h(s).

Furthermore, by (i), for every vector w ∈ R2n−2 we have the equation

d

dt
Q(a+ wt, h(a+ wt))

∣∣∣∣
t=0

=
d0

dt

∣∣∣∣
t=0

= 0.

Now solve this equation using the chain rule. Since

〈(∇u)(x), Aw〉 = 0 = 〈(∇v)(x), Aw〉

for every w ∈ R2n−2, we obtain (Dh)(a) = 0. (As usual, we write (Dh)(s) for the derivative
of h at the point s, which is a linear transformation from R2n−2 to R2.) Combining this
fact with basic calculus, there is a 0 < d1 < d such that

(iii) ||h(s)|2−|h(s′)|2| ≤ 4−1|p(x)||s−s′| for all s, s′ ∈ R2n−2 satisfying the conditions
|a− s| < d1 and |a− s′| < d1. Also, |(Dh)(s)| ≤ 1/2 if s ∈ R2n−2 and |a− s| < d1.

By (7.11) and (7.12) we have

a1 = 〈x, g(x)〉 =
〈x, p(x)〉
|p(x)|

= |p(x)|.

Set d2 = min{|p(x)|/8, d1}

Suppose that 0 < ρ < d2. Suppose that s, s′ ∈ R2n−2 satisfy the conditions |a− s| <
d2, |a− s′| < d2 and that these vectors have the representation

(7.13)

{
s = (a1 + kρ, s2, . . . , s2n−2),
s′ = (a1 +mρ, s2, . . . , s2n−2),

where k,m ∈ Z.

We claim that there is a c(x) > 0 such that

(7.14) ||(s, h(s))| − |(s′, h(s′))|| ≥ c(x)|k −m|ρ

To prove this, note that the condition |a − s| < d2 implies |k|ρ < |p(x)|/8. Therefore
a1 + kρ ≥ |p(x)|/2. Similarly, we also have a1 + mρ ≥ |p(x)|/2. Hence for such a pair of
s, s′ we have

|(s, h(s))| − |(s′, h(s′))| = |(s, h(s))|2 − |(s′, h(s′))|2

|(s, h(s))|+ |(s′, h(s′))|
=
|s|2 + |h(s)|2 − |s′|2 − |h(s′)|2

|(s, h(s))|+ |(s′, h(s′))|

=
(a1 + kρ)2 − (a1 +mρ)2 + |h(s)|2 − |h(s′)|2

|(s, h(s))|+ |(s′, h(s′))|
.
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On the other hand,

|(a1 + kρ)2 − (a1 +mρ)2| = (a1 + kρ+ a1 +mρ)|k −m|ρ ≥ |p(x)||k −m|ρ

and, by (iii),

||h(s)|2 − |h(s′)|2| ≤ 4−1|p(x)||s− s′| = 4−1|p(x)||k −m|ρ.

Thus for such a pair of s, s′ we have

||(s, h(s))| − |(s′, h(s′))|| ≥ (3/4)|p(x)|
|(s, h(s))|+ |(s′, h(s′))|

|k −m|ρ

≥ (3/4)|p(x)|
|s|+ |h(s)|+ |s′|+ |h(s′)|

|k −m|ρ ≥ (3/4)|p(x)|
2(|a|+ d1 + |b|+ d1)

|k −m|ρ,

where the last ≤ uses the fact h(a) = b and the bound on Dh in (iii). This proves (7.14).

For each 0 < ρ < d2, let Γρ be the collection of vectors a+ρβ, β ∈ Z2n−2, satisfying the
condition ρ|β| < d2, where |β| is the Euclidian length of β. Next we set d3 = (1+

√
2n)−1d2.

Suppose that ζ is a point in E(x, d3) ∩ Z(q). Then ζ = As + Bη, where s and η satisfy
the conditions |a− s| ≤ |x− ζ| < d3 and |b− η| ≤ |x− ζ| < d3 . Since d3 < d, by (ii) we
have ζ = As + Bh(s). Now, if we further require that 0 < ρ < d3, then there is a γ ∈ Γρ
such that |γ − s| ≤

√
2n− 2ρ. Thus

|Aγ +Bh(γ)− ζ| ≤ |γ − s|+ |h(γ)− h(s)| ≤ 2
√

2n− 2ρ,

where for the second ≤ we again use the bound on Dh in (iii). For z ∈ E(x, d3/2), if
|z− ζ| < d3/2, then ζ ∈ E(x, d3). Set d4 = d3/2 and C1 = 1 + 2

√
2n− 2. Combining these

facts, we see that for every 0 < ρ < d4 we have

(7.15)

{
z ∈ E(x, d4) : inf

ζ∈Z(q)
|z − ζ| < ρ

}
⊂
⋃
γ∈Γρ

E(Aγ +Bh(γ), C1ρ).

