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Abstract. We examine Fuglede commutation properties, particularly those in the con-
text of Lorentz ideals, from a new perspective. We also show that Fuglede commutation
property fails for a number of ideals.

1. Introduction

In this paper, all Hilbert spaces are assumed to be separable, and all operators are
assumed to be bounded.

The famous theorem of Fuglede [11] tells us that if N is a normal operator, then for
any operator X the condition [N,X] = 0 implies [N∗, X] = 0. In [22], Weiss proved the
remarkable identity

(1.1) ‖[N,X]‖2 = ‖[N∗, X]‖2,

where N is any normal operator and ‖ · ‖2 is the Hilbert-Schmidt norm. In particular, for
a normal operator N , if [N,X] is a Hilbert-Schmidt operator, then so is [N∗, X]. This is
called the Fuglede commutation property modulo the Hilbert-Schmidt class C2. Weiss’s
identity was later generalized to an inequality for Schatten p-norms for 1 < p <∞.

Recall that for any 1 ≤ p < ∞, the Schatten p-norm of an operator A is defined by
the formula ‖A‖p = {tr((A∗A)p/2)}1/p. On any Hilbert space H, the Schatten p-class is
defined to be the collection of operators Cp = {A ∈ B(H) : ‖A‖p <∞}.

For each 1 < p <∞, there is a constant 0 < Cp <∞ such that

(1.2) ‖[N∗, X]‖p ≤ Cp‖[N,X]‖p

whenever N is a normal operator. This was proved by Abdessemed and Davies for the
case 2 < p <∞ in [1] and by Shulman for the case 1 < p < 2 in [19]. In particular, Fuglede
commutation property holds modulo each Schatten class Cp, 1 < p < ∞. That is, if N is
a normal operator and 1 < p <∞, then [N,X] ∈ Cp if and only if [N∗, X] ∈ Cp.

The analogue of (1.2) also holds for Lorentz ideals C+
p and C−p , 1 < p <∞, which are

defined as follows.

Let H be a Hilbert space. For any given 1 ≤ p <∞, the formula

‖A‖+p = sup
j≥1

s1(A) + s2(A) + · · ·+ sj(A)

1−1/p + 2−1/p + · · ·+ j−1/p

Keywords: Normal operator, Fuglede commutation property, Lorentz ideal.
2020 Mathematics Subject Classification: 47B10, 47B47, 47L20.

1



defines a norm for operators on H. Here and in what follows, we write s1(A), s2(A), . . . ,
sj(A), . . . for the s-numbers [12] of the operator A. It is well known that the collection of
operators

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

form a norm ideal, for which we cite [12] as our primary reference.

For each 1 ≤ p <∞, the formula

‖A‖−p =
∞∑
j=1

sj(A)

j(p−1)/p

also defines a norm for operators on H. Denote

C−p = {A ∈ B(H) : ‖A‖−p <∞},

which is also a norm ideal of operators on H [12].

In recent decades, Lorentz ideals C+
p and C−p have gained prominence due to the study

of non-commutative geometry [3] and other advances in operator theory and operator
algebras (see, e.g., [21,5,24,8,9,14,10]). The ideal C+

1 commands special interest in that it
is the domain of every Dixmier trace [6,3,18].

It follows from the results [17, Corollary 3.8] and [17, Theorem 4.5] of Kissin and
Shulman that for each 1 < p <∞, there are constants 0 < Bp <∞ and 0 < Dp <∞ such
that if N is a normal operator on a Hilbert space H and if X is any operator on H, then

‖[N∗, X]‖+p ≤ Bp‖[N,X]‖+p and(1.3)

‖[N∗, X]‖−p ≤ Dp‖[N,X]‖−p .(1.4)

These two inequalities imply the following commutation properties: if N is a normal
operator and if 1 < p < ∞, then [N,X] ∈ C+

p if and only if [N∗, X] ∈ C+
p ; similarly,

[N,X] ∈ C−p if and only if [N∗, X] ∈ C−p .

In this paper, we will take another look at inequalities (1.3) and (1.4) from a different
perspective, one that circumvents some of the general Banach-space techniques in previous
investigations. Our approach is based on a contraction J , defined on the Hilbert-Schmidt
class C2 of a particular kind of Hilbert spaces. Let us introduce this operator.

Let ν be a compactly supported regular Borel measure on C. For each n ∈ N,
L2(C, dν)⊗Cn is the Hilbert space of Cn-valued functions that are square-integrable with
respect to dν. Suppose that K is a Hilbert-Schmidt operator on L2(C, dν) ⊗ Cn. Then
there is an n× n matrix-valued Borel function G(z, w) such that∫∫

tr{G∗(z, w)G(z, w)}dν(z)dν(w) <∞
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and such that

(Kf)(z) =

∫
G(z, w)f(w)dν(w)

for every f ∈ L2(C, dν) ⊗Cn. We will refer to this G as the integral kernel of K. There
is a Hilbert-Schmidt operator K ′ on L2(C, dν)⊗Cn whose integral kernel equals

G′(z, w) =


z̄−w̄
z−wG(z, w) if z 6= w

0 if z = w
.

For such a pair of Hilbert-Schmidt operators K and K ′, we define

(1.5) J(K) = K ′.

Obviously, J is a contraction on the C2 of L2(C, dν)⊗Cn.

Theorem 1.1. Given any 1 < p <∞, there are constants 0 < C+
p <∞ and 0 < C−p <∞

such that for every compactly supported regular Borel measure ν on C, every n ∈ N and
every Hilbert-Schmidt operator K on L2(C, dν)⊗Cn, we have

‖J(K)‖+p ≤ C+
p ‖K‖+p and ‖J(K)‖−p ≤ C−p ‖K‖−p .

The relevance of Theorem 1.1 to Fuglede commutation properties is best explained in
terms of general symmetrically normed ideals, which we introduce next.

Following [12], let ĉ denote the linear space of sequences {aj}j∈N, where aj ∈ R and
for every sequence the set {j ∈ N : aj 6= 0} is finite. A symmetric gauge function (also
called symmetric norming function) is a map

Φ : ĉ→ [0,∞)

that has the following properties:
(a) Φ is a norm on ĉ.
(b) Φ({1, 0, . . . , 0, . . . }) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

See [12, page 71]. Each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
j≥1

Φ({s1(A), . . . , sj(A), 0, . . . , 0, . . . })

for operators. On any Hilbert space H, the set of operators

(1.6) CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a symmetrically normed ideal [12, page 68].
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Let us recall some familiar examples. For each 1 ≤ p <∞, the formula Φp({aj}j∈N) =
(
∑∞
j=1 |aj |p)1/p defines a symmetric gauge function on ĉ, and the corresponding ideal CΦp

defined by (1.6) is just the Schatten class Cp. For each 1 ≤ p <∞, we define the symmetric
gauge functions Φ+

p and Φ−p by the formulas

Φ+
p ({aj}j∈N) = sup

j≥1

|aπ(1)|+ · · ·+ |aπ(j)|
1−1/p + · · ·+ j−1/p

and Φ−p ({aj}j∈N) =
∞∑
j=1

|aπ(j)|
j(p−1)/p

,

{aj}j∈N ∈ ĉ, where π : N→ N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥
· · · , which exists because each {aj}j∈N ∈ ĉ only has a finite number of nonzero terms.
Then the ideals CΦ+

p
and CΦ−p defined by (1.6) using Φ+

p and Φ−p are none other than the

Lorentz ideals C+
p and C−p introduced earlier.

