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Abstract. We settle the issue of Berger-Coburn phenomenon on the Fock space completely
for general symmetrically normed ideals CΦ, where Φ is not equivalent to Φ∞. We show
that if the Boyd indices of CΦ satisfy the condition 1 < pΦ ≤ qΦ <∞, then for f ∈ L∞(Cn),
we have Hf ∈ CΦ if and only if Hf̄ ∈ CΦ. We further show that if either pΦ = 1 or qΦ =∞,
then there is an f ∈ L∞(Cn) such that Hf ∈ CΦ while Hf̄ /∈ CΦ.

1. Introduction

Let dµ denote the Gaussian measure on Cn. More precisely, we write

dµ(z) = π−ne−|z|
2

dV (z),

where dV is the standard volume measure on Cn. Recall that the Fock space H2(Cn, dµ)
is the norm closure of C[z1, . . . , zn] in L2(Cn, dµ). Let P : L2(Cn, dµ) → H2(Cn, dµ) be
the orthogonal projection. Given an appropriate symbol function f , the Hankel operator
Hf : H2(Cn, dµ)→ L2(Cn, dµ)	H2(Cn, dµ) is defined by the formula

Hfh = (1− P )(fh),

h ∈ H2(Cn, dµ).

For a general f , very little about Hf̄ can be inferred from the properties of Hf .
Consequently, the so-called one-sided theory of Hankel operators, namely the study of Hf

alone, is generally more difficult than the so-called two-sided theory, the study of the pair
Hf and Hf̄ , which is equivalent to the study of the commutator [Mf , P ]. And this is true
not only on the Fock space, but also on the Bergman space and the Hardy space.

Therefore it was all the more remarkable that Berger and Coburn proved the following
result in [2]: for f ∈ L∞(Cn), Hf is compact if and only if Hf̄ is compact. From the
author’s conversations with Lew Coburn about this result in the late 1990s and early
2000s arose a natural question:

Question 1.1. [15, page 1384] For f ∈ L∞(Cn) and 1 ≤ p < ∞, does the membership
Hf ∈ Cp imply Hf̄ ∈ Cp?

Here, Cp denotes the Schatten p-class. That is, Cp is the collection of operators A
satisfying the condition ‖A‖p <∞, where ‖A‖p = {tr((A∗A)p/2)}1/p.

In [1], Bauer answered Question 1.1 for the Hilbert-Schmidt class C2: for f ∈ L∞(Cn),
Hf ∈ C2 if and only if Hf̄ ∈ C2. Then, after a long period that saw no progress on this
question, Hu and Virtanen answered it for 1 < p <∞:
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Theorem 1.2. [9,10] Let 1 < p <∞. Then there is a 0 < C <∞ such that

‖Hf̄‖p ≤ C‖Hf‖p

for every f ∈ L∞(Cn). In particular, for f ∈ L∞(Cn), Hf ∈ Cp if and only if Hf̄ ∈ Cp.

Hu and Virtanen referred to Theorem 1.2 as the Berger-Coburn phenomenon for the
Schatten classes Cp, 1 < p <∞. We will adopt their terminology. In [16,8], the root cause
of the Berger-Coburn phenomenon was ascribed to the absence of bounded, non-constant
analytic functions on Cn.

Then in [14], the Berger-Coburn phenomenon was proved for Lorentz ideals. These
ideals are defined in the following way.

Let H be a Hilbert space. For any given 1 ≤ p <∞, the formula

‖A‖+p = sup
j≥1

s1(A) + s2(A) + · · ·+ sj(A)

1−1/p + 2−1/p + · · ·+ j−1/p

defines a norm for bounded operators on H. Here and in what follows, we write s1(A),
s2(A), . . . , sj(A), . . . for the s-numbers [7] of the operator A. It is well known that the
collection of operators

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

form a norm ideal [7].

For each 1 ≤ p <∞, the formula

‖A‖−p =

∞∑
j=1

sj(A)

j(p−1)/p

also defines a norm for bounded operators on H. Denote

C−p = {A ∈ B(H) : ‖A‖−p <∞},

which is also a norm ideal of operators on H [7].

For these ideals, we recall the following:

Theorem 1.3. [14, Theorem 1.3] Let 1 < p <∞. For f ∈ L∞(Cn), Hf ∈ C+
p , if and only

if Hf̄ ∈ C+
p .

Theorem 1.4. [14, Theorem 1.4] Let 1 < p <∞. For f ∈ L∞(Cn), Hf ∈ C−p , if and only
if Hf̄ ∈ C−p .

For the case of the complex plane C, in [14] we showed that the function

g(z) =

 z−1 if |z| ≥ 1

0 if |z| < 1
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has the property that Hg ∈ C1 while Hḡ /∈ C1. Thus there is no Berger-Coburn phenomenon
for the trace class C1. Furthermore, we showed in [14] that there is no Berger-Coburn
phenomenon for the famous Macaev ideal C−∞, for its dual C+

1 , and for a class of ideals Cα.

But the ideals mentioned above are only some of examples of a much broader class
called symmetrically normed ideals, or norm ideals for short. The purpose of this paper is
to settle the issue of Berger-Coburn phenomenon completely for this entire class of ideals.
Let us recall the definition of these ideals.

Following [7], let ĉ denote the linear space of sequences {aj}j∈N, where aj ∈ R for
every j ∈ N, and for every sequence the set {j ∈ N : aj 6= 0} is finite. A symmetric gauge
function (also called symmetric norming function) is a map

Φ : ĉ→ [0,∞)

that has the following properties:
(a) Φ is a norm on ĉ.
(b) Φ({1, 0, . . . , 0, . . . }) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

See [7, page 71]. Each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
j≥1

Φ({s1(A), . . . , sj(A), 0, . . . , 0, . . . })

for operators. On any Hilbert space H, the set of operators

(1.1) CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a symmetrically normed ideal [7, page 68].

Let us recall some familiar examples. First of all, the formula

Φ∞(a) = sup
j∈N
|aj |, a = {a1, . . . , aj , . . . } ∈ ĉ,

gives us what may be the most familiar symmetric gauge function. It is obvious that
‖ · ‖Φ∞ = ‖ · ‖, the operator norm. It is also obvious that a symmetric gauge function Φ
is equivalent to Φ∞ if and only if there is a 0 < C <∞ such that

Φ({
k︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0 . . . }) ≤ C for every k ∈ N.

For each 1 ≤ p <∞, the formula

Φp({aj}j∈N) = (|a1|p + |a2|p + · · ·+ |aj |p + · · · )1/p

defines a symmetric gauge function on ĉ, and the ideal CΦp defined by (1.1) is just the
Schatten class Cp.
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For each 1 ≤ p <∞, define the symmetric gauge functions Φ+
p and Φ−p by the formulas

Φ+
p ({aj}j∈N) = sup

j≥1

|aπ(1)|+ · · ·+ |aπ(j)|
1−1/p + · · ·+ j−1/p

and Φ−p ({aj}j∈N) =
∞∑
j=1

|aπ(j)|
j(p−1)/p

,

{aj}j∈N ∈ ĉ, where π : N→ N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥
· · · , which exists because each {aj}j∈N ∈ ĉ only has a finite number of nonzero terms.
Then the ideals CΦ+

p
and CΦ−p defined by (1.1) using Φ+

p and Φ−p are none other than the

Lorentz ideals C+
p and C−p introduced earlier.

For a general symmetric gauge function Φ, let C(0)
Φ denote the ‖ · ‖Φ-closure of the

collection of finite-rank operators in CΦ. We always have C(0)
Φ ⊂ CΦ of course, but we

can have either C(0)
Φ = CΦ or C(0)

Φ 6= CΦ. For example, on any Hilbert space H we have

CΦ∞ = B(H) and C(0)
Φ∞

= K(H). For every 1 ≤ p < ∞, it is well known that C(0)
Φp

= CΦp
and C(0)

Φ−p
= CΦ−p while C(0)

Φ+
p
6= CΦ+

p
[7].

Next we recall the Boyd indices [3,11] for Φ. For any a = {aj}j∈N and m ∈ N, define
the sequence a[m] = {amj }j∈N by the formula

amj = ai if (i− 1)m+ 1 ≤ j ≤ im, i ∈ N.

In other words, a[m] is obtained from a by repeating each term m times. Alternately, we
can think of a[m] as a⊕ · · · ⊕ a, the “direct sum” of m copies of a.

For each m ∈ N, the formula Dma = a[m] defines a linear operator on ĉ. Related to
Dm is the operator D1/m defined by the formula

D1/ma =
1

m

{ m∑
j=1

aj ,

m∑
j=1

am+j , . . . ,

m∑
j=1

a(k−1)m+j , . . .

}
, a = {a1, . . . , ak, . . . } ∈ ĉ.

We obviously have D1/mDmb = b for all m ∈ N and b ∈ ĉ. Moreover, if a, b ∈ ĉ are
such that D1/ma = b, and if Φ is any symmetric gauge function, then it follows from the

properties of Φ that Φ(b[m]) ≤ Φ(a). Consequently,

sup

{
Φ(b)

Φ(b[m])
: b ∈ ĉ\{0}

}
= sup

{
Φ(D1/ma)

Φ(a)
: a ∈ ĉ\{0}

}
.

It is well known that for any symmetric gauge function Φ on ĉ, the limits

pΦ = lim
m→∞

logm

log
(

sup
{

Φ(a[m])
Φ(a) : a ∈ ĉ\{0}

}) , qΦ = lim
m→∞

logm

log
(

inf
{

Φ(a[m])
Φ(a) : a ∈ ĉ\{0}

})
exist and satisfy the condition 1 ≤ pΦ ≤ qΦ ≤ ∞. The quantities pΦ and qΦ are called the
Boyd indices of Φ. See [3,11].
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The results of this paper can be simply summarized thus: the Berger-Coburn phe-
nomenon is completely determined by the Boyd indices of the ideal in question.

Theorem 1.5. Let Φ be a symmetric gauge function such that 1 < pΦ ≤ qΦ < ∞. Then
there is a constant 0 < C <∞ such that

(1.2) ‖Hf̄‖Φ ≤ C‖Hf‖Φ

for every f ∈ L∞(Cn). In particular, for f ∈ L∞(Cn), Hf ∈ CΦ if and only if Hf̄ ∈ CΦ.

The symmetric gauge function Φ∞ is worth special attention. Since C(0)
Φ∞

is the collec-
tion of all compact operators, the original theorem of Berger and Coburn tells us that for

f ∈ L∞(Cn), Hf ∈ C(0)
Φ∞

if and only if Hf̄ ∈ C
(0)
Φ∞

. On the other hand, since ‖ · ‖Φ∞ = ‖ · ‖,
the operator norm, we now know that there is no constant 0 < C <∞ such that

‖Hf̄‖Φ∞ ≤ C‖Hf‖Φ∞

for every f ∈ L∞(C) [14, Proposition 13.2]. This makes Φ∞ unique in the context of
Berger-Coburn phenomenon. For any Φ not equivalent to Φ∞, if the condition 1 < pΦ ≤
qΦ <∞ is not satisfied, then there is no Berger-Coburn phenomenon for CΦ:

Theorem 1.6. Let Φ be a symmetric gauge function not equivalent to Φ∞. If either

pΦ = 1 or qΦ =∞, then there is an f ∈ L∞(Cn) such that Hf ∈ C(0)
Φ while Hf̄ /∈ CΦ.