This positive number d4, of course, depends not only on q but also on the point x in
Z(q) ∩ S. For this reason we write r(x) = d4. Thus, repeating the above construction, we
obtain an r(x) > 0 for every x ∈ Z(q) ∩ S.

Obviously, the family of balls E(x, r(x)/26), x ∈ Z(q) ∩ S, is an open cover of the
compact set Z(q) ∩ S. Therefore there is a finite subset F of Z(q) ∩ S such that if we let

U =
⋃
x∈F

E(x, r(x)/26),

then U ⊃ Z(q) ∩ S. Since U is an open set, there is an r1 > 0 such that

(7.16) |1− |ζ|| ≥ r1 whenever ζ ∈ Z(q)\U.
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We now apply Lemma 7.1 to this q and the constant C = 2π + 4, and accordingly we
obtain constants L,M ∈ N from that lemma. We set

r0 = min

{
1

L
,

1

12
r1,min

x∈F

1

26
r(x)

}
.

Obviously, r0 > 0. What remains is to show that this r0 has the property promised in the
statement of the lemma.

As the first step, let us show that for any ξ ∈ S and 0 < r < r0, if E(ξ, 12r)∩Z(q) 6= ∅,
then there is an x ∈ F such that

(7.17) E(ξ, 12r) ⊂ E(x, r(x)).

Indeed if there is a ζ ∈ E(ξ, 12r) ∩ Z(q), then |ξ − ζ| < 12r. Since ξ ∈ S, this means
|1 − |ζ|| < 12r < 12r0 ≤ r1. Since ζ ∈ Z(q), by (7.16) we have ζ ∈ U . That is, there is
some x ∈ F such that ζ ∈ E(x, r(x)/26). Since r < r(x)/26, we have |ξ − x| < 13r(x)/26.
Therefore, if z ∈ E(ξ, 12r), then |z − x| ≤ 12r + (13/26)r(x) < r(x), proving (7.17).

Again, assume that 0 < r < r0. Since r < 1/L, there is a natural number ` ≥ L such
that 1/(`+ 1) ≤ r < 1/`. For each integer 0 ≤ k ≤ `, define the interval

I`,k =

[
2kπ

`+ 1
,

2(k + 1)π

`+ 1

)
.

Let ξ ∈ S be given. Then it is elementary that

(7.18) E
(
e

2kπi
`+1 ξ, 12r

)
⊃ E

(
e

2kπi
`+1 ξ,

2π + 4

`+ 1

)
⊃ E(eiθξ, 2r) if θ ∈ I`,k.

Let K be the collection of k ∈ {0, 1, . . . , `} such that

E(eiθξ, 2r) ∩ Z(q) 6= ∅ for some θ ∈ I`,k.

Then by (7.18) and Lemma 7.1, we have card(K) ≤M . Combining (7.18) with (7.17), we
see that for every k ∈ K, there is an xk ∈ F such that⋃

θ∈I`,k

E(eiθξ, 2r) ⊂ E(xk, r(xk)).

Let 0 < ρ ≤ r also be given. For each k ∈ K, define

H(xk; ρ) =

{
z ∈ E(xk, r(xk)) : inf

ζ∈Z(q)
|z − ζ| < ρ

}
and

Ak =

{
w ∈ E(ξ, r) : inf

ζ∈Z(q)
|eiθw − ζ| < ρ for some θ ∈ I`,k

}
.
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Also, define ξk = e
2kπi
`+1 ξ, k ∈ K. Since 1/(`+ 1) ≤ r, there is a constant C2 such that

eiθE(ξ, r) ⊂ E(ξk, C2r)

for every θ ∈ I`,k. Therefore for every k ∈ K we have

(7.19) Ak ⊂
⋃

θ∈I`,k

e−iθ{H(xk; ρ) ∩ E(ξk, C2r)}.