Theorem 1.2. Let Φ be a symmetric gauge function. Suppose that there is a constant
0 < Λ = Λ(Φ) < ∞ such that for every compactly supported regular Borel measure ν on
C, every n ∈ N and every Hilbert-Schmidt operator K on L2(C, dν)⊗Cn, we have

(1.7) ‖J(K)‖Φ ≤ Λ‖K‖Φ.

Then for every normal operator N on a Hilbert space H and every X ∈ B(H), we have

(1.8) ‖[N∗, X]‖Φ ≤ Λ‖[N,X]‖Φ.

We emphasize that it is the same constant Λ that appears in both (1.7) and (1.8).

Since C+
p = CΦ+

p
and C−p = CΦ−p , Theorem 1.2 tells us that for each 1 < p < ∞,

inequalities (1.3) and (1.4) respectively hold for the constants Bp = C+
p and Dp = C−p ,

where C+
p and C−p are provided by Theorem 1.1.

Next, we switch gears and consider the other direction. In [23], Weiss asked whether
or not Fuglede commutation property holds modulo the trace class C1. A negative answer
to this question was given in [17]. More precisely, Kissin and Shulman showed that there
exist a compact normal operator N and a compact operator X such that [N,X] ∈ C1 while
[N∗, X] /∈ C1 [17, Corollary 5.9]. Using a general technique, we will show that this means
that Fuglede commutation property also fails modulo the ideal C+

1 :

Theorem 1.3. There exist a normal operator N and a compact operator X such that
[N,X] ∈ C+

1 while [N∗, X] /∈ C+
1 .

Perhaps it is not coincidental that C1 and C+
1 are norm ideals modulo which Fuglede

commutation property fails: both ideals carry some kind of trace. We have the ordinary
trace on C1, and we have the Dixmier trace on C+

1 . In each case, the failure of the Fuglede
commutation property can be proved by using the particular trace.

Then there is the matter of the Macaev ideal C−∞. Recall that C−∞ = {A ∈ B(H) :
‖A‖−∞ <∞}, where

‖A‖−∞ =

∞∑
j=1

sj(A)

j
.
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It is well known that C−∞ is the pre-dual of C+
1 [12].

Given what we know so far, an obvious question becomes unavoidable: does Fuglede
commutation property hold modulo the Macaev ideal C−∞? In other words, for a normal
operator N , does the membership [N,X] ∈ C−∞ imply [N∗, X] ∈ C−∞? The answer is
negative:

Theorem 1.4. There exist a normal operator N and a compact operator X such that
[N,X] ∈ C−∞ while [N∗, X] /∈ C−∞.

Even though C−∞ does not carry any kind of trace, Theorem 1.4 tells us that modulo
C−∞ Fuglede commutation property still fails. Moreover, compared with C1 and C+

1 , the
Macaev ideal C−∞ is at the other end of the scale. That is, C−∞ is a large ideal. In fact, C−∞
is not much smaller than K, the ideal of compact operators. Fuglede’s original theorem
[11] implies that if N is a normal operator, then [N,X] ∈ K if and only if [N∗, X] ∈ K. In
this connection, Theorem 1.4 provides a sharp contrast.

Note that [17, Corollary 5.9], Theorem 1.3 and Theorem 1.4 all deal with “endpoint”
cases of one kind or another. This may give the reader the impression that it is rare for
Fuglede commutation property to fail. But we can easily generalize the proof of Theorem
1.4 to produce failed Fuglede commutation properties on a wholesale basis. In other words,
with very little additional effort, the proof of Theorem 1.4 can be generalized to cover a
class of ideals. First, let us introduce these ideals.

Let α = {αj} be a non-increasing sequence of positive numbers starting with α1 = 1.
We assume that the sequence α is binormalizing [12, page 141], i.e.,

∞∑
j=1

αj =∞ and lim
j→∞

αj = 0.

On any Hilbert space H, such a sequence α gives rise to the operator ideal

Cα = {A ∈ B(H) : ‖A‖α <∞},

where the norm ‖ · ‖α is defined by the formula

‖A‖α =
∞∑
j=1

αjsj(A).

See [12, Section III.15]. We assume that the sequence α satisfies the additional condition
that there is a constant 0 < C = C(α) <∞ such that

(1.9)
n2∑
j=1

αj ≤ C
n∑
j=1

αj for every n ∈ N.
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Obviously, the sequence {j−1} is binormalizing and satisfies (1.9), and the corresponding
ideal C{j−1} is just the Macaev ideal C−∞. For each 0 < t ≤ 1, the sequence{

1

j(1 + log j)t

}
is also binormalizing, and it is easy to verify that it satisfies (1.9). Thus there are plenty
of such α. We have the following generalization of Theorem 1.4:

Theorem 1.5. Let α = {αj} be any binormalizing sequence that satisfies condition (1.9).
Then there exist a normal operator N and a compact operator X such that [N,X] ∈ Cα
while [N∗, X] /∈ Cα.

On any Hilbert space H, a binormalizing sequence α = {αj} also gives rise to the
operator ideal

C†α = {A ∈ B(H) : ‖A‖†α <∞},

where the norm ‖ · ‖†α is defined by the formula

‖A‖†α = sup
k≥1

s1(A) + · · ·+ sk(A)

α1 + · · ·+ αk

[12, Theorem III.14.1]. In fact, [12, Theorem III.15.2] tells us that C†α is the dual of the

ideal Cα defined earlier. For example, for the sequence {j−1}, we have C†{j−1} = C+
1 , which

is the dual of the Macaev ideal C−∞ = C{j−1}. For this class of ideals, we have

Theorem 1.6. Let α = {αj} be any binormalizing sequence that satisfies condition (1.9).
Then there exist a normal operator N and a compact operator X such that [N,X] ∈ C†α
while [N∗, X] /∈ C†α.

Let us now briefly describe the organization of the paper.

Our main idea for the proof of Theorem 1.2 is a particular representation for general
normal operators. This representation is not taught in the usual textbooks, but it is partic-
ularly convenient for approximations that arise in connection with Fuglede commutations.
We give this representation in Section 2.

The representation in Section 2 leads to a particular kind of “integral kernel” for
[N,X] when [N,X] ∈ C2. Using a well-known result of Voiculescu [21], we show in Section
3 that if N is the operator of multiplication by the coordinate z on L2(C, dν)⊗Cn and if
[N,X] ∈ C2, then J([N,X]) = [N∗, X].

