BOYD INDICES AND THE BERGER-COBURN PHENOMENON

Jingbo Xia

Abstract. We settle the issue of Berger-Coburn phenomenon on the Fock space completely
for general symmetrically normed ideals Cy, where ® is not equivalent to ®,,. We show
that if the Boyd indices of Cg satisfy the condition 1 < pg < g¢ < 00, then for f € L>°(C"),
we have Hy € Cy if and only if Hf € Cy. We further show that if either pg = 1 or g = 00,
then there is an f € L°°(C") such that H; € Ce while Hf ¢ Co.

1. Introduction

Let du denote the Gaussian measure on C". More precisely, we write
du(z) = W_"e_‘deV(z),

where dV is the standard volume measure on C". Recall that the Fock space H2(C", du)
is the norm closure of C|z1,...,2,] in L?(C",du). Let P : L?*(C",du) — H?*(C",du) be
the orthogonal projection. Given an appropriate symbol function f, the Hankel operator
Hy: H*(C",du) — L*(C",du) & H*(C",du) is defined by the formula

Hph = (1~ P)(fh),

h e H2(C", dp).

For a general f, very little about Hy can be inferred from the properties of Hy.
Consequently, the so-called one-sided theory of Hankel operators, namely the study of Hy
alone, is generally more difficult than the so-called two-sided theory, the study of the pair
Hy and Hp, which is equivalent to the study of the commutator [My, P]. And this is true
not only on the Fock space, but also on the Bergman space and the Hardy space.

Therefore it was all the more remarkable that Berger and Coburn proved the following
result in [2]: for f € L°°(C"), Hy is compact if and only if Hf is compact. From the
author’s conversations with Lew Coburn about this result in the late 1990s and early
2000s arose a natural question:

Question 1.1. [15, page 1384] For f € L*°(C") and 1 < p < oo, does the membership
Hy € Cp imply Hy € Cp?

Here, C, denotes the Schatten p-class. That is, C, is the collection of operators A
satisfying the condition || A||, < co, where [|A]|, = {tr((A*A)P/2)}1/P.

In [1], Bauer answered Question 1.1 for the Hilbert-Schmidt class Co: for f € L (C™),
Hy € Cy if and only if Hy € Cy. Then, after a long period that saw no progress on this
question, Hu and Virtanen answered it for 1 < p < oo:
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Theorem 1.2. [9,10] Let 1 < p < co. Then there is a 0 < C < oo such that
1Hfll, < CllHlp

for every f € L>°(C™). In particular, for f € L>°(C"), Hy € Cy, if and only if Hy € Cp.

Hu and Virtanen referred to Theorem 1.2 as the Berger-Coburn phenomenon for the
Schatten classes Cp, 1 < p < co. We will adopt their terminology. In [16,8], the root cause
of the Berger-Coburn phenomenon was ascribed to the absence of bounded, non-constant
analytic functions on C”.

Then in [14], the Berger-Coburn phenomenon was proved for Lorentz ideals. These
ideals are defined in the following way.

Let H be a Hilbert space. For any given 1 < p < oo, the formula

||A||+ — Sl(A) + SQ(A) + -+ Sj(A)
p j;l) 1=V 4 2-1/p 4 ... 4 j-1/p

defines a norm for bounded operators on H. Here and in what follows, we write s1(A),
s2(A), ..., s;(A), ... for the s-numbers [7] of the operator A. It is well known that the
collection of operators

Cf ={AeBH): Al < oo}
form a norm ideal [7].

For each 1 < p < 00, the formula

— s;(A)
So1/p

1Al =
j=1

also defines a norm for bounded operators on H. Denote
Cy = {A € B(H): A]; < oo},

which is also a norm ideal of operators on H [7].
For these ideals, we recall the following:

Theorem 1.3. [14, Theorem 1.3] Let 1 < p < co. For f € L>(C"), Hy € Cf, if and only
if Hy € C;'.

Theorem 1.4. [14, Theorem 1.4] Let 1 < p < oo. For f € L>(C"), Hy € C,, if and only
ifHf €C, .

For the case of the complex plane C, in [14] we showed that the function

7t |z >1

9(z) =
0 if |z <1



has the property that H, € C; while H; ¢ C;. Thus there is no Berger-Coburn phenomenon
for the trace class C;. Furthermore, we showed in [14] that there is no Berger-Coburn
phenomenon for the famous Macaev ideal C_, for its dual C;", and for a class of ideals C,.

But the ideals mentioned above are only some of examples of a much broader class
called symmetrically normed ideals, or norm ideals for short. The purpose of this paper is
to settle the issue of Berger-Coburn phenomenon completely for this entire class of ideals.
Let us recall the definition of these ideals.

Following [7], let ¢ denote the linear space of sequences {a;};ecn, where a; € R for
every j € N, and for every sequence the set {j € N : a; # 0} is finite. A symmetric gauge
function (also called symmetric norming function) is a map

®:¢— [0,00)

that has the following properties:
(a) ® is a norm on ¢.
(b) ®({1,0,...,0,...})=1.
(c) ®({a;}jen) = ®({|ar(;)|}jen) for every bijection 7 : N — N.
See 7, page 71]. Each symmetric gauge function ® gives rise to the symmetric norm

IAlle = §1>111)<I>({31(A), ...,8(A),0,...,0,...})

for operators. On any Hilbert space H, the set of operators
(1.1) Co ={A€B(H):|Ale < oc}
is a symmetrically normed ideal [7, page 68].

Let us recall some familiar examples. First of all, the formula

P (a) = sup |a;|, a={a1,...,a;,...} €¢,
JEN

gives us what may be the most familiar symmetric gauge function. It is obvious that
|- lle.. = - ||, the operator norm. It is also obvious that a symmetric gauge function ®
is equivalent to @, if and only if there is a 0 < C' < oo such that

k
o({1,...,1,0,...,0...}) <C forevery ke N.

For each 1 < p < oo, the formula
@y ({a}jen) = (lar]? + laal? + -+ lag|P + )17

defines a symmetric gauge function on ¢, and the ideal Cp, defined by (1.1) is just the
Schatten class C,.



For each 1 < p < 00, define the symmetric gauge functions <I>Z‘9Ir and @, by the formulas

x| + -+ + lax)| _ e lax)l
({aJ}JGN)_Sng 1— l/p_|_ ‘|‘j_1/p and (I)p ({aj}jeN) _;j(p—l)/p’

{a;}jen € ¢, where 7 : N — N is any bijection such that |a,1)| > |ar@)| > -+ > |ax)| >

-+, which exists because each {a;}jen € ¢ only has a finite number of nonzero terms.

Then the ideals Cg4+ and Cg4- defined by (1.1) using <I>; and @, are none other than the
p p

Lorentz ideals C;' and Cp_ introduced earlier.

For a general symmetric gauge function @, let C((I)O) denote the || - ||g-closure of the
collection of finite-rank operators in Cy. We always have CC(I)O) C Cg of course, but we
can have either C((I,O) = Cq or Cfpo) # Cg. For example, on any Hilbert space ‘H we have
Co., = B(H) and C(O) = IC(H) For every 1 < p < oo, it is well known that Cc(pop) = Cop,
and c<0) Cq- while C{) 7Acq,; 7.

Next we recall the Boyd indices [3,11] for ®. For any a = {a;};en and m € N, define
the sequence al™ = = {a]'}jen by the formula

aj' =a; if (i—1)ym+1<j<im, i€ N.

In other words, a™ is obtained from a by repeating each term m times. Alternately, we
can think of a™ as a ® -+ @ a, the “direct sum” of m copies of a.

For each m € N, the formula D,,a = al™ defines a linear operator on é. Related to
D,, is the operator D, defined by the formula

1 m m m
Dl/ma: E{Zaj,Zam+j,...,Za(k_l)m+j,...}, a= {al,...,ak,...} € C.
j=1 7=1 j=1

We obviously have D/, Db = b for all m € N and b € ¢. Moreover, if a,b € ¢ are
such that D /,,a = b, and if ® is any symmetric gauge function, then it follows from the

properties of ® that ®(bl™) < ®(a). Consequently,

sup{;;@]) b a\{()}} = sup {% Lac é\{O}} .

It is well known that for any symmetric gauge function ® on ¢, the limits

log m log m

pe = lim s — lim

= og (sup { (b(a ca € c\{O}}) R log (inf { @(a a < C\{O}})

exist and satisfy the condition 1 < pg < g < oco. The quantities pp and ge are called the
Boyd indices of ®. See [3,11].




The results of this paper can be simply summarized thus: the Berger-Coburn phe-
nomenon is completely determined by the Boyd indices of the ideal in question.

Theorem 1.5. Let ® be a symmetric gauge function such that 1 < ps < qp < co. Then
there 1s a constant 0 < C' < oo such that

(1.2) |Hflle < C|lHylla
for every f € L>°(C™). In particular, for f € L>°(C"), Hy € Cs if and only if Hf € Cs.

