ON THE PROBLEM OF CHARACTERIZING MULTIPLIERS
FOR THE DRURY-ARVESON SPACE

Quanlei Fang and Jingbo Xia

Abstract. Let H2 be the Drury-Arveson space on the unit ball B in C", and suppose
that n > 2. Let k., z € B, be the normalized reproducing kernel for H2. In this paper we
consider the following rather basic question in the theory of the Drury-Arveson space: For
f € H2, does the condition Sup|,|<1 || fk:[| < oo imply that f is a multiplier of H2? We
show that the answer is negative. We further show that the analogue of the familiar norm
inequality ||H,| < C|l¢|lsmo for Hankel operators fails in the Drury-Arveson space.

1. Introduction

Let B be the open unit ball in C™. Throughout the paper, the complex dimension n
is always assumed to be greater than or equal to 2. Recall that the Drury-Arveson space
H? is the Hilbert space of analytic functions on B that has the function

ot
1- <C72>

as its reproducing kernel [3,9]. Equivalently, H2 can be described as the Hilbert space of
analytic functions on B where the inner product is given by

for

Here and throughout the paper, we use the standard multi-index notation [17,page 3].

A newcomer in the family of reproducing-kernel Hilbert spaces, the Drury-Arveson
space has been the subject of intense study [1-8,10-15,18] in recent years. Perhaps this
intense interest in H?2 is mainly due to its close connection with a number of important
topics, such as the von Neumann inequality for commuting row contractions, the corona
theorem, and the Arveson conjecture. But this interest in H? is also attributable to the
fascinating (some might say mysterious) properties of the space itself. For example, the
finiteness of the H*°-norm || f||cc = sup,cg |f(z)| of an analytic function f on B does not
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guarantee f € HZ, and the tuple of multiplication operators (Mc,,..., M, ) fails to be
jointly subnormal on H2 [3].

One source of fascination with the Drury-Arveson space is its collection of multipliers.
Recall that a function f € H2 is said to be a multiplier of the Drury-Arveson space if
fh € H2 for every h € H2 [3]. We will write M for the collection of the multipliers of
H2. Also recall from [3] that if f € M, then the multiplication operator M; is bounded
on H?2. The operator norm || M|l on H2 is also called the multiplier norm of f. It is well
known that the H*°-norm || f||o does not dominate the multiplier norm of f [3]. What is
more, for f € M, | f|l« fails to dominate even the essential norm of My on H? [12].

An enduring challenge in the theory of the Drury-Arveson space, since its very incep-
tion, has been the quest for a good characterization of the membership in M. Let k € N
be such that 2k > n. Then given any f € H2, one can define the measure dus on B by
the formula

(1.1) dpg(2) = [(R*f)(2)P(1 = [*)*""dv(z),

where dv is the normalized volume measure on B and R denotes the radial derivative
2101 + -+ - + 2,0,. Ortega and Fabrega showed in [16] that f is a multiplier of the Drury-
Arveson space if and only if duy is an H2-Carleson measure. That is, f € M if and only
if there is a C such that

[ ) Pdug(a) < clp?

for every h € H2. In [2], Arcozzi, Rochberg and Sawyer gave a characterization for all the
H?2-Carleson measures on B. See Theorem 34 in that paper.

For a given Borel measure on B, the conditions in [2,Theorem 34] are not the easiest
verify. More to the point, [2,Theorem 34| deals with all Borel measures on B, not just the
class of measures duy of the form (1.1). Thus it is natural to ask, is there a simpler, or a
more direct, characterization of the membership f € M?

Since the Drury-Arveson space is a reproducing-kernel Hilbert space, it is natural to
turn to the reproducing kernel for possible answers. Recall that the normalized reproducing
kernel for H? is given by the formula

(1 |z
1- <C7Z> ’

z,¢ € B. One of the frequent tools in the study of reproducing-kernel Hilbert spaces is the
Berezin transform. But for any f € H2, the Berezin transform

k= (¢) =

(fkz, k)

is none other than f(z) itself. Given what we know about H?2, the boundedness of Berezin
transform on B is not expected to guarantee the membership f € M. Here we use the
phrase “not expected”, because this is not an issue that has been settled in the literature.
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Note that Arveson’s example in [3] only shows that for an analytic function f on B, the
finiteness of || f||oo does not guarantee f € H2. But if one starts with an f € H2, and then
one assumes || f|loc < oo, does it follow that f € M? In the literature one cannot find
answer to this very simple question, although the answer is not expected to be affirmative.

Even if one accepts that for f € H2, the boundedness of the Berezin transform
(fk., k) is not enough to guarantee the membership f € M, what about something
stronger than the Berezin transform? For example, anyone who gives any thought about
multipliers is likely to come up with the following natural and basic

Question 1.1. For f € H2, does the condition

sup ||fk.| < oo
|z|<1

imply the membership f € M?

Prima facie, one would think that there is at least a fair chance that the answer
to Question 1.1 might be affirmative. And that was what we thought for quite a while.
What makes this question particularly tempting is that an affirmative answer would give
a very simple characterization of the membership f € M. But that would be too simple
a characterization, as it turns out. After a long struggle, we have finally arrived at the
conclusion that, tempting though the question may be, its answer is actually negative.
The following is our main result:

Theorem 1.2. There exists an f € H2 satisfying the conditions f ¢ M and

sup ||fk.| < oo.
|z]<1

As the reader will see, the proof of this theorem involves a construction that is quite
technical. Indeed it involves numerous estimates and requires everything that we know
about the Drury-Arveson space. As we will explain in the next section, the same construc-
tion also shows that the function-theoretic operator theory on the Drury-Arveson space
is quite different from that on the more familiar reproducing-kernel Hilbert spaces, such
as the Hardy space and the Bergman space. We hope that the techniques illustrated here
will be useful for future investigations of the Drury-Arveson space.

2. An alternate statement

For notational convenience, let us introduce

Definition 2.1. (a) For each f € M, we write | f||pm for its multiplier norm. In other
words, ||f||m denotes the norm of the multiplication operator My on H2.
(b) For each h € H2, denote

Ih]" = sup [[hk.].

|z|<1

Obviously, we have ||f]|" < ||f||m for every f € M. But the reverse domination fails:
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Theorem 2.2. There does not exist a constant 0 < C < oo such that

1 fllame < CIAN

for every f € M.

We can interpret Theorem 2.2 in terms of Berezin transform. For f € M, we have
I £k:N* = (MFMyk., k.),
z € B. Thus Theorem 2.2 tells us that the supremum of the Berezin transform of M;M;

on B does not dominate the operator norm of M7 My on H2.

The work of this paper will be done in the form of proving Theorem 2.2. But given
Theorem 2.2, we immediately have

Proof of Theorem 1.2. By Theorem 2.2, for every j € N there is a ¢; € M such that

eI’ <277 and  lgllae = 5.

For each subset J of N, define

fr=> ¢

JjeJ
Then obviously we have || f;]|’ < 1 for every J C N. Thus the proof of Theorem 1.2 will
be complete if we can find a Jy C N such that f;, ¢ M.