In Section 4 we recall the projections Pθ on C2, 0 ≤ θ ≤ 2π, which were introduced in
[1]. The ‖ · ‖p-bound for Pθ proved in [1] is a key ingredient in the proof of Theorem 1.1.

Then, by unconventional interpolation techniques, in Section 5 we show that Pθ sat-
isfies similar bounds with respect to the norms ‖ · ‖+p and ‖ · ‖−p , 1 < p <∞. Theorem 1.1
is then proved by using the integral formula that represents J in terms of Pθ.
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With the preparations in Sections 2 and 3, and with additional technical steps, the
proof of Theorem 1.2 is completed in Section 6.

Finally, we prove Theorems 1.3-1.6 in Section 7.

Acknowledgement. The author wishes to thank the referee for providing references
[15,16,17].

2. A representation of normal operators

The proof of Theorem 1.2 depends on the particular representation of normal opera-
tors given below. Even though the spectral theory of normal operators appears in every
textbook on the subject, this particular representation does not. Therefore it will be ben-
eficial to go through its details. We remind the reader that we only consider separable
Hilbert spaces in this paper.

Let ν be any compactly supported regular Borel measure on C. We write Nν for the
operator of multiplication by the coordinate function z on the function space L2(C, dν).
It is well known that if ν1 and ν2 are mutually absolutely continuous, then Nν1 and Nν2
are unitarily equivalent [4, Section IX.3].

As usual, for any Borel set ∆ in C, L2(∆, dν) denotes the subspace {f ∈ L2(C, dν) :
f = 0 on C\∆} of L2(C, dν). Furthermore, we will write Nν,∆ for the restriction of Nν to
the reducing subspace L2(∆, dν).

Let N be a normal operator on a Hilbert space H. Then it is well known that there
exists a countable collection of compactly supported regular Borel measures {νi : i ∈ I} on
C such that N is unitarily equivalent to the orthogonal sum ⊕i∈INνi on ⊕i∈IL2(C, dνi).
Since the collection {νi : i ∈ I} is countable, there is a compactly supported regular Borel
measure ν on C such that very νi, i ∈ I, is absolutely continuous wit respect to ν. In
the case where N has a pure point spectrum, we can choose each νi to be a single point
masses, and therefore ν consists purely of point masses.

Thus if N is a normal operator on a Hilbert space H, then there exist a compactly
supported regular Borel measure ν on C and a countable collection of Borel sets {∆i : i ∈ I}
in C such that N is unitarily equivalent to⊕

i∈I
Nν,∆i .

For a compactly supported regular Borel measure ν on C, let L2(C, dν) ⊗ `2 denote the
collection of `2-valued Borel functions f on C such that∫

C

‖f(z)‖2dν(z) <∞.

We define the operator Ñν on L2(C, dν)⊗ `2 by the formula

(Ñνf)(z) = zf(z), f ∈ L2(C, dν)⊗ `2.
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Summarizing the above, below is the particular representation of normal operators that
we need in this paper:

Proposition 2.1. Let N be a normal operator on a Hilbert space H. Then there exist
a compactly supported regular Borel measure ν on C and a reducing subspace R of the
operator Ñν defined above such that N is unitarily equivalent to the restriction of Ñν to
R. In the case where N has a pure point spectrum, we can require that ν consist purely of
point masses.

If E : L2(C, dν) ⊗ `2 → R is the orthogonal projection, then the restriction of Ñν
to R is naturally identified with the operator EÑνE = ÑνE on L2(C, dν)⊗ `2. Thus we
see that for the proof of Theorem 1.2, it suffices to consider pairs of the form Ñν and X̃,
where X̃ acts on L2(C, dν) ⊗ `2. But the situation can be further simplified by natural
approximations in the space `2.

For this paper, `2 means `2(N). That is, any sequence in `2 is indexed by the
natural numbers N. Furthermore, for each n ∈ N, we identify Cn with the subspace
{(z1, . . . , zn, 0 . . . , 0, . . . ) : zj ∈ C, 1 ≤ j ≤ n} of `2. In this spirit, for each n ∈ N, we write

N
(n)
ν for the restriction of Ñν to the subspace L2(C, dν)⊗Cn of L2(C, dν)⊗ `2.

The estimates that matter will be done on the spaces L2(C, dν) ⊗ Cn, n ∈ N. The
results will then be extended to operators on L2(C, dν)⊗`2 by the obvious approximation.
This approach allows us to take advantage of the fact that Hilbert-Schmidt operators on
L2(C, dν)⊗Cn are represented by integral kernels.

3. A relation between integral kernels

Recall that the contraction J is defined by (1.5). Its connection to Fuglede commuta-
tions is made through the following proposition, which is in essence a further development
of Weiss’s identity (1.1).

Proposition 3.1. Let Y be an operator on L2(C, dν)⊗Cn such that [N
(n)
ν , Y ] ∈ C2. Then

J([N (n)
ν , Y ]) = [(N (n)

ν )∗, Y ].

Proof. By a well-known result of Voiculescu, there exists a sequence of finite-rank orthog-
onal projections {Fk} on L2(C, dν)⊗Cn such that

(3.2) lim
k→∞

Fk = 1

in the strong operator topology and

(3.3) lim
k→∞

‖[N (n)
ν , Fk]‖2 = 0.

See [21, Corollary 2.6]. Note that each FkY Fk is a finite-rank operator, and therefore has
an integral kernel. For each k, let Hk(z, w), Gk(z, w) and G′k(z, w) respectively denote the

integral kernels of FkY Fk, [N
(n)
ν , FkY Fk] and [(N

(n)
ν )∗, FkY Fk]. Then, of course,

Gk(z, w) = (z − w)Hk(z, w) and G′k(z, w) = (z̄ − w̄)Hk(z, w).
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From these two relations we deduce

G′k(z, w) =


z̄−w̄
z−wGk(z, w) if z 6= w

0 if z = w
.

That is,

(3.4) J([N (n)
ν , FkY Fk]) = [(N (n)

ν )∗, FkY Fk]

for every k. On the other hand, for each k we have

[N (n)
ν , FkY Fk] = [N (n)

ν , Fk]Y Fk + Fk[N (n)
ν , Y ]Fk + FkY [N (n)

ν , Fk] and

[(N (n)
ν )∗, FkY Fk] = [(N (n)

ν )∗, Fk]Y Fk + Fk[(N (n)
ν )∗, Y ]Fk + FkY [(N (n)

ν )∗, Fk].

By Weiss’s theorem, the condition [N
(n)
ν , Y ] ∈ C2 implies [(N

(n)
ν )∗, Y ] ∈ C2. Thus from

these two identities and (3.2), (3.3) it follows that

lim
k→∞

‖[N (n)
ν , FkY Fk]− [N (n)

ν , Y ]‖2 = 0 and

lim
k→∞

‖[(N (n)
ν )∗, FkY Fk]− [(N (n)

ν )∗, Y ]‖2 = 0.

Since J is a contraction on C2, combining these limits with (3.4), we see that J([N
(n)
ν , Y ]) =

[(N
(n)
ν )∗, Y ]. This completes the proof. �

4. Boundedness on Schatten classes

The material in this section is a variation of the results in [1, Section 2].

