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Abstract. Let T be the Toeplitz algebra on the Bergman space L2
a(B, dv) of the unit ball

in Cn. We show that the image of T in the Calkin algebra satisfies the double commutant
relation: π(T ) = {π(T )}′′. This is a surprising result, for it is the opposite of what happens
in the Hardy-space case [16,17].

1. Introduction

Let B denote the open unit ball {z ∈ Cn : |z| < 1} in Cn. Let dv be the volume
measure on B with the normalization v(B) = 1. Recall that the Bergman space L2

a(B, dv)
is just the closure of C[z1, . . . , zn] in L2(B, dv). Let P : L2(B, dv) → L2

a(B, dv) be the
orthogonal projection. Each f ∈ L∞(B, dv) gives rise to the Toeplitz operator

Tfh = P (fh), h ∈ L2
a(B, dv).

The Toeplitz algebra T on the Bergman space L2
a(B, dv) is the C∗-algebra generated by

the full collection of Toeplitz operators {Tf : f ∈ L∞(B, dv)}.

We only consider separable Hilbert spaces in this paper. Recall that if Z is a collection
of bounded operators on a Hilbert space H, then its essential commutant is defined to be

EssCom(Z) = {A ∈ B(H) : [A, T ] ∈ K(H) for every T ∈ Z},

where K(H) denotes the collection of compact operators on H. Let Q denote the Calkin
algebra B(H)/K(H), and let

π : B(H)→ Q

be the quotient homomorphism. Then we obviously have π(EssCom(Z)) = {π(Z)}′ for
every subset Z ⊂ B(H).

To motivate what we will do in this paper, let us mention the recent determination of
the essential commutant of the Toeplitz algebra T :

Theorem 1.1. [19] The essential commutant of the Toeplitz algebra T equals

{Tg : g ∈ VObdd}+K.

In the above, K denotes the collection of compact operators on L2
a(B, dv), and

VObdd = VO ∩ L∞(B, dv),
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where VO is the collection of functions of vanishing oscillation on B, which were first
introduced by Berger, Coburn and Zhu in [3]. These functions are defined in terms of the
Bergman metric

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ B,

where ϕz is the Möbius transform of the ball B given on page 25 in [13]. Recall from [3]
and [19] that VO denotes the collection of functions g on B satisfying the following two
conditions: (1) g is continuous on B; (2) the limit

lim
|z|↑1

sup
β(z,w)≤1

|g(z)− g(w)| = 0

holds.

As was explained in [19], Theorem 1.1 is the Bergman-space analogue of the equality

(1.1) EssCom(T Hardy) = {THardy
f : f ∈ VMO ∩ L∞}+KHardy,

which was proved by Davidson in [4]. Here, T Hardy, THardy
f and KHardy respectively de-

note the Toeplitz algebra, Toeplitz operator and the collection of compact operators on
the Hardy space H2. Recall that (1.1) has inspired several Hardy-space generalizations
[5,6,7,8]. In comparison, the Bergman-space case requires a different approach, which
perhaps partially explains the chronological gap between [4] and [19].

But given Theorem 1.1, one cannot help but wonder, what is the essential commutant
of {Tg : g ∈ VObdd}? More than curiosity, this is the logical next step in the investigation.
The purpose of this paper is to report the answer to this natural question:

Theorem 1.2. The essential commutant of {Tg : g ∈ VObdd} equals the Toeplitz algebra
T .

While Theorem 1.1 is a direct analogue of (1.1), Theorem 1.2 comes as something of
a surprise, for it is the opposite of what happens on the Hardy space. It is known that the
essential commutant of {THardy

f : f ∈ VMO ∩ L∞} is strictly larger than T Hardy [16,17].

These results are better understood in the context of the double commutant relation
in the Calkin algebra. There are two classes of unital C∗-subalgebras A of the Calkin
algebra Q that are known to satisfy the double commutant relation A = A′′:

(1) When A is separable. This was proved by Voiculescu in [14].
(2) When A is the image of a von Neumann algebra. This follows from the works of
Johnson, Parrott [10] and Popa [12].

On the flip side, there are plenty of unital C∗-subalgebras of the Calkin algebra Q that
do not satisfy the double commutant relation [2,10,15,16,17], among which π(T Hardy) is a
notable example. In contrast, the following is an immediate consequence of Theorem 1.2:

Corollary 1.3. The image of T in the Calkin algebra satisfies the double commutant
relation.
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To conclude the Introduction, let us explain the basic ideas for proving Theorem 1.2.
First of all, our proof revolves around the scalar quantity

diff(f) = sup{|f(z)− f(w)| : β(z, w) ≤ 1}.

Our first realization is that every X ∈ EssCom({Tg : g ∈ VObdd}) satisfies the following
“ε-δ” condition: given any ε > 0, there is a δ = δ(X, ε) > 0 such that

‖[X,Tf ]‖ ≤ ε

for f satisfying the condition diff(f) ≤ δ and some other additional technical restrictions.
We will prove this in Section 3.

Our next realization is that it is possible to construct an approximate partition of
the unity on B where the “diff” for the partition functions is arbitrarily small. More
specifically, we need to construct, for each sufficiently large m ∈ N, a family of partition
functions {fω : ω ∈ Im} which itself admits a partition

(1.2) Im = I(1)
m ∪ · · · ∪ I(N)

m

such that for each µ ∈ {1, . . . , N}, the set I
(µ)
m has the following two properties. First,

fωfω′ = 0 for all ω 6= ω′ in I
(µ)
m . Second,

(1.3) diff

(∑
ω∈I

fω

)
= o(1) for every I ⊂ I(µ)

m ,

where the o(1) is relative to the growth of m. The key requirement here is that the N
in (1.2) must be a constant independent of m. Because of this requirement, we cannot
construct {fω : ω ∈ Im} based on coverings of B by balls with respect to the Bergman
metric. Instead, we must use radial-spherical decompositions of B, which are technically
more demanding. This construction is the main content in Section 4.

This construction provides the functions f (µ) =
∑
ω∈I(µ)

m
fω and F (µ) =

∑
ω∈I(µ)

m
f2
ω,

µ ∈ {1, . . . , N}. Since N is fixed, given any X ∈ EssCom({Tg : g ∈ VObdd}), it suffices to
consider each individual XTF (µ) . Note that F (µ) = (f (µ))2. Thus

XTF (µ) = XT(f(µ))2 = Tf(µ)XTf(µ) + [X,Tf(µ) ]Tf(µ) +XH∗f(µ)Hf(µ) ,

where Hf(µ) is the Hankel operator with symbol f (µ). Since diff(f (µ)) is small, so are
‖[X,Tf(µ) ]‖ and ‖Hf(µ)‖. In other words, XTF (µ) is a small perturbation of Tf(µ)XTf(µ) .
Then note that Tf(µ)XTf(µ) = D +W , where

D =
∑
ω∈I(µ)

m

TfωXTfω and W =
∑

ω,ω′∈I(µ)
m

ω 6=ω′

TfωXTfω′ .
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One can think of D as the “diagonal terms” in Tf(µ)XTf(µ) and W as the “off-diagonal
terms”. As it turns, the “diagonal terms” form an operator in the Toeplitz algebra, D ∈ T ,
which will be proved in Section 2.

A key issue in the proof is the handling of the “off-diagonal terms”. We will show in
Section 5 that ‖W‖ can be dominated by a quantity of the form

(1.4) ‖[X,TF ]‖+ ‖X‖‖HF ‖+ ‖[X,TG]‖+ ‖X‖‖HG‖

with

F =
∑
ω∈I

fω and G =
∑
ω∈J

fω,

where I and J are two disjoint, finite subsets of I
(µ)
m . By (1.3), diff(F ) and diff(G) are

small, consequently so is (1.4). In other words, ‖W‖ is small. Adding up the operators of
small norms mentioned above, this argument shows that XTF (µ) = D + Z, where D ∈ T
and Z has a small norm, which is the essential part of the proof of Theorem 1.2.