Fix a k ∈ K for the moment. By (7.15), there is an h = hk associated with xk ∈ Z(q) ∩ S
such that

(7.20) H(xk; ρ) ∩ E(ξk, C2r) ⊂
⋃
γ∈Γρ

{E(Aγ +Bh(γ), C1ρ) ∩ E(ξk, C2r)},

where Γρ ⊂ a+ ρZ2n−2 for some a = ak ∈ R2n−2.

Suppose that there is a γ0 ∈ Γρ such that E(Aγ0 +Bh(γ0), C1ρ) ∩E(ξk, C2r) 6= ∅. If
γ ∈ Γρ also has the property that E(Aγ +Bh(γ), C1ρ) ∩ E(ξk, C2r) 6= ∅, then

|γ − γ0| ≤ |(Aγ +Bh(γ))− (Aγ0 +Bh(γ0))| ≤ 2C1ρ+ 2C2r ≤ C3r,

where C3 = 2C1 + 2C2. Thus γ = γ0 + ρ(j1, . . . , j2n−2), where each jν is an integer
satisfying the condition |jν | ≤ C3(r/ρ). For each (j2, . . . , j2n−2) satisfying the condition
|jν | ≤ C3(r/ρ) for every 2 ≤ ν ≤ 2n−2, let G̃(j2, . . . , j2n−2) be the set of γ ∈ Γρ satisfying
the conditions

γ = γ0 + ρ(j1, j2, . . . , j2n−2) and E(Aγ +Bh(γ), C1ρ) ∩ E(ξk, C2r) 6= ∅.

Furthermore, let G(j2, . . . , j2n−2) = {γ ∈ G̃(j2, . . . , j2n−2) : E(Aγ+Bh(γ), C1ρ)∩S 6= ∅}.
Then it follows from (7.13) and (7.14) that

card(G(j2, . . . , j2n−2)) ≤ 2{1 + (C1/c)},

where c = min{c(x) : x ∈ F}. On the other hand, by (7.20), we have

S ∩H(xk; ρ) ∩ E(ξk, C2r) ⊂
⋃

|jν |≤C3(r/ρ)
2≤ν≤2n−2

⋃
γ∈G(j2,...,j2n−2)

E(Aγ +Bh(γ), C1ρ)

In other words, we have

(7.21) S ∩H(xk; ρ) ∩ E(ξk, C2r) ⊂
⋃
j∈J

Ẽj ,

where each Ẽj is a Euclidian ball of radius C1ρ and

card(J) ≤ (1 + 2C3(r/ρ))2n−3 · {1 + 2(C1/c)} ≤ C4(r/ρ)2n−3,
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where C4 = {1 + 2(C1/c)}(1 + 2C3)2n−3. Since the length of I`,k is 2π/(` + 1) and since
1/(`+ 1) ≤ r, it is elementary that there is a constant C5 such that for each j ∈ J , there
are Euclidian ball Ej,1, . . . , Ej,m of radius (C1 + 2π)ρ such that⋃

θ∈I`,k

e−iθẼj ⊂ Ej,1 ∪ · · · ∪ Ej,m

and such that m ≤ C5(r/ρ). Combining this with (7.21) and (7.19), we see that there is
an index set Nk with

(7.22) card(Nk) ≤ C4C5(r/ρ)2n−2

such that

(7.23) Ak ∩ S ⊂
⋃
ν∈Nk

Eν ,

where each Eν is a Euclidian ball of radius (C1 + 2π)ρ.

Since ρ ≤ r, if there are w ∈ E(ξ, r) and θ ∈ [0, 2π) such that |eiθw − ζ| < ρ for some
ζ ∈ Z(q), then E(eiθξ, 2r) ∩ Z(q) 6= ∅. Thus by the definition of K we have{

w ∈ E(ξ, r) : inf
ζ∈Z(q)

|eiθw − ζ| < ρ for some θ ∈ [0, 2π)

}
⊂
⋃
k∈K

Ak.

Intersecting both sides by the sphere S and recalling (7.23), we obtain

{w ∈ S(ξ, r) : ∆(q;w) < ρ} ⊂
⋃
k∈K

{S ∩Ak} ⊂
⋃
k∈K

⋃
ν∈Nk

{S ∩ Eν}.