Let ν be a compactly supported regular Borel measure on C, and consider any n ∈ N.
In this section, by the symbol Cp we mean the collection of Schatten p-class operators on
the particular Hilbert space L2(C, dν) ⊗ Cn. Thus if K ∈ C2, then K has an integral
kernel, as defined in Section 3.

For each 0 ≤ θ ≤ 2π, we define the subset

Aθ = {(z, w) : z 6= w and 0 ≤ arg(z − w) < θ}

of C ×C. If K ∈ C2 has integral kernel G(z, w), we define Pθ(K) to be the operator on
L2(C, dν)⊗Cn which has

χAθ (z, w)G(z, w)

as its integral kernel. Obviously, Pθ is a contraction on C2. If we view C2 as a Hilbert space
with the inner product

〈K,L〉 = tr(KL∗),

K, L ∈ C2, then Pθ is an orthogonal projection on C2.
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Lemma 4.1. Given any 1 < p <∞, there is a constant 0 < Cp <∞ which depends only
on p such that

‖Pθ(K)‖p ≤ Cp‖K‖p

for every 0 ≤ θ ≤ 2π and every K ∈ C2 ∩ Cp.

Proof. If n = 1, then this is just a specialized version of [1, Lemma 2.5]. But a careful
checking of the estimates in [1, Section 2] finds that the same proof works for all n ∈ N,
with the bounding constant Cp independent of n. �

5. Boundedness of Pθ on Lorentz ideals

Next we prove the analogue of Lemma 4.1 for C2 ∩ C+
p , 1 < p < ∞. This requires

unconventional techniques of interpolation.

Given a symmetric gauge Φ : ĉ → [0,∞), as defined in Section 1, we need to extend
its domain beyond ĉ in the following way. Suppose that {bj}j∈N is an arbitrary sequence
of real numbers, i.e., the set {j ∈ N : bj 6= 0} is not necessarily finite. Then we define

Φ({bj}j∈N) = sup
k≥1

Φ({b1, . . . , bk, 0, . . . , 0, . . . }).

For any sequence a = {a1, . . . , aj , . . . } of non-negative numbers and s > 0, we denote

N(a; s) = card{j ∈ N : aj > s}.

It is well known that for s > 0 and 1 < p <∞, we have

(5.1) N(a; s) ≤ (Φp(a)/s)p,

where Φp is the symmetric gauge function for the Schatten class Cp.

Lemma 5.1. [8, Lemma 5.6] Suppose that 1 < p < ∞. Let α = {α1, . . . , αk, . . . } be a
non-increasing sequence of non-negative numbers. Define

Fp(α) = sup
k≥1

k1/pαk.

Then
p− 1

p
Fp(α) ≤ Φ+

p (α) ≤ Fp(α).

Lemma 5.2. Let a = {a1, . . . , ak, . . . } be a sequence of non-negative numbers. Let 1 <
p <∞, 0 < M <∞ and 0 < τ <∞. If the inequality

(5.2) N(a; s) ≤M(τ/s)p

holds for every s > 0, then Φ+
p (a) ≤ 2M1/pτ .
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Proof. There is a bijection π : N→ N such that aπ(i) ≥ aπ(i+1) for every i ∈ N. Consider
any i ∈ N such that aπ(i) 6= 0. Set s = aπ(i)/2. Then by (5.2),

i ≤ N(a; s) ≤M(τ/s)p = M(2τ)pa−pπ(i).

Solving this, we find that

aπ(i) ≤ 2M1/pτi−1/p

if aπ(i) 6= 0. This inequality, of course, also holds in the case aπ(i) = 0. Obviously, this

inequality implies Φ+
p (a) ≤ 2M1/pτ . �

If A is any operator, we denote

N(A; s) = card{j ∈ N : sj(A) > s}

for s > 0. It is known that for operators A, B and s > 0, we have

N(A+B; s) ≤ N(A; s/2) +N(B; s/2)

[7, Section 7]. After the above preparation, we now turn to the Pθ defined in Section 4.

Proposition 5.3. Given any 1 < p <∞, there is a constant 0 < B(p) <∞ which depends
only on p such that

‖Pθ(K)‖+p ≤ B(p)‖K‖+p

for every 0 ≤ θ ≤ 2π and every K ∈ C2 ∩ C+
p on L2(C, dν)⊗Cn, n ∈ N.

Proof. For the given 1 < p < ∞, we pick 1 < r′ < r < ∞ such that r′ < p < r. Given a
K ∈ C2 ∩ C+

p , denote

R =
p

p− 1
‖K‖+p .

Then it follows from Lemma 5.1 that

(5.3) sj(K) ≤ R/j1/p for every j ∈ N.

There are orthonormal sets {xj : j ∈ N} and {yj : j ∈ N} such that

K =

∞∑
j=1

sj(K)xj ⊗ yj .

For each s > 0, we define

Ls =
∑

1≤j<(R/s)p

sj(K)xj ⊗ yj and Ms =
∑

j≥(R/s)p

sj(K)xj ⊗ yj .

11



Applying (5.1), Lemma 4.1 and (5.3), and using the fact that r′/p < 1, we have

N(Pθ(Ls); s) ≤ s−r
′
‖Pθ(Ls)‖r

′

r′ ≤ Cr
′

r′ s
−r′‖Ls‖r

′

r′ = Cr
′

r′ s
−r′

∑
1≤j<(R/s)p

(sj(K))r
′

≤ Cr
′

r′ s
−r′

∑
1≤j<(R/s)p

(R/j1/p)r
′
≤ C1s

−r′Rr
′
{(R/s)p}1−(r′/p) = C1(R/s)p.(5.4)

The membership K ∈ C2 ∩ C+
p obviously implies Ms ∈ C2 ∩ C+

p . Applying (5.1), Lemma
4.1 and (5.3), and using the fact that r/p > 1, we also have

N(Pθ(Ms); s) ≤ s−r‖Pθ(Ms)‖rr ≤ Crr s−r‖Ms‖rr = Crr s
−r

∑
j≥(R/s)p

(sj(K))r

≤ Crr s−r
∑

j≥(R/s)p

(R/j1/p)r ≤ C2s
−rRr{(R/s)p}1−(r/p) = C2(R/s)p.(5.5)

Since K = Ls +Ms, from (5.4) and (5.5) we obtain

N(Pθ(K); 2s) ≤ N(Pθ(Ls); s) +N(Pθ(Ms); s) ≤ C3(R/s)p

for every s > 0, where C3 = C1 + C2. A simple rescaling gives us the inequality

N(Pθ(K); s) ≤ 2pC3(R/s)p

for every s > 0. By Lemma 5.2, this means ‖Pθ(K)‖+p ≤ 4C
1/p
3 R. Since R = {p/(p −

1)}‖K‖+p , this completes the proof. �

Proof of Theorem 1.1. (1) We first deduce the constants C+
p , 1 < p < ∞, from

Proposition 5.3 by using the argument in the proof of [1, Lemma 2.6]. Specifically, we
have

(5.6)
z̄ − w̄
z − w

= exp(−2i arg(z − w)) = 1 + 2i

∫ 2π

0

e−2iθχAθ (z, w)dθ when z 6= w,

where
Aθ = {(u, v) : u 6= v and 0 ≤ arg(u− v) < θ}.