The rest of the paper consists of the technical details of the argument outlined above.

2. Operators in the Toeplitz algebra

We begin by recalling certain standard fixtures associated with the Bergman space.
First of all, the formula

kz(ζ) =
(1− |z|2)(n+1)/2

(1− 〈ζ, z〉)n+1
, z, ζ ∈ B,

gives us the normalized reproducing kernel for L2
a(B, dv). By [19,Corollary 4.4], we have

(2.1) |kz(ζ)| ≤ (2eβ(z,z′))n+1|kz′(ζ)|

for all z, z′, ζ ∈ B. Recall that for each u ∈ B, the formula

(Uuf)(ζ) = ku(ζ)f(ϕu(ζ)),

ζ ∈ B and f ∈ L2(B, dv), defines a unitary operator on L2(B, dv). Moreover, each Uu
maps the Bergman space L2

a(B, dv) to itself.

Definition 2.1. (1) For z ∈ B and r > 0, denote D(z, r) = {ζ ∈ B : β(z, ζ) < r}.
(2) Let a > 0. A subset Γ of B is said to be a-separated if D(z, a) ∩D(w, a) = ∅ for all
distinct elements z, w in Γ.
(3) A subset Γ of B is simply said to be separated if it is a-separated for some a > 0.

Lemma 2.2. Given any 0 < r < ∞, there is a constant C2.2(r) which depends only on r
and the complex dimension n such that ‖χD(u,r)kz‖ ≤ C2.2(r)|〈kz, ku〉| for all u, z ∈ B.

4



Proof. By the properties of the Möbius transform ϕu (see [13,Theorem 2.2.2]) and the
Möbius invariance of the Bergman metric β, we have χD(u,r) ◦ ϕu = χϕu(D(u,r)) = χD(0,r)

for all u ∈ B and r > 0. Therefore, for each z ∈ B,

(2.2) ‖χD(u,r)kz‖ = ‖Uu(χD(u,r)kz)‖ = ‖χD(0,r)kϕu(z)‖.

Given an r ∈ (0,∞), set ρ = (e2r − 1)/(e2r + 1). Then D(0, r) = {ζ ∈ B : |ζ| < ρ}, and
consequently

‖χD(0,r)kϕu(z)‖2 =

∫
|ζ|<ρ

|kϕu(z)(ζ)|2dv(ζ) ≤ (1− |ϕu(z)|2)n+1

(1− ρ)2n+2
=
|〈kz, ku〉|2

(1− ρ)2n+2
,

where for the second = we again cite [13,Theorem 2.2.2]. Combining this with (2.2), we
see that the constant C2.2(r) = (1− ρ)−n−1 will do for the lemma. �

Let dλ denote the standard Möbius-invariant measure on B. That is,

dλ(z) =
dv(z)

(1− |z|2)n+1
.

In this paper, we will again need the notion of weakly localized operators on the Bergman
space, which was first introduced by Isralowitz, Mitkovski and Wick in [9], and which
played an essential role in [18,19].

Definition 2.3. [9,18] Let a positive number (n− 1)/(n+ 1) < s < 1 be given.
(a) A bounded operator B on the Bergman space L2

a(B, dv) is said to be s-weakly localized
if it satisfies the conditions

sup
z∈B

∫
|〈Bkz, kw〉|

(
1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) <∞,

sup
z∈B

∫
|〈B∗kz, kw〉|

(
1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) <∞,

lim
r→∞

sup
z∈B

∫
B\D(z,r)

|〈Bkz, kw〉|
(

1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) = 0 and

lim
r→∞

sup
z∈B

∫
B\D(z,r)

|〈B∗kz, kw〉|
(

1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) = 0.

(b) Let As denote the collection of s-weakly localized operators defined as above.
(c) Let C∗(As) denote the C∗-algebra generated by As.

Theorem 2.4. [18,Theorem 1.3] For every (n− 1)/(n+ 1) < s < 1 we have C∗(As) = T .

Lemma 2.5. [18,Lemma 2.2] Let Γ be a separated set in B. For every 0 < r < ∞, there
is a finite partition Γ = Γ1 ∪ · · · ∪ Γm such that for every i ∈ {1, . . . ,m}, the conditions
u, v ∈ Γi and u 6= v imply β(u, v) > r.

5



Lemma 2.6. Let T be a bounded operator on the Bergman space L2
a(B, dv). Suppose that

there is a separated set Γ in B and a constant 0 < C <∞ such that

(2.3) |〈Tkz, kw〉| ≤ C
∑
u∈Γ

|〈kz, ku〉〈ku, kw〉|

for all z, w ∈ B. Then T ∈ As for every (n− 1)/(n+ 1) < s < 1.

Proof. Rewriting (2.3), for all z, w ∈ B we have

|〈Tkz, kw〉| ≤ C(1− |z|2)
n+1

2 (1− |w|2)
n+1

2

∑
u∈Γ

|ku(z)||ku(w)|.

Since Γ is separated, there is an a > 0 such that D(u, a) ∩D(v, a) = ∅ for all u 6= v in Γ.
For each u ∈ Γ, it follows from (2.1) that

|ku(z)||ku(w)| ≤ (2ea)2n+2|kxu(z)||kxu(w)| for every xu ∈ D(u, a).

Thus if we set C1 = C(2ea)2n+2, then the above gives us

(2.4) |〈Tkz, kw〉| ≤ C1

∑
u∈Γ

|〈kz, kxu〉〈kxu , kw〉|

for all z, w ∈ B, where xu ∈ D(u, a) for every u ∈ Γ.

Let (n− 1)/(n+ 1) < s < 1 be given. To prove that T ∈ As, we need to verify that

(2.5) lim
r→∞

sup
z∈B

∫
B\D(z,r)

|〈Tkz, kw〉|
(

1− |w|2

1− |z|2

)s(n+1)/2

dλ(w) = 0,

which works in much the same way as the proofs of [9,Proposition 2.2] and [19,Proposition
4.5]. Indeed for any z ∈ B and r > 0, it follows from (2.4) that

∫
B\D(z,r)

|〈Tkz, kw〉|
(

1− |w|2

1− |z|2

) s(n+1)
2

dλ(w)

≤
∫
β(z,w)≥r

C1

∑
u∈Γ

∫
D(u,a)

|〈kz, kx〉〈kx, kw〉|
dλ(x)

λ(D(u, a))

(
1− |w|2

1− |z|2

) s(n+1)
2

dλ(w)

≤ C1

λ(D(0, a))

∫ ∫
β(z,w)≥r

|〈kz, kx〉〈kx, kw〉|
(

1− |w|2

1− |z|2

) s(n+1)
2

dλ(w)dλ(x).

Once we have this inequality, writing the last integral in the same form of I1 + I2 as on
page 5203 in [19], (2.5) is proved by the argument given there.

Since |〈T ∗kz, kw〉| = |〈kz, Tkw〉| = |〈Tkw, kz〉|, (2.3) also holds with T ∗ in place of
T . Hence (2.5) also holds with T ∗ in place of T . This completes the verification of the
membership T ∈ As. �
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Definition 2.7. Let X be a bounded operator on the Bergman space L2
a(B, dv). Then

LOC(X) denotes the collection of operators of the form

(2.6) T =
∑
u∈Γ

TfuXTfu ,

where Γ is any separated set in B and {fu : u ∈ Γ} are continuous functions on B satisfying
the following two conditions:
(1) There is an 0 < r <∞ such that for every u ∈ Γ, fu = 0 on B\D(u, r).
(2) The inequality 0 ≤ fu ≤ 1 holds on B for every u ∈ Γ.

