A DOUBLE COMMUTANT RELATION
IN THE CALKIN ALGEBRA ON THE BERGMAN SPACE

Jingbo Xia

Abstract. Let T be the Toeplitz algebra on the Bergman space L2(B, dv) of the unit ball
in C™. We show that the image of 7 in the Calkin algebra satisfies the double commutant
relation: 7(7) = {mx(7T)}". This is a surprising result, for it is the opposite of what happens
in the Hardy-space case [16,17].

1. Introduction

Let B denote the open unit ball {z € C" : |z| < 1} in C". Let dv be the volume
measure on B with the normalization v(B) = 1. Recall that the Bergman space L2(B, dv)
is just the closure of C[z1,...,2,] in L?(B,dv). Let P : L?(B,dv) — L?(B,dv) be the
orthogonal projection. Each f € L (B, dv) gives rise to the Toeplitz operator

Tyh = P(fh), he L2(B,dv).

The Toeplitz algebra T on the Bergman space L2(B,dv) is the C*-algebra generated by
the full collection of Toeplitz operators {T : f € L>(B,dv)}.

We only consider separable Hilbert spaces in this paper. Recall that if Z is a collection
of bounded operators on a Hilbert space H, then its essential commutant is defined to be

EssCom(Z) ={Ae€ B(H): [A,T] € K(H) for every T € Z},

where IC(H) denotes the collection of compact operators on H. Let Q denote the Calkin
algebra B(H)/IC(H), and let
m:B(H) = Q

be the quotient homomorphism. Then we obviously have m(EssCom(Z)) = {w(Z)}’ for
every subset Z C B(H).

To motivate what we will do in this paper, let us mention the recent determination of
the essential commutant of the Toeplitz algebra T

Theorem 1.1. [19] The essential commutant of the Toeplitz algebra T equals

{Tg : g € VOpaa} + K.

In the above, K denotes the collection of compact operators on L?(B, dv), and

VOpgq = VO N L™ (B, dv),
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where VO is the collection of functions of wvanishing oscillation on B, which were first
introduced by Berger, Coburn and Zhu in [3]. These functions are defined in terms of the
Bergman metric

1. 1+,
Bew) = © log 1+ Pt
2 1—- |90z (w)|
where ¢, is the Mobius transform of the ball B given on page 25 in [13]. Recall from [3]
and [19] that VO denotes the collection of functions g on B satisfying the following two
conditions: (1) g is continuous on B; (2) the limit

, zZ,w € B,

lim sup [g(z) — g(w)| =0
|Z|T16(z,w)§1

holds.

As was explained in [19], Theorem 1.1 is the Bergman-space analogue of the equality
(1.1) EssCom (TH49) = (T} f € VMO N L} + KHardy,

which was proved by Davidson in [4]. Here, 7Hardy, T}{ ardy and gCHardy respectively de-
note the Toeplitz algebra, Toeplitz operator and the collection of compact operators on
the Hardy space H?. Recall that (1.1) has inspired several Hardy-space generalizations
[5,6,7,8]. In comparison, the Bergman-space case requires a different approach, which
perhaps partially explains the chronological gap between [4] and [19].

But given Theorem 1.1, one cannot help but wonder, what is the essential commutant
of {Ty : g € VOpaa}? More than curiosity, this is the logical next step in the investigation.
The purpose of this paper is to report the answer to this natural question:

Theorem 1.2. The essential commutant of {Ty : g € VOpaa} equals the Toeplitz algebra
T.

While Theorem 1.1 is a direct analogue of (1.1), Theorem 1.2 comes as something of
a surprise, for it is the opposite of what happens on the Hardy space. It is known that the
essential commutant of {TJ{FI ardy . £ e VMO N L%} is strictly larger than 7Hardy [16.17].

These results are better understood in the context of the double commutant relation
in the Calkin algebra. There are two classes of unital C*-subalgebras A of the Calkin
algebra Q that are known to satisfy the double commutant relation A = A”:

(1) When A is separable. This was proved by Voiculescu in [14].

(2) When A is the image of a von Neumann algebra. This follows from the works of

Johnson, Parrott [10] and Popa [12].

On the flip side, there are plenty of unital C*-subalgebras of the Calkin algebra Q that
do not satisfy the double commutant relation [2,10,15,16,17], among which m(7H&4Y) is a
notable example. In contrast, the following is an immediate consequence of Theorem 1.2:

Corollary 1.3. The image of T in the Calkin algebra satisfies the double commutant
relation.



To conclude the Introduction, let us explain the basic ideas for proving Theorem 1.2.
First of all, our proof revolves around the scalar quantity

diff(f) = sup{|f(2) — f(w)| : B(z,w) <1}.

Our first realization is that every X € EssCom({T} : g € VOypaq}) satisfies the following
“e-0” condition: given any € > 0, there is a § = §(X, €) > 0 such that

11X, Tyl < e

for f satisfying the condition diff(f) < ¢ and some other additional technical restrictions.
We will prove this in Section 3.

Our next realization is that it is possible to construct an approximate partition of
the unity on B where the “diff” for the partition functions is arbitrarily small. More
specifically, we need to construct, for each sufficiently large m € N, a family of partition
functions {f, : w € I,,,} which itself admits a partition
(1.2) Ip=I1VuU--.uI

m

such that for each p € {1,..., N}, the set L(# ) has the following two properties. First,
fufw =0 for all w # W' in I,(#). Second,

(1.3) diff (Z fw> —o(1) for every I C I,

wel

where the o(1) is relative to the growth of m. The key requirement here is that the N
in (1.2) must be a constant independent of m. Because of this requirement, we cannot
construct {f, : w € I,,} based on coverings of B by balls with respect to the Bergman
metric. Instead, we must use radial-spherical decompositions of B, which are technically
more demanding. This construction is the main content in Section 4.

This construction provides the functions f(#*) = Zwel(‘” f., and F(W) = Zwel(“) f2,

pe{l,...,N}. Since N is fixed, given any X € EssCom({T} : g € VOpaa}), it suffices to
consider each individual XTx.. Note that F(*) = ()2, Thus

XTpaw = XTipuye = Tpon XTpoo + [ X, Troo [Ty + XHpgn Hyon

where H ) is the Hankel operator with symbol ) Since diff( f) is small, so are
|[X, Tpun ]|l and [|H g ||- In other words, XTr. is a small perturbation of T'pq.) X Ty, -
Then note that TiwXTiw =D+ W, where

D= Y Ty XTy, and W= Y Ty XTy,.

weIT(,‘L‘) w,w/EI;’;)
wHw



One can think of D as the “diagonal terms” in T ) X Ly and W as the “off-diagonal
terms”. As it turns, the “diagonal terms” form an operator in the Toeplitz algebra, D € T,
which will be proved in Section 2.