Let £ denote the linear span of {k, : z € B}. Note that the condition ||p;|" < 277
implies that

(2.1) lim ;9] =0
j—o00

for every g € L. On the other hand, for each j € N, since M,,; is a bounded operator on
H? and since L is dense in H2, there is a g; € £ with ||g;|| = 1 such that

(2.2) leigill = llejllm —1>5—1.

Let j1 = 1. Suppose that ¥ > 1 and that we have selected natural numbers j; < jo <
-+ < jy,. By (2.1) and (2.2), there is a natural number j,11 > j, such that

(2.3) H@juﬂgjk | <27" forevery 1<k<wvw
and
1%
(2.4) 190 irGivin | = v+ 1+ ) g e
k=1



Thus, inductively we obtain a sequence j; < jo < --- < j, < ---, giving us a subset

Jb ::{jl,jg,...jy,...}

of N. Let us verify that this Jy has the property f;, ¢ M. Indeed for each v € N,

v 0o
HfJogju+1 ” > ‘|90ju+1gju+1 H - Z ||(ijgju+1 H - Z H()Dju+i+lgju+1 H
k=1 =1

Since ||¢;, 95,1 1| < |l@j, [lm, applying (2.4) and (2.3), we obtain

v v oo
1309542l 2 v+ 14D Nl =D lejllm =Y 277 2w
k=1 k=1 i=1

Since ||g;,.. || = 1 for every v € N, this inequality implies that f, ¢ M. This completes
the proof of Theorem 1.2. [

As it turns out, the construction we use for the proof Theorem 2.2 also gives us the
following negative results as bonus:

Theorem 2.3. There does not exist any constant 0 < C' < oo such that the inequality
1M My — MpMF|| < C(|IfII')?

holds for every f € M, where My is the operator of multiplication by f on HZ.
It f e M, then

I(F = (fhas kDB = IR = F () < IR

for every z € B. Hence Theorem 2.3 immediately implies

Corollary 2.4. There does not exist any constant 0 < C' < co such that the inequality

[My My — My Myl < C|Sl|lp1 I(f = (Fhz, k)= )2
z|<
holds for every f € M, where My is the operator of multiplication by f on HZ.

Obviously, [[(f — (fk.,k.))k.|| is the “mean oscillation” of f € M with respect to
the normalized reproducing kernel of the Drury-Arveson space. And, for those who are
familiar with Hankel operators, the commutator M;My — MMy is the Drury-Arveson

space analogue of
H }EH 7-

In the study of Hankel operators, we are all too familiar with the norm inequality
(2.5) [Holl < CllelBymo,

5



which holds in the setting of either the Hardy space of the unit sphere or the Bergman
space of the unit ball [20,21]. In contrast, Corollary 2.4 tells us that the Drury-Arveson
space analogue of (2.5) fails. This uncovers another aspect of the Drury-Arveson that is
quite different from the Hardy space and the Bergman space.

3. Outline of our approach

The rest of the paper is taken up by the proofs of Theorems 2.2 and 2.3. To help
the reader navigate through the details involved in the proofs, let us first give an outline,
which serves as a roadmap for the rest of the paper.

From now on, L will denote a natural number, one that is the main parameter in the
proofs. Given any L € N, we will show that there exist f; € M and hy € H? satisfying
the conditions

(3.1) Ifll" < Ca,
(3.2) [fr]l < C,
(3.3) |he| < C.L'V2,
(3.4) [(fohe, fo)| > 0L,

where Cy,Cp,Ce,d € (0,00) are constants. Since |(frhr, fr)| < ||feholllfcll, (3.2) and
(3.4) together imply
IfLhell = (6/Cy)L.

Since ||frhr|l < || frllmllhe]l, combining the above with (3.3), we find that

/2,

Ifzllae >

C

Since L € N is arbitrary, Theorem 2.2 follows from this inequality and (3.1).

We want to emphasize that the function fr, plays two different roles in (3.4): both as
a multiplier of H2 and as a “test function”.

To prove Theorem 2.3, we will show that f,, hy have the additional property
(3.5) LIE%O<MfLM}kLhL7 1) =0.
This and (3.4) together imply that there is an Ly € N such that
[((MF, My, — My, M7 )b, 1)] > (6/2)L
for every L > Ly. Combining this inequality with (3.3) and the fact ||1|] = 1, we have

]

L1/2
2CC ’

| M7, My, — My, My, || >



L > Ly. Obviously, Theorem 2.3 follows from this inequality and (3.1).

Thus the proofs of Theorems 2.2 and 2.3 are now decomposed into five parts, i.e., the
proofs of (3.1)-(3.5).

The main ingredient in the construction of the functions f; and hy is the multiplier
m, we introduced in [11]. Recall from [11] that for each z € B, we define

(3.6) (O = 1

As we will see, both fr, and hy are in the linear span of {mf : z € B}, where x = 2n + 2.
Moreover, each fr, involves only one single radial value |z|, whereas hy, involves L different
values of |z|. But much preparation is required before we can precisely define f;, and hy.

4. Preliminaries

It is elementary that if ¢ is a complex number with |¢| < 1 and if 0 < p < 1, then
(4.1) 2|11 —pe| > |1 —¢|.

This inequality will frequently be used without explicit reference.

Denote S = {¢€ € C" : || = 1}, the unit sphere in C". Recall that the formula

d(&,n) = 11— (&',  &nes,
defines a metric on S [17,page 66]. For the rest of the paper, we write
B(&r)={zeS:[1—(z,&"? <r}

for £ € S and r > 0. Let o be the positive, regular Borel measure on S that is invariant
under the orthogonal group O(2n), i.e., the group of isometries on C™ = R*" which fix 0.
As usual, the measure o is normalized in such a way that ¢(S) = 1. There is a constant
27" < Ay < oo such that

(4.2) 2 np2n < o(B(&,r)) < Agr?n

forall £ € Sand 0 < r < V2 [17,Proposition 5.1.4].
For each z € B\{0}, we have the Mobius transform

43 el = o (o= e - e (w- S22 )

- 1 —(w,z)

of the unit ball B [17,page 25]. Also, we define ¢o(w) = —w. It is well known that the
Bergman metric on B is given by the formula

1+ |z (w)]

(4.4) Bz, w) = 1log = lo. ()]
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z,w € B. For each z € B and each a > 0, we define the corresponding S-ball

D(z,a) ={w e B: f(z,w) < a}.
Definition 4.1. Let a be a positive number. A subset I' of B is said to be a-separated if
D(z,a) N D(w,a) = for all distinct elements z, w in T.

More directly, the construction of the functions fr,, hy promised in Section 3 involves
another kind of separation, a separation that is best described in terms of the radial-
spherical decomposition of vectors w € B.

Definition 4.2. A subset F of B is said to be a quasi-lattice if it is contained in
{CeCm:3/4<|¢* <1}
and has the property that for every k € N, if
2,7 e{CeE:1 -2 <P <1 —-27%72)
and if z # 2/, then there are &,¢& € S satisfying the condition d(&,¢") > 27% such that
z =z and 2’ = |2'|¢ .
We need the following relation between these two kinds of separations:

Lemma 4.3. There exists an ag > 0 such that if E is any quasi-lattice in B, then it admits
a partition E = Ey U Ey where both Ey and E are ag-separated.