The rest of the paper is organized as follows. Sections 2-5 are devoted to the proof
of Theorem 1.5. Specifically, in Section 2 we deal with Boyd interpolation for general
symmetric gauge functions, which is the most crucial step in the proof of Theorem 1.5.
Using the result in Section 2, we show in Section 3 that if the condition 1 < pΦ ≤ qΦ <∞
holds, then the integral operators T1, . . . , Tn defined by (3.5) below are bounded on the
space L2,Φ

n . Section 4 deals with commutators [Mf , P ]. Then, after the preparations in
Sections 2, 3 and 4, we prove Theorem 1.5 in Section 5.

After that, we turn to the proof of Theorem 1.6. In Section 6 we produce symbol
functions ϕ which are both bounded and boundedly supported, and for which Hϕ and
Hϕ̄ exhibit quantitatively different behaviors. Then, using such ϕ as building blocks, in
Section 7 we construct the f ∈ L∞(Cn) promised in Theorem 1.6.

To conclude the paper, we take a closer look at the condition 1 < pΦ ≤ qΦ < ∞
itself. It is easy to show that if a symmetric gauge function Φ satisfies the condition
1 < pΦ ≤ qΦ <∞, then for any qΦ < s <∞ and 1 < r < pΦ we have

(1.3) Cr ⊂ CΦ ⊂ Cs.

That is, for such a Φ we can bound the size of CΦ by Schatten classes. This immediately
raises the question, is the converse also true? In other words, if (1.3) holds for some
1 < r < s <∞, does it follow that 1 < pΦ ≤ qΦ <∞? This question is important because
an affirmative answer would give us a very convenient characterization of the condition
1 < pΦ ≤ qΦ <∞. But the actual answer is decidedly negative. In Section 8 we will show
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that given any 1 < r < s <∞, there is a symmetric gauge function Φ that simultaneously
satisfies (1.3) and the conditions that qΦ =∞ and that pΦ = 1. Consequently, there exists
a symmetric gauge function Φ such that (1.3) holds, and yet there is no Berger-Coburn
phenomenon for the ideal CΦ.

2. Boyd interpolation

Recall from [7, page 125] that given a symmetric gauge function Φ, the formula

Φ∗({bj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {aj}j∈N ∈ ĉ,Φ({aj}j∈N) ≤ 1

}
, {bj}j∈N ∈ ĉ,

defines the symmetric gauge function that is dual to Φ. Moreover, we have the relation
Φ∗∗ = Φ [7, page 125]. This relation implies that for every {aj}j∈N ∈ ĉ, we have

Φ({aj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {bj}j∈N ∈ ĉ,Φ∗({bj}j∈N) ≤ 1

}
.

In terms of operators, this duality is manifested in the form of the following trace inequality.
If F is a finite-rank operator and A is an arbitrary operator, then for every symmetric gauge
function Φ we have

(2.1) |tr(AF )| ≤ ‖A‖Φ‖F‖Φ∗ .

See inequality (II.7.9) in [7].

We need to extend the domain of definition of a symmetric gauge Φ beyond the space ĉ.
Suppose that {bj}j∈N is an arbitrary sequence of real numbers, i.e., the set {j ∈ N : bj 6= 0}
is not necessarily finite. Then we define

(2.2) Φ({bj}j∈N) = sup
k≥1

Φ({b1, . . . , bk, 0, . . . , 0, . . . }).

More generally, for any countable, infinite index set A, we define

(2.3) Φ({bα}α∈A) = Φ({bh(j)}j∈N),

where h : N→ A is a bijection. By the properties of symmetric gauge functions, the value
of Φ({bα}α∈A) is independent of the choice of the bijection h : N→ A.

Let X be a Banach space. We will now define spaces of X-valued sequences.

As in [14], we define `00(N, X) to be the collection of a = {aj} satisfying the conditions
that aj ∈ X for every j ∈ N and that

card{j ∈ N : aj 6= 0} <∞.
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That is, if a = {aj} ∈ `00(N, X), then the sequence {aj} has at most a finite number of
nonzero terms. In other words, `00(N, X) is the X-valued version of ĉ.

Definition 2.1. Let Φ be a symmetric gauge function. Then `Φ(N, X) denotes the
collection of sequences a = {aj}j∈N, where aj ∈ X for every j ∈ N, such that

‖a‖Φ = Φ({‖aj‖}j∈N) <∞.

Let us conisder some examples. Recall the symmetric gauge function Φp({bj}j∈N) =
(
∑∞
j=1 |bj |p)1/p, 1 ≤ p < ∞. Then obviously `Φp(N, X) = `p(N, X), the collection of X-

valued `p-sequences. Particularly important to this paper is the symmetric gauge function

Φ−p ({bj}j∈N) =
∞∑
j=1

|bπ(j)|
j(p−1)/p

, {bj}j∈N ∈ ĉ,

where π : N → N is any bijection such that |bπ(1)| ≥ |bπ(2)| ≥ · · · ≥ |bπ(j)| ≥ · · · ,
1 < p <∞. As we have mentioned, we write C−p = CΦ−p . In this spirit, we will write

`p−(N, X) = `Φ−p (N, X) and ‖a‖−p = ‖a‖Φ−p for a ∈ `Φ−p (N, X).

It is well known that if 1 ≤ r < p < s <∞, then

(2.4) `r(N, X) ⊂ `p−(N, X) ⊂ `s(N, X).

Lemma 2.2. Let Φ be a symmetric gauge function such that qΦ < q < ∞. Then there is
a c > 0 such that Φ(ξ[m]) ≥ cm1/qΦ(ξ) for all m ∈ N and ξ ∈ ĉ.

Proof. By the definition of qΦ, the condition qΦ < q implies that there is an N ∈ N such
that if m ≥ N , then

logm

log
(

Φ(ξ[m])
Φ(ξ)

) < q for every ξ ∈ ĉ\{0}.

Elementary manipulation leads to the inequality

m1/qΦ(ξ) ≤ Φ(ξ[m])

for all m ≥ N and ξ ∈ ĉ. Thus the constant c = N−1/q will do for the lemma. �

Lemma 2.3. Let Φ be a symmetric gauge function such that qΦ < q <∞. Then `Φ(N, X)
⊂ `q(N, X).

Proof. Pick a q0 ∈ (qΦ, q). By Lemma 2.2 there is a c > 0 such that Φ(ξ[m]) ≥ cm1/q0Φ(ξ)
for all m ∈ N and ξ ∈ ĉ. Since q > q0, by [13, Lemma 3.1], there is a 0 < B < ∞ such
that ( ∞∑

j=1

|αj |q
)1/q

≤ BΦ(α) for every α = {α1, . . . , αj , . . . } ∈ ĉ.
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Recalling Definition 2.1, from the above we deduce( ∞∑
j=1

‖aj‖q
)1/q

≤ B‖a‖Φ

for every a = {a1, . . . , aj , . . . } ∈ `Φ(N, X). This completes the proof. �

Lemma 2.4. Let Φ be a symmetric gauge function such that pΦ > p > 1. Then qΦ∗ <
p/(p− 1).

Proof. Let s be such that pΦ > s > p. Then there is an N ∈ N such that

logm

log
(

Φ(ξ[m])
Φ(ξ)

) > s

for all m ≥ N and ξ 6= 0 in ĉ. This obviously implies that

Φ(ξ[m]) ≤ m1/sΦ(ξ) for all m ≥ N and ξ ∈ ĉ.

Let b = {bj}j∈N ∈ ĉ. Since Φ∗∗ = Φ, there is an a = {aj}j∈N ∈ ĉ with Φ(a) = 1 such that
Φ∗(b) =

∑∞
j=1 bjaj . Therefore for each m ≥ N ,

mΦ∗(b) = m
∞∑
j=1

bjaj ≤ Φ∗(b[m])Φ(a[m]) ≤ m1/sΦ∗(b[m])Φ(a) = m1/sΦ∗(b[m]).

Thus we conclude that if m ≥ N , then m(s−1)/sΦ∗(b) ≤ Φ∗(b[m]) for every b ∈ ĉ. In other
words, for every m ≥ N we have

m(s−1)/s ≤ inf

{
Φ∗(b[m])

Φ∗(b)
: b ∈ ĉ and b 6= 0

}
.

From this we deduce that qΦ∗ ≤ s/(s− 1). Since s > p > 1, we have qΦ∗ < p/(p− 1). �

Next we perform Boyd interpolation [3,4] for these spaces.

Proposition 2.5. Let 1 < r′ < r < ∞. Suppose that A : `r−(N, X) → `r−(N, X) is a
bounded operator. Furthermore, suppose that there is a 0 < Br′ <∞ such that

(2.5) ‖Ax‖−r′ ≤ Br′‖x‖
−
r′

for every x ∈ `00(N, X). Let Φ be a symmetric gauge function such that r′ < pΦ ≤ qΦ < r.
Then A maps `Φ(N, X) into itself, and there is a 0 < C <∞ such that

(2.6) ‖Aa‖Φ ≤ C‖a‖Φ

for every a ∈ `Φ(N, X).
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Proof. By the condition qΦ < r, Lemma 2.3 and inclusion (2.4), we have `Φ(N, X) ⊂
`r−(N, X). Thus our task is to find a constant 0 < C <∞ such that (2.6) holds.

To find such a 0 < C <∞, we pick p and q such that

(2.7) r′ < p < pΦ ≤ qΦ < q < r.

Let an a = {aj}j∈N ∈ `Φ(N, X) be given. Then

Aa = {(Aa)1, (Aa)2, . . . , (Aa)k, . . . }.

If there are infinitely many nonzero terms among (Aa)1, (Aa)2, . . . , (Aa)k, . . . , we let
z1, z2, . . . , zj , . . . be an enumeration of all the nonzero terms such that

(2.8) ‖z1‖ ≥ ‖z2‖ ≥ · · · ≥ ‖zk‖ ≥ · · · .

If there are only finitely many nonzero terms among (Aa)1, (Aa)2, . . . , (Aa)k, . . . , we let
z1, z2, . . . , zk, . . . be an enumeration of (Aa)1, (Aa)2, . . . , (Aa)k, . . . such that (2.8) holds.
This defines the sequence {zk}k∈N. We call z = {zk}k∈N a descending rearrangement of
Aa, and we will use this terminology below. Our goal is to show that ‖z‖Φ ≤ C‖a‖Φ.

Define z(1) = {z1+2(k−1)}k∈N and z(2) = {z2k}k∈N. Then ‖z‖Φ ≤ ‖z(1)‖Φ + ‖z(2)‖Φ
and ‖z(2)‖Φ ≤ ‖z(1)‖Φ. Thus it suffices to show that ‖z(1)‖Φ ≤ C‖a‖Φ.

There is an injective map π : N → N such that ‖aπ(i)‖ ≥ ‖aπ(i+1)‖ for every i ∈ N
and such that ak = 0 if k ∈ N\π(N). For each j ∈ N, we define vj,k = ak if k ∈ {π(i) :
1 ≤ i ≤ j} and vj,k = 0 if k /∈ {π(i) : 1 ≤ i ≤ j}. We then define the sequences

v(j) = {vj,1, vj,2, . . . , vj,k, . . . } and u(j) = a− v(j),

j ∈ N. For each j ∈ N, let ξj,1, . . . , ξj,k, . . . be a descending rearrangement of Au(j).
Similarly, let ηj,1, . . . , ηj,k, . . . be a descending rearrangement of Av(j), j ∈ N. From the
relation Aa = Au(j) +Av(j) it is easy to see that

(2.9) ‖z1+2(k−1)‖ ≤ ‖ξj,k‖+ ‖ηj,k‖

for all j, k ∈ N.