A key issue in the proof is the handling of the “off-diagonal terms”. We will show in
Section 5 that ||W]| can be dominated by a quantity of the form

(1.4) 11X, Telll + XN HP + 11X, Telll + [ X[ Hell

with

F:wa and G:wa,

wel weJ

where I and J are two disjoint, finite subsets of . By (1.3), diff(F) and diff(G) are
small, consequently so is (1.4). In other words, ||[W]| is small. Adding up the operators of
small norms mentioned above, this argument shows that XTp) = D + Z, where D € T
and Z has a small norm, which is the essential part of the proof of Theorem 1.2.

The rest of the paper consists of the technical details of the argument outlined above.

2. Operators in the Toeplitz algebra

We begin by recalling certain standard fixtures associated with the Bergman space.
First of all, the formula

(1= |1

SO

z,( € B,

gives us the normalized reproducing kernel for L2(B,dv). By [19,Corollary 4.4], we have
(2.1) [k2(Q)] < (2¢P=20)" k.0 ()]
for all z,2’,( € B. Recall that for each u € B, the formula

(Uuf)(€) = kulC) f(pulC)),

¢ € B and f € L?(B,dv), defines a unitary operator on L?(B,dv). Moreover, each U,
maps the Bergman space L2 (B, dv) to itself.

Definition 2.1. (1) For z € B and r > 0, denote D(z,r) = {¢ € B: 8(z,() <r}.

(2) Let a > 0. A subset I' of B is said to be a-separated if D(z,a) N D(w,a) = 0 for all
distinct elements z, w in T'.

(3) A subset I' of B is simply said to be separated if it is a-separated for some a > 0.

Lemma 2.2. Given any 0 < r < oo, there is a constant Co o(r) which depends only on r
and the complex dimension n such that ||X pu,rk=|| < C2.2(7)|(kz, ku)| for all u,z € B.
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Proof. By the properties of the Mobius transform ¢, (see [13,Theorem 2.2.2]) and the
Mobius invariance of the Bergman metric 3, we have X p(u,r) © ©u = Xeu (D(u,r)) = XD(0,r)
for all w € B and r > 0. Therefore, for each z € B,

(2.2) XDkl = 1Uu(XD@.m k)l = XD Feu) -

Given an r € (0,00), set p = (e?" —1)/(e?" +1). Then D(0,r) = {¢ € B : [¢|] < p}, and
consequently

L= o)™ (ke k)P
2 — 2 < ( —
X501 Ko /|<|<p o (Q)P(C) < S P — =

where for the second = we again cite [13,Theorem 2.2.2]. Combining this with (2.2), we
see that the constant Cy (1) = (1 — p) ™"~ will do for the lemma. O

Let d)\ denote the standard Mobius-invariant measure on B. That is,

dv(z)

d\(2) = ———F—.
(2) (1—|z[2)n+1

In this paper, we will again need the notion of weakly localized operators on the Bergman

space, which was first introduced by Isralowitz, Mitkovski and Wick in [9], and which

played an essential role in [18,19].

Definition 2.3. [9,18] Let a positive number (n —1)/(n+ 1) < s < 1 be given.
(a) A bounded operator B on the Bergman space L2 (B, dv) is said to be s-weakly localized
if it satisfies the conditions

1— | | s(n+1)/2
su (Bk., ky) dA\(w) < oo,
zeg/| (1—|z|2) (w)

1 — | | s(n+1)/2
sug/\ (B¥k, k) ( ’Z|2) d\(w) < oo,
ze

1— |w‘2 s(n+1)/2

lim sup/ (Bk, kw)| (—2) d\(w) =0 and
r—=0 2B JB\D(z,r) 1 — 2|

1— ‘w‘Q s(n+1)/2
lim sup/ (B*h., k)| (—2) dA(w) = 0.
B\D(z,r) 1- ‘Zl

00 ZGB

(b) Let A4 denote the collection of s-weakly localized operators defined as above.
(c) Let C*(Ay) denote the C*-algebra generated by As.

Theorem 2.4. [18,Theorem 1.3] For every (n—1)/(n+1) < s < 1 we have C*(As) =T.

Lemma 2.5. [18 Lemma 2.2] Let I' be a separated set in B. For every 0 < r < oo, there
is a finite partition I' = T'y U --- UL, such that for every i € {1,...,m}, the conditions
u,v € Ty and u # v imply B(u,v) > r.



Lemma 2.6. Let T be a bounded operator on the Bergman space L2(B,dv). Suppose that
there is a separated set I' in B and a constant 0 < C' < oo such that

(2.3) (The k)l < O (ke k) (R k)|

for all zyw € B. Then T € Ay for every (n—1)/(n+1) <s < 1.
Proof. Rewriting (2.3), for all z,w € B we have

n+ n+
(Thss k)l < CL— [27) 5 (1= Jw’) 2 Y ku(2)][ku(w)].

uel’

Since T is separated, there is an a > 0 such that D(u,a) N D(v,a) = () for all uw # v in T.
For each u € T, it follows from (2.1) that

[u(2)lku(w)] < (2¢)*" 2 |kg,, (2)|ka, (w)| - for every @y € D(u,a).

Thus if we set C; = C(2e*)?"2, then the above gives us

(2.4) [Tk, k)| < C1 Y (ke ko, ) (ko o)

uel’

for all z,w € B, where x,, € D(u,a) for every u € I'.
Let (n —1)/(n+1) < s <1 be given. To prove that T" € Ay, we need to verify that

=X cB - |Z|2

1— |’LU| s(n+1)/2
(2.5) lim sup/ Tk, k)| ( ) d\(w) =0,
B\D(z,r)

which works in much the same way as the proofs of [9,Proposition 2.2] and [19,Proposition
4.5]. Indeed for any z € B and r > 0, it follows from (2.4) that

s(n+1)

1 — |wf?
/ (Tkz, kw)| (m) dA(w)
B\D(z,r) z
.s(n+1)

S/mzw 05 [ ekl () T

Oa //(Zw)» (k2 ko) (Fas Ru >|( |’Z|’2)wd>\(w)d)\(x).

