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Abstract. The Berger-Coburn phenomenon of Hankel operators was recently reported by
Hu and Virtanen in [14] for the Schatten classes Cp, 1 < p < ∞. But a careful reading
of [14] finds that in the case 1 < p < 2, there is a technical problem in their proof. In
this paper we first fix this problem. We then establish the Berger-Coburn phenomenon for
the Lorentz ideals C+

p and C−p , 1 < p < ∞. Last but not least, we show that there is no

Berger-Coburn phenomenon for the trace class C1, for C+
1 , and for the Macaev ideal C−∞.

1. Introduction

Let dµ denote the Gaussian measure on Cn. More precisely, we write

dµ(z) = π−ne−|z|
2

dV (z),

where dV is the standard volume measure on Cn. Recall that the Fock space H2(Cn, dµ)
is the norm closure of C[z1, . . . , zn] in L2(Cn, dµ). Let P : L2(Cn, dµ) → H2(Cn, dµ) be
the orthogonal projection. Given an appropriate symbol function f , the Hankel operator
Hf : H2(Cn, dµ)→ L2(Cn, dµ)	H2(Cn, dµ) is defined by the formula

Hfh = (1− P )(fh),

h ∈ H2(Cn, dµ).

For an arbitrary symbol function f , in general very little about Hf̄ can be inferred
from the properties of Hf . Therefore it was all the more remarkable that Berger and
Coburn proved the following result in [4]: for f ∈ L∞(Cn), Hf is compact if and only if
Hf̄ is compact. From the author’s conversations with Lew Coburn about this result in the
late 1990s and early 2000s arose a natural question, which was reported in [20]:

Question 1.1. For f ∈ L∞(Cn) and 1 ≤ p < ∞, does the membership Hf ∈ Cp imply
Hf̄ ∈ Cp?

Here, Cp denotes the Schatten p-class. That is, Cp is the collection of operators A
satisfying the condition ‖A‖p <∞, where ‖A‖p = {tr((A∗A)p/2)}1/p.

In [3], Bauer answered Question 1.1 in the affirmative for the Hilbert-Schmidt class
C2: for f ∈ L∞(Cn), Hf ∈ C2 if and only if Hf̄ ∈ C2.
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After Bauer’s paper, no progress was made on Question 1.1 for the next sixteen years.
Then in December, 2020, Hu and Virtanen posted [14] (arXiv:2012.13768), which reported
an affirmative answer to Question 1.1 for all 1 < p <∞:

Theorem 1.2. [14, Theorem 1.2] Suppose that 1 < p <∞. For f ∈ L∞(Cn), Hf ∈ Cp if
and only if Hf̄ ∈ Cp.

Actually, the Hankel operators in [14] are on the weighted Segal-Bargman space F 2(ϕ),
which is more general than the H2(Cn, dµ) considered in this paper. Moreover, Hu and
Virtanen gave the norm bound ‖Hf̄‖p ≤ C‖Hf‖p for f ∈ L∞(Cn), where C depends only
on the p ∈ (1,∞).

Hu and Virtanen referred to Theorem 1.2 as the Berger-Coburn phenomenon for the
Schatten classes Cp, 1 < p <∞. We will follow their terminology. In [21,13], the root cause
of the Berger-Coburn phenomenon was ascribed to the absence of bounded, non-constant
analytic functions on Cn.

But unfortunately, for 1 < p < 2, there is a technical problem in the proof of Theorem
1.2 presented in [14], which, for convenience of discussion, will be referred to as the Original
Proof. For f ∈ L∞(Cn) such that Hf ∈ Cp, the Original Proof decomposes f in a specific
form f = f1 +f2 with f1 ∈ C2(Cn). Then the goal is to show that Hf̄1 ∈ Cp and Hf̄2 ∈ Cp.
There is no problem with the argument for Hf̄2 ∈ Cp. The problem occurs when it comes
to the membership Hf̄1 ∈ Cp. In the Original Proof, the membership Hf̄1 ∈ Cp is justified

by the condition ‖∂̄f̄1‖Lp < ∞, which is incorrect. To ensure Hf̄1 ∈ Cp, what one needs
(in the notation of [14]) is the condition

(1.1) ‖M2,r(∂̄f̄1)‖Lp <∞,

where

(1.2) M2,r(ϕ)(z) =

{
1

|B(z, r)|

∫
B(z,r)

|ϕ|2dV
}1/2

.

If 2 ≤ p < ∞, then by Hölder’s inequality the condition ‖∂̄f̄1‖Lp < ∞ implies (1.1).
Therefore the Original Proof works in the case 2 ≤ p < ∞. But in the case 1 < p < 2,
there is no Hölder’s inequality to apply, and it is not a priori clear why the condition
‖∂̄f̄1‖Lp <∞ implies (1.1).

The point is that in the definition of M2,r(ϕ)(z), |ϕ| has to be squared before it is
integrated over B(z, r). This actually corresponds to the fact that one proves the Schatten

class membership of MϕP by considering {(MϕP )∗MϕP}1/2 = T
1/2
|ϕ|2 . In other words, the

|ϕ|2 in (1.2) is dictated by the underlying operator theory.

For each 1 < p < 2, one can certainly produce examples of ϕ such that ‖ϕ‖Lp < ∞
while ‖M2,r(ϕ)‖Lp =∞. In fact, the condition ‖M2,r(ϕ)‖Lp <∞ is structurally different
from the condition ‖ϕ‖Lp <∞.

Note added in revision, November 3, 2022. After the initial submission of this paper,
an updated version of [14], arXiv.2012.13768v3, was posted. In this updated version, a
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correct proof was given for the case 1 < p < 2 in Theorem 1.2. The main part of this new
proof is that (1.1) indeed holds in the case 1 < p < 2.

Now let us discuss what we will do in this paper. This paper has a threefold purpose.
First, we will present a correct proof for the case 1 < p < 2 in Theorem 1.2. Specifically,
we will show that (1.1) indeed holds for the particular f1, which takes quite a bit of work.

Even though the original proof of Theorem 1.2 had a technical problem, the idea in
[14] of decomposing f for the purpose of proving the Berger-Coburn phenomenon is a
really good one. This idea can be further exploited. One can use the same idea to prove
the Berger-Coburn phenomenon for operator ideals other than the Schatten classes. The
second purpose of this paper is to establish the Berger-Coburn phenomenon for two classes
of Lorentz ideals. Before going any further, let us introduce these ideals.

Let H be a Hilbert space. For any given 1 ≤ p <∞, the formula

‖A‖+p = sup
j≥1

s1(A) + s2(A) + · · ·+ sj(A)

1−1/p + 2−1/p + · · ·+ j−1/p

defines a norm for bounded operators on H. Here and in what follows, we write s1(A),
s2(A), . . . , sj(A), . . . for the s-numbers [12] of the operator A. It is well known that the
collection of operators

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

form a norm ideal, for which we cite [12] as our primary reference.