Since each Eν is a ball of radius (C1 + 2π)ρ, the property of the spherical measure gives us

σ(S ∩ Eν) ≤ C6{(C1 + 2π)ρ}2n−1.

We know that card(K) ≤M from Lemma 7.1. Thus, using (7.22), we find that

σ({w ∈S(ξ, r) : ∆(q;w) < ρ}) ≤
∑
k∈K

card(Nk)C6{(C1 + 2π)ρ}2n−1

≤MC4C5(r/ρ)2n−2C6{(C1 + 2π)ρ}2n−1 = MC4C5C6(C1 + 2π)2n−1r2n−2ρ.

This completes the proof of the lemma. �

Proposition 7.3. If q ∈ Gn, then σ(B(q)) = 0.

Proof. Given q ∈ Gn, let r0 > 0 be the number provided by Lemma 7.2 for this q. We then
fix an r ∈ (0, r0). Recalling Definition 6.5, for all 0 < ρ ≤ r and ξ ∈ S we have

S(ξ, r) ∩ B(q) ⊂ {w ∈ S(ξ, r) : ∆(q;w) < ρ}.
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There is a finite subset F of S such that S = ∪ξ∈FS(ξ, r). Hence

B(q) ⊂
⋃
ξ∈F

{w ∈ S(ξ, r) : ∆(q;w) < ρ}.

Applying the estimate in Lemma 7.2, we obtain σ(B(q)) ≤ card(F )Cr2n−2ρ. Since this
holds for every ρ ∈ (0, r], it follows that σ(B(q)) = 0. �

Below is the main result of the section, which says that for q ∈ Gn, the growth rate of
the measure µq;ε is worse than that of σ by at most ε.

Proposition 7.4. Let q ∈ Gn. Then for every 0 < ε < 1, there is a constant C such that
µq;ε(S(ξ, r)) ≤ Cr2n−1−ε for all ξ ∈ S and r > 0.

Proof. Given q ∈ Gn, let r0 > 0 be the number provided by Lemma 7.2 for this q. Note
that ∆(q;w) = 0 if and only if w ∈ B(q). Thus for any 0 < r < r0 and ξ ∈ S, we have

S(ξ, r)\B(q) = A0 ∪A1 ∪ · · · ∪Ak ∪ · · · ,

where

A0 = {w ∈ S(ξ, r) : ∆(q;w) ≥ r} and

Ak = {w ∈ S(ξ, r) : 2−kr ≤ ∆(q;w) < 2−k+1r}, k ≥ 1.

By Lemma 7.2, we have σ(Ak) ≤ C2−k+1r2n−1 for k ≥ 1. Of course, σ(A0) ≤ σ(S(ξ, r)) ≤
C1r

2n−1. Set C2 = max{2C,C1}. Then, by Definition 6.6, for each 0 < ε < 1 we have

µq;ε(S(ξ, r)) ≤
∞∑
k=0

(2−kr)−εσ(Ak) ≤ C2r
2n−1−ε

∞∑
k=0

2−(1−ε)k.

Thus there is a C3 such that µq;ε(S(ξ, r)) ≤ C3r
2n−1−ε if 0 < r < r0. There is a finite

subset F of S such that ∪x∈FS(x, r0/2) = S. Hence µq;ε(S) < ∞. If we set C4 =
(2/r0)2n−1−εµq;ε(S), then µq;ε(S(ξ, r)) ≤ C4r

2n−1−ε for all r ≥ r0/2 and ξ ∈ S. Hence if
we set C5 = max{C3, C4}, then µq;ε(S(ξ, r)) ≤ C5r

2n−1−ε for all r > 0 and ξ ∈ S. �

8. Consequence of the growth condition

Once we have Proposition 7.4, we only need to work with the growth condition given
there. In other words, given the growth condition, we no longer need to be concerned with
the underlying polynomial q.

Proposition 8.1. Let µ be a Borel measure on S and suppose that 0 < ε < 1/2. If there
is a constant C such that µ(S(ξ, r)) ≤ Cr2n−1−2ε for all ξ ∈ S and r > 0, then there is a
constant C8.1 such that

(8.1)

∫ ∫ ∣∣∣∣ 1

(1− 〈zξ, w〉)n+1−ε

∣∣∣∣2 dA(z)dµ(ξ) ≤ C8.1

(1− |w|2)n+1−ε
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for every w ∈ B.

