ON THE ESSENTIAL COMMUTANT OF THE TOEPLITZ ALGEBRA ON THE BERGMAN SPACE

Jingbo Xia

Abstract. Let \mathcal{T} be the C^* -algebra generated by the Toeplitz operators $\{T_f : f \in L^{\infty}(\mathbf{B}, dv)\}$ on the Bergman space of the unit ball. We show that the essential commutant of \mathcal{T} equals $\{T_g : g \in \mathrm{VO}_{\mathrm{bdd}}\} + \mathcal{K}$, where $\mathrm{VO}_{\mathrm{bdd}}$ is the collection of bounded functions of vanishing oscillation on \mathbf{B} and \mathcal{K} denotes the collection of compact operators on $L^2_a(\mathbf{B}, dv)$.

1. Introduction

Suppose that \mathcal{Z} is a collection of bounded operators on a Hilbert space \mathcal{H} . Recall that the *essential commutant* of \mathcal{Z} is defined to be

 $\operatorname{EssCom}(\mathcal{Z}) = \{ A \in \mathcal{B}(\mathcal{H}) : [A, T] \text{ is compact for every } T \in \mathcal{Z} \}.$

Obviously, $\operatorname{EssCom}(\mathcal{Z})$ is always a norm-closed unital operator algebra that contains $\mathcal{K}(\mathcal{H})$, the collection of compact operators on \mathcal{H} . If \mathcal{Z} is closed under the *-operation, then $\operatorname{EssCom}(\mathcal{Z})$ is a C^* -algebra.

The story about essential commutant began with the classic papers [11,13], where Johnson, Parrott and Popa characterized the essential commutant of every von Neumann algebra. Ever since, essential-commutant problems have always attracted attention. The purpose of this paper is to determine the essential commutant of the Toeplitz algebra on the *Bergman space* of the unit ball. Before stating our result, let us first explain the historical background of this problem.

Recall that the essential-commutant problem for the Toeplitz algebra on the *Hardy* space was solved long ago. To avoid confusion with the notation that we will use later, let us write $\mathcal{T}^{\text{Hardy}}$ for the Toeplitz algebra on the Hardy space H^2 . Also, write T_f^{Hardy} for Toeplitz operators on H^2 . In [2], Davidson showed that

(1.1)
$$\operatorname{EssCom}(\mathcal{T}^{\operatorname{Hardy}}) = \{T_f^{\operatorname{Hardy}} : f \in \operatorname{QC}\} + \mathcal{K}^{\operatorname{Hardy}},$$

where $QC = VMO \cap L^{\infty}$ and \mathcal{K}^{Hardy} is the collection of compact operators on the Hardy space. Later, this result was generalized in [4,9] to the setting of the Hardy space $H^2(S)$ of the unit sphere in \mathbb{C}^n . (For the latest developments along this line, see [3,5].) Moreover, we now even know that the essential commutant of $\{T_f^{Hardy} : f \in QC\}$ is strictly larger than \mathcal{T}^{Hardy} [15,17]. In other words, the image of \mathcal{T}^{Hardy} in the Calkin algebra does not satisfy the double-commutant relation.

Keywords: Bergman space, Toeplitz algebra, essential commutant.

In view of these Hardy-space results, it may appear surprising that in the decades since [2], no progress has been made on the corresponding essential-commutant problems on the Bergman space. This paper will fundamentally change the situation by proving the Bergman-space analogue of (1.1). At the same time, the material of the paper helps explain why it took so long for progress to be made on the Bergman space: the Bergmanspace case deals with a different kind of structure and requires ideas and techniques that were developed only in the last few years.

Let us turn to the technical details of the paper. Let **B** denote the open unit ball $\{z \in \mathbf{C}^n : |z| < 1\}$ in \mathbf{C}^n . Let dv be the volume measure on **B** with the normalization $v(\mathbf{B}) = 1$. The Bergman space $L^2_a(\mathbf{B}, dv)$ is the subspace

 ${h \in L^2(\mathbf{B}, dv) : h \text{ is analytic on } \mathbf{B}}$

of $L^2(\mathbf{B}, dv)$. Write P for the orthogonal projection from $L^2(\mathbf{B}, dv)$ onto $L^2_a(\mathbf{B}, dv)$. For each $f \in L^{\infty}(\mathbf{B}, dv)$, we have the Toeplitz operator T_f defined by the formula

$$T_f h = P(fh), \quad h \in L^2_a(\mathbf{B}, dv).$$

The Toeplitz algebra \mathcal{T} on the Bergman space $L^2_a(\mathbf{B}, dv)$ is the C*-algebra generated by the collection of Toeplitz operators

$$\{T_f : f \in L^{\infty}(\mathbf{B}, dv)\}.$$

In a recent paper [19], the structure of the Toeplitz algebra \mathcal{T} was explored in some depth. It is the knowledge gained there that enables us to determine $\operatorname{EssCom}(\mathcal{T})$ in this paper.

The natural description of $\operatorname{EssCom}(\mathcal{T})$ involves functions of vanishing oscillation on **B**, which were first introduced by Berger, Coburn and Zhu in [1]. These functions are defined in terms of the *Bergman metric* on **B**. For each $z \in \mathbf{B} \setminus \{0\}$, we have the Möbius transform φ_z given by the formula

$$\varphi_z(\zeta) = \frac{1}{1 - \langle \zeta, z \rangle} \left\{ z - \frac{\langle \zeta, z \rangle}{|z|^2} z - (1 - |z|^2)^{1/2} \left(\zeta - \frac{\langle \zeta, z \rangle}{|z|^2} z \right) \right\}, \quad \zeta \in \mathbf{B},$$

[14, page 25]. In the case z = 0, we define $\varphi_0(\zeta) = -\zeta$. Then the formula

$$\beta(z,w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad z, w \in \mathbf{B},$$

gives us the Bergman metric on **B**. Recall that a function g on **B** is said to have vanishing oscillation if it satisfies the following two conditions: (1) g is continuous on **B**; (2) the limit

$$\lim_{|z|\uparrow 1} \sup_{\beta(z,w) \le 1} |g(z) - g(w)| = 0$$

holds. We will write VO for the collection of functions of vanishing oscillation on **B**. Moreover, we write

$$VO_{bdd} = VO \cap L^{\infty}(\mathbf{B}, dv).$$

In other words, VO_{bdd} denotes the collection of functions of vanishing oscillation that are also bounded (hence the subscript "bdd") on **B**.

Let us write \mathcal{K} for the collection of compact operators on $L^2_a(\mathbf{B}, dv)$. It is well known that $\mathcal{T} \supset \mathcal{K}$. The following is the main result of the paper:

Theorem 1.1. The essential commutant of the Toeplitz algebra \mathcal{T} equals

$$\{T_g : g \in \mathrm{VO}_{\mathrm{bdd}}\} + \mathcal{K}.$$

It was already known in [1] that if $g \in VO_{bdd}$, then the operators $PM_g(1-P)$ and $(1-P)M_qP$ are compact on $L^2(\mathbf{B}, dv)$. Therefore it follows that

(1.2)
$$\operatorname{EssCom}(\mathcal{T}) \supset \{T_g : g \in \operatorname{VO}_{\operatorname{bdd}}\} + \mathcal{K}.$$

Our task for this paper is to prove the inclusion

(1.3)
$$\operatorname{EssCom}(\mathcal{T}) \subset \{T_g : g \in \operatorname{VO}_{\operatorname{bdd}}\} + \mathcal{K},$$

which will take quite a few steps. We conclude the Introduction by giving an outline of the proof of (1.3), which also serves to explain the organization of the paper.

The proof of (1.3) involves a "reverse bound" for certain matrix norms. While the bound itself is elementary, we will prove it in Section 2 as our first step.

An ingredient that is essential to the proof is the modified kernel $\psi_{z,i}$, $z \in \mathbf{B}$ and $i \in \mathbf{Z}_+$. Modified kernels were previously used in various spaces [7,8,18]. We recall these functions and other relevant material in Section 3. The section ends with Proposition 3.7, which is a step in the proof of (1.3). This proposition allows us to "harvest" a specific piece of a non-compact operator for analysis: if A is a non-compact operator on $L^2_a(\mathbf{B}, dv)$, then there is an operator of the form

(1.4)
$$F = \sum_{z \in \Gamma} \psi_{z,i} \otimes e_z,$$

where Γ is a set that is separated with respect to the Bergman metric and $\{e_z : z \in \Gamma\}$ is an orthonormal set, such that AF is not compact.

Our proof requires a special class of operators to test the membership $A \in \text{EssCom}(\mathcal{T})$. In fact, our test operators have the form

$$T = \sum_{z \in \Gamma} c_z \psi_{z,i} \otimes \psi_{\gamma(z),i},$$

where the set Γ is separated, the map $\gamma : \Gamma \to \mathbf{B}$ satisfies the condition $\beta(z, \gamma(z)) \leq C$ for every $z \in \Gamma$, and the set of coefficients $\{c_z : z \in \Gamma\}$ is bounded. But to use such a T as a test operator, we must know that $T \in \mathcal{T}$. In Section 4, we show that such a T is *weakly localized*. Therefore by a result from [19], we have $T \in \mathcal{T}$. Then, using the fact that $T \in \mathcal{T}$, we prove Lemma 4.7, which provides conditions for excluding an operator from EssCom(\mathcal{T}), another necessary step in the proof of Theorem 1.1.

Using the modified kernel $\psi_{z,i}$, in Section 5 we introduced the modified Berezin transforms $\mathcal{B}_i(X)$ of any operator $X, i \in \mathbb{Z}_+$. When i = 0, $\mathcal{B}_0(X)$ is just the usual Berezin transform of X. But our proof uses $\mathcal{B}_i(X)$ for an $i \geq 8n + 1$, which necessitates the introduction of the modified Berezin transforms. Using the fact that $T \in \mathcal{T}$ from Section 4, we show that if $X \in \text{EssCom}(\mathcal{T})$, then $\mathcal{B}_i(X) \in \text{VO}_{\text{bdd}}$ for every $i \in \mathbb{Z}_+$, which is also a step in the proof of Theorem 1.1.

