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Abstract. Let H2
n be the Drury-Arveson space on the unit ball B in Cn, and suppose

that n ≥ 2. Let kz, z ∈ B, be the normalized reproducing kernel for H2
n. In this paper we

consider the following rather basic question in the theory of the Drury-Arveson space: For
f ∈ H2

n, does the condition sup|z|<1 ‖fkz‖ < ∞ imply that f is a multiplier of H2
n? We

show that the answer is negative. We further show that the analogue of the familiar norm
inequality ‖Hϕ‖ ≤ C‖ϕ‖BMO for Hankel operators fails in the Drury-Arveson space.

1. Introduction

Let B be the open unit ball in Cn. Throughout the paper, the complex dimension n
is always assumed to be greater than or equal to 2. Recall that the Drury-Arveson space
H2
n is the Hilbert space of analytic functions on B that has the function

1

1− 〈ζ, z〉

as its reproducing kernel [3,9]. Equivalently, H2
n can be described as the Hilbert space of

analytic functions on B where the inner product is given by

〈h, g〉 =
∑
α∈Zn

+

α!

|α|!
aαbα

for

h(ζ) =
∑
α∈Zn

+

aαζ
α and g(ζ) =

∑
α∈Zn

+

bαζ
α.

Here and throughout the paper, we use the standard multi-index notation [17,page 3].

A newcomer in the family of reproducing-kernel Hilbert spaces, the Drury-Arveson
space has been the subject of intense study [1-8,10-15,18] in recent years. Perhaps this
intense interest in H2

n is mainly due to its close connection with a number of important
topics, such as the von Neumann inequality for commuting row contractions, the corona
theorem, and the Arveson conjecture. But this interest in H2

n is also attributable to the
fascinating (some might say mysterious) properties of the space itself. For example, the
finiteness of the H∞-norm ‖f‖∞ = supz∈B |f(z)| of an analytic function f on B does not
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guarantee f ∈ H2
n, and the tuple of multiplication operators (Mζ1 , . . . ,Mζn) fails to be

jointly subnormal on H2
n [3].

One source of fascination with the Drury-Arveson space is its collection of multipliers.
Recall that a function f ∈ H2

n is said to be a multiplier of the Drury-Arveson space if
fh ∈ H2

n for every h ∈ H2
n [3]. We will write M for the collection of the multipliers of

H2
n. Also recall from [3] that if f ∈ M, then the multiplication operator Mf is bounded

on H2
n. The operator norm ‖Mf‖ on H2

n is also called the multiplier norm of f . It is well
known that the H∞-norm ‖f‖∞ does not dominate the multiplier norm of f [3]. What is
more, for f ∈M, ‖f‖∞ fails to dominate even the essential norm of Mf on H2

n [12].

An enduring challenge in the theory of the Drury-Arveson space, since its very incep-
tion, has been the quest for a good characterization of the membership in M. Let k ∈ N
be such that 2k ≥ n. Then given any f ∈ H2

n, one can define the measure dµf on B by
the formula

(1.1) dµf (z) = |(Rkf)(z)|2(1− |z|2)2k−ndv(z),

where dv is the normalized volume measure on B and R denotes the radial derivative
z1∂1 + · · ·+ zn∂n. Ortega and Fàbrega showed in [16] that f is a multiplier of the Drury-
Arveson space if and only if dµf is an H2

n-Carleson measure. That is, f ∈ M if and only
if there is a C such that ∫

|h(z)|2dµf (z) ≤ C‖h‖2

for every h ∈ H2
n. In [2], Arcozzi, Rochberg and Sawyer gave a characterization for all the

H2
n-Carleson measures on B. See Theorem 34 in that paper.

For a given Borel measure on B, the conditions in [2,Theorem 34] are not the easiest
verify. More to the point, [2,Theorem 34] deals with all Borel measures on B, not just the
class of measures dµf of the form (1.1). Thus it is natural to ask, is there a simpler, or a
more direct, characterization of the membership f ∈M?

Since the Drury-Arveson space is a reproducing-kernel Hilbert space, it is natural to
turn to the reproducing kernel for possible answers. Recall that the normalized reproducing
kernel for H2

n is given by the formula

kz(ζ) =
(1− |z|2)1/2

1− 〈ζ, z〉
,

z, ζ ∈ B. One of the frequent tools in the study of reproducing-kernel Hilbert spaces is the
Berezin transform. But for any f ∈ H2

n, the Berezin transform

〈fkz, kz〉

is none other than f(z) itself. Given what we know about H2
n, the boundedness of Berezin

transform on B is not expected to guarantee the membership f ∈ M. Here we use the
phrase “not expected”, because this is not an issue that has been settled in the literature.
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Note that Arveson’s example in [3] only shows that for an analytic function f on B, the
finiteness of ‖f‖∞ does not guarantee f ∈ H2

n. But if one starts with an f ∈ H2
n, and then

one assumes ‖f‖∞ < ∞, does it follow that f ∈ M? In the literature one cannot find
answer to this very simple question, although the answer is not expected to be affirmative.

Even if one accepts that for f ∈ H2
n, the boundedness of the Berezin transform

〈fkz, kz〉 is not enough to guarantee the membership f ∈ M, what about something
stronger than the Berezin transform? For example, anyone who gives any thought about
multipliers is likely to come up with the following natural and basic

Question 1.1. For f ∈ H2
n, does the condition

sup
|z|<1

‖fkz‖ <∞

imply the membership f ∈M?

Prima facie, one would think that there is at least a fair chance that the answer
to Question 1.1 might be affirmative. And that was what we thought for quite a while.
What makes this question particularly tempting is that an affirmative answer would give
a very simple characterization of the membership f ∈ M. But that would be too simple
a characterization, as it turns out. After a long struggle, we have finally arrived at the
conclusion that, tempting though the question may be, its answer is actually negative.
The following is our main result:

Theorem 1.2. There exists an f ∈ H2
n satisfying the conditions f /∈M and

sup
|z|<1

‖fkz‖ <∞.

As the reader will see, the proof of this theorem involves a construction that is quite
technical. Indeed it involves numerous estimates and requires everything that we know
about the Drury-Arveson space. As we will explain in the next section, the same construc-
tion also shows that the function-theoretic operator theory on the Drury-Arveson space
is quite different from that on the more familiar reproducing-kernel Hilbert spaces, such
as the Hardy space and the Bergman space. We hope that the techniques illustrated here
will be useful for future investigations of the Drury-Arveson space.

2. An alternate statement

For notational convenience, let us introduce

Definition 2.1. (a) For each f ∈ M, we write ‖f‖M for its multiplier norm. In other
words, ‖f‖M denotes the norm of the multiplication operator Mf on H2

n.
(b) For each h ∈ H2

n, denote
‖h‖′ = sup

|z|<1

‖hkz‖.

Obviously, we have ‖f‖′ ≤ ‖f‖M for every f ∈M. But the reverse domination fails:
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Theorem 2.2. There does not exist a constant 0 < C <∞ such that

‖f‖M ≤ C‖f‖′

for every f ∈M.

We can interpret Theorem 2.2 in terms of Berezin transform. For f ∈M, we have

‖fkz‖2 = 〈M∗fMfkz, kz〉,

z ∈ B. Thus Theorem 2.2 tells us that the supremum of the Berezin transform of M∗fMf

on B does not dominate the operator norm of M∗fMf on H2
n.

The work of this paper will be done in the form of proving Theorem 2.2. But given
Theorem 2.2, we immediately have

Proof of Theorem 1.2. By Theorem 2.2, for every j ∈ N there is a ϕj ∈M such that

‖ϕj‖′ ≤ 2−j and ‖ϕj‖M ≥ j.

For each subset J of N, define

fJ =
∑
j∈J

ϕj .

Then obviously we have ‖fJ‖′ ≤ 1 for every J ⊂ N. Thus the proof of Theorem 1.2 will
be complete if we can find a J0 ⊂ N such that fJ0 /∈M.

Let L denote the linear span of {kz : z ∈ B}. Note that the condition ‖ϕj‖′ ≤ 2−j

implies that

(2.1) lim
j→∞

‖ϕjg‖ = 0

for every g ∈ L. On the other hand, for each j ∈ N, since Mϕj is a bounded operator on
H2
n and since L is dense in H2

n, there is a gj ∈ L with ‖gj‖ = 1 such that

(2.2) ‖ϕjgj‖ ≥ ‖ϕj‖M − 1 ≥ j − 1.

Let j1 = 1. Suppose that ν ≥ 1 and that we have selected natural numbers j1 < j2 <
· · · < jν . By (2.1) and (2.2), there is a natural number jν+1 > jν such that

(2.3) ‖ϕjν+1
gjk‖ ≤ 2−ν for every 1 ≤ k ≤ ν

and

(2.4) ‖ϕjν+1
gjν+1

‖ ≥ ν + 1 +
ν∑
k=1

‖ϕjk‖M.
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Thus, inductively we obtain a sequence j1 < j2 < · · · < jν < · · · , giving us a subset

J0 = {j1, j2, . . . jν , . . . }

of N. Let us verify that this J0 has the property fJ0 /∈M. Indeed for each ν ∈ N,

‖fJ0gjν+1
‖ ≥ ‖ϕjν+1

gjν+1
‖ −

ν∑
k=1

‖ϕjkgjν+1
‖ −

∞∑
i=1

‖ϕjν+i+1
gjν+1

‖.