Proof. By (4.4), it suffices to show that every quasi-lattice F admits a partition £ = FqUE}
with the property that, for each i € {0,1}, if z and w are distinct elements in Ej;, then
|p.(w)| > 1/12. This will follow from the elementary argument below.

First recall from [17,Theorem 2.2.2] that for any z,w € B, we have

(1 —12%){A = |wl*)
1= (w, 2)[?

(4.5) 1~ |z (w)|* =

Given a quasi-lattice E, define Fy = U;2, Fo, and By = Up2 Fypy 1, where
Fo={CeE:1-27<|(? <1222,
k € N. Let i € {0,1}. For any pair of z # w in E;, there are the following two possibilities:

(1) Suppose that z € Fypyy and w € Foy, 4y with £ # v. Since |p,(w)| = |pw(z)], we
may assume ¢ > v. Thus 1 — [z|> < (1/4)(1 — |w|?), which implies 1 — |z| < (1/2)(1 — |w]).
In this case we have

(=[P —fwl?) o A= [0 = wf?) _ (2] = [w])?

w)> =1-—
|2 (w)] 1 11— (w,2) = (1 —|wl|z])? (1 = fwl]2])?

((1 — |wl) = (1 = !ZI))2 _ <1 —{(=[=)/(0 = !w\)})Q
1= fw|+1 =[] L4+ {(1 = [2[)/(1 = [w])}

(F0) =5

v

v



(2) Suppose that there is a k = 2¢ + i such that z,w € Fj. In this case, by Definition
4.2, there are £, € S with d(&,n) > 27% such that z = [z|¢ and w = |w|n. Since
|- (w)| = |¢w(2)|, we may assume that |z| > |w|. By (4.3), we have

2|  (w,2) (1/2) 1
e e T e e e e F ey TR
(14
(= WP/ @En) + {0~ P/ PEm] + 1

Since in this case we have 1 — Jw|? < d?(&,n) and 1 — |2]? < d?(&,n), it follows that
|¢.(w)| > 1/12. This completes the proof. [J

5. Almost orthogonality in the Drury-Arveson space

Although the definition of fr,h; will come much later, let us first do the work that
ensures inequalities (3.2) and (3.3). That is, in this section we estimate the norms of
vectors of a certain kind in H2. One of the facts that we use repeatedly throughout the
paper is the rotation invariance of the inner product (hence the norm) in H?2. In other
words, if U : C" — C" is a unitary transformation, then (ho U,go U) = (h,g) for all
g,h € H2.

In addition to the m, defined by (3.6), for convenience let us introduce a modified
version of the normalized reproducing kernel. Let 0 < t < oo. For each z € B, define

(1 [0+
==

@bz,t(o =
Then obviously we have the relations

(5.1) Yyt = mik, and (1-— |z|2)1/2¢z7t = mi“.

Lemma 5.1. Given any positive number 0 < t < oo, there is a constant Cs1(t) that
depends only on t such that the inequality

(1—[212)M/2(1 — |w|2>1/2)1“

‘<¢z,t7ww,t>’ < C5’1(t) ( ‘1 — (w,z)\

holds for all z,w € B.

Proof. For each z € B, let us write

9:(¢) = (¢, 2),

which is an element in H2. Given 0 < t < oo, let us also define

1
(1= (¢ )

9

qu,t(C) =




z € B. Let T denote the unit circle {7 € C : |7| = 1} and let dm be the Lebesgue measure
on T with the normalization m(T) = 1. It is elementary that for the given ¢, there is a
constant C(t) such that

(5.2) / dm(T) < C(t)

[1—pr[t*t = (1= p?)*

for all 0 < p < 1. See, e.g., [17,Proposition 1.4.10]. Given z,w € B, there is a v € C with
|v| < 1 such that

(5.3) (w, z) = v*.

On the open unit disc {u € C: |u| < 1}, we have the power series expansion

1—u1+t Zbuj

If j # k, then ¢ and ¢g* are orthogonal to each other in H?2. Therefore
<lljz,t7 \ij,t> = Z b? <gi7 g{u>

Suppose that z = |z|¢, where £ € S. Then we can write
w = (w, )¢ +w,

where (w, &) = 0. Thus by an obvious change of variables we have
(92, 9%) = (w, z)’.

Combining this with (5.3), we obtain (g2, g7 ) = v?/. Thus

<\Ijz,ta \ij,t> - Z(ijj) . (bj?jj> = / dm(T)

(1 —or)Ht(1 — o7) 1t

and consequently

()
5.4 V6, W) < —T
(54) {820 o] < /|1 m|1+ty1 o[+

Using (5.3) again, for each 7 € T we have

|1—<w,z)|:|1—v2|:|1—v'r-v7"| <1 —or|+ |1 -7
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Thus if we set

A={reT:|1—-vr|>(1/2)]1 — (w,2)|} and
B={reT:|1—-v7|>(1/2)]1 - (w,2)|},

then AU B = T. Hence it follows from (5.4) that
21+t dm(r dm(T
|<\Ilzta\11wt>’ 1+¢ / <73 t+ ( 2 t |-
1= (w, )" \Ja 1 =07+ Jp [T —or|!*
Applying (5.2) and the rotation-invariance of dm, we have

/ ot / o(t)
1 —vT!”t (- \v 1 —WP“ T (=[Pt

But |v]? = [{(w, 2)| < |w||z]. Therefore 1—|v|? > (1/2)(1—|z|?) and 1—|v|? > (1/2)(1—|w|?).
Combining the above, we find that

21+t 2t—|—10( )

[(W.t, W e)| < 11— (w, 2)[ (1 — |2]2)8/2(1 — |w|?)t/2

Since
hop =1 =20, and gy = (1 - |Jw?)DH 0,

the lemma follows. [

Corollary 5.2. Let 0 <t < oco. Then
(s 1, )| < 21 C51 (#)e~ (DA w)

for all z,w € B, where C51(t) is the constant provided by Lemma 5.1.

Proof. Tt is elementary that if 0 < z < 1, then 1 — 2% < 4exp(—log{(1 + z)/(1 — z)}).
Recalling (4.5) and (4.4), we have

1+t
((1 - ’Z"Q)l/?((l —>|‘w|2)1/2) < 9ltt ,—(1+1)B(z,w)
1—(w,z -

for all z,w € B and t > 0. Combining this with Lemma 5.1, the corollary follows. [J

Lemma 5.3. [19,Lemma 4.1] Let X be a set and let E be a subset of X x X. Suppose that
m is a natural number such that

card{y € X : (z,y) € E} <m and card{ye X :(y,z) € E} <m
for every x € X. Then there exist pairwise disjoint subsets E1, Es, ..., Fa,, of E such that
E=FUFEU---UEy,
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and such that for each 1 < j < 2m, the conditions (z,y), (z',y’) € E; and (z,y) # (z',y)
imply both x # ' and y # y'.

Proposition 5.4. Given anyt > 2n — 1 and a > 0, there exists a constant Cs 4(t,a) such
that the inequality

Z Czwz,t

zel

1/2
< Cs.4(t,a) (Z |Cz’2>

zel

holds for every finite, a-separated set I" in B, where ¢, € C for every z € I
Proof. Let A\ be the standard Mdobius-invariant measure on B. That is,

dv(z)

PO = T

where dv is the volume measure with the normalization v(B) = 1. Using the M&bius
invariance of both d\ and g, it is easy to verify that there is a constant C' such that
MD(¢,r)) < Ce?™ for all ¢ € B and r > 0. Let a > 0 be given. Then there is a
Cy = C4(a) such that for each a-separated subset I' of B, the inequality

(5.5) card(T N D(¢, 7)) < Cre®™”

holds for all ( € B and r > 0.