Note that the T given by (2.6) a bounded operator on L2
a(B, dv). This is because, by

conditions (1), (2) above and Lemma 2.5, the operator

T ′ =
∑
u∈Γ

MfuXPMfu

is obviously bounded on L2(B, dv). Since T is the compression of T ′ to the subspace
L2
a(B, dv), the boundedness of T follows. This argument also shows that the sum in (2.6)

converges in the strong operator topology on L2
a(B, dv). We think of the operators in

LOC(X) as localized versions of X, hence the notation.

Below is the main goal of this section:

Proposition 2.8. For every bounded operator X on L2
a(B, dv), we have LOC(X) ⊂ T .

Proof. Let Γ be a separated set in B, and let {fu : u ∈ Γ} be continuous functions on B
satisfying the two conditions in Definition 2.7. For z, w ∈ B, we have

|〈TfuXTfukz, kw〉| = |〈XTfukz, Tfukw〉| ≤ ‖X‖‖Tfukz‖‖Tfukw‖ ≤ ‖X‖‖fukz‖‖fukw‖.

By the two conditions in Definition 2.7, we can apply Lemma 2.2 in the above to obtain

|〈TfuXTfukz, kw〉| ≤ C2
2.2(r)‖X‖|〈kz, ku〉||〈ku, kw〉|,

u ∈ Γ. Thus, if T is given by (2.6), then

|〈Tkz, kw〉| ≤ C2
2.2(r)‖X‖

∑
u∈Γ

|〈kz, ku〉〈ku, kw〉|

for all z, w ∈ B. Since Γ is separated, by Lemma 2.6 we have T ∈ As for every (n−1)/(n+
1) < s < 1. By Theorem 2.4, this means T ∈ T as promised. �

3. An epsilon-delta condition

For any continuous function f on B, we define

diff(f) = sup{|f(z)− f(w)| : β(z, w) ≤ 1}.
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This turns out to be the most crucial scalar quantity for the proof of Theorem 1.2.

Lemma 3.1. Let f1, . . . , fk . . . be a sequence of continuous functions on B satisfying the
following four conditions:

(1) There is a 0 < C <∞ such that ‖fk‖∞ ≤ C for every k ∈ N.
(2) For every k ∈ N, there exist ak < bk in (0, 1) such that fk = 0 on
{z ∈ B : |z| ≤ ak} ∪ {z ∈ B : bk ≤ |z| < 1}.
(3) limk→∞ ak = 1.
(4) limk→∞ diff(fk) = 0.

Then there is an infinite subset I of N such that fJ ∈ VObdd for every J ⊂ I, where

fJ =
∑
k∈J

fk.

Proof. It is elementary that

(3.1) β(z, w) ≥ 1

2

∣∣∣∣log
(1 + |w|)(1− |z|)
(1− |w|)(1 + |z|)

∣∣∣∣
for z, w ∈ B. By (3), we can inductively pick a sequence of natural numbers k(1) < k(2) <
· · · < k(j) < · · · such that

(3.2)
1

2
log

(1 + ak(j+1))(1− bk(j))

(1− ak(j+1))(1 + bk(j))
≥ 2

for every j ∈ N. Let I = {k(1), k(2), . . . , k(j), . . . }.

For each k ∈ N, define Rk = {z ∈ B : ak ≤ |z| ≤ bk}. Then (2) says that fk = 0 on
B\Rk. It follows from (3.1) and (3.2) that

(3.3) if z ∈ Rk(j) and w ∈ Rk(j′) for j 6= j′ in N, then β(z, w) ≥ 2.

This immediately implies that if J ⊂ I, then fJ is continuous on B. Moreover, since
Rk(j) ∩ Rk(j′) = ∅ whenever j 6= j′, it follows from (1) and (2) that ‖fJ‖∞ ≤ C for every
J ⊂ I. That is, such an fJ is bounded on B.

Let j0 ∈ N, and let z, w ∈ B satisfy the conditions |z| ≥ ak(j0) and β(z, w) ≤ 1. Then
it follows from (3.3) that there is at most one j ∈ N such that fk(j)(z) − fk(j)(w) 6= 0.
Furthermore, by (3.3), if such a j exist, then it must satisfy the condition j ≥ j0. Thus
for z, w ∈ B satisfying the conditions |z| ≥ ak(j0) and β(z, w) ≤ 1, we have

|fJ(z)− fJ(w)| ≤ sup{diff(fk(j)) : j ≥ j0}

for every J ⊂ I. Applying conditions (3) and (4), this completes the verification of the
membership fJ ∈ VObdd for J ⊂ I. �

Definition 3.2. (a) For each 0 < t < 1, the symbol Λ(t) denotes the collection of
continuous functions g on B satisfying the following three conditions:
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(1) 0 ≤ g(z) ≤ 1 for every z ∈ B.
(2) g(z) = 1 whenever |z| ≤ t.
(3) There is a t′ = t′(g) ∈ (t, 1) such that g(z) = 0 whenever t′ ≤ |z| < 1.

(b) Let 0 < t < 1 and δ > 0. Then Λ(t; δ) denotes the collection of functions g ∈ Λ(t)
satisfying the additional condition diff(g) ≤ δ.

Lemma 3.3. For all t ∈ (0, 1) and δ > 0, we have Λ(t; δ) 6= ∅.

Proof. It follows from the triangle inequality that |β(z, 0)−β(w, 0)| ≤ β(z, w) for all z, w ∈
B. Using this fact, the promised function g ∈ Λ(t; δ) can be easily constructed in the form
g(z) = ψ(β(z, 0)), where ψ is an appropriate Lipschitz function on [0,∞) with a small
Lipschitz constant. We omit the elementary details. �

Lemma 3.4. Given any pair of f ∈ L∞(B, dv) and h ∈ L2
a(B, dv), we have

(3.4) lim
t↑1

sup{‖Tfgh− Tfh‖ : g ∈ Λ(t)} = 0.

Proof. By conditions (1) and (2) in Definition 3.2(a), for every 0 < t < 1 we have

‖Tfgh− Tfh‖2 ≤ ‖fgh− fh‖2 ≤ ‖f‖2∞
∫
t≤|z|<1

|h(z)|2dv(z)

for all g ∈ Λ(t), f ∈ L∞(B, dv) and h ∈ L2
a(B, dv). This obviously implies (3.4). �

For a bounded operator A on a Hilbert space H, denote

‖A‖Q = inf{‖A+K‖ : K is any compact operator on H},

which is the essential norm of A.

Lemma 3.5. [11,Lemma 2.1] Let {Bi} be a sequence of compact operators on a Hilbert
space H satisfying the following conditions:
(a) Both sequences {Bi} and {B∗i } converge to 0 in the strong operator topology.
(b) The limit limi→∞ ‖Bi‖ exists.
Then there exist natural numbers i(1) < i(2) < · · · < i(m) < · · · such that the sum

∞∑
m=1

Bi(m) = lim
N→∞

N∑
m=1

Bi(m)

exists in the strong operator topology and we have∥∥∥∥∥
∞∑
m=1

Bi(m)

∥∥∥∥∥
Q

= lim
i→∞

‖Bi‖.

Definition 3.6. For 0 < t < 1 and δ > 0, the symbol Φ(t; δ) denotes the collection of
continuous functions f on B satisfying the following three conditions:
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(1) 0 ≤ f(z) ≤ 1 for every z ∈ B.
(2) f(z) = 0 whenever |z| ≤ t.
(3) diff(f) ≤ δ.

The main goal of this section is to show that every operator in EssCom({Tg : g ∈
VObdd}) satisfies the following “ε-δ” condition:

Proposition 3.7. Let X be an operator in the essential commutant of {Tg : g ∈ VObdd}.
Then for every ε > 0, there is a δ = δ(X, ε) > 0 such that

lim
t↑1

sup{‖[X,Tf ]‖ : f ∈ Φ(t; δ)} ≤ ε.