Proof. First of all, on the unit disc D we have the power-series expansion

1

(1− z)n+1−ε =
∞∑
k=0

bkz
k, where bk =

1

k!

k∏
j=1

(n+ j − ε) for k ≥ 1.

Given any w ∈ B, we write it in the form w = |w|η, where η ∈ S. Then∫ ∫ ∣∣∣∣ 1

(1− 〈zξ, w〉)n+1−ε

∣∣∣∣2 dA(z)dµ(ξ) =

∫ ∫ ∣∣∣∣ 1

(1− |w|〈ξ, η〉z)n+1−ε

∣∣∣∣2 dA(z)dµ(ξ)

=

∫ ∞∑
k=0

b2k
k + 1

|w|2k|〈ξ, η〉|2kdµ(ξ) =

∞∑
k=0

b2k
k + 1

|w|2k
∫
|〈ξ, η〉|2kdµ(ξ).

(8.2)

Obviously, |〈ξ, η〉| ≤ 1 for every ξ ∈ S. Thus by [16,Lemma I.4.1], for each k ≥ 1 we have

(8.3)

∫
|〈ξ, η〉|2kdµ(ξ) = 2k

∫ 1

0

x2k−1µ({ξ ∈ S : |〈ξ, η〉| > x})dx.

For the right-hand side, we only need to consider 0 < x < 1. Since η ∈ S, there are η2,
. . . , ηn ∈ S such that the set {η, η2, . . . , ηn} is an orthonormal basis for Cn. Thus if ξ ∈ S
is such that |〈ξ, η〉| > x, then we have ξ = aeiθη + a2η2 + · · · + anηn with a > x and
θ ∈ [0, 2π). We have, of course, that |a2|2 + · · ·+ |an|2 = 1− a2 < 1− x2. Hence

(8.4) {ξ ∈ S : |〈ξ, η〉| > x} ⊂
⋃

0≤θ<2π

S(eiθη, 2
√

1− x2).

As we saw in the proof of Lemma 7.2, there is a constant C1 such that

(8.5)
⋃

0≤θ<2π

S(eiθη, 2
√

1− x2) ⊂
m⋃
j=0

S(e
2jπi
m+1 η, C1

√
1− x2),

where m is the natural number satisfying the condition 1/(m+ 1) ≤
√

1− x2 < 1/m.

By (8.4), (8.5) and the growth condition on µ, we have

µ({ξ ∈ S : |〈ξ, η〉| > x}) ≤
m∑
j=0

µ(S(e
2jπi
m+1 η, C1

√
1− x2)) ≤ (m+ 1)C{C1

√
1− x2}2n−1−2ε.

Since m+ 1 ≤ 2m < 2(1− x2)−1/2, we see that there is a constant C2 such that

µ({ξ ∈ S : |〈ξ, η〉| > x}) ≤ C2(1− x2)n−1−ε.
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Substitute this in (8.3), we find that∫
|〈ξ, η〉|2kdµ(ξ) ≤ 2C2k

∫ 1

0

x2k−1(1− x2)n−1−εdx = C2k

∫ 1

0

xk−1(1− x)n−1−εdx.

Integrating by parts, for each natural number k ≥ 1 we have∫ 1

0

xk−1(1− x)n−1−εdx =
(k − 1)!∏k−1

j=0 (n+ j − ε)
=

n+ k − ε
k(n− ε)bk

.

Hence there is a C3 such that ∫
|〈ξ, η〉|2kdµ(ξ) ≤ C3

k + 1

bk

for every k ≥ 0. Substituting this in (8.2), we obtain

∫ ∫ ∣∣∣∣ 1

(1− 〈zξ, w〉)n+1−ε

∣∣∣∣2 dA(z)dµ(ξ) ≤ C3

∞∑
k=0

bk|w|2k =
C3

(1− |w|2)n+1−ε .