For each 1 ≤ p <∞, the formula

‖A‖−p =
∞∑
j=1

sj(A)

j(p−1)/p

also defines a norm for bounded operators on H. Denote

C−p = {A ∈ B(H) : ‖A‖−p <∞},

which is also a norm ideal of operators on H [12].

It is well known that C+
p is not separable with respect to the norm ‖ · ‖+p [12]. For

1 ≤ p < p′ <∞, the inclusion relation

C−p ⊂ Cp ⊂ C+
p ⊂ C−p′

is also well known. When p > 1, the above inclusions are all proper. For p = 1, it is easy
to see that C−1 = C1 while C+

1 6= C1. The ideal C+
1 commands special interest in that it is

the domain of every Dixmier trace [6,5].

For these ideals, we will prove the following two theorems:

Theorem 1.3. Let 1 < p <∞. For f ∈ L∞(Cn), Hf ∈ C+
p , if and only if Hf̄ ∈ C+

p .
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Theorem 1.4. Let 1 < p <∞. For f ∈ L∞(Cn), Hf ∈ C−p , if and only if Hf̄ ∈ C−p .

The third purpose of this paper is to report the absence of Berger-Coburn phenomenon
for a number of ideals. First of all, there is no Berger-Coburn phenomenon for the trace
class C1 and for the ideal C+

1 . The case of trace class C1 is settled by a simple example,
while the case of C+

1 requires a rather elaborate construction.

Theorem 1.5. Consider the case where n = 1. On C, define the function

(1.3) g(z) =

 z−1 if |z| ≥ 1

0 if |z| < 1
.

Then Hg is in the trace class while Hḡ is not in the trace class.

Theorem 1.6. Consider the case where n = 1. There is a ψ ∈ L∞(C) such that Hψ ∈ C+
1

while Hψ̄ /∈ C+
1 .

Then there is the matter of the Macaev ideal C−∞. Recall that on any Hilbert space H,
we have C−∞ = {A ∈ B(H) : ‖A‖−∞ <∞}, where the norm ‖ · ‖−∞ is defined by the formula

‖A‖−∞ =

∞∑
j=1

sj(A)

j
.

It is well known that C−∞ is the pre-dual of C+
1 [12]. In contrast to C1 and C+

1 , the Macaev
ideal C−∞ is at the other end of the scale. That is, C−∞ is a large ideal; in fact, C−∞ is
not much smaller than K, the ideal of compact operators. Since the original Berger-
Coburn phenomenon in [4] was about K, one is obligated to ask, is there Berger-Coburn
phenomenon for C−∞? Notwithstanding the size of C−∞, the answer is negative:

Theorem 1.7. Consider the case where n = 1. There is a q ∈ L∞(C) such that Hq ∈ C−∞
while Hq̄ /∈ C−∞.

Taking the results in this paper as a whole, we now have a much better understanding
of the Berger-Coburn phenomenon.

The rest of the paper is organized as follows. Sections 2, 3 and 4 are the technical
foundation for proving the case 1 < p < 2 in Theorem 1.2 and for proving Theorems 1.3
and 1.4. For this part, the space that matters is L2,p

n , which will be introduced in Section 4.
Locally L2,p

n behaves like L2, but at long range this space is more like `p. The culmination
of these three sections is Proposition 4.5, which says that the operator

(Tjϕ)(ζ1, . . . ζj−1, ζj , ζj+1, . . . , ζn) = p.v.

∫
C

ϕ(ζ1, . . . , ζj−1, z, ζj+1, . . . , ζn)

(ζj − z)2
dA(z)

is bounded on L2,p
n , j = 1, . . . , n. The proof of the boundedness of Tj requires treatment

of the discrete Hilbert transform in Section 2 and other steps in Section 3.

In Section 5, we give a correct proof of the case 1 < p < 2 in Theorem 1.2.
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We then begin our preparation to prove Theorems 1.3 and 1.4. This preparation
consists of two parts. First, we need to show that each Tj is bounded on the spaces L2,p,+

n

and L2,p,−
n , 1 < p <∞. This requires Proposition 4.5 and the unconventional interpolation

in Sections 6 and 7. The second part of this preparation consists of Sections 8 and 9, which
deal with the membership of Hankel operators in general norm ideals. After this extensive
preparation, we prove Theorems 1.3 and 1.4 in Section 10.

We then prove Theorems 1.5, 1.6 and 1.7 in Sections 11, 12 and 13 respectively.
Finally, in Section 14 we present a generalization of Theorem 1.7.

Acknowledgement. The author wishes to thank the reviewers for their comments.

2. Discrete Hilbert transform

Let I denote the collection of half-open, half-closed intervals [a, b) in R, −∞ < a <
b <∞. For each interval I in R, we write |I| for its length.

Lemma 2.1. Given any m ∈ N, there are pairwise disjoint I1, . . . , Ik ∈ I satisfying the
following four conditions:

(a) I1 ∪ · · · ∪ Ik ⊃ {1, . . . ,m}.
(b) |Ij | = dist(Ij ,R\(0,m+ 1)) for every 1 ≤ j ≤ k.
(c) ∪kj=1Ij ⊂ (0,m+ 1).
(d) 3|Ij | ≥ card(Ij ∩ {1, . . . ,m}) > 0 for every 1 ≤ j ≤ k.

Proof. It is elementary that there are pairwise disjoint J1, . . . , Jν , . . . in I such that
∪∞ν=1Jν = (0,m + 1) and such that |Jν | = dist(Jν ,R\(0,m + 1)) for every ν ∈ N. Let
I1, . . . , Ik be the intervals Jν satisfying the condition Jν ∩ {1, . . . ,m} 6= 0. Then (a),
(b) and (c) follow from the properties of J1, . . . , Jν , . . . . For each 1 ≤ j ≤ k, since
Ij ∩ {1, . . . ,m} 6= ∅ by choice, (b) implies |Ij | ≥ 1/2. Therefore

3|Ij | ≥ 1 + |Ij | ≥ card(Ij ∩ Z) ≥ card(Ij ∩ {1, . . . ,m}).

That is, (d) also holds. �

Let H be a Hilbert space and consider `p(Z,H), 1 ≤ p ≤ ∞. For 1 ≤ p <∞, `p(Z,H)
consists of sequences a = {ak} such that ak ∈ H for every k ∈ Z and such that

‖a‖p =

(∑
k∈Z

‖ak‖p
)1/p

<∞.