Because
∑j
i=1 1/i(r−1)/r ≥ c1j

1/r and because ξj,1, . . . , ξj,k, . . . are a descending re-
arrangement of Au(j), we have c1j

1/r‖ξj,j‖ ≤ ‖Au(j)‖−r , j ∈ N. Applying the bounded-
ness of A on `r−(N, X), for every j ∈ N we have

‖ξj,j‖ ≤
1

c1j1/r
‖Au(j)‖−r ≤

C1

j1/r
‖u(j)‖−r =

C1

j1/r

∞∑
k=1

‖aπ(j+k)‖
k(r−1)/r

=
C1

j1/r

∞∑
ν=1

j∑
k=1

‖aπ(jν+k)‖
(j(ν − 1) + k)(r−1)/r

≤ C1

j1/r

∞∑
ν=1

‖aπ(jν)‖
j∑

k=1

1

(j(ν − 1) + k)(r−1)/r

≤ C2

∞∑
ν=1

‖aπ(jν)‖
ν(r−1)/r

= C2

∞∑
ν=1

‖(x(ν))j‖
ν(r−1)/r

,
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where, for each ν ∈ N, we define the element

x(ν) = {aπ(ν), aπ(2ν), . . . , aπ(iν), . . . } ∈ `Φ(N, X).

Let b = {bj}j∈N be an element in ĉ satisfying the conditions bj ≥ 0 for every j and

(2.10) b1 ≥ b2 ≥ · · · ≥ bj ≥ · · · .

We have

(2.11)

∞∑
j=1

bj‖ξj,j‖ ≤ C2

∞∑
ν=1

1

ν(r−1)/r

∞∑
j=1

bj‖(x(ν))j‖ ≤ C2Φ∗(b)

∞∑
ν=1

‖x(ν)‖Φ
ν(r−1)/r

.

We have

‖x(ν)‖Φ ≤ (C3/ν
1/q)‖x(ν)[ν]‖Φ ≤ (C3/ν

1/q)‖a‖Φ for ν ∈ N,

where the first ≤ follows from Lemma 2.2 and the second ≤ follows from the condition
‖aπ(i)‖ ≥ ‖aπ(i+1)‖, i ∈ N. Substituting this in (2.11) and applying the condition q < r,
we find that

(2.12)
∞∑
j=1

bj‖ξj,j‖ ≤ C4Φ∗(b)
∞∑
ν=1

‖a‖Φ
ν1/qν(r−1)/r

= C5Φ∗(b)‖a‖Φ.

For each j ∈ N, we also have

‖ηj,j‖ ≤
1

c2j1/r′
‖Av(j)‖−r′ ≤

Br′

c2j1/r′
‖v(j)‖−r′ =

C6

j1/r′

j∑
i=1

‖aπ(i)‖
i(r′−1)/r′

,

where for the second ≤ we apply (2.5). Thus

∞∑
j=1

bj‖ηj,j‖ ≤
∞∑
j=1

bj
C6

j1/r′

j∑
i=1

‖aπ(i)‖
i(r′−1)/r′

= C6

∞∑
i=1

‖aπ(i)‖
i(r′−1)/r′

∞∑
j=i

bj
j1/r′

.

We now define the element β = {β1, . . . , βi, . . . } ∈ ĉ, where

βi =
1

i(r′−1)/r′

∞∑
j=i

bj
j1/r′

for each i ≥ 1. Then
∞∑
j=1

bj‖ηj,j‖ ≤ C6‖a‖ΦΦ∗(β).
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Combining this with (2.9) and (2.12), we obtain the inequality

∞∑
j=1

bj‖z1+2(j−1)‖ ≤ (C5Φ∗(b) + C6Φ∗(β))‖a‖Φ.

Recall the descending conditions (2.8) and (2.10). Thus we will have ‖z(1)‖Φ ≤ C‖a‖Φ if
we can find a constant C̃ such that Φ∗(β) ≤ C̃Φ∗(b).

We have

βi ≤
bi
i

+
1

i(r′−1)/r′

∞∑
j=1

bj+i
j1/r′

=
bi
i

+
1

i(r′−1)/r′

∞∑
ν=1

i∑
k=1

biν+k

((ν − 1)i+ k)1/r′

≤ bi
i

+
1

i(r′−1)/r′

∞∑
ν=1

biν

i∑
k=1

1

((ν − 1)i+ k)1/r′

≤ bi
i

+ C7

∞∑
ν=1

biν
ν1/r′

,(2.13)

where the second ≤ uses (2.10). Since pΦ > p > r′ > 1, Lemma 2.4 tells us that qΦ∗ <
p/(p− 1) < r′/(r′− 1). Thus for any y = {yi}i∈N ∈ ĉ such that yi ≥ 0 for every i, we have

∞∑
i=1

yi

∞∑
ν=1

biν
ν1/r′

=
∞∑
ν=1

1

ν1/r′

∞∑
i=1

yibiν ≤ Φ(y)
∞∑
ν=1

Φ∗({biν}i∈N)

ν1/r′

≤ C8Φ(y)
∞∑
ν=1

Φ∗(({biν}i∈N)[ν])

ν(p−1)/pν1/r′

≤ C8Φ(y)

∞∑
ν=1

Φ∗(b)

ν(p−1)/pν1/r′
= C9Φ(y)Φ∗(b),

where the second ≤ is obtained from Lemma 2.2 and the third ≤ uses (2.10). Combining
this with (2.13), we see that Φ∗(β) ≤ (1 + C9C7)Φ∗(b). This completes the proof. �

3. The integral operators T1, . . . , Tn

For each (α1, α2) ∈ Z2, we define the square

(3.1) I(α1,α2) = {α1 + x+ i(α2 + y) : x, y ∈ [0, 1)}

in C. We now consider the standard partition of Cn by cubes of the size 1×1×· · ·×1×1.
That is, for each α = (α1, . . . , α2n) ∈ Z2n, we introduce the cube

(3.2) Qα = I(α1,α2) × · · · × I(α2n−1,α2n).
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Let Φ be a symmetric gauge function. For a measurable function ϕ on Cn, we define

(3.3) ‖ϕ‖2,Φ = Φ

({(∫
Qα

|ϕ(ζ)|2dV (ζ)

)1/2}
α∈Z2n

)
(see (2.3)). Here, the 2 in the subscript of ‖ · ‖2,Φ refers to the fact that one first computes
the L2-norm of ϕ on each Qα, α ∈ Z2n. Indeed ‖ · ‖2,Φ is a kind of “hybrid” norm. But by
what we know from previous investigations, this is the right kind of norm when one deals
with the symbol of a Hankel operator on the Fock space H2(Cn, dµ).

Definition 3.1. Let Φ be a symmetric gauge function. Then L2,Φ
n denotes the collection

of measurable functions ϕ on Cn satisfying the condition ‖ϕ‖2,Φ <∞.

Recall that in [14], we used the notation L2,p
n for L2,Φp

n , and we used the notation

L2,p,−
n for L2,Φ−p

n , 1 < p <∞. We will continue to do so in this paper.

It will be convenient to identify Z2n with the standard lattice in Cn. That is, for
α1, α2, . . . , α2n ∈ Z, we will

(3.4) identify (α1, α2, . . . , α2n) with (α1 + iα2, . . . , α2n−1 + iα2n).

Let dA be the area measure on C. For each 1 ≤ j ≤ n we define the operator

(3.5) (Tjϕ)(ζ1, . . . , ζn) = p.v.

∫
C

ϕ(ζ1, · · · , ζj−1, z, ζj+1, . . . , ζn)

(ζj − z)2
dA(z),

(ζ1, . . . , ζn) ∈ Cn. See Lemma 5.3 below for the purpose of T1, . . . , Tn. But this section
deals with the boundedness of these operators.

Proposition 3.2. [14, Proposition 7.4] On each L2,p,−
n = L2,Φ−p

n , 1 < p <∞, the operators
T1, . . . , Tn are bounded.

Combining the interpolation in Proposition 2.5 with Proposition 3.2, we have

Proposition 3.3. Let Φ be a symmetric gauge function such that 1 < pΦ ≤ qΦ < ∞.
Then T1, . . . , Tn are bounded operators on L2,Φ

n .

Proof. Let 1 < p < q <∞ be such that p < pΦ ≤ qΦ < q.

By (3.1), (3.2) and (3.4), for each α = (α1, . . . , α2n) ∈ Z2n we have Qα = Q0 +α. Let
X = L2(Q0). Let π : N → Z2n be a bijection. Then any function ϕ on Cn is naturally
identified with the sequence {ϕk}k∈N, where

ϕk(z) = ϕ(z + π(k)), z ∈ Q0,

k ∈ N. This naturally identifies L2,Φ
n with `Φ(N, X). This also naturally identifies L2,p,−

n =

L2,Φ−p
n with `Φ−p (N, X) = `p−(N, X), and L2,q,−

n = L2,Φ−q
n with `Φ−q (N, X) = `q−(N, X).

Under this identification, Proposition 3.2 tells us that the maps

Tj : `q−(N, X)→ `q−(N, X) and Tj : `p−(N, X)→ `p−(N, X)
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are bounded, 1 ≤ j ≤ n. Therefore it follows from Proposition 2.5 that each map

Tj : `Φ(N, X)→ `Φ(N, X)

is bounded, 1 ≤ j ≤ n. This completes the proof. �

4. Commutators and norm ideals

For each z ∈ Cn, let τz be the translation τz(ζ) = ζ − z, ζ ∈ Cn. Denote

T (Cn) = {f ∈ L2(Cn, dµ) : f ◦ τz ∈ L2(Cn, dµ) for every z ∈ Cn}

as in [6,14,15]. We define the open cube

(4.1) W = {(x1 + iy1, . . . , xn + iyn) : x1, y1, . . . , xn, yn ∈ (−1, 2)}

in Cn. For f ∈ T (Cn) and u ∈ Z2n, we define the quantity

J(f ;u) =

{∫
W+u

∫
W+u

|f(z)− f(w)|2dV (w)dV (z)

}1/2

.

We need the following result:

Proposition 4.1. [6, Lemma 5.6] Let Φ be an arbitrary symmetric gauge function. Then
there is a constant 0 < C <∞ such that

‖[Mf , P ]‖Φ ≤ CΦ({J(f ;u)}u∈Z2n)

for every f ∈ T (Cn).

For f ∈ T (Cn) and α ∈ Z2n, we define the quantities

(4.3) A(f ;α) =

(∫
Qα

|f(z)|2dV (z)

)1/2

and B(f ;α) =

(∫
W+α

|f(z)|2dV (z)

)1/2

.

We further define the set

(4.4) E = {(j1 + ik1, . . . , jn + ikn) : j1, k1, . . . jn, kn ∈ {−1, 0, 1}}.

Lemma 4.2. [14, Lemma 8.2] For any set of non-negative numbers {xα}α∈Z2n and any
symmetric gauge function Φ, we have

Φ

({∑
ε∈E

xα+ε

}
α∈Z2n

)
≤ 32nΦ({xα}α∈Z2n).
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Lemma 4.3. [14, Lemma 8.4] Let ϕ be any non-negative, measurable function on W .
Then ∫

W

∫
W

∫ 1

0

ϕ(tz + (1− t)w)dtdV (w)dV (z) ≤ 62n

∫
W

ϕ(x)dV (x).