The symmetric gauge function ®, is worth special attention. Since C((I)OOL is the collec-
tion of all compact operators, the original theorem of Berger and Coburn tells us that for
ferL>(Cm), Hy e CY if and only if H; € Cy . On the other hand, since || - [ls.. = || -,
the operator norm, we now know that there is no constant 0 < C' < oo such that

IHflle.. < CllHfllo.

for every f € L°°(C) [14, Proposition 13.2]. This makes ®,, unique in the context of
Berger-Coburn phenomenon. For any ® not equivalent to ®.., if the condition 1 < pg <
g < oo is not satisfied, then there is no Berger-Coburn phenomenon for Cg:

Theorem 1.6. Let ® be a symmetric gauge function not equivalent to ®o,. If either
pe = 1 or g = oo, then there is an f € L>°(C") such that Hy € Cg)) while Hy ¢ Cg.

The rest of the paper is organized as follows. Sections 2-5 are devoted to the proof
of Theorem 1.5. Specifically, in Section 2 we deal with Boyd interpolation for general
symmetric gauge functions, which is the most crucial step in the proof of Theorem 1.5.
Using the result in Section 2, we show in Section 3 that if the condition 1 < pg < gp < 00
holds, then the integral operators 77, ...,T,, defined by (3.5) below are bounded on the
space £L2®. Section 4 deals with commutators [My, P]. Then, after the preparations in
Sections 2, 3 and 4, we prove Theorem 1.5 in Section 5.

After that, we turn to the proof of Theorem 1.6. In Section 6 we produce symbol
functions ¢ which are both bounded and boundedly supported, and for which H, and
Hg exhibit quantitatively different behaviors. Then, using such ¢ as building blocks, in
Section 7 we construct the f € L>°(C") promised in Theorem 1.6.

To conclude the paper, we take a closer look at the condition 1 < pgp < g < ©
itself. It is easy to show that if a symmetric gauge function ® satisfies the condition
1 <ps < qo < 00, then for any g < s < oo and 1 <r < pp we have

(1.3) Cr CCo CCs.

That is, for such a & we can bound the size of C¢ by Schatten classes. This immediately
raises the question, is the converse also true? In other words, if (1.3) holds for some
1 <r<s< oo, does it follow that 1 < pg < ge < co? This question is important because
an affirmative answer would give us a very convenient characterization of the condition
1 < ps < go < co. But the actual answer is decidedly negative. In Section 8 we will show
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that given any 1 < r < s < 00, there is a symmetric gauge function ¢ that simultaneously
satisfies (1.3) and the conditions that g = 0o and that pgs = 1. Consequently, there exists
a symmetric gauge function ® such that (1.3) holds, and yet there is no Berger-Coburn
phenomenon for the ideal Cg.

2. Boyd interpolation

Recall from [7, page 125] that given a symmetric gauge function ®, the formula

& ({by}jen) = sup{ >t

{ay}sen € 6,8({a;)}jen) < 1}, [b}ien €6

defines the symmetric gauge function that is dual to ®. Moreover, we have the relation
¢** = @ [7, page 125]. This relation implies that for every {a;};en € ¢, we have

D ({a;}ien) = sup{

{b;}jen € &, @ ({b;}jen) < 1}

In terms of operators, this duality is manifested in the form of the following trace inequality.
If F'is a finite-rank operator and A is an arbitrary operator, then for every symmetric gauge
function ® we have

(2.1) tr(AF)| <

See inequality (I1.7.9) in [7].

We need to extend the domain of definition of a symmetric gauge ® beyond the space ¢.
Suppose that {b; } ;e is an arbitrary sequence of real numbers, i.e., the set {j € N : b; # 0}
is not necessarily finite. Then we define

(2.2) 2({by)jen) = sup @({br, -, b, 0,0, ).

More generally, for any countable, infinite index set A, we define

(2.3) P({bataca) = @({bn() }ijen),

where h : N — A is a bijection. By the properties of symmetric gauge functions, the value
of ®({by}aca) is independent of the choice of the bijection h : N — A.

Let X be a Banach space. We will now define spaces of X-valued sequences.

Asin [14], we define oo (N, X) to be the collection of a = {a;} satisfying the conditions
that a; € X for every j € N and that

card{j € N :a; # 0} < oo.
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That is, if a = {a;} € loo(N, X), then the sequence {a,} has at most a finite number of
nonzero terms. In other words, £yo(IN, X) is the X-valued version of ¢.

Definition 2.1. Let ® be a symmetric gauge function. Then ¢4 (N, X) denotes the

collection of sequences a = {a;}jen, where a; € X for every j € N, such that

lalle = ®({[la;l}jen) < oo

Let us conisder some examples. Recall the symmetric gauge function ®,({b;};en) =
(Z;‘;l b;[P)1/P, 1 < p < co. Then obviously £e, (N, X) = ¢?(N, X), the collection of X-
valued /P-sequences. Particularly important to this paper is the symmetric gauge function

_ — byl .
®, ({b5}jen) = 221 j(p_f)/pa {bj}jen € ¢,
‘7:
where 7 : N — N is any bijection such that |br)| > [bx2)| > -+ > [bzj)| = -+,

1 < p < oo. As we have mentioned, we write C, = C@;- In this spirit, we will write
(2(N,X) =Ls-(N,X) and |all, =lallg- for a€ly(N,X).

It is well known that if 1 <r < p < s < 0o, then

(2.4) "(N,X) C /P (N, X) C°(N, X).

Lemma 2.2. Let ® be a symmetric gauge function such that qp < q < oo. Then there is
a c >0 such that ®(E™) > em/1®(€) for allm € N and £ € ¢é.

Proof. By the definition of q¢, the condition g < ¢ implies that there is an N € N such

that if m > N, then
logm

log (@((Dg([gl))

Elementary manipulation leads to the inequality

< q for every ¢ e ¢\{0}.

m'/ 1% (¢) < (gl

for all m > N and & € ¢. Thus the constant ¢ = N~/ will do for the lemma. [J

Lemma 2.3. Let ® be a symmetric gauge function such that g < q < 0o. Then f(IN, X)
C 4N, X).

Proof. Pick a ¢y € (¢a,q). By Lemma 2.2 there is a ¢ > 0 such that ®(¢[™) > em/ 0 (¢)
for all m € N and £ € ¢é. Since ¢ > qp, by [13, Lemma 3.1], there is a 0 < B < oo such
that

o0 1/q
<Z]aj|q) < B®(a) forevery a ={ai,...,a;,...} €¢.

=1



Recalling Definition 2.1, from the above we deduce

o0 1/q
(Z ||aj||q) < Blallo
j=1

for every a = {a1,...,a;,...} € l(N, X). This completes the proof. O

Lemma 2.4. Let ® be a symmetric gauge function such that pg > p > 1. Then qg- <
p/(p—1).
Proof. Let s be such that pg > s > p. Then there is an N € N such that

logm
P(gml)
1°g< (€ >

for all m > N and & # 0 in ¢. This obviously implies that

> S

ey <m/se(€) forall m >N and €€ é.
Let b = {b;}jen € ¢. Since ®** = @, there is an a = {a;}jen € ¢ with ®(a) = 1 such that
o*(b) = Z;’;l bja;. Therefore for each m > N,

m®*(b) =m > _bja; < *BM)®(al™) < m'/ &* WM (a) = m!2@*(bI™).
j=1

Thus we conclude that if m > N, then m(&=1/5®*(b) < ®*(bl™)) for every b € é. In other
words, for every m > N we have

&* (plml
mG—1/s < inf{% :becand b # O}.

From this we deduce that g+ < s/(s — 1). Since s > p > 1, we have g~ < p/(p—1). O
Next we perform Boyd interpolation [3,4] for these spaces.

Proposition 2.5. Let 1 < ' < r < oo. Suppose that A : {* (N, X) — (" (N, X) is a
bounded operator. Furthermore, suppose that there is a 0 < B, < 0o such that

(2.5) Azl < Byl

for every x € Loo(N, X). Let ® be a symmetric gauge function such that r' < pe < g < 7.
Then A maps Ls(IN, X) into itself, and there is a 0 < C' < 0o such that

(2.6) [Aalle < Cllalle

for every a € £(N, X).



Proof. By the condition g < r, Lemma 2.3 and inclusion (2.4), we have {3(N,X) C
¢" (N, X). Thus our task is to find a constant 0 < C' < oo such that (2.6) holds.

To find such a 0 < C < oo, we pick p and g such that
(2.7) r<p<ps <qgo<qg<r.
Let an a = {a; }jen € o(IN, X) be given. Then
Aa = {(Aa)1, (Aa)s,...,(Aa)k,...}.

