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Abstract. This paper addresses a subtle issue arising from the measurability of operators
with respect to the Dixmier trace.

1. Measurability and convergence

In the last few decades, Dixmier trace [3] has played an increasingly important role
in non-commutative geometry, operator theory, and the study of operator algebras. We
cite [1,4-7,9,11] as a sample of recent developments. This paper stems from the concept of
measurability of an operator with respect to the Dixmier trace, and the reason why this
is even an issue can be traced to a subtlety in how Dixmier trace is introduced in various
books and papers. To explain this subtlety, let us start from scratch.

We first recall that the domain of every Dixmier trace is the Lorentz ideal C+1 , which
consists of operators A satisfying the condition

‖A‖+1 = sup
k≥1

s1(A) + s2(A) + · · ·+ sk(A)

1−1 + 2−1 + · · ·+ k−1
<∞,

where s1(A), s2(A), . . . , sk(A), . . . are the s-numbers of A. See, e.g., [8]. Alternatively, the
symbol L(1,∞) is often used to denote this ideal.

To define the Dixmier trace, one starts with a linear form (also called an extended
limit) ω : `∞(N)→ C that has the following three properties:

(α) ω({ak}k∈N) ≥ 0 if ak ≥ 0 for every k ∈ N.

(β) ω({ak}k∈N) = limk→∞ ak whenever the sequence {ak} converges.

(γ) For each {ak}k∈N ∈ `∞(N), ω({ak}k∈N) = ω({a1, a1, a2, a2, . . . , ak, ak, . . . }).
Given such an ω, for any positive operator A ∈ C+1 , its Dixmier trace is defined to be

Trω(A) = ω

({
1

log(k + 1)

k∑
j=1

sj(A)

}
k∈N

)
.

The doubling property (γ) ensures the additivity Trω(A + B) = Trω(A) + Trω(B) for
positive operators A,B ∈ C+1 . Thus Trω naturally extends to a linear functional on C+1 .
This ensures the unitary invariance of Trω, and consequently Trω(XT ) = Trω(TX) for
every T ∈ C+1 and every bounded operator X, which is what one expects of a trace.
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At this point, it will be convenient to introduce

Definition 1.1. Let Ω denote the collection of linear forms ω : `∞(N) → C that have
properties (α), (β) and (γ).

Obviously, there are plenty of ω with properties (α) and (β). The problem lies with
how to obtain property (γ), which is the main issue in defining the Dixmier trace. In
much of the literature, most noticeably in Alain Connes’ seminal book [2], property (γ) is
obtained through the interposition of Cesàro mean. Recall from [2, Section 4.2β] that for
a sequence a = {ak}, its Cesàro mean is the sequence of numbers

Mk(a) =
1

log(k + 1)

k∑
j=1

aj log

(
j + 1

j

)
, k ∈ N.

Let L : `∞(N)→ C be any linear form that has properties (α) and (β). Then the formula

(1.1) ω(a) = L ({Mk(a)}k∈N) , a ∈ `∞(N),

defines a linear form on `∞(N) that has all three properties (α), (β) and (γ).

Definition 1.2. Let M denote the collection of linear forms ω : `∞(N) → C given by
(1.1), where L : `∞(N)→ C is any linear form that has properties (α) and (β).

Thus we have two collections of Dixmier traces, {Trω : ω ∈ Ω} and {Trω : ω ∈ M},
and the latter is a subset of the former. This leads to the issue of measurability of operators.
Recall that an operator A ∈ C+1 is said to be measurable if its Dixmier trace Trω(A) is
independent of ω. Here, one might want to be a little more careful by asking, independent
of which set of ω? Prima facie, the condition that Trω(A) is independent of ω ∈M appears
to be weaker than the condition that Trω(A) is independent of ω ∈ Ω.

A careful reading of Section 4.2β in [2] tells us that the Dixmier traces considered in
[2] are all in the collection {Trω : ω ∈ M}. Therefore the measurability of an operator
A ∈ C+1 in [2] means that its Dixmier trace Trω(A) is independent of ω ∈M. Accordingly,
we have

Theorem 1.3. (Proposition 6(a) in [2, Section 4.2β]) Let A be a positive operator in C+1 .
Then Trω(A) is independent of ω ∈ M if and only if the Cesàro mean of the sequence

{
∑k
j=1 sj(A)/ log(k + 1)}k∈N converges, i.e., the limit

lim
k→∞

1

log(k + 1)

k∑
j=1

(
1

log(j + 1)

j∑
i=1

si(A)

)
log

(
j + 1

j

)

exists.