Proof. Let X ∈ EssCom({Tg : g ∈ VObdd}) and ε > 0 be given. Suppose that no such
δ > 0 existed as promised above. We will show that this leads to a contradiction.

First of all, the non-existence of such δ > 0 means that for every k ∈ N, there is an
fk ∈ Φ(1 − (1/k); 1/k) such that ‖[X,Tfk ]‖ > ε. Thus for every k ∈ N, there are unit
vectors hk, ψk ∈ L2

a(B, dv) such that

|〈[X,Tfk ]hk, ψk〉| > ε.

Applying Lemma 3.4, we see that for every k ∈ N, there is a 1− (1/k) < tk < 1 such that

|〈[X,Tfkg]hk, ψk〉| > ε for every g ∈ Λ(tk).

Lemma 3.3 tells us that Λ(tk; 1/k) is not empty. This allows us to pick a gk ∈ Λ(tk; 1/k).
Define qk = fkgk, k ∈ N. Then the above gives us

|〈[X,Tqk ]hk, ψk〉| > ε for every k ∈ N.

Since hk and ψk are unit vectors, this means

(3.5) ‖[X,Tqk ]‖ > ε for every k ∈ N.

Next, we examine the properties of qk. First of all, the properties that 0 ≤ fk ≤ 1 and
0 ≤ gk ≤ 1 imply that 0 ≤ qk ≤ 1 on B. Furthermore, these properties also imply that

|qk(z)− qk(w)| ≤ |fk(z)− fk(w)|+ |gk(z)− gk(w)|

for all z, w ∈ B. It follows that for every k ∈ N, we have

diff(qk) ≤ diff(fk) + diff(gk) ≤ (1/k) + (1/k) = 2/k.

Recall from Definition 3.6 that the membership gk ∈ Λ(tk; 1/k) means that there is a
tk < t′k < 1 such that gk(z) = 0 whenever t′k ≤ |z| < 1. Therefore, for each k ∈ N, we
have qk(z) = 0 if either t′k ≤ |z| < 1 or |z| ≤ 1 − (1/k). In conclusion, the sequence of
continuous functions q1, q2, . . . , qk, . . . satisfy all four conditions in Lemma 3.1.
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Thus by Lemma 3.1, there is an infinite subset I of N such that for every J ⊂ I, we
have qJ ∈ VObdd, where

qJ =
∑
k∈J

qk.

Since ‖qk‖∞ ≤ 1, we have ‖[X,Tqk ]‖ ≤ 2‖X‖ for every k. Since I is an infinite set, it
contains a sequence k1 < k2 < · · · < ki < · · · of natural numbers such that the limit

d = lim
i→∞

‖[X,Tqki ]‖

exists. Obviously, (3.5) implies d ≥ ε. Define Bi = [X,Tqki ] for every i ∈ N. By the
preceding paragraph, we have qki(z) = 0 whenever t′ki ≤ |z| < 1. It is well known that this
implies that the Toeplitz operator Tqki is compact. Thus each Bi is a compact operator,
i ∈ N. Moreover, by the properties that qki = 0 on the set {z ∈ B : |z| ≤ 1 − (1/ki)}
and 0 ≤ qki ≤ 1 on B, we have the strong convergence Tqki → 0 as i → ∞. Therefore we
also have the strong convergence Bi → 0 and B∗i → 0 as i→∞. That is, we have shown
that the sequence {Bi} satisfies the conditions in Lemma 3.5. By that lemma, there is a
sequence of natural numbers i(1) < i(2) < · · · < i(m) < · · · such that the limit

B = lim
N→∞

N∑
m=1

Bi(m)

exists in the strong operator topology with ‖B‖Q = d ≥ ε > 0. That is, B is not compact.

Define E = {ki(1), ki(2), . . . , ki(m), . . . }. Then obviously E ⊂ {k1, k2, . . . , ki, . . . } ⊂ I.
Therefore we have qE ∈ VObdd. Since qE is a bounded function on B and since every
qki(m)

is non-negative, by the dominated convergence theorem, we have the convergence

TqE = lim
N→∞

Tqki(1)
+···+qki(N)

= lim
N→∞

N∑
m=1

Tqki(m)

in the strong operator topology. Thus

B = lim
N→∞

N∑
m=1

Bi(m) = lim
N→∞

[
X,

N∑
m=1

Tqki(m)

]
= [X,TqE ].

Since qE ∈ VObdd and B is not compact, this contradicts the assumption that X is in the
essential commutant of {Tg : g ∈ VObdd}. This completes the proof. �

Lemma 3.8. Let h1, . . . , hk . . . be a sequence of continuous functions on B, and denote
Uk = {z ∈ B : hk(z) 6= 0}, k ∈ N. Suppose that this sequence has the property that there
is an a > 1 such that inf{β(z, w) : z ∈ Uj , w ∈ Uk} ≥ a for every pair of j 6= k in N. Then
the function h =

∑∞
k=1 hk has the property that diff(h) ≤ supk∈N diff(hk).

Proof. Observe that, under the assumption, for any pair of z, w ∈B satisfying the condition
β(z, w) ≤ 1, the cardinality of the set {k ∈ N : hk(z)− hk(w) 6= 0} is at most 1. �
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4. Radial-spherical decomposition

To prove Theorem 1.2, we need to partition the unit ball B by functions with small
“diff”. At the same time, the supports of these functions must not have excess overlap.
Fortunately, we can satisfy these two competing requirements by decomposing the ball in
both the radial and the spherical directions. But unfortunately, as always, any explicit
radial-spherical decomposition of the ball involves complicated notation and messy details.

Let S denote {ξ ∈ Cn : |ξ| = 1}, the unit sphere in Cn. Recall that the formula

d(u, ξ) = |1− 〈u, ξ〉|1/2, u, ξ ∈ S,

defines a metric on S [13,page 66]. For any pair of u ∈ S and r > 0, we write

B(u, r) = {ξ ∈ S : d(u, ξ) < r}.

Let σ be the standard spherical measure on S with the usual normalization σ(S) = 1.
There is a constant A0 ∈ (2−n,∞) such that

(4.1) min{2−n, π−1}r2n ≤ σ(B(u, r)) ≤ A0r
2n

for all u ∈ S and 0 < r ≤
√

2 [13,Proposition 5.1.4].

With regard to the radial direction of B, we set

ρk = 1− 2−2k

for every k ∈ Z+. For each pair of natural numbers m ≥ 6 and j ∈ N, let us denote

(4.2) αm,j = m(1− ρ2
jm)1/2 = m · 2−jm · (2− 2−2jm)1/2.

Note that 8αm,j ≤
√

2 for all m ≥ 6 and j ∈ N. For each pair of m ≥ 6 and j ∈ N, let
Em,j be a subset of S that is maximal with respect to the property

(4.3) B(u, αm,j/2) ∩B(v, αm,j/2) = ∅ for all u 6= v in Em,j .

It follows from the maximality of Em,j that

(4.4)
⋃

u∈Em,j

B(u, αm,j) = S.

For each triple of m ≥ 6, j ∈ N and u ∈ Em,j , we define

Am,j,u = {rξ : ξ ∈ B(u, αm,j), r ∈ [ρ(j+2)m, ρ(j+3)m]} and

Bm,j,u = {rξ : ξ ∈ B(u, 3αm,j), r ∈ [ρjm, ρ(j+5)m]}.(4.5)
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Then it follows from (4.4) that

(4.6)
∞⋃
j=1

⋃
u∈Em,j

Am,j,u = {z ∈ B : ρ3m ≤ |z| < 1}.

By (4.1) and (4.3), there is a natural number N0 such that for every triple of m ≥ 6,
j ∈ N and u ∈ Em,j , we have

(4.7) card{v ∈ Em,j : d(u, v) < 7αm,j} ≤ N0.