If there are infinitely many nonzero terms among (Aa)i,(Aa)s,...,(Aa)k,..., we let
21,%2,.-.,%j,... be an enumeration of all the nonzero terms such that

(2.8) 21l > Nlz2ll > -+ > Jlzg]l > -

If there are only finitely many nonzero terms among (Aa)i, (Aa)s,..., (Aa),..., we let

21,29, .., 2k, ... be an enumeration of (Aa)i, (Aa)s,..., (Aa)g,... such that (2.8) holds.
This defines the sequence {zx}ren. We call z = {z;}ren a descending rearrangement of
Aa, and we will use this terminology below. Our goal is to show that ||z]|s < C|lals.

Define z(1) = {z142(k—1) }ren and 22 = {22k tken. Then |z]|le < Hz(1)||q> + Hz(2)Hq>
and [|z?]|¢ < ||2™V||¢. Thus it suffices to show that ||z |le < C|lal|s.

There is an injective map 7 : N — N such that ||a,«|| > [|ar@it1)|| for every i € N
and such that a; = 0 if £ € N\m(N). For each j € N, we define v;, = a; if k € {m(i) :
1<i<j}landovjr=0if k¢ {m(i): 1 <i < j}. We then define the sequences

v(j) ={vj1,v52,. -, Vjk,...} and u(j)=a—v(j),

j € N. For each j € N, let §;1,...,&k,... be a descending rearrangement of Au(j).
Similarly, let 9;1,...,mjk, ... be a descending rearrangement of Av(j), j € N. From the
relation Aa = Au(j) + Av(j ) it is easy to see that

(2.9) 12—l < &5l + 17,5
for all j,k € N.

Because Zgzl l/i(rfl)/” > ¢17Y/" and because §j1s-->& ks --. are a descending re-
arrangement of Au(j), we have c171/7||¢; ;|| < |[Au(j)|;, j € N. Applying the bounded-
ness of A on ¢” (N, X), for every j € N we have

|@r i+l
||§]a]|| < 1/T||Au( )“T‘ — 1/rHu ||r - 1/7"2 k(rjl)/r

2 la I
m(jv+k)
1/r Z; (v — 1)+ k)r=D/r
J

1/7~Z||a (v) Z +k)(r 1)/r




where, for each v € N, we define the element

.]j(l/) = {a’ﬂ'(l/)7a/7T(21/)7 <o Qi) - } S gcp(N,X).

Let b = {b; }jen be an element in ¢ satisfying the conditions b; > 0 for every j and

We have
llz(@)lle
(2.11) Zlb ill€all < sz i 1>/r Zb 1(z();]] < Cad*( Z e
J
We have

lz()le < (Ca/vMD)]a(@) o < (Ca/v'/9)|lalle  for veN,

where the first < follows from Lemma 2.2 and the second < follows from the condition
lax@)ll > [lax@+1yll, ¢ € N. Substituting this in (2.11) and applying the condition ¢ < r,
we find that

S e lafle )
(2.12) Zlbjﬂﬁj,jﬂ < Cy® (b)z1 Taye—nyr = & (0)llafle.
j= v=
For each 5 € N, we also have
1 _ _ Cs d [
55l < ——37 PV [ Av(H)l —W lo()Il7 = i ZW’—U/T”

=1

where for the second < we apply (2.5). Thus

. > [P laxll b,

7 (4) (i) } : j
ZleHnJJ” § Z 1/74 Z 7;(7“’—1)/7“’ - (T’ 1)/T’ ,1/7,/ .
J= Jj=1

i=1 =i
We now define the element g = {31,...,5;,...} € é where

oo

1 b,
pi = (' =1) /7! Z /7

J1= =17

for each 7 > 1. Then

> billng

J=1

< Cellall« @7 (5).
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Combining this with (2.9) and (2.12), we obtain the inequality
> billzrseg-nll < (C52*(b) + Cs®*(8)) llalls-
j=1

Recall the descending conditions (2.8) and (2.10). Thus we will have ||z < C|lallo if
we can find a constant C' such that ®*(3) < C®*(b).

We have
bi 1 - bj—|—z' o b w—l—k
Bi < 7+Z’(w—1)/r’ ; g ' =1)/r" 1)/?"’ ZZ (v —1)i+ k)Y
< > S
= (7“’71)/7“ (24 - 1 V . 1)2 + k)l/?“
bi > bil/
(2.13) < 7+C7I;W,

where the second < uses (2.10). Since pp > p > r’ > 1, Lemma 2.4 tells us that ¢« <
p/(p—1) <r'/(r'=1). Thus for any y = {y; }ien € ¢ such that y; > 0 for every i, we have

Y 3 - bzy i€
2% Z 1/7"’ Z 1/7"’ Zylbw < <I> Z { l/r}’ N)
< Cuay) Y Tllbudien) )

]/(P_l)/Pl/l/T/

v=1

= o*(b .
< Cs®(y) ) | V(PT(PI)/W = Co®(y)2"(b),

v=1

where the second < is obtained from Lemma 2.2 and the third < uses (2.10). Combining
this with (2.13), we see that ®*(5) < (1 4+ CyC7)P@*(b). This completes the proof. [J

3. The integral operators 7;,...,7T),

For each (a1, as) € Z?, we define the square

(3.1) I(al,az) :{a1+x—|—i(a2+y) Y N TS [0,1)}

in C. We now consider the standard partition of C™ by cubes of the size 1 x 1 x---x1x 1.
That is, for each a = (a,. .., ae,) € Z?", we introduce the cube

(32) Qa = I(al,ag) X X I(Oézn—17042n)'
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Let ® be a symmetric gauge function. For a measurable function ¢ on C", we define

o=o({( [ |so<¢>|2dv<c>)1/2}aez%)

(see (2.3)). Here, the 2 in the subscript of || - ||2,¢ refers to the fact that one first computes
the L?-norm of ¢ on each Q,, a € Z?". Indeed | - ||2.4 is a kind of “hybrid” norm. But by
what we know from previous investigations, this is the right kind of norm when one deals
with the symbol of a Hankel operator on the Fock space H?(C™,du).

(3.3) le

Definition 3.1. Let ® be a symmetric gauge function. Then £2® denotes the collection
of measurable functions ¢ on C" satisfying the condition ||¢l/2,6 < co.

Recall that in [14], we used the notation £2? for Ei’q)p, and we used the notation
2,0
L£2P~ for L, 7,1 < p < oo. We will continue to do so in this paper.

It will be convenient to identify Z?" with the standard lattice in C™. That is, for
a1, Q9, ..., 00, € 4, we will

(3.4) identify (a1, as,...,q9,) with (a1 + g, ..., aon_1 + iaay,).

Let dA be the area measure on C. For each 1 < j < n we define the operator

(3.5) (TjSD)(Clw--’Cn):p-V-/(‘: @(Cla"' ,ng—jl,_z;gg—l—l;...,Cn)dA(z)7

(C1y...,Cn) € C™. See Lemma 5.3 below for the purpose of T1,...,T,. But this section

deals with the boundedness of these operators.

Proposition 3.2. [14, Proposition 7.4] On each L3P~ = Ei’(b’?, 1 < p < o0, the operators
Ty, ...,T, are bounded.

Combining the interpolation in Proposition 2.5 with Proposition 3.2, we have

Proposition 3.3. Let ® be a symmetric gauge function such that 1 < pgs < qp < 0.
Then Ty, ..., T, are bounded operators on L>?.

Proof. Let 1 < p < g < oo be such that p < ps < qs < q.
By (3.1), (3.2) and (3.4), for each a = (a1, . .., aay,) € Z*" we have Q, = Qo + a. Let
X = L*(Qq). Let m : N — Z?" be a bijection. Then any function ¢ on C™ is naturally
identified with the sequence {¢g }ren, where
@k(Z) = SO(Z + ﬂ-(kj))v S Q07
k € N. This naturally identifies £2® with ¢4 (N, X). This also naturally identifies L2P~ =

£ with £y (N, X) = ¢ (N, X), and L2907 = L™ with £, (N, X) = (*(N, X).