Once we have this inequality, writing the last integral in the same form of I + I as on
page 5203 in [19], (2.5) is proved by the argument given there.

Since |(T*k,, k)| = [(kz, Tky)| = [(Tky, k)|, (2.3) also holds with 7™ in place of
T. Hence (2.5) also holds with 7™ in place of T". This completes the verification of the
membership T' € A,. [




Definition 2.7. Let X be a bounded operator on the Bergman space L?(B,dv). Then
LOC(X) denotes the collection of operators of the form

(2.6) T=> Ty XTy,,
uel

where I' is any separated set in B and { f, : u € '} are continuous functions on B satisfying
the following two conditions:

(1) There is an 0 < r < oo such that for every v € I, f,, =0 on B\D(u,r).

(2) The inequality 0 < f,, <1 holds on B for every u € T".

Note that the T' given by (2.6) a bounded operator on L2 (B, dv). This is because, by
conditions (1), (2) above and Lemma 2.5, the operator

T' =Y M, XPMjy,
uel’

is obviously bounded on L?(B,dv). Since T is the compression of T' to the subspace
L?(B, dv), the boundedness of T follows. This argument also shows that the sum in (2.6)
converges in the strong operator topology on L2(B,dv). We think of the operators in
LOC(X) as localized versions of X, hence the notation.

Below is the main goal of this section:
Proposition 2.8. For every bounded operator X on L?(B,dv), we have LOC(X) C T.

Proof. Let T' be a separated set in B, and let {f, : v € I'} be continuous functions on B
satisfying the two conditions in Definition 2.7. For z,w € B, we have

(T, XTy, ks k)| = (X Ty, ke, Ty, k)| < | XN Ty, ke[| Ty, kwll < X Fukz ]l fukwl]-
By the two conditions in Definition 2.7, we can apply Lemma 2.2 in the above to obtain
(Tp, X Ty, ke ko)l < CFo ()| XN(Kz, k) || (R Ko,

u € I'. Thus, if T is given by (2.6), then

(Thss k)l < CRa(IXN Y [z k) (ks k)|

for all z,w € B. Since I is separated, by Lemma 2.6 we have T' € A, for every (n—1)/(n+
1) < s < 1. By Theorem 2.4, this means T' € T as promised. [J

3. An epsilon-delta condition

For any continuous function f on B, we define
diff(f) = sup{|f(2) — f(w)| : B(z,w) < 1}.
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This turns out to be the most crucial scalar quantity for the proof of Theorem 1.2.

Lemma 3.1. Let f1,..., fr... be a sequence of continuous functions on B satisfying the
following four conditions:

(1) There is a 0 < C' < oo such that || fx|lec < C for every k € N.

(2) For every k € N, there exist ai, < by, in (0,1) such that fr, =0 on

{zeB:|z| <ar}U{zeB:b, <|z| < 1}.

(4) limk_mo dlﬁ(fk) =0.
Then there is an infinite subset I of N such that f; € VOpaq for every J C I, where

fr=> I

keJ

Proof. 1t is elementary that

(3.1) B(z,w) >

’10g (1 + ) (1 - |z|>’

(1= fw[)(1 +[2])

for z,w € B. By (3), we can inductively pick a sequence of natural numbers k(1) < k(2) <
-+ < k(j) < --- such that

1 1 ; 1 — by
(3.2) Lo (1 + ang+1) (1 = brgy)) >
2 7 (1= apg+n) (1 + brg)

for every j € N. Let I = {k(1),k(2),...,k(5),...}.

For each k € N, define Ry, = {z € B : a;, < |z| < bi}. Then (2) says that fr =0 on
B\ Ry. It follows from (3.1) and (3.2) that

(3.3) if z € Ry(jy and w € Ry (;y for j # j' in N, then §(z,w) > 2

This immediately implies that if J C I, then f; is continuous on B. Moreover, since
Ry(jy N Ryjry = 0 whenever j # j’, it follows from (1) and (2) that || f;|loc < C for every
J C I. That is, such an f; is bounded on B.

Let jo € N, and let z,w € B satisfy the conditions |z| > ay;,) and B(z,w) < 1. Then
it follows from (3.3) that there is at most one j € N such that fi;(2) — fr)(w) # 0.
Furthermore, by (3.3), if such a j exist, then it must satisfy the condition j > jo. Thus
for z,w € B satisfying the conditions |z| > ayj,) and B(z, w) < 1, we have

|f7(2) = fr(w)| < sup{diff(fr(;)) : 5 > jo}

for every J C I. Applying conditions (3) and (4), this completes the verification of the
membership f; € VOypqq for J C I. OJ

Definition 3.2. (a) For each 0 < t < 1, the symbol A(t) denotes the collection of
continuous functions g on B satisfying the following three conditions:
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(1) 0 < g(z) <1 for every z € B.

(2) g(z) = 1 whenever |z| < t.

(3) There is a t’ = t'(g) € (t,1) such that g(z) = 0 whenever ¢’ < |z| < 1.

(b) Let 0 <t < 1 and 6 > 0. Then A(t;0) denotes the collection of functions g € A(t)
satisfying the additional condition diff(g) < 4.

Lemma 3.3. For allt € (0,1) and § > 0, we have A(t;6) # 0.

Proof. 1t follows from the triangle inequality that |5(z,0)—8(w,0)| < B(z,w) for all z,w €
B. Using this fact, the promised function g € A(t;9) can be easily constructed in the form
g(z) = ¥(B(2,0)), where 1 is an appropriate Lipschitz function on [0,00) with a small
Lipschitz constant. We omit the elementary details. [

Lemma 3.4. Given any pair of f € L>°(B,dv) and h € L2(B, dv), we have

(3.4) lti%lsuP{Hngh —Tth|| g€ A(t)} =0.

Proof. By conditions (1) and (2) in Definition 3.2(a), for every 0 < ¢t < 1 we have

[Ty, = Tyhl? < lfgh — fHIP <7 [ Ihl2)Pdu()
t<|z|<1
for all g € A(t), f € L>=°(B,dv) and h € L2(B, dv). This obviously implies (3.4). O
For a bounded operator A on a Hilbert space H, denote

|Allg = inf{||A + K|| : K is any compact operator on H},

which is the essential norm of A.

Lemma 3.5. [11,Lemma 2.1] Let {B;} be a sequence of compact operators on a Hilbert
space ‘H satisfying the following conditions:

(a) Both sequences {B;} and {B}} converge to 0 in the strong operator topology.