By a standard maximality argument, each Em,j admits a partition

Em,j = E
(1)
m,j ∪ · · · ∪ E

(N0)
m,j

such that for every ν ∈ {1, . . . , N0}, we have d(u, v) ≥ 7αm,j for all u 6= v in E
(ν)
m,j . This

number N0 and the above partition will be fixed for the rest of the paper.

Lemma 4.1. [20,Lemma 2.4] Suppose that 0 < ρ < 1 and let z, w ∈ B. If ρ < |z| < 1 and
ρ < |w| < 1, then β((ρ/|z|)z, (ρ/|w|)w) ≤ β(z, w).

Lemma 4.2. (a) Let m ≥ 6, j ∈ N and ν ∈ {1, . . . , N0}. If u, v ∈ E(ν)
m,j and u 6= v, then

we have β(z, w) > 2 for all z ∈ Bm,j,u and w ∈ Bm,j,v.
(b) Let m ≥ 6. If u ∈ Em,j , v ∈ Em,k and k ≥ j + 6, then we have β(z, w) > 3 for all
z ∈ Bm,j,u and w ∈ Bm,k,v.
(c) Let m ≥ 6, j ∈ N and u ∈ Em,j . Then β(z, w) ≥ 2 logm for all z ∈ B\Bm,j,u and
w ∈ Am,j,u.

Proof. (a) Consider any z ∈ Bm,j,u and w ∈ Bm,j,v, where u, v ∈ E(ν)
m,j and u 6= v. Then

z = |z|ξ and w = |w|η, where ξ ∈ B(u, 3αm,j) and η ∈ B(v, 3αm,j). Since d(u, v) ≥ 7αm,j ,
we have d(ξ, η) ≥ αm,j . Set z′ = ρjmξ and w′ = ρjmη. By [13,Theorem 2.2.2], we have

1− |ϕz′(w′)|2 =
(1− ρ2

jm)2

|1− ρ2
jm〈ξ, η〉|2

≤ 4
(1− ρ2

jm)2

|1− 〈ξ, η〉|2
= 4

(
1− ρ2

jm

d2(ξ, η)

)2

≤ 4

(
1− ρ2

jm

α2
m,j

)2

.

Recalling (4.2), we obtain 1− |ϕz′(w′)|2 ≤ 4m−4. Thus

β(z′, w′) ≥ 1

2
log

1

1− |ϕz′(w′)|2
≥ 1

2
log

m4

4
≥ log(32 · 2) > 2 log 3 > 2.

Since |z| ≥ ρjm and |w| ≥ ρjm, by Lemma 4.1 we have β(z, w) ≥ β(z′, w′) > 2.

(b) Let z ∈ Bm,j,u and w ∈ Bm,k,v, where u ∈ Em,j , v ∈ Em,k and k ≥ j + 6. Then it
follows from (4.5) and (3.1) that

β(z, w) ≥ 1

2
log

1− |z|
1− |w|

≥ 1

2
log

1− ρ(j+5)m

1− ρkm
=

1

2
log

2−2(j+5)m

2−2km
= (k − j − 5)m log 2.
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Since k − j − 5 ≥ 1, m ≥ 6 and 2 log 2 > 1, we have β(z, w) > 3 as promised.

(c) Given z ∈ B\Bm,j,u and w ∈ Am,j,u, we have z = |z|ξ and w = |w|η with ξ ∈ S and
η ∈ B(u, αm,j). We consider three cases, according to the value of |z|. First, suppose that
ρjm ≤ |z| ≤ ρ(j+5)m. By (4.5), we have ξ /∈ B(u, 3αm,j), and consequently d(ξ, η) ≥ 2αm,j .
Define z′ = ρjmξ and w′ = ρjmη. Then

1− |ϕz′(w′)|2 =
(1− ρ2

jm)2

|1− ρ2
jm〈ξ, η〉|2

≤ 4
(1− ρ2

jm)2

|1− 〈ξ, η〉|2
= 4

(
1− ρ2

jm

d2(ξ, η)

)2

≤ 4

(
1− ρ2

jm

4α2
m,j

)2

.

By (4.2), this means 1− |ϕz′(w′)|2 ≤ (4m4)−1. Thus

β(z′, w′) ≥ 1

2
log

1

1− |ϕz′(w′)|2
≥ 1

2
log(4m4) ≥ 2 logm.

Applying Lemma 4.1, we obtain β(z, w) ≥ β(z′, w′) ≥ 2 logm.

Now consider the case where |z| < ρjm. Since |w| ≥ ρ(j+2)m, from (3.1) we obtain

β(z, w) ≥ 1

2
log

1− |z|
1− |w|

≥ 1

2
log

1− ρjm
1− ρ(j+2)m

=
1

2
log

2−2jm

2−2(j+2)m
= m log 4 > m.

Similarly, in the case |z| > ρ(j+5)m, since |w| ≤ ρ(j+3)m, we have

β(z, w) ≥ 1

2
log

1− |w|
1− |z|

≥ 1

2
log

1− ρ(j+3)m

1− ρ(j+5)m
=

1

2
log

2−2(j+3)m

2−2(j+5)m
= m log 4 > m.

To complete the proof, note that for m ≥ 6, we always have m ≥ 2 logm. �

Lemma 4.3. For each triple of m ≥ 6, j ∈ N and u ∈ Em,j , define

(4.8) zm,j,u = ρjmu.

Then we have Bm,j,u ⊂ D(zm,j,u, Rm), where Rm = 2 + 5m+ log
(
1 + 210m × 18m2

)
.

Proof. Let w ∈ Bm,j,u. By (4.5), we have w = rη, where η ∈ B(u, 3αm,j) and ρjm ≤ r ≤
ρ(j+5)m. Define w′ = ru. Then β(zm,j,u, w) ≤ β(zm,j,u, w

′) + β(w′, w). We estimate the
two terms β(zm,j,u, w

′) and β(w′, w) separately.

First of all,

β(zm,j,u, w
′) =

1

2
log

(1 + r)(1− ρjm)

(1− r)(1 + ρjm)
≤ 1

2
log 2+

1

2
log

1− ρjm
1− ρ(j+5)m

≤ 1+
1

2
log

2−2jm

2−2(j+5)m
.

Thus β(zm,j,u, w
′) ≤ 1 + 5m log 2 < 1 + 5m. On the other hand, by [13,Theorem 2.2.2],

1− |ϕw′(w)|2 =
(1− r2)2

|1− r2〈u, η〉|2
≥ (1− r2)2

(1− r2 + |1− 〈u, η〉|)2
≥

(1− ρ2
(j+5)m)2

(1− ρ2
(j+5)m + |1− 〈u, η〉|)2

.
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Hence

β(w′, w) ≤ 1

2
log

4

1− |ϕw′(w)|2

< 1 + log

(
1 +

|1− 〈u, η〉|
1− ρ(j+5)m

)
= 1 + log

(
1 + 210m d

2(u, η)

1− ρjm

)
.

Since η ∈ B(u, 3αm,j), we have d2(u, η) ≤ 9α2
m,j . Therefore

β(w′, w) < 1 + log

(
1 + 210m

9α2
m,j

1− ρjm

)
≤ 1 + log

(
1 + 210m

18α2
m,j

1− ρ2
jm

)
.

Recalling (4.2), we obtain β(w′, w) < 1 + log
(
1 + 210m · 18m2

)
. Combining this with the

fact that β(zm,j,u, w
′) < 1 + 5m, we have β(zm,j,u, w) < Rm. This completes the proof. �

For any z ∈ B and any non-empty subset E of B, we denote

β(z, E) = inf{β(z, ζ) : ζ ∈ E},

which is the Bergman distance between z and E. For all z, w ∈ B, we have

(4.9) |β(z, E)− β(w,E)| ≤ β(z, w).