We define the maximal operator M on `p(Z,H) as follows. For each a = {ak} ∈ `p(Z,H),
Ma is the scalar sequence {(Ma)k}, where each (Ma)k is defined by the formula

(2.1) (Ma)k = sup

{
1

|I|
∑
j∈I
‖aj‖ : k ∈ I, I ∈ I and |I| ≥ 1

}
.

Lemma 2.2. The maximal operator M satisfies the weak-type 1-1 estimate on `1(Z,H).
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Proof. Let a = {ak} ∈ `1(Z,H). Given any λ > 0, define Λ = {k ∈ Z : (Ma)k > λ}. Since
a ∈ `1(Z,H), from (2.1) we see that there is a K ∈ N such that Λ ⊂ [−K,K]. That is, Λ
is a finite set. For each k ∈ Λ, there is an Ik ∈ I such that k ∈ Ik, |Ik| ≥ 1, and

(2.2)
1

|Ik|
∑
j∈Ik

‖aj‖ ≥ λ/2.

By arranging the finite collection of intervals {Ik : k ∈ Λ} in the descending order of |Ik|,
we obtain a subset Λ′ of Λ which has the following two properties:

(1) Ij ∩ Ik = ∅ for all j 6= k in Λ′.
(2) If ν ∈ Λ\Λ′, then there is a k(ν) ∈ Λ′ such that Iν ∩ Ik(ν) 6= ∅ and |Ik(ν)| ≥ |Iν |.

For each k ∈ Λ′, let Ĩk be the interval in I that has the same center as Ik but 3 times the
length. If ν ∈ Λ\Λ′ and k ∈ Λ′ are such that Iν ∩ Ik 6= ∅ and |Ik| ≥ |Iν |, then Ĩk ⊃ Iν .
That is, ∪k∈Λ′ Ĩk ⊃ Λ. Thus from (2.2) and property (1) above we obtain

‖a‖1 ≥
∑
k∈Λ′

∑
j∈Ik

‖aj‖ ≥
λ

2

∑
k∈Λ′

|Ik| =
λ

6

∑
k∈Λ′

|Ĩk|.

For each k ∈ Λ′, since |Ĩk| ≥ 3, we have 2|Ĩk| > 1 + |Ĩk| ≥ card(Ĩk ∩ Z) ≥ card(Ĩk ∩ Λ).
Therefore the above implies

card(Λ) ≤ 12λ−1‖a‖1.

That is, M satisfies the weak-type 1-1 estimate on `1(Z,H) as promised. �

Obviously, the maximal operator M : `∞(Z,H) → `∞(Z) is bounded. Therefore, by
the usual interpolation, from Lemma 2.2 we obtain

Corollary 2.3. For each 1 < p < ∞, the maximal operator M : `p(Z,H) → `p(Z) is
bounded.

Next we consider the discrete Hilbert transform. For any a = {ak} ∈ `p(Z,H),
1 ≤ p <∞, we define the sequence Da = {(Da)k} by the formula

(Da)k =
∑

j∈Z\{k}

1

k − j
aj , k ∈ Z.

Lemma 2.4. The discrete Hilbert transform D maps `2(Z,H) into itself. Moreover, the
norm of the operator D : `2(Z,H)→ `2(Z,H) does not exceed π.

Proof. It is straightforward to verify that when acting on `2(Z,H), D is unitarily equivalent
to the operator of multiplication by the scalar function

∞∑
k=1

1

k
(eikx − e−ikx) = 2i

∞∑
k=1

sin kx

k
= i(π − x)

on L2([0, 2π),H). �
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Lemma 2.5. The discrete Hilbert transform D satisfies the weak-type 1-1 estimate on
`1(Z,H).

Proof. This is an adaptation of a classic argument. See, e.g., [11, pages 129-131]. Let
a = {ak} ∈ `1(Z,H). Given any λ > 0, define Λ = {k ∈ Z : (Ma)k > λ} and F = Z\Λ.
By Lemma 2.2, we have card(Λ) < ∞. Thus if Λ 6= ∅, then Λ is the union of a finite
number of segments ν + 1, . . . , ν + m, where ν ∈ Z and m ∈ N have the properties that
ν ∈ F and ν +m+ 1 ∈ F . Applying Lemma 2.1 to each such segment, we obtain a finite
number of pairwise disjoint intervals I1, . . . , Ir ∈ I satisfying the following conditions:

(1) I1 ∪ · · · ∪ Ir ⊃ Λ.
(2) |Ij | = dist(Ij , F ) for every 1 ≤ j ≤ r.
(3) Ij ∩ Z = Ij ∩ Λ for every 1 ≤ j ≤ r.
(4) 3|Ij | ≥ card(Ij ∩ Λ) > 0 for every 1 ≤ j ≤ r.

Denote Nj = card(Ij ∩ Λ), 1 ≤ j ≤ r. From (3) and (4) we obtain 2Nj ≥ Nj + 1 ≥ |Ij |,
1 ≤ j ≤ r. For each k ∈ Z, we define

gk = akχF (k) +
r∑
j=1

(
1

Nj

∑
i∈Ij∩Z

ai

)
χIj (k) and

bk = ak − gk =
r∑
j=1

(
ak −

1

Nj

∑
i∈Ij∩Z

ai

)
χIj (k).

Then a = g + b, where g = {gk} and b = {bk}. Obviously, we have ‖b‖1 ≤ 2‖a‖1.

To complete the proof, it suffices to consider E = {k ∈ Z : ‖(Da)k‖ > 2λ}. The above
gives us E ⊂ G ∪ B, where G = {k ∈ Z : ‖(Dg)k‖ > λ} and B = {k ∈ Z : ‖(Db)k‖ > λ}.
We will estimate card(G) and card(B) separately.

It follows from Lemma 2.4 that

(2.3) card(G) ≤ π2λ−2‖g‖22.

Thus we need to estimate ‖g‖22. For each 1 ≤ j ≤ r, if we let Jj be the interval in I that
has the same center as Ij but 5 times the length, then (2) tells us that Jj ∩ F 6= ∅. That
is, for each 1 ≤ j ≤ r, there is a kj ∈ Jj ∩ F . Thus for each 1 ≤ j ≤ r,∥∥∥∥ 1

Nj

∑
i∈Ij∩Z

ai

∥∥∥∥ ≤ 10

|Jj |
∑

i∈Jj∩Z

‖ai‖ ≤ 10(Ma)kj ≤ 10λ,

where the last ≤ follows from the definition of F . Consequently,

‖g‖22 =
∑
k∈F

‖ak‖2 +
r∑
j=1

∥∥∥∥ 1

Nj

∑
i∈Ij∩Z

ai

∥∥∥∥2

Nj ≤ λ
∑
k∈F

‖ak‖+ 10λ
r∑
j=1

∑
i∈Ij∩Z

‖ai‖ ≤ 10λ‖a‖1.