(b) The limit lim;_, o, || B;|| exists.

Then there exist natural numbers i(1) < i(2) < --- <i(m) < --- such that the sum

00 N
mz_:l Bi(m) = lim_ mZ_l Bi(m)

exists in the strong operator topology and we have

> Bim)
m=1

= lim || B;]|.
1— 00
Q

Definition 3.6. For 0 <t < 1 and 6 > 0, the symbol ®(¢;0) denotes the collection of
continuous functions f on B satisfying the following three conditions:
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(1) 0 < f(2) <1 for every z € B.
(2) f(2) =0 whenever |z| < t.
(3) diff(f) < 0.

The main goal of this section is to show that every operator in EssCom({T}, : g €
VOypaq}) satisfies the following “e-§” condition:

Proposition 3.7. Let X be an operator in the essential commutant of {Ty : g € VOpaa}-
Then for every € > 0, there is a 6 = 6(X,€) > 0 such that

lggsup{H[X, Tylll : f € @(;0)} <

Proof. Let X € EssCom({T, : g € VOpaa}) and € > 0 be given. Suppose that no such
0 > 0 existed as promised above. We will show that this leads to a contradiction.

First of all, the non-existence of such § > 0 means that for every k € N, there is an
fr € ®(1 — (1/k);1/k) such that ||[[X, T}, ]|| > €. Thus for every k € N, there are unit
vectors hy, 1y, € L2(B, dv) such that

|<[Xa Tfk]hkﬂ ¢k>’ > €.
Applying Lemma 3.4, we see that for every k € N, there isa 1 — (1/k) < t; < 1 such that
(X, Tteglhi, Yr)| > € for every g e A(ty).

Lemma 3.3 tells us that A(tg; 1/k) is not empty. This allows us to pick a gx € A(tg;1/k).
Define qx = frgr, k € N. Then the above gives us

([X, Ty, Jhk, Yi)| > € for every ke N.
Since hy and v are unit vectors, this means
(3.5) I[X, T, ]|l > € for every ke N.

Next, we examine the properties of gi. First of all, the properties that 0 < fr < 1 and
0 < gr <1 imply that 0 < g < 1 on B. Furthermore, these properties also imply that

|k (2) — qe(w)| < [fr(2) = fr(w)| + g (2) — gr(w)]
for all z,w € B. It follows that for every k£ € N, we have
diff(gr) < diff(fy) + diff(gr) < (1/k) + (1/k) = 2/k.

Recall from Definition 3.6 that the membership g € A(tx;1/k) means that there is a
tr < t,, < 1 such that gi(z) = 0 whenever t; < |z| < 1. Therefore, for each £k € N, we
have g;(z) = 0 if either ¢j < |2] < 1 or |z|] < 1— (1/k). In conclusion, the sequence of
continuous functions q1,qo, ..., qk, ... satisfy all four conditions in Lemma 3.1.
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Thus by Lemma 3.1, there is an infinite subset I of N such that for every J C I, we
have ¢; € VOyqq, where
w=Y a0

keJ

Since [|gxllo < 1, we have ||[X, T, ]| < 2||X]|| for every k. Since I is an infinite set, it

contains a sequence ki < ko < --- < k; < --- of natural numbers such that the limit

d=lim [[X,7,, ]|

exists. Obviously, (3.5) implies d > e. Define B; = [X, T, | for every i € N. By the
preceding paragraph, we have g, (2) = 0 whenever ¢} < |[z| < 1. It is well known that this
implies that the Toeplitz operator 1y, is compact. Thus each B; is a compact operator,
i € N. Moreover, by the properties that ¢x, = 0 on the set {z € B : |2| < 1 — (1/k;)}
and 0 < g;, <1 on B, we have the strong convergence T, — 0 as ¢ — co. Therefore we
also have the strong convergence B; — 0 and B — 0 as i — 0o. That is, we have shown
that the sequence {B;} satisfies the conditions in Lemma 3.5. By that lemma, there is a
sequence of natural numbers i(1) < i(2) < --- <i(m) < --- such that the limit

N
B = lim Bz(m)

N—o00
m=1

exists in the strong operator topology with ||B||g = d > € > 0. That is, B is not compact.

Define £ = {kz(l), ki(g), ceey ki(m); ce } Then obviously EF C {kl, koy... kiy... } C I
Therefore we have gz € VOpqgq. Since gg is a bounded function on B and since every
k;(m, 18 DON-NeEgative, by the dominated convergence theorem, we have the convergence

N

T,. = lim T, = lim g T,

qE N oo Qki(l)JF Jeri(N) N oo . Tk (1)
m=

in the strong operator topology. Thus

N N
B= 1\}E>noo —1 Bi(m) B Zégnoo [X’ Z—1Tq’€i(m) = [X, Ty ]

Since qg € VOpgq and B is not compact, this contradicts the assumption that X is in the
essential commutant of {7, : ¢ € VOpqq}. This completes the proof. [

Lemma 3.8. Let hy,...,hi... be a sequence of continuous functions on B, and denote
Up ={z € B: hi(z) # 0}, k € N. Suppose that this sequence has the property that there
is an a > 1 such that inf{B(z,w) : z € Uj,w € Uy} > a for every pair of j # k in N. Then
the function h = )" hy has the property that diff(h) < supycn diff(hy).

Proof. Observe that, under the assumption, for any pair of z, w € B satisfying the condition
B(z,w) < 1, the cardinality of the set {k € N : hy(z) — hi(w) # 0} is at most 1. O
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4. Radial-spherical decomposition

To prove Theorem 1.2, we need to partition the unit ball B by functions with small
“diff”. At the same time, the supports of these functions must not have excess overlap.
Fortunately, we can satisfy these two competing requirements by decomposing the ball in
both the radial and the spherical directions. But unfortunately, as always, any explicit
radial-spherical decomposition of the ball involves complicated notation and messy details.

Let S denote {¢ € C" : || = 1}, the unit sphere in C". Recall that the formula
d(u,€) = [1 = (w, ', u,E €5,
defines a metric on S [13,page 66]. For any pair of u € S and r > 0, we write
B(u,r)={£€ S :d(u,&) <r}.

Let o be the standard spherical measure on S with the usual normalization o(S) = 1.
There is a constant Ay € (27", 00) such that

(4.1) min{2™", 77 1}r?" < o(B(u,r)) < Agr*”

for all u € S and 0 < r < /2 [13,Proposition 5.1.4].