This is because, for any ζ ∈ E, it follows from the triangle inequality that β(z, E) −
β(w, ζ) ≤ β(z, w). Taking any sequence {ζk} in E such that β(w, ζk)→ β(w,E) as k →∞,
we find that β(z, E) − β(w,E) ≤ β(z, w). Similarly, we also have β(w,E) − β(z, E) ≤
β(z, w). Therefore (4.9) holds.

For every m ≥ 6, define the function

(4.10) f̃m(x) =

 1− (logm)−1x for 0 ≤ x ≤ logm

0 for logm < x <∞
.

Obviously, this function satisfies the Lipschitz condition |f̃m(x)− f̃m(y)| ≤ (logm)−1|x−y|
for all x, y ∈ [0,∞). Given any triple of m ≥ 6, j ∈ N and u ∈ Em,j , we now define

(4.11) fm,j,u(z) = f̃m(β(z,Am,j,u)) for z ∈ B.

Lemma 4.4. For every triple of m ≥ 6, j ∈ N and u ∈ Em,j , the function fm,j,u defined
above has the following five properties:
(a) The inequality 0 ≤ fm,j,u ≤ 1 holds on B.
(b) fm,j,u = 1 on the set Am,j,u.
(c) fm,j,u is continuous on B.
(d) The set {z ∈ B : fm,j,u(z) 6= 0} is contained in Bm,j,u.
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(e) We have diff(fm,j,u) ≤ (logm)−1.

Proof. (a) and (b) follow directly from the definitions of f̃m and fm,j,u. (c) follows from

the continuity of f̃m and (4.9). For (d), note that if z ∈ B\Bm,j,u, then Lemma 4.2(c)

gives us β(z,Am,j,u) ≥ 2 logm. By (4.10), we have f̃m(β(z,Am,j,u)) = 0.

To verify (e), let z, w ∈ B be given, and suppose that β(z, w) ≤ 1. By the Lipschitz
condition for f̃m and (4.9), we have

|fm,j,u(z)− fm,j,u(w)| = |f̃m(β(z,Am,j,u))− f̃m(β(w,Am,j,u))|

≤ 1

logm
|β(z,Am,j,u)− β(w,Am,j,u)| ≤ β(z, w)

logm
≤ 1

logm
.

This completes the proof. �

The triple subscript in fm,j,u, while necessary for our construction, is obviously quite
cumbersome as a notation. Let us try to alleviate this problem by introducing:

Definition 4.5. Let m ≥ 6 be given. (a) For each pair of κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈
{1, . . . , N0}, where N0 is the integer that appears in (4.7), let I

(ν,κ)
m denote the collection

of all triples m, 6j + κ, u satisfying the conditions j ∈ Z+ and u ∈ E(ν)
m,6j+κ.

(b) For κ ∈ {1, 2, 3, 4, 5, 6}, ν ∈ {1, . . . , N0} and J ∈ N, let I
(ν,κ)
m,J denote the collection of

all triples m, 6j + κ, u satisfying the conditions 0 ≤ j ≤ J and u ∈ E(ν)
m,6j+κ.

(c) Denote Im = ∪6
κ=1 ∪

N0
ν=1 I

(ν,κ)
m .

(d) For any subset I of Im, denote fI =
∑
ω∈I fω and FI =

∑
ω∈I f

2
ω.

Lemma 4.6. Let m ≥ 6, κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈ {1, . . . , N0}. Then for every subset

I of I
(ν,κ)
m , we have fI ∈ Φ(ρm; (logm)−1).

Proof. Let I ⊂ I
(ν,κ)
m . Recall from Lemma 4.4 that for each ω ∈ I, we have {z ∈ B :

fω(z) 6= 0} ⊂ Bω and diff(fω) ≤ (logm)−1. By Lemma 4.2 (a) and (b), for every pair of
ω 6= ω′ in I, the Bergman distance between Bω and Bω′ is at least 2. Therefore Lemma
3.8 tells us that diff(fI) ≤ supω∈I diff(fω) ≤ (logm)−1. Lemma 4.4 also provides that for
each ω, fω is continuous on B and satisfies the condition 0 ≤ fω ≤ 1. Hence the fact that
the Bergman distance between Bω and Bω′ is at least 2 for ω 6= ω′ in I also ensures that
fI is continuous on B and that 0 ≤ fI ≤ 1. If |z| < ρκm, then z /∈ Bω for every ω ∈ I.
Thus by Lemma 4.4(d), if |z| < ρκm, then fI(z) = 0. By continuity, we also have fI(z) = 0
when |z| ≤ ρκm. Since κ ≥ 1, recalling Definition 3.6, this completes the verification of
the membership fI ∈ Φ(ρm; (logm)−1). �

Lemma 4.7. Let m ≥ 6, κ ∈ {1, 2, 3, 4, 5, 6} and ν ∈ {1, . . . , N0}, and let I be any subset

of I
(ν,κ)
m . Then for every bounded operator X on L2

a(B, dv), we have

(4.12)
∑
ω∈I

TfωXTfω ∈ LOC(X).
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Proof. Given any I ⊂ I
(ν,κ)
m , consider the set Γ = {zω : ω ∈ I}, where zω was defined by

(4.8). By (4.5), we have zω ∈ Bω. Thus it follows from Lemma 4.2 that Γ is a separated
set in B. Lemma 4.3 tells us that for each ω ∈ I, we have Bω ⊂ D(zω, Rm). By Lemma
4.4(d), we have fω = 0 on B\D(zω, Rm). Recalling Definition 2.7, (4.12) follows. �

As usual, for each f ∈ L∞(B, dv), we define the Hankel operator

Hfh = (1− P )(fh), h ∈ L2
a(B, dv).

Lemma 4.8. There is a constant 0 < C4.8 < ∞ such that ‖Hf‖ ≤ C4.8diff(f) for every
bounded continuous function f on B.

Proof. Recall that for f ∈ L2(B, dv), the formula ‖f‖BMO = supz∈B ‖(f − 〈fkz, kz〉)kz‖
defines its BMO norm. It is well known that there is a constant C1 such that ‖Hf‖ ≤
C1‖f‖BMO for every f ∈ L∞(B, dv) [1,Theorem 22]. Thus it suffices to produce a constant
C2 such that ‖f‖BMO ≤ C2diff(f) for every bounded continuous function f on B.

To find such a C2, note that for j ∈ Z+, 1− 2−j ≤ t ≤ 1− 2−j−1 and ξ ∈ S, we have

(4.13) β((1− 2−j)ξ, tξ) =
1

2
log

(1 + t)2−j

(1− t)(2− 2−j)
≤ 1

2
log 4 < 1.

Define Qj = {w ∈ B : 1 − 2−j ≤ |w| < 1 − 2−j−1}, j ∈ Z+. By (4.13) and an obvious
telescoping sum, we see that if f is a bounded continuous function on B, then

|f(w)− f(0)| ≤ (j + 1)diff(f) for every w ∈ Qj ,

j ∈ Z+. Set C2 = {
∑∞
j=0(j + 1)2v(Qj)}1/2, which is obviously finite. We have

‖f − f(0)‖2 =

∫
|f(w)− f(0)|2dv(w) ≤

∞∑
j=0

(j + 1)2v(Qj)(diff(f))2 = C2
2 (diff(f))2.