Under this identification, Proposition 3.2 tells us that the maps
T; 41 (N, X) - ¢2(N,X) and T;:4"(N,X)— (N, X)
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are bounded, 1 < j < n. Therefore it follows from Proposition 2.5 that each map
Tj : ch(N?X) — E@(N,X)
is bounded, 1 < 57 < n. This completes the proof. [J]

4. Commutators and norm ideals

For each z € C™, let 7, be the translation 7,(¢) = ( — z, { € C". Denote
T(C™) = {f € L*(C",du) : for, € L*(C",du) for every z € C"}
as in [6,14,15]. We define the open cube
(4.1) W ={(z1+ Y1, Tn +1Yn) : T1, Y1, -+, Tn, Yn € (—1,2)}

in C™. For f € T(C") and u € Z*", we define the quantity

g = { | CE f(w)IQdV(w)dV(Z)}l/Q-

We need the following result:

Proposition 4.1. [6, Lemma 5.6] Let ® be an arbitrary symmetric gauge function. Then
there is a constant 0 < C' < co such that

I[Mf, Pllle < CO{JI(f;u)}tuezen)

for every f € T(C™).
For f € T(C™) and o € Z*", we define the quantities

1/2 1/2
43 Ao = ([ rePave) wa sa= ([ epae)
Qo W4+a
We further define the set
(44) £ = {(]1 4+ k1, ..., Jn + an) 9, k1, gns ke € {—1,0, 1}}

Lemma 4.2. [14, Lemma 8.2] For any set of non-negative numbers {xqo}ocz2n and any
symmetric gauge function ®, we have

@({ ZﬂfaJre}an%) < 37" ({20 }aczen)-

eef
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Lemma 4.3. [14, Lemma 8.4] Let ¢ be any non-negative, measurable function on W.
Then

/W /W /o1 Ptz + (1 = thw)dtdV (w)dV (z) < 6" /W o(z)dV (x).

Proposition 4.4. Let ® be an arbitrary symmetric gauge function. Then there is a
constant 0 < Cy4 < 00 such that

I[Mf, Pllle < Caa®({A(Vf];u)}tuezen)

for every f € T(C™)NCH(C).
Proof. For each a € Z*>", W + & C UcegQaye. Hence by (4.3) and Lemma 4.2,

(4.5) S({B(Vflw)}uezen) < 3" @{A(IV fl;u) buezen)-
Thus, by Proposition 4.1, it suffices to show that there is a 0 < C' < oo such that
(4.6) J(fiu) < CB(|IVfliu)

for all f € T(C")NCHC") and u € Z*".

To prove (4.6), it will be convenient to identify C™ with R?" in the natural way. Since
our f is in C!, for any u € Z*" and any z,w € W + u, we have

1 1
f(z)—f(w):/o %f(tz+(1—t)w)dt:/0 (VH)(tz+ (1 —t)w), z — w)dt,

where the (-,-) is taken in the sense of the inner product on R?". Since z,w € W + u, we
have |z —w| < 3v/2n. Hence the above implies

1
() = F(w)P < 18n / (VF)(tz + (1 — tyw)Pt.

Applying Lemma 4.3, we have

J(f;u) < 18n/W+u /W+u/0 (V)(tz + (1 = t)w)|dtdV (w)dV (z)
< 18n62" /W+ (VF)(x)[2dV (z) = 18n6*" B(|V f; u).

This proves (4.6) and completes the proof of the proposition. [

Proposition 4.5. Let ® be an arbitrary symmetric gauge function. Then there is a
constant 0 < Cy.5 < 00 such that

(4.7) [[My, Pllle < Cas®({A(f3 )} uezen)
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for every f € T(C™).

Proof. Tt is obvious that for any u € Z3",
(4.8) J(fru) < 2{VIW)}2B(f;u) = 2-3"B(f; u).
Similar to (4.5), Lemma 4.2 now gives us the inequality

S({B(f;u)}uezen) < 37" ({A(f3u) buezen).
Combining this with (4.8) and with Proposition 4.1, we obtain (4.7). O

5. Proof of Theorem 1.5

The proof of Theorem 1.5 involves a well-known decomposition (see [12,5,9,14]) of the
symbol function of a Hankel operator, which we now review. We begin with the sets

Q={(x1+iy1, .., Tn +iYn) 1 T1,-- -, Ty Y1,---,Yn €[0,1)} and
S={(z1+ Y1, s Tn +1iYn) : T1,. - Ty Y1,---,Yn € (—=1/2,3/2)}.

Thus @ = Qo (see (3.2)). Fix an n € C°°(C") satistying the following three conditions:
(1)0<n<1onC"
(2) n=1o0n Q.
(3) n=0o0n C™\S.
For each z € C", we define the function 1,({) = n(¢ — z) on C™. By (3), for ( € C" and
u € 2", if n,({) #0, then ( —u € S, i.e., u € ( — S. This ensures that the function

Y = Znu

uezZn

belongs to C°°(C"). Also, by (1)-(3), the inequality 1 < ¢ < 3" holds on C". Note that
the identity (¢) = ¢(¢ — u) holds for all u € Z?™ and ¢ € C™. Now we define

Y. = ',

for every z € Z?". Then {7, : z € Z?"} is a set of C™-partition of the unity on C".
Moreover, for every z € Z?", we have 7, = 0 on the set C™"\{S + z}.

For an open set U in C", let Hol(U) denote the collection of analytic functions on U.
For f € T(C") and z € Z?", we define

M(fi2)= int ( /W+z 1) - h<c>|2dv<<>) -

heHol(W+2)
where W is given by (4.1).

15



Let f € T(C™). For each z € Z?", there is an hy . € Hol(W + z) such that

/ F(O) = hy(OPAV(C) < 2M2(f: 2).
Wz

Note that this is true even if M(f;z) = 0. We extend the definition of hy . to the entire
C" by setting hy¢, = 0 on C"\{W + z}. Now define the functions

(5.1) fY= 3 (f=hs2)r: and &= 3" hpq..

zEZ32n 2EZ2n

We have f = f1) + f(2) because {7, : z € Z?>"} is a partition of the unity on C". Also
note that f(2) € C>(C").

Proposition 5.1. [14, Corollary 9.3] There are constants 0 < C51 < 00 and 0 < Cf ; < 00
such that the following bounds hold: Given an f € T(C™), let

f=F04 @
be the decomposition defined by (5.1). Then for every symmetric gauge function ®,

D({A(fM;a)}pezen) < Cs1l|Hylle and
(I)({A(ajf(2)?a>}aez2n) < th)lHHqu); J=1...,n.

Lemma 5.2. [14, Lemma 9.4] Suppose that f € L>(C™). Then the functions f1), f2)
defined by (5.1) also belong to L*°(C™).

Lemma 5.3. [14, Lemma 5.1] Let f € C?(C™) N L*>°(C") be a function which has the
property that 9;f € L2P = ot for some j €{1,....n} and 1 < p < co. Then

0;f = —m'T;(9; 1),

where T} is the operator defined by (3.5).

Proof of Theorem 1.5. Let ® be a symmetric gauge function such that 1 < pg < go <
oo. Let f € L*°(C™). To prove (1.2), it suffices to consider the case where ||H|/o < o00.
We apply decomposition (5.1) to this f:

F=fY 4@ with f@ ece(Cn).
By Lemma 5.2, f(), f(2) € L>°(C"). Applying Propositions 4.5 and 5.1, we have
(5.2) IHzollo < I[Mya, Pllle < Cos®{AfY; ) aezen) < CasCsalHyllo-

Next we consider H F2)-
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By Proposition 5.1, (4.3) and (3.3), the condition ||H|l¢ < oo implies 9;f?) € £2®
for j =1,...,n. By Lemma 2.3, we have £L2® C £24 = £2% for every q € (qg,00). Since
f® e L°(C™), Lemma 5.3 is applicable to f(?). By Lemma 5.3,

0;f? = —n ' T;(0; 1),
j=1,...,n. Thus it follows from Proposition 3.3 that

10; f P 2,0 < Cl10;f P |2,0,

j=1,...,n. Recalling (3.3) and (4.3), this means
(5.3) ({A0; [ ) aezen) < COUAQD; [P ) }aezen),
7 =1,...,n. By Proposition 5.1, we have
({A0;f?:a)}aezen) < C41llH |-
j=1,...,n. Combining this with (5.3), we find that
e({A(VP ;) aczen) < Cil| H o
Applying Proposition 4.4, we now have
(5.4) 1Hfo o < [I[Mse), Pllle < CLa®{A(VFP];0)}aczen) < CaaCilHylla.
Since f = fM) 4+ ) (1.2) follows from (5.2) and (5.4). This completes the proof. [J

6. More on Hankel operators

Having proved Theorem 1.5, next we turn to the proof of Theorem 1.6, which requires
quite a bit of preparation.

For any pair of a € C™ and r > 0, denote
B(a,r)={z€C":|a—z| <r}.

Let M denote the collection of ¢ € L>°(C"™) for which there is some 0 < p = p(p) < c©
such that ¢ = 0 on C™"\B(0,p). If ¢ € M, then the Hankel operator H, is in the trace
class C;. This fact can be easily verified by hand, but it certainly is a consequence of
Proposition 4.1. Furthermore, we have

Lemma 6.1. If ¢ € M, then

lim ||M,PM,

r—00

0.

cn\B(0,r) ||1 =
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Proof. For any ¢ € M, by definition there is some 0 < p = p(p) < oo such that ¢ = 0
on C"\B(0,p), and ¢ € L>*(C™). Using these properties, it is elementary to verify that
M,P € C;. Now it suffices to observe that M. — 0 strongly as r — oo. [J

XCn\B(0,r)

For each a € C™, we have the translation
To(2) =2—a, ze€C".
It is well known that for each a € C", the formula
Vof = foTa ke, f€L*(C" dp),

defines a unitary operator on L2(C",dpu), where kq(2) = e*@e~laI’/2 The restriction of
V, to H?(C",du) is also a unitary operator that maps the Fock space onto itself.