Proposition 4.4. Let Φ be an arbitrary symmetric gauge function. Then there is a
constant 0 < C4.4 <∞ such that

‖[Mf , P ]‖Φ ≤ C4.4Φ({A(|∇f |;u)}u∈Z2n)

for every f ∈ T (Cn) ∩ C1(Cn).

Proof. For each α ∈ Z2n, W + α ⊂ ∪ε∈EQα+ε. Hence by (4.3) and Lemma 4.2,

(4.5) Φ({B(|∇f |;u)}u∈Z2n) ≤ 32nΦ({A(|∇f |;u)}u∈Z2n).

Thus, by Proposition 4.1, it suffices to show that there is a 0 < C <∞ such that

(4.6) J(f ;u) ≤ CB(|∇f |;u)

for all f ∈ T (Cn) ∩ C1(Cn) and u ∈ Z2n.

To prove (4.6), it will be convenient to identify Cn with R2n in the natural way. Since
our f is in C1, for any u ∈ Z2n and any z, w ∈W + u, we have

f(z)− f(w) =

∫ 1

0

d

dt
f(tz + (1− t)w)dt =

∫ 1

0

〈(∇f)(tz + (1− t)w), z − w〉dt,

where the 〈·, ·〉 is taken in the sense of the inner product on R2n. Since z, w ∈W + u, we
have |z − w| ≤ 3

√
2n. Hence the above implies

|f(z)− f(w)|2 ≤ 18n

∫ 1

0

|(∇f)(tz + (1− t)w)|2dt.

Applying Lemma 4.3, we have

J2(f ;u) ≤ 18n

∫
W+u

∫
W+u

∫ 1

0

|(∇f)(tz + (1− t)w)|2dtdV (w)dV (z)

≤ 18n62n

∫
W+u

|(∇f)(x)|2dV (x) = 18n62nB2(|∇f |;u).

This proves (4.6) and completes the proof of the proposition. �

Proposition 4.5. Let Φ be an arbitrary symmetric gauge function. Then there is a
constant 0 < C4.5 <∞ such that

(4.7) ‖[Mf , P ]‖Φ ≤ C4.5Φ({A(f ;u)}u∈Z2n)
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for every f ∈ T (Cn).

Proof. It is obvious that for any u ∈ Z2n,

(4.8) J(f ;u) ≤ 2{V (W )}1/2B(f ;u) = 2 · 3nB(f ;u).

Similar to (4.5), Lemma 4.2 now gives us the inequality

Φ({B(f ;u)}u∈Z2n) ≤ 32nΦ({A(f ;u)}u∈Z2n).

Combining this with (4.8) and with Proposition 4.1, we obtain (4.7). �

5. Proof of Theorem 1.5

The proof of Theorem 1.5 involves a well-known decomposition (see [12,5,9,14]) of the
symbol function of a Hankel operator, which we now review. We begin with the sets

Q = {(x1 + iy1, . . . , xn + iyn) : x1, . . . , xn, y1, . . . , yn ∈ [0, 1)} and

S = {(x1 + iy1, . . . , xn + iyn) : x1, . . . , xn, y1, . . . , yn ∈ (−1/2, 3/2)}.

Thus Q = Q0 (see (3.2)). Fix an η ∈ C∞(Cn) satisfying the following three conditions:
(1) 0 ≤ η ≤ 1 on Cn.
(2) η = 1 on Q.
(3) η = 0 on Cn\S.

For each z ∈ Cn, we define the function ηz(ζ) = η(ζ − z) on Cn. By (3), for ζ ∈ Cn and
u ∈ Z2n, if ηu(ζ) 6= 0, then ζ − u ∈ S, i.e., u ∈ ζ − S. This ensures that the function

ϕ =
∑
u∈Z2n

ηu

belongs to C∞(Cn). Also, by (1)-(3), the inequality 1 ≤ ϕ ≤ 32n holds on Cn. Note that
the identity ϕ(ζ) = ϕ(ζ − u) holds for all u ∈ Z2n and ζ ∈ Cn. Now we define

γz = ϕ−1ηz

for every z ∈ Z2n. Then {γz : z ∈ Z2n} is a set of C∞-partition of the unity on Cn.
Moreover, for every z ∈ Z2n, we have γz = 0 on the set Cn\{S + z}.

For an open set U in Cn, let Hol(U) denote the collection of analytic functions on U .
For f ∈ T (Cn) and z ∈ Z2n, we define

M(f ; z) = inf
h∈Hol(W+z)

(∫
W+z

|f(ζ)− h(ζ)|2dV (ζ)

)1/2

,

where W is given by (4.1).
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Let f ∈ T (Cn). For each z ∈ Z2n, there is an hf,z ∈ Hol(W + z) such that∫
W+z

|f(ζ)− hf,z(ζ)|2dV (ζ) ≤ 2M2(f ; z).

Note that this is true even if M(f ; z) = 0. We extend the definition of hf,z to the entire
Cn by setting hf,z = 0 on Cn\{W + z}. Now define the functions

(5.1) f (1) =
∑
z∈Z2n

(f − hf,z)γz and f (2) =
∑
z∈Z2n

hf,zγz.

We have f = f (1) + f (2) because {γz : z ∈ Z2n} is a partition of the unity on Cn. Also
note that f (2) ∈ C∞(Cn).

Proposition 5.1. [14, Corollary 9.3] There are constants 0 < C5.1 <∞ and 0 < C ′5.1 <∞
such that the following bounds hold: Given an f ∈ T (Cn), let

f = f (1) + f (2)

be the decomposition defined by (5.1). Then for every symmetric gauge function Φ,

Φ({A(f (1);α)}α∈Z2n) ≤ C5.1‖Hf‖Φ and

Φ({A(∂̄jf
(2);α)}α∈Z2n) ≤ C ′5.1‖Hf‖Φ, j = 1, . . . , n.

Lemma 5.2. [14, Lemma 9.4] Suppose that f ∈ L∞(Cn). Then the functions f (1), f (2)

defined by (5.1) also belong to L∞(Cn).

Lemma 5.3. [14, Lemma 5.1] Let f ∈ C2(Cn) ∩ L∞(Cn) be a function which has the

property that ∂̄jf ∈ L2,p
n = L2,Φp

n for some j ∈ {1, . . . , n} and 1 < p <∞. Then

∂jf = −π−1Tj(∂̄jf),

where Tj is the operator defined by (3.5).

Proof of Theorem 1.5. Let Φ be a symmetric gauge function such that 1 < pΦ ≤ qΦ <
∞. Let f ∈ L∞(Cn). To prove (1.2), it suffices to consider the case where ‖Hf‖Φ < ∞.
We apply decomposition (5.1) to this f :

f = f (1) + f (2) with f (2) ∈ C∞(Cn).

By Lemma 5.2, f (1), f (2) ∈ L∞(Cn). Applying Propositions 4.5 and 5.1, we have

(5.2) ‖Hf̄(1)‖Φ ≤ ‖[Mf(1) , P ]‖Φ ≤ C4.5Φ({A(f (1);α)}α∈Z2n) ≤ C4.5C5.1‖Hf‖Φ.

Next we consider Hf̄(2) .
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By Proposition 5.1, (4.3) and (3.3), the condition ‖Hf‖Φ < ∞ implies ∂̄jf
(2) ∈ L2,Φ

n

for j = 1, . . . , n. By Lemma 2.3, we have L2,Φ
n ⊂ L2,q

n = L2,Φq
n for every q ∈ (qΦ,∞). Since

f (2) ∈ L∞(Cn), Lemma 5.3 is applicable to f (2). By Lemma 5.3,

∂jf
(2) = −π−1Tj(∂̄jf

(2)),

j = 1, . . . , n. Thus it follows from Proposition 3.3 that

‖∂jf (2)‖2,Φ ≤ C‖∂̄jf (2)‖2,Φ,

j = 1, . . . , n. Recalling (3.3) and (4.3), this means

(5.3) Φ({A(∂jf
(2);α)}α∈Z2n) ≤ CΦ({A(∂̄jf

(2);α)}α∈Z2n),

j = 1, . . . , n. By Proposition 5.1, we have

Φ({A(∂̄jf
(2);α)}α∈Z2n) ≤ C ′5.1‖Hf‖Φ.

j = 1, . . . , n. Combining this with (5.3), we find that

Φ({A(|∇f (2)|;α)}α∈Z2n) ≤ C1‖Hf‖Φ.

Applying Proposition 4.4, we now have

(5.4) ‖Hf̄(2)‖Φ ≤ ‖[Mf(2) , P ]‖Φ ≤ C4.4Φ({A(|∇f (2)|;α)}α∈Z2n) ≤ C4.4C1‖Hf‖Φ.

Since f̄ = f̄ (1) + f̄ (2), (1.2) follows from (5.2) and (5.4). This completes the proof. �

6. More on Hankel operators

Having proved Theorem 1.5, next we turn to the proof of Theorem 1.6, which requires
quite a bit of preparation.

For any pair of a ∈ Cn and r > 0, denote

B(a, r) = {z ∈ Cn : |a− z| < r}.

Let M denote the collection of ϕ ∈ L∞(Cn) for which there is some 0 < ρ = ρ(ϕ) < ∞
such that ϕ = 0 on Cn\B(0, ρ). If ϕ ∈ M, then the Hankel operator Hϕ is in the trace
class C1. This fact can be easily verified by hand, but it certainly is a consequence of
Proposition 4.1. Furthermore, we have

Lemma 6.1. If ϕ ∈M, then

lim
r→∞

‖MϕPMχCn\B(0,r)
‖1 = 0.
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Proof. For any ϕ ∈ M, by definition there is some 0 < ρ = ρ(ϕ) < ∞ such that ϕ = 0
on Cn\B(0, ρ), and ϕ ∈ L∞(Cn). Using these properties, it is elementary to verify that
MϕP ∈ C1. Now it suffices to observe that MχCn\B(0,r)

→ 0 strongly as r →∞. �

For each a ∈ Cn, we have the translation

τa(z) = z − a, z ∈ Cn.

It is well known that for each a ∈ Cn, the formula

Vaf = f ◦ τa · ka, f ∈ L2(Cn, dµ),

defines a unitary operator on L2(Cn, dµ), where ka(z) = e〈z,a〉e−|a|
2/2. The restriction of

Va to H2(Cn, dµ) is also a unitary operator that maps the Fock space onto itself.

For any f ∈ L∞(Cn), we will identify the Hankel operator Hf with the operator
(1 − P )MfP on the space L2(Cn, dµ). Thus for f, ϕ, ψ ∈ L∞(Cn), MϕHfMψ means the
operator Mϕ(1− P )MfPMψ on L2(Cn, dµ).

Our next lemma simplifies the proof of Theorem 1.6:

Lemma 6.2. Let Φ be a symmetric gauge function. Suppose that there exists a set of
functions {fk : k ∈ N} ⊂ M such that supk∈N ‖fk‖∞ <∞ and such that

(6.1)
∞⊕
k=1

Hfk ∈ C
(0)
Φ while

∞⊕
k=1

Hf̄k /∈ CΦ.

Then there is an f ∈ L∞(Cn) such that Hf ∈ C(0)
Φ while Hf̄ /∈ CΦ.