By (3.1) and the definition of Pθ in Section 4, (5.6) translates to the operator identity

(5.7) J(K) = P2π(K) + 2i

∫ 2π

0

e−2iθPθ(K)dθ.

To prove the bound ‖J(K)‖+p ≤ C+
p ‖K‖+p , we may assume K ∈ C+

p , for otherwise the
desired bound trivially holds. For K ∈ C2 ∩ C+

p , it follows from (5.7) and Proposition 5.3
that

‖J(K)‖+p ≤ ‖P2π(K)‖+p + 2

∫ 2π

0

‖Pθ(K)‖+p dθ ≤ (1 + 4π)B(p)‖K‖+p .
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Thus we can take (1 + 4π)B(p) to be the desired constant C+
p .

(2) To find the constants C−p , we fix a 1 < p <∞ and denote q = p/(p− 1). It is well
known that C+

q is the dual of C−p . Thus for any operator A, we have

(5.8) ‖A‖−p = sup{|tr(AF )| : ‖F‖+q ≤ 1 and rank(F ) <∞}.

See [12, pages 148, 149 and 125]. For any K1,K2 ∈ C2 on L2(C, dν)⊗Cn, it is obvious that
tr(J(K1)K2) = tr(K1J(K2)). Thus for any K ∈ C2 on L2(C, dν)⊗Cn and any finite-rank
operator F on L2(C, dν)⊗Cn with ‖F‖+q ≤ 1, it follows from (1) that

|tr(J(K)F )| = |tr(KJ(F ))| ≤ ‖K‖−p ‖J(F )‖+q ≤ ‖K‖−p C+
q ‖F‖+q ≤ C+

q ‖K‖−p .

By (5.8), this implies ‖J(K)‖−p ≤ C+
q ‖K‖−p . That is, we can take the constant C+

q provided
in (1) to be the desired constant C−p . This completes the proof. �

6. Proof of Theorem 1.2

Because of the necessary approximations, there are a few technical steps before we
can get to the proof of Theorem 1.2. For the rest of the section, we assume that Φ is a
symmetric gauge function for which (1.7) holds. In particular, Λ is the constant in (1.7).

Proposition 6.1. Let ν be any compactly supported regular Borel measure on C which
consists purely of point masses. Then for every n ∈ N and every operator Y on L2(C, dν)⊗
Cn, we have

(6.1) ‖[(N (n)
ν )∗, Y ]‖Φ ≤ Λ‖[N (n)

ν , Y ]‖Φ.

Proof. (1) First, suppose that ν has only a finite number of point masses. In this case,
dim(L2(C, dν) ⊗ Cn) < ∞, which makes the condition K ∈ C2 superfluous. Thus (1.7)
can be applied to all operators on L2(C, dν)⊗Cn.

Given any operator Y on L2(C, dν)⊗Cn, by Proposition 3.1, we have

J([N (n)
ν , Y ]) = [(N (n)

ν )∗, Y ].

Thus, in this case, (6.1) follows from this identity and (1.7).

(2) Now we consider a general ν that consists purely of point masses. For such a ν,
there exist finite sets F1, . . . , Fk, . . . in C such that ν(C\Fk) → 0 as k → ∞. For each
k, let Ek be the operator of multiplication by the function χFk on L2(C, dν)⊗Cn. Then
Ek → 1 in the strong operator topology as k → ∞. Obviously, Ek(L2(C, dν) ⊗ Cn) is
none other than the subspace L2(Fk, dν)⊗Cn. The restriction of ν to each Fk consists of
a finite number of point masses. Therefore by case (1), we have

‖[(N (n)
ν )∗, EkY Ek]‖Φ ≤ Λ‖[N (n)

ν , EkY Ek]‖Φ = Λ‖Ek[N (n)
ν , Y ]Ek‖Φ.
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Since Ek → 1 strongly as k →∞, we also have

‖[(N (n)
ν )∗, Y ]‖Φ ≤ lim sup

k→∞
‖[(N (n)

ν )∗, EkY Ek]‖Φ.

See [12, Theorem III.5.1]. Obviously, (6.1) follows from these inequalities. �

Proposition 6.2. Suppose that ν is a compactly supported regular Borel measure on C
which consists purely of point masses. Then the inequality

(6.2) ‖[Ñ∗ν , Y ]‖Φ ≤ Λ‖[Ñν , Y ]‖Φ

hold for every operator Y on L2(C, dν)⊗ `2

Proof. For each n ∈ N, let E(n) : L2(C, dν) ⊗ `2 → L2(C, dν) ⊗ Cn be the orthogonal
projection. Then E(n) commutes with Ñν and

E(n)ÑνE
(n) = ÑνE

(n) = N (n)
ν .

Therefore it follows from Proposition 6.1 that for every operator Y on L2(C, dν)⊗ `2,

‖[Ñ∗ν , E(n)Y E(n)]‖Φ ≤ Λ‖[Ñν , E(n)Y E(n)]‖Φ = Λ‖E(n)[Ñν , Y ]E(n)‖Φ.

Obviously, E(n) strongly converges to 1 as n → ∞. Thus by a limit argument similar to
the one at the end of the proof of Proposition 6.1, the above inequality implies (6.2). �

Proposition 6.3. Let N be a normal operator on a Hilbert space H. Suppose that N has
a pure point spectrum. Then for every operator X on H, we have

(6.3) ‖[N∗, X]‖Φ ≤ Λ‖[N,X]‖Φ.

Proof. Since N has a pure point spectrum, by Proposition 2.1, there is a compactly
supported regular Borel measure ν which consists purely of point masses and a reducing
subspace R for Ñν such that N is unitarily equivalent to the restriction of Ñν to R. That
is, there is a unitary operator U : H → R such that UNU∗ = Ñν

∣∣R. Define Y = UXU∗,
which is an operator on R. We then extend Y to an operator on L2(C, dν)⊗ `2 in such a
way that Y = 0 on R⊥. Then

(6.4) [Ñν , Y ] = U [N,X]U∗ ⊕ 0 and [Ñ∗ν , Y ] = U [N∗, X]U∗ ⊕ 0.

Since ν consists purely of point masses, by Proposition 6.2, we have

(6.5) ‖[Ñ∗ν , Y ]‖Φ ≤ Λ‖[Ñν , Y ]‖Φ.