Combining this with (2.3), we find that

card(G) ≤ 10π2λ−1‖a‖1.
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Next we consider card(B).

By Lemma 2.2, we have card(Λ) ≤ C1λ
−1‖a‖1. We will show that

(2.4) card(B\Λ) ≤ 16λ−1‖a‖1,

which will complete the proof. For each 1 ≤ j ≤ r, define b(j) = {b(j)k }, where

b
(j)
k =

(
ak −

1

Nj

∑
i∈Ij∩Z

ai

)
χIj (k), k ∈ Z.

Then b = b(1) + · · ·+b(r). Moreover
∑
i∈Z b

(j)
i =

∑
i∈Ij∩Z b

(j)
i = 0 for each j. Let tj denote

the center of Ij , 1 ≤ j ≤ r. For k ∈ F ,

(Db)k =

r∑
j=1

∑
i∈Z\{k}

b
(j)
i

k − i
=

r∑
j=1

∑
i∈Ij∩Z

b
(j)
i

k − i

=
r∑
j=1

∑
i∈Ij∩Z

(
1

k − i
− 1

k − tj

)
b
(j)
i =

r∑
j=1

∑
i∈Ij∩Z

i− tj
(k − i)(k − tj)

b
(j)
i .

Since k ∈ F , for each j we have |k−tj | ≥ dist(Ij , F ) = |Ij |. If i ∈ Ij∩Z, then |k−tj |+|Ij | ≥
|k − i|. That is, 2|k − tj | ≥ |k − i| for every pair of 1 ≤ j ≤ r and i ∈ Ij ∩ Z. Hence

∑
k∈F

‖(Db)k‖ ≤
∑
k∈F

r∑
j=1

2|Ij |
∑

i∈Ij∩Z

‖b(j)i ‖
(k − i)2

=

r∑
j=1

2|Ij |
∑

i∈Ij∩Z

∑
k∈F

‖b(j)i ‖
(k − i)2

≤ 4
r∑
j=1

∑
i∈Ij∩Z

‖b(j)i ‖|Ij |
∑

ν≥dist(Ij ,F )

1

ν2
= 4

r∑
j=1

∑
i∈Ij∩Z

‖b(j)i ‖|Ij |
∑
ν≥|Ij |

1

ν2
,

where the last step follows from (2). Consequently,

∑
k∈F

‖(Db)k‖ ≤ 8
r∑
j=1

∑
i∈Ij∩Z

‖b(j)i ‖ = 8‖b‖1 ≤ 16‖a‖1.

Since B\Λ = {k ∈ F : ‖(Db)k‖ > λ}, (2.4) follows from this. This completes the proof. �

Proposition 2.6. For each 1 < p < ∞, the discrete Hilbert transform D is bounded on
`p(Z,H).

Proof. Applying Lemmas 2.4 and 2.5, when 1 < p < 2, the boundedness of D on `p(Z,H)
is obtained by standard interpolation. The boundedness of D in the case 2 < p < ∞ is
then obtained from its boundedness in the case 1 < p < 2 and the duality between `p(Z,H)
and `p/(p−1)(Z,H). �
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3. The space L2,p

Let 1 < p < ∞ and let G be a Hilbert space. For a G-valued measurable function f
on R, we define

‖f‖2,p =

{∑
k∈Z

(∫ 1

0

‖f(k + x)‖2dx
)p/2}1/p

.

Further, we define L2,p(G) to be the collection of G-valued measurable functions f on R
satisfying the condition ‖f‖2,p <∞.

Proposition 3.1. For each 1 < p <∞, the Hilbert transform

(Hf)(x) = p.v.

∫
f(t)

x− t
dt, x ∈ R,

is a bounded operator on L2,p(G).

Proof. Obviously, H = H1 +H2, where

(H1f)(x) =

∫
|x−t|>1

f(t)

x− t
dt and (H2f)(x) = p.v.

∫
|x−t|≤1

f(t)

x− t
dt,

f ∈ L2,p(G). It suffices to show that both H1 and H2 are bounded on L2,p(G).

In the case of H1, note that for any k ∈ Z and x ∈ [0, 1), we have

(H1f)(k + x) =

∫
|k+x−t|>1

f(t)

k + x− t
dt = gk(x) + hk(x),

where

gk(x) =
∑

j∈Z\{k−1,k,k+1}

∫ 1

0

f(j + t)

k − j + x− t
dt and

hk(x) =

∫
[k−1,k+2)\[k+x−1,k+x+1]

f(t)

k + x− t
dt.

We have

(3.1) gk(x) =
∑
|j−k|≥2

∫ 1

0

f(j + t)

k − j + x− t
dt = uk − vk(x) + wk,

x ∈ [0, 1), where

uk =
∑

j∈Z\{k}

1

k − j

∫ 1

0

f(j + t)dt,

vk(x) =
∑
|j−k|≥2

∫ 1

0

(x− t)f(j + t)

(k − j + x− t)(k − j)
dt and

wk =

∫ 1

0

{f(k + 1 + t)− f(k − 1 + t)}dt.
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For each j ∈ Z, we define

aj =

∫ 1

0

f(j + t)dt, bj =

∫ 1

0

‖f(j + t)‖dt and cj =

(∫ 1

0

‖f(j + t)‖2dt
)1/2

.

Obviously, we have ‖aj‖ ≤ bj ≤ cj and
∑
j∈Z c

p
j = ‖f‖p2,p. It is also easy to see that

‖vk(x)‖ ≤ C
∑
|j−k|≥2

bj
(k − j)2

for all k ∈ Z and x ∈ [0, 1). Thus(∫ 1

0

‖vk(x)‖2dx
)p/2

≤
(
C

∑
|j−k|≥2

bj
(k − j)2

)p

≤ Cp
∑
|j−k|≥2

cpj
|k − j|p

( ∑
|j−k|≥2

1

|k − j|p/(p−1)

)p−1

.

Therefore

(3.2)
∑
k∈Z

(∫ 1

0

‖vk(x)‖2dx
)p/2

≤ C1

∑
k∈Z

∑
|j−k|≥2

cpj
|k − j|p

≤ C2‖f‖p2,p.

Since wk = ak+1 − ak−1, we have

(3.3)
∑
k∈Z

‖wk‖p ≤ 2p−1
∑
k∈Z

(‖ak+1‖p + ‖ak−1‖p) ≤ 2p‖f‖p2,p.

If we set u = {uk} and a = {ak}, then u = Da, where D is the discrete Hilbert transform
introduced in Section 2. Applying Proposition 2.6, we have

(3.4)
∑
k∈Z

‖uk‖p ≤ C3

∑
k∈Z

‖ak‖p ≤ C3‖f‖p2,p.