Since ‖ϕjkgjν+1
‖ ≤ ‖ϕjk‖M, applying (2.4) and (2.3), we obtain

‖fJ0gjν+1
‖ ≥ ν + 1 +

ν∑
k=1

‖ϕjk‖M −
ν∑
k=1

‖ϕjk‖M −
∞∑
i=1

2−ν−i ≥ ν.

Since ‖gjν+1
‖ = 1 for every ν ∈ N, this inequality implies that fJ0 /∈ M. This completes

the proof of Theorem 1.2. �

As it turns out, the construction we use for the proof Theorem 2.2 also gives us the
following negative results as bonus:

Theorem 2.3. There does not exist any constant 0 < C <∞ such that the inequality

‖M∗fMf −MfM
∗
f ‖ ≤ C(‖f‖′)2

holds for every f ∈M, where Mf is the operator of multiplication by f on H2
n.

If f ∈M, then

‖(f − 〈fkz, kz〉)kz‖2 = ‖fkz‖2 − |f(z)|2 ≤ ‖fkz‖2

for every z ∈ B. Hence Theorem 2.3 immediately implies

Corollary 2.4. There does not exist any constant 0 < C <∞ such that the inequality

‖M∗fMf −MfM
∗
f ‖ ≤ C sup

|z|<1

‖(f − 〈fkz, kz〉)kz‖2

holds for every f ∈M, where Mf is the operator of multiplication by f on H2
n.

Obviously, ‖(f − 〈fkz, kz〉)kz‖ is the “mean oscillation” of f ∈ M with respect to
the normalized reproducing kernel of the Drury-Arveson space. And, for those who are
familiar with Hankel operators, the commutator M∗fMf −MfM

∗
f is the Drury-Arveson

space analogue of
H∗f̄Hf̄ .

In the study of Hankel operators, we are all too familiar with the norm inequality

(2.5) ‖Hϕ‖ ≤ C‖ϕ‖BMO,
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which holds in the setting of either the Hardy space of the unit sphere or the Bergman
space of the unit ball [20,21]. In contrast, Corollary 2.4 tells us that the Drury-Arveson
space analogue of (2.5) fails. This uncovers another aspect of the Drury-Arveson that is
quite different from the Hardy space and the Bergman space.

3. Outline of our approach

The rest of the paper is taken up by the proofs of Theorems 2.2 and 2.3. To help
the reader navigate through the details involved in the proofs, let us first give an outline,
which serves as a roadmap for the rest of the paper.

From now on, L will denote a natural number, one that is the main parameter in the
proofs. Given any L ∈ N, we will show that there exist fL ∈ M and hL ∈ H2

n satisfying
the conditions

‖fL‖′ ≤ Ca,(3.1)

‖fL‖ ≤ Cb,(3.2)

‖hL‖ ≤ CcL
1/2,(3.3)

|〈fLhL, fL〉| ≥ δL,(3.4)

where Ca, Cb, Cc, δ ∈ (0,∞) are constants. Since |〈fLhL, fL〉| ≤ ‖fLhL‖‖fL‖, (3.2) and
(3.4) together imply

‖fLhL‖ ≥ (δ/Cb)L.

Since ‖fLhL‖ ≤ ‖fL‖M‖hL‖, combining the above with (3.3), we find that

‖fL‖M ≥
δ

CbCc
L1/2.

Since L ∈ N is arbitrary, Theorem 2.2 follows from this inequality and (3.1).

We want to emphasize that the function fL plays two different roles in (3.4): both as
a multiplier of H2

n and as a “test function”.

To prove Theorem 2.3, we will show that fL, hL have the additional property

(3.5) lim
L→∞

〈MfLM
∗
fLhL, 1〉 = 0.

This and (3.4) together imply that there is an L0 ∈ N such that

|〈(M∗fLMfL −MfLM
∗
fL)hL, 1〉| ≥ (δ/2)L

for every L ≥ L0. Combining this inequality with (3.3) and the fact ‖1‖ = 1, we have

‖M∗fLMfL −MfLM
∗
fL‖ ≥

δ

2Cc
L1/2,
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L ≥ L0. Obviously, Theorem 2.3 follows from this inequality and (3.1).

Thus the proofs of Theorems 2.2 and 2.3 are now decomposed into five parts, i.e., the
proofs of (3.1)-(3.5).

The main ingredient in the construction of the functions fL and hL is the multiplier
mz we introduced in [11]. Recall from [11] that for each z ∈ B, we define

(3.6) mz(ζ) =
1− |z|2

1− 〈ζ, z〉
.

As we will see, both fL and hL are in the linear span of {mκ
z : z ∈ B}, where κ = 2n+ 2.

Moreover, each fL involves only one single radial value |z|, whereas hL involves L different
values of |z|. But much preparation is required before we can precisely define fL and hL.

4. Preliminaries

It is elementary that if c is a complex number with |c| ≤ 1 and if 0 ≤ ρ ≤ 1, then

(4.1) 2|1− ρc| ≥ |1− c|.

This inequality will frequently be used without explicit reference.

Denote S = {ξ ∈ Cn : |ξ| = 1}, the unit sphere in Cn. Recall that the formula

d(ξ, η) = |1− 〈ξ, η〉|1/2, ξ, η ∈ S,

defines a metric on S [17,page 66]. For the rest of the paper, we write

B(ξ, r) = {x ∈ S : |1− 〈x, ξ〉|1/2 < r}

for ξ ∈ S and r > 0. Let σ be the positive, regular Borel measure on S that is invariant
under the orthogonal group O(2n), i.e., the group of isometries on Cn ∼= R2n which fix 0.
As usual, the measure σ is normalized in such a way that σ(S) = 1. There is a constant
2−n < A0 <∞ such that

(4.2) 2−nr2n ≤ σ(B(ξ, r)) ≤ A0r
2n

for all ξ ∈ S and 0 < r ≤
√

2 [17,Proposition 5.1.4].

For each z ∈ B\{0}, we have the Möbius transform

(4.3) ϕz(w) =
1

1− 〈w, z〉

{
z − 〈w, z〉

|z|2
z − (1− |z|2)1/2

(
w − 〈w, z〉

|z|2
z

)}
of the unit ball B [17,page 25]. Also, we define ϕ0(w) = −w. It is well known that the
Bergman metric on B is given by the formula

(4.4) β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

,
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z, w ∈ B. For each z ∈ B and each a > 0, we define the corresponding β-ball

D(z, a) = {w ∈ B : β(z, w) < a}.

Definition 4.1. Let a be a positive number. A subset Γ of B is said to be a-separated if
D(z, a) ∩D(w, a) = ∅ for all distinct elements z, w in Γ.

More directly, the construction of the functions fL, hL promised in Section 3 involves
another kind of separation, a separation that is best described in terms of the radial-
spherical decomposition of vectors w ∈ B.

Definition 4.2. A subset E of B is said to be a quasi-lattice if it is contained in

{ζ ∈ Cn : 3/4 ≤ |ζ|2 < 1}

and has the property that for every k ∈ N, if

z, z′ ∈ {ζ ∈ E : 1− 2−2k ≤ |ζ|2 < 1− 2−2k−2}

and if z 6= z′, then there are ξ, ξ′ ∈ S satisfying the condition d(ξ, ξ′) ≥ 2−k such that
z = |z|ξ and z′ = |z′|ξ′.

We need the following relation between these two kinds of separations:

Lemma 4.3. There exists an a0 > 0 such that if E is any quasi-lattice in B, then it admits
a partition E = E0 ∪ E1 where both E0 and E1 are a0-separated.

Proof. By (4.4), it suffices to show that every quasi-lattice E admits a partition E = E0∪E1

with the property that, for each i ∈ {0, 1}, if z and w are distinct elements in Ei, then
|ϕz(w)| ≥ 1/12. This will follow from the elementary argument below.

First recall from [17,Theorem 2.2.2] that for any z, w ∈ B, we have

(4.5) 1− |ϕz(w)|2 =
(1− |z|2)(1− |w|2)

|1− 〈w, z〉|2
.

Given a quasi-lattice E, define E0 = ∪∞`=1F2` and E1 = ∪∞`=0F2`+1, where

Fk = {ζ ∈ E : 1− 2−2k ≤ |ζ|2 < 1− 2−2k−2},

k ∈ N. Let i ∈ {0, 1}. For any pair of z 6= w in Ei, there are the following two possibilities:

(1) Suppose that z ∈ F2`+i and w ∈ F2ν+i with ` 6= ν. Since |ϕz(w)| = |ϕw(z)|, we
may assume ` > ν. Thus 1− |z|2 ≤ (1/4)(1− |w|2), which implies 1− |z| ≤ (1/2)(1− |w|).
In this case we have

|ϕz(w)|2 = 1− (1− |z|2)(1− |w|2)

|1− 〈w, z〉|2
≥ 1− (1− |z|2)(1− |w|2)

(1− |w||z|)2
=

(|z| − |w|)2

(1− |w||z|)2

≥
(

(1− |w|)− (1− |z|)
1− |w|+ 1− |z|

)2

=

(
1− {(1− |z|)/(1− |w|)}
1 + {(1− |z|)/(1− |w|)}

)2

≥
(

1− (1/2)

1 + (1/2)

)2

=
1

9
.
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(2) Suppose that there is a k = 2` + i such that z, w ∈ Fk. In this case, by Definition
4.2, there are ξ, η ∈ S with d(ξ, η) ≥ 2−k such that z = |z|ξ and w = |w|η. Since
|ϕz(w)| = |ϕw(z)|, we may assume that |z| ≥ |w|. By (4.3), we have

|ϕz(w)| ≥ |z|
|1− 〈w, z〉|

∣∣∣∣1− 〈w, z〉|z|2

∣∣∣∣ ≥ (1/2)

1− |w|2 + 1− |z|2 + |1− 〈ξ, η〉|
· 1

2
|1− 〈ξ, η〉|

=
(1/4)

{(1− |w|2)/d2(ξ, η)}+ {(1− |z|2)/d2(ξ, η)}+ 1
.