For any f € L*°(C"), we will identify the Hankel operator H; with the operator
(1 — P)MP on the space L?*(C",du). Thus for f,p,1) € L>(C™), M,H M, means the
operator M,(1 — P)M¢PMy on L*(C",dy).

Our next lemma simplifies the proof of Theorem 1.6:

Lemma 6.2. Let ® be a symmetric gauge function. Suppose that there exists a set of
functions {fi, : k € N} C M such that supcn || filloo < 00 and such that

(6.1) P Hy, ey while @ Hj, ¢ Co.
k=1 k=1

Then there is an f € L>(C™) such that Hy € CC(I)O) while Hy ¢ Cs.

Proof. First of all, it is a basic fact about symmetrically normed ideals that C((I)O) D (.

Since {fr : k € N} C M, there is a sequence {p;} in (0,00) such that fr = 0
on C"\B(0,py) for every k € N. For each k € N, Lemma 6.1 allows us to pick an
ri € (pk,00) such that

(6.2) { Hka - MXB(OJ'k)kaMXB(O,7-k) | < 92—k and

Hka - MXB(O»rk)kaMXB(o,Tk) ||1 < 27k

Thus the operators
0o oo oo 0o
@ka - @Mwamk)kaMXB(o,rk) and @Hﬁ - @MXBw,rk)kaMXB(o,rk)
k=1 k=1 k=1 k=1
are in the trace class. Applying (6.1), we have
oo 0o
(63) D Mypeo,, Hi My, , €CS while €D My, Hp My, & Ca-
k=1 k=1
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We can inductively select a sequence {ay} in C™ such that B(ag,rr) N B(aj,r;) = 0 for
all 7 # k. We have

Ve My \HoMyp o Vi =M

B(0,ry) © Gk XB(ak,rk)HtpoTak

M

B(O,Tk) XB(ak,rk)

for every ¢ € L*°(C"™). Combining this unitary equivalence with (6.3), we see that

oo oo

(0) : @ _
@MXB(ak,Tk)kaoTak MXB(ak,rk) S C‘P Whl]'e MXB(ak,rk)kaOTak MXB(ak,'rk) ¢ C(b
k=1 k=1

Since B(ay,r) N Blaj,r;) = 0 for all j # k, the above implies that as operators on
L?(C™,du), we have

(6.4)
Z MXB(ak,rk)kaoTak MXB(ak,rk) € C<I> while Z MXB(ak,rk)kaOTak MXB(ak,rk) ¢ Co.
k=1 k=1

Using the unitary operator V,, again, from (6.2) we obtain

HkaOTak - MXB(“vak)kaoTak; MXB(%’%) ||1 < 2=k and
HkaoT% - M < -k )

XB(ak’Tk:)HkatoTak MXB(ak,rk) ||:l
k € N. Thus the operators

(@) 0
§ :kaOTak - § :MXB(ak,rk)ka:oTakMXB(ak,rk) and
k=1 k=1

) )
ZHka-OTak - ZMXB(ak,Tk)HJFkOTak MXB(akaTk)
k=1 k=1

are in the trace class. Combining this fact with (6.4), we see that
(6.5) S Hjor,, €CY while Hj,or, ¢ Ca.
k=1 k=1

The property that fi, = 0 on C™\B(0,ry) implies that fyo71,, = 0on C"\B(a, k). Since
B(ak,ry) N B(aj,r;) =0 for j # k and sup,en || frlloo < 00, the function

f:kaoTak
k=1

is in L°°(C™). On L?(C™,du), we have the obvious strong convergence Zizl Myor, —
My and Zizl My, o7, — Mj as £ — oo. Therefore

o0 o0
> Hpor, =Hp and ) Hj,o., =Hf.
k=1 k=1
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Thus (6.5) tells us that Hy € Cg)) while Hy ¢ Cs. This completes the proof. [J
Proposition 6.3. For each f € C>°(C") N L*(C",du) we have

1L = P)FI < N0ufll + -+ [|9nf-

Proof. For each j € {1,...,n}, define the operator P; by the formula

1 7 2
(ij)<gla s 7Cn) - ;/;:w(gl7 . 'aCj—lvz7Cj+17 v 7Cn>egjz€_|Z| dA(Z)7

¢ € L2(C™,dp). Then it is easy to see that PP, = P P; for all j,k € {1,...,n}, and that
P=P---P,. Thus

1-P=1-P, Py 1+ P - Poi(l—Py)
:1_P1"'Pn—2+P1"'Pn—2(1_Pn—1)+P1"'Pn—1(1_Pn)

Since each P; is an orthogonal projection, from the above we see that

(6.6) 1A =Pl < |(1 = P)Yl+ -+ [[(1 = Po)y

for every ¢ € L*(C™,dp). If f € C°°(C™) N L*(C",dp), then by [14, Proposition 12.1] we
have ||(1 — P;)f]| < ||10;f|l for 7 =1,...,n. Combining this with (6.6), the proposition is
proved. [
Recall that we used the function
27 2] >1
9(z) =
0 if |z]<1
in [14] in the case n = 1. That is, when n = 1, we have H, € C; while H; ¢ C; [14,
Theorem 1.5]. We will modify this g for use in the general case n > 1.

To do this, we first introduce appropriate cutoff functions. We begin with a { € C*°(R)
satisfying the following three conditions:

(a) 0 <¢<1onR.

(b) £ =0 on (—o0,2].

(c) € =1on [3,00).
Next, for each R > 6 we define the function

nr(x) =&(x)§(R+3—1z), z=€R.

Then 0 <nr <1lonR,ngp =0o0n (—o0,2|U[R+1,00), and ng = 1 on [3, R]. Note that
1MRlloe < €| for every R > 6. With nr so defined, for each R > 6 we now define the
function vy on C™ by the formula

n

(6.7) R(CL, .. Cn) = H (1&g (C1yennyCn) € CM

20



Lemma 6.4. There is a 0 < Cg 4 < 00 such that ||[H,, |1 < CeaR"™ ! for every R > 6.

Proof. We have

. 1 . 1
VHop = te((H o) V) = / ((H Ho) 2R RV (2) < / |H, eV (2),

ﬂ-n

where the < follows from the spectral decomposition of HJ H.,, and the Cauchy-Schwarz
inequality. By Proposition 6.3, we have

Hyp k|| <Y 110;(vrk=) | = k20,7l
j=1 j=1

Thus
1Hls < = / 1k 3,7m]|dV (2) / k- BrymlldV (=),

where the second step involves the fact that vg is invariant under any permutation of the

variable (1,...,(,. Therefore
) 1/2
([ 1emmora©)

where the second < is a well-known fact that is easy to prove (see [16, Lemma 6.34] for
the case n = 1, and the general case n > 1 is proved by the same kind of estimates).

We have 9|z| = (2|z|) 7!z for 2 € C\{0}. Therefore

(68) [Hyls < 2 [Q00alh k) Pav(z) <€ Y

aezZ2n

n

(51’713)(@7"-7@) 2|C |77R (|¢1]) H (16 Dg(¢) if [Gf > 2.

(In the case n = 1, the product H?:z --- is interpreted to be 1. The same convention
applies in similar situations.) Also, by the definition of ng we have

(O1VR)(C1s---+Ca) =0 if [G1] < 2.

Recalling (3.2), if v = (a1,...,a,) € Z*" is such that [, 1(01vr)(O)]2dV (¢) # 0, then
then the function ¢; — 7%(|¢1|) must not identically vanish on I, a,). There are two
types of (a1, ) € Z2 for which this is possible. The first type are those (ay,as) € Z2
satisfying the condition

I(al,ag) N {Cl cC: ‘Cl‘ < 3} 75 0.

Thus if (a1, ) € Z? is of this type, then we have || < 4 and |az| < 4. Hence the total
number of this first type of (a1, as) € Z? does not exceed 81.
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The second type of (a1, a2) € Z? with the property that the function ¢; — ns(|¢1])
does not identically vanish on I, «,) are those satisfying the condition

I(al,ozz)m{C1 cC:R< |C1| SR—}—I};&@

It is obvious that the total area of such I(,, o,) does not exceed CoR. Moreover, if
(o, a2) € Z? is of this type, then we have 1/[¢1| < C3/R for (1 € I(a; a,)-

Combining the analysis in the last two paragraphs with (6.8), we find that

1/2
\WMD@WM@O

|Holls < s (H/

(0437 7a2n)ez2n 2 (agj 1, O¢2]

(see (3.2) and (3.1)). For z € C, if nr(|z]) # 0, then 2 < |z| < R+ 1. Thus if we define
Zr to be the collection of all (as, ..., as,) € Z2"~2 satisfying the condition that

Tasy—1,00) MG EC: 2GS R+ 1} #0 forevery 2<j<n,

then

H <C
|| ’m”l = 5 Z H 042] 1+a2 )1/2

(ag,...,a2n)EZR J= 2

1 n—1
< 06( / dA(z)) < C;R" L.
|

z|<R+14+v2 1+ |z

This completes the proof. [

Proposition 6.5. [6, Lemma 6.3] Let ® be an arbitrary symmetric gauge function. Then
there is a constant 0 < C' < co such that

O({J(f;u) uezen) < C[[My,; Pllle

for every f € T(C™).