Proof. First of all, it is a basic fact about symmetrically normed ideals that C(0)
Φ ⊃ C1.

Since {fk : k ∈ N} ⊂ M, there is a sequence {ρk} in (0,∞) such that fk = 0
on Cn\B(0, ρk) for every k ∈ N. For each k ∈ N, Lemma 6.1 allows us to pick an
rk ∈ (ρk,∞) such that

(6.2)

{ ‖Hfk −MχB(0,rk)
HfkMχB(0,rk)

‖1 ≤ 2−k and

‖Hf̄k −MχB(0,rk)
Hf̄kMχB(0,rk)

‖1 ≤ 2−k
.

Thus the operators

∞⊕
k=1

Hfk −
∞⊕
k=1

MχB(0,rk)
HfkMχB(0,rk)

and
∞⊕
k=1

Hf̄k −
∞⊕
k=1

MχB(0,rk)
Hf̄kMχB(0,rk)

are in the trace class. Applying (6.1), we have

(6.3)
∞⊕
k=1

MχB(0,rk)
HfkMχB(0,rk)

∈ C(0)
Φ while

∞⊕
k=1

MχB(0,rk)
Hf̄kMχB(0,rk)

/∈ CΦ.
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We can inductively select a sequence {ak} in Cn such that B(ak, rk) ∩ B(aj , rj) = ∅ for
all j 6= k. We have

VakMχB(0,rk)
HϕMχB(0,rk)

V ∗ak = MχB(ak,rk)
Hϕ◦τakMχB(ak,rk)

for every ϕ ∈ L∞(Cn). Combining this unitary equivalence with (6.3), we see that

∞⊕
k=1

MχB(ak,rk)
Hfk◦τakMχB(ak,rk)

∈ C(0)
Φ while

∞⊕
k=1

MχB(ak,rk)
Hf̄k◦τak

MχB(ak,rk)
/∈ CΦ.

Since B(ak, rk) ∩ B(aj , rj) = ∅ for all j 6= k, the above implies that as operators on
L2(Cn, dµ), we have
(6.4)
∞∑
k=1

MχB(ak,rk)
Hfk◦τakMχB(ak,rk)

∈ C(0)
Φ while

∞∑
k=1

MχB(ak,rk)
Hf̄k◦τak

MχB(ak,rk)
/∈ CΦ.

Using the unitary operator Vak again, from (6.2) we obtain{ ‖Hfk◦τak −MχB(ak,rk)
Hfk◦τakMχB(ak,rk)

‖1 ≤ 2−k and

‖Hf̄k◦τak
−MχB(ak,rk)

Hf̄k◦τak
MχB(ak,rk)

‖1 ≤ 2−k
,

k ∈ N. Thus the operators

∞∑
k=1

Hfk◦τak −
∞∑
k=1

MχB(ak,rk)
Hfk◦τakMχB(ak,rk)

and

∞∑
k=1

Hf̄k◦τak
−
∞∑
k=1

MχB(ak,rk)
Hf̄k◦τak

MχB(ak,rk)

are in the trace class. Combining this fact with (6.4), we see that

(6.5)
∞∑
k=1

Hfk◦τak ∈ C
(0)
Φ while

∞∑
k=1

Hf̄k◦τak
/∈ CΦ.

The property that fk = 0 on Cn\B(0, rk) implies that fk ◦τak = 0 on Cn\B(ak, rk). Since
B(ak, rk) ∩B(aj , rj) = ∅ for j 6= k and supk∈N ‖fk‖∞ <∞, the function

f =

∞∑
k=1

fk ◦ τak

is in L∞(Cn). On L2(Cn, dµ), we have the obvious strong convergence
∑`
k=1Mfk◦τak →

Mf and
∑`
k=1Mf̄k◦τak

→Mf̄ as `→∞. Therefore

∞∑
k=1

Hfk◦τak = Hf and
∞∑
k=1

Hf̄k◦τak
= Hf̄ .
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Thus (6.5) tells us that Hf ∈ C(0)
Φ while Hf̄ /∈ CΦ. This completes the proof. �

Proposition 6.3. For each f ∈ C∞(Cn) ∩ L2(Cn, dµ) we have

‖(1− P )f‖ ≤ ‖∂̄1f‖+ · · ·+ ‖∂̄nf‖.

Proof. For each j ∈ {1, . . . , n}, define the operator Pj by the formula

(Pjψ)(ζ1, . . . , ζn) =
1

π

∫
C

ψ(ζ1, . . . , ζj−1, z, ζj+1, . . . , ζn)eζj z̄e−|z|
2

dA(z),

ψ ∈ L2(Cn, dµ). Then it is easy to see that PjPk = PkPj for all j, k ∈ {1, . . . , n}, and that
P = P1 · · ·Pn. Thus

1− P = 1− P1 · · ·Pn−1 + P1 · · ·Pn−1(1− Pn)

= 1− P1 · · ·Pn−2 + P1 · · ·Pn−2(1− Pn−1) + P1 · · ·Pn−1(1− Pn)

= · · · .

Since each Pj is an orthogonal projection, from the above we see that

(6.6) ‖(1− P )ψ‖ ≤ ‖(1− P1)ψ‖+ · · ·+ ‖(1− Pn)ψ‖

for every ψ ∈ L2(Cn, dµ). If f ∈ C∞(Cn)∩L2(Cn, dµ), then by [14, Proposition 12.1] we
have ‖(1 − Pj)f‖ ≤ ‖∂̄jf‖ for j = 1, . . . , n. Combining this with (6.6), the proposition is
proved. �

Recall that we used the function

g(z) =

 z−1 if |z| ≥ 1

0 if |z| < 1

in [14] in the case n = 1. That is, when n = 1, we have Hg ∈ C1 while Hḡ /∈ C1 [14,
Theorem 1.5]. We will modify this g for use in the general case n ≥ 1.

To do this, we first introduce appropriate cutoff functions. We begin with a ξ ∈ C∞(R)
satisfying the following three conditions:

(a) 0 ≤ ξ ≤ 1 on R.
(b) ξ = 0 on (−∞, 2].
(c) ξ = 1 on [3,∞).

Next, for each R > 6 we define the function

ηR(x) = ξ(x)ξ(R+ 3− x), x ∈ R.

Then 0 ≤ ηR ≤ 1 on R, ηR = 0 on (−∞, 2] ∪ [R + 1,∞), and ηR = 1 on [3, R]. Note that
‖η′R‖∞ ≤ ‖ξ′‖∞ for every R > 6. With ηR so defined, for each R > 6 we now define the
function γR on Cn by the formula

(6.7) γR(ζ1, . . . , ζn) =

n∏
j=1

ηR(|ζj |)g(ζj), (ζ1, . . . , ζn) ∈ Cn.
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Lemma 6.4. There is a 0 < C6.4 <∞ such that ‖HγR‖1 ≤ C6.4R
n−1 for every R > 6.

Proof. We have

‖HγR‖1 = tr((H∗γRHγR)1/2) =
1

πn

∫
〈(H∗γRHγR)1/2kz, kz〉dV (z) ≤ 1

πn

∫
‖HγRkz‖dV (z),

where the ≤ follows from the spectral decomposition of H∗γRHγR and the Cauchy-Schwarz
inequality. By Proposition 6.3, we have

‖HγRkz‖ ≤
n∑
j=1

‖∂̄j(γRkz)‖ =
n∑
j=1

‖kz∂̄jγR‖.

Thus

‖HγR‖1 ≤
1

πn

n∑
j=1

∫
‖kz∂̄jγR‖dV (z) =

n

πn

∫
‖kz∂̄1γR‖dV (z),

where the second step involves the fact that γR is invariant under any permutation of the
variable ζ1, . . . , ζn. Therefore

(6.8) ‖HγR‖1 ≤
n

πn

∫
〈|∂̄1γR|2kz, kz〉1/2dV (z) ≤ C1

∑
α∈Z2n

(∫
Qα

|(∂̄1γR)(ζ)|2dV (ζ)

)1/2

,

where the second ≤ is a well-known fact that is easy to prove (see [16, Lemma 6.34] for
the case n = 1, and the general case n ≥ 1 is proved by the same kind of estimates).

We have ∂̄|z| = (2|z|)−1z for z ∈ C\{0}. Therefore

(∂̄1γR)(ζ1, . . . , ζn) =
1

2|ζ1|
η′R(|ζ1|)

n∏
j=2

ηR(|ζj |)g(ζj) if |ζ1| ≥ 2.

(In the case n = 1, the product
∏n
j=2 · · · is interpreted to be 1. The same convention

applies in similar situations.) Also, by the definition of ηR we have

(∂̄1γR)(ζ1, . . . , ζn) = 0 if |ζ1| < 2.

Recalling (3.2), if α = (α1, . . . , α2n) ∈ Z2n is such that
∫
Qα
|(∂̄1γR)(ζ)|2dV (ζ) 6= 0, then

then the function ζ1 7→ η′R(|ζ1|) must not identically vanish on I(α1,α2). There are two
types of (α1, α2) ∈ Z2 for which this is possible. The first type are those (α1, α2) ∈ Z2

satisfying the condition

I(α1,α2) ∩ {ζ1 ∈ C : |ζ1| ≤ 3} 6= ∅.

Thus if (α1, α2) ∈ Z2 is of this type, then we have |α1| ≤ 4 and |α2| ≤ 4. Hence the total
number of this first type of (α1, α2) ∈ Z2 does not exceed 81.
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The second type of (α1, α2) ∈ Z2 with the property that the function ζ1 7→ η′R(|ζ1|)
does not identically vanish on I(α1,α2) are those satisfying the condition

I(α1,α2) ∩ {ζ1 ∈ C : R ≤ |ζ1| ≤ R+ 1} 6= ∅.

It is obvious that the total area of such I(α1,α2) does not exceed C2R. Moreover, if
(α1, α2) ∈ Z2 is of this type, then we have 1/|ζ1| ≤ C3/R for ζ1 ∈ I(α1,α2).

Combining the analysis in the last two paragraphs with (6.8), we find that

‖HγR‖1 ≤ C4

∑
(α3,...,α2n)∈Z2n−2

( n∏
j=2

∫
I(α2j−1,α2j)

|ηR(|ζj |)g(ζj)|2dA(ζj)

)1/2

(see (3.2) and (3.1)). For z ∈ C, if ηR(|z|) 6= 0, then 2 ≤ |z| ≤ R + 1. Thus if we define
ZR to be the collection of all (α3, . . . , α2n) ∈ Z2n−2 satisfying the condition that

I(α2j−1,α2j) ∩ {ζj ∈ C : 2 ≤ |ζj | ≤ R+ 1} 6= ∅ for every 2 ≤ j ≤ n,

then

‖HγR‖1 ≤ C5

∑
(α3,...,α2n)∈ZR

n∏
j=2

1

1 + (α2
2j−1 + α2

2j)
1/2

≤ C6

(∫
|z|≤R+1+

√
2

1

1 + |z|
dA(z)

)n−1

≤ C7R
n−1.

This completes the proof. �

Proposition 6.5. [6, Lemma 6.3] Let Φ be an arbitrary symmetric gauge function. Then
there is a constant 0 < C <∞ such that

Φ({J(f ;u)}u∈Z2n) ≤ C‖[Mf , P ]‖Φ

for every f ∈ T (Cn).