This completes the proof. �

For each 0 < ε < 1, consider the weighted measure

dv−ε(ζ) = an,−ε(1− |ζ|2)−εdv(ζ)

on B (see (2.1)). Then the normalized reproducing kernel for the weighted Bergman space
H(−ε) = L2

a(B, dv−ε) is given by the formula

k(−ε)
w (ζ) =

(1− |w|2)(n+1−ε)/2

(1− 〈ζ, w〉)n+1−ε ,

w, ζ ∈ B. Obviously, (8.1) is equivalent to∫ ∫
|k(−ε)
w (zξ)|2dA(z)dµ(ξ) ≤ C8.1,

w ∈ B, which is a “Carleson condition” for the space H(−ε). Accordingly, one expects the
consequent boundedness:

Proposition 8.2. Let µ be a Borel measure on S and suppose that 0 < ε < 1. If there is
a constant C such that

(8.6)

∫ ∫ ∣∣∣∣ 1

(1− 〈zξ, w〉)n+1−ε

∣∣∣∣2 dA(z)dµ(ξ) ≤ C

(1− |w|2)n+1−ε
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for every w ∈ B, then there is a constant C8.2 such that∫ ∫
|h(zξ)|2dA(z)dµ(ξ) ≤ C8.2

∫
|h(ζ)|2(1− |ζ|2)−εdv(ζ)

for every h ∈ C[z1, . . . , zn].

Proof. First of all, (8.6) implies that µ(S) <∞. Let C(B) be the collection of continuous
functions on the closed unit ball B = B ∪ S. Since µ(S) <∞, the formula

Φ(f) =

∫ ∫
f(zξ)dA(z)dµ(ξ), f ∈ C(B),

defines a bounded, positive linear functional on C(B). By the Riesz representation theo-
rem, there is a regular Borel measure φ on B such that

(8.7)

∫
f(ζ)dφ(ζ) = Φ(f) =

∫ ∫
f(zξ)dA(z)dµ(ξ)

for every f ∈ C(B). In particular, for every continuous function u on [0, 1] we have∫
u(|ζ|)dφ(ζ) =

∫ ∫
u(|z|)dA(z)dµ(ξ) = 2µ(S)

∫ 1

0

u(r)rdr.

From this it is easy to deduce that φ(S) = 0. That is, the measure φ is actually concen-
trated on the open unit ball B.

By the discussion preceding the proposition, (8.6) implies∫
|k(−ε)
w (ζ)|2dφ(ζ) =

∫ ∫
|k(−ε)
w (zξ)|2dA(z)dµ(ξ) ≤ C, w ∈ B.

From this it is an elementary exercise to show that there is a constant C1 such that the
Carleson condition

φ({ζ ∈ B : |1− 〈ζ, ξ〉| < r}) ≤ C1v−ε({ζ ∈ B : |1− 〈ζ, ξ〉| < r})

holds for all ξ ∈ S and 0 < r < 1. It is well known (see, e.g., [7,Theorem 1] or [24,Corollary
47]) that this condition implies that φ is a Carleson measure for H(−ε). That is, there is a
C2 such that ∫

|g(ζ)|2dφ(ζ) ≤ C2

∫
|g(ζ)|2(1− |ζ|2)−εdv(ζ)

for every g ∈ H(−ε). Given a polynomial h ∈ C[z1, . . . , zn], if we apply (8.7) to the case
f = |h|2, we obtain∫ ∫

|h(zξ)|2dA(z)dµ(ξ) =

∫
|h(ζ)|2dφ(ζ) ≤ C2

∫
|h(ζ)|2(1− |ζ|2)−εdv(ζ).
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This completes the proof. �

Proposition 8.3. For every pair of n ≥ 3 and 0 < ε < 1/2 we have Gn ⊂ Pn(−3; ε).

Proof. Let 0 < ε < 1/2. If q ∈ Gn, n ≥ 3, then Proposition 7.3 tells us that σ(B(q)) = 0,
i.e., condition (1) in Proposition 6.7 is satisfied. By Proposition 7.4, there is a C such that
µq;2ε(S(ξ, r)) ≤ Cr2n−1−2ε for all ξ ∈ S and r > 0. Thus Proposition 8.1 gives us

∫ ∫ ∣∣∣∣ 1

(1− 〈zξ, w〉)n+1−ε

∣∣∣∣2 dA(z)dµq;2ε(ξ) ≤
C8.1

(1− |w|2)n+1−ε

for every w ∈ B. By Proposition 8.2, this implies that∫ ∫
|h(zξ)|2dA(z)dµq;2ε(ξ) ≤ C8.2