Lemma 6.6. There exist positive numbers 6 < Mgg < 0o and 0 < cg.¢ < 00 such that if
R 2 M6.67 then

||H’7R||1 Z CgﬁRnil log R.

Proof. Define T' = {(z1,...,2,) € C" : |z;] <1 for 1 < j < n}. Also, write D = {z € C:
|z| < 1} and Z? = Z +4Z. Consider any u = (u1,...,u,) € (Z*)" such that |u;| > 6 for
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every 1 < 7 <n. For such a u, we have

//(T+u)><(T+u)
212y —wy e we|2dV (21, .. 20)dV (W, . L wy)
IU1|4 Iun| //T+u)><(T+u)

2T C1 ) , ;
~ ot ([ e PV ) = a7

o i
o (H / |z+uj|2dA<z>—w"\ul|2---|un|2)
j=1"P

2

1 1
AV (z1, ..., 2n)dV (W, ..., wy)

*Wnp

]t funlt

2121y "1
- W(H (3+hsf) = o)

2 |u1\4 \u ’4ZH|U”|

J=1lv#j

Let Ug be the collection of u = (u1, ..., u,) € (Z*)" satisfying the conditions that |u;| > 6
for every 1 < j < n and that H?:1 nr(|zj]) = 1 for every (z1,...,2,) € W + u. Since
T C W, for each u € Ug it follows from the above that

n
" c 1 1
J(Yr;u) > X | =c2 ) 1]t
TEE AR PZH A=ed mr i

J=1lv#j

Recall that we have ngp = 1 on [3, R]. Thus it is obvious that there is a 10 < C' < oo such
that if R > 3C, then for u = (uy,...,u,) € (Z*)", the condition that C' < |u;| < R—C
for j = 1,...,n implies that u € Ugr. Applying Proposition 6.5 to the symmetric gauge
function ®¢, for R > 3C we have

(6.9) 1My, Pl 205 Y Jmsw) 2 s Y Z| j|2H\u|

’LLGUR (ula 7un)€UR] 1

where Ug is the collection of (uy,...,u,) € (Z?)" such that C < |u;| < R — C for
j=1,...,n

It is easy to see that there are C; € [10C, 00) and ¢5 > 0 such that for R > C1,

1 & 1 / 1 nl
>c dA(z)(/ —dA(z))
Z _unf? H |u | ’ 20<|z|<R-2C |2]2 20<|z|<R—2C 2|

> c(log R)R™ .

Combining this with (6.9), we find that

I[M,,,, Plll1 > czR* *log R
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when R > Cy. Note that [My, P] = Hy — H}f. Hence if R > (4, then

1y lly + ([ Hyp |l > 7R log R.

On the other hand, Lemma 6.4 tells us that ||[H,,|1 < Cs4R" . Now let C; < M < oo
be such that (¢7/2)log R > Cg 4 for R > M. Then for R > M, from the above we obtain

|Hsp 1 > (c7/2)R" ' log R.

This completes the proof. [

Lemma 6.7. There exists a 0 < Cg7 < oo such that the following holds true: Let
h:[0,00) — [0,1] be any measurable function satisfying the conditions

(a) h=1 on [0,Cs.7];

(b) h =10 on [p,o0) for some Cgr < p < 0.
Then the function

(6.10) n(z1,- -+, 2n) = h(|z1])z1,  (21,...,2n) € C",

has the property that | Hg| > 1/2.
Proof. We have ||z1| = 1 in H2(C", du). Thus for such an 7,

| Hy|)* > (H:Hgz,21) = (Myy221, 21) — | P Mgz ||?

1 3
. / B2 (|2]) 2| *e P dA(z) — | PMyz |2
T Jc
1
z ‘/ 2fte P dA() — | PMya P
™ |Z‘<Cf5‘7

Since 771 [ |Z|4e_‘z|2dA(z) = 2, we see that for a sufficiently large Cs 7 we have

1HG|* = (5/4) — [|1P Mz ||*.
Note that 7(z1, ..., 2zn)z1 = h(|z1|)|z1]? L 28252 ... 25» whenever there is a j € {1,...,n}
such that £; > 1. Therefore

1 2 1 2
1Mz = (o0, 1] = = [ blaDlaPe ) <+ [ faperFaac) = 1.
m™Jc ™ Jc

Consequently, ||Hz||* > (5/4) — 1 = 1/4. This completes the proof. [J

Lemma 6.8. Given an n defined by (6.10), where h satisfies the conditions in Lemma 6.7,
there is a 0 < Cg.8 = Cp.8(n) < 0o which has the following property: Let ¢ € L (C™) be
such that ¢ =1 on B(0,Cs3) and ||¢||ec = 1. Then |[Hyg|| > 1/3.

Proof. 1f {Ax} is a sequence of bounded operators strongly convergent to an operator A,
then ||A|| < liminfy_, [|Ak||. The conclusion of the lemma follows from this fact and
Lemma 6.7. U
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We now generalize [14, Proposition 13.2] to arbitrary complex dimensions n > 1:

Proposition 6.9. There does not exist any constant 0 < C' < oo such that the inequality
[Hp|l < C[[Hy|l

holds for every ¢ € M.

Proof. Let € > 0 be given. By the argument on pages 43 and 44 in [14], there is a C*
function A : [0,00) — [0, 1] satisfying conditions (a) and (b) in Lemma 6.7 such that the
inequality ||017]|cc < € holds for the function

n(z1,. ..y 20) = h(lz1])z1,  (21,...,2,) € C".

To be more precise about condition (b), there is a T' € (Cg.7, 00) such that h = 0 on [T, 00).
We have, of course, 9;n = 0 for 2 < 5 < n.

For this 1, Lemma 6.8 provides a 0 < Cg.3 = Cg.8(n) < oo. There is a C*° function
B : R — [0, 1] satisfying the following four conditions:

(H)o<p<lonR.

(3) 18100 < ¢/T.

(4) There is an r € (Cg.5,00) such that =0 on [r, 00).
With this 8 we define the function

W(z1, .o yzn) = B(lz2]) - B(lzn]),  (21,...,2,) € C™.

We obviously have ¢¥n € M. By conditions (1) and (2) above and Lemma 6.8, we have
HH%H = ||Hy5|| > 1/3. Next we show that ||Hyy,|| < ne. Since € > 0 is arbitrary, this will
complete the proof of the proposition.

For each f € H?(C™,du), Proposition 6.3 tells us that

[Hyn Il < 01 (n )l + -+ [10u (oIl = [ fOr ()|l + - - + | fOu(¥m)]-
Thus the desired conclusion will follow if we can show that [|0;(¢m)]e < € for every
I1<j<n

In the case j = 1, we have 0;(yn) = ¥din. Since ||[¢|« = 1, from the condition
101700 < € we deduce [|01 (1)l < €. Now consider any 2 < j < n. Then 9;(¥n) = nd;v.
By condition (3), we have [|0;1||c < ¢/T. On the other hand, since h = 0 on [T, o), we
have ||7]|ec < T. Consequently, [0;(¥n)|lco < T - (¢/T) = €. This completes the proof. [J

7. Proof of Theorem 1.6

In addition to the material about Hankel operators in Section 6, to prove Theorem
1.6, we also need the following three lemmas concerning symmetric gauge functions.

Lemma 7.1. Let ® be a symmetric gauge function such that pe = 1. Then ge~ = oo.
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Proof. Suppose that gp« < oco. We will show that this contradicts the condition ps = 1.
Let ¢ < oo be such that gg« < g. Then by Lemma 2.2, there is a ¢ > 0 such that

(7.1) em 1% (b) < ®*(bI™) for all beé and m e N.

Since ® = ®** by [13, Proposition 3.2], (7.1) implies that there are 0 < ¢t < 1 and
0 < C < oo such that

®(a™) < Cm!®(a) forall aeé and m e N.
This implies that pe > (t + €)™ ! for every € > 0. Since 0 < t < 1, this contradicts the
condition pg = 1. [

Lemma 7.2. Let ® be a symmetric gauge function such that qu = oo. Then for every
m € N, there ezists an x,, € ¢, T, # 0, such that @(:c%n]) < 2P ().