Lemma 6.6. There exist positive numbers 6 < M6.6 < ∞ and 0 < c6.6 < ∞ such that if
R ≥M6.6, then

‖Hγ̄R‖1 ≥ c6.6Rn−1 logR.

Proof. Define T = {(z1, . . . , zn) ∈ Cn : |zj | < 1 for 1 ≤ j ≤ n}. Also, write D = {z ∈ C :
|z| < 1} and Z2 = Z + iZ. Consider any u = (u1, . . . , un) ∈ (Z2)n such that |uj | ≥ 6 for
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every 1 ≤ j ≤ n. For such a u, we have∫∫
(T+u)×(T+u)

∣∣∣∣ 1

z1 · · · zn
− 1

w1 · · ·wn

∣∣∣∣2dV (z1, . . . , zn)dV (w1, . . . , wn)

≥ c1
|u1|4 · · · |un|4

∫∫
(T+u)×(T+u)

|z1 · · · zn − w1 · · ·wn|2dV (z1, . . . , zn)dV (w1, . . . , wn)

=
2πnc1

|u1|4 · · · |un|4

(∫
T+u

|z1 · · · zn|2dV (z1, . . . , zn)− πn|u1|2 · · · |un|2
)

=
2πnc1

|u1|4 · · · |un|4

( n∏
j=1

∫
D

|z + uj |2dA(z)− πn|u1|2 · · · |un|2
)

=
2π2nc1

|u1|4 · · · |un|4

( n∏
j=1

(
1

2
+ |uj |2

)
− |u1|2 · · · |un|2

)

≥ π2nc1
|u1|4 · · · |un|4

n∑
j=1

∏
ν 6=j

|uν |2.

Let UR be the collection of u = (u1, . . . , un) ∈ (Z2)n satisfying the conditions that |uj | ≥ 6
for every 1 ≤ j ≤ n and that

∏n
j=1 ηR(|zj |) = 1 for every (z1, . . . , zn) ∈ W + u. Since

T ⊂W , for each u ∈ UR it follows from the above that

J(γR;u) ≥ πnc
1/2
1

n1/2|u1|2 · · · |un|2
n∑
j=1

∏
ν 6=j

|uν | = c2

n∑
j=1

1

|uj |2
∏
ν 6=j

1

|uν |
.

Recall that we have ηR = 1 on [3, R]. Thus it is obvious that there is a 10 < C <∞ such
that if R ≥ 3C, then for u = (u1, . . . , un) ∈ (Z2)n, the condition that C ≤ |uj | ≤ R − C
for j = 1, . . . , n implies that u ∈ UR. Applying Proposition 6.5 to the symmetric gauge
function Φ1, for R ≥ 3C we have

(6.9) ‖[MγR , P ]‖1 ≥ c3
∑
u∈UR

J(γR;u) ≥ c4
∑

(u1,...,un)∈ŨR

n∑
j=1

1

|uj |2
∏
ν 6=j

1

|uν |
,

where ŨR is the collection of (u1, . . . , un) ∈ (Z2)n such that C ≤ |uj | ≤ R − C for
j = 1, . . . , n.

It is easy to see that there are C1 ∈ [10C,∞) and c5 > 0 such that for R ≥ C1,

∑
(u1...,un)∈ŨR

1

|u1|2
n∏
ν=2

1

|uν |
≥ c5

∫
2C≤|z|≤R−2C

1

|z|2
dA(z)

(∫
2C≤|z|≤R−2C

1

|z|
dA(z)

)n−1

≥ c6(logR)Rn−1.

Combining this with (6.9), we find that

‖[MγR , P ]‖1 ≥ c7Rn−1 logR
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when R ≥ C1. Note that [Mf , P ] = Hf −H∗f̄ . Hence if R ≥ C1, then

‖HγR‖1 + ‖Hγ̄R‖1 ≥ c7Rn−1 logR.

On the other hand, Lemma 6.4 tells us that ‖HγR‖1 ≤ C6.4R
n−1. Now let C1 ≤ M < ∞

be such that (c7/2) logR ≥ C6.4 for R ≥M . Then for R ≥M , from the above we obtain

‖Hγ̄R‖1 ≥ (c7/2)Rn−1 logR.

This completes the proof. �

Lemma 6.7. There exists a 0 < C6.7 < ∞ such that the following holds true: Let
h : [0,∞)→ [0, 1] be any measurable function satisfying the conditions

(a) h = 1 on [0, C6.7];
(b) h = 0 on [ρ,∞) for some C6.7 < ρ <∞.

Then the function

(6.10) η(z1, . . . , zn) = h(|z1|)z1, (z1, . . . , zn) ∈ Cn,

has the property that ‖Hη̄‖ ≥ 1/2.

Proof. We have ‖z1‖ = 1 in H2(Cn, dµ). Thus for such an η,

‖Hη̄‖2 ≥ 〈H∗η̄Hη̄z1, z1〉 = 〈M|η|2z1, z1〉 − ‖PMη̄z1‖2

=
1

π

∫
C

h2(|z|)|z|4e−|z|
2

dA(z)− ‖PMη̄z1‖2

≥ 1

π

∫
|z|<C6.7

|z|4e−|z|
2

dA(z)− ‖PMη̄z1‖2.

Since π−1
∫
C
|z|4e−|z|2dA(z) = 2, we see that for a sufficiently large C6.7 we have

‖Hη̄‖2 ≥ (5/4)− ‖PMη̄z1‖2.

Note that η̄(z1, . . . , zn)z1 = h(|z1|)|z1|2 ⊥ zk11 zk22 · · · zknn whenever there is a j ∈ {1, . . . , n}
such that kj ≥ 1. Therefore

‖PMη̄z1‖ = |〈η̄z1, 1〉| =
1

π

∫
C

h(|z|)|z|2e−|z|
2

dA(z) ≤ 1

π

∫
C

|z|2e−|z|
2

dA(z) = 1.

Consequently, ‖Hη̄‖2 ≥ (5/4)− 1 = 1/4. This completes the proof. �

Lemma 6.8. Given an η defined by (6.10), where h satisfies the conditions in Lemma 6.7,
there is a 0 < C6.8 = C6.8(η) < ∞ which has the following property: Let ψ ∈ L∞(Cn) be
such that ψ = 1 on B(0, C6.8) and ‖ψ‖∞ = 1. Then ‖Hψη̄‖ ≥ 1/3.

Proof. If {Ak} is a sequence of bounded operators strongly convergent to an operator A,
then ‖A‖ ≤ lim infk→∞ ‖Ak‖. The conclusion of the lemma follows from this fact and
Lemma 6.7. �
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We now generalize [14, Proposition 13.2] to arbitrary complex dimensions n ≥ 1:

Proposition 6.9. There does not exist any constant 0 < C <∞ such that the inequality

‖Hϕ̄‖ ≤ C‖Hϕ‖

holds for every ϕ ∈M.

Proof. Let ε > 0 be given. By the argument on pages 43 and 44 in [14], there is a C∞

function h : [0,∞) → [0, 1] satisfying conditions (a) and (b) in Lemma 6.7 such that the
inequality ‖∂̄1η‖∞ ≤ ε holds for the function

η(z1, . . . , zn) = h(|z1|)z1, (z1, . . . , zn) ∈ Cn.

To be more precise about condition (b), there is a T ∈ (C6.7,∞) such that h = 0 on [T,∞).
We have, of course, ∂̄jη = 0 for 2 ≤ j ≤ n.

For this η, Lemma 6.8 provides a 0 < C6.8 = C6.8(η) < ∞. There is a C∞ function
β : R→ [0, 1] satisfying the following four conditions:

(1) 0 ≤ β ≤ 1 on R.
(2) β(x) = 1 if x ≤ C6.8.
(3) ‖β′‖∞ ≤ ε/T .
(4) There is an r ∈ (C6.8,∞) such that β = 0 on [r,∞).

With this β we define the function

ψ(z1, . . . , zn) = β(|z2|) · · ·β(|zn|), (z1, . . . , zn) ∈ Cn.

We obviously have ψη ∈ M. By conditions (1) and (2) above and Lemma 6.8, we have
‖Hψη‖ = ‖Hψη̄‖ ≥ 1/3. Next we show that ‖Hψη‖ ≤ nε. Since ε > 0 is arbitrary, this will
complete the proof of the proposition.

For each f ∈ H2(Cn, dµ), Proposition 6.3 tells us that

‖Hψηf‖ ≤ ‖∂̄1(ψηf)‖+ · · ·+ ‖∂̄n(ψηf)‖ = ‖f∂̄1(ψη)‖+ · · ·+ ‖f∂̄n(ψη)‖.

Thus the desired conclusion will follow if we can show that ‖∂̄j(ψη)‖∞ ≤ ε for every
1 ≤ j ≤ n.

In the case j = 1, we have ∂̄1(ψη) = ψ∂̄1η. Since ‖ψ‖∞ = 1, from the condition
‖∂̄1η‖∞ ≤ ε we deduce ‖∂̄1(ψη)‖∞ ≤ ε. Now consider any 2 ≤ j ≤ n. Then ∂̄j(ψη) = η∂̄jψ.
By condition (3), we have ‖∂̄jψ‖∞ ≤ ε/T . On the other hand, since h = 0 on [T,∞), we
have ‖η‖∞ ≤ T . Consequently, ‖∂̄j(ψη)‖∞ ≤ T · (ε/T ) = ε. This completes the proof. �

7. Proof of Theorem 1.6

In addition to the material about Hankel operators in Section 6, to prove Theorem
1.6, we also need the following three lemmas concerning symmetric gauge functions.

Lemma 7.1. Let Φ be a symmetric gauge function such that pΦ = 1. Then qΦ∗ =∞.
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Proof. Suppose that qΦ∗ < ∞. We will show that this contradicts the condition pΦ = 1.
Let q <∞ be such that qΦ∗ < q. Then by Lemma 2.2, there is a c > 0 such that

(7.1) cm1/qΦ∗(b) ≤ Φ∗(b[m]) for all b ∈ ĉ and m ∈ N.

Since Φ = Φ∗∗, by [13, Proposition 3.2], (7.1) implies that there are 0 < t < 1 and
0 < C <∞ such that

Φ(a[m]) ≤ CmtΦ(a) for all a ∈ ĉ and m ∈ N.

This implies that pΦ ≥ (t + ε)−1 for every ε > 0. Since 0 < t < 1, this contradicts the
condition pΦ = 1. �

Lemma 7.2. Let Φ be a symmetric gauge function such that qΦ = ∞. Then for every

m ∈ N, there exists an xm ∈ ĉ, xm 6= 0, such that Φ(x
[m]
m ) ≤ 2Φ(xm).

Proof. Given any m ∈ N, we pick a k ∈ N such that 2k ≥ m. Since qΦ > k, for a
sufficiently large ` ∈ N there is an a ∈ ĉ, a 6= 0, such that

log 2k`

log
(
Φ(a[2k`])/Φ(a)

) > k.

That is,

(7.2)
Φ(a[2k`])

Φ(a)
< 2`.

On the other hand, we have

(7.3)
Φ(a[2k`])

Φ(a)
=
∏̀
j=1

Φ(a[2jk])

Φ(a[2(j−1)k])
.

By a comparison of (7.2) and (7.3), there is an i ∈ {1, . . . , `} such that

Φ(a[2ik])

Φ(a[2(i−1)k])
< 2.