Since in this case we have 1 − |w|2 ≤ d2(ξ, η) and 1 − |z|2 ≤ d2(ξ, η), it follows that
|ϕz(w)| ≥ 1/12. This completes the proof. �

5. Almost orthogonality in the Drury-Arveson space

Although the definition of fL, hL will come much later, let us first do the work that
ensures inequalities (3.2) and (3.3). That is, in this section we estimate the norms of
vectors of a certain kind in H2

n. One of the facts that we use repeatedly throughout the
paper is the rotation invariance of the inner product (hence the norm) in H2

n. In other
words, if U : Cn → Cn is a unitary transformation, then 〈h ◦ U, g ◦ U〉 = 〈h, g〉 for all
g, h ∈ H2

n.

In addition to the mz defined by (3.6), for convenience let us introduce a modified
version of the normalized reproducing kernel. Let 0 < t <∞. For each z ∈ B, define

ψz,t(ζ) =
(1− |z|2)(1/2)+t

(1− 〈ζ, z〉)1+t
.

Then obviously we have the relations

(5.1) ψz,t = mt
zkz and (1− |z|2)1/2ψz,t = m1+t

z .

Lemma 5.1. Given any positive number 0 < t < ∞, there is a constant C5.1(t) that
depends only on t such that the inequality

|〈ψz,t, ψw,t〉| ≤ C5.1(t)

(
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈w, z〉|

)1+t

holds for all z, w ∈ B.

Proof. For each z ∈ B, let us write

gz(ζ) = 〈ζ, z〉,

which is an element in H2
n. Given 0 < t <∞, let us also define

Ψz,t(ζ) =
1

(1− 〈ζ, z〉)1+t
,
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z ∈ B. Let T denote the unit circle {τ ∈ C : |τ | = 1} and let dm be the Lebesgue measure
on T with the normalization m(T) = 1. It is elementary that for the given t, there is a
constant C(t) such that

(5.2)

∫
dm(τ)

|1− ρτ |1+t
≤ C(t)

(1− ρ2)t

for all 0 ≤ ρ < 1. See, e.g., [17,Proposition 1.4.10]. Given z, w ∈ B, there is a v ∈ C with
|v| < 1 such that

(5.3) 〈w, z〉 = v2.

On the open unit disc {u ∈ C : |u| < 1}, we have the power series expansion

1

(1− u)1+t
=
∞∑
j=0

bju
j .

If j 6= k, then gjz and gkw are orthogonal to each other in H2
n. Therefore

〈Ψz,t,Ψw,t〉 =

∞∑
j=0

b2j 〈gjz, gjw〉.

Suppose that z = |z|ξ, where ξ ∈ S. Then we can write

w = 〈w, ξ〉ξ + w⊥,

where 〈w⊥, ξ〉 = 0. Thus by an obvious change of variables we have

〈gjz, gjw〉 = 〈w, z〉j .

Combining this with (5.3), we obtain 〈gjz, gjw〉 = v2j . Thus

〈Ψz,t,Ψw,t〉 =

∞∑
j=0

(bjv
j) · (bjvj) =

∫
dm(τ)

(1− vτ)1+t(1− vτ̄)1+t
,

and consequently

(5.4) |〈Ψz,t,Ψw,t〉| ≤
∫

dm(τ)

|1− vτ |1+t|1− vτ̄ |1+t
.

Using (5.3) again, for each τ ∈ T we have

|1− 〈w, z〉| = |1− v2| = |1− vτ · vτ̄ | ≤ |1− vτ |+ |1− vτ̄ |.
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Thus if we set

A = {τ ∈ T : |1− vτ | ≥ (1/2)|1− 〈w, z〉|} and

B = {τ ∈ T : |1− vτ̄ | ≥ (1/2)|1− 〈w, z〉|},

then A ∪B = T. Hence it follows from (5.4) that

|〈Ψz,t,Ψw,t〉| ≤
21+t

|1− 〈w, z〉|1+t

(∫
A

dm(τ)

|1− vτ̄ |1+t
+

∫
B

dm(τ)

|1− vτ |1+t

)
.

Applying (5.2) and the rotation-invariance of dm, we have∫
dm(τ)

|1− vτ̄ |1+t
≤ C(t)

(1− |v|2)t
and

∫
dm(τ)

|1− vτ |1+t
≤ C(t)

(1− |v|2)t
.

But |v|2 = |〈w, z〉| ≤ |w||z|. Therefore 1−|v|2 ≥ (1/2)(1−|z|2) and 1−|v|2 ≥ (1/2)(1−|w|2).
Combining the above, we find that

|〈Ψz,t,Ψw,t〉| ≤
21+t · 2t+1C(t)

|1− 〈w, z〉|1+t(1− |z|2)t/2(1− |w|2)t/2
.

Since
ψz,t = (1− |z|2)(1/2)+tΨz,t and ψw,t = (1− |w|2)(1/2)+tΨw,t,

the lemma follows. �

Corollary 5.2. Let 0 < t <∞. Then

|〈ψz,t, ψw,t〉| ≤ 21+tC5.1(t)e−(1+t)β(z,w)

for all z, w ∈ B, where C5.1(t) is the constant provided by Lemma 5.1.

Proof. It is elementary that if 0 ≤ x < 1, then 1 − x2 ≤ 4 exp(− log{(1 + x)/(1 − x)}).
Recalling (4.5) and (4.4), we have(

(1− |z|2)1/2(1− |w|2)1/2

|1− 〈w, z〉|

)1+t

≤ 21+te−(1+t)β(z,w)

for all z, w ∈ B and t > 0. Combining this with Lemma 5.1, the corollary follows. �

Lemma 5.3. [19,Lemma 4.1] Let X be a set and let E be a subset of X×X. Suppose that
m is a natural number such that

card{y ∈ X : (x, y) ∈ E} ≤ m and card{y ∈ X : (y, x) ∈ E} ≤ m

for every x ∈ X. Then there exist pairwise disjoint subsets E1, E2, ..., E2m of E such that

E = E1 ∪ E2 ∪ · · · ∪ E2m

11



and such that for each 1 ≤ j ≤ 2m, the conditions (x, y), (x′, y′) ∈ Ej and (x, y) 6= (x′, y′)
imply both x 6= x′ and y 6= y′.

Proposition 5.4. Given any t > 2n− 1 and a > 0, there exists a constant C5.4(t, a) such
that the inequality ∥∥∥∥∥∑

z∈Γ

czψz,t

∥∥∥∥∥ ≤ C5.4(t, a)

(∑
z∈Γ

|cz|2
)1/2

holds for every finite, a-separated set Γ in B, where cz ∈ C for every z ∈ Γ.

Proof. Let λ be the standard Möbius-invariant measure on B. That is,

dλ(z) =
dv(z)

(1− |z|2)n+1
,

where dv is the volume measure with the normalization v(B) = 1. Using the Möbius
invariance of both dλ and β, it is easy to verify that there is a constant C such that
λ(D(ζ, r)) ≤ Ce2nr for all ζ ∈ B and r > 0. Let a > 0 be given. Then there is a
C1 = C1(a) such that for each a-separated subset Γ of B, the inequality

(5.5) card(Γ ∩D(ζ, r)) ≤ C1e
2nr

holds for all ζ ∈ B and r > 0.

Suppose that t > 2n − 1 and that Γ is an a-separated finite set. Let cz, z ∈ Γ, be
complex numbers. Then

(5.6)

∥∥∥∥∥∑
z∈Γ

czψz,t

∥∥∥∥∥
2

=
∞∑
k=0

∑
(z,w)∈E(k)

cz c̄w〈ψz,t, ψw,t〉,

where
E(k) = {(z, w) ∈ Γ× Γ : k ≤ β(z, w) < k + 1},

k ∈ Z+. Write C2 = 21+tC5.1(t). By Corollary 5.2, if (z, w) ∈ E(k), then |〈ψz,t, ψw,t〉| ≤
C2e

−(1+t)k. Therefore for every k ∈ Z+ we have

(5.7)

∣∣∣∣∣∣
∑

(z,w)∈E(k)

cz c̄w〈ψz,t, ψw,t〉

∣∣∣∣∣∣ ≤ C2e
−(1+t)k

∑
(z,w)∈E(k)

|cz||cw|.