Combining (3.1)-(3.4), we conclude that

(3.5)
∑
k∈Z

(∫ 1

0

‖gk(x)‖2dx
)p/2

≤ 3p−1(C2 + 2p + C3)‖f‖p2,p.

It is obvious that ‖hk(x)‖ ≤ bk−1 + bk + bk+1 for all k ∈ Z and x ∈ [0, 1). Hence

(3.6)
∑
k∈Z

(∫ 1

0

‖hk(x)‖2dx
)p/2

≤ 3p‖f‖p2,p.
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Combining (3.5), (3.6) with the relation (H1f)(k + x) = gk(x) + hk(x), we obtain

‖H1f‖p2,p =
∑
k∈Z

(∫ 1

0

‖(H1f)(k + x)‖2dx
)p/2

≤ C5‖f‖p2,p.

That is, H1 is bounded on L2,p(G). Next we consider H2.

First of all, H2 is bounded on L2(R,G). To see this, observe that L2,2(G) = L2(R,G).
Thus by what we proved in the above, H1 is bounded on L2(R,G). Since we know that H
is bounded on L2(R,G), H2 = H −H1 is bounded on L2(R,G).

Given any f ∈ L2,p(G), we define

ϕk(x) = χ[k,k+1)(x)f(x)

for all k ∈ Z and x ∈ R. For k ∈ Z and x ∈ [0, 1), it is easy to see that

(H2f)(k + x) = (H2ϕk−1)(k + x) + (H2ϕk)(k + x) + (H2ϕk+1)(k + x).

Therefore by the preceding paragraph, we have

∫ 1

0

‖(H2f)(k + x)‖2dx ≤ 3
k+1∑
j=k−1

∫ 1

0

‖(H2ϕj)(k + x)‖2dx

≤ C6

k+1∑
j=k−1

∫ ∞
−∞
‖ϕj(x)‖2dx = C6

k+1∑
j=k−1

∫ 1

0

‖f(j + x)‖2dx.

Consequently,

‖H2f‖p2,p =
∑
k∈Z

(∫ 1

0

‖(H2f)(k + x)‖2dx
)p/2

≤ C7

∑
k∈Z

k+1∑
j=k−1

(∫ 1

0

‖f(j + x)‖2dx
)p/2

= 3C7‖f‖p2,p.

This proves the boundedness of H2 and completes the proof of the proposition. �

Proposition 3.2. Let −∞ < a < b < ∞ and let X be any Hilbert space. For each
1 < p < ∞, let L2,p([a, b),X ) be the collection of X -valued measurable functions f on
R× [a, b) satisfying the condition ‖f‖2,p;a,b <∞, where

‖f‖p2,p;a,b =
∑
k∈Z

(∫ 1

0

∫ b

a

‖f(k + x, y)‖2dydx
)p/2

.
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Define the operator Ha,b by the formula

(Ha,bf)(x, y) = p.v.

∫
f(t, y)

x− t
dt, x ∈ R and y ∈ [a, b),

f ∈ L2,p([a, b),X ). Then Ha,b is bounded on L2,p([a, b),X ) with a norm independent of
a, b.

Proof. Observe that if we set G = L2([a, b),X ), then L2,p(G) = L2,p([a, b),X ). Thus Ha,b

has the same norm as that of the H in Proposition 3.1. �

4. The operator T

Let dA denote the natural area measure on C. For each α = (α1, α2) ∈ Z2, we define
the square

(4.1) Iα = {α1 + x+ i(α2 + y) : x, y ∈ [0, 1)}

in C. Let X be a Hilbert space. For each 1 < p <∞, we define L2,p(X ) to be the collection
of X -valued measurable functions ϕ on C satisfying the condition ‖ϕ‖2,p <∞, where

‖ϕ‖p2,p =
∑
α∈Z2

(∫
Iα

‖ϕ(z)‖2dA(z)

)p/2
.

Furthermore, we define

(H̃ϕ)(x+ iy) = p.v.

∫
ϕ(t+ iy)

x− t
dt, x, y ∈ R,

Proposition 4.1. For each 1 < p <∞, the operator H̃ is bounded on L2,p(X ).

Proof. For each j ∈ Z, define the subspace

Lj = {ϕ ∈ L2,p(X ) : ϕ(x+ iy) = 0 for all y ∈ R\[j, j + 1) and x ∈ R}

of L2,p(X ). By Proposition 3.2, H̃ is bounded on each Lj , with a norm that is independent

of j. Obviously, H̃ maps each Lj into itself. Therefore H̃ is bounded on L2,p(X ). �

Let θ ∈ R. For ϕ ∈ L2,p(X ), we define

(Rθϕ)(ζ) = ϕ(eiθζ), ζ ∈ C.

Proposition 4.2. For every pair of 1 < p < ∞ and θ ∈ R, the operator Rθ is bounded
on L2,p(X ). Moreover, given any 1 < p < ∞, there is a constant 0 < C4.2 = C4.2(p) < ∞
such that for every θ ∈ R, the norm of the operator Rθ : L2,p(X )→ L2,p(X ) is bounded by
C4.2.
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Proof. Given any θ ∈ R, we define Iα;θ = eiθIα, α ∈ Z2. Given any pair of θ ∈ R and
α ∈ Z2, define Bα;θ = {β ∈ Z2 : Iβ ∩ Iα;θ 6= ∅}. For α = (α1, α2), if Iβ ∩ Iα;θ 6= ∅, then
we have |eiθ(α1 + iα2) − z| ≤ 2

√
2 for every z ∈ Iβ . Therefore card(Bα;θ) < 32. For any

ϕ ∈ L2,p(X ), by the rotation invariance of dA, we have

‖Rθϕ‖p2,p =
∑
α∈Z2

(∫
Iα;θ

‖ϕ(z)‖2dA(z)

)p/2
≤ 32p−1

∑
α∈Z2

∑
β∈Bα;θ

(∫
Iβ

‖ϕ(z)‖2dA(z)

)p/2
.

Hence

(4.2) ‖Rθϕ‖p2,p ≤ 32p−1
∑
β∈Z2

card{α ∈ Z2 : Iβ ∩ Iα;θ 6= ∅}
(∫

Iβ

‖ϕ(z)‖2dA(z)

)p/2
.

For β = (β1, β2), if Iβ ∩ Iα;θ 6= ∅, then we have |β1 + iβ2 − z| ≤ 2
√

2 for every z ∈ Iα;θ.
Hence card{α ∈ Z2 : Iβ ∩ Iα;θ 6= ∅} < 32 for every β ∈ Z2. Substituting this bound in
(4.2), the proof is complete. �

Proposition 4.3. Let 1 < p <∞. For ϕ ∈ L2,p(X ) we define

(Sϕ)(ζ) =
1

2π
p.v.