Suppose that ¢ > 2n — 1 and that I' is an a-separated finite set. Let c,, z € T', be
complex numbers. Then

Z Cz/’vbz,t

zel

2 oo
= Z Z Czéw<¢z,t7ww,t>7

k=0 (z,w)e E(*)

(5.6)

where
E® ={(z,w) eI xT: k < B(z,w) < k+ 1},

k€ Zy. Write Cy = 2'%C5.1(t). By Corollary 5.2, if (z,w) € E®) | then |(1), ¢, 1w.¢)| <
Coe~(1+Dk  Therefore for every k € Z we have

(57) Z Czéw<¢z,taq/)w,t> S 0267(1+t)k Z |Cz||cw|'
(z,w)EE®) (z,w)EEX)
By Lemma 5.3 and (5.5), for each k € Z, E®) admits a partition

with m(k) < C1e?*+1) such that for each 1 < j < 2m(k), the set E](k) has the property
that for (z,w), (z',w’) € E](-k), the condition (z,w) # (Z/,w’) implies both z # 2’ and
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w # w'. In other words, the projections (z,w) + z and (z,w) — w are both injective on
EJ(.k). By this injectivity and the Cauchy-Schwarz inequality, we have

Z |cz]|cw| §Z|CZ‘2-

(z,w)EEJ(.k) zel
Hence
2m(k)
Z ez llew] = Z Z |cz|[cw| < 2m(k) Z le.|? < 20y e ) Z e[
(z,w)eEK) Jj=1 (z,w)GEJ(,k) zel zel

Combining this with (5.7), we obtain

Z Czéw <wz,t7 ¢w,t> S 262”01026_(1+t_2n)k Z |Cz’2-

(z,w)eE() z€l

Recalling (5.6), we find that

Z Czr‘vbz,t

zel

2 o0
< 2620, CY Z o~ (1+t—2n)k Z s 2.

k=0 zel

Since 1+t > 2n, the proposition follows from this inequality. [J
Combining Proposition 5.4 and Lemma 4.3, we immediately obtain

Corollary 5.5. Given anyt > 2n—1, there exists a constant Cs 5(t) such that the inequality

1/2
Z Cz¢z,t S CS.S(t) (Z |CZ|2)

zeE zeFE

holds for every finite quasi-lattice E in B, where c, € C for every z € E.

6. Constants N and M
To simplify our notation, we write
K=2n-+2

for the rest of the paper. The proof of (3.4) will be based on estimates of inner products
of the form (mfmf%, m%), where 0 < |w| < |z| < 1. We begin with a special case:

Lemma 6.1. There exist constants 0 < ag < 1 and Ny € N such that the following
statement holds true: Let z,w € B and suppose that

1—[e]* < 27270 (1 — Jw|?).

13



Furthermore, suppose that there is a £ € S such that z = |z|€ and w = |w|{. Then
(miymZ,mZ) = po(z,w) + co(z,w)

where po(z,w) is a positive number satisfying the inequality

(6.1) polz,w) > ao(1 — |2]?)

and co(z,w) is a complex number such that

(6.2) lco(z,w)| < (ao/8)(1 — |2*).

Proof. Again, let dm be the Lebesgue measure on the unit circle T with the normalization
m(T) = 1. First note that there is an 0 < ap < 1 such that

(63) /(= ik ) dm(r) > ap(1 — )

11— pT|

for every 0 < p < 1. Indeed, to see this, consider 6 € [—1+ p, 1 — p|. For such a 6 we have

11— pe?| <1—p+4p|ll =€ <1—p+|sinf| +sin?0 < 3(1 - p).

1—p2 \*_ 1
e >
(\1—/)6""\) o3

holds for every 6 € [—1 + p,1 — p|. This clearly implies (6.3).

Thus the inequality

Write |z| = s and |w| = r. Then by assumption
z=s5¢ and w=rf

for some ¢ € S. By the rotation invariance of the inner product in H?2, we have

) = (e = [ (A22) (A22) )
mwmz,mz = mrgmsg,msg = 1—7’7’ |1—S7“ mi\T).
Now we set
1—7r2\" 1—s2\*
po(z7w)— (ﬁ) /(m) dm(T) and
1—7r2\" 1—7r2\" 1—s2 2
— — d :
ao = [1(=5) - (5) Ha=m) oo

Then po(z,w) € (0,00) and (6.1) follows from (6.3). Also, (6.2) follows from the following
assertion: There exists an Ny € N such that the inequality

) - (=) 1) < 20

|1 — s7| 8

14



holds for all r, s € [0, 1) satisfying the condition 1—s? < 272No(1—r2). This assertion itself
can be proved in two easy steps. First of all, there is an N; € N such that the inequality

2/€+1 1— s e < Qo
11— se®?| — 16

holds whenever 22Vt (1 — s2) < |0| < 7. Second, there is an No € N such that

1—172 1—72

«
—— 922 < 0
1—ret 1—7r

— 16

,{'2I€1"

whenever |#| < 272¥2(1 — r2). Then the above assertion holds for Ny = N; + Ny. This
completes the proof. [

Next we will replace the assumption z = |z|¢ and w = |w|{ in Lemma 6.1 by the
condition that d(w/|w]|,z/|z|) is small relative to (1 — |w|?)*/2. For this we need to esti-
mate certain multiplier norm. As usual, for each i € {1,...,n}, we write (; for the i-th

component of the variable ( € B.

Lemma 6.2. [11,Lemma 2.3] If0 < s < 1, then the norm of the operator of multiplication
by the function

1—sG

on H? does not exceed

Proof. Given any x,y € S, there is an z+ € S with (z,21) = 0 such that y = ax + bz,

where a = (y, x) and
|b| =V 1— |<y7$>‘2 < 21/2d((13,y).