With this i we define xm = a[2(i−1)k]. Then

Φ(x[m]
m ) ≤ Φ(x[2k]

m ) = Φ(a[2ik]) ≤ 2Φ(a[2(i−1)k]) = 2Φ(xm).

This completes the proof. �

Lemma 7.3. For each A ∈ C1, there is a ν = ν(A) ∈ N such that the inequality∥∥∥∥ ∞⊕
j=1

αjA

∥∥∥∥
Φ

≤ ‖A‖Φ(α[ν]) + Φ(α)
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holds for every symmetric gauge function Φ and every α = {α1, . . . , αj , . . . } ∈ ĉ.

Proof. Since A ∈ C1, there is a ν = ν(A) ∈ N such that

∞∑
k=ν+1

sk(A) ≤ 1.

There are orthonormal sets {uk : k ∈ N} and {vk : k ∈ N} such that

A =

∞∑
k=1

sk(A)uk ⊗ vk.

Since

∞⊕
j=1

αjA =

( ∞⊕
j=1

αj

ν∑
k=1

sk(A)uk ⊗ vk
)

+

( ∞⊕
j=1

αj

∞∑
k=ν+1

sk(A)uk ⊗ vk
)
,

the desired conclusion is now obvious. �

Proof of Theorem 1.6. (1) First, we consider the case where pΦ = 1. In this case we
need the functions defined by (6.7). Given a d ∈ N, we take an Rd ≥ M6.6 such that
logRd ≥ 1 + d3. Consider the Hankel operator Hγ̄Rd

. Since γ̄Rd ∈ M, which implies
Hγ̄Rd

∈ C1, we have

Hγ̄Rd
=
∞∑
`=1

s`(Hγ̄Rd
)ud,` ⊗ vd,`,

where {ud,` : ` ∈ N} and {vd,` : ` ∈ N} are orthonormal set. By Lemma 6.6, we have

‖Hγ̄Rd
‖1 ≥ c6.6Rn−1

d (1 + d3).

Thus there is a νd ∈ N such that

(7.4)

νd∑
`=1

s`(Hγ̄Rd
) ≥ c6.6Rn−1

d d3.

By Lemma 7.1, the condition pΦ = 1 implies qΦ∗ =∞. Thus by Lemma 7.2, there is an

ηd = {ηd,1, ηd,2, . . . , ηd,j , . . . } ∈ ĉ

such that

(7.5) Φ∗(ηd) = 1 and Φ∗(η
[νd]
d ) ≤ 2.

Since Φ∗∗ = Φ, there is an

αd = {αd,1, αd,2, . . . , αd,j , . . . } ∈ ĉ
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such that

(7.6) Φ(αd) = 1 and
∞∑
j=1

αd,jηd,j = Φ∗(ηd) = 1.

Thus we obtain the Rd, νd, ηd and αd described above for every d ∈ N.

We know from (6.7) that ‖γR‖∞ ≤ 1 for every R > 6. Hence ‖γRd‖∞ ≤ 1 for every
d ∈ N. Moreover, the condition Φ(αd) = 1 implies that |αd,j | ≤ 1 for every j ∈ N. Thus,
by Lemma 6.2, the case pΦ = 1 of the theorem will be proved if we can show that

∞⊕
d=1

1

d2Rn−1
d

∞⊕
j=1

αd,jHγRd
∈ C(0)

Φ while(7.7)

∞⊕
d=1

1

d2Rn−1
d

∞⊕
j=1

αd,jHγ̄Rd
/∈ CΦ.(7.8)

It is obvious that for every d ∈ N,

(7.9)

∥∥∥∥ ∞⊕
j=1

αd,jHγRd

∥∥∥∥
Φ

≤ Φ(αd)‖HγRd
‖1 ≤ C6.4R

n−1
d ,

where for the second ≤ we apply Lemma 6.4 and the condition Φ(αd) = 1. Since HγRd
∈ C1

and αd ∈ ĉ, we have ⊕∞j=1αd,jHγRd
∈ C1 ⊂ C(0)

Φ , d ∈ N. Hence (7.7) follows from (7.9).

To prove (7.8), for each k ∈ N we define the finite-rank operator

Tk =
∞⊕
d=1

Ak,d,

where Ak,d = 0 for d 6= k and

Ak,k =

∞⊕
j=1

ηk,j

νk∑
`=1

vk,` ⊗ uk,`.

For every k ∈ N,

‖Tk‖Φ∗ = ‖Ak,k‖Φ∗ = Φ∗(η
[νk]
k ) ≤ 2,

where for the ≤ we recall (7.5). For each k ∈ N,

tr

(
Tk

∞⊕
d=1

1

d2Rn−1
d

∞⊕
j=1

αd,jHγ̄Rd

)
=

1

k2Rn−1
k

∞∑
j=1

αk,jηk,j

νk∑
`=1

〈Hγ̄Rk
vk,`, uk,`〉

=
1

k2Rn−1
k

∞∑
j=1

αk,jηk,j

νk∑
`=1

s`(Hγ̄Rk
)

≥ 1

k2Rn−1
k

· c6.6Rn−1
k k3 = c6.6k,(7.10)
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where the ≥ is obtained from (7.6) and (7.4). Since ‖Tk‖Φ∗ ≤ 2, it follows from (2.1) and
(7.10) that ∥∥∥∥ ∞⊕

d=1

1

d2Rn−1
d

∞⊕
j=1

αd,jHγ̄Rd

∥∥∥∥
Φ

≥ c6.6k/2.

Since k ∈ N is arbitrary, this proves (7.8). Thus the theorem holds in the case pΦ = 1.

(2) Suppose now that qΦ = ∞. In this case we need the condition that Φ is not
equivalent to Φ∞. This simply means that

(7.11) lim
k→∞

Φ({
k︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0, . . . }) =∞.

By Proposition 6.9, for each d ∈ N there is a ϕd ∈M such that

‖Hϕd‖ = 1 while ‖Hϕ̄d‖ ≥ d.

Since the membership ϕd ∈ M implies Hϕd ∈ C1, let ν(d) be the natural number for Hϕd

provided by Lemma 7.3. That is,

(7.12)

∥∥∥∥ ∞⊕
j=1

βjHϕd

∥∥∥∥
Φ

≤ Φ(β[ν(d)]) + Φ(β).

for every β = (β1, . . . , βj , . . . ) ∈ ĉ.

By the condition qΦ =∞ and Lemma 7.2, for each m ∈ N there is a

ξm = {ξm,1, ξm,2, . . . , ξm,j , . . . } ∈ ĉ

satisfying the following conditions:
(1) ξm,j ≥ 0 for every j ∈ N.
(2) ξm,j ≥ ξm,j+1 for every j ∈ N.
(3) ξm,1 = 1.

(4) Φ(ξ
[m]
m ) ≤ 2Φ(ξm).

By (3) and (7.11), we have Φ(ξ
[m]
m )→∞ as m→∞. Hence Φ(ξm)→∞ as m→∞. Thus

for each d ∈ N, we can pick an m(d) ∈ N such that

m(d) ≥ ν(d) and Φ(ξm(d)) ≥ ‖ϕd‖∞.

We now define

X =
∞⊕
d=1

1

d2Φ(ξm(d3))

∞⊕
j=1

ξm(d3),jHϕd3
and Y =

∞⊕
d=1

1

d2Φ(ξm(d3))

∞⊕
j=1

ξm(d3),jHϕ̄d3
.

We have ‖ϕd3‖∞/Φ(ξm(d3)) ≤ 1 for every d ∈ N. Thus, by Lemma 6.2, to complete the

proof in the case qΦ =∞, it suffices to show that X ∈ C(0)
Φ while Y /∈ CΦ.
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Since Hϕd3
∈ C1 and ξm(d3) ∈ ĉ, we have ⊕∞j=1ξm(d3),jHϕd3

∈ C1 ⊂ C(0)
Φ for every

d ∈ N. By (7.12) and condition (4), for every d ∈ N we have∥∥∥∥ ∞⊕
j=1

ξm(d3),jHϕd3

∥∥∥∥
Φ

≤ Φ(ξ
[ν(d3)]
m(d3) ) + Φ(ξm(d3))

≤ Φ(ξ
[m(d3)]
m(d3) ) + Φ(ξm(d3)) ≤ 3Φ(ξm(d3)).

Therefore X ∈ C(0)
Φ .

On the other hand, since ‖Hϕ̄d3
‖ ≥ d3, we have∥∥∥∥ ∞⊕

j=1

ξm(d3),jHϕ̄d3

∥∥∥∥
Φ

≥ d3Φ(ξm(d3))

for every d ∈ N. Therefore

‖Y ‖Φ ≥
1

d2Φ(ξm(d3))

∥∥∥∥ ∞⊕
j=1

ξm(d3),jHϕ̄d3

∥∥∥∥
Φ

≥
d3Φ(ξm(d3))

d2Φ(ξm(d3))
= d

for every d ∈ N. Clearly, this means Y /∈ CΦ. This completes the proof. �

8. More on Boyd indices

We will now take a closer look at the condition 1 < pΦ ≤ qΦ < ∞. We begin with a
proposition which is essentially a known fact. The reason for presenting this proposition
is that it sets the stage for the main result of the section, Theorem 8.2.

Proposition 8.1. Let Φ be a symmetric gauge function such that 1 < pΦ ≤ qΦ < ∞.
Then for any 1 < r < s <∞ satisfying the condition r < pΦ ≤ qΦ < s, we have

(8.1) Cr ⊂ CΦ ⊂ Cs.

Proof. (1) We first prove the inclusion CΦ ⊂ Cs, which is essentially a repeat of the proof
of Lemma 2.3. Indeed we pick a q such that qΦ < q < s. By Lemma 2.2, there is a c > 0
such that Φ(ξ[m]) ≥ cm1/qΦ(ξ) for all m ∈ N and ξ ∈ ĉ. Since s > q, by [13, Lemma 3.1],
there is a 0 < B <∞ such that

Φs(α) ≤ BΦ(α) for every α ∈ ĉ.

This obviously implies that CΦ ⊂ Cs.

(2) To prove the inclusion Cr ⊂ CΦ, we pick a p such that r < p < pΦ. By the definition
of pΦ, there is an N ∈ N such that

logm

log{Φ(a[m])/Φ(a)}
> p for all m ≥ N and a ∈ ĉ\{0}.
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Thus Φ(a[m]) ≤ m1/pΦ(a) for all m ≥ N and a ∈ ĉ. Consequently,

(8.2) Φ(a[m]) ≤ Nm1/pΦ(a) for all m ∈ N and a ∈ ĉ.

Using this fact, next we show that

(8.3) N−1m(p−1)/pΦ∗(b) ≤ Φ∗(b[m]) for all m ∈ N and b ∈ ĉ.

Indeed given a b = {b1, . . . , bj , . . . } ∈ ĉ, since Φ∗∗ = Φ, there is an a = {a1, . . . , aj , . . . } ∈ ĉ
with Φ(a) = 1 such that Φ∗(b) =

∑∞
j=1 bjaj . Thus for any m ∈ N, (8.2) gives us

mΦ∗(b) = m

∞∑
j=1

bjaj ≤ Φ∗(b[m])Φ(a[m]) ≤ Nm1/pΦ∗(b[m])Φ(a) = Nm1/pΦ∗(b[m]).

Thus (8.3) holds. Note that (8.3) implies that qΦ∗ ≤ p/(p−1). Since p/(p−1) < r/(r−1),
by the argument in (1), there is a 0 < C <∞ such that

(8.4) Φr/(r−1)(a) ≤ CΦ∗(a) for every a ∈ ĉ.