∫
ϕ(ζ + z)

z|z|
dA(z), ζ ∈ C.

Then S is a bounded operator on L2,p(X ).

Proof. Integrating in the polar coordinates, for any ε > 0 we have

1

2π

∫
|z|≥ε

ϕ(ζ + z)

z|z|
dA(z) =

1

2π

∫ 2π

0

e−iθ
∫ ∞
ε

ϕ(ζ + reiθ)

r
drdθ

=
1

2π

∫ π

0

e−iθ
∫ ∞
ε

ϕ(ζ + reiθ)− ϕ(ζ − reiθ)
r

drdθ

=
−1

2π

∫ π

0

e−iθ(R−θH̃εRθϕ)(ζ)dθ,

where

(H̃εψ)(x+ iy) =

∫ ∞
ε

ψ(x+ iy − r)− ψ(x+ iy + r)

r
dr =

∫
|x−t|≥ε

ψ(t+ iy)

x− t
dt.

Letting ε descend to 0 in the above, we obtain the operator identity

S =
−1

2π

∫ π

0

e−iθR−θH̃Rθdθ.

Thus the boundedness of S : L2,p(X )→ L2,p(X ) follows from Propositions 4.1 and 4.2. �
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Proposition 4.4. On each L2,p(X ), 1 < p <∞, the formula

(Tϕ)(ζ) = p.v.

∫
ϕ(z)

(ζ − z)2
dA(z), ζ ∈ C,

defines a bounded operator.

Proof. It was shown on page 65 in [1] that T = πS2. (Note that our T is −π times the T
defined on page 62 of [1].) Hence the boundedness of T follows from Proposition 4.3. �

We now consider the standard partition of Cn by cubes of the size 1× 1× · · · × 1× 1.
That is, for each α = (α1, . . . , α2n) ∈ Z2n, we introduce the cube

(4.3) Qα = I(α1,α2) × · · · × I(α2n−1,α2n),

where, for each 1 ≤ j ≤ n, I(α2j−1,α2j) is defined by (4.1). For each 1 < p <∞, we define
L2,p
n to be the collection of complex-valued measurable functions ϕ on Cn satisfying the

condition ‖ϕ‖2,p <∞, where

‖ϕ‖p2,p =
∑
α∈Z2n

(∫
Qα

|ϕ(z)|2dV (z)

)p/2
.

Proposition 4.5. On each L2,p
n , 1 < p <∞, the operators

(Tjϕ)(ζ1, . . . , ζn) = p.v.

∫
ϕ(ζ1, · · · , ζj−1, z, ζj+1, . . . , ζn)

(ζj − z)2
dA(z),

(ζ1, . . . , ζn) ∈ Cn, 1 ≤ j ≤ n, are bounded.

Proof. In the case n = 1, L2,p
1 = L2,p(C) and T1 is just the T in Proposition 4.4. Hence

T1 is bounded if n = 1.

Suppose that n ≥ 2. Obviously, in this case we also only need to consider T1. For
τ = (τ1, . . . , τ2n−2) ∈ Z2n−2, we define

∆τ = I(τ1,τ2) × · · · × I(τ2n−3,τ2n−2),

where I(τ2j−1,τ2j) is given by (4.1), 1 ≤ j ≤ n− 1. We then define, for each τ ∈ Z2n−2, the
subspace

L2,p
n;τ = {ϕ ∈ L2,p

n : ϕ = 0 on Cn\(C×∆τ )}

of L2,p
n . If we set Xτ = L2(∆τ ), then L2,p

n;τ = L2,p(Xτ ). Therefore, by Proposition 4.4,

T1 : L2,p
n;τ → L2,p

n;τ

is bounded, and its norm is independent of τ ∈ Z2n−2, because all the Xτ ’s are isometric
images of each other. For each ϕ ∈ L2,p

n , we have

‖ϕ‖p2,p =
∑

τ∈Z2n−2

∑
β∈Z2

(∫
Iβ×∆τ

|ϕ(ζ)|2dV (ζ)

)p/2
.
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From these facts we conclude that T1 is bounded on L2,p
n . This completes the proof. �

5. Proof of Theorem 1.2 in the case 1 < p < 2

We begin with a slightly different version of [14, Lemma 7.1].

Lemma 5.1. Let f ∈ C2(Cn) ∩ L∞(Cn) be a function which has the property that ∂̄jf ∈
L2,p
n for some j ∈ {1, . . . , n} and 1 < p <∞. Then

(5.1) ∂jf = −π−1Tj(∂̄jf),

where Tj is the operator in Proposition 4.5.

Proof. As in [14], we pick a γ ∈ C∞(R) which has the properties that 0 ≤ γ ≤ 1 on R,
that γ = 1 on (−∞, 0], and that γ = 0 on [1,∞). For each w ∈ C, we have

(5.2) lim
R→∞

∫
|γ′(|z| −R)|
|z − w|2

dA(z) ≤ lim
R→∞

∫
0≤|z|−R≤1

‖γ′‖∞
|z − w|2

dA(z) = 0.

For each R > 0, define γR(ζ1, . . . , ζn) = γ(|ζj | − R). Given an f as in the statement of
the lemma, we define the function fR = γRf for each R > 0. Then, as in the proof of [14,
Lemma 7.1], we have

fR(ζ1, . . . ζj−1, ζjζj+1, . . . , ζn) =
1

2πi

∫
C

(∂̄jfR)(ζ1, . . . , ζj−1, z, ζj+1, . . . , ζn)

z − ζj
dz ∧ dz̄

and

(5.3) −π∂jfR = Tj(∂̄jfR) = Tj(f∂̄jγR) + Tj(γR∂̄jf).

Also see [2, pages 94-95]. Since f ∈ L∞(Cn), it follows from (5.2) that

(5.4) lim
R→∞

Tj(f∂̄jγR)(ζ) = 0

for every ζ ∈ Cn. It is obvious that, as R→∞, we have ‖γR∂̄jf − ∂̄jf‖2,p → 0. Applying
Proposition 4.5, we have ‖Tj(γR∂̄jf) − Tj(∂̄jf)‖2,p → 0 as R → ∞. Combining this L2,p

n

convergence with (5.4), if we take the limit R→∞ in (5.3), we obtain (5.1). �

Proof of Theorem 1.2, the case 1 < p < 2. Let f ∈ L∞(Cn) be such that Hf ∈ Cp. Take
the decomposition f = f1 + f2 with f1 ∈ C2(Cn) as in the original proof in [14]. As was
correctly shown in [14], Hf̄2 ∈ Cp. The problem in [14] was the inequality

‖Hf̄1‖p ≤ C‖∂̄f̄1‖Lp ,

which is incorrect in the case 1 < p < 2. The correct inequality is, in the notation of [14],

‖Hf̄1‖p ≤ C‖M2,r(|∂̄f̄1|)‖Lp .
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Thus we need to show that ‖M2,r(|∂̄f̄1|)‖Lp < ∞. By the definition of M2,r in [14], the
condition ‖M2,r(|∂̄f̄1|)‖Lp < ∞ is equivalent to the membership ∂̄j f̄1 ∈ L2,p

n for every
1 ≤ j ≤ n. Since ∂̄j f̄1 = ∂jf1, it suffices to show that ∂jf1 ∈ L2,p

n for j = 1, . . . , n.