Section 6 contains some specific estimates required in the proof, which involve the condition $i \ge 8n + 1$.

With all these preparations, in Section 7 we prove Theorem 1.1; more specifically, we prove inclusion (1.3). To do that, fix an $i \geq 8n + 1$. Let $X \in \text{EssCom}(\mathcal{T})$ be given. Since we know that $\mathcal{B}_i(X) \in \text{VO}_{\text{bdd}}$, it suffices to show that $X - T_{\mathcal{B}_i(X)}$ is compact. If $X - T_{\mathcal{B}_i(X)}$ were not compact, then there would be an F of the form (1.4) such that $(X - T_{\mathcal{B}_i(X)})F$ is not compact. Then, by a lengthy deduction process that involves the bounds provided in Sections 2 and 6, we show that the non-compactness of $(X - T_{\mathcal{B}_i(X)})F$ implies that

$$A = (X - T_{\mathcal{B}_i(X)})^* (X - T_{\mathcal{B}_i(X)})$$

satisfies the conditions in Lemma 4.7. By that lemma, we would have to conclude that $A \notin \text{EssCom}(\mathcal{T})$, which is obviously a contradiction.

2. A reverse matrix bound

For each $k \in \mathbf{N}$, let M_k denote the collection of $k \times k$ matrices. Each $A \in M_k$ is naturally identified with the corresponding operator on (the column Hilbert space) \mathbf{C}^k . We write \mathcal{D}_k for the collection of $k \times k$ diagonal matrices. Let DP_k denote the collection of $k \times k$ diagonal matrices whose diagonal entries are either 1 or 0. That is, each $E \in \mathrm{DP}_k$ is a diagonal matrix that is also a projection. For every $A \in M_k$, $k \in \mathbf{N}$, we define

$$C_k(A) = \max\{\|[A, E]\| : E \in DP_k\}.$$

Lemma 2.1. For $D \in \mathcal{D}_k$ and $A \in M_k$, $k \in \mathbb{N}$, we have $||[A, D]|| \leq 4||D||C_k(A)$.

Proof. It suffices to show that $||[A, D]|| \leq 2||D||C_k(A)$ for $D \in \mathcal{D}_k$ with real entries. Given such a D, we list its diagonal entries in the ascending order as

$$d_1 \leq \cdots \leq d_k$$

Then there is a permutation $\sigma(1), \ldots, \sigma(k)$ of $1, \ldots, k$ such that for every $i \in \{1, \ldots, k\}, d_i$ is in the intersection of the $\sigma(i)$ -th row and the $\sigma(i)$ -th column of D. Note that $d_1 \ge -\|D\|$ and $d_k \le \|D\|$. For each $i \in \{1, \ldots, k\}$, let E_i be the $k \times k$ diagonal matrix whose entry in the intersection of the $\sigma(j)$ -th row and the $\sigma(j)$ -th column equals 1 for every $i \le j \le k$, and whose other entries are all 0. Then E_1 is the $k \times k$ identity matrix, and we have

$$D = d_1 E_1 + (d_2 - d_1) E_2 + \dots + (d_k - d_{k-1}) E_k.$$

Accordingly, for any $A \in M_k$, we have

$$||[A, D]|| \le |d_1|||[A, E_1]|| + (d_2 - d_1)||[A, E_2]|| + \dots + (d_k - d_{k-1})||[A, E_k]||$$

$$\le (d_2 - d_1)C_k(A) + \dots + (d_k - d_{k-1})C_k(A) = (d_k - d_1)C_k(A) \le 2||D||C_k(A)$$

as promised. \Box

For each $k \in \mathbf{N}$, let VD_k be the collection of $A \in M_k$ whose diagonal entries are all zero. That is, VD stands for *vanishing diagonal*.

Lemma 2.2. If $A \in VD_k$, $k \in \mathbf{N}$, then $||A|| \le \sup\{||[A,D]|| : D \in \mathcal{D}_k, ||D|| \le 1\}$.

Proof. Let $k \in \mathbf{N}$ be given. For each $\theta \in \mathbf{R}$, let V_{θ} be the $k \times k$ diagonal matrix whose diagonal entries are, in the natural order, $e^{i\theta}, e^{i2\theta}, \ldots, e^{ik\theta}$. Let $A \in VD_k$. Since the diagonal entries of A are all zero, elementary calculation shows that

$$\int_0^{2\pi} V_\theta^* A V_\theta d\theta = 0.$$

Hence

$$A = \frac{1}{2\pi} \int_0^{2\pi} (A - V_{\theta}^* A V_{\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} [A, V_{\theta}^*] V_{\theta} d\theta$$

Thus for each $A \in VD_k$, there is a $\theta(A) \in [0, 2\pi]$ such that $\|[A, V^*_{\theta(A)}]V_{\theta(A)}\| \ge \|A\|$. Since $\|[A, V^*_{\theta(A)}]\| = \|[A, V^*_{\theta(A)}]V_{\theta(A)}\|$, the lemma follows. \Box

The following bound is a step in the proof of (1.3):

Proposition 2.3. If $A \in VD_k$, $k \in \mathbb{N}$, then $||A|| \leq 4C_k(A)$.

Proof. The conclusion follows immediately from Lemmas 2.2 and 2.1. \Box

3. Modified kernel and separated sets

As usual, we write $H^{\infty}(\mathbf{B})$ for the collection of bounded analytic functions on **B**. Also, we write $||h||_{\infty} = \sup_{\zeta \in \mathbf{B}} |h(\zeta)|$ for $h \in H^{\infty}(\mathbf{B})$. Naturally, we consider $H^{\infty}(\mathbf{B})$ as a subset of the Bergman space $L^2_a(\mathbf{B}, dv)$.

Recall that the formula

$$k_z(\zeta) = \frac{(1-|z|^2)^{(n+1)/2}}{(1-\langle \zeta, z \rangle)^{n+1}}, \quad z, \zeta \in \mathbf{B},$$

gives us the normalized reproducing kernel for $L_a^2(\mathbf{B}, dv)$. For each integer $i \ge 0$, we define the modified kernel function

$$\psi_{z,i}(\zeta) = \frac{(1-|z|^2)^{\{(n+1)/2\}+i}}{(1-\langle \zeta, z \rangle)^{n+1+i}}, \quad z, \zeta \in \mathbf{B}.$$

If we introduce the multiplier

$$m_z(\zeta) = \frac{1 - |z|^2}{1 - \langle \zeta, z \rangle}$$

for each $z \in \mathbf{B}$, then we have the relation $\psi_{z,i} = m_z^i k_z$. As we have seen previously [7,8,18], this modification gives $\psi_{z,i}$ a faster "decaying rate" than k_z , which is what makes the estimate in Lemma 6.4 possible.

Obviously, $||m_z||_{\infty} \leq 1 + |z| < 2$ for every $z \in \mathbf{B}$. Therefore for every $i \in \mathbf{Z}_+$ we have $||\psi_{z,i}|| \leq 2^i$. On the other hand, $\langle \psi_{z,i}, k_z \rangle = 1$. Hence the inequality

(3.1)
$$1 \le \|\psi_{z,i}\| \le 2^i$$

holds for all $i \in \mathbf{Z}_+$ and $z \in \mathbf{B}$.

Definition 3.1. (1) For $z \in \mathbf{B}$ and r > 0, denote $D(z, r) = \{\zeta \in \mathbf{B} : \beta(z, \zeta) < r\}$. (2) Let a > 0. A subset Γ of \mathbf{B} is said to be *a*-separated if $D(z, a) \cap D(w, a) = \emptyset$ for all distinct elements z, w in Γ .

(3) A subset Γ of **B** is simply said to be separated if it is *a*-separated for some a > 0.

Lemma 3.2. [19,Lemma 2.2] Let Γ be a separated set in **B**.

(a) For each $0 < R < \infty$, there is a natural number $N = N(\Gamma, R)$ such that $\operatorname{card}\{v \in \Gamma : \beta(u, v) \leq R\} \leq N$ for every $u \in \Gamma$.

(b) For every pair of $z \in \mathbf{B}$ and $\rho > 0$, there is a finite partition $\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_m$ such that for every $i \in \{1, \ldots, m\}$, the conditions $u, v \in \Gamma_i$ and $u \neq v$ imply $\beta(\varphi_u(z), \varphi_v(z)) > \rho$.

Recall that for each $z \in \mathbf{B}$, the formula

$$(U_z h)(\zeta) = k_z(\zeta)h(\varphi_z(\zeta)), \quad \zeta \in \mathbf{B} \text{ and } h \in L^2_a(\mathbf{B}, dv),$$

defines a unitary operator.

Lemma 3.3. [19,Lemma 2.6] Given any separated set Γ in **B**, there exists a constant $0 < B(\Gamma) < \infty$ such that the following estimate holds: Let $\{h_u : u \in \Gamma\}$ be functions in $H^{\infty}(\mathbf{B})$ such that $\sup_{u \in \Gamma} \|h_u\|_{\infty} < \infty$, and let $\{e_u : u \in \Gamma\}$ be any orthonormal set. Then

$$\left\|\sum_{u\in\Gamma} (U_u h_u) \otimes e_u\right\| \le B(\Gamma) \sup_{u\in\Gamma} \|h_u\|_{\infty}.$$

Suppose that Γ is a separated set in **B**, $i \in \mathbb{Z}_+$ and $z \in \mathbb{B}$. For each such triple $\{\Gamma, z, i\}$, we define the operator

$$E_{\Gamma;z;i} = \sum_{u \in \Gamma} \psi_{\varphi_u(z),i} \otimes \psi_{\varphi_u(z),i}.$$

Corollary 3.4. Let Γ be a separated set in **B** and let $i \in \mathbf{Z}_+$. Given any R > 0, there is a constant $C_{3.4} = C_{3.4}(R)$ such that the inequality $||E_{\Gamma;z;i}|| \leq C_{3.4}$ holds for every $z \in \mathbf{B}$ satisfying the condition $\beta(z, 0) \leq R$.