In contrast, the entire collection of Dixmier traces {Trω : ω ∈ Ω} is considered in [10],
and more. Accordingly, measurability in [10] yields an apparently stronger result:
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Theorem 1.4. [10, Theorem 9.2.1] Let A be a positive operator in C+1 . Then Trω(A) is
independent of ω ∈ Ω if and only if the limit

lim
k→∞

1

log(k + 1)

k∑
j=1

sj(A)

exists.

As the first result of this paper, we report that for a positive operator A ∈ C+1 ,
its measurability with respect the more restricted set of Dixmier traces {Trω : ω ∈ M}
actually implies its measurability with respect to {Trω : ω ∈ Ω}, the whole set of Dixmier
traces:

Theorem 1.5. Let A be a positive operator in C+1 . If the limit

lim
k→∞

1

log(k + 1)

k∑
j=1

(
1

log(j + 1)

j∑
i=1

si(A)

)
log

(
j + 1

j

)

exists, then the limit

lim
k→∞

1

log(k + 1)

k∑
j=1

sj(A)

exists.

Given Theorem 1.5, one has to wonder, is the subset {Trω : ω ∈M} of Dixmier traces
sufficient for all practical purposes? The answer is negative. To see this, we first observe,
based on properties (α) and (β), that for every positive operator A ∈ C+1 and every ω ∈ Ω,

Trω(A) ≤ lim sup
k→∞

1

log(k + 1)

k∑
j=1

sj(A).

But the above is actually an equality for at least one ω ∈ Ω:

Theorem 1.6. [10, page 275] Let A be any positive operator in C+1 . Then there is an
ω ∈ Ω such that

Trω(A) = lim sup
k→∞

1

log(k + 1)

k∑
j=1

sj(A).

As the second result of the paper, we show that there is a substantive difference
between the subset {Trω : ω ∈M} and the full set {Trω : ω ∈ Ω} of Dixmier traces:

Theorem 1.7. There exists a positive operator A ∈ C+1 such that

sup
ω∈M

Trω(A) < lim sup
k→∞

1

log(k + 1)

k∑
j=1

sj(A).
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The rest of the paper consists of the proofs of Theorems 1.5 and 1.7. Specifically, we
prove Theorem 1.5 in Section 2 and Theorem 1.7 in Section 3. From the proofs the reader
will see that both results are due to the involvement of logarithm in Dixmier trace.

2. Limit of Cesàro mean

To prove Theorem 1.5, it will be convenient to introduce a particular collection of
sequences. Let d+1 denote the collection of sequences {xk} of non-negative terms such that

sup
k≥1

x1 + x2 + · · ·+ xk
1−1 + 2−1 + · · ·+ k−1

<∞

and such that xk ≥ xk+1 for every k ∈ N. Thus a sequence {xk} is in d+1 if and only if
there is an operator A ∈ C+1 such that sk(A) = xk for every k ∈ N.

Lemma 2.1. Let {xk} ∈ d+1 . If the limit

L = lim
N→∞

1

log(N + 1)

N∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)

exists, then

L ≥ lim sup
k→∞

1

log(k + 1)

k∑
j=1

xj .

Proof. If it were true that

lim sup
k→∞

1

log(k + 1)

k∑
j=1

xj > L,

then there would be a c > 0 and a sequence

k1 < k2 < · · · < ki < · · ·

in N such that

(2.1)
1

log(ki + 1)

ki∑
j=1

xj ≥ L+ c

for every i ∈ N. We will show that this leads to a contradiction.