By Lemma 5.3 and (5.5), for each k ∈ Z+, E(k) admits a partition

E(k) = E
(k)
1 ∪ E(k)

2 ∪ · · · ∪ E(k)
2m(k)

with m(k) ≤ C1e
2n(k+1) such that for each 1 ≤ j ≤ 2m(k), the set E

(k)
j has the property

that for (z, w), (z′, w′) ∈ E
(k)
j , the condition (z, w) 6= (z′, w′) implies both z 6= z′ and

12



w 6= w′. In other words, the projections (z, w) 7→ z and (z, w) 7→ w are both injective on

E
(k)
j . By this injectivity and the Cauchy-Schwarz inequality, we have∑

(z,w)∈E(k)
j

|cz||cw| ≤
∑
z∈Γ

|cz|2.

Hence

∑
(z,w)∈E(k)

|cz||cw| =
2m(k)∑
j=1

∑
(z,w)∈E(k)

j

|cz||cw| ≤ 2m(k)
∑
z∈Γ

|cz|2 ≤ 2C1e
2n(k+1)

∑
z∈Γ

|cz|2.

Combining this with (5.7), we obtain∣∣∣∣∣∣
∑

(z,w)∈E(k)

cz c̄w〈ψz,t, ψw,t〉

∣∣∣∣∣∣ ≤ 2e2nC1C2e
−(1+t−2n)k

∑
z∈Γ

|cz|2.

Recalling (5.6), we find that∥∥∥∥∥∑
z∈Γ

czψz,t

∥∥∥∥∥
2

≤ 2e2nC1C2

∞∑
k=0

e−(1+t−2n)k
∑
z∈Γ

|cz|2.

Since 1 + t > 2n, the proposition follows from this inequality. �

Combining Proposition 5.4 and Lemma 4.3, we immediately obtain

Corollary 5.5. Given any t > 2n−1, there exists a constant C5.5(t) such that the inequality∥∥∥∥∥∑
z∈E

czψz,t

∥∥∥∥∥ ≤ C5.5(t)

(∑
z∈E
|cz|2

)1/2

holds for every finite quasi-lattice E in B, where cz ∈ C for every z ∈ E.

6. Constants N and M

To simplify our notation, we write

κ = 2n+ 2

for the rest of the paper. The proof of (3.4) will be based on estimates of inner products
of the form 〈mκ

wm
κ
z ,m

κ
z 〉, where 0 ≤ |w| ≤ |z| < 1. We begin with a special case:

Lemma 6.1. There exist constants 0 < α0 < 1 and N0 ∈ N such that the following
statement holds true: Let z, w ∈ B and suppose that

1− |z|2 ≤ 2−2N0(1− |w|2).

13



Furthermore, suppose that there is a ξ ∈ S such that z = |z|ξ and w = |w|ξ. Then

〈mκ
wm

κ
z ,m

κ
z 〉 = p0(z, w) + c0(z, w)

where p0(z, w) is a positive number satisfying the inequality

(6.1) p0(z, w) ≥ α0(1− |z|2)

and c0(z, w) is a complex number such that

(6.2) |c0(z, w)| ≤ (α0/8)(1− |z|2).

Proof. Again, let dm be the Lebesgue measure on the unit circle T with the normalization
m(T) = 1. First note that there is an 0 < α0 < 1 such that

(6.3)

∫ (
1− ρ2

|1− ρτ |

)2κ

dm(τ) ≥ α0(1− ρ2)

for every 0 ≤ ρ < 1. Indeed, to see this, consider θ ∈ [−1 + ρ, 1− ρ]. For such a θ we have

|1− ρeiθ| ≤ 1− ρ+ ρ|1− eiθ| ≤ 1− ρ+ | sin θ|+ sin2 θ ≤ 3(1− ρ).

Thus the inequality (
1− ρ2

|1− ρeiθ|

)2κ

≥ 1

32κ

holds for every θ ∈ [−1 + ρ, 1− ρ]. This clearly implies (6.3).

Write |z| = s and |w| = r. Then by assumption

z = sξ and w = rξ

for some ξ ∈ S. By the rotation invariance of the inner product in H2
n, we have

〈mκ
wm

κ
z ,m

κ
z 〉 = 〈mκ

rξm
κ
sξ,m

κ
sξ〉 =

∫ (
1− r2

1− rτ

)κ(
1− s2

|1− sτ |

)2κ

dm(τ).

Now we set

p0(z, w) =

(
1− r2

1− r

)κ ∫ (
1− s2

|1− sτ |

)2κ

dm(τ) and

c0(z, w) =

∫ {(
1− r2

1− rτ

)κ
−
(

1− r2

1− r

)κ}(
1− s2

|1− sτ |

)2κ

dm(τ).

Then p0(z, w) ∈ (0,∞) and (6.1) follows from (6.3). Also, (6.2) follows from the following
assertion: There exists an N0 ∈ N such that the inequality∫ ∣∣∣∣( 1− r2

1− rτ

)κ
−
(

1− r2

1− r

)κ∣∣∣∣ ( 1− s2

|1− sτ |

)2κ

dm(τ) ≤ α0

8
(1− s2)
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holds for all r, s ∈ [0, 1) satisfying the condition 1−s2 ≤ 2−2N0(1−r2). This assertion itself
can be proved in two easy steps. First of all, there is an N1 ∈ N such that the inequality

2κ+1

(
1− s2

|1− seiθ|

)2κ−2

≤ α0

16

holds whenever 22N1(1− s2) ≤ |θ| ≤ π. Second, there is an N2 ∈ N such that

κ · 2κ−1 ·
∣∣∣∣ 1− r2

1− reiθ
− 1− r2

1− r

∣∣∣∣ · 22κ−2 ≤ α0

16

whenever |θ| ≤ 2−2N2(1 − r2). Then the above assertion holds for N0 = N1 + N2. This
completes the proof. �

Next we will replace the assumption z = |z|ξ and w = |w|ξ in Lemma 6.1 by the
condition that d(w/|w|, z/|z|) is small relative to (1 − |w|2)1/2. For this we need to esti-
mate certain multiplier norm. As usual, for each i ∈ {1, . . . , n}, we write ζi for the i-th
component of the variable ζ ∈ B.

Lemma 6.2. [11,Lemma 2.3] If 0 < s < 1, then the norm of the operator of multiplication
by the function

ζ2
1− sζ1

on H2
n does not exceed

2√
1− s

.

Lemma 6.3. For all 0 ≤ ρ < 1 and x, y ∈ S we have

‖mρy −mρx‖M ≤ 8
d(x, y)√

1− ρ2
+ 4

(
d(x, y)√

1− ρ2

)2

.

Proof. Given any x, y ∈ S, there is an x⊥ ∈ S with 〈x, x⊥〉 = 0 such that y = ax + bx⊥,
where a = 〈y, x〉 and

|b| =
√

1− |〈y, x〉|2 ≤ 21/2d(x, y).

Let ρ ∈ [0, 1). Since ‖ · ‖M is rotation invariant, the multiplier norm of mρy −mρx equals
the multiplier norm of the function

F (ζ) =
1− ρ2

1− ρāζ1 − ρb̄ζ2
− 1− ρ2

1− ρζ1
.

Simple algebra then gives us F = F1 − F2, where

F1(ζ) =
1− ρ2

1− ρāζ1 − ρb̄ζ2
· ρb̄ζ2

1− ρζ1
and F2(ζ) =

1− ρ2

1− ρāζ1 − ρb̄ζ2
· ρ(1− ā)ζ1

1− ρζ1
.
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By Lemma 6.2, the multiplier norm of ρb̄ζ2/(1 − ρζ1) does not exceed 2|b|/
√

1− ρ ≤
4d(x, y)/

√
1− ρ2. Therefore ‖F1‖M ≤ 8d(x, y)/

√
1− ρ2. On the other hand, the multi-

plier norm of (1− ā)ζ1/(1− ρζ1) is at most

|1− ā|
1− ρ

=
d2(x, y)

1− ρ
≤ 2

(
d(x, y)√

1− ρ2

)2

.

Consequently ‖F2‖M ≤ 4{d(x, y)/
√

1− ρ2}2. This completes the proof. �

Lemma 6.4. Let α0 be the same as in Lemma 6.1. There exists a constant N ∈ N such
that for all z, w ∈ B satisfying the conditions

(6.4) 1− |z|2 ≤ 2−2N (1− |w|2) and d

(
z

|z|
,
w

|w|

)
≤ 2−N (1− |w|2)1/2,

we have
〈mκ

wm
κ
z ,m

κ
z 〉 = p(z, w) + c(z, w),

where p(z, w) is a positive number satisfying the inequality

p(z, w) ≥ α0(1− |z|2)

and c(z, w) is a complex number such that

|c(z, w)| ≤ (α0/4)(1− |z|2).

Proof. First of all, we have

(6.5) ‖mκ
u‖2 ≤ (2κ−1)2(1− |u|2)

for every u ∈ B. Next, note that

(6.6) ‖mκ
w −mκ

v‖M ≤ κ2κ−1‖mw −mv‖M

for all w, v ∈ B. Let N0 also be the same as in Lemma 6.1. Combining Lemma 6.3 with
(6.5) and (6.6), we see that we can pick a natural number

N ≥ N0

such that if ρ ∈ [0, 1) and x, y ∈ S satisfy the condition d(x, y) ≤ 2−N (1− ρ2)1/2, then

(6.7) |〈(mκ
ρy −mκ

ρx)mκ
u,m

κ
u〉| ≤ (α0/8)(1− |u|2)

for every u ∈ B. Now suppose that z, w ∈ B satisfy the conditions in (6.4). Then there
are s, r ∈ [0, 1) and ξ, η ∈ S such that z = sξ and w = rη. Moreover, (6.4) translates to

1− s2 ≤ 2−2N (1− r2) and d(ξ, η) ≤ 2−N (1− r2)1/2.
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Define w′ = rξ and
ϕ(z, w) = 〈(mκ

w −mκ
w′)m

κ
z ,m

κ
z 〉.