Proof. Let $u \in \Gamma$ and $z \in \mathbf{B}$. By [14,Theorem 2.2.2], we have $\psi_{\varphi_u(z),i} = U_u h_{u,z;i}$, where

$$h_{u,z;i} = \left(\frac{1 - \langle u, z \rangle}{|1 - \langle u, z \rangle|}\right)^{n+1} (m_{\varphi_u(z)} \circ \varphi_u)^i k_z$$

Obviously, $||h_{u,z;i}||_{\infty} \leq 2^{i} ||k_{z}||_{\infty} \leq C(1-|z|)^{-(n+1)/2}$, where $C = 2^{i+(1/2)(n+1)}$. Combining this with the fact that $|z| = (e^{2\beta(z,0)} - 1)/(e^{2\beta(z,0)} + 1)$, we obtain

$$||h_{u,z;i}||_{\infty} \le C(e^{2\beta(z,0)}+1)^{(n+1)/2}$$

Applying Lemma 3.3, we see that the constant $C_{3.4} = C_{3.4}(R) = B^2(\Gamma)C^2(e^{2R}+1)^{n+1}$ suffices for the given R > 0. \Box

Let $d\lambda$ denote the standard Möbius-invariant measure on **B**. That is,

$$d\lambda(z) = \frac{dv(z)}{(1 - |z|^2)^{n+1}}.$$

Proposition 3.5. [18,Proposition 4.1] For each integer $i \ge 0$, there exist scalars $0 < c \le C < \infty$ which are determined by i and n such that the self-adjoint operator

$$R_i = \int \psi_{z,i} \otimes \psi_{z,i} d\lambda(z)$$

satisfies the operator inequality $cP \leq R_i \leq CP$ on the Hilbert space $L^2(\mathbf{B}, dv)$.

Lemma 3.6. [6,Lemma 4.2] Let $\{X, \mathcal{M}, \mu\}$ be a (finite or infinite) measure space. Let H be a separable Hilbert space and let $\mathcal{K}(H)$ denote the collection of compact operators on H. Suppose that $F: X \to \mathcal{K}(H)$ is a weakly \mathcal{M} -measurable map. If

$$\int_X \|F(x)\| d\mu(x) < \infty,$$

then

$$K = \int_X F(x) d\mu(x)$$

is a compact operator on the Hilbert space H.

Using the above facts, we can "decompose" non-compactness on the Bergman space: **Proposition 3.7.** Let A be a bounded, non-compact operator on $L^2_a(\mathbf{B}, dv)$. Then for every $i \in \mathbf{Z}_+$, there is a 1-separated set Γ in **B** such that the operator

$$A\sum_{z\in\Gamma}\psi_{z,i}\otimes e_z$$

is not compact, where $\{e_z : z \in \Gamma\}$ is any orthonormal set.

Proof. Let \mathcal{L} be a subset of **B** which is maximal with respect to the property that

(3.2)
$$D(u,1) \cap D(v,1) = \emptyset$$
 for all $u \neq v$ in \mathcal{L} .

The maximality of \mathcal{L} implies that

(3.3)
$$\bigcup_{u \in \mathcal{L}} D(u, 2) = \mathbf{B}$$

Now define the function

$$\Phi = \sum_{u \in \mathcal{L}} \chi_{D(u,2)}$$

on **B**. By (3.2) and Lemma 3.2(a), there is a natural number $N \in \mathbf{N}$ such that

$$\operatorname{card}\{v \in \mathcal{L} : D(u, 2) \cap D(v, 2) \neq \emptyset\} \le N$$

for every $u \in \mathcal{L}$. This and (3.3) together tell us that the inequality

$$(3.4) 1 \le \Phi \le N$$

holds on the unit ball **B**.

Given any integer $i \in \mathbf{Z}_+$, we define the operator

$$R'_{i} = \int \Phi(z)\psi_{z,i} \otimes \psi_{z,i} d\lambda(z) = \sum_{u \in \mathcal{L}} \int_{D(u,2)} \psi_{z,i} \otimes \psi_{z,i} d\lambda(z).$$

Then (3.4) implies that $R_i \leq R'_i \leq NR_i$. Applying Proposition 3.5, we see that the operator inequality $c \leq R'_i \leq NC$ holds on the Bergman space $L^2_a(\mathbf{B}, dv)$. That is, R'_i is both bounded and invertible on $L^2_a(\mathbf{B}, dv)$. By the Möbius invariance of both β and $d\lambda$, we have

$$R'_{i} = \sum_{u \in \mathcal{L}} \int_{D(0,2)} \psi_{\varphi_{u}(z),i} \otimes \psi_{\varphi_{u}(z),i} d\lambda(z) = \int_{D(0,2)} E_{\mathcal{L};z;i} d\lambda(z).$$

Let A be a bounded, non-compact operator on $L^2_a(\mathbf{B}, dv)$. Since R'_i is invertible, the operator

$$AR'_{i} = \int_{D(0,2)} AE_{\mathcal{L};z;i} d\lambda(z)$$

is not compact. By Corollary 3.4, there is a finite bound for $||E_{\mathcal{L};z;i}||, z \in D(0,2)$. Thus Lemma 3.6 tells us that there is a $w \in D(0,2)$ such that $AE_{\mathcal{L};w;i}$ is not compact, i.e.,

(3.5)
$$A\sum_{u\in\mathcal{L}}\psi_{\varphi_u(w),i}\otimes\psi_{\varphi_u(w),i}$$

is not compact. Since \mathcal{L} is 1-separated, Lemma 3.2(b) provides a partition $\mathcal{L} = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_m$ such that for each $j \in \{1, \ldots, m\}$, we have $\beta(\varphi_u(w), \varphi_v(w)) > 2$ for all $u \neq v$ in \mathcal{L}_j . That is, each set $\Gamma_j = \{\varphi_u(w) : u \in \mathcal{L}_j\}$ is also 1-separated, $j \in \{1, \ldots, m\}$. The non-compactness of (3.5) implies that there is a $j_0 \in \{1, \ldots, m\}$ such that the operator

is not compact. Finally, let $\{e_z : z \in \Gamma_{j_0}\}$ be any orthonormal set and define the operator

$$F = \sum_{z \in \Gamma_{j_0}} \psi_{z,i} \otimes e_z.$$

By Corollary 3.4, F is a bounded operator. Since (3.6) equals AFF^* , we conclude that AF is not compact. This completes the proof. \Box

4. Membership criterion

To prove Theorem 1.1, we obviously need plenty of operators to test the membership $A \in \text{EssCom}(\mathcal{T})$. In view of Proposition 3.7, it is easy to understand that the most suitable "test operators" are discrete sums constructed from the modified kernel $\psi_{z,i}$. But then a problem immediate arises: how do we know that these operators belong to \mathcal{T} ?

It was first discovered in [20] that *localization* is a powerful tool for analyzing operators on reproducing-kernel Hilbert spaces. Recently, Isralowitz, Mitkovski and Wick further explored this idea in [10] by introducing the notion of *weakly localized operators* on the Bergman space. This in turn led to the author's work [19], which settles the membership problem mentioned in the preceding paragraph.

Definition 4.1. Let a positive number (n-1)/(n+1) < s < 1 be given.

(a) A bounded operator B on the Bergman space $L^2_a(\mathbf{B}, dv)$ is said to be s-weakly localized if it satisfies the conditions

$$\begin{split} \sup_{z \in \mathbf{B}} \int |\langle Bk_z, k_w \rangle| \left(\frac{1-|w|^2}{1-|z|^2}\right)^{s(n+1)/2} d\lambda(w) < \infty, \\ \sup_{z \in \mathbf{B}} \int |\langle B^*k_z, k_w \rangle| \left(\frac{1-|w|^2}{1-|z|^2}\right)^{s(n+1)/2} d\lambda(w) < \infty, \\ \lim_{r \to \infty} \sup_{z \in \mathbf{B}} \int_{\mathbf{B} \setminus D(z,r)} |\langle Bk_z, k_w \rangle| \left(\frac{1-|w|^2}{1-|z|^2}\right)^{s(n+1)/2} d\lambda(w) = 0 \quad \text{and} \\ \lim_{r \to \infty} \sup_{z \in \mathbf{B}} \int_{\mathbf{B} \setminus D(z,r)} |\langle B^*k_z, k_w \rangle| \left(\frac{1-|w|^2}{1-|z|^2}\right)^{s(n+1)/2} d\lambda(w) = 0. \end{split}$$

(b) Let \mathcal{A}_s denote the collection of *s*-weakly localized operators defined as above. (c) Let $C^*(\mathcal{A}_s)$ denote the C^* -algebra generated by \mathcal{A}_s .

Theorem 4.2. [19,Theorem 1.3] For every (n-1)/(n+1) < s < 1 we have $C^*(\mathcal{A}_s) = \mathcal{T}$.

Lemma 4.3. [19,Lemma 2.3] For all $u, v, x, y \in \mathbf{B}$ we have

$$\frac{(1-|\varphi_u(x)|^2)^{1/2}(1-|\varphi_v(y)|^2)^{1/2}}{|1-\langle\varphi_u(x),\varphi_v(y)\rangle|} \le 2e^{\beta(x,0)+\beta(y,0)}\frac{(1-|u|^2)^{1/2}(1-|v|^2)^{1/2}}{|1-\langle u,v\rangle|}.$$

Corollary 4.4. For every triple of $z, z', \zeta \in \mathbf{B}$ we have $|k_z(\zeta)| \leq (2e^{\beta(z,z')})^{n+1} |k_{z'}(\zeta)|$.