Proof. Given any m € N, we pick a k& € N such that 2¥ > m. Since qp > k, for a
sufficiently large ¢ € N there is an a € ¢, a # 0, such that

log 2k¢
— > k.
log (@ (al2"T)/8(a)
That is,
da?)
7.2 — <2
(7.2) Ba) ©

On the other hand, we have

<I><

L ka]
(7.3) 1:[ <[2<—>)>

By a comparison of (7.2) and (7.3), there is an i € {1, ..., ¢} such that

Q(iil)k]. Then

With this i we define z,, = al
o(zlm) < @(2l2) = @(a2")) < 20(a2" ) = 20(2).

This completes the proof. [
Lemma 7.3. For each A € Cy, there is a v = v(A) € N such that the inequality

< |A[2() + @(a)
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holds for every symmetric gauge function ® and every o = {aq, ..., a5 ,...} € €.
Proof. Since A € Cy, there is a v = v(A) € N such that

[e.e]

Z Sk(A) <1.

k=v+1

There are orthonormal sets {uy : k£ € N} and {vy : k € N} such that

A= Z Sk(A)uk X Vg
k=1
Since
EBQJA = (@aj sk (A)ug ®vk> + (@aj Z sk (A)ug ®vk),
j=1 j=1 k=1 Jj=1  k=v+1

the desired conclusion is now obvious. [J

Proof of Theorem 1.6. (1) First, we consider the case where ps = 1. In this case we
need the functions defined by (6.7). Given a d € N, we take an Ry > Mg such that
log Rg > 1+ d3. Consider the Hankel operator Hs, . Since ygr, € M, which implies
Hy, € Cq, we have

Rq
o0

HWRd = Z Se(HwRd Yud,e @ v,z
=1

where {ugy : £ € N} and {vg, : ¢ € N} are orthonormal set. By Lemma 6.6, we have
[ Hsp, I = ceoRy (1 +d®).

Thus there is a vy € N such that

vq
(7.4) > su(Hyy,) > cocRy d°.
=1
By Lemma 7.1, the condition pg = 1 implies qg+ = co. Thus by Lemma 7.2, there is an
Na = {Nd1:Md,2, - Nd,j,---} €€
such that
(7.5) *(ng) =1 and ®*(nl) <2
Since ®** = ®, there is an

ag ={ag1,042,...,044,...} €¢
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such that

(7.6) P(ag) =1 and Zad,jnd,j = o (ng) = 1.

j=1
Thus we obtain the Ry, v4, ng and ag4 described above for every d € N.

We know from (6.7) that |vgr|lcc < 1 for every R > 6. Hence ||vr,||cc < 1 for every
d € N. Moreover, the condition ®(ag) = 1 implies that |ag ;| < 1 for every j € N. Thus,
by Lemma 6.2, the case pg = 1 of the theorem will be proved if we can show that

(7.7) D 1 D i, € c  while
d=1 d j=1
oo 1 o0

(7.8) @ TR @ad,jH’de ¢ Ca.
d= d  j=1

It is obvious that for every d € N,

oo
@ ad’jH'de
J=1

where for the second < we apply Lemma 6.4 and the condition ®(aq) = 1. Since H,, € C;
and aq4 € ¢, we have @52 aq,;Hyp, € C1 C CC(I)O), d € N. Hence (7.7) follows from (7.9).

(7.9)

‘ < ®(ag)|[Hyp, 1 < CoaRG ™,
o

To prove (7.8), for each k € N we define the finite-rank operator

Ty = @ Ak, d,
d=1

where Ay 4 = 0 for d # k and

[e'e) Vi
Ak = @nk,j E Vit @ Up ¢
—1

j=1

For every k € N,

|Teller = [[Arslle- = () <2,
where for the < we recall (7.5). For each k € N,

Vi

tr (Tk D 2RT D Oéd,jHaRd) = Rt D angmeg Yy (Hap, Ot une)

d=1 j=1 j=1 (=1

1 > i
= kQRn—l Z Ak, Mk, j Z Sé(HﬁRk)
Eooj=1 =1

1

7.10 -
(7.10) k2R

v

n—171.3
ek = ce.6k,
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where the > is obtained from (7.6) and (7.4). Since ||T}]|
(7.10) that

o+ < 2, it follows from (2.1) and

oo

1 o
d2R"1 @ Qd,j HfVRd
d=1 d j=1

Since k € N is arbitrary, this proves (7.8). Thus the theorem holds in the case pp = 1.

‘ 2 CG.Gk/Z
[

(2) Suppose now that gs = oco. In this case we need the condition that ® is not
equivalent to ®,,. This simply means that

k

—
(7.11) lim ®({1,...,1,0,...,0,...}) = oc.

k—o00

By Proposition 6.9, for each d € N there is a ¢4 € M such that

|H,,| =1 while |[|Hg,| > d.

il

Since the membership ¢4 € M implies H,, € Ci, let v(d) be the natural number for H,,
provided by Lemma 7.3. That is,

@ BjHSOd
j=1

for every 8 = (p1,...,08;,...) € ¢

By the condition g = 0o and Lemma 7.2, for each m € N there is a

Sm = {Sm,lagm,%'uagm,j;---} ec

(7.12)

< o) 1 a(p).
b

satisfying the following conditions:
(1) &n,; > 0 for every j € N.

(2) Em.j = Em,j+1 for every j € N.

( ) Sm 1=1

(1) D) < 20(¢,0).

By (3) and (7.11), we have <I>(§,L,T]) — 00 as m — oo. Hence ®(&,,) — 0o as m — oo. Thus

for each d € N, we can pick an m(d) € N such that

m(d) > v(d) and  ®(Ema)) > [[#dllo-

We now define

X = @dw (Em(a?)) @fm(dg)a v and V= @dm‘;[) (Em(as)) @fm(d?’)d Pas-

We have [[¢0gs |loo/P(Emeasy) < 1 for every d € N. Thus, by Lemma 6.2, to complete the
proof in the case g = 00, it suffices to show that X € Cg)) while Y ¢ Cg.
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Since Hy, , € C1 and §(a3) € ¢, we have ©52,&,a3),;Hps € C1 C Cé,o) for every
d € N. By (7.12) and condition (4), for every d € N we have

o0 5 5
@ Em(as),jHo || < Cb(fq[ngjag]) + (&m(az))
j=1 ®

m 3
< BEME) + @ (Eman)) < 3P (Emas)).

Therefore X € CC(I,O).

On the other hand, since ||Hg , || > d®, we have

@fm(d3),jH¢d3 > d°®(&ar))
j=1 ®
for every d € N. Therefore
1 N d3q)(£m(d3))
Yi|e> — H. > - —omld)) g
Yle = 5 ) H j@gm(d?’)’” 2|l Z PO(E )

for every d € N. Clearly, this means Y ¢ Cg. This completes the proof. [

8. More on Boyd indices

We will now take a closer look at the condition 1 < pg < gp < oco. We begin with a
proposition which is essentially a known fact. The reason for presenting this proposition
is that it sets the stage for the main result of the section, Theorem 8.2.

Proposition 8.1. Let ® be a symmetric gauge function such that 1 < pg < qp < 0.
Then for any 1 < r < s < oo satisfying the condition r < pg < qp < S, we have

(8.1) Cr CCo CCs.

Proof. (1) We first prove the inclusion Cy C Cy, which is essentially a repeat of the proof
of Lemma 2.3. Indeed we pick a ¢ such that g < ¢ < s. By Lemma 2.2, there isa ¢ > 0
such that ®(&l™]) > em!/9®(€) for all m € N and € € ¢é. Since s > ¢, by [13, Lemma 3.1],
there is a 0 < B < oo such that

O, (a) < BP(a) for every a € ¢.

This obviously implies that C¢ C Cs.

(2) To prove the inclusion C,. C Cg, we pick a p such that r < p < pg. By the definition
of pg, there is an N € N such that

logm

log (@ (™) /B(a)} >p forall m>N and a € é\{0}.
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Thus ®(al™) < m'/P®(a) for all m > N and a € ¢. Consequently,

(8.2) ®(al™) < Nm/Pd(a) forall m € N and a € ¢.
Using this fact, next we show that

(8.3) N7imP=D/P* () < &*(b™)  forall me N and be é

Indeed given a b = {by,...,b;,...} € ¢, since &** = &, thereisana = {ay,...,a;,...} € ¢
with ®(a) = 1 such that ®*(b) = 2;11 bjaj. Thus for any m € N, (8.2) gives us

m®*(b) =m Y bja; < &*(BIM)d(a™) < Nm'/Po* (0B (a) = Nm! /P (b)),

j=1

Thus (8.3) holds. Note that (8.3) implies that go» < p/(p—1). Since p/(p—1) < r/(r—1),
by the argument in (1), there is a 0 < C' < 0o such that

(8.4) Q. /(r—1y(a) < CP*(a) forevery a € é.