With regard to the radial direction of B, we set
pp=1-27
for every k € Z . For each pair of natural numbers m > 6 and j € N, let us denote
(4.2) m,j =m(l—p )2 =m. 277 (2 —272m)1/2,

Note that 8a, ; < V2 for all m > 6 and j € N. For each pair of m > 6 and j € N, let
E,, ; be a subset of S that is mazimal with respect to the property

(4.3) B(u, 0t ;/2) N B(v,apy j/2) =0 forall uw#v in E,, ;.

It follows from the maximality of E,, ; that

(4.4) U Buwam,) =5

For each triple of m > 6, j € N and u € E,, ;, we define

Am,j,u = {?“f : f € B(U, Oém,j)vr € [p(j+2)ma p(j+3)m]} and
(45) Bm,j,u = {TE : "S € B(ua 30ém’j),7" € [pjm7p(j+5)m]}
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Then it follows from (4.4) that

(4.6) U U Amju={z€B:psm <|z| <1}

j=1u€En, ;

By (4.1) and (4.3), there is a natural number Ny such that for every triple of m > 6,
j€ Nandue€ E,;, we have

(4.7) card{v € E,, ; : d(u,v) < Tap, j} < Np.
By a standard maximality argument, each F,, ; admits a partition
_ (M (No)
Em;=FE,,;U---UE"

such that for every v € {1,..., No}, we have d(u,v) > Tay, ; for all u # v in Ef:)j This
number Ny and the above partition will be fixed for the rest of the paper.

Lemma 4.1. [20,Lemma 2.4] Suppose that 0 < p <1 and let z,w € B. If p < |z| < 1 and
p < lw] < 1, then B((p/|2])2, (p/lwl)w) < B(z, w).

Lemma 4.2. (a) Let m > 6,7 € N andv € {1,...,No}. Ifu,v € Efn)] and u # v, then
we have f(z,w) > 2 for all 2 € By, j.u and w € By, j 4.

(b) Let m > 6. Ifu € Ep, j, v € Ep, and k > j + 6, then we have B(z,w) > 3 for all
2€ By ju andw € By, g o-

(c) Let m > 6, j € N andu € E,, ;. Then (z,w) > 2logm for all z € B\B,, ;. and
w e Amju-

Proof. (a) Consider any z € By, j, and w € By, ., where u,v € EY )J and u # v. Then
z = |z|§ and w = |w|n, where { € B(u, 3, ;) and n € B(v, 3am,j) Since d(u,v) > Tagy, j,
we have d(§,m) > ;. Set 2" = pjmé and W' = pjp,n. By [13,Theorem 2.2.2], we have

9 2
_ ne _ (1_P?m)2 (1_p3m)2 1_/)?’” 1—P?m
ol = e = e~ e ) ST, )

Recalling (4.2), we obtain 1 — |,/ (w')]? < 4m~*. Thus

m4

4

—

1

1
- - >z > log(3?-2) > 2log3 > 2.
1— o (w)]2 = 2 > log( ) 0g

Bz, w') > = log

5 log

Since |z| > pjm and |w| > pjm, by Lemma 4.1 we have S(z,w) > (2, w') > 2.

(b) Let z € By, j.uw and w € By, k., Where u € By, j, v € Epy , and k > j + 6. Then it
follows from (4.5) and (3.1) that

1— 1 1—piis, 1. 2-20+5)m
|| > ~1og PG+sym _ 1 og
1—|w| =2 1 — prm 2 2—2km

= (k—j—5)mlog2.
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Since k —j —5>1, m > 6 and 2log2 > 1, we have 5(z,w) > 3 as promised.

(c) Given z € B\B,, j, and w € A, j ., we have z = |z|§ and w = |w|n with £ € S and
n € B(u, ;). We consider three cases, according to the value of |z|. First, suppose that
pim < |2| < p(i+5ym- By (4.5), we have £ ¢ B(u, 3y, ), and consequently d(§,1) > 20y, ;.
Define 2’ = p;;,& and w’ = pj,1. Then

2 2
1— |g0z/(w’)|2 _ (1 - p?m)2 <4 (1 - p?m)z .y 1-— p?m <4 1-— p?m .
[1—p2,&mPP — 1= (&) 2 ) =\ ez,

By (4.2), this means 1 — |,/ (w)|? < (4m*)~t. Thus
1
2

1
> —log(4m*) > 2logm.
1= Jpzr(w)]* — 2

1
Bz w') > §log
Applying Lemma 4.1, we obtain 8(z,w) > B(z',w") > 2logm.

Now consider the case where |z| < pjy,. Since |w| > p(jt2)m, from (3.1) we obtain
1 1—0p,; 1 2-2jm
Z T Pim  _ 2 log ————
2 1-— p(]+2)m 2 2_2(]+2)m

=mlog4d > m.

Similarly, in the case |z| > p(j15)m, since |w| < p(j43)m, we have

1 1—|w] _ 1 L—pGt3ym 1 2—2(j+3)m
—1 > —log —————— = —log ———F— =mlog4d > m.
2 BT T2 R Pi+5)m 2 08 gmaGrsym T OEE ST

To complete the proof, note that for m > 6, we always have m > 2logm. [

Lemma 4.3. For each triple of m > 6, j € N and u € E,, ;, define
(4.8) Zmju = PijmU-

Then we have By, ju C D(2m,j.us Rm), where Ry, =2+ 5m + log (1 + 210m 18m2).

Proof. Let w € By, j . By (4.5), we have w = r1, where n € B(u, 3a, ;) and pj, < r <
P(j+5)m- Define w’ = ru. Then B(zm ju, w) < B(2m ju, w') + B(w',w). We estimate the
two terms (2, ju, w') and f(w’, w) separately.