Proof. Given any triple of $z, z', \zeta \in \mathbf{B}$, we apply Lemma 4.3 to the case where u = z', $v = \zeta$, $x = \varphi_{z'}(z)$ and y = 0, which gives us

$$\frac{(1-|z|^2)^{1/2}(1-|\zeta|^2)^{1/2}}{|1-\langle z,\zeta\rangle|} \le 2e^{\beta(\varphi_{z'}(z),0)}\frac{(1-|z'|^2)^{1/2}(1-|\zeta|^2)^{1/2}}{|1-\langle z',\zeta\rangle|}.$$

Since $\beta(\varphi_{z'}(z), 0) = \beta(z, z')$, this implies the conclusion of the corollary. \Box

We now present the "test operators" mentioned earlier.

Proposition 4.5. Let Γ be a separated set in **B**. Suppose that $\gamma : \Gamma \to \mathbf{B}$ is a map for which there is a $0 < C < \infty$ such that

(4.1)
$$\beta(u, \gamma(u)) \le C$$

for every $u \in \Gamma$. Then for every $i \in \mathbf{Z}_+$ and every bounded set of complex coefficients $\{c_u : u \in \Gamma\}$, the operator

(4.2)
$$T = \sum_{u \in \Gamma} c_u \psi_{u,i} \otimes \psi_{\gamma(u),i}$$

belongs to the Toeplitz algebra \mathcal{T} .

Proof. We need the Forelli-Rudin estimates in [10]. Fix an (n-1)/(n+1) < s < 1 and set

$$A = \sup_{x \in \mathbf{B}} \int |\langle k_x, k_w \rangle| \left(\frac{1 - |w|^2}{1 - |x|^2}\right)^{\frac{s(n+1)}{2}} d\lambda(w) \text{ and}$$
$$B(R) = \sup_{x \in \mathbf{B}} \int_{\beta(w,x) \ge R} |\langle k_x, k_w \rangle| \left(\frac{1 - |w|^2}{1 - |x|^2}\right)^{\frac{s(n+1)}{2}} d\lambda(w)$$

for R > 0. From [10,page 1558] we know that $A < \infty$ and $B(R) \to 0$ as $R \to \infty$. To show that $T \in \mathcal{T}$, by Theorem 4.2, it suffices to show that $T \in \mathcal{A}_s$.

Thus we need to verify that

(4.3)
$$\lim_{r \to \infty} \sup_{z \in \mathbf{B}} \int_{\mathbf{B} \setminus D(z,r)} |\langle Tk_z, k_w \rangle| \left(\frac{1 - |w|^2}{1 - |z|^2}\right)^{s(n+1)/2} d\lambda(w) = 0.$$

To prove this, let us write $C_1 = \sup\{|c_u| : u \in \Gamma\}$, which is assumed to be finite. For every pair of $z, w \in \mathbf{B}$ we have

(4.4)
$$\begin{aligned} |\langle Tk_z, k_w \rangle| &\leq C_1 \sum_{u \in \Gamma} |\langle k_z, \psi_{\gamma(u),i} \rangle \langle \psi_{u,i}, k_w \rangle| \\ &\leq 2^{2i} C_1 (1 - |z|^2)^{\frac{n+1}{2}} (1 - |w|^2)^{\frac{n+1}{2}} \sum_{u \in \Gamma} |k_{\gamma(u)}(z) k_u(w)|. \end{aligned}$$

By the assumption on Γ , there is an a > 0 such that $D(u, a) \cap D(v, a) = \emptyset$ for all $u \neq v$ in Γ . By Corollary 4.4, we have $|k_u(w)| \leq (2e^a)^{n+1} |k_x(w)|$ for every $x \in D(u, a)$. Similarly, by (4.1) and Corollary 4.4, we have $|k_{\gamma(u)}(z)| \leq (2e^{a+C})^{n+1} |k_x(z)|$ for every $x \in D(u, a)$. Substituting these in (4.4), we find that if we set $C_2 = 2^{2i} C_1 (4e^{2a+C})^{n+1}$, then

$$|\langle Tk_z, k_w \rangle| \le C_2 \sum_{u \in \Gamma} |\langle k_z, k_{x_u} \rangle \langle k_{x_u}, k_w \rangle|,$$

where $x_u \in D(u, a)$ for every $u \in \Gamma$. Thus for any $z \in \mathbf{B}$ and r > 0, we have

$$\begin{split} \int_{\mathbf{B}\setminus D(z,r)} |\langle Tk_{z},k_{w}\rangle| \left(\frac{1-|w|^{2}}{1-|z|^{2}}\right)^{\frac{s(n+1)}{2}} d\lambda(w) \\ &\leq \int_{\beta(z,w)\geq r} C_{2} \sum_{u\in\Gamma} \int_{D(u,a)} |\langle k_{z},k_{x}\rangle\langle k_{x},k_{w}\rangle| \frac{d\lambda(x)}{\lambda(D(u,a))} \left(\frac{1-|w|^{2}}{1-|z|^{2}}\right)^{\frac{s(n+1)}{2}} d\lambda(w) \\ &\leq \frac{C_{2}}{\lambda(D(0,a))} \int \int_{\beta(z,w)\geq r} |\langle k_{z},k_{x}\rangle\langle k_{x},k_{w}\rangle| \left(\frac{1-|w|^{2}}{1-|z|^{2}}\right)^{\frac{s(n+1)}{2}} d\lambda(w) d\lambda(x). \end{split}$$

The rest of the proof resembles the proof of [10,Proposition 2.2]: Write the last integral in the form of $I_1 + I_2$, where

$$I_1 = \int_{\beta(z,x) < r/2} \int_{\beta(z,w) \ge r} \quad \text{and} \quad I_2 = \int_{\beta(z,x) \ge r/2} \int_{\beta(z,w) \ge r}$$

If $\beta(z, x) < r/2$ and $\beta(z, w) \ge r$, then $\beta(x, w) \ge r/2$. Hence

$$I_1 \le \int |\langle k_z, k_x \rangle| \left(\frac{1-|x|^2}{1-|z|^2}\right)^{\frac{s(n+1)}{2}} \int_{\beta(w,x) \ge r/2} |\langle k_x, k_w \rangle| \left(\frac{1-|w|^2}{1-|x|^2}\right)^{\frac{s(n+1)}{2}} d\lambda(w) d\lambda(x).$$

Since the inner integral is at most B(r/2), we have $I_1 \leq AB(r/2)$. On the other hand,

$$I_2 \le \int_{\beta(z,x) \ge r/2} |\langle k_z, k_x \rangle| \left(\frac{1-|x|^2}{1-|z|^2}\right)^{\frac{s(n+1)}{2}} \int |\langle k_x, k_w \rangle| \left(\frac{1-|w|^2}{1-|x|^2}\right)^{\frac{s(n+1)}{2}} d\lambda(w) d\lambda(x).$$

Since the inner integral does not exceed A, we have $I_2 \leq AB(r/2)$. Hence

$$\int_{\mathbf{B}\setminus D(z,r)} |\langle Tk_z, k_w \rangle| \left(\frac{1-|w|^2}{1-|z|^2}\right)^{\frac{s(n+1)}{2}} d\lambda(w) \le \frac{2C_2 A B(r/2)}{\lambda(D(0,a))}$$

for all $z \in \mathbf{B}$ and r > 0, which proves (4.3). By the same argument, if we replace T by T^* in (4.3), the limit also holds. This completes the verification that $T \in \mathcal{A}_s$. \Box

For an operator A on a Hilbert space \mathcal{H} , we write $||A||_{\mathcal{Q}}$ for its essential norm, i.e.,

 $||A||_{\mathcal{Q}} = \inf\{||A - K|| : K \text{ is any compact operator on } \mathcal{H}\}.$

Next we use operators of the form (4.2) to test membership in $\text{EssCom}(\mathcal{T})$. To do this, we also need a familiar lemma:

Lemma 4.6. [12,Lemma 2.1] Let $\{B_i\}$ be a sequence of compact operators on a Hilbert space \mathcal{H} satisfying the following conditions:

(a) Both sequences $\{B_i\}$ and $\{B_i^*\}$ converge to 0 in the strong operator topology.

(b) The limit $\lim_{i\to\infty} ||B_i||$ exists.

Then there exist natural numbers $i(1) < i(2) < \cdots < i(m) < \cdots$ such that the sum

$$\sum_{m=1}^{\infty} B_{i(m)} = \lim_{N \to \infty} \sum_{m=1}^{N} B_{i(m)}$$

exists in the strong operator topology and we have

$$\left\|\sum_{m=1}^{\infty} B_{i(m)}\right\|_{\mathcal{Q}} = \lim_{i \to \infty} \|B_i\|.$$

Lemma 4.7. Let A be a bounded operator on $L^2_a(\mathbf{B}, dv)$. Suppose that there exist an $i \in \mathbf{Z}_+$, a separated set Γ in \mathbf{B} and a c > 0 such that the following two conditions hold: (1) There is a sequence E_1, \ldots, E_j, \ldots of finite subsets of Γ such that

$$\left\| \left[A, \sum_{z \in E_j} \psi_{z,i} \otimes \psi_{z,i} \right] \right\| \ge c \quad for \ every \ j \ge 1.$$

(2) $\inf\{|z|: z \in E_j\} \to 1 \text{ as } j \to \infty.$ Then A does not belong to the essential commutant of \mathcal{T} .

Proof. For convenience, for each subset E of Γ we denote

$$S_E = \sum_{z \in E} \psi_{z,i} \otimes \psi_{z,i}.$$

By Corollary 3.4, S_{Γ} is a bounded operator. Therefore $||S_E|| \leq ||S_{\Gamma}|| < \infty$ for every $E \subset \Gamma$.