Let p € [0,1). Since || - || s is rotation invariant, the multiplier norm of m,, —m,; equals
the multiplier norm of the function

B 1— p2 1— p2
1—pac¢; —pbCa 1 —pGi
Simple algebra then gives us F' = F} — F5, where

_ 1—p? . pbe2
1 —pacy — pbla 1 —pC

F(Q)

_ 1—p? =)
1—paci —pble 1—pG

F1(¢) and  F3(C)

15



By Lemma 6.2, the multiplier norm of pb(s/(1 — p¢1) does not exceed 2|b|//T—p <

4d(x,y)/\/1 — p?. Therefore ||Fi||pm < 8d(xz,y)/+/1 — p?. On the other hand, the multi-
plier norm of (1 —a)(;/(1 — p¢y) is at most

2
’1 _C_L’ — d2<.’13,y) <9 d(d],y)
L—p I—p = \/1-p2

Consequently ||Fa||aq < 4{d(z,y)/+/1 — p?}?. This completes the proof. [J]

Lemma 6.4. Let ag be the same as in Lemma 6.1. There exists a constant N € N such
that for all z,w € B satisfying the conditions

(6.4) 1= 22 <272V (1 - |wf?) and d(,—j,ﬁ)sz—N<1—|w\2>“2,
z w

we have
<mfum27 mg) = p(z, w) =+ C(za w):

where p(z,w) is a positive number satisfying the inequality
p(z,w) > ap(l — |z[?)
and c(z,w) is a complex number such that
le(z,w)] < (a0/4)(1 — [2[*).
Proof. First of all, we have
(6.5) lmil* < (27121 = [uf?)
for every u € B. Next, note that
(6.6) Iy, = millam < 8257, —mol|la

for all w,v € B. Let Ny also be the same as in Lemma 6.1. Combining Lemma 6.3 with
(6.5) and (6.6), we see that we can pick a natural number

N> N,
such that if p € [0,1) and x,y € S satisfy the condition d(x,y) < 27N (1 — p?)'/2, then
(6.7) [{(my, — mp,)mi, mi)| < (ao/8)(1 — |ul?)

for every u € B. Now suppose that z,w € B satisfy the conditions in (6.4). Then there
are s,7 € [0,1) and £, n € S such that z = s and w = rn. Moreover, (6.4) translates to

1—s2 <2721 —¢%) and d(¢,n) <27V — )2,

16



Define w’ = r£ and
@(Zaw) = <(mfu - mfu’)m§7mg>

Then it follows from (6.7) that

(2, w)| < (a0/8)(1 — |2]*).

Note that z = |2]¢, w' = |w'|¢, and that 1 — |z|? < 272N (1 — |w/|?). Since N > Np, it
follows from Lemma 6.1 that

(mf,mf . mf)y = po(z,w') + co(z,w),

where po(z,w’) is a positive number satisfying the inequality po(z,w’) > ap(1 — |2]?) and
co(z,w') is a complex number such that |co(z,w’)| < (cg/8)(1 — |2]?). Thus once we set

p(z,w) = po(z,w’) and c(z,w) = (2, w) + co(z,w’),

the lemma follows. [

Lemma 6.5. Let z,w € B be such that |w| < |z| and z # 0. Then

1— |wf?

1= (lwl/|z))(z, w)|”

HmwmzHM < 96
Proof. Given z,w € B satisfying the conditions |w| < |z] and z # 0, we set zZ = (|w|/|z])=.
Since |w| = |2|, by [11,Lemma 2.4] we have

1w 1 — |w]?
T—(Gw)l  a=(ul/E) (el

|m <48

Hmwmi

Since mq,m, = Mmy,ms; - mglmz, it now suffices to show that ||m;1mz||M < 2. To prove
this, write z = |2|¢, where £ € S. Then Z = |w|{. By an obvious change of coordinates,
/m; ' m. || m equals the multiplier norm of the function

1—|wlG 1—]2
L—|w? 1-]2G°

where (7 denotes the first coordinate of ( € B. By the well-known von Neumann inequality
for a single contraction, the multiplier norm of the above function does not exceed

. 11— |w|r| 1—]z?
up . )
irj=1 1—|w]2 |1 —|z|7|

Using the condition |w| < |z|, it is an easy exercise to show that the above supremum does
not exceed (1 +|z|)/(1 + |w|), which is less than 2. This completes the proof. [J
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Lemma 6.6. There is a constant Cg.¢ which depends only on the complex dimension n
such that the following holds true: Given any p > 0, k € N and n € S, there exists a
subset E(p, k,n) of B(n, 2" p)\B(n,2*p) with

(6.8) card{E(p,k,n)} < Cg.62%""

such that Uge p(p..mB(x, p) D B(n, 281 p)\B(n, 2% p).

Proof. Given such p, k and n, let E(p, k,n) be a subset of B(n,2*T1p)\B(n,2%p) that is
maximal with respect to the property that if z,y € E(p, k,n) and = # y, then B(x, p/2) N
B(y,p/2) = (. Then it follows easily from (4.2) that there is a Cs ¢ which depends only
on the complex dimension n such that (6.8) holds. The maximality of E(p,k,n) ensures
that UxEE(p,k,n)B(Ia p) - B(% 2k+1ﬂ)\B(777 2kp) O

Definition 6.7. If F'is a finite subset of S and p > 0, we set

N(F, p) = sup card{F N B(x,p)}.
€S

Lemma 6.8. There exists a natural number M > 4 such that the inequality

S lmrmiemid] < (/DN (FVT=17) (152
EEF\B(n,2MV1—-72)
holds whenever F' is a finite subset of S, n € S, and 0 < r < s < 1, where g is the same
as i Lemma 6.1.
Proof. Suppose that 0 <r < s < 1. By Lemma 6.5 and (4.1), we have
2

d?(n,€)

[y misella < 192

for all n # € in S. Consequently,

4n
1—1r2
2n 2n
mms M = |[(Mmypymys M < ||mpepmg <192 _— .
| 2 [ (e mse) ™" || [y mse | 3 0.6

Obviously, [[mgll = V1 —s2, [[m.[lm < 2 for every z € B, and [[mf| < 2°71V1 —s2.
Since kK = 2n + 2, we have

(6.9)
vi==\"
d(n,€)> s

|<m?nm§£7m§£>| < Hm ms.ﬁ HMHm msﬁHHmsﬁH < 1922”2‘%—1—2 <

Let &k > 4 and consider the set
Ry ={zeS:28V/1—r2 <d(z,n) < 2F1/1—r2}.

18



By Lemma 6.6, there is a subset Ej of Ry with card(Ey) < Cs.622"* such that

Ry, C U B(xz,\/1—12).

rEFEy
If z € Fx and £ € B(z,v1 —1r?), then

A0, €) = d(n,x) = d(,€) > 2V1—r2 = /1=y > 2 71/1 =2

Applying (6.9), for every finite subset F' of S we have

> [impmiemi) <> > |(mf, mfe, mP)|

EEFNRy z€EL ¢c FNB(z,v/1—72)

1 4n
< card(Ey)N (F, 1- r2> 192%m2Kt2 (216—_1) (1 - 5%

22nk
< G 6192°m27 220 N (F 1- 7”2) (24nk> (1—s?).

Write C' = C.192%272%%224" Then for every M > 4 we have

S lmpmie i) <O Y N (RVI-2) (1 8)
k=M

k=M £€FNRy,

To complete the proof, it suffices to pick an M > 4 such that CY .~ ,, 272k < /4. O

7. The functions f; and hj,

From now on, N and M will always denote the constants obtained in Lemmas 6.4 and
6.8 respectively. With these constants in hand, we are almost ready to define the functions
fr and hp, promised in Section 3. We say almost ready, because we need to establish one
more counting lemma based on N and M. We alert the reader that this counting lemma
is the place where the assumption n > 2 enters our construction in an essential way. In
fact, as the reader can see, this is one lemma that fails in complex dimension 1.