For each z ∈ B, denote fz = f ◦ ϕz. Then it follows from the above that

‖(f − 〈fkz, kz〉)kz‖ ≤ ‖(f − f(z))kz‖ = ‖fz − fz(0)‖ ≤ C2diff(fz) = C2diff(f),

where the second = is due to the Möbius invariance of β. This completes the proof. �

5. Proof of Theorem 1.2

To prove Theorem 1.2, we need to fully exploit the properties of Toeplitz operators:

Lemma 5.1. Let {f1, . . . , f`} be a finite set of functions in L∞(B, dv) with the property
that fjfk = 0 for all j 6= k in {1, . . . , `}. Let A be any bounded operator on the Bergman
space L2

a(B, dv). Then there exist complex numbers {γ1, . . . , γ`} with |γk| = 1 for every
k ∈ {1, . . . , `} and a subset E of {1, . . . , `} such that if we define

F =
∑
k∈E

fk, G =
∑

k∈{1,...,`}\E

fk, F ′ =
∑
k∈E

γkfk and G′ =
∑

k∈{1,...,`}\E

γkfk,
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then ∥∥∥∥∥∥
∑
j 6=k

TfjATfk

∥∥∥∥∥∥ ≤ 4(‖TF ′ATG‖+ ‖TG′ATF ‖).

Proof. It suffices to consider the case ` ≥ 2. Denote Uk = {z ∈ B : fk(z) 6= 0} for each
k ∈ {1, . . . , `}. Then Uj ∩ Uk = ∅ for all j 6= k in {1, . . . , `} by our assumption. Write

Z =
∑
j 6=k

TfjATfk and Zθ =
∑
j 6=k

ei(j−k)θTfjATfk , θ ∈ R.

Then obviously we have

Z =
1

2π

∫ 2π

0

(Z − Zθ)dθ.

This shows that there is a θ∗ ∈ [0, 2π] such that ‖Z‖ ≤ ‖Z − Zθ∗‖.

Write γk = eikθ
∗

for every k ∈ {1, . . . , `}. Define the operators

B =
∑̀
j=1

∑̀
k=1

MfjAPMfk and B′ =
∑̀
j=1

∑̀
k=1

γj γ̄kMfjAPMfk

on L2(B, dv). Also, define

ψ =
∑̀
k=1

γkχUk .

Using the properties that Uj ∩ Uk = ∅ for j 6= k and that fk = 0 on B\Uk, we have

B −B′ = B −MψBMψ̄ = Mψ(Mψ̄B −BMψ̄).

For each k ∈ {1, . . . , `}, let us write γk = ck + idk, where ck, dk ∈ [−1, 1]. Define

p =
∑̀
k=1

ckχUk and q =
∑̀
k=1

dkχUk .

Then the above gives us B −B′ = MψX − iMψY , where

X = MpB −BMp and Y = MqB −BMq.

Since γkγ̄k = 1 for every k ∈ {1, . . . , `}, Z − Zθ∗ is the compression of B − B′ to the
subspace L2

a(B, dv). Hence ‖Z − Zθ∗‖ = ‖P (B − B′)P‖. Consequently, we have either
‖Z‖ ≤ ‖Z − Zθ∗‖ ≤ 2‖PMψXP‖ or ‖Z‖ ≤ ‖Z − Zθ∗‖ ≤ 2‖PMψY P‖.

In the case ‖Z‖ ≤ 2‖PMψXP‖, consider c1, . . . , c`, which are real numbers in [−1, 1].
There is a permutation τ(1), . . . , τ(`) of the integers 1, . . . , ` such that

cτ(j) ≥ cτ(j−1) for every j ∈ {2, . . . , `}.
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For each j ∈ {1, . . . , `}, define the subset Ej = {τ(k) : j ≤ k ≤ `} of {1, . . . , `}. Then

p =
∑̀
k=1

cτ(k)χUτ(k)
= cτ(1)

∑
µ∈E1

χUµ +
∑̀
j=2

(cτ(j) − cτ(j−1))
∑
µ∈Ej

χUµ .

Since χUjfk = 0 when j 6= k and χUkfk = fk, we have

∑̀
k=1

ckfk = p
∑̀
k=1

fk = cτ(1)g1 +
∑̀
j=2

(cτ(j) − cτ(j−1))gj , where gj =
∑
µ∈Ej

fµ

for every 1 ≤ j ≤ `. Note that E1 = {1, . . . , `}. Thus

X = MpB −BMp =
∑̀
j=1

cjMfjAPMg1 −Mg1AP
∑̀
j=1

cjMfj

=
∑̀
j=2

(cτ(j) − cτ(j−1))(MgjAPMg1
−Mg1

APMgj )

=
∑̀
j=2

(cτ(j) − cτ(j−1))(MgjAPMhj −MhjAPMgj ),

where
hj =

∑
µ∈{1,...,`}\Ej

fµ,

2 ≤ j ≤ `. Since (cτ(2) − cτ(1)) + · · ·+ (cτ(`) − cτ(`−1)) = cτ(`) − cτ(1) ≤ 2, we have

‖PMψXP‖ ≤
∑̀
j=2

(cτ(j) − cτ(j−1))‖PMψ(MgjAPMhj −MhjAPMgj )P‖

≤ 2 max
2≤j≤`

(‖TψgjAThj‖+ ‖TψhjATgj‖).

That is, there is a j0 ∈ {2, . . . , `} such that

‖PMψXP‖ ≤ 2(‖Tψgj0AThj0‖+ ‖Tψhj0ATgj0‖).

If we simply let E = Ej0 , then gj0 = F , ψgj0 = F ′, hj0 = G and ψhj0 = G′. This proves
the lemma in the case ‖Z‖ ≤ 2‖PMψXP‖.

In the case ‖Z‖ ≤ 2‖PMψY P‖, we just apply the argument in the preceding para-
graph with d1, . . . , d` in place of c1, . . . , c`. This completes the proof of the lemma. �

Proof of Theorem 1.2. Since we know that EssCom({Tg : g ∈ VObdd}) ⊃ T , we only need
to prove that EssCom({Tg : g ∈ VObdd}) ⊂ T .
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Let X ∈ EssCom({Tg : g ∈ VObdd}). To show that X ∈ T , pick any ε > 0. It suffices
to show that X admits a decomposition X = Y + Z with Y ∈ T and

(5.1) ‖Z‖ ≤ 6N0{C4.8‖X‖+ 2 + 16(2 + C4.8‖X‖)}ε,

where C4.8 and N0 are the constants that appear in Lemma 4.8 and (4.7) respectively.

First of all, by Proposition 3.7, there exist a δ > 0 and a 0 < t∗ < 1 such that

(5.2) ‖[X,Tf ]‖ ≤ 2ε for every f ∈ Φ(t∗; δ).

With δ and t∗ so fixed, we pick an integer m ≥ 6 satisfying the conditions

(5.3) (logm)−1 ≤ min{ε, δ} and ρm ≥ t∗.

With m so fixed, let us consider the function FIm given in Definition 4.5(d). Since

(5.4) FIm =

6∑
κ=1

N0∑
ν=1

F
I

(ν,κ)
m

and since by Lemma 4.6 each F
I

(ν,κ)
m

satisfies the inequality 0 ≤ F
I

(ν,κ)
m

≤ 1 on B, we

have 0 ≤ FIm ≤ 6N0 on B. By Lemma 4.4(b) and (4.6), we have FIm(z) ≥ 1 whenever
ρ3m ≤ |z| < 1. Define ∆m = {z ∈ B : |z| < ρ3m}. Thus we have shown that the function

(5.5) h = χ∆m
+ FIm

satisfies the inequality 1 ≤ h ≤ 6N0 + 1 on B. This guarantees that the positive Toeplitz
operator Th is both bounded and invertible on L2

a(B, dv). Moreover, ‖T−1
h ‖ ≤ 1. Since

Th ∈ T and T is a C∗-algebra, we have T−1
h ∈ T .

By (5.5) and (5.4), we have the decomposition

(5.6) X = XThT
−1
h = X0 +

6∑
κ=1

N0∑
ν=1

Xν,κ,

where
X0 = XTχ∆m

T−1
h and Xν,κ = XTF

I
(ν,κ)
m

T−1
h

for 1 ≤ κ ≤ 6 and 1 ≤ ν ≤ N0. It is well known that T ⊃ K. Since ∆m = {z ∈ B : |z| <
ρ3m}, the Toeplitz operator Tχ∆m

is compact. Hence X0 ∈ K ⊂ T .