Since each E_j is a finite set and since (2) holds, passing to a subsequence if necessary, we may assume that $E_j \cap E_k = \emptyset$ for all $j \neq k$ in **N**. Denote $\mathcal{E} = \bigcup_{j=1}^{\infty} E_j$. Then

$$\langle S_{\mathcal{E}}h,h\rangle = \sum_{j=1}^{\infty} \langle S_{E_j}h,h\rangle$$

for every $h \in L^2_a(\mathbf{B}, dv)$. Obviously, this implies that the sequence of operators $\{S_{E_j}\}$ converges to 0 weakly. But since $S_{E_j} \ge 0$ for every j, from this weak convergence we deduce that the operator sequence $\{S_{E_j}\}$ converges to 0 strongly. Define

$$B_j = [A, S_{E_j}]$$

for every $j \in \mathbf{N}$. Then we have the strong convergence $B_j \to 0$ and $B_j^* \to 0$ as $j \to \infty$, i.e., condition (a) in Lemma 4.6 is satisfied by these operators. Since $||B_j|| \leq 2||A|| ||S_{\Gamma}||$ for every j, there is a subsequence $\{j_{\nu}\}$ of the natural numbers such that the limit

$$d = \lim_{\nu \to \infty} \|B_{j_{\nu}}\|$$

exists. That is, the subsequence $\{B_{j_{\nu}}\}\$ satisfies both condition (a) and condition (b) in Lemma 4.6. By that lemma, there are $\nu(1) < \nu(2) < \cdots < \nu(m) < \cdots$ such that the sum

$$B = \sum_{m=1}^{\infty} B_{j_{\nu(m)}} = \lim_{N \to \infty} \sum_{m=1}^{N} B_{j_{\nu(m)}}$$

converges in the strong operator topology with $||B||_{\mathcal{Q}} = d$. By condition (1), $d \ge c > 0$. Thus B is not a compact operator.

For each $N \in \mathbf{N}$, define

$$T_N = \sum_{m=1}^N S_{E_{j_{\nu(m)}}}$$

If we set $\mathcal{F} = \bigcup_{m=1}^{\infty} E_{j_{\nu(m)}}$, then we obviously have the weak convergence $T_N \to S_{\mathcal{F}}$ as $N \to \infty$. Thus, taking weak limit, we obtain

$$B = \lim_{N \to \infty} \sum_{m=1}^{N} [A, S_{E_{j_{\nu(m)}}}] = \lim_{N \to \infty} [A, T_N] = [A, S_{\mathcal{F}}].$$

This shows that the commutator $[A, S_{\mathcal{F}}]$ is not compact. Since Proposition 4.5 tells us that $S_{\mathcal{F}} \in \mathcal{T}$, we conclude that $A \notin \text{EssCom}(\mathcal{T})$. \Box

5. Modified Berezin transforms

We begin this section with some general elementary facts.

Lemma 5.1. Let T be a bounded, self-adjoint operator on a Hilbert space \mathcal{H} . Then for each unit vector $x \in \mathcal{H}$ we have

$$\|[T, x \otimes x]\| = \|(T - \langle Tx, x \rangle)x\|.$$

Proof. Let $x \in \mathcal{H}$. By the self-adjointness of T, we have $\langle Tx, x \rangle \in \mathbf{R}$. Therefore

$$[T, x \otimes x] = \{ (T - \langle Tx, x \rangle) x \} \otimes x - x \otimes \{ (T - \langle Tx, x \rangle) x \} = h \otimes x - x \otimes h,$$

where we write $h = (T - \langle Tx, x \rangle)x$. In the case ||x|| = 1, we have $\langle h, x \rangle = 0$. Hence

$$\|[T, x \otimes x]\| = \|h \otimes x - x \otimes h\| = \|h\| \|x\| = \|h\| = \|(T - \langle Tx, x \rangle)x\|$$

for every unit vector $x \in \mathcal{H}$. \Box

Lemma 5.2. Let T be a bounded, self-adjoint operator on a Hilbert space \mathcal{H} . Then for every pair of unit vectors $x, y \in \mathcal{H}$ we have

(5.1)
$$|\langle Tx, x \rangle - \langle Ty, y \rangle| \le ||[T, x \otimes y]|| + ||[T, x \otimes x]|| + ||[T, y \otimes y]||.$$

Proof. By the self-adjointness of T, we have

$$[T, x \otimes y] = (Tx) \otimes y - x \otimes (Ty)$$

= {(T - \lap{Tx}, x\rangle)x} \overline y - x \overline {(T - \lap{Ty}, y\rangle)y} + (\lap{Tx}, x\rangle - \lap{Ty}, y\rangle)x \overline y.

Since x and y are unit vectors, we have $||x \otimes y|| = ||x|| ||y|| = 1$. Therefore

$$\begin{aligned} |\langle Tx, x \rangle - \langle Ty, y \rangle| &= \|(\langle Tx, x \rangle - \langle Ty, y \rangle)x \otimes y\| \\ &\leq \|[T, x \otimes y]\| + \|\{(T - \langle Tx, x \rangle)x\} \otimes y\| + \|x \otimes \{(T - \langle Ty, y \rangle)y\}\| \\ &= \|[T, x \otimes y]\| + \|(T - \langle Tx, x \rangle)x\| + \|(T - \langle Ty, y \rangle)y\|. \end{aligned}$$

Applying Lemma 5.1 to the last two terms above, we obtain (5.1). \Box

Lemma 5.3. Let $\{z_j\}$ be a sequence in **B** such that

(5.2)
$$\limsup_{j \to \infty} |z_j| = 1$$

Then there is a sequence $j_1 < j_2 < \cdots < j_i < \cdots$ of natural numbers such that $|z_{j_i}| < |z_{j_{i+1}}|$ for every $i \in \mathbf{N}$ and such that the set $\{z_{j_i} : i \in \mathbf{N}\}$ is separated.

Proof. For $z \in \mathbf{B}$, we have $\beta(z,0) = (1/2) \log\{(1+|z|)/(1-|z|)\}$. Therefore (5.2) implies

$$\limsup_{j \to \infty} \beta(z_j, 0) = \infty.$$

Using the triangle inequality for β , the conclusion of the lemma follows from an easy inductive selection of $j_1 < j_2 < \cdots < j_i < \cdots$. \Box

Proposition 5.4. Suppose that $\{z_i\}$ is a sequence in **B** such that

$$(5.3) \qquad \qquad \lim_{j \to \infty} |z_j| = 1.$$

Furthermore, suppose that $\{w_j\}$ is a sequence in **B** for which there is a constant $0 < C < \infty$ such that

$$(5.4)\qquad\qquad\qquad\beta(z_i,w_i)\leq C$$

for every $j \in \mathbf{N}$. Then for every $i \in \mathbf{Z}_+$ and every $X \in \operatorname{EssCom}(\mathcal{T})$ we have

(5.5)
$$\lim_{j \to \infty} \| [X, \psi_{z_j, i} \otimes \psi_{w_j, i}] \| = 0.$$

Proof. For the given $\{z_j\}$, $\{w_j\}$, i and X, suppose that (5.5) did not hold. Then, replacing $\{z_j\}$, $\{w_j\}$ by subsequences if necessary, we may assume that there is a c > 0 such that

(5.6)
$$\lim_{j \to \infty} \| [X, \psi_{z_j, i} \otimes \psi_{w_j, i}] \| = c.$$

We will show that this leads to a contradiction.

By (5.3) and Lemma 5.3, there is a sequence $j_1 < j_2 < \cdots < j_{\nu} < \cdots$ of natural numbers such that $|z_{j_{\nu}}| < |z_{j_{\nu+1}}|$ for every $\nu \in \mathbf{N}$ and such that the set $\{z_{j_{\nu}} : \nu \in \mathbf{N}\}$ is separated. For each $\nu \in \mathbf{N}$, we now define the operator

$$B_{\nu} = [X, \psi_{z_{j_{\nu}}, i} \otimes \psi_{w_{j_{\nu}}, i}],$$

whose rank is at most 2. Since $\beta(w_j, 0) = (1/2) \log\{(1 + |w_j|)/(1 - |w_j|)\}$, (5.3) and (5.4) together imply that $|w_j| \uparrow 1$ as $j \to \infty$. Thus both sequences of vectors $\{\psi_{z_j,i}\}$ and $\{\psi_{w_j,i}\}$ converge to 0 weakly in $L^2_a(\mathbf{B}, dv)$. Consequently we have the convergence

$$\lim_{\nu \to \infty} B_{\nu} = 0 \quad \text{and} \quad \lim_{\nu \to \infty} B_{\nu}^* = 0$$

in the strong operator topology. Thus by (5.6) and Lemma 4.6, there is a subsequence $\nu(1) < \nu(2) < \cdots < \nu(m) < \cdots$ of natural numbers such that the sum

$$B = \sum_{m=1}^{\infty} B_{\nu(m)}$$

converges strongly with $||B||_{\mathcal{Q}} = c > 0$. Thus B is not compact. Now define the operator

$$A = \sum_{m=1}^{\infty} \psi_{z_{j_{\nu(m)}}, i} \otimes \psi_{w_{j_{\nu(m)}}, i}.$$

Since the set $\{z_{j_{\nu}} : \nu \in \mathbf{N}\}$ is separated and since (5.4) holds, by Proposition 4.5 we have $A \in \mathcal{T}$. Since $X \in \text{EssCom}(\mathcal{T})$, the commutator [X, A] is compact. On the other hand, we clearly have [X, A] = B, which, according to Lemma 4.6, is a non-compact operator. This is the contradiction promised earlier. \Box

Next we introduce modified Berezin transforms. To do this, we first need to normalize $\psi_{z,i}$. For all $i \in \mathbf{Z}_+$ and $z \in \mathbf{B}$, we define

$$\tilde{\psi}_{z,i} = \frac{\psi_{z,i}}{\|\psi_{z,i}\|}.$$

Keep in mind that $1 \leq ||\psi_{z,i}|| \leq 2^i$ (see (3.1)). Suppose that A is a bounded operator on $L^2_a(\mathbf{B}, dv)$. Then for each $i \in \mathbf{Z}_+$ we define the function

$$\mathcal{B}_i(A)(z) = \langle A\tilde{\psi}_{z,i}, \tilde{\psi}_{z,i} \rangle, \quad z \in \mathbf{B},$$

on the unit ball. Of course, $\mathcal{B}_0(A)$ is just the usual Berezin transform (also called Berezin symbol) of A. For each i > 0, we consider $\mathcal{B}_i(A)$ as a modified Berezin transform of A.