First of all,

2—2jm

A+ = pjm) _ L “Pim Lo,
(1 =)L+ pjm) ~ 2 N

1
log2+ - log ————— —_—.
0g 2+ 5 og 1_ PG t5)m 2 2—2(j+5)m

1
/B(Zmajzu7w/) - 5 log

Thus B(2m, ju,w') <1+ 5mlog2 <14 5m. On the other hand, by [13,Theorem 2.2.2],

(1—r)? (1—r?)> (1~ Pljropm)®

L [ (w)[2 = > > |
T2 ) = T= 2+ L= wnl)? = (L= 92 gm + 11— (wn)])?
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Hence

1 4
Bw',w) < =log ——+——
( 2 7 1= [puw (W)
1-— d2
1= p(irsym 1= pim

Since ) € B(u, 3oy j), we have d?(u,n) < 9aZ, ;. Therefore

902 18a2,
B(w',w) <1+ log (1 + 210m#> <1+log (1 - 210m1_—m2’]> .
Pim Pim

Recalling (4.2), we obtain S(w’,w) < 1+ log (14 2'°™-18m?). Combining this with the
fact that (2, ju, w') < 14 5m, we have 5(2m, ju, w) < Rp,. This completes the proof. [

For any z € B and any non-empty subset F of B, we denote

B(z, E) = inf{f(z,() : ¢ € £},

which is the Bergman distance between z and E. For all z,w € B, we have

(4.9) 6(2, E) — B(w, E)| < B(z, w).

This is because, for any ¢ € E, it follows from the triangle inequality that 3(z, E) —
B(w, () < B(z,w). Taking any sequence {(x} in E such that g(w, (x) — B(w, E) as k — oo,
we find that 8(z, E) — B(w, E) < B(z,w). Similarly, we also have f(w, E) — (2, E) <
B(z,w). Therefore (4.9) holds.

For every m > 6, define the function

1— (logm)™lz for 0<z<logm

(4.10) fm(x) =

0 for logm < x < >

Obviously, this function satisfies the Lipschitz condition | f, () — fm (y)| < (logm) |z —y|
for all z,y € [0,00). Given any triple of m > 6, j € N and u € E,, ;, we now define

(4.11) fmju(2) = fm(B(z, A ju)) for z e B.

Lemma 4.4. For every triple of m > 6, j € N and u € E,, ;, the function f,, ;. defined
above has the following five properties:

(a) The inequality 0 < f, ju <1 holds on B.

(b) finju =1 on the set Ay, j u.

(€) fm,ju s continuous on B.

(d) The set {z € B: f, ju(z) # 0} is contained in By, ;..
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(e) We have diff(fm, j.) < (logm)~1.

Proof. (a) and (b) follow directly from the definitions of f,, and f, .. (c) follows from
the continuity of f,,, and (4.9). For (d), note that if z € B\B,, 4, then Lemma 4.2(c)
gives us B(z, Ap ju) > 2logm. By (4.10), we have f,,(8(2z, Am,j.u)) = 0.

To verify (e), let z,w € B be given, and suppose that 3(z,w) < 1. By the Lipschitz

condition for f,, and (4.9), we have

|fm,j,u(z) - fm,j,u(w)‘ = |fm(6(Z7Am,j,u>) - fm(ﬁ(waAm,j,u))l

: w(Z’Amvj»“) B B(wvAm,J}u” < 5(2,11}) < 1

< .
logm — logm

~ logm

This completes the proof. [

The triple subscript in f, j ., while necessary for our construction, is obviously quite
cumbersome as a notation. Let us try to alleviate this problem by introducing:

Definition 4.5. Let m > 6 be given. (a) For each pair of k € {1,2,3,4,5,6} and v €
{1,..., No}, where Ny is the integer that appears in (4.7), let 1% denote the collection
of all triples m, 6j + k, u satisfying the conditions j € Z, and u € E,g:?Gij.

(b) For k € {1,2,3,4,5,6}, v € {1,...,No} and J € N, let Ir(::'j) denote the collection of
all triples m, 65 + £, u satisfying the conditions 0 < j < J and u € E, 4.,
(¢) Denote I,,, = US_, UNo ("),

(d) For any subset I of I,,, denote f; = > ., fu and Fr => ; f2.

Lemma 4.6. Let m > 6, k € {1,2,3,4,5,6} and v € {1,..., No}. Then for every subset
I of I we have f; € ®(pm; (logm)~1).

Proof. Let I C 1" Recall from Lemma 4.4 that for each w € I, we have {z € B :
fo(2) # 0} C B, and diff(f,) < (logm)~!. By Lemma 4.2 (a) and (b), for every pair of
w # W' in I, the Bergman distance between B, and B, is at least 2. Therefore Lemma
3.8 tells us that diff(f;) < sup,; diff(f,) < (logm)~!. Lemma 4.4 also provides that for
each w, f,, is continuous on B and satisfies the condition 0 < f,, < 1. Hence the fact that
the Bergman distance between B,, and B, is at least 2 for w # w’ in I also ensures that
f1 is continuous on B and that 0 < f; < 1. If |z]| < pum, then z ¢ B, for every w € I.
Thus by Lemma 4.4(d), if |z| < pgm, then fr(z) = 0. By continuity, we also have f;(z) =0
when |z| < pum. Since kK > 1, recalling Definition 3.6, this completes the verification of
the membership f; € ®(p,,; (logm)~1). O

Lemma 4.7. Let m > 6, k € {1,2,3,4,5,6} and v € {1,..., No}, and let I be any subset
of 1% Then for every bounded operator X on L2(B,dv), we have
(4.12) > Ty, XTy, € LOC(X).

wel
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Proof. Given any I C I,,(ny "i), consider the set I' = {2, : w € I}, where z, was defined by
(4.8). By (4.5), we have z,, € B,,. Thus it follows from Lemma 4.2 that I" is a separated
set in B. Lemma 4.3 tells us that for each w € I, we have B, C D(z,, R;,). By Lemma
4.4(d), we have f,, = 0 on B\D(zy, R,,). Recalling Definition 2.7, (4.12) follows. [J

As usual, for each f € L>°(B,dv), we define the Hankel operator

Hih = (1— P)(fh), he L2(B,dv).

Lemma 4.8. There is a constant 0 < Cyg < 00 such that ||Hy|| < Cygdiff(f) for every
bounded continuous function f on B.

Proof. Recall that for f € L?(B,dv), the formula || f|lsmo = sup,eg [|(f — (fkz, k2))k. ||
defines its BMO norm. It is well known that there is a constant C; such that |[H¢| <
C1||fllsmo for every f € L>° (B, dv) [1,Theorem 22]. Thus it suffices to produce a constant
Cy such that || f|lpmo < Cadiff(f) for every bounded continuous function f on B.

To find such a Oy, note that for j € Z,, 1 —-277 <t<1-277"1and £ € S, we have

(4.13) B(1 =279 t6) = %log a Elt;;)f_;_j) < %logél < 1.