If T is any operator on H, then ‖UTU∗ ⊕ 0‖Φ = ‖T‖Φ. Thus (6.3) follows from (6.4) and
(6.5). �

Proof of Theorem 1.2. Consider are the following two possibilities.
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(1) Suppose that CΦ 6⊂ C−2 . Let ε > 0. In this case, by a well-known theorem of
Bercovici and Voiculescu [2], there exist a Kε ∈ CΦ with ‖Kε‖Φ ≤ ε and a diagonal
operator Nε, i.e., a normal operator with a pure point spectrum, such that N = Nε +Kε.
For any operator X on H, Proposition 6.3 tells us that

‖[N∗ε , X]‖Φ ≤ Λ‖[Nε, X]‖Φ.

Therefore

‖[N∗, X]‖Φ ≤ ‖[N∗ε , X]‖Φ + ‖[N∗, X]− [N∗ε , X]‖Φ ≤ Λ‖[Nε, X]‖Φ + 2‖K∗ε ‖Φ‖X‖
≤ Λ‖[N,X]‖Φ + Λ‖[Nε, X]− [N,X]‖Φ + 2‖K∗ε ‖Φ‖X‖
≤ Λ‖[N,X]‖Φ + 2Λ‖Kε‖2‖X‖+ 2‖K∗ε ‖Φ‖X‖
≤ Λ‖[N,X]‖Φ + (2Λ + 2)‖X‖ε.

Since ε > 0 is arbitrary, this proves (1.8) in the case where CΦ 6⊂ C−2 .

(2) Suppose that CΦ ⊂ C−2 . To prove (1.8), we only need to consider the case where
‖[N,X]‖Φ <∞. That is, we assume [N,X] ∈ CΦ.

By Proposition 2.1, there is a compactly supported regular Borel measure ν and a
reducing subspace R for Ñν such that N is unitarily equivalent to the restriction of Ñν
to R. That is, there is a unitary operator U : H → R such that UNU∗ = Ñν

∣∣R. Define
Y = UXU∗, which is an operator onR. We then extend Y to an operator on L2(C, dν)⊗`2
in such a way that Y = 0 on R⊥. Then

[Ñν , Y ] = U [N,X]U∗ ⊕ 0 and [Ñ∗ν , Y ] = U [N∗, X]U∗ ⊕ 0.

As we explained in the proof of Proposition 6.3, (1.8) will follow if we can show that

(6.7) ‖[Ñ∗ν , Y ]‖Φ ≤ Λ‖[Ñν , Y ]‖Φ.

By the condition [N,X] ∈ CΦ, we have [Ñν , Y ] ∈ CΦ.

To prove (6.7), let E(n) : L2(C, dν)⊗ `2 → L2(C, dν)⊗Cn be the orthogonal projec-
tion, n ∈ N. Since E(n) strongly converges to 1 as n→∞, (6.7) will follow if we can show
that

‖[Ñ∗ν , E(n)Y E(n)]‖Φ ≤ Λ‖[Ñν , E(n)Y E(n)]‖Φ (= Λ‖E(n)[Ñν , Y ]E(n)‖Φ)

for every n ∈ N. Equivalently, it suffices to prove that

(6.8) ‖[(N (n)
ν )∗, E(n)Y E(n)]‖Φ ≤ Λ‖[N (n)

ν , E(n)Y E(n)]‖Φ

for every n ∈ N. Since [Ñν , Y ] ∈ CΦ, for each n ∈ N we have

[N (n)
ν , E(n)Y E(n)] = E(n)[Ñν , Y ]E(n) ∈ CΦ.
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By the assumption CΦ ⊂ C−2 and the inclusion C−2 ⊂ C2, each [N
(n)
ν , E(n)Y E(n)] is a Hilbert-

Schmidt operator. Thus (6.8) follows from Propositions 3.1 and (1.7). This completes the
proof of Theorem 1.2. �

7. Proofs of Theorems 1.3-1.6

We begin with the following example due to Shulman and Turowska:

Example 7.1. [20, Example 8.5] Consider the Hilbert space L2(D, dA), where D = {z ∈
C : |z| < 1}, the unit disc in C, and dA is the area measure on C. Let M be the normal
operator on L2(D, dA) defined by the formula

(7.1) (Mf)(z) = zf(z),

f ∈ L2(D, dA). Define the operator

(7.2) (Y f)(z) =

∫
D

f(w)

z − w
dA(w),

f ∈ L2(D, dA). Then Y is in the Schatten p-class for every p > 2. (In fact, this Y is known
to be in the Lorentz ideal C+

2 [5]; also see [24].) It is obvious that [M,Y ] is the rank-one
operator 1⊗1 on L2(D, dA). Therefore tr[M,Y ] 6= 0. This nonzero trace is an obstruction
to the membership of [M∗, Y ] in C1 [22, page 15]. To see this, write A = 2−1(M+M∗) and
B = (2i)−1(M −M∗). If it were true that [M∗, Y ] ∈ C1, then we would have [A, Y ] ∈ C1
and [B, Y ] ∈ C1. Since Y is compact and A, B are self-adjoint, by a well-know result of
Helton and Howe [13, Lemma 1.3], we would have tr[A, Y ] = 0 and tr[B, Y ] = 0. This
contradicts the fact that tr[M,Y ] 6= 0. Hence [M∗, Y ] /∈ C1. �

For the proof of Theorem 1.3, we will use the following general fact:

Lemma 7.2. Let A be an operator on a Hilbert space H. On the space

H̃ = H⊕H⊕H⊕ · · · ⊕ H ⊕ · · · ,

define the operator

B = A⊕ 1

2
A⊕ 1

3
A⊕ · · · ⊕ 1

k
A⊕ · · · .

Then B ∈ C+
1 if and only if A ∈ C1.

Proof. Obviously, B is compact if and only if A is compact. Therefore, to prove the lemma,
it suffices to consider the case where A is a compact operator. Thus there are orthonormal
sets {xj : j ∈ N} and {yj : j ∈ N} in H such that

A =
∞∑
j=1

sj(A)xj ⊗ yj .
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If A ∈ C1, then
∑∞
j=1 sj(A) = ‖A‖1 <∞, and we can rewrite B in the form

B =

∞∑
j=1

sj(A)Bj ,

where

Bj = (xj ⊗ yj)⊕
1

2
(xj ⊗ yj)⊕

1

3
(xj ⊗ yj)⊕ · · · ⊕

1

k
(xj ⊗ yj)⊕ · · ·

for each j ∈ N. Obviously, ‖Bj‖+1 = 1 for every j ∈ N. Hence the condition A ∈ C1
implies B ∈ C+

1 .

Now suppose that B ∈ C+
1 . Then we have |B| ∈ C+

1 . Moreover,

(7.3) |B| = |A| ⊕ 1

2
|A| ⊕ 1

3
|A| ⊕ · · · ⊕ 1

k
|A| ⊕ · · ·

and

(7.4) |A| =
∞∑
j=1

sj(A)yj ⊗ yj .

For each n ∈ N, define the operator

Cn =

n∑
j=1

sj(A){(yj ⊗ yj)⊕
1

2
(yj ⊗ yj)⊕

1

3
(yj ⊗ yj)⊕ · · · ⊕

1

k
(yj ⊗ yj)⊕ · · · }.