Given any « = {z1,...,2j,...} € ¢, thereis ay = {y1,...,y;,...} € ¢ with ®*(y) =1
such that ®(z) = Z;’il z;y;. Applying Holder’s inequality and (8.4), we have

O(x) =Y 2595 < Bp(2)®pro1)(y) < CPp(2)7(y) = O, ().
j=1

That is, ®(x) < C®,.(x) for every = € ¢. This implies that C, C Cp. O

Once we have Proposition 8.1, an obvious question asserts itself. Namely, if (8.1) holds
for some 1 < r < s < 00, does it follow that 1 < ps < g < co? Note that (8.1) gives both
an upper bound and a lower bound on the size of the ideal C4. Thus an affirmative answer
to this question would say that the condition 1 < pg < qg < o0 is solely determined by
the size of Cs. But the truth is quite the opposite:

Theorem 8.2. Given anyl < r < s < 00, there is a symmetric gauge function ® satisfying
the conditions that
C, CCq C Cs,

that g = oo and that pp = 1.

Proof. Given any 1 < r < s < 0o, we pick p, q satisfying the condition
r<p<gq<s.

It is elementary that C, C C} and that C C Cs. Thus it suffices to find a symmetric
gauge function ® which satisfies the conditions that

(8.5) Cf cCsCCf,
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that go = oo and that ps = 1. We prefer to use the Lorentz ideals C;/ and C because
they are easier to handle than Schatten classes.

To construct the desired ®, we begin with the fact that ¢/p > 1. This allows us to
pick an a € (0, 00) such that (¢/p)*{(q¢/p) — 1} > 2. With « so chosen, for each j € N we
let k; be the unique natural number satisfying the inequality

(¢/p)*T7 < kj < (q/p)*H +1.

The choice of « ensures that k; 1 —k; > 1 for every j € N. For each j € N, let N; be the
unique natural number satisfying the inequality

295 < N; < 298 + 1.

We now enumerate the sequence

N1 N2 Nj
. "1 171 1 1 1
,2k17...’2T172Tz,...’272’...72kj’...,2k:j7...,
in the descending order, as v1,7v2, ..., Yy, ...

Obviously, we have v; = 1, lim,_,, 7, = 0 and Z;jozl v, = oo. That is, the sequence
{7} is “binormalizing” [7, page 141]. Thus, according to [7, Section III.14], the formula

x|+ + |ax (V)|

8.6 P(a) = su , a=1Hai,...,a,,...} €¢c,
(8.6) (@) bR M+t e J
where 7 : N — N is any bijection such that |ar1)| > |ax@2)| = -+ > |az@)| > - - -, defines

a symmetric gauge function. Let us verify that this ® satisfies (8.5) and has the properties
that g = oo and that ps = 1.

Consider any v € N such that
(87) 1+N1+"'+Nj<V§1+N1+"'+Nj+Nj+1

for some j € N. Then by definition we have 7, = 27%i+1. Since kiy1 — k; > 1 for every
1 € N, we have

v<1+ N+ Nj+ Ny <1422 .4 2905 4 oakieny < 027k,

Thus v, < (C/v)'/? for such a v. This obviously implies that Co C Cr. For any v € N
satisfying (8.7), we have v > N; > 27k; . Thus

(1)1 /P < 2= (@/Pks — 9=kjighir—(a/p)k; < %2’%+1—((1/p)°‘+j+1 < 2y,

for any v € N satisfying (8.7), j € N. This obviously implies that C;f C Ce. Thus we have
verified (8.5) for the symmetric gauge function ¢ defined by (8.6).
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To prove that g = 0o, we observe that there is an L € N such that
1+ Ny + Ny + -+ N; <2005 +L
for every j € N. Then note that

(8.8) kjr = kj = (¢/p)* T = (a/p)*™ — 1= ((a/p) — D(a/p)*™ — 1.

Thus there is a J € N such that if j > J, then (¢ —1)(k;4+1 —k;) > L+ 3. For each j > J,
we define ¢; to be the largest natural number satisfying the condition

(89) £]+L+2 < (q— 1)(l€j+1 —]{3]’).

Since ¢; is the largest of such natural number, it follows from (8.8) that £; — oo as j — oc.
Obviously, (8.9) implies 1 + kj41 + (¢ — 1)k; < gkji1 —¢; — L — 1, j > J. Therefore for
each j > J, there is a natural number d; € N such that

(810) kj—i—l + (q - l)k‘j < dj < qkj+1 — fj —L—1.
With this d; we now define the element

14N+ +N;+2%
——
b (T 00

in ¢, 7 > J. We will show that there is a 1 < C'; < oo such that

(8.11) @(uBQZj]) < C1®(u;) forevery j>J+1.

Since £; — 0o as j — oo, this obviously implies that ¢ = co. Note that (8.11) will follow
if we can find constants 0 < ¢ < oo and 0 < Cy < 0o such that

(8.12) ®(u;) > 2"+ while

(8.13) <I)(u£~2£j]) < Oy2ki+1

for every j > J + 1.
For each 5 > J we have

24 N 245
14+ N1+ N;+2% - 142 Zle 2(a—1)ki 4 9dj—kj41’

v=1

(8.14) O (uy) >

Since kiy1 — k; > 1 for every i € N, we have 1+ 237 20e=Dki < C32(a-Dk; > J. By
(8.10), we have d; — kj11 > (¢ — 1)kj, 7 > J. Hence (8.12) follows from (8.14).
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To prove (8.13), denote M; =1+ Ny + -+ + N; + 2% for each j > J + 1. Then

2% M;
2% —
WP =100 10,0,
and consequently
¢
(8.15) @(ug-z }) = max v )

1<w<2%M; Y1+
j > J + 1. First, consider v € N satisfying the condition
1+ N1 +---+ N, <v< 1+N1++N1+NZ+1,

where 1 <i<j—1,7>J+1. In this case, we have v =1+ Ny + --- + N; + v for some
1 < 140 SN'H—I- Thus

v < 1+ Ny +---+N;+ 1 205t L 4y
Y1+t T 1 _,_2221 2(q—1)kH + 2’5% — 92(g—1)k; + ﬁ
2qki+L
(8.16) - + all < ol tL 4 gkier < 02k,

20q—1)ki 1 215_3_1 2(a—1)k; 4 Yo

2ki+1

Now consider v satisfying the condition

(8.17) 1+ N+ +N; <v<25M;.
First of all, note that since d; > (¢ — 1)k; + kj+1 > gk;, we have

2Zij < 2€j (2qkj+L 4 2dj) < 2£j+12dj+L — 2dj+£j+L+1 < 2qkj+1 < Nj—|—1'

Thus if 1 + Ny + -+ + N; < i < 2% Mj, then «; = 27 %+1. Hence if v satisfies (8.17), then
v=1+Ni+---+N;+1p forsome1§1/0§2£fMj—(1+N1+~~~+Nj), and

v 1NN 20k + 1
r-)/l _|_ e _|_ f)/y - 1 + Zizl 2(q71)l€u + ﬁ - 2(q_1)kj + 2];;3_1
9qk;+L v

(8.18) < oMitl g okivt < O okt

= 14 + - 14
2(a—1)k; 4 ﬁ 2(a—1)k; 4 ﬁ

Combining (8.15), (8.16) and (8.18), we obtain (8.13). Hence g¢ = 0.
Last but not least, we need to verify that ps = 1. To do that, we define the element

1+Ni+--+N;



in ¢ for each j > J. Then

®(v;) = max v
I<vsKjy1r+ -+

for each j > J, where we write K; =1+ Ny + ---+ N;. Thus it follows from (8.16) that
(8.19) ®(v;) < C52%  for every j > J+ 1.
For each j > J, let m; be the smallest natural number satisfying the inequality
(q — 1)]€j + kj—i—l < m;.
By (8.10), we have m; < d; for every j > J. Thus
okiv1=ki | > gkiri—higaks — okj+1t(a=Dk; > gm;—1
for every j > J. Also,
ij+1—ijj < oki+1=kjoaki+L _ okjtit(a—Dkj+L < gmi+L < gakj+1 < Njii

for every j > J, where the third < follows from the inequality m; < d; and (8.10). It
follows from the above two inequalities that

N Cn? o
J - okj+1—F;j . = : ' TR ——
Zlcjl iy, 1+237, 20a=Dki ¢ : Qk]-j+1j .
om;—1 om;—1
>
 Cg2la—Dk; 4 227:;]:11: B Cg2(a—Dk; 4 2(q_1)’“;‘;’1jl—+1+1+1~
mj
(820) > Clm > 612kj+1 — Cl2kj+1*k:j . 2ij > (61/05)2]67""17]“3'@(7}].)
J

for every j > J+1, where for the last step we apply (8.19). By (8.8), we have k; 1 —k; — o0
as j — oo. It is now straightforward to deduce from (8.20) that pe = 1. O
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