Then it follows from (6.7) that

|ϕ(z, w)| ≤ (α0/8)(1− |z|2).

Note that z = |z|ξ, w′ = |w′|ξ, and that 1 − |z|2 ≤ 2−2N (1 − |w′|2). Since N ≥ N0, it
follows from Lemma 6.1 that

〈mκ
w′m

κ
z ,m

κ
z 〉 = p0(z, w′) + c0(z, w′),

where p0(z, w′) is a positive number satisfying the inequality p0(z, w′) ≥ α0(1− |z|2) and
c0(z, w′) is a complex number such that |c0(z, w′)| ≤ (α0/8)(1− |z|2). Thus once we set

p(z, w) = p0(z, w′) and c(z, w) = ϕ(z, w) + c0(z, w′),

the lemma follows. �

Lemma 6.5. Let z, w ∈ B be such that |w| ≤ |z| and z 6= 0. Then

‖mwmz‖M ≤ 96
1− |w|2

|1− (|w|/|z|)〈z, w〉|
.

Proof. Given z, w ∈ B satisfying the conditions |w| ≤ |z| and z 6= 0, we set ẑ = (|w|/|z|)z.
Since |w| = |ẑ|, by [11,Lemma 2.4] we have

‖mwmẑ‖M ≤ 48
1− |w|2

|1− 〈ẑ, w〉|
= 48

1− |w|2

|1− (|w|/|z|)〈z, w〉|
.

Since mwmz = mwmẑ ·m−1
ẑ mz, it now suffices to show that ‖m−1

ẑ mz‖M ≤ 2. To prove
this, write z = |z|ξ, where ξ ∈ S. Then ẑ = |w|ξ. By an obvious change of coordinates,
‖m−1

ẑ mz‖M equals the multiplier norm of the function

1− |w|ζ1
1− |w|2

· 1− |z|2

1− |z|ζ1
,

where ζ1 denotes the first coordinate of ζ ∈ B. By the well-known von Neumann inequality
for a single contraction, the multiplier norm of the above function does not exceed

sup
|τ |=1

|1− |w|τ |
1− |w|2

· 1− |z|2

|1− |z|τ |
.

Using the condition |w| ≤ |z|, it is an easy exercise to show that the above supremum does
not exceed (1 + |z|)/(1 + |w|), which is less than 2. This completes the proof. �
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Lemma 6.6. There is a constant C6.6 which depends only on the complex dimension n
such that the following holds true: Given any ρ > 0 , k ∈ N and η ∈ S, there exists a
subset E(ρ, k, η) of B(η, 2k+1ρ)\B(η, 2kρ) with

(6.8) card{E(ρ, k, η)} ≤ C6.622nk

such that ∪x∈E(ρ,k,η)B(x, ρ) ⊃ B(η, 2k+1ρ)\B(η, 2kρ).

Proof. Given such ρ, k and η, let E(ρ, k, η) be a subset of B(η, 2k+1ρ)\B(η, 2kρ) that is
maximal with respect to the property that if x, y ∈ E(ρ, k, η) and x 6= y, then B(x, ρ/2)∩
B(y, ρ/2) = ∅. Then it follows easily from (4.2) that there is a C6.6 which depends only
on the complex dimension n such that (6.8) holds. The maximality of E(ρ, k, η) ensures
that ∪x∈E(ρ,k,η)B(x, ρ) ⊃ B(η, 2k+1ρ)\B(η, 2kρ). �

Definition 6.7. If F is a finite subset of S and ρ > 0, we set

N (F, ρ) = sup
x∈S

card{F ∩B(x, ρ)}.

Lemma 6.8. There exists a natural number M ≥ 4 such that the inequality∑
ξ∈F\B(η,2M

√
1−r2)

|〈mκ
rηm

κ
sξ,m

κ
sξ〉| ≤ (α0/4)N

(
F,
√

1− r2
)

(1− s2)

holds whenever F is a finite subset of S, η ∈ S, and 0 ≤ r ≤ s < 1, where α0 is the same
as in Lemma 6.1.

Proof. Suppose that 0 ≤ r ≤ s < 1. By Lemma 6.5 and (4.1), we have

‖mrηmsξ‖M ≤ 192
1− r2

d2(η, ξ)

for all η 6= ξ in S. Consequently,

‖m2n
rηm

2n
sξ ‖M = ‖(mrηmsξ)

2n‖M ≤ ‖mrηmsξ‖2nM ≤ 1922n

(√
1− r2

d(η, ξ)

)4n

.

Obviously, ‖msξ‖ =
√

1− s2, ‖mz‖M ≤ 2 for every z ∈ B, and ‖mκ
sξ‖ ≤ 2κ−1

√
1− s2.

Since κ = 2n+ 2, we have
(6.9)

|〈mκ
rηm

κ
sξ,m

κ
sξ〉| ≤ ‖m2n

rηm
2n
sξ ‖M‖m2

rηm
2
sξ‖‖mκ

sξ‖ ≤ 1922n2κ+2

(√
1− r2

d(η, ξ)

)4n

(1− s2).

Let k ≥ 4 and consider the set

Rk = {x ∈ S : 2k
√

1− r2 ≤ d(x, η) < 2k+1
√

1− r2}.
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By Lemma 6.6, there is a subset Ek of Rk with card(Ek) ≤ C6.622nk such that

Rk ⊂
⋃
x∈Ek

B(x,
√

1− r2).

If x ∈ Ek and ξ ∈ B(x,
√

1− r2), then

d(η, ξ) ≥ d(η, x)− d(x, ξ) ≥ 2k
√

1− r2 −
√

1− r2 ≥ 2k−1
√

1− r2.

Applying (6.9), for every finite subset F of S we have∑
ξ∈F∩Rk

|〈mκ
rηm

κ
sξ,m

κ
sξ〉| ≤

∑
x∈Ek

∑
ξ∈F∩B(x,

√
1−r2)

|〈mκ
rηm

κ
sξ,m

κ
sξ〉|

≤ card(Ek)N
(
F,
√

1− r2
)

1922n2κ+2

(
1

2k−1

)4n

(1− s2)

≤ C6.61922n2κ+224nN
(
F,
√

1− r2
)(22nk

24nk

)
(1− s2).

Write C = C6.61922n2κ+224n. Then for every M ≥ 4 we have

∞∑
k=M

∑
ξ∈F∩Rk

|〈mκ
rηm

κ
sξ,m

κ
sξ〉| ≤ C

∞∑
k=M

1

22nk
N
(
F,
√

1− r2
)

(1− s2).

To complete the proof, it suffices to pick an M ≥ 4 such that C
∑∞
k=M 2−2nk ≤ α0/4. �

7. The functions fL and hL

From now on, N and M will always denote the constants obtained in Lemmas 6.4 and
6.8 respectively. With these constants in hand, we are almost ready to define the functions
fL and hL promised in Section 3. We say almost ready, because we need to establish one
more counting lemma based on N and M . We alert the reader that this counting lemma
is the place where the assumption n ≥ 2 enters our construction in an essential way. In
fact, as the reader can see, this is one lemma that fails in complex dimension 1.

Lemma 7.1. There exists a natural number q > M +N +3 such that for every k ∈ N and
every η ∈ S, there exist x1, . . . , x22q ∈ B(η, 2−k−N−1) which have the following properties:

(1) B(xi, 2
−k−q+M+1) ∩B(xj , 2

−k−q+M+1) = ∅ for every pair of 1 ≤ i < j ≤ 22q.
(2) B(xi, 2

−k−q+M+1) ⊂ B(η, 2−k−N−1) for every 1 ≤ i ≤ 22q.

Proof. Since n ≥ 2, we can pick a natural number q > M +N + 3 such that

(7.1) 22(n−1)q ≥ 22n(M+N)29nA0,

where A0 is the constant that appears in (4.2). Let us show that this q has the desired
properties. Given any k ∈ N and η ∈ S, let E be a subset of B(η, 2−k−N−2) that is
maximal with respect to the property that

B(x, 2−k−q+M+1) ∩B(y, 2−k−q+M+1) = ∅
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if x, y ∈ E and x 6= y. Since q −M − 1 > N + 2, if x ∈ E and ξ ∈ B(x, 2−k−q+M+1), then
we have d(ξ, η) ≤ d(ξ, x) + d(x, η) < 2−k−q+M+1 + 2−k−N−2 < 2−k−N−1. That is,

B(x, 2−k−q+M+1) ⊂ B(η, 2−k−N−1)

for every x ∈ E. Thus the proof will be complete once we show that card(E) ≥ 22q,
for we can take any 22q distinct elements in E as the promised x1, . . . , x22q . Indeed, the
maximality of E implies that⋃

x∈E
B(x, 2−k−q+M+2) ⊃ B(η, 2−k−N−2).