Lemma 7.1. There exists a natural number ¢ > M + N + 3 such that for every k € N and
every n € S, there exist x1,...,To2q € B(n,27*~N=1) which have the following properties:
(1) B(w;, 2779t M+ N B(x;, 27+t MFL) = ) for every pair of 1 <i < j < 229,

(2) B(wy, 279t M+ © B(n,27*=N=1) for every 1 <i < 224,

Proof. Since n > 2, we can pick a natural number ¢ > M + N + 3 such that

(71) 22(n—1)q > 22n(M+N)29nAO’

where Ag is the constant that appears in (4.2). Let us show that this ¢ has the desired
properties. Given any k € N and € S, let E be a subset of B(n,27%*"V~2) that is
maximal with respect to the property that

B(x, 2—k—q+M—|—1) N B(y, 2—k—q—|—M+1) — @
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if r,y € Eand x #y. Sinceq— M —1> N+2,if x € E and £ € B(x,27%*~¢tM+1) then
we have d(&,71) < d(€,z) + d(z,n) < 27F—a+M+1 4 9=k=N=2  9=k=N-1 That is,

B(x, 270t € B(n, 27N

for every x € E. Thus the proof will be complete once we show that card(E) > 229,
for we can take any 22¢ distinct elements in E as the promised z1,...,Zs2¢. Indeed, the
maximality of £ implies that

U B(x72fqu+M+2) ») B(’I],QikiN*Q).
zelE

By (4.2), this implies
card(E) A (2750t MF2)* > g (gokoN=2)R

Thus

22nq 22(n—1)q 2
card(E) > 22n(M+N)99n A, - <22n(M+N)29nA0) 27,

By (7.1), we have card(E) > 22¢. This completes the proof. [J

To define f;, and hp,, we also need a good labelling system to match what is essentially
a tree structure in our construction. For each j € N, let W; be the collection of words of
length j with {1,2,...,229} as the set of alphabet, where ¢ is the natural number provided
by Lemma 7.1. That is,

Wi ={yv:7e{l,2...,22}, 1<i<j}

Let Wy denote the set of the empty word (). We will write || for the length of the word
7. That is, for v =~y - -7; with y1,...,7; € {1,2,...227}, we define |y| = j. The length
of the empty word is defined to be 0. We “compose” words by concatenation. That is, for
y=y1---v € Wiand u=uy---up € Wy, k> 1, we define

7“2'71""7jul"'ukzewj+k;.

For every word ~, the word () is defined to be ~ itself.

Next we fix a kg € N. For each natural number j > 1, we define
kj = ko + jq,

where, again, ¢ is the natural number provided by Lemma 7.1. Thus k; + ¢ = kj;1. We
pick an arbitrary g € S. That is, we have defined 77, € S in the case where 7 is the empty
word (). Suppose that j > 0 and that we have defined 7, € S for every word v € W;. By
Lemma 7.1, for each v € W; there are 1,1,742, ... ,7y22a € B(ny, 2% =N=1) guch that

(72) B(n’yia 2_kj+1+M+1) N B(n’}/’i’a 2_kj+1+M+1) - @

20



for all 1 <4 < ¢/ < 227 and such that
(7.3) B(n.,2 kit My © By, 27 ki N

for every 1 < i < 229, This defines {n, : u € W;41} C S. Inductively, this defines 7, € S
for every word v € U32,W;. Note that (7.2) and (7.3) together imply that

(7.4) B(n,, 27 MM A B, 27 MELY — () for all v #4" in W
7 > 1. We now define
(7.5) wy = (1 —272kn)H2y

for every v € U2 Wj.
With w, given by (7.5), we are ready to define hy. For each L € N, we define

Lemma 7.2. For every L € N we have

> (homy,  mi )| > (0/2)27 ML,

ueWrp,

where aq is the same as in Lemma 6.1.

Proof. Consider any word v with |y| < L. Then Wi = {yWr_,} U{WL\AWr_|y},
where YWp_ |, = {yv : v € Wy_,;}. By (7.3) and an induction on [v|, we see that
Nyw € B(ny,2 k=N That is,

d(%mm) < 9= ky =N — Q*N(l _ |7~U—y|2)1/2.
Moreover,
1= [ = 272101 = 272012010 — 9 2la(1 — oy, [2) < 272V(1 — u, ?)

for every v € Wy_|,|. Thus it follows from Lemma 6.4 that

(7.6) Z <mi’iwmﬁjw»mﬁjﬁ,v>= Z P(Wyws wy) + Z (Wayy Wy,

VEWL 5| VEWL || VEWL |y
where for every v € Wr_,|, p(wyv,wy) is a positive number satisfying the inequality
(77) p(w'yvaw’y) > Ofo(l - |w’yv|2) = 0402_216‘771I = ()402_2]6‘“2_2([1_‘7‘)(]
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and
(7.8) (W, w4)| < (a0/4) (1 — wae|?) = (g /4)272k12=2(L =D,

On the other hand, if v € W \yWp_,|, then u = +v, where 7 € W}, \{7} and v €
Wr_i- By (7.3), we have 1, € B(n,/,27*»1=N=1) By (7.4), this means

Ny & B(ny, 27 F M) for every w e Wr\yWg_jy.

Hence it follows from Lemma 6.8 that

(7.9) > [(miy mig, ,mi, )| < (ao/4)N (Hp, 27 Fn)272ke =204,
uEWL\’YWL_|W|

where Hy, = {n, : v € Wr}. We need to estimate N'(Hr,2 %n1). If 2 € S is such that
B(z,27 %) N B(nq,2 717 N) 2£ 0 for some a € W), then by (7.4) we have B(z,27%11)N
B(np,27F217N) = @ for every b € W), |\{a}. That is, if B(z,2 1) N B(n,,2 F1=N) £ 0,
then Hy, N B(z,27%1) C {nay : v € W} }, which implies

card(Hy, N B(z,27%n1)) < 224(L=1D,

On the other hand, if x € S is such that B(z,2 %) N B(ng,2~"=N) = ( for every
a € W),|, then obviously card(Hy, N B(x,27%1)) = 0. Thus we conclude that

(7.10) N (Hp, 27 k) < 224E=D),

Substituting this in (7.9), we obtain

(7.11) Do Umi miy, mi )| < (ag/4)27 220,
UGWL\’YWL,|,Y|

For notational convenience, let us write G, = U W Recalling (7.6), we have

D (o, i )y = Y Y (my, mi mi)

uweWr, ’YEGL ueWr,
_ K K K K K K
- Z Z <mw7 My mwvv> + Z Z <mww Moy, s mwu>
YEGL vEWL_ |4 YEGL ueWrL\YWr_ |4

= Z Z w'yv;w'y +T1+T27

yeEGL veW _ I~

where

= Z Z c(Wyy, wy) and

yEGL veWT, _ I~

T2 = Z Z <Tn’;1,Y m,;)u ) mg)u > :

vyeG], ’U,GWL\’YWL,‘,Y‘
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Since p(w.,w,) is a positive number for every pair of v € G and v € W_|,|, we have

> Y plwyw,) ||~ [Ty,

YEGL veW, _ I~

}: U”ﬂnw7

ueWrp,

Note that card(W;) = 2279 for every j > 0. Applying (7.7), we now have

Z (hpmy, ,my, )

>ag Y 270 —|Ty| - |Ty|

ueWrp, 7€GL
—aOanrd D272k Ty | — | Ty
(7.12) = a02 ZkOL— Ty | — |T3|.