Let ε > 0 be such that

(2.2)
L+ c

1 + ε
≥ L+ (c/2).
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For each i, let mi be the largest integer that is less than or equal to (ki + 1)1+ε − 1. If
k ∈ N satisfies the condition ki < k ≤ mi, then by (2.1) and (2.2) we have

1

log(k + 1)

k∑
j=1

xj ≥
1

log(mi + 1)

ki∑
j=1

xj

=
log(ki + 1)

log(mi + 1)
· 1

log(ki + 1)

ki∑
j=1

xj ≥
L+ c

1 + ε
≥ L+ (c/2).(2.3)

For each i ∈ N, we also have

(2.4)
1

log(mi + 1)

mi∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
=

log(ki + 1)

log(mi + 1)
ai+

log
(
mi+1
ki+1

)
log(mi + 1)

bi,

where

ai =
1

log(ki + 1)

ki∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
and

bi =
1

log
(
mi+1
ki+1

) mi∑
k=ki+1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
.

By assumption, we have

(2.5) lim
i→∞

ai = L.

It follows from (2.3) that

(2.6) bi ≥ L+ (c/2)

for large i. It is obvious that

(2.7) lim
i→∞

log(ki + 1)

log(mi + 1)
=

1

1 + ε
and lim

i→∞

log
(
mi+1
ki+1

)
log(mi + 1)

=
ε

1 + ε
.

Thus it follows from (2.4-7) that

lim
i→∞

1

log(mi + 1)

mi∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
≥ L

1 + ε
+
ε{L+ (c/2)}

1 + ε
> L,

which is the contradiction promised earlier. �
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The proof of our next lemma uses an argument similar to the one in the proof of
Lemma 2.1. Nonetheless, the proof is included here for completeness.

Lemma 2.2. Let {xk} ∈ d+1 . If the limit

L = lim
N→∞

1

log(N + 1)

N∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
exists, then

L ≤ lim inf
k→∞

1

log(k + 1)

k∑
j=1

xj .

Proof. If it were true that

lim inf
k→∞

1

log(k + 1)

k∑
j=1

xj < L,

then there would be a c > 0 and a sequence

k1 < k2 < · · · < ki < · · ·

in N such that

(2.8)
1

log(ki + 1)

ki∑
j=1

xj ≤ L− c

for every i ∈ N. We will show that this leads to a contradiction.

Let 0 < ε < 1 be such that

(2.9)
L − c
1− ε

≤ L− (c/2).

For each i, let `i be the smallest integer that is greater than or equal to (ki + 1)1−ε− 1. If
k ∈ N satisfies the condition `i < k ≤ ki, then by (2.8) and (2.9) we have

1

log(k + 1)

k∑
j=1

xj ≤
1

log(`i + 1)

ki∑
j=1

xj

=
log(ki + 1)

log(`i + 1)
· 1

log(ki + 1)

ki∑
j=1

xj ≤
L− c
1− ε

≤ L− (c/2).(2.10)

For sufficiently large i, we also have

(2.11)
1

log(ki + 1)

ki∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
=

log(`i + 1)

log(ki + 1)
ai +

log
(
ki+1
`i+1

)
log(ki + 1)

bi,
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where

ai =
1

log(`i + 1)

`i∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
and

bi =
1

log
(
ki+1
`i+1

) ki∑
k=`i+1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
.

By assumption, we have

(2.12) lim
i→∞

ai = L.

It follows from (2.10) that

(2.13) bi ≤ L− (c/2)

for sufficiently large i. It is obvious that

(2.14) lim
i→∞

log(`i + 1)

log(ki + 1)
= 1− ε and lim

i→∞

log
(
ki+1
`i+1

)
log(ki + 1)

= ε.

Thus it follows from (2.11-14) that

lim
i→∞

1

log(ki + 1)

ki∑
k=1

{
1

log(k + 1)

k∑
j=1

xj

}
log

(
k + 1

k

)
≤ (1− ε)L+ ε(L − (c/2)) < L,

which is the contradiction promised earlier. �

Proof of Theorem 1.5. Let A ∈ C+1 be a positive operator such that the limit

L = lim
k→∞

1

log(k + 1)

k∑
j=1

(
1

log(j + 1)

j∑
i=1

si(A)

)
log

(
j + 1

j

)

exists. Applying Lemmas 2.1 and 2.2 to the sequence {xk} = {sk(A)}, we obtain

lim sup
k→∞

1

log(k + 1)

k∑
j=1

sj(A) ≤ L ≤ lim inf
k→∞

1

log(k + 1)

k∑
j=1

sj(A).