Define Q; = {w € B:1-277 < |Jw| <1—-27971} j € Z,. By (4.13) and an obvious
telescoping sum, we see that if f is a bounded continuous function on B, then

|f(w) — f(0)] < (j+1)diff(f) for every w € Qj,
je€Zi. Set Cy = {Z;‘;O(j +1)%20(Q;)}*/2, which is obviously finite. We have

17 = 7O = [ 1760) = FOPan(w) < 3206+ 1)@ @) = @)

Jj=

For each z € B, denote f, = f o ¢,. Then it follows from the above that

I = (Fhes k)bl < N(F = F(2))E:l = 11z = F2(0)[| < Codifi(f2) = Codifi(f),

where the second = is due to the Mobius invariance of 5. This completes the proof. [J

5. Proof of Theorem 1.2
To prove Theorem 1.2, we need to fully exploit the properties of Toeplitz operators:

Lemma 5.1. Let {f1,..., fe} be a finite set of functions in L°°(B,dv) with the property
that fjfi =0 for all j # k in {1,...,¢}. Let A be any bounded operator on the Bergman

space L2(B,dv). Then there exist complex numbers {v1,...,v¢} with |yx| = 1 for every
ke{l,...,0} and a subset E of {1,...,¢} such that if we define

F= ka, G = Z fe, F'= Z%fk and G' = Z Vi S

kEE ke{l,...e}\E kEE ke{l,...L}\E
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then

STy ATy || < AT ATG | + || Ter ATF ).

i7k
Proof. It suffices to consider the case ¢ > 2. Denote U = {z € B : fi(z) # 0} for each
ke{l,....0}. Then U; NU, =0 for all j # k in {1,...,¢} by our assumption. Write

Z=> TpAT;, and Zy=)Y eU"MIT, AT, 6€cR.
J#tk j#k

Then obviously we have
1 27

Z=— | (Z- 2.
2 0

This shows that there is a 8* € [0, 27] such that || Z|| < ||Z — Zp+||.

Write vy, = e for every k € {1,...,¢}. Define the operators
¢ ¢ ¢
B=) Y My APM;, and Z Z Vi My, AP My,
j=1k=1 j=1 k=

on L?(B,dv). Also, define
¢
b= XU,
k=1

Using the properties that U; N Uy = 0 for j # k and that f; = 0 on B\Uy, we have
B-B' =B- MyBMy = My(M;B — BMj).

For each k € {1,...,¢}, let us write vy, = ¢ + idy, where ¢, dy € [—1,1]. Define

¢ ¢
=Y axv, and g= ) dixu,.
k=1 k=1

Then the above gives us B — B’ = M, X —iM,Y, where
X =M,B—BM, and Y =M,B— BM,.

Since vy, = 1 for every k € {1,...,0}, Z — Zp+ is the compression of B — B’ to the
subspace L2(B,dv). Hence ||Z — Zp-|| = ||P(B — B’)P||. Consequently, we have either
12l < (12 = Zo-|| < 2|PMy X P or | Z|| < | Z = Zp-|| < 2[|[PMyY P|.

In the case || Z|| < 2||PMyXP)||, consider cy, ..., ¢, which are real numbers in [—1, 1].
There is a permutation 7(1),...,7(¢) of the integers 1,..., ¢ such that

Cr(j) = Cr(j—1) forevery je€{2,...,(}.
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For each j € {1,...,¢}, define the subset E; = {7(k) : j <k </} of {1,...,¢}. Then

¢ ¢
p= ZCT(k)XUmw = Cr(1) Z Xu, + Z(CT(j) — Cr(j-1)) Z XU, -
k=1 j=2

MeEl ,LLEE]'
Since xy, fr = 0 when j # k and xy, fx = fr, we have

L J4 L

chfk = pik =Ccr191 + Z(CTU) - Cq—(j_l))gj, where g; = Z fu

k=1 k=1 j=2 HEE;
for every 1 < j < {. Note that F; = {1,...,¢}. Thus

L )4
X = M,B— BM, =Y ¢;My APMy, — My, AP " c; My,

j=1 j=1
¢
= Z(CT(j) = Cr(j—1)) (Mg, APMg, — My, APMy;)
j=2

L
=D _(er(g) = r(g—1))(My; APMp; — Mp, APMy,),
j=2

where

hi= > fu

HE{]. ..... é}\EJ

2<j <ALoSince (Crz) = Cry) + -0+ (Cre) = Cre—1)) = Cr(e) — €1y < 2, we have

4
IPMyXP|| < (crj) — cr(j-1)) | PMy(My, APMy, — My, APM,,)P||
) =2

2§?§Z(I|ngjAThj | + | Tyn, ATy, ||)-

IA
IS

That is, there is a jo € {2, ..., ¢} such that
|PMyX P < 2(|Tyg,, ATh, || + [ Ton,, ATy, ).

If we simply let E = Ej,, then g;, = F, 1g;, = F', hj, = G and 9hj, = G’. This proves
the lemma in the case ||Z]| < 2| PMy,XP||.

In the case ||Z]| < 2||PMyY P||, we just apply the argument in the preceding para-
graph with dq,...,dy in place of ¢q,...,cy. This completes the proof of the lemma. [J

Proof of Theorem 1.2. Since we know that EssCom ({7}, : g € VOpaq}) D 7T, we only need
to prove that EssCom({T, : g € VOpaa}) C 7.
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Let X € EssCom({T} : g € VOpaa}). To show that X € T, pick any e > 0. It suffices
to show that X admits a decomposition X =Y + Z with Y € T and

(5.1) 12]] < 6No{Cus]| X[ +2 + 16(2 + Cas] X[ }e,

where Cy g and Ny are the constants that appear in Lemma 4.8 and (4.7) respectively.

First of all, by Proposition 3.7, there exist a § > 0 and a 0 < t* < 1 such that
(5.2) |[X,Tr]|l < 2¢ for every f e ®(t%;0).
With § and ¢t* so fixed, we pick an integer m > 6 satisfying the conditions
(5.3) (logm)~! < min{e, 6} and p,, > t*.