On the other hand, by (7.8) we have

L—1
(7.13) T1| < (ao/4) Y card(W)card(Wp_;)2 %2727 = (0 /4)2 0 L,
7=0

Similarly, by (7.11) we have

L—1
(714) |T2| < a0/4 Z Card )2 2ko—2jq __ ( 0/4)272]@0[/'
7=0

Substituting (7.13) and (7.14) in (7.12), the lemma follows. [J
To define fr, let v : Wi, — Z be an injective map. For each 7 in the unit circle T, we

define the function
$L.r = 2: Twuhngf
ueWy,

Since v(u) — v(u') € Z\{0} for every pair of u # u’ in Wy, we have

/<%0L,ThL790L,r>dm(T) = > (hgmy, ,mﬁu,>/7”(“)‘”(“')dm(7)

u,u’' €Wy,

= Y (hmf, ,mi ).

ueWy,

Thus it follows from Lemma 7.2 that
[ lorhe,prldm(r) = (a0/2)2 L,
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In particular, this means that there exists a 77, € T such that

prrhr, @rm )| > (an/2)27 20 L.

With this 77, € T, we define fr, = ¢ -,. The above inequality tells us that (3.4) holds for
the constant § = (ag/2)272k0.
Next we prove (3.3) and (3.2). By (7.4) and (7.5), for every L € N the set

L—-1

U{w,y:”yEWj}

3=0

is a quasi-lattice in B. Recall that x = 2n + 2, therefore k — 1 > 2n — 1. Also recall (5.1).
Hence it follows from Corollary 5.5 that

L—1 L—1
hell = (D0 D> mi | =1>0 D (= |wy|)*u, wa
J=0 veW; j=0 veW;
-1 1/2
< Cs5(k—1) Z Z (1 - |w,y]?) = Cs.5(k —1)(27 20 L)1/2,
j:O ’YEWJ'

Hence (3.3) holds for the constant C, = Cs.5(k — 1)27%0. Similarly, since the set {w,, : u €
W} is a quasi-lattice, Corollary 5.5 also gives us

el =1 > ms, | =11 Y 70— [wa)Y w1
uweWry, ueWr,
1/2
< Cs5(k—1) ( Z (1- ]wu|2)> = Cs5.5(k—1)27 %0,
UEWL

This proves (3.2).
The proof of (3.5) is easy. Indeed, for every pair of z € B and h € H? we have

(M1, h) = (1,m5h) = mE(0)R(0) = (1 — |2[*)"(1, h).
Thus M;,.1= (1 - |z|2)%. Consequently, if we write ay, = M3 1, then ar, € C and

(7.15) lag| < Z (1 — |wy|?)~ = 22La . 9=2ker < 9=2kr(n=1)
'LLEWL

(recall that kr = ko + Lg). On the other hand, since || M| < 2% for z € B, we have
(7.16) |M;, || <25 card(Wy) - [|hy || < 2% - 2229 C.LY/2,
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where for the second inequality we apply (3.3). Combining (7.15), (7.16) and the Cauchy-
Schwarz inequality, we obtain

|<MfLM;LhL’ 1>| = |<M}<LhL’M}<L1>| < 2HCcLl/QQ_QkL(lﬁ_z)'
Since k — 2 = 2n and k, = ko + Lg, this proves (3.5).

Thus only (3.1) remains to be proved.

8. More almost orthogonality

The proof of (3.1) will be based on a number of estimates of vector norms in H2. We
need some general lemmas.

Lemma 8.1. [11,Corollary 2.2] For allk € Z, and z € B, the operator M, is subnormal
on HZ.

Our next lemma illustrates how to use m,,, w € B, as “partition” functions in H2.

Lemma 8.2. There exists a constant Cg o such that the following estimate holds: Suppose
that 0 < r <1 and that X is a subset of S satisfying the condition

(81) B(§7V1_T2)OB(§/7V1_T2):®
for all € # & in X. Then for every set of vectors {he : £ € X} in H2 we have

1/2

Y mithe| < Csa | D lhell?

§ex cex

Proof. We need the following elementary fact from operator theory: If T' is a hyponormal
operator on a Hilbert space H, then

(8.2) |T*v|| < ||Tv| for every v €& H.

Next, note that by (4.2), there exists a constant C' such that for all » and X satisfying the
condition in the lemma and for all n € S and k € Z,, we have

(8.3) card {5 € X :d(é,n) <281 - r2} < 2%k,
For each pair of £ # ¢ in X, we have

[(myie *he, mie*her)| = (M 2 g hs,hs>|<llM*~2m “hellllhe |l

Applying Lemma 8.1 and inequality (8.2), we have
(8.4) (e *he,myghe)| < Imyg®my *hellllhe || < llmyig*myg | allhe lllhe |
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Recall that K — 2 = 2n. By Lemma 6.5, we have

e 2mie 2w = [[(mrermne)™ 2l m < mperme |5,
2n 4n
< 19927 (i) — 1992n —vl—rQ
- 11— (&, ¢ d(&,€")

Substituting this in (8.4), we obtain

4n
V1—1r2
— = | lhellllhel.

(8.5) [(mye *he, me “her)| < 192°" ( d(€, &)

For each k € N, define

E® = {(5,5’) € X x X :28"1/T— 12 < d(e,¢) < 28V/1 —r2}.

Then by (8.1) we have
2

meé_%i - Z< My hE’ rgf h£>

cex £,8'eX
o0
(8.6) =D lmrhel? )0 Y (mie he,mi her).
gex k=1 (¢,6")eE™®)

By (8.3) and Lemma 5.3, for each k € N there is a partition

E® =P U--uBR,

with m(k) < C2%"% such that for each 1 < j < 2m(k), EJ(-k) has the property that for
(&,8), (x,2") € E](-k), the condition (§,&’) # (z,2’) implies both £ # = and ¢ # 2’. In

other words, both projections (£,&') — € and (&,¢') — £ are injective on E}k). By (8.5)
and this injectivity, we have

4n
. n V1i-r2?
> Nt he, mig he )| < 1927y <— |7 | |l

d(€, €
(&¢)eB® (&.¢)eB &8

< 1922n2—4n(k—1) Z ||h£||||h€/|| < 1922n94ng—dnk Z ||h£||2
(£.£)eEM £eX

Since m(k) < C22"*, for each k € N we now have

2m (k)
—2
Z [(m. Mye h&» rg/ hé ) = Z Z |(m,’f€ he, m rgf h£>|
(&8nem® =1 (egner
S 2022nk1922n24n2—4nk Z Hh§'H2 — 012—2nk Z Hh£|‘2;
£eX fex
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where C; = 2C1922"24". Combining this with (8.6), we obtain

Z mﬁg—th < 24n Z Hh€H2 +Cl 22 2nk Z Hh’ ”2

fex fex cex

Hence the lemma holds for the constant Cg o = (24" + C; Y 2, 272K)1/2 O

Lemma 8.3. There is a constant Cg 3 such that for all z,w € B satisfying the condition
lw| < |z|, we have
1— |wl?