By (4.2), this implies

card(E)A0

(
2−k−q+M+2

)2n ≥ 2−n
(
2−k−N−2

)2n
.

Thus

card(E) ≥ 22nq

22n(M+N)29nA0
=

(
22(n−1)q

22n(M+N)29nA0

)
22q.

By (7.1), we have card(E) ≥ 22q. This completes the proof. �

To define fL and hL, we also need a good labelling system to match what is essentially
a tree structure in our construction. For each j ∈ N, let Wj be the collection of words of
length j with {1, 2, . . . , 22q} as the set of alphabet, where q is the natural number provided
by Lemma 7.1. That is,

Wj = {γ1 · · · γj : γi ∈ {1, 2, . . . , 22q}, 1 ≤ i ≤ j}.

Let W0 denote the set of the empty word ∅. We will write |γ| for the length of the word
γ. That is, for γ = γ1 · · · γj with γ1, . . . , γj ∈ {1, 2, . . . 22q}, we define |γ| = j. The length
of the empty word is defined to be 0. We “compose” words by concatenation. That is, for
γ = γ1 · · · γj ∈Wj and u = u1 · · ·uk ∈Wk, k ≥ 1, we define

γu = γ1 · · · γju1 · · ·uk ∈Wj+k.

For every word γ, the word ∅γ is defined to be γ itself.

Next we fix a k0 ∈ N. For each natural number j ≥ 1, we define

kj = k0 + jq,

where, again, q is the natural number provided by Lemma 7.1. Thus kj + q = kj+1. We
pick an arbitrary η∅ ∈ S. That is, we have defined ηγ ∈ S in the case where γ is the empty
word ∅. Suppose that j ≥ 0 and that we have defined ηγ ∈ S for every word γ ∈ Wj . By
Lemma 7.1, for each γ ∈Wj there are ηγ1, ηγ2, . . . , ηγ22q ∈ B(ηγ , 2

−kj−N−1) such that

(7.2) B(ηγi, 2
−kj+1+M+1) ∩B(ηγi′ , 2

−kj+1+M+1) = ∅
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for all 1 ≤ i < i′ ≤ 22q and such that

(7.3) B(ηγi, 2
−kj+1+M+1) ⊂ B(ηγ , 2

−kj−N−1)

for every 1 ≤ i ≤ 22q. This defines {ηu : u ∈ Wj+1} ⊂ S. Inductively, this defines ηγ ∈ S
for every word γ ∈ ∪∞j=0Wj . Note that (7.2) and (7.3) together imply that

(7.4) B(ηγ , 2
−kj+M+1) ∩B(ηγ′ , 2

−kj+M+1) = ∅ for all γ 6= γ′ in Wj ,

j ≥ 1. We now define

(7.5) wγ = (1− 2−2k|γ|)1/2ηγ

for every γ ∈ ∪∞j=0Wj .

With wγ given by (7.5), we are ready to define hL. For each L ∈ N, we define

hL =
L−1∑
j=0

∑
γ∈Wj

mκ
wγ .

Lemma 7.2. For every L ∈ N we have∣∣∣∣∣ ∑
u∈WL

〈hLmκ
wu ,m

κ
wu〉

∣∣∣∣∣ ≥ (α0/2)2−2k0L,

where α0 is the same as in Lemma 6.1.

Proof. Consider any word γ with |γ| < L. Then WL = {γWL−|γ|} ∪ {WL\γWL−|γ|},
where γWL−|γ| = {γv : v ∈ WL−|γ|}. By (7.3) and an induction on |v|, we see that

ηγv ∈ B(ηγ , 2
−k|γ|−N ). That is,

d(ηγv, ηγ) < 2−k|γ|−N = 2−N (1− |wγ |2)1/2.

Moreover,

1− |wγv|2 = 2−2k|γv| = 2−2k|γ|−2|v|q = 2−2|v|q(1− |wγ |2) ≤ 2−2N (1− |wγ |2)

for every v ∈WL−|γ|. Thus it follows from Lemma 6.4 that

(7.6)
∑

v∈WL−|γ|

〈mκ
wγm

κ
wγv ,m

κ
wγv 〉 =

∑
v∈WL−|γ|

p(wγv, wγ) +
∑

v∈WL−|γ|

c(wγv, wγ),

where for every v ∈WL−|γ|, p(wγv, wγ) is a positive number satisfying the inequality

(7.7) p(wγv, wγ) ≥ α0(1− |wγv|2) = α02−2k|γv| = α02−2k|γ|2−2(L−|γ|)q
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and

(7.8) |c(wγv, wγ)| ≤ (α0/4)(1− |wγv|2) = (α0/4)2−2k|γ|2−2(L−|γ|)q.

On the other hand, if u ∈ WL\γWL−|γ|, then u = γ′v′, where γ′ ∈ W|γ|\{γ} and v′ ∈
WL−|γ|. By (7.3), we have ηu ∈ B(ηγ′ , 2

−k|γ|−N−1). By (7.4), this means

ηu /∈ B(ηγ , 2
−k|γ|+M+1) for every u ∈WL\γWL−|γ|.

Hence it follows from Lemma 6.8 that

(7.9)
∑

u∈WL\γWL−|γ|

|〈mκ
wγm

κ
wu ,m

κ
wu〉| ≤ (α0/4)N (HL, 2

−k|γ|)2−2k0−2Lq,

where HL = {ηu : u ∈ WL}. We need to estimate N (HL, 2
−k|γ|). If x ∈ S is such that

B(x, 2−k|γ|)∩B(ηa, 2
−k|γ|−N ) 6= ∅ for some a ∈W|γ|, then by (7.4) we have B(x, 2−k|γ|)∩

B(ηb, 2
−k|γ|−N ) = ∅ for every b ∈W|γ|\{a}. That is, if B(x, 2−k|γ|)∩B(ηa, 2

−k|γ|−N ) 6= ∅,
then HL ∩B(x, 2−k|γ|) ⊂ {ηav : v ∈WL−|γ|}, which implies

card(HL ∩B(x, 2−k|γ|)) ≤ 22q(L−|γ|).

On the other hand, if x ∈ S is such that B(x, 2−k|γ|) ∩ B(ηa, 2
−|γ|−N ) = ∅ for every

a ∈W|γ|, then obviously card(HL ∩B(x, 2−k|γ|)) = 0. Thus we conclude that

(7.10) N (HL, 2
−k|γ|) ≤ 22q(L−|γ|).

Substituting this in (7.9), we obtain

(7.11)
∑

u∈WL\γWL−|γ|

|〈mκ
wγm

κ
wu ,m

κ
wu〉| ≤ (α0/4)2−2k0−2|γ|q.

For notational convenience, let us write GL = ∪L−1
j=0 Wj . Recalling (7.6), we have∑

u∈WL

〈hLmκ
wu ,m

κ
wu〉 =

∑
γ∈GL

∑
u∈WL

〈mκ
wγm

κ
wu ,m

κ
wu〉

=
∑
γ∈GL

∑
v∈WL−|γ|

〈mκ
wγm

κ
wγv ,m

κ
wγv 〉+

∑
γ∈GL

∑
u∈WL\γWL−|γ|

〈mκ
wγm

κ
wu ,m

κ
wu〉

=
∑
γ∈GL

∑
v∈WL−|γ|

p(wγv, wγ) + T1 + T2,

where

T1 =
∑
γ∈GL

∑
v∈WL−|γ|

c(wγv, wγ) and

T2 =
∑
γ∈GL

∑
u∈WL\γWL−|γ|

〈mκ
wγm

κ
wu ,m

κ
wu〉.
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Since p(wγv, wγ) is a positive number for every pair of γ ∈ GL and v ∈WL−|γ|, we have∣∣∣∣∣ ∑
u∈WL

〈hLmκ
wu ,m

κ
wu〉

∣∣∣∣∣ ≥ ∑
γ∈GL

∑
v∈WL−|γ|

p(wγv, wγ)− |T1| − |T2|.

Note that card(Wj) = 22jq for every j ≥ 0. Applying (7.7), we now have∣∣∣∣∣ ∑
u∈WL

〈hLmκ
wu ,m

κ
wu〉

∣∣∣∣∣ ≥ α0

∑
γ∈GL

2−2k|γ| − |T1| − |T2|

= α0

L−1∑
j=0

card(Wj)2
−2kj − |T1| − |T2|

= α02−2k0L− |T1| − |T2|.(7.12)

On the other hand, by (7.8) we have

(7.13) |T1| ≤ (α0/4)

L−1∑
j=0

card(Wj)card(WL−j)2
−2kj2−2(L−j)q = (α0/4)2−2k0L.

Similarly, by (7.11) we have

(7.14) |T2| ≤ (α0/4)
L−1∑
j=0

card(Wj)2
−2k0−2jq = (α0/4)2−2k0L.

Substituting (7.13) and (7.14) in (7.12), the lemma follows. �

To define fL, let ν : WL → Z be an injective map. For each τ in the unit circle T, we
define the function

ϕL,τ =
∑
u∈WL

τν(u)mκ
wu .