∫
|h(ζ)|2(1− |ζ|2)−εdv(ζ)

for every h ∈ C[z1, . . . , zn]. That is, condition (2) in Proposition 6.7 is also satisfied. Thus
it follows from Proposition 6.7 that q ∈ Pn(−3; ε). �

Proof of Theorem 1.5. Let q ∈ Gn, n ≥ 3, be given, and suppose that n < p <∞. We pick
an 0 < ε < 1/2 such that n/(1− ε) < p. Then the norm ideal C+

n/(1−ε) is contained in the

Schatten class Cp. By Proposition 8.3 we have q ∈ Pn(−3; ε). Applying Proposition 4.4,
we conclude that the submodule operators

Z
(−3)
q,j = Mzj |[q](−3), 1 ≤ j ≤ n,

have the property [Z
(−3)∗
q,j , Z

(−3)
q,i ] ∈ C+

n/(1−ε) for all j, i ∈ {1, . . . , n}. Since C+
n/(1−ε) ⊂ Cp,

this means that the submodule [q](−3) of H(−3) is p-essentially normal as promised. �

Note that by the product rule for R, the set Pn(t; ε) is multiplicative for all −n ≤ t <
∞ and 0 ≤ ε < 1. That is, for q1, . . . , qk ∈ Pn(t; ε), k ≥ 1, we have q1 · · · qk ∈ Pn(t; ε).
Of course, this fact is not significant in cases where we know that the equality Pn(t; ε) =
C[z1, . . . , zn] holds. But in cases where we do not yet know this equality for a fact, the
multiplicativity of Pn(t; ε) becomes significant. Indeed using this multiplicativity, from
Propositions 8.3 and 4.4 we actually obtain

Corollary 8.4. If q1, . . . , qk ∈ Gn, n ≥ 3 and k ≥ 1, then the submodule [q1 · · · qk](−3) of
H(−3) is p-essentially normal for every p > n.

9. Polynomials in Gn
The most prominent feature of Gn is that its membership is stable under small per-

turbation. To make this precise, we need to introduce a norm. For any function h that is
analytic on an open set Ω containing the closed ball B, we define

‖h‖# = max

{
max
|z|≤1

|h(z)|,max
|z|≤1

|(∂h)(z)|
}
,
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where |(∂h)(z)| is the Euclidian length of the analytic gradient vector (∂h)(z) = ((∂1h)(z),
. . . , (∂nh)(z)). By the Cauchy-Schwarz inequality, |(Rh)(z)| ≤ |(∂h)(z)| whenever |z| ≤ 1.

Proposition 9.1. For each q ∈ Gn, there is a ρ > 0 such that for every h ∈ C[z1, . . . , zn]
satisfying the condition ‖h‖# ≤ ρ, we have q + h ∈ Gn.

Proof. Recall from Section 7 that the membership q ∈ Gn is equivalent to the strict
inequality (7.10). Since Z(q)∩S is compact, (7.10) implies that there is a c > 0 such that

|(∂q)(ξ)| ≥ |(Rq)(ξ)|+ c and |(Rq)(ξ)| ≥ c

for every ξ ∈ Z(q)∩S. Let U be the collection of ζ ∈ S satisfying the conditions |(∂q)(ζ)| >
|(Rq)(ζ)| + (c/2) and |(Rq)(ζ)| > c/2 simultaneously. Then U ⊃ Z(q) ∩ S and U is an
open subset of S. Hence there is an r > 0 such that |q(ζ)| ≥ r for every ζ ∈ S\U . Thus

(9.1) U ⊃ {ζ ∈ S : |q(ζ)| < r}.

Set ρ = min{(r/2), (c/8)}. Let us show that this ρ has the desired property. Suppose
that h ∈ C[z1, . . . , zn] and that ‖h‖# ≤ ρ. If ξ ∈ S is such that q(ξ) + h(ξ) = 0, then
|q(ξ)| = |h(ξ)| ≤ ρ. By (9.1), we have Z(q + h) ∩ S ⊂ U . But for every ζ ∈ U , we have

|(∂(q + h))(ζ)| ≥ |(∂q)(ζ)| − |(∂h)(ζ)| ≥ |(Rq)(ζ)|+ (c/2)− ρ
≥ |(Rq)(ζ)|+ |(Rh)(ζ)|+ (c/2)− 2ρ ≥ |(R(q + h))(ζ)|+ (c/4).