Proposition 5.5. If $X \in \text{EssCom}(\mathcal{T})$, then $\mathcal{B}_i(X) \in \text{VO}_{\text{bdd}}$ for every $i \in \mathbb{Z}_+$.

Proof. Let $i \in \mathbb{Z}_+$ be given. Since \mathcal{T} is closed under the *-operation, so is $\operatorname{EssCom}(\mathcal{T})$. Hence it suffices to consider a self-adjoint $X \in \operatorname{EssCom}(\mathcal{T})$. Obviously, $\mathcal{B}_i(X)$ is both bounded and continuous on **B**. If it were true that $\mathcal{B}_i(X) \notin \operatorname{VO}$, then there would be a c > 0 and sequences $\{z_j\}, \{w_j\}$ in **B** with

$$\lim_{j \to \infty} |z_j| = 1$$

such that for every $j \in \mathbf{N}$, we have $\beta(z_j, w_j) \leq 1$ and

(5.8)
$$|\langle X\tilde{\psi}_{z_j,i},\tilde{\psi}_{z_j,i}\rangle - \langle X\tilde{\psi}_{w_j,i},\tilde{\psi}_{w_j,i}\rangle| = |\mathcal{B}_i(X)(z_j) - \mathcal{B}_i(X)(w_j)| \ge c.$$

But on the other hand, it follows from Lemma 5.2 that

$$\begin{aligned} |\langle X\tilde{\psi}_{z_j,i},\tilde{\psi}_{z_j,i}\rangle - \langle X\tilde{\psi}_{w_j,i},\tilde{\psi}_{w_j,i}\rangle| \\ (5.9) &\leq \|[X,\tilde{\psi}_{z_j,i}\otimes\tilde{\psi}_{w_j,i}]\| + \|[X,\tilde{\psi}_{z_j,i}\otimes\tilde{\psi}_{z_j,i}]\| + \|[X,\tilde{\psi}_{w_j,i}\otimes\tilde{\psi}_{w_j,i}]\|. \end{aligned}$$

By (5.7) and the condition $\beta(z_j, w_j) \leq 1, j \in \mathbf{N}$, we can apply Proposition 5.4 to obtain

(5.10)
$$\lim_{j \to \infty} \| [X, \psi_{z_j, i} \otimes \psi_{w_j, i}] \| = 0 \text{ and } \lim_{j \to \infty} \| [X, \psi_{z_j, i} \otimes \psi_{z_j, i}] \| = 0.$$

Obviously, conditions (5.7) and $\beta(z_j, w_j) \leq 1, j \in \mathbb{N}$, also imply $\lim_{j\to\infty} |w_j| = 1$. Thus Proposition 5.4 also provides that

(5.11)
$$\lim_{j \to \infty} \| [X, \psi_{w_j, i} \otimes \psi_{w_j, i}] \| = 0.$$

By (3.1), we have $\|[X, \tilde{\psi}_{z,i} \otimes \tilde{\psi}_{w,i}]\| \leq \|[X, \psi_{z,i} \otimes \psi_{w,i}]\|$ for all $z, w \in \mathbf{B}$. Thus (5.9), (5.10) and (5.11) together contradict (5.8). \Box

Lemma 5.6. [1,Theorem 11] If $g \in VO_{bdd}$, then

$$\lim_{|z|\uparrow 1} \|(g - g(z))k_z\| = 0$$

Proposition 5.7. If $X \in \text{EssCom}(\mathcal{T})$, then for every $i \in \mathbb{Z}_+$ we have

$$\lim_{|z|\uparrow 1} \|(X - T_{\mathcal{B}_i(X)})\psi_{z,i}\| = 0.$$

Proof. Again, it suffices to consider any self-adjoint $X \in \text{EssCom}(\mathcal{T})$. Let $i \in \mathbb{Z}_+$ be given. Then from Lemma 5.1, Proposition 5.4 and (3.1) we deduce that

$$\lim_{|z|\uparrow 1} \| (X - \mathcal{B}_i(X)(z))\psi_{z,i} \| \le 2^i \lim_{|z|\uparrow 1} \| (X - \mathcal{B}_i(X)(z))\tilde{\psi}_{z,i} \| \le 2^i \lim_{|z|\uparrow 1} \| [X, \psi_{z,i} \otimes \psi_{z,i}] \| = 0.$$

Therefore the proposition will follow if we can show that

(5.12)
$$\lim_{|z|\uparrow 1} \| (T_{\mathcal{B}_i(X)} - \mathcal{B}_i(X)(z))\psi_{z,i} \| = 0.$$

But

$$\|(T_{\mathcal{B}_{i}(X)} - \mathcal{B}_{i}(X)(z))\psi_{z,i}\| \leq \|(\mathcal{B}_{i}(X) - \mathcal{B}_{i}(X)(z))\psi_{z,i}\| = \|(\mathcal{B}_{i}(X) - \mathcal{B}_{i}(X)(z))m_{z}^{i}k_{z}\|$$
(5.13)

$$\leq 2^{i}\|(\mathcal{B}_{i}(X) - \mathcal{B}_{i}(X)(z))k_{z}\|.$$

Proposition 5.5 tells us that $\mathcal{B}_i(X) \in \mathrm{VO}_{\mathrm{bdd}}$, which enables us to apply Lemma 5.6 in the case $g = \mathcal{B}_i(X)$. Thus (5.12) follows from (5.13) and Lemma 5.6. \Box

6. Some quantitative estimates

Here we present a number of estimates that will be needed in the proof of Theorem 1.1. First of all, we need a more precise version of Lemma 3.2(a).

Lemma 6.1. There is a constant $C_{6.1}$ such that if Γ is any 1-separated set in **B** and if $1 \leq R < \infty$, then for every $u \in \Gamma$ we have

(6.1)
$$\operatorname{card}\{v \in \Gamma : \beta(u, v) \le R\} \le C_{6.1} e^{2nR}.$$

Proof. Since Γ is 1-separated, for every pair of $x \neq y$ in $\{v \in \Gamma : \beta(u, v) \leq R\}$, we have $D(x, 1) \cap D(y, 1) = \emptyset$. Also, if $\beta(u, v) \leq R$, then $D(v, 1) \subset D(u, R + 1)$. By the Möbius invariance of both β and $d\lambda$, we have $\lambda(D(z, t)) = \lambda(D(0, t))$ for all $z \in \mathbf{B}$ and t > 0. Hence every $u \in \Gamma$ we have

(6.2)
$$\operatorname{card}\{v \in \Gamma : \beta(u, v) \le R\} \le \frac{\lambda(D(u, R+1))}{\lambda(D(0, 1))} = \frac{\lambda(D(0, R+1))}{\lambda(D(0, 1))}.$$

On the other hand, $\beta(0, z) = (1/2) \log\{(1 + |z|)/(1 - |z|)\}, z \in \mathbf{B}$. Therefore

$$D(0, R+1) = \{z \in \mathbf{B} : |z| < \rho\}, \text{ where } \rho = (e^{2R+2} - 1)/(e^{2R+2} + 1).$$

By the radial-spherical decomposition of the volume measure dv, we have

$$\lambda(D(0,R+1)) = \int_{|z|<\rho} \frac{dv(z)}{(1-|z|^2)^{n+1}} = \int_0^\rho \frac{2nr^{2n-1}dr}{(1-r^2)^{n+1}} \le \int_0^\rho \frac{2ndr}{(1-r)^{n+1}} \le \frac{2}{(1-\rho)^n}.$$

Obviously, $1 - \rho \ge e^{-2R-2}$. Therefore $\lambda(D(0, R+1)) \le 2e^{2n}e^{2nR}$. Substituting this in (6.2), we see that (6.1) holds for the constant $C_{6.1} = 2e^{2n}/\lambda(D(0, 1))$. \Box

Lemma 6.2. [18,Lemma 4.2] Given any integer $i \ge 1$, there is a constant $C_{6.2}$ such that

$$(6.3) \qquad \qquad |\langle \psi_{z,i}, \psi_{w,i} \rangle| \le C_{6.2} e^{-i\beta(z,w)}$$

for all $z, w \in \mathbf{B}$.

Remark. Even though [18] was published only four years ago, by what we know now, (6.3) is a rather crude estimate. Using techniques employed in analogous situations on the Hardy space [7,Proposition 3.1] and the Drury-Arveson space [8,Lemma 5.1], it can be shown that

$$|\langle \psi_{z,i}, \psi_{w,i} \rangle| \le C e^{-(n+1+i)\beta(z,w)}$$

for $z, w \in \mathbf{B}$. But since for the proof of Theorem 1.1 we can pick as large an *i* as we please, (6.3) suffices for our purpose, and we will not try to improve it in this paper.

Lemma 6.3. [16,Lemma 4.1] Let X be a set and let E be a subset of $X \times X$. Suppose that m is a natural number such that

$$\operatorname{card}\{y \in X : (x, y) \in E\} \le m$$
 and $\operatorname{card}\{y \in X : (y, x) \in E\} \le m$

for every $x \in X$. Then there exist pairwise disjoint subsets $E_1, E_2, ..., E_{2m}$ of E such that

$$E = E_1 \cup E_2 \cup \dots \cup E_{2m}$$

and such that for each $1 \leq j \leq 2m$, the conditions $(x, y), (x', y') \in E_j$ and $(x, y) \neq (x', y')$ imply both $x \neq x'$ and $y \neq y'$.