This implies, of course, that the limit

lim
k→∞

1

log(k + 1)

k∑
j=1

sj(A)
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exists and equals L. �

3. Supremum over M

From properties (α) and (β) of the linear form ω we see that for every positive operator
A ∈ C+1 and every ω ∈M, we have

Trω(A) ≤ lim sup
n→∞

1

log(n+ 1)

n∑
ν=1

{
1

log(ν + 1)

ν∑
j=1

sj(A)

}
log

(
ν + 1

ν

)
.

For each sequence ξ = {ξj} and each n ∈ N, we define

(Tξ)(n) =
1

log(n+ 1)

n∑
ν=1

{
1

log(ν + 1)

ν∑
j=1

ξj

}
log

(
ν + 1

ν

)
.

Thus to prove Theorem 1.7, it suffices to produce a sequence y = {yj} in d+1 that satisfies
the conditions

(3.1) (Ty)(n) ≤ 257

300
for every n ∈ N

and

(3.2) lim sup
ν→∞

1

log(ν + 1)

ν∑
j=1

yj ≥ 1.

To construct such a sequence, we consider any k ≥ 100 such that

log(k + 1)

log k
≤ 101

100
.

For such a k, define the sequence x(k) = {x(k)j } by the rules that x
(k)
j = 1 if j ≤ k2 and

x
(k)
j = 0 if j > k2. Write

a(k)ν =
1

log(ν + 1)

ν∑
j=1

x
(k)
j , ν ∈ N.

By differentiation we see that the function x/ log(x+ 1) is increasing on [2,∞). Thus

a
(k)
1 < a

(k)
2 < · · · < a

(k)
k2 =

k2

log(k2 + 1)
.

Write

b(k)n =
1

log(n+ 1)

n∑
ν=1

a(k)ν log

(
ν + 1

ν

)
,
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n ∈ N. If 1 ≤ n ≤ k, then

b(k)n ≤ a(k)k =
a
(k)
k

a
(k)
k2

a
(k)
k2 =

1

k
· log(k2 + 1)

log(k + 1)
a
(k)
k2 ≤

2

k
a
(k)
k2 ≤

1

50
a
(k)
k2 .

If k < n ≤ k2, then

b(k)n =
log(k + 1)

log(n+ 1)
b
(k)
k +

log
(
n+1
k+1

)
log(n+ 1)

· 1

log
(
n+1
k+1

) n∑
ν=k+1

a(k)ν log

(
ν + 1

ν

)

≤ log(k + 1)

log(n+ 1)
· 1

50
a
(k)
k2 +

log
(
n+1
k+1

)
log(n+ 1)

· a(k)k2

≤
(

1

50
+

log
(
k2+1
k+1

)
log(k2 + 1)

)
a
(k)
k2 ≤

(
1

50
+

1

2

)
a
(k)
k2 =

26

50
a
(k)
k2 ,

where the last ≤ follows from the fact that k + 1 ≥
√
k2 + 1. If k2 < n ≤ k3, then

b(k)n =
log(k2 + 1)

log(n+ 1)
b
(k)
k2 +

log
(
n+1
k2+1

)
log(n+ 1)

· 1

log
(
n+1
k2+1

) n∑
ν=k2+1

a(k)ν log

(
ν + 1

ν

)

≤
(

26

50
+

log
(
n+1
k2+1

)
log(n+ 1)

)
a
(k)
k2 ≤

(
26

50
+

log
(
k3+1
k2+1

)
log(k3 + 1)

)
a
(k)
k2 .

Since (k3 + 1)2/3 ≤ (k3)2/3 + 12/3 = k2 + 1, we have log(k2 + 1)/ log(k3 + 1) ≥ 2/3. Thus
for k2 < n ≤ k3,

b(k)n ≤
(

26

50
+

1

3

)
a
(k)
k2 =

128

150
a
(k)
k2 .