Similarly, if ζ ∈ U , then |(R(q+h))(ζ)| ≥ |(Rq)(ζ)|−|(Rh)(ζ)| ≥ (c/2)−ρ ≥ (3/8)c. Since
c > 0, it follows that

0 < |(R(q + h))(ξ)| < |(∂(q + h))(ξ)|

whenever ξ ∈ Z(q + h) ∩ S. By the discussion in Section 7, this means q + h ∈ Gn. �

For explicit polynomials, we can make the ρ above more explicit.

Example 9.2. Let a ∈ C be such that |a| = 1/2. If h ∈ C[z1, . . . , zn] satisfies the
condition ‖h‖# ≤ 1/8, then the polynomial

q(z1, . . . , zn) = z1 − a+ h(z1, . . . , zn)

belongs to Gn. Indeed if ξ = (ξ1, . . . , ξn) belongs to Z(q) ∩ S, then we have ξ1 − a +
h(ξ1, . . . , ξn) = 0. Since ‖h‖# ≤ 1/8, this implies 3/8 ≤ |ξ1| ≤ 5/8, and consequently

|(Rq)(ξ1, . . . , ξn)| = |ξ1 − (Rh)(ξ1, . . . , ξn)| ≤ (5/8) + (1/8) = 3/4.

On the other hand, for every ζ ∈ S we have |(∂q)(ζ)| ≥ 1 − |(∂h)(ζ)| ≥ 1 − (1/8) > 3/4.
Therefore |(∂q)(ξ)| > |(Rq)(ξ)| for every ξ ∈ Z(q)∩S. For (ξ1, . . . , ξn) ∈ Z(q)∩S, we also
have

|(Rq)(ξ1, . . . , ξn)| ≥ |ξ1| − |(Rh)(ξ1, . . . , ξn)| ≥ (3/8)− (1/8) > 0.

Hence q ∈ Gn. Note that if there are a2, . . . , an such that (a, a2, . . . , an) ∈ B and
h(a, a2, . . . , an) = 0, then we also have q(a, a2, . . . , an) = 0.
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Note that the set Gn is not closed under multiplication. Indeed for q ∈ C[z1, . . . , zn]
with Z(q) ∩ S 6= ∅, we have q2 /∈ Gn. Nevertheless, there is a conditional multiplicativity:

Proposition 9.3. For q1, q2 ∈ Gn, if Z(q1) ∩ Z(q2) ∩ S = ∅, then q1q2 ∈ Gn.

Proof. Let such q1, q2 be given. By the product rule of differentiation, we have R(q1q2) =
q2Rq1 + q1Rq2 and ∂(q1q2) = q2∂q1 + q1∂q2. If ξ ∈ Z(q1) ∩ S, then q1(ξ) = 0 and
q2(ξ) 6= 0. Hence |(R(q1q2))(ξ)| = |q2(ξ)||(Rq1)(ξ)| and |(∂(q1q2))(ξ)| = |q2(ξ)||(∂q1)(ξ)|.
Since |q2(ξ)| > 0, from the strict inequality 0 < |(Rq1)(ξ)| < |(∂q1)(ξ)| we obtain the strict
inequality

0 < |(R(q1q2))(ξ)| < |(∂(q1q2))(ξ)|.

Similarly, this also holds for ξ ∈ Z(q2)∩S. Since Z(q1q2)∩S = {Z(q1)∩S}∪{Z(q2)∩S},
the proposition follows. �

Let b1, . . . , bm be pairwise distinct complex numbers satisfying the condition 2−1/2 <
|bj | < 1, j = 1, . . . ,m. It is easy to see that for every pair of i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}, the polynomial zi − bj belongs to Gn. Note that for each point (ξ1, . . . , ξn)
in S, there is at most one i ∈ {1, . . . , n} such that ξi ∈ {b1, . . . , bm}. Thus by the above
proposition and a simple induction, the polynomial

n∏
i=1

m∏
j=1

(zi − bj)

belongs to Gn.
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