From (7.3) and (7.4) we see that |B| ≥ Cn for every n ∈ N. Let Trω be any Dixmier trace
[6,3,18]. It is obvious that

Trω

(
(yj ⊗ yj)⊕

1

2
(yj ⊗ yj)⊕

1

3
(yj ⊗ yj)⊕ · · · ⊕

1

k
(yj ⊗ yj)⊕ · · ·

)
= 1

for every j ∈ N. Combining this with the fact that |B| ≥ Cn, we have

Trω(|B|) ≥ Trω(Cn) =
n∑
j=1

sj(A).

Since this holds for every n ∈ N, it follows that ‖A‖1 ≤ Trω(|B|) ≤ ‖|B|‖+1 = ‖B‖+1 <∞.
This completes the proof. �

Proof of Theorem 1.3. Let M and Y be given by (7.1) and (7.2) respectively. We define
the operators

N = M ⊕M ⊕M ⊕ · · · ⊕M ⊕ · · · and

X = Y ⊕ 1

2
Y ⊕ 1

3
Y ⊕ · · · ⊕ 1

k
Y ⊕ · · · .
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Then obviously N is normal and X is compact. Moreover,

[N,X] = [M,Y ]⊕ 1

2
[M,Y ]⊕ 1

3
[M,Y ]⊕ · · · ⊕ 1

k
[M,Y ]⊕ · · · and

[N∗, X] = [M∗, Y ]⊕ 1

2
[M∗, Y ]⊕ 1

3
[M∗, Y ]⊕ · · · ⊕ 1

k
[M∗, Y ]⊕ · · · .

Since [M,Y ] ∈ C1 while [M∗, Y ] /∈ C1, it follows from Lemma 7.2 that

[N,X] ∈ C+
1 while [N∗, X] /∈ C+

1 .

This proves Theorem 1.3. �

It was shown in [15] that there does not exist any constant 0 < C <∞ such that the
operator-norm inequality

‖[N∗, X]‖ ≤ C‖[N,X]‖

holds whenever N is a normal operator. Also see [16] for further results. In this regard,
the operator M defined by (7.1) also serves as a nice example:

Lemma 7.3. Let M be the normal operator defined by (7.1). For each n ∈ N, there is a
compact operator Xn on L2(D, dA) such that

(7.5) ‖[M,Xn]‖ ≤ 2, rank([M,Xn]) <∞ and ‖[M∗, Xn]‖ ≥ n/π.

Proof. Denote K = [M∗, Y ], where Y is defined by (7.2). Since Y is compact, so is K.
Therefore there are orthonormal sets {fj : j ∈ N} and {gj : j ∈ N} such that

K =

∞∑
j=1

sj(K)fj ⊗ gj .

Since K /∈ C1, we have
∑∞
j=1 sj(K) =∞.

Let an n ∈ N be given. Then there is an mn ∈ N such that

mn∑
j=1

sj(K) ≥ 2n.

With this mn, we define

Ln =

mn∑
j=1

gj ⊗ fj .

Obviously,

tr(KLn) =

mn∑
j=1

sj(K) ≥ 2n.
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Since L∞(D, dA) is dense in L2(D, dA), for each j, there are sequences {ϕ(k)
j }k∈N and

{ψ(k)
j }k∈N in L∞(D, dA) such that

(7.6) lim
k→∞

‖fj − ϕ(k)
j ‖ = 0 and lim

k→∞
‖gj − ψ(k)

j ‖ = 0.

For each k ∈ N, define

L(k)
n =

mn∑
j=1

ψ
(k)
j ⊗ ϕ

(k)
j .

Then (7.6) implies that ‖Ln − L(k)
n ‖1 → 0 as k →∞. Consequently,

(7.7) lim
k→∞

tr(KL(k)
n ) = tr(KLn) =

mn∑
j=1

sj(K) ≥ 2n.

Since {fj : j ∈ N} and {gj : j ∈ N} are orthonormal sets, we have ‖Ln‖ = 1. Thus the

fact that ‖Ln − L(k)
n ‖1 → 0 also implies that ‖L(k)

n ‖ → 1 as k →∞. Combining this limit
with (7.7), we see that there is a kn ∈ N such that

(7.8) |tr(KL(kn)
n )| ≥ n and ‖L(kn)

n ‖ ≤ 2.

As usual, if ϕ ∈ L∞(D, dA), we write Mϕ for the operator of multiplication by the
function ϕ on L∞(D, dA). We now define the operator

(7.9) Xn =

mn∑
j=1

M∗
ϕ

(kn)
j

YM
ψ

(kn)
j

.

Let us verify that Xn has all the desired properties. First of all, since Y is a compact

operator and since the sequences {ϕ(k)
j }k∈N and {ψ(k)

j }k∈N are in L∞(D, dA), Xn is a
compact operator. Then from the fact [M,Y ] = 1⊗ 1 we obtain

(7.10) [M,Xn] =

mn∑
j=1

M∗
ϕ

(kn)
j

[M,Y ]M
ψ

(kn)
j

=

mn∑
j=1

ϕ̄
(kn)
j ⊗ ψ̄(kn)

j .

Therefore rank([M,Xn]) ≤ mn <∞. For every f ∈ L2(D, dA), we have

[M,Xn]f = (L
(kn)
n )∗f̄ .

Note that ‖f̄‖ = ‖f‖ for every f ∈ L2(D, dA). Thus it follows from (7.8) that

(7.11) ‖[M,Xn]‖ ≤ 2.
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On the other hand, since [M∗, Y ] = K, we have

(7.12) 〈[M∗, Xn]1, 1〉 =

mn∑
j=1

〈M∗
ϕ

(kn)
j

KM
ψ

(kn)
j

1, 1〉 =

mn∑
j=1

〈Kψ(kn)
j , ϕ

(kn)
j 〉 = tr(KL(kn)

n ).

Combining this with (7.8) and with the fact that ‖1‖2 = π, we see that ‖[M∗, Xn]‖ ≥ n/π.
This verifies (7.5) and completes the proof. �

Proof of Theorem 1.4. Let M be the operator defined by (7.1). For each n ∈ N, let
Xn be the compact operator provided by Lemma 7.3. Recall from (7.10) that for every
n ∈ N, we have rank([M,Xn]) ≤ mn.

For each n ∈ N, we pick a natural number r(n) ≥ 3 +mn such that

(7.13) log r(n) ≥ ‖Xn‖.

If B is any operator and k ∈ N, we denote

B[k] =

k copies︷ ︸︸ ︷
B ⊕ · · · ⊕B .

For k ∈ N and any operators A, B, it is obvious that

[A[k], B[k]] = [A,B][k].

Thus
rank([M [r(n)], X [r(n)]

n ]) ≤ r(n)mn and ‖[M [r(n)], X [r(n)]
n ]‖ ≤ 2

for each n ∈ N, where the second ≤ follows from (7.5). Consequently,

(7.14) ‖[M [r(n)], X [r(n)]
n ]‖−∞ ≤

r(n)mn∑
j=1

2

j
≤ 2(1 + log{r(n)mn}) ≤ 2 + 4 log r(n).