Given any x = {x1, . . . , xj , . . . } ∈ ĉ, there is a y = {y1, . . . , yj , . . . } ∈ ĉ with Φ∗(y) = 1
such that Φ(x) =

∑∞
j=1 xjyj . Applying Hölder’s inequality and (8.4), we have

Φ(x) =
∞∑
j=1

xjyj ≤ Φr(x)Φr/(r−1)(y) ≤ CΦr(x)Φ∗(y) = CΦr(x).

That is, Φ(x) ≤ CΦr(x) for every x ∈ ĉ. This implies that Cr ⊂ CΦ. �

Once we have Proposition 8.1, an obvious question asserts itself. Namely, if (8.1) holds
for some 1 < r < s <∞, does it follow that 1 < pΦ ≤ qΦ <∞? Note that (8.1) gives both
an upper bound and a lower bound on the size of the ideal CΦ. Thus an affirmative answer
to this question would say that the condition 1 < pΦ ≤ qΦ < ∞ is solely determined by
the size of CΦ. But the truth is quite the opposite:

Theorem 8.2. Given any 1 < r < s <∞, there is a symmetric gauge function Φ satisfying
the conditions that

Cr ⊂ CΦ ⊂ Cs,

that qΦ =∞ and that pΦ = 1.

Proof. Given any 1 < r < s <∞, we pick p, q satisfying the condition

r < p < q < s.

It is elementary that Cr ⊂ C+
p and that C+

q ⊂ Cs. Thus it suffices to find a symmetric
gauge function Φ which satisfies the conditions that

(8.5) C+
p ⊂ CΦ ⊂ C+

q ,
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that qΦ = ∞ and that pΦ = 1. We prefer to use the Lorentz ideals C+
p and C+

q because
they are easier to handle than Schatten classes.

To construct the desired Φ, we begin with the fact that q/p > 1. This allows us to
pick an α ∈ (0,∞) such that (q/p)α{(q/p)− 1} > 2. With α so chosen, for each j ∈ N we
let kj be the unique natural number satisfying the inequality

(q/p)α+j ≤ kj < (q/p)α+j + 1.

The choice of α ensures that kj+1− kj > 1 for every j ∈ N. For each j ∈ N, let Nj be the
unique natural number satisfying the inequality

2qkj ≤ Nj < 2qkj + 1.

We now enumerate the sequence

1,

N1︷ ︸︸ ︷
1

2k1
, . . . ,

1

2k1
,

N2︷ ︸︸ ︷
1

2k2
, . . . ,

1

2k2
, . . . ,

Nj︷ ︸︸ ︷
1

2kj
, . . . ,

1

2kj
, . . . ,

in the descending order, as γ1, γ2, . . . , γν , . . . .

Obviously, we have γ1 = 1, limν→∞ γν = 0 and
∑∞
ν=1 γν =∞. That is, the sequence

{γν} is “binormalizing” [7, page 141]. Thus, according to [7, Section III.14], the formula

(8.6) Φ(a) = sup
ν∈N

|aπ(1)|+ · · ·+ |aπ(ν)|
γ1 + · · ·+ γν

, a = {a1, . . . , aν , . . . } ∈ ĉ,

where π : N→ N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(ν)| ≥ · · · , defines
a symmetric gauge function. Let us verify that this Φ satisfies (8.5) and has the properties
that qΦ =∞ and that pΦ = 1.

Consider any ν ∈ N such that

(8.7) 1 +N1 + · · ·+Nj < ν ≤ 1 +N1 + · · ·+Nj +Nj+1

for some j ∈ N. Then by definition we have γν = 2−kj+1 . Since ki+1 − ki > 1 for every
i ∈ N, we have

ν ≤ 1 +N1 + · · ·+Nj +Nj+1 ≤ 1 + 2(2qk1 + · · ·+ 2qkj + 2qkj+1) ≤ C2qkj+1 .

Thus γν ≤ (C/ν)1/q for such a ν. This obviously implies that CΦ ⊂ C+
q . For any ν ∈ N

satisfying (8.7), we have ν ≥ Nj ≥ 2qkj . Thus

(1/ν)1/p ≤ 2−(q/p)kj = 2−kj+12kj+1−(q/p)kj ≤ γν2kj+1−(q/p)α+j+1

≤ 2γν

for any ν ∈ N satisfying (8.7), j ∈ N. This obviously implies that C+
p ⊂ CΦ. Thus we have

verified (8.5) for the symmetric gauge function Φ defined by (8.6).
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To prove that qΦ =∞, we observe that there is an L ∈ N such that

1 +N1 +N2 + · · ·+Nj ≤ 2qkj+L

for every j ∈ N. Then note that

(8.8) kj+1 − kj ≥ (q/p)α+j+1 − (q/p)α+j − 1 = ((q/p)− 1)(q/p)α+j − 1.

Thus there is a J ∈ N such that if j ≥ J , then (q− 1)(kj+1− kj) ≥ L+ 3. For each j ≥ J ,
we define `j to be the largest natural number satisfying the condition

(8.9) `j + L+ 2 ≤ (q − 1)(kj+1 − kj).

Since `j is the largest of such natural number, it follows from (8.8) that `j →∞ as j →∞.
Obviously, (8.9) implies 1 + kj+1 + (q − 1)kj ≤ qkj+1 − `j − L − 1, j ≥ J . Therefore for
each j ≥ J , there is a natural number dj ∈ N such that

(8.10) kj+1 + (q − 1)kj ≤ dj ≤ qkj+1 − `j − L− 1.

With this dj we now define the element

uj = {
1+N1+···+Nj+2dj︷ ︸︸ ︷
1, . . . . . . . . . , 1 , 0, . . . , 0, . . . }

in ĉ, j ≥ J . We will show that there is a 1 < C1 <∞ such that

(8.11) Φ(u
[2`j ]
j ) ≤ C1Φ(uj) for every j ≥ J + 1.

Since `j →∞ as j →∞, this obviously implies that qΦ =∞. Note that (8.11) will follow
if we can find constants 0 < c <∞ and 0 < C2 <∞ such that

Φ(uj) ≥ c2kj+1 while(8.12)

Φ(u
[2`j ]
j ) ≤ C22kj+1(8.13)

for every j ≥ J + 1.

For each j ≥ J we have

(8.14) Φ(uj) ≥
2dj∑1+N1+···Nj+2dj

ν=1 γν

≥ 2dj

1 + 2
∑j
i=1 2(q−1)ki + 2dj−kj+1

.

Since ki+1 − ki > 1 for every i ∈ N, we have 1 + 2
∑j
i=1 2(q−1)ki ≤ C32(q−1)kj , j ≥ J . By

(8.10), we have dj − kj+1 ≥ (q − 1)kj , j ≥ J . Hence (8.12) follows from (8.14).

33



To prove (8.13), denote Mj = 1 +N1 + · · ·+Nj + 2dj for each j ≥ J + 1. Then

u
[2`j ]
j = {

2`jMj︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0, . . . },

and consequently

(8.15) Φ(u
[2`j ]
j ) = max

1≤ν≤2`jMj

ν

γ1 + · · ·+ γν
,

j ≥ J + 1. First, consider ν ∈ N satisfying the condition

1 +N1 + · · ·+Ni < ν ≤ 1 +N1 + · · ·+Ni +Ni+1,

where 1 ≤ i ≤ j − 1, j ≥ J + 1. In this case, we have ν = 1 +N1 + · · ·+Ni + ν0 for some
1 ≤ ν0 ≤ Ni+1. Thus

ν

γ1 + · · ·+ γν
≤ 1 +N1 + · · ·+Ni + ν0

1 +
∑i
µ=1 2(q−1)kµ + ν0

2ki+1

≤ 2qki+L + ν0

2(q−1)ki + ν0
2ki+1

=
2qki+L

2(q−1)ki + ν0
2ki+1

+
ν0

2(q−1)ki + ν0
2ki+1

≤ 2ki+L + 2ki+1 ≤ C42kj .(8.16)

Now consider ν satisfying the condition

(8.17) 1 +N1 + · · ·+Nj < ν ≤ 2`jMj .

First of all, note that since dj ≥ (q − 1)kj + kj+1 > qkj , we have

2`jMj ≤ 2`j (2qkj+L + 2dj ) ≤ 2`j+12dj+L = 2dj+`j+L+1 ≤ 2qkj+1 ≤ Nj+1.

Thus if 1 +N1 + · · ·+Nj < i ≤ 2`jMj , then γi = 2−kj+1 . Hence if ν satisfies (8.17), then
ν = 1 +N1 + · · ·+Nj + ν0 for some 1 ≤ ν0 ≤ 2`jMj − (1 +N1 + · · ·+Nj), and

ν

γ1 + · · ·+ γν
≤ 1 +N1 + · · ·+Nj + ν0

1 +
∑j
µ=1 2(q−1)kµ + ν0

2kj+1

≤ 2qkj+L + ν0

2(q−1)kj + ν0
2kj+1

=
2qkj+L

2(q−1)kj + ν0
2kj+1

+
ν0

2(q−1)kj + ν0
2kj+1

≤ 2kj+L + 2kj+1 ≤ C42kj+1 .(8.18)

Combining (8.15), (8.16) and (8.18), we obtain (8.13). Hence qΦ =∞.

Last but not least, we need to verify that pΦ = 1. To do that, we define the element

vj = {
1+N1+···+Nj︷ ︸︸ ︷
1, . . . . . . , 1 , 0, . . . , 0, . . . }
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in ĉ for each j ≥ J . Then

Φ(vj) = max
1≤ν≤Kj

ν

γ1 + · · ·+ γν

for each j ≥ J , where we write Kj = 1 +N1 + · · ·+Nj . Thus it follows from (8.16) that

(8.19) Φ(vj) ≤ C52kj for every j ≥ J + 1.

For each j ≥ J , let mj be the smallest natural number satisfying the inequality

(q − 1)kj + kj+1 ≤ mj .

By (8.10), we have mj ≤ dj for every j ≥ J . Thus

2kj+1−kjKj ≥ 2kj+1−kj2qkj = 2kj+1+(q−1)kj ≥ 2mj−1

for every j ≥ J . Also,

2kj+1−kjKj ≤ 2kj+1−kj2qkj+L = 2kj+1+(q−1)kj+L ≤ 2mj+L ≤ 2qkj+1 ≤ Nj+1

for every j ≥ J , where the third ≤ follows from the inequality mj ≤ dj and (8.10). It
follows from the above two inequalities that

Φ(v
[2kj+1−kj ]
j ) ≥ 2kj+1−kjKj∑2kj+1−kjKj

ν=1 γν

≥ 2mj−1

1 + 2
∑j
i=1 2(q−1)ki +

2kj+1−kjKj−Kj
2kj+1

≥ 2mj−1

C62(q−1)kj + 2mj+L

2kj+1

≥ 2mj−1

C62(q−1)kj + 2(q−1)kj+kj+1+1+L

2kj+1

≥ c1
2mj

2(q−1)kj
≥ c12kj+1 = c12kj+1−kj · 2kj ≥ (c1/C5)2kj+1−kjΦ(vj)(8.20)

for every j ≥ J+1, where for the last step we apply (8.19). By (8.8), we have kj+1−kj →∞
as j →∞. It is now straightforward to deduce from (8.20) that pΦ = 1. �
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