If n > k3, then

b(k)n =
log(k3 + 1)

log(n+ 1)
b
(k)
k3 +

log
(
n+1
k3+1

)
log(n+ 1)

· 1

log
(
n+1
k3+1

) n∑
ν=k3+1

a(k)ν log

(
ν + 1

ν

)

≤ log(k3 + 1)

log(n+ 1)
· 128

150
a
(k)
k2 +

log
(
n+1
k3+1

)
log(n+ 1)

a
(k)
k3

=
log(k3 + 1)

log(n+ 1)
· 128

150
a
(k)
k2 +

log
(
n+1
k3+1

)
log(n+ 1)

· log(k2 + 1)

log(k3 + 1)
a
(k)
k2

≤ log(k3 + 1)

log(n+ 1)
· 128

150
a
(k)
k2 +

log
(
n+1
k3+1

)
log(n+ 1)

· 2

3
· log(k + 1)

log k
a
(k)
k2 ≤

128

150
a
(k)
k2 .
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Summarizing the above, for every n ≥ 1 we have

(3.3) b(k)n ≤ 128

150
a
(k)
k2 =

128

150
· k2

log(k2 + 1)
.

Now, for each k ≥ 100 such that log(k + 1)/ log k ≤ 101/100, we define the sequence

y(k) = {y(k)j } =
log(k2 + 1)

k2
x(k).

That is, y
(k)
j = x

(k)
j k−2 log(k2 + 1) for every j ≥ 1. Obviously,

(3.4)
1

log(k2 + 1)

k2∑
j=1

y
(k)
j = 1,

and (3.3) translates to

(3.5) (Ty(k))(n) ≤ 128

150

for every n ≥ 1. For every i ∈ N, there is a ki ∈ N satisfying the conditions ki ≥ 100,
log(ki + 1)/ log ki ≤ 101/100, and

(3.6)
1

log(ν + 1)

ν∑
j=1

y
(ki)
j ≤ 2−i

300
for every 1 ≤ ν ≤ i.

Obviously, this implies that

(3.7) (Ty(ki))(n) ≤ 2−i

300
for every 1 ≤ n ≤ i.

Since y
(ki)
j = 0 for j > k2i , for each i, there is an ni > i such that

(3.8)
1

log(ν + 1)

ν∑
j=1

y
(ki)
j ≤ 2−i

300
for every ν ≥ ni

and

(3.9) (Ty(ki))(n) ≤ 2−i

300
for every n ≥ ni.

Inductively, we now select a sequence

i(1) < i(2) < · · · < i(s) < · · ·
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such that
ni(s) < i(s+ 1)

for every s ∈ N. Thus if we define Is = [i(s), ni(s)] for s ∈ N, then Is ∩ Is′ = ∅ for all
s 6= s′ in N. Now define

y = {yj} =
∞∑
s=1

y(ki(s)).

Consider any n ∈ N. If n /∈ ∪∞s=1Is, then it follows from (3.7) and (3.9) that

(Ty)(n) =

∞∑
s=1

(Ty(ki(s)))(n) ≤ 1

300

∞∑
s=1

2−i(s) ≤ 1

300
.

If n ∈ ∪∞s=1Is, then there is an r ∈ N such that n ∈ Ir, and consequently n /∈ ∪s6=rIs. In
this case, it follows from (3.5), (3.7) and (3.9) that

(Ty)(n) = (Ty(ki(r)))(n) +
∑
s6=r

(Ty(ki(s)))(n) ≤ 128

150
+

1

300

∑
s6=r

2−i(s) ≤ 257

300
.

Combining these two inequalities, we see that (3.1) holds. From (3.6), (3.8) and the fact
that Is ∩ Is′ = ∅ for all s 6= s′ in N we similarly deduce that

1

log(ν + 1)

ν∑
j=1

yj ≤ 1 +
1

300
for every ν ∈ N.

That is, y ∈ d+1 . On the other hand, it follows from (3.4) that

1

log(k2i(s) + 1)

k2i(s)∑
j=1

yj ≥ 1 for every s ∈ N.

Hence (3.2) also holds. This completes the construction of the sequence y = {yj} and
proves Theorem 1.7. �

References

1. A. Connes, The action functional in noncommutative geometry, Comm. Math. Phys.
117 (1988), 673-683.
2. A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
3. J. Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A-B 262
(1966), A1107-A1108.
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