By (7.5), we have
s1([M∗, Xn]) = ‖[M∗, Xn]‖ ≥ n/π,

n ∈ N. Hence

sj([(M
∗)[r(n)], X [r(n)]

n ]) ≥ n/π for every 1 ≤ j ≤ r(n).

Consequently,

(7.15) ‖[(M∗)[r(n)], X [r(n)]
n ]‖−∞ ≥

n

π

r(n)∑
j=1

1

j
≥ n

π
log r(n).
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We now define

N =

∞⊕
n=1

M [r(n3)] and X =

∞⊕
n=1

1

n2 log r(n3)
X

[r(n3)]
n3 .

Let us verify that this pair of operators has the properties promised in Theorem 1.4.

First of all, N is obviously a normal operator. By (7.13), we have ‖X [r(n3)]
n3 ‖/ log r(n3)

≤ 1 for every n ∈ N. By this norm bound and the fact that each Xn is compact, X is a
compact operator. Applying (7.14), we have

‖[N,X]‖−∞ =

∥∥∥∥ ∞⊕
n=1

1

n2 log r(n3)
[M [r(n3)], X

[r(n3)]
n3 ]

∥∥∥∥−
∞

≤
∞∑
n=1

1

n2 log r(n3)
‖[M [r(n3)], X

[r(n3)]
n3 ]‖−∞ ≤

∞∑
n=1

2 + 4 log r(n3)

n2 log r(n3)
<∞.

That is, [N,X] ∈ C−∞. On the other hand, for every k ∈ N we have

‖[N∗, X]‖−∞ =

∥∥∥∥ ∞⊕
n=1

1

n2 log r(n3)
[(M∗)[r(n3)], X

[r(n3)]
n3 ]

∥∥∥∥−
∞

≥ 1

k2 log r(k3)
‖[(M∗)[r(k3)], X

[r(k3)]
k3 ]‖−∞ ≥

(k3/π) log r(k3)

k2 log r(k3)
=
k

π
,

where the second ≥ follows from (7.15). Since this holds for every k ∈ N, it follows that
[N∗, X] /∈ C−∞. This completes the proof. �

Proof of Theorem 1.5. As in the proof of Theorem 1.4, let M be the normal operator
defined by (7.1). And again, for each n ∈ N, let Xn be the compact operator provided by
Lemma 7.3. Recall that rank([M,Xn]) ≤ mn.

Given a binormalizing sequence α = {αj} satisfying (1.9), we denote

σ(n) =

n∑
j=1

αj , n ∈ N.

Thus (1.9) translates to

(7.16) σ(n2) ≤ Cσ(n) for every n ∈ N.

Since α is binormalizing, we have σ(n)→∞ as n→∞. This enables us to pick, for each
n ∈ N, a natural number r(n) > mn such that

(7.17) σ(r(n)) ≥ ‖Xn‖.
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As in the proof of Theorem 1.4, we have

rank([M [r(n)], X [r(n)]
n ]) ≤ r(n)mn and ‖[M [r(n)], X [r(n)]

n ]‖ ≤ 2,

n ∈ N. Combining these facts with (7.16), we have

(7.18) ‖[M [r(n)], X [r(n)]
n ]‖α ≤ 2σ(r(n)mn) ≤ 2σ((r(n))2) ≤ 2Cσ(r(n)).

As we explained in the proof of Theorem 1.4,

sj([(M
∗)[r(n)], X [r(n)]

n ]) ≥ n/π for every 1 ≤ j ≤ r(n).

Consequently,

(7.19) ‖[(M∗)[r(n)], X [r(n)]
n ]‖α ≥ (n/π)σ(r(n)).

Now define

N =

∞⊕
n=1

M [r(n3)] and X =

∞⊕
n=1

1

n2σ(r(n3))
X

[r(n3)]
n3 .

Let us verify that this pair of operators has the promised properties.

Again, N is obviously a normal operator. By (7.17), we have ‖X [r(n3)]
n3 ‖/σ(r(n3)) ≤ 1

for every n ∈ N. Since Xn is compact for every n ∈ N, X is a compact operator. Applying
(7.18), we have

‖[N,X]‖α =

∥∥∥∥ ∞⊕
n=1

1

n2σ(r(n3))
[M [r(n3)], X

[r(n3)]
n3 ]

∥∥∥∥
α

≤
∞∑
n=1

1

n2σ(r(n3))
‖[M [r(n3)], X

[r(n3)]
n3 ]‖α ≤

∞∑
n=1

2Cσ(r(n3))

n2σ(r(n3))
<∞.

That is, [N,X] ∈ Cα. On the other hand, for every k ∈ N we have

‖[N∗, X]‖α =

∥∥∥∥ ∞⊕
n=1

1

n2σ(r(n3))
[(M∗)[r(n3)], X

[r(n3)]
n3 ]

∥∥∥∥
α

≥ 1

k2σ(r(k3))
‖[(M∗)[r(k3)], X

[r(k3)]
k3 ]‖α ≥

(k3/π)σ(r(k3))

k2σ(r(k3))
=
k

π
,

where the second ≥ follows from (7.19). Since this holds for every k ∈ N, it follows that
[N∗, X] /∈ Cα. This completes the proof. �

Proof of Theorem 1.6. Let M and Y be given by (7.1) and (7.2) respectively. Define

N = M ⊕M ⊕ · · · ⊕M ⊕ · · · and

X = α1Y ⊕ α2Y ⊕ · · · ⊕ αjY ⊕ · · · .
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Let us verify that these operators have the desired properties. As before, N is obviously
normal. Since Y is compact and since αj → 0 as j →∞, X is compact. Since [M,Y ] = 1⊗1
on L2(D, dA), we have

[N,X] = α1(1⊗ 1)⊕ α2(1⊗ 1)⊕ · · · ⊕ αj(1⊗ 1)⊕ · · · ,

which is obviously in the ideal C†α.

To show that [N∗, X] /∈ C†α, we denote

σ(n) =

n∑
j=1

αj , n ∈ N,

as in the proof of Theorem 1.5. Since the sequence α = {αj} satisfies (1.9), inequality
(7.16) again holds. Writing K = [M∗, Y ] as in the proof of Lemma 7.3, we have

[N∗, X] = α1K ⊕ α2K ⊕ · · · ⊕ αjK ⊕ · · · .

Thus for every n ∈ N,

n2∑
k=1

sk([N∗, X]) ≥
n∑
j=1

αj

n∑
i=1

si(K) = σ(n)
n∑
i=1

si(K) ≥ σ(n2)

C

n∑
i=1

si(K),

where the last ≥ follows from (7.16). By the definition of ‖ · ‖†α, we now have

‖[N∗, X]‖†α ≥
1

σ(n2)

n2∑
k=1

sk([N∗, X]) ≥ 1

C

n∑
i=1

si(K)

for every n ∈ N. Since K /∈ C1, it follows that ‖[N∗, X]‖†α = ∞, i.e., [N∗, X] /∈ C†α. This
completes the proof. �
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