It was shown in [14] that the membership Hf ∈ Cp implies ‖M2,r(|∂̄f1|)‖Lp <∞. Thus
∂̄jf1 ∈ L2,p

n for every 1 ≤ j ≤ n. Further, it is known that the membership f ∈ L∞(Cn)
implies the membership f1 ∈ L∞(Cn). Therefore, by Lemma 5.1,

∂jf1 = −π−1Tj(∂̄jf1)

for each j ∈ {1, . . . , n}. Thus by Proposition 4.5, the membership ∂̄jf1 ∈ L2,p
n implies the

desired membership ∂jf1 ∈ L2,p
n , j = 1, . . . , n. This completes the proof. �

6. Symmetric gauge functions and associated ideals

As preparation for the proofs of Theorems 1.3 and 1.4, we now introduce general
operator ideals. Our main reference for this discussion will be [12]. Following [12], let ĉ
denote the linear space of sequences {aj}j∈N, where aj ∈ R and for every sequence the
set {j ∈ N : aj 6= 0} is finite. A symmetric gauge function (also called symmetric norming
function) is a map

Φ : ĉ→ [0,∞)

that has the following properties:
(a) Φ is a norm on ĉ.
(b) Φ({1, 0, . . . , 0, . . . }) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

See [12, page 71]. Each symmetric gauge function Φ gives rise to the symmetric norm

(6.1) ‖A‖Φ = sup
j≥1

Φ({s1(A), . . . , sj(A), 0, . . . , 0, . . . })

for operators. On any separable Hilbert space H, the set of operators

(6.2) CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a norm ideal [12, page 68].

For our purpose, we need to extend the domain of definition of a symmetric gauge Φ
beyond the space ĉ. Suppose that {bj}j∈N is an arbitrary sequence of real numbers, i.e.,
the set {j ∈ N : bj 6= 0} is not necessarily finite. Then we define

(6.3) Φ({bj}j∈N) = sup
k≥1

Φ({b1, . . . , bk, 0, . . . , 0, . . . }).

More generally, for any countable, infinite index set A, we define

(6.4) Φ({bα}α∈A) = Φ({bh(j)}j∈N),
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where h : N→ A is a bijection. Property (c) above ensures that the value of Φ({bα}α∈A)
is independent of the choice of the bijection h : N→ A.

Let us recall some familiar examples. For each 1 ≤ p <∞, the formula Φp({aj}j∈N) =
(
∑∞
j=1 |aj |p)1/p defines a symmetric gauge function on ĉ, and the corresponding ideal CΦp

defined by (6.2) is just the Schatten class Cp. For each 1 ≤ p <∞, we define the symmetric
gauge functions Φ+

p and Φ−p defined by the formulas

Φ+
p ({aj}j∈N) = sup

j≥1

|aπ(1)|+ · · ·+ |aπ(j)|
1−1/p + · · ·+ j−1/p

and Φ−p ({aj}j∈N) =
∞∑
j=1

|aπ(j)|
j(p−1)/p

,

{aj}j∈N ∈ ĉ, where π : N→ N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥
· · · , which exists because each {aj}j∈N ∈ ĉ only has a finite number of nonzero terms.
Then the ideals CΦ+

p
and CΦ−p defined by (6.2) using Φ+

p and Φ−p are none other than the

Lorentz ideals C+
p and C−p introduced earlier.

Let a = {a1, . . . , aj , . . . } be a sequence of non-negative numbers. For each s > 0, we
denote

N(a; s) = card{j ∈ N : aj > s}.

Lemma 6.1. [8, Lemma 2.1] Let 1 < p < ∞. Then for every sequence of non-negative
numbers a = {a1, . . . , aj , . . . } we have∫ ∞

0

{N(a; s)}1/pds ≤ Φ−p (a) ≤ p
∫ ∞

0

{N(a; s)}1/pds.

Proposition 6.2. [8, Proposition 2.2] For every sequence of non-negative numbers a =
{a1, . . . , aj , . . . } and every s > 0, define the sequence a∨(s) = {a∨1 (s), . . . , a∨j (s), . . . }, where

a∨j (s) =

 0 if aj > s

aj if aj ≤ s
, j ∈ N.

Then given any 1 < p < r <∞, there exists a constant 0 < C6.2 <∞ such that

(6.5)

∫ ∞
0

(
1

s
Φ+
r (a∨(s))

)r/p
ds ≤ C6.2Φ−p (a)

for every sequence of non-negative numbers a = {a1, . . . , aj , . . . }.

Proposition 6.3. [8, Proposition 2.3] For every sequence of non-negative numbers a =
{a1, . . . , aj , . . . } and every s > 0, define the sequence a∧(s) = {a∧1 (s), . . . , a∧j (s), . . . }, where

a∧j (s) =

 aj if aj > s

0 if aj ≤ s
, j ∈ N.
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Then given any 1 < r′ < p <∞, there exists a constant 0 < C6.3 <∞ such that

(6.6)

∫ ∞
0

(
1

s
Φ+
r′(a

∧(s))

)r′/p
ds ≤ C6.3Φ−p (a)

for every sequence of non-negative numbers a = {a1, . . . , aj , . . . }.

The significance of Propositions 6.2 and 6.3 is this: if we want to dominate a quantity
Q by Φ−p (a), it suffices to dominate parts of Q by the integrals in (6.5) and (6.6). This in
turn highlights the importance of the symmetric gauge functions Φ+

r , 1 < r < ∞. Below
are two important facts about this family of symmetric gauge functions.

Lemma 6.4. [7, Lemma 5.6] Suppose that 1 < p < ∞. Let α = {α1, . . . , αk, . . . } be a
non-increasing sequence of non-negative numbers. Define

Fp(α) = sup
k≥1

k1/pαk.

Then
p− 1

p
Fp(α) ≤ Φ+

p (α) ≤ Fp(α).