Next, consider each Xν,κ. It is a consequence of Lemma 4.4(d) and Lemma 4.2 that
F
I

(ν,κ)
m

= f2

I
(ν,κ)
m

. (Again, we refer the reader to Definition 4.5(d).) Therefore

TF
I
(ν,κ)
m

= Tf2

I
(ν,κ)
m

= T 2
f
I
(ν,κ)
m

+H∗f
I
(ν,κ)
m

Hf
I
(ν,κ)
m

.
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Accordingly, we have

(5.7) Xν,κ = X(1)
ν,κ +Z(1)

ν,κ, where X(1)
ν,κ = XT 2

f
I
(ν,κ)
m

T−1
h and Z(1)

ν,κ = XH∗f
I
(ν,κ)
m

Hf
I
(ν,κ)
m

T−1
h .

We have ‖H∗f
I
(ν,κ)
m

Hf
I
(ν,κ)
m

‖ ≤ ‖Hf
I
(ν,κ)
m

‖ ≤ C4.8diff(f
I

(ν,κ)
m

) by Lemma 4.8. By Lemma 4.6

and (5.3), we have diff(f
I

(ν,κ)
m

) ≤ (logm)−1 ≤ ε. Hence

(5.8) ‖Z(1)
ν,κ‖ ≤ C4.8‖X‖ε.

We further decompose X
(1)
ν,κ: we have

X(1)
ν,κ = X(2)

ν,κ + Z(2)
ν,κ,

where
X(2)
ν,κ = Tf

I
(ν,κ)
m

XTf
I
(ν,κ)
m

T−1
h and Z(2)

ν,κ = [X,Tf
I
(ν,κ)
m

]Tf
I
(ν,κ)
m

T−1
h .

Recall from Lemma 4.6 that f
I

(ν,κ)
m

∈ Φ(ρm; (logm)−1). Therefore it follows from (5.3)

and (5.2) that

(5.9) ‖Z(2)
ν,κ‖ ≤ ‖[X,Tf

I
(ν,κ)
m

]‖ ≤ 2ε.

Then note that
X(2)
ν,κ = Yν,κ + Z(3)

ν,κ,

where

(5.10) Yν,κ =
∑

ω∈I(ν,κ)
m

TfωXTfωT
−1
h and Z(3)

ν,κ =
∑

ω,ω′∈I(ν,κ)
m

ω 6=ω′

TfωXTfω′T
−1
h .

Since T−1
h ∈ T , it follows from Lemma 4.7 and Proposition 2.8 that Yν,κ ∈ T .

To estimate ‖Z(3)
ν,κ‖, first observe that we have the strong convergence∑

ω,ω′∈I(ν,κ)

m,J

ω 6=ω′

MfωXPMfω′ →
∑

ω,ω′∈I(ν,κ)
m

ω 6=ω′

MfωXPMfω′ as J →∞

on L2(B, dv), where I
(ν,κ)
m,J was given by Definition 4.5(b). Compressing this strong con-

vergence to the subspace L2
a(B, dv), we see that there is a J ∈ N such that

(5.11) ‖Z(3)
ν,κ‖ ≤ 2‖Z(4)

ν,κ‖, where Z(4)
ν,κ =

∑
ω,ω′∈I(ν,κ)

m,J

ω 6=ω′

TfωXTfω′ .
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(Note that the fact that ‖T−1
h ‖ ≤ 1 is also involved here.) The significance of Z

(4)
ν,κ is that

I
(ν,κ)
m,J is a finite set. Since fωfω′ = 0 for ω 6= ω′ in I

(ν,κ)
m,J , by Lemma 5.1, there are complex

numbers {γω : ω ∈ I(ν,κ)
m,J } of modulus 1 and a subset I of I

(ν,κ)
m,J such that if we set

F =
∑
ω∈I

fω, G =
∑

ω∈I(ν,κ)

m,J
\I

fω, F ′ =
∑
ω∈I

γωfω and G′ =
∑

ω∈I(ν,κ)

m,J
\I

γωfω,

then

(5.12) ‖Z(4)
ν,κ‖ ≤ 4(‖TF ′XTG‖+ ‖TG′XTF ‖).

Note that TG′XTF = TG′ [X,TF ]+TG′TFX. By Lemma 4.6, we have F ∈ Φ(ρm; (logm)−1).
Hence it follows from (5.3) and (5.2) that

(5.13) ‖TG′ [X,TF ]‖ ≤ ‖[X,TF ]‖ ≤ 2ε.

We know that Bω ∩ Bω′ = ∅ for all ω 6= ω′ in I
(ν,κ)
m . Therefore G′F = 0 on B, and

consequently TG′TF = −H∗
G′
HF . Thus by Lemmas 4.8 and 4.6 and by (5.3), we have

‖TG′TFX‖ ≤ ‖HF ‖‖X‖ ≤ C4.8diff(F )‖X‖ ≤ C4.8(logm)−1‖X‖ ≤ C4.8‖X‖ε.

Combining this with (5.13), we see that ‖TG′XTF ‖ ≤ (2+C4.8‖X‖)ε. The same argument
also shows that ‖TF ′XTG‖ ≤ (2 + C4.8‖X‖)ε. Substituting these in (5.12) and recalling
(5.11), we have

(5.14) ‖Z(3)
ν,κ‖ ≤ 16(2 + C4.8‖X‖)ε.

Recapping the above, for each pair of 1 ≤ κ ≤ 6 and 1 ≤ ν ≤ N0 we obtain the decompo-
sition

Xν,κ = Yν,κ + Z(1)
ν,κ + Z(2)

ν,κ + Z(3)
ν,κ,

where Yν,κ ∈ T and Z
(1)
ν,κ, Z

(2)
ν,κ and Z

(3)
ν,κ satisfy estimates (5.8), (5.9) and (5.14) respectively.

Combining this with (5.6), we obtain the decomposition X = Y + Z, where

(5.15) Y = X0 +
6∑

κ=1

N0∑
ν=1

Yν,κ and Z =
6∑

κ=1

N0∑
ν=1

(Z(1)
ν,κ + Z(2)

ν,κ + Z(3)
ν,κ).

Now, (5.1) follows from (5.8), (5.9) and (5.14), and we have shown that Y ∈ T . This
completes the proof. �

Remark 5.2. Note that, other than its boundedness, the only property of X that we
used in the above proof is that it satisfies the “ε-δ” condition in Proposition 3.7. Thus the
above proof actually shows that for any bounded operator X on L2

a(B, dv), if it satisfies
the “ε-δ” condition in Proposition 3.7, then it belongs to T . In other words, the “ε-δ”
condition in Proposition 3.7 characterizes the membership X ∈ T .
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Remark 5.3. The proof given above has broader implications than just Theorem 1.2. As
an example of such implications, we present a compactness criterion for operators in T .

Proposition 5.4. Let X ∈ T . Then X is compact if and only if LOC(X) ⊂ K.

Proof. Let X ∈ T and suppose that LOC(X) ⊂ K. As we showed above, for every ε > 0,
X admits a decomposition X = Y +Z, where Y and Z are given by (5.15), with X0 known
to be compact. Recalling (5.10), the assumption LOC(X) ⊂ K implies that every Yν,κ is
compact. Thus Y is compact. Since Z satisfies (5.1), this shows that X is compact.

Conversely, suppose that X is compact. Let Γ be any separated set in B and let
{fu : u ∈ Γ} be any family of functions satisfying the conditions in Definition 2.7. Using
Lemma 2.5, from the compactness of X we deduce that the operator∑

u∈Γ

MfuXPMfu

is compact on L2(B, dv). Compressing the above to the subspace L2
a(B, dv), we see that

every operator in LOC(X) is compact. �

References
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