11— (z,w)|’

Proof. Let z € B and let ¢, be the corresponding Mdbius transform (see (4.3)). Recall
that the formula

Hmwkz” S 08.3

(Uzh) (C) = h(@z (C))kz (C)

defines a unitary operator on H2. Suppose that w € B and that |w| < |z|. It suffices to
consider the case where w # z. Since @, o ¢, = id, we have |my k.| = ||U.(mqy 0 @.)| =
|mw 0 @.||. Therefore it suffices to estimate ||m,, o p.||. The rest of the proof is similar to
the proof of Lemma 2.4 in [11].

Set A = ¢, (w). Then w = ¢,(\). By [17,Theorem 2.2.2], we have

(1= (G2 = ()
(1= 1zP)A = (¢ A)

1—|wl?

1- <Q0z(C)7 sz()‘»

On the other hand, the same theorem gives us

M (2(C)) = = (1 |wf?)

1|z

(8.7) L—(2,A) =1—(p.(0), pz(w)) = T= (o)

Therefore
1-— \w\2 —( , Z)

¢
Consequently, it suffices to consider the function ¥ (¢) = (1 — (¢, 2))/(1 — (¢, \)).

Set s = |A|. Let U : C™ — C" be a unitary transformation such that

U\ = (s,0,0,...,0) and
U*z = (a,b,0,...,0),

where @ = (2, \/s) and |b]? = |2]? — |(z, A/s)|?. Again by [17,Theorem 2.2.2], we have

(L =121 = wl*)
1= (w,z)]>

(8.8) 1-s"=1—|p.(w)|* =
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Since 1 — sa =1 — (\,z) and |z| > |w|, it follows from (8.7) and (8.8) that

1— 2
(8.9) 11— a §2]1—sa|:2i <21 —s2.

1= (w, 2)]

Also,
b2 <1—[(z, \)> <21 — (2, \)| <21 — s2.

Since ||¢|| = ||v o U]|, it suffices to estimate the latter. We have

1-(U¢z) _1—aG —bG

P(UQ) = = 1h1(C) + ¥2(¢) — ¥s(C),

1— (UGN 1—sG
where 1 1 b
Y1(¢) = 1—821’ ¥2(C) :al—scg}l and ¥3(() = I—CZQ'

Obviously, |[#1]] = |1 — a|]/v/1 — s2. Therefore, by (8.9), we have ||¢1| < 2. Also, (4.1)
gives us [|¢2]| < 2. On the other hand, since ||(%||* = a!/|a|!, a € Z', we have

o0 o 82k 1
Il = 162 3 s chGal? = b2y 5 <21 =52 (1 +log 1= ) ~
k=0 k=0

Thus if we set

1
C =2 su 1—¢2(1+1o ),
031551 ( 1 2

which is finite, then we have ||13]| < C*/2. Therefore the lemma holds for the constant
Css=4+CY2. 0O

With the above preparation, we are now ready to prove (3.1). Recall from Section 7
that fr, = ¢ -, for a suitably chosen 77, € T. Obviously, we need to estimate ||frk.|| for
all L € N and z € B. By (7.4) and (7.5), we can apply Lemma 8.2 to obtain

k—2 _v(u) 2
E My, ~ T My, ks
ueWy,

(8.10) I frk:| =

1/2
< Cs.2 ( Z \|mz2uukz||2> ~

uceWy,

We divide the estimate of || frk.|| into three cases, according to the value of |z|.

(1) Suppose that /1 — |z|2 > 27%0. This is the trivial case, for in this case we obvious
have || fok.I| = (1 [12) =2 [m. fo | < 2(1 — [2%)~V/2]| fy . Thus by (3.2) we have

(8.11) Ifok.|l < 25710,

in the case \/1 — |z]2 > 27 %o,
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(2) Suppose that 27%i < (/1 — |2]2 < 27%i-1 for some 1 < j < L. In this case we have
|z| < |wy| for every u € Wy. There is a £ € S such that z = |z|{. With this £ we set

Xo = B(£,27%-1) and
X; = B(&, 2_kj—l+iq>\B(€’ 2—kj,1+(i—1)q)

for every i € IN. For each i > 0, let W, ; = {u € W, : n, € X;}. By (8.10), we have

- 1/2
(8.12) | frk-|| < Cs.o (Z gi) 3
i=0

where

gi = Z Hm%uukzwv

’LLEWL,Z‘

t > 0. Next we estimate each g;. Note that
lm2, k=l = (1= |2[*) "2 (lm2, m.]|.

For u € W9, we use the estimate |[m2 m.| < 4|my,| = 41— |Jw,]? = 427,
Consequently .
Im2, k|| < 4-2ki27ke = 4.9~ (=i

for every u € Wy, o. Hence go < (4-27L=9)9)2card(Wp, o). By (7.10) we have card(Wy, o) <
22a(L=3+1) " Therefore

(8.13) go < 220t4,
For u € W ; where i > 1, since |z| < |w,]|, we use the inequality
VTP
11— (J2l/[wa]){wu, 2)|
which follows from Lemma 6.5. Thus if u € Wp,;, @ > 1, then

1 —|z|? 192
i ke < 102 192y,

d*(§,mu) — 22671

I, kel = (1= 121%) "2 i, me ]y < 96

Therefore for such a u we have

192
e, sl < Nl kel llm, || < o5

192 .
e —(L—3)q
A 2 )

kji—1 .9 kL « 272 |
2 2 — 922(i—-1)q

Consequently

192 a0
g; S (m -2 (L J)q> CaI'd(WL7rL‘).
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By (7.10), we have card(Wy, ;) < 22¢(L=i+1+9)  SQubstituting this in the above, we obtain

(237192)2

g; < 52iq

for every ¢ > 1. Combining this with (8.12) and (8.13), we find that

0o 1/2
1
(8.14) | frk-|| < Cs.z <22q+4 +(2%7192)% ) )
=1

22iq

in the case 275 < /1 —|2|2 < 27%-1 for some 1 < j < L.

(3) Suppose that \/1 — |22 < 27%2_ In this case we have |z| > |w,]| for every u € Wr.
Again, there is a £ € S such that z = |z|¢, and we set

Yy = B(£,27%) and
Y, = B(¢, 27 )\ B(¢, 27 e (o)

for every i € N. Let Wy ; = {u € Wy, : n, € Yi}, i > 0. By (8.10), we have

o 1/2
(8.15) | frk|| < Cs. (Z g> :
=0

where

Gi= > ImE kP <4 S ke,

UEVVL,'L' UeWL,i

i > 0. By (7.4), we have card(Wp, o) < 1. Therefore
(8.16) Go<4-4=16.
Suppose that ¢ > 1. If u € WL,i, then by Lemma 8.3 we have

_ 2 —2kg, 2q+1
Bl 71l <2Cs3 22 < ° 2~08'3
11— (wu, 2)] d?(1u, €) 2%

By (7.10), we have card(Wy ;) < 2%4. Thus for each i > 1 we have

2
Gi<4. (22q+108.3> . 92iq _ (22q+208,3)2.

||mwu kz H S CS.3

92iq 92iq

Combining this with (8.15) and (8.16), we conclude that

- 1/2
1
(8.17) | frk:l < Csa <16 + (2°712Cg 3)? Zl 22iq)
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in the case /1 — |2]2 < 27%z.

Finally, (3.1) follows from the combination of (8.11), (8.14) and (8.17). This completes
the proofs of Theorems 2.2 and 2.3, and concludes our paper.
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