Lemma 6.4. Let an integer $i \ge 8n + 1$ be given. Then there is a constant $C_{6.4}$ such that the following estimate holds: Let Γ be a 1-separated set in **B** and let $\{e_u : u \in \Gamma\}$ be any orthonormal set. Let $1 \le R < \infty$. Then

$$\left\|\sum_{(u,v)\in F} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v\right\| \le C_{6.4} e^{-(4n+1)R}$$

for every $F \subset \{(u, v) \in \Gamma \times \Gamma : \beta(u, v) \ge R\}.$

Proof. We partition such an F in the form

$$F = E^{(1)} \cup E^{(2)} \cup \dots \cup E^{(k)} \cdots, \text{ where}$$
$$E^{(k)} = \{(u, v) \in F : kR \le \beta(u, v) < (k+1)R\}, k \in \mathbf{N}$$

Accordingly,

(6.4)
$$\sum_{(u,v)\in F} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v = T^{(1)} + T^{(2)} + \dots + T^{(k)} + \dots, \text{ where}$$
$$T^{(k)} = \sum_{(u,v)\in E^{(k)}} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v, \quad k \in \mathbf{N}.$$

By Lemma 6.1, for each $u \in \Gamma$ we have

card {
$$v \in \Gamma : (u, v) \in E^{(k)}$$
} $\leq C_{6.1} e^{2n(k+1)R}$ and
card { $v \in \Gamma : (v, u) \in E^{(k)}$ } $\leq C_{6.1} e^{2n(k+1)R}$.

Thus, by Lemma 6.3, each $E^{(k)}$ admits a partition

$$E^{(k)} = E_1^{(k)} \cup \dots \cup E_{2m_k}^{(k)}$$
 with $m_k \le C_{6.1} e^{2n(k+1)R}$

such that for every $j \in \{1, \ldots, 2m_k\}$, the conditions $(u, v), (u', v') \in E_j^{(k)}$ and $(u, v) \neq (u', v')$ imply both $u \neq u'$ and $v \neq v'$.

Accordingly, we decompose each $T^{(k)}$ in the form

(6.5)
$$T^{(k)} = T_1^{(k)} + \dots + T_{2m_k}^{(k)}, \text{ where} T_j^{(k)} = \sum_{(u,v)\in E_j^{(k)}} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v, \quad j \in \{1,\dots,2m_k\}.$$

The above-mentioned property of $E_j^{(k)}$ means that both projections $(u, v) \mapsto u$ and $(u, v) \mapsto v$ are injective on $E_j^{(k)}$. Therefore

$$||T_j^{(k)}|| = \sup_{(u,v)\in E_j^{(k)}} |\langle \psi_{v,i}, \psi_{u,i} \rangle|.$$

Applying Lemma 6.2, this gives us $||T_j^{(k)}|| \le C_{6.2}e^{-ikR}$. By (6.5), we now have

$$||T^{(k)}|| \le 2m_k C_{6.2} e^{-ikR} \le 2C_{6.1} C_{6.2} e^{2n(k+1)R} e^{-ikR} = C_1 e^{-\{ik-2n(k+1)\}R},$$

where $C_1 = 2C_{6.1}C_{6.2}$. Since $i \ge 8n + 1$ and $k \ge 1$, we have

$$ik - 2n(k+1) \ge (8n+1)k - 2n \cdot 2k = (4n+1)k.$$

Hence $||T^{(k)}|| \leq C_1 e^{-(4n+1)kR}$. Combining this with (6.4), we obtain

$$\left\|\sum_{(u,v)\in F} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v\right\| \le \sum_{k=1}^{\infty} \|T^{(k)}\| \le C_1 \sum_{k=1}^{\infty} e^{-(4n+1)kR}.$$

Recall that we assume $R \ge 1$. Thus, factoring out $e^{-(4n+1)R}$ on the right, we see that the lemma holds for the constant $C_{6.4} = C_1 \sum_{k=1}^{\infty} e^{-(4n+1)(k-1)}$. \Box

Lemma 6.5. Given any $i \ge 8n + 1$, there is a positive number $2 \le R(i) < \infty$ such that the following holds true for every $R \ge R(i)$: Let Γ be a subset of **B** with the property that $\beta(u, v) \ge R$ for $u \ne v$ in Γ , and let $\{e_u : u \in \Gamma\}$ be an orthonormal set. Then the operator

$$\Psi = \sum_{u,v\in\Gamma} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v$$

satisfies the condition $\|\Psi x\| \ge (1/2) \|x\|$ for every vector x of the form

(6.6)
$$x = \sum_{u \in \Gamma} c_u e_u, \quad \sum_{u \in \Gamma} |c_u|^2 < \infty.$$

Proof. Given any $i \ge 8n+1$, let $2 \le R(i) < \infty$ be such that $C_{6.4}e^{-(4n+1)R(i)} \le 1/2$, where $C_{6.4}$ is the constant provided by Lemma 6.4. Let $R \ge R(i)$, and suppose that Γ has the property that $\beta(u, v) \ge R$ for $u \ne v$ in Γ . We have $\Psi = D + Y$, where

$$D = \sum_{u \in \Gamma} \|\psi_{u,i}\|^2 e_u \otimes e_u \quad \text{and} \quad Y = \sum_{\substack{u,v \in \Gamma \\ u \neq v}} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v.$$

By (3.1), we have $||Dx|| \ge ||x||$ for every vector x of the form (6.6). By the property of Γ , we can apply Lemma 6.4 to obtain $||Y|| \le C_{6.4}e^{-(4n+1)R} \le C_{6.4}e^{-(4n+1)R(i)} \le 1/2$. Clearly, the conclusion of the lemma follows from these two inequalities. \Box

7. Proof of Theorem 1.1

As we have already mentioned, (1.2) is known and we only need to prove (1.3). To do this, we first fix an integer $i \ge 8n + 1$. Let X be any operator in $\operatorname{EssCom}(\mathcal{T})$. Then Proposition 5.5 tells us that $\mathcal{B}_i(X) \in \operatorname{VO}_{bdd}$. Thus $T_{\mathcal{B}_i(X)} \in \operatorname{EssCom}(\mathcal{T})$ by (1.2). To prove (1.3), it suffices to show that the operator $X - T_{\mathcal{B}_i(X)}$ is compact. Assume the contrary, i.e., $X - T_{\mathcal{B}_i(X)}$ is not compact. We will show that this non-compactness leads to the conclusion that the operator

(7.1)
$$A = (X - T_{\mathcal{B}_i(X)})^* (X - T_{\mathcal{B}_i(X)})$$

does not belong to $\operatorname{EssCom}(\mathcal{T})$, which is a contradiction.

Since $X - T_{\mathcal{B}_i(X)}$ is assumed not to be compact, Proposition 3.7 provides a 1-separated set Γ in **B** such that the operator

(7.2)
$$Y = (X - T_{\mathcal{B}_i(X)}) \sum_{u \in \Gamma} \psi_{u,i} \otimes e_u$$

is also not compact, where $\{e_u : u \in \Gamma\}$ is an orthonormal set, which will be fixed for the rest of the proof. Our next step is to fix certain constants.

First of all, the non-compactness of Y means that

$$(7.3) ||Y||_{\mathcal{Q}} = d > 0$$

Since $\psi_{u,i} = m_u^i k_u = U_u m_u^i \circ \varphi_u$ and since $||m_u||_{\infty} \leq 2, u \in \Gamma$, by Lemma 3.3 we have

(7.4)
$$\left\|\sum_{u\in G}\psi_{u,i}\otimes e_u\right\| \leq 2^i B(\Gamma) \quad \text{for every } G\subset \Gamma.$$

Let $R(i) \ge 2$ be the positive number provided by Lemma 6.5 for the selected integer *i*. We then pick a positive number R > R(i) such that

(7.5)
$$4\|X\|^2 C_{6.4} e^{-R} \le \frac{d^2}{2^{4i+6} B^4(\Gamma) C_{6.1}^2},$$

where $C_{6.1}$ and $C_{6.4}$ are the constants provided by Lemmas 6.1 and 6.4 respectively. By Lemma 6.1, there is a natural number $N \leq C_{6.1}e^{2nR}$ such that

$$\operatorname{card}\{v \in \Gamma : \beta(u, v) \le R\} \le N$$

for every $u \in \Gamma$. By a standard maximality argument, there is a partition $\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_N$ such that for every $\nu \in \{1, \ldots, N\}$,

(7.6) the conditions $u, v \in \Gamma_{\nu}$ and $u \neq v$ imply $\beta(u, v) > R$.

For each $\nu \in \{1, \ldots, N\}$, define

$$Y_{\nu} = (X - T_{\mathcal{B}_i(X)}) \sum_{u \in \Gamma_{\nu}} \psi_{u,i} \otimes e_u.$$

By (7.2) and (7.3), there is a $\mu \in \{1, \ldots, N\}$ such that $||Y_{\mu}||_{\mathcal{Q}} \geq d/N$.