Since ν(u)− ν(u′) ∈ Z\{0} for every pair of u 6= u′ in WL, we have∫
〈ϕL,τhL, ϕL,τ 〉dm(τ) =

∑
u,u′∈WL

〈hLmκ
wu ,m

κ
wu′
〉
∫
τν(u)−ν(u′)dm(τ)

=
∑
u∈WL

〈hLmκ
wu ,m

κ
wu〉.

Thus it follows from Lemma 7.2 that∫
|〈ϕL,τhL, ϕL,τ 〉|dm(τ) ≥ (α0/2)2−2k0L.
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In particular, this means that there exists a τL ∈ T such that

|〈ϕL,τLhL, ϕL,τL〉| ≥ (α0/2)2−2k0L.

With this τL ∈ T, we define fL = ϕL,τL . The above inequality tells us that (3.4) holds for
the constant δ = (α0/2)2−2k0 .

Next we prove (3.3) and (3.2). By (7.4) and (7.5), for every L ∈ N the set

L−1⋃
j=0

{wγ : γ ∈Wj}

is a quasi-lattice in B. Recall that κ = 2n+ 2, therefore κ− 1 > 2n− 1. Also recall (5.1).
Hence it follows from Corollary 5.5 that

‖hL‖ =

∥∥∥∥∥∥
L−1∑
j=0

∑
γ∈Wj

mκ
wγ

∥∥∥∥∥∥ =

∥∥∥∥∥∥
L−1∑
j=0

∑
γ∈Wj

(1− |wγ |2)1/2ψwγ ,κ−1

∥∥∥∥∥∥
≤ C5.5(κ− 1)

L−1∑
j=0

∑
γ∈Wj

(1− |wγ |2)

1/2

= C5.5(κ− 1)(2−2k0L)1/2.

Hence (3.3) holds for the constant Cc = C5.5(κ− 1)2−k0 . Similarly, since the set {wu : u ∈
WL} is a quasi-lattice, Corollary 5.5 also gives us

‖fL‖ =

∥∥∥∥∥ ∑
u∈WL

τ
ν(u)
L mκ

wu

∥∥∥∥∥ =

∥∥∥∥∥ ∑
u∈WL

τ
ν(u)
L (1− |wu|2)1/2ψwu,κ−1

∥∥∥∥∥
≤ C5.5(κ− 1)

( ∑
u∈WL

(1− |wu|2)

)1/2

= C5.5(κ− 1)2−k0 .

This proves (3.2).

The proof of (3.5) is easy. Indeed, for every pair of z ∈ B and h ∈ H2
n we have

〈M∗mκz 1, h〉 = 〈1,mκ
zh〉 = mκ

z (0)h(0) = (1− |z|2)κ〈1, h〉.

Thus M∗mκz 1 = (1− |z|2)κ. Consequently, if we write aL = M∗fL1, then aL ∈ C and

(7.15) |aL| ≤
∑
u∈WL

(1− |wu|2)κ = 22Lq · 2−2kLκ ≤ 2−2kL(κ−1)

(recall that kL = k0 + Lq). On the other hand, since ‖M∗mκz ‖ ≤ 2κ for z ∈ B, we have

(7.16) ‖M∗fLhL‖ ≤ 2κ · card(WL) · ‖hL‖ ≤ 2κ · 22Lq · CcL
1/2,
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where for the second inequality we apply (3.3). Combining (7.15), (7.16) and the Cauchy-
Schwarz inequality, we obtain

|〈MfLM
∗
fLhL, 1〉| = |〈M

∗
fLhL,M

∗
fL1〉| ≤ 2κCcL

1/22−2kL(κ−2).

Since κ− 2 = 2n and kL = k0 + Lq, this proves (3.5).

Thus only (3.1) remains to be proved.

8. More almost orthogonality

The proof of (3.1) will be based on a number of estimates of vector norms in H2
n. We

need some general lemmas.

Lemma 8.1. [11,Corollary 2.2] For all k ∈ Z+ and z ∈ B, the operator Mmkz
is subnormal

on H2
n.

Our next lemma illustrates how to use mw, w ∈ B, as “partition” functions in H2
n.

Lemma 8.2. There exists a constant C8.2 such that the following estimate holds: Suppose
that 0 ≤ r < 1 and that X is a subset of S satisfying the condition

(8.1) B(ξ,
√

1− r2) ∩B(ξ′,
√

1− r2) = ∅

for all ξ 6= ξ′ in X. Then for every set of vectors {hξ : ξ ∈ X} in H2
n we have∥∥∥∥∥∥

∑
ξ∈X

mκ−2
rξ hξ

∥∥∥∥∥∥ ≤ C8.2

∑
ξ∈X

‖hξ‖2
1/2

.

Proof. We need the following elementary fact from operator theory: If T is a hyponormal
operator on a Hilbert space H, then

(8.2) ‖T ∗v‖ ≤ ‖Tv‖ for every v ∈ H.

Next, note that by (4.2), there exists a constant C such that for all r and X satisfying the
condition in the lemma and for all η ∈ S and k ∈ Z+, we have

(8.3) card
{
ξ ∈ X : d(ξ, η) < 2k

√
1− r2

}
≤ C22nk.

For each pair of ξ 6= ξ′ in X, we have

|〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉| = |〈M

∗
mκ−2

rξ′
mκ−2
rξ hξ, hξ′〉| ≤ ‖M∗mκ−2

rξ′
mκ−2
rξ hξ‖‖hξ′‖.

Applying Lemma 8.1 and inequality (8.2), we have

(8.4) |〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉| ≤ ‖m

κ−2
rξ′ m

κ−2
rξ hξ‖‖hξ′‖ ≤ ‖mκ−2

rξ′ m
κ−2
rξ ‖M‖hξ‖‖hξ′‖.
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Recall that κ− 2 = 2n. By Lemma 6.5, we have

‖mκ−2
rξ′ m

κ−2
rξ ‖M = ‖(mrξ′mrξ)

κ−2‖M ≤ ‖mrξ′mrξ‖κ−2
M

≤ 1922n

(
1− r2

|1− 〈ξ, ξ′〉|

)2n

= 1922n

(√
1− r2

d(ξ, ξ′)

)4n

.

Substituting this in (8.4), we obtain

(8.5) |〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉| ≤ 1922n

(√
1− r2

d(ξ, ξ′)

)4n

‖hξ‖‖hξ′‖.

For each k ∈ N, define

E(k) =
{

(ξ, ξ′) ∈ X ×X : 2k−1
√

1− r2 ≤ d(ξ, ξ′) < 2k
√

1− r2
}
.

Then by (8.1) we have∥∥∥∥∥∥
∑
ξ∈X

mκ−2
rξ hξ

∥∥∥∥∥∥
2

=
∑

ξ,ξ′∈X

〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉

=
∑
ξ∈X

‖mκ−2
rξ hξ‖2 +

∞∑
k=1

∑
(ξ,ξ′)∈E(k)

〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉.(8.6)

By (8.3) and Lemma 5.3, for each k ∈ N there is a partition

E(k) = E
(k)
1 ∪ · · · ∪ E(k)

2m(k)

with m(k) ≤ C22nk such that for each 1 ≤ j ≤ 2m(k), E
(k)
j has the property that for

(ξ, ξ′), (x, x′) ∈ E
(k)
j , the condition (ξ, ξ′) 6= (x, x′) implies both ξ 6= x and ξ′ 6= x′. In

other words, both projections (ξ, ξ′) 7→ ξ and (ξ, ξ′) 7→ ξ′ are injective on E
(k)
j . By (8.5)

and this injectivity, we have

∑
(ξ,ξ′)∈E(k)

j

|〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉| ≤ 1922n

∑
(ξ,ξ′)∈E(k)

j

(√
1− r2

d(ξ, ξ′)

)4n

‖hξ‖‖hξ′‖

≤ 1922n2−4n(k−1)
∑

(ξ,ξ′)∈E(k)
j

‖hξ‖‖hξ′‖ ≤ 1922n24n2−4nk
∑
ξ∈X

‖hξ‖2.

Since m(k) ≤ C22nk, for each k ∈ N we now have

∑
(ξ,ξ′)∈E(k)

|〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉| =

2m(k)∑
j=1

∑
(ξ,ξ′)∈E(k)

j

|〈mκ−2
rξ hξ,m

κ−2
rξ′ hξ′〉|

≤ 2C22nk1922n24n2−4nk
∑
ξ∈X

‖hξ‖2 = C12−2nk
∑
ξ∈X

‖hξ‖2,

26



where C1 = 2C1922n24n. Combining this with (8.6), we obtain∥∥∥∥∥∥
∑
ξ∈X

mκ−2
rξ hξ

∥∥∥∥∥∥
2

≤ 24n
∑
ξ∈X

‖hξ‖2 + C1

∞∑
k=1

2−2nk
∑
ξ∈X

‖hξ‖2.

Hence the lemma holds for the constant C8.2 = (24n + C1

∑∞
k=1 2−2nk)1/2. �

Lemma 8.3. There is a constant C8.3 such that for all z, w ∈ B satisfying the condition
|w| ≤ |z|, we have

‖mwkz‖ ≤ C8.3
1− |w|2

|1− 〈z, w〉|
.