With m so fixed, let us consider the function Fj, given in Definition 4.5(d). Since

6 Np
(5.4) Fr,=> > Flom

r=1v=1

and since by Lemma 4.6 each FI(V,,@) satisfies the inequality 0 < FI@,R) < 1 on B, we

have 0 < F;, < 6Ny on B. By Lemma 4.4(b) and (4.6), we have F7, (z) > 1 whenever
p3m < |z| < 1. Define A,,, = {z € B : |z| < p3; }. Thus we have shown that the function

(5.5) h =xa,, + FI,

satisfies the inequality 1 < h < 6Ny + 1 on B. This guarantees that the positive Toeplitz
operator T}, is both bounded and invertible on L2(B,dv). Moreover, ||T, '|| < 1. Since
Ty, € T and T is a C*-algebra, we have T}, ' € T.

By (5.5) and (5.4), we have the decomposition

6 No
(5.6) X =XTT, = Xo+ > > Xuw,

k=1v=1
where

Xo=XT\, T;" and X,, = XTr 0 T, !
for 1 <k <6and 1 <v < Ny. It is well known that 7 D K. Since A,, = {z € B : |z] <
p3m}, the Toeplitz operator Ty, ~is compact. Hence Xq € L C T.

Next, consider each X, .. It is a consequence of Lemma 4.4(d) and Lemma 4.2 that

Frow = fIQf,Z’”)' (Again, we refer the reader to Definition 4.5(d).) Therefore

T =Ty =T7? H: H :
e e A R A
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Accordingly, we have

1 * —
(5.7) Xy = XL)+2Z(), where X[} = XT} T, and Z{) = XH} H 0 T

We have ||H;I(m) Hfé:yn) | < HHfI%H) | < Cusdiff(f,¢.) by Lemma 4.8. By Lemma 4.6
and (5.3), we have diff(f,o..) < (logm)~" < e. Hence

(5-8) 1ZERI < CasllX|le.

@

We further decompose X, ;: we have

X{0 = X2+ 283

V,K)

where
-1 —1
XIE,ng = Tfl(u,m) XTfI@,H)Th and Zz(/,in = [X’ Tfj(u,n)]TfI(u,n)Th :

Recall from Lemma 4.6 that f . € ®(pm; (logm)~"'). Therefore it follows from (5.3)
and (5.2) that

(5.9) 12520 <X Ty 0] < 2

Then note that
X2 =Y, .+ 28

V,K)?
where
(5.10) Yow= Y TpXTp,T' and 28 = > Ty XTy, T,
we[ffb”“) w,w/EIT(:’”)
wHw’

Since T}~ e T, it follows from Lemma 4.7 and Proposition 2.8 that Yo €T.

To estimate HZ,S?’,l

|, first observe that we have the strong convergence

> My XPM;,— > M;XPMj, as J-— oo

w,w/EIf:,’? w,w/elfrf’”)

wHw’ wH#w’

on L*(B,dv), where I 75;’5) was given by Definition 4.5(b). Compressing this strong con-
vergence to the subspace L2 (B, dv), we see that there is a J € N such that

(5.11) 1ZE)N < 2012800, where Z) = Y Ty XTy,.
w,w'EIff;”j)
wHw’
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(Note that the fact that |7}, || < 1 is also involved here.) The significance of Z,Sfl,.% is that
I,(:”j) is a finite set. Since f, f,» = 0 for w # W’ in If:”j), by Lemma 5.1, there are complex

numbers {7, 1w € I 7(:5)} of modulus 1 and a subset I of I 7(;5) such that if we set

F:waa G = Z fun F/:Zf}/wfw and G’ = Z IYWfW7

wel we]irl::";)\] wel UJGI(V n)\I
then
(5.12) 1Z50N < 4| Te X Ta|| + || Ter X Tr|)).

Note that Te: XTr = T [X, Tr|+Tq: TrX. By Lemma 4.6, we have F' € ®(p,,; (logm)~1).
Hence it follows from (5.3) and (5.2) that

(5.13) [T [X, Tr]ll < |[[X, Tr]| < 2e.

We know that B, N B, = 0 for all w # ' in I,,(ny"{). Therefore G'F = 0 on B, and
consequently Tg/Tr = —H%HF. Thus by Lemmas 4.8 and 4.6 and by (5.3), we have

|Te TeX|| < |He|IX]| < Cosdifi(F)| X | < Cusllogm) ™| X]| < Cus]X[le

Combining this with (5.13), we see that ||Tq XTr|| < (24 Cy5]/X]|)e. The same argument,
also shows that | Tp XTg|| < (2 + Cys]|X||)e. Substituting these in (5.12) and recalling
(5.11), we have

(5.14) 1ZE2] < 16(2 + Cusl| X|)e.

Recapping the above, for each pair of 1 < x <6 and 1 < v < Ny we obtain the decompo-
sition
X, .=Y,,.+ Z(l) + Z(Q) AC)

V,K?

where Y, ,; € T and Z,S},.)@, Z,Sz,z and Zl(,g,z satisfy estimates (5.8), (5.9) and (5.14) respectively.
Combining this with (5.6), we obtain the decomposition X =Y + Z, where

(5.15) Y = X0+ZZYM and Z = ZZ (20 + 22 + 23).

r=1v=1 r=1v=1

Now, (5.1) follows from (5.8), (5.9) and (5.14), and we have shown that Y € 7. This
completes the proof. [

Remark 5.2. Note that, other than its boundedness, the only property of X that we
used in the above proof is that it satisfies the “e-0” condition in Proposition 3.7. Thus the
above proof actually shows that for any bounded operator X on L2(B,dv), if it satisfies
the “e-0” condition in Proposition 3.7, then it belongs to 7. In other words, the “e-§”
condition in Proposition 3.7 characterizes the membership X € 7.
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Remark 5.3. The proof given above has broader implications than just Theorem 1.2. As
an example of such implications, we present a compactness criterion for operators in 7.

Proposition 5.4. Let X € T. Then X is compact if and only if LOC(X) C K.

Proof. Let X € T and suppose that LOC(X) C K. As we showed above, for every € > 0,
X admits a decomposition X =Y +Z, where Y and Z are given by (5.15), with Xy known
to be compact. Recalling (5.10), the assumption LOC(X) C K implies that every Y, , is
compact. Thus Y is compact. Since Z satisfies (5.1), this shows that X is compact.

Conversely, suppose that X is compact. Let I' be any separated set in B and let
{fu : w € T'} be any family of functions satisfying the conditions in Definition 2.7. Using
Lemma 2.5, from the compactness of X we deduce that the operator

Z My, XPMy,

uel’

is compact on L?(B,dv). Compressing the above to the subspace L?(B,dv), we see that
every operator in LOC(X) is compact. [J
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