By Lemma 4.7, to obtain the promised contradiction $A \notin \text{EssCom}(\mathcal{T})$, it suffices to produce, for each $j \in \mathbf{N}$, a finite subset $E_j \subset \Gamma_{\mu} \cap \{z \in \mathbf{B} : |z| \ge 1 - (1/j)\}$ such that

(7.7)
$$\left\| \left[A, \sum_{u \in E_j} \psi_{u,i} \otimes \psi_{u,i} \right] \right\| \ge \frac{d^2}{2^{4i+6} B^4(\Gamma) C_{6.1}^2 e^{4nR}}.$$

Let $j \in \mathbf{N}$ be given. To find the E_j described above, we set $G_j = \Gamma_{\mu} \cap \{z \in \mathbf{B} : |z| \ge 1 - (1/j)\}$. Note that $\Gamma_{\mu} \setminus G_j$ is a finite set. Thus if we define

$$Z_j = (X - T_{\mathcal{B}_i(X)}) \sum_{u \in G_j} \psi_{u,i} \otimes e_u,$$

then $Y_{\mu} - Z_j$ is a finite-rank operator, and consequently $||Z_j||_{\mathcal{Q}} = ||Y_{\mu}||_{\mathcal{Q}} \ge d/N$. Hence

$$||Z_j^* Z_j||_{\mathcal{Q}} = ||Z_j||_{\mathcal{Q}}^2 \ge (d/N)^2 \ge \frac{d^2}{C_{6.1}^2 e^{4nR}}$$

Obviously, we have $Z_j^* Z_j = D + W$, where

$$D = \sum_{u \in G_j} \| (X - T_{\mathcal{B}_i(X)}) \psi_{u,i} \|^2 e_u \otimes e_u \quad \text{and} \quad W = \sum_{\substack{u,v \in G_j \\ u \neq v}} \langle A \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v.$$

Proposition 5.7 implies that D is a compact operator. Hence

$$||W|| \ge ||W||_{\mathcal{Q}} = ||Z_j^* Z_j||_{\mathcal{Q}} \ge \frac{d^2}{C_{6.1}^2 e^{4nR}}$$

For each $k \in \mathbf{N}$, define the orthogonal projection

$$F_k = \sum_{\substack{u \in G_j \\ |u| \le 1 - (1/k)}} e_u \otimes e_u.$$

Then obviously we have the strong convergence $F_kWF_k \to W$ as $k \to \infty$. Therefore there is a $k(j) \in \mathbb{N}$ such that if we set $G'_j = \{u \in G_j : |u| \le 1 - (1/k(j))\}$ and

(7.8)
$$W' = \sum_{\substack{u,v \in G'_j \\ u \neq v}} \langle A\psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v,$$

then

(7.9)
$$||W'|| \ge (1/2)||W|| \ge \frac{d^2}{2C_{6.1}^2 e^{4nR}}.$$

Obviously, G'_j is a finite set and the diagonal of W' vanishes.

We now apply Proposition 2.3 to the finite-rank operator W'. By that proposition, there is an $E_j \subset G'_j$ such that the orthogonal projection

$$Q = \sum_{u \in E_j} e_u \otimes e_u$$

has the property $4\|[W',Q]\| \ge \|W'\|$. If we define

$$J = \sum_{u \in G'_j \backslash E_j} e_u \otimes e_u,$$

then [W', Q] = JW'Q - QW'J. Since W' is self-adjoint, this gives us ||[W', Q]|| = ||JW'Q||. Combining these facts with (7.9), we obtain

$$\|JW'Q\| \geq \frac{d^2}{8C_{6.1}^2 e^{4nR}}$$

On the other hand, since $\{G'_j \setminus E_j\} \cap E_j = \emptyset$, from (7.8) we see that

$$JW'Q = \sum_{u \in G'_j \setminus E_j} \sum_{v \in E_j} \langle A\psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v = S^*AT,$$

where

$$S = \sum_{u \in G'_j \setminus E_j} \psi_{u,i} \otimes e_u \quad \text{and} \quad T = \sum_{u \in E_j} \psi_{u,i} \otimes e_u$$

By the finite dimensionalities involved here, there are unit vectors $\xi \in \text{span}\{e_u : u \in E_j\}$ and $\eta \in \text{span}\{e_u : u \in G'_j \setminus E_j\}$ such that $|\langle S^*AT\xi, \eta \rangle| = ||S^*AT||$. Hence

$$|\langle S^*AT\xi,\eta\rangle| \ge \frac{d^2}{8C_{6.1}^2e^{4nR}}$$

Since R > R(i) and $E_j \subset G'_j \subset \Gamma_\mu$, by (7.6) and Lemma 6.5, we have $||T^*Tx|| \ge (1/2)||x||$ for every $x \in \text{span}\{e_u : u \in E_j\}$. This implies that T^*T is surjective on $\text{span}\{e_u : u \in E_j\}$. Hence there is an $x_0 \in \text{span}\{e_u : u \in E_j\}$ with $||x_0|| \le 2$ such that $\xi = T^*Tx_0$. Similarly, there is a $y_0 \in \text{span}\{e_u : u \in G'_j \setminus E_j\}$ with $||y_0|| \le 2$ such that $\eta = S^*Sy_0$. Therefore

$$|\langle S^*SS^*ATT^*Tx_0, y_0 \rangle| = |\langle S^*ATT^*Tx_0, S^*Sy_0 \rangle| = |\langle S^*AT\xi, \eta \rangle| \ge \frac{d^2}{8C_{6.1}^2 e^{4nR}}$$

Since $||x_0|| \le 2$ and $||y_0|| \le 2$, this implies

$$||S^*SS^*ATT^*T|| \ge \frac{d^2}{32C_{6.1}^2}e^{4nR}.$$

By (7.4), we have $||T|| \leq 2^i B(\Gamma)$ and $||S|| \leq 2^i B(\Gamma)$. Hence

(7.10)
$$||SS^*ATT^*|| \ge \frac{d^2}{2^{2i+5}B^2(\Gamma)C_{6.1}^2e^{4nR}}.$$

On the other hand,

(7.11)
$$\begin{split} \|SS^*ATT^*\| &\leq \|SS^*[A,TT^*]\| + \|SS^*TT^*A\| \\ &\leq \|SS^*\|\|[A,TT^*]\| + \|S\|\|S^*T\|\|T^*\|\|A\| \\ &\leq 2^{2i}B^2(\Gamma)\|[A,TT^*]\| + 2^{2i}B^2(\Gamma)\|A\|\|S^*T\|. \end{split}$$

Recalling (7.1), we clearly have $||A|| \le 4||X||^2$. Thus from (7.10) and (7.11) we deduce

(7.12)
$$\|[A, TT^*]\| + 4\|X\|^2 \|S^*T\| \ge \frac{d^2}{2^{4i+5}B^4(\Gamma)C_{6.1}^2 e^{4nR}}.$$

To estimate $||S^*T||$, note that

$$S^*T = \sum_{u \in G'_j \setminus E_j} \sum_{v \in E_j} \langle \psi_{v,i}, \psi_{u,i} \rangle e_u \otimes e_v.$$

Obviously, $\{G'_j \setminus E_j\} \times E_j \subset \{(u, v) \in \Gamma_\mu \times \Gamma_\mu : u \neq v\}$. By (7.6), we can apply Lemma 6.4 to obtain $||S^*T|| \leq C_{6.4}e^{-(4n+1)R}$. Substituting this in (7.12), we have

$$||[A, TT^*]|| + 4||X||^2 C_{6.4} e^{-(4n+1)R} \ge \frac{d^2}{2^{4i+5}B^4(\Gamma)C_{6.1}^2} e^{4nR}.$$

We now apply condition (7.5) in the above and then simplify. The result of this is

$$\|[A, TT^*]\| \ge \frac{d^2}{2^{4i+6}B^4(\Gamma)C_{6.1}^2e^{4nR}}$$

Since

$$TT^* = \sum_{u \in E_j} \psi_{u,i} \otimes \psi_{u,i},$$

this proves (7.7) and completes the proof of Theorem 1.1.

References

1. C. Berger, L. Coburn and K. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. **110** (1988), 921-953.

2. K. Davidson, On operators commuting with Toeplitz operators modulo the compact operators, J. Funct. Anal. **24** (1977), 291-302.

3. M. Didas, J. Eschmeier and K. Everard, On the essential commutant of analytic Toeplitz operators associated with spherical isometries, J. Funct. Anal. **261** (2011), 1361-1383.

4. X. Ding and S. Sun, Essential commutant of analytic Toeplitz operators, Chinese Sci. Bull. **42** (1997), 548-552.

5. J. Eschmeier and K. Everard, Toeplitz projections and essential commutants, J. Funct. Anal. **269** (2015), 1115-1135. 6. Q. Fang and J. Xia, Invariant subspaces for certain finite-rank perturbations of diagonal operators, J. Funct. Anal. **263** (2012), 1356-1377.

7. Q. Fang and J. Xia, A local inequality for Hankel operators on the sphere and its application, J. Funct. Anal. **266** (2014), 876-930.

8. Q. Fang and J. Xia, On the problem of characterizing multipliers for the Drury-Arveson space, Indiana Univ. Math. J. **64** (2015), 663-696.

9. K. Guo and S. Sun, The essential commutant of the analytic Toeplitz algebra and some problems related to it (Chinese), Acta Math. Sinica (Chin. Ser.) **39** (1996), 300-313.

10. J. Isralowitz, M. Mitkovski and B. Wick, Localization and compactness in Bergman and Fock spaces, Indiana Univ. Math. J. **64** (2015), 1553-1573.

11. B. Johnson and S. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. **11** (1972), 39-61.

12. P. Muhly and J. Xia, On automorphisms of the Toeplitz algebra, Amer. J. Math. **122** (2000), 1121-1138.

13. S. Popa, The commutant modulo the set of compact operators of a von Neumann algebra, J. Funct. Anal. **71** (1987), 393-408.

14. W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York-Berlin, 1980.

15. J. Xia, On the essential commutant of $\mathcal{T}(QC)$, Trans. Amer. Math. Soc. **360** (2008), 1089-1102.

16. J. Xia, On certain quotient modules of the Bergman module, Indiana Univ. Math. J. **57** (2008), 545-575.

17. J. Xia, Singular integral operators and essential commutativity on the sphere, Canad. J. Math. **62** (2010), 889-913.

J. Xia, Bergman commutators and norm ideals, J. Funct. Anal. 263 (2012), 988-1039.
 J. Xia, Localization and the Toeplitz algebra on the Bergman space, J. Funct. Anal. 269 (2015), 781-814.

20. J. Xia and D. Zheng, Localization and Berezin transform on the Fock space, J. Funct. Anal. **264** (2013), 97-117.

Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260

E-mail: jxia@acsu.buffalo.edu