Proof. Let z ∈ B and let ϕz be the corresponding Möbius transform (see (4.3)). Recall
that the formula

(Uzh)(ζ) = h(ϕz(ζ))kz(ζ)

defines a unitary operator on H2
n. Suppose that w ∈ B and that |w| ≤ |z|. It suffices to

consider the case where w 6= z. Since ϕz ◦ ϕz = id, we have ‖mwkz‖ = ‖Uz(mw ◦ ϕz)‖ =
‖mw ◦ϕz‖. Therefore it suffices to estimate ‖mw ◦ϕz‖. The rest of the proof is similar to
the proof of Lemma 2.4 in [11].

Set λ = ϕz(w). Then w = ϕz(λ). By [17,Theorem 2.2.2], we have

mw(ϕz(ζ)) =
1− |w|2

1− 〈ϕz(ζ), ϕz(λ)〉
= (1− |w|2)

(1− 〈ζ, z〉)(1− 〈z, λ〉)
(1− |z|2)(1− 〈ζ, λ〉)

.

On the other hand, the same theorem gives us

(8.7) 1− 〈z, λ〉 = 1− 〈ϕz(0), ϕz(w)〉 =
1− |z|2

1− 〈z, w〉
.

Therefore

mw(ϕz(ζ)) =
1− |w|2

1− 〈z, w〉
· 1− 〈ζ, z〉

1− 〈ζ, λ〉
.

Consequently, it suffices to consider the function ψ(ζ) = (1− 〈ζ, z〉)/(1− 〈ζ, λ〉).

Set s = |λ|. Let U : Cn → Cn be a unitary transformation such that

U∗λ = (s, 0, 0, . . . , 0) and

U∗z = (ā, b̄, 0, . . . , 0),

where ā = 〈z, λ/s〉 and |b|2 = |z|2 − |〈z, λ/s〉|2. Again by [17,Theorem 2.2.2], we have

(8.8) 1− s2 = 1− |ϕz(w)|2 =
(1− |z|2)(1− |w|2)

|1− 〈w, z〉|2
.
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Since 1− sa = 1− 〈λ, z〉 and |z| ≥ |w|, it follows from (8.7) and (8.8) that

(8.9) |1− a| ≤ 2|1− sa| = 2
1− |z|2

|1− 〈w, z〉|
≤ 2
√

1− s2.

Also,

|b|2 ≤ 1− |〈z, λ〉|2 ≤ 2|1− 〈z, λ〉| ≤ 2
√

1− s2.

Since ‖ψ‖ = ‖ψ ◦ U‖, it suffices to estimate the latter. We have

ψ(Uζ) =
1− 〈Uζ, z〉
1− 〈Uζ, λ〉

=
1− aζ1 − bζ2

1− sζ1
= ψ1(ζ) + ψ2(ζ)− ψ3(ζ),

where

ψ1(ζ) =
1− a

1− sζ1
, ψ2(ζ) = a

1− ζ1
1− sζ1

and ψ3(ζ) =
bζ2

1− sζ1
.

Obviously, ‖ψ1‖ = |1 − a|/
√

1− s2. Therefore, by (8.9), we have ‖ψ1‖ ≤ 2. Also, (4.1)
gives us ‖ψ2‖ ≤ 2. On the other hand, since ‖ζα‖2 = α!/|α|!, α ∈ Zn+, we have

‖ψ3‖2 = |b|2
∞∑
k=0

s2k‖ζk1 ζ2‖2 = |b|2
∞∑
k=0

s2k

k + 1
≤ 2
√

1− s2

(
1 + log

1

1− s2

)
.

Thus if we set

C = 2 sup
0≤t<1

√
1− t2

(
1 + log

1

1− t2

)
,

which is finite, then we have ‖ψ3‖ ≤ C1/2. Therefore the lemma holds for the constant
C8.3 = 4 + C1/2. �

With the above preparation, we are now ready to prove (3.1). Recall from Section 7
that fL = ϕL,τL for a suitably chosen τL ∈ T. Obviously, we need to estimate ‖fLkz‖ for
all L ∈ N and z ∈ B. By (7.4) and (7.5), we can apply Lemma 8.2 to obtain

(8.10) ‖fLkz‖ =

∥∥∥∥∥ ∑
u∈WL

mκ−2
wu · τ

ν(u)
L m2

wukz

∥∥∥∥∥ ≤ C8.2

( ∑
u∈WL

‖m2
wukz‖

2

)1/2

.

We divide the estimate of ‖fLkz‖ into three cases, according to the value of |z|.

(1) Suppose that
√

1− |z|2 ≥ 2−k0 . This is the trivial case, for in this case we obvious
have ‖fLkz‖ = (1− |z|2)−1/2‖mzfL‖ ≤ 2(1− |z|2)−1/2‖fL‖. Thus by (3.2) we have

(8.11) ‖fLkz‖ ≤ 2k0+1Cb

in the case
√

1− |z|2 ≥ 2−k0 .
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(2) Suppose that 2−kj ≤
√

1− |z|2 < 2−kj−1 for some 1 ≤ j ≤ L. In this case we have
|z| ≤ |wu| for every u ∈WL. There is a ξ ∈ S such that z = |z|ξ. With this ξ we set

X0 = B(ξ, 2−kj−1) and

Xi = B(ξ, 2−kj−1+iq)\B(ξ, 2−kj−1+(i−1)q)

for every i ∈ N. For each i ≥ 0, let WL,i = {u ∈WL : ηu ∈ Xi}. By (8.10), we have

(8.12) ‖fLkz‖ ≤ C8.2

( ∞∑
i=0

gi

)1/2

,

where
gi =

∑
u∈WL,i

‖m2
wukz‖

2,

i ≥ 0. Next we estimate each gi. Note that

‖m2
wukz‖ = (1− |z|2)−1/2‖m2

wumz‖.

For u ∈ WL,0, we use the estimate ‖m2
wumz‖ ≤ 4‖mwu‖ = 4

√
1− |wu|2 = 4 · 2−kL .

Consequently
‖m2

wukz‖ ≤ 4 · 2kj2−kL = 4 · 2−(L−j)q

for every u ∈WL,0. Hence g0 ≤ (4·2−(L−j)q)2card(WL,0). By (7.10) we have card(WL,0) ≤
22q(L−j+1). Therefore

(8.13) g0 ≤ 22q+4.

For u ∈WL,i where i ≥ 1, since |z| ≤ |wu|, we use the inequality

‖mwukz‖M = (1− |z|2)−1/2‖mwumz‖M ≤ 96

√
1− |z|2

|1− (|z|/|wu|)〈wu, z〉|
,

which follows from Lemma 6.5. Thus if u ∈WL,i, i ≥ 1, then

‖mwukz‖M ≤ 192

√
1− |z|2

d2(ξ, ηu)
≤ 192

22(i−1)q
· 2kj−1 .

Therefore for such a u we have

‖m2
wukz‖ ≤ ‖mwukz‖M‖mwu‖ ≤

192

22(i−1)q
· 2kj−1 · 2−kL ≤ 192

22(i−1)q
· 2−(L−j)q.

Consequently

gi ≤
(

192

22(i−1)q
· 2−(L−j)q

)2

card(WL,i).
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By (7.10), we have card(WL,i) ≤ 22q(L−j+1+i). Substituting this in the above, we obtain

gi ≤
(23q192)2

22iq

for every i ≥ 1. Combining this with (8.12) and (8.13), we find that

(8.14) ‖fLkz‖ ≤ C8.2

(
22q+4 + (23q192)2

∞∑
i=1

1

22iq

)1/2

in the case 2−kj ≤
√

1− |z|2 < 2−kj−1 for some 1 ≤ j ≤ L.

(3) Suppose that
√

1− |z|2 < 2−kL . In this case we have |z| > |wu| for every u ∈WL.
Again, there is a ξ ∈ S such that z = |z|ξ, and we set

Y0 = B(ξ, 2−kL) and

Yi = B(ξ, 2−kL+iq)\B(ξ, 2−kL+(i−1)q)

for every i ∈ N. Let W̃L,i = {u ∈WL : ηu ∈ Yi}, i ≥ 0. By (8.10), we have

(8.15) ‖fLkz‖ ≤ C8.2

( ∞∑
i=0

g̃i

)1/2

,

where
g̃i =

∑
u∈W̃L,i

‖m2
wukz‖

2 ≤ 4
∑

u∈W̃L,i

‖mwukz‖2,

i ≥ 0. By (7.4), we have card(W̃L,0) ≤ 1. Therefore

(8.16) g̃0 ≤ 4 · 4 = 16.

Suppose that i ≥ 1. If u ∈ W̃L,i, then by Lemma 8.3 we have

‖mwukz‖ ≤ C8.3
1− |wu|2

|1− 〈wu, z〉|
≤ 2C8.3

2−2kL

d2(ηu, ξ)
≤ 22q+1C8.3

22iq
.

By (7.10), we have card(W̃L,i) ≤ 22iq. Thus for each i ≥ 1 we have

g̃i ≤ 4 ·
(

22q+1C8.3

22iq

)2

· 22iq =
(22q+2C8.3)2

22iq
.

Combining this with (8.15) and (8.16), we conclude that

(8.17) ‖fLkz‖ ≤ C8.2

(
16 + (22q+2C8.3)2

∞∑
i=1

1

22iq

)1/2

30



in the case
√

1− |z|2 < 2−kL .

Finally, (3.1) follows from the combination of (8.11), (8.14) and (8.17). This completes
the proofs of Theorems 2.2 and 2.3, and concludes our paper.
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