Given a sequence of non-negative numbers a = {a1, . . . , ak, . . . }, the conventional
weak-type inequality states

(6.7) N(a; s) ≤ (Φp(a)/s)p

for s > 0 and 1 < p <∞, where Φp is the symmetric gauge function for the Schatten class
Cp. Below is an improved version of (6.7):

Lemma 6.5. [8, Lemma 2.6] Suppose that 1 < p < ∞. Then for every sequence of
non-negative numbers a = {a1, . . . , ak, . . . } and every s > 0 we have

N(a; s) ≤
(

p

p− 1

)p(
1

s
Φ+
p (a)

)p
.

Lemma 6.6. Let a = {a1, . . . , ak, . . . } be a sequence of non-negative numbers. Let 1 <
p <∞, 0 < M <∞ and 0 < τ <∞. If the inequality

(6.8) N(a; s) ≤M(τ/s)p

holds for every s > 0, then Φ+
p (a) ≤ 2M1/pτ .

Proof. There is an injection π : N→ N such that aπ(i) ≥ aπ(i+1) for every i ∈ N and such
that ak = 0 for every k ∈ N\{π(i) : i ∈ N}. Consider any i ∈ N such that aπ(i) 6= 0. Set
s = aπ(i)/2. Then by (6.8),

i ≤ N(a; s) ≤M(τ/s)p = M(2τ)pa−pπ(i).
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Solving this, we find that
aπ(i) ≤ 2M1/pτi−1/p

if aπ(i) 6= 0. This inequality, of course, also holds in the case aπ(i) = 0. Obviously, this

inequality implies Φ+
p (a) ≤ 2M1/pτ . �

7. Interpolation

Let X be a Banach space. We now define three families of spaces.

The first family consists of the familiar spaces `p(N, X), 1 ≤ p <∞. That is, `p(N, X)
is the collection of the sequences a = {aj} satisfying the condition ‖a‖p <∞, where aj ∈ X
for every j ∈ N and

‖a‖p =

( ∞∑
j=1

‖aj‖p
)1/p

= Φp({‖aj‖}).

For each 1 ≤ p < ∞, let `p+(N, X) be the collection of the sequences a = {aj} satisfying
the condition ‖a‖+p <∞, where aj ∈ X for every j ∈ N and

‖a‖+p = Φ+
p ({‖aj‖}).

This gives us the second family of spaces. The third family consists of the spaces `p−(N, X),
1 ≤ p <∞. For each 1 ≤ p <∞, let `p−(N, X) be the collection of the sequences a = {aj}
satisfying the condition ‖a‖−p <∞, where aj ∈ X for every j ∈ N and

‖a‖−p = Φ−p ({‖aj‖}).

Furthermore, we define `00(N, X) to be the collection of a = {aj} satisfying the
conditions that aj ∈ X for every j ∈ N and that

card{j ∈ N : aj 6= 0} <∞.

That is, if a = {aj} ∈ `00(N, X), then the sequence {aj} has at most a finite number of
nonzero terms.

For any a = {aj}, where aj ∈ X for every j ∈ N, and any s > 0, we denote

N(a; s) = card{j ∈ N : ‖aj‖ > s},

which is consistent with the corresponding notion in Section 6.

We now prove two interpolation results. The first result tells us that boundedness
with respect to ‖ · ‖+p can be obtained through boundedness with respect to ‖ · ‖r′ and
‖ · ‖r, r′ < p < r.

Proposition 7.1. Let 1 < r′ < r < ∞. Suppose that A : `r(N, X) → `r(N, X) is a
bounded operator. Furthermore, suppose that there is a 0 < Br′ <∞ such that

(7.1) ‖Ax‖r′ ≤ Br′‖x‖r′
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for every x ∈ `00(N, X). Then for each r′ < p < r, A maps `p+(N, X) into itself, and there
is a 0 < C(p) <∞ such that

‖Aa‖+p ≤ C(p)‖a‖+p
for every a ∈ `p+(N, X).

Proof. For each r′ < p < r, since `p+(N, X) ⊂ `r(N, X), A is uniquely defined on `p+(N, X).
What we need to show is that there is a constant 0 < C(p) <∞ promised above.

Given an a ∈ `00(N, X), denote

R =
p

p− 1
‖a‖+p .

By Lemma 6.4, there is a bijection π : N→ N such that

(7.2) ‖aπ(i)‖ ≤ R/i1/p for every i ∈ N.

For each s > 0, we define the sequences b(s) = {bj(s)} and c(s) = {cj(s)}, where the terms
are given by the formulas

bπ(i)(s) =

 aπ(i) if 1 ≤ i < (R/s)p

0 if i ≥ (R/s)p
and cπ(i)(s) =

 0 if 1 ≤ i < (R/s)p

aπ(i) if i ≥ (R/s)p
,

i ∈ N. Applying (7.1), (7.2) and using the fact that r′/p < 1, we have

N(Ab(s); s) ≤ s−r
′
‖Ab(s)‖r

′

r′ ≤ Br
′

r′ s
−r′‖b(s)‖r

′

r′ = Br
′

r′ s
−r′

∑
1≤i<(R/s)p

‖aπ(i)‖r
′

≤ Br
′

r′ s
−r′

∑
1≤i<(R/s)p

(R/i1/p)r
′
≤ C1s

−r′Rr
′
{(R/s)p}1−(r′/p) = C1(R/s)p.(7.3)

Write Br for the norm of the operator A : `r(N, X) → `r(N, X), which is finite by
assumption. Applying (7.2) and using the fact that r/p > 1, we also have

N(Ac(s); s) ≤ s−r‖Ac(s)‖rr ≤ Brrs−r‖c(s)‖rr = Brrs
−r

∑
i≥(R/s)p

‖aπ(i)‖r

≤ Brrs−r
∑

i≥(R/s)p

(R/i1/p)r ≤ C2s
−rRr{(R/s)p}1−(r/p) = C2(R/s)p.(7.4)

Since a = b(s) + c(s), we have Aa = Ab(s) +Ac(s). Thus (7.3) and (7.4) together give us

N(Aa; 2s) ≤ N(Ab(s); s) +N(Ac(s); s) ≤ C3(R/s)p

for every s > 0, where C3 = C1 + C2. A simple rescaling gives us the inequality

N(Aa; s) ≤ 2pC3(R/s)p = C4(‖a‖+p /s)p
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for all a ∈ `00(N, X) and s > 0, where C4 = C3{2p/(p− 1)}p.

Now consider an arbitrary a = {ak} ∈ `p+(N, X). For each m ∈ N, if we define the
truncated sequence

a(m) = {a1, . . . , am, 0, . . . , 0, . . . },

then obviously a(m) ∈ `00(N, X) and ‖a(m)‖+p ≤ ‖a‖+p . Moreover, ‖Aa − Aa(m)‖r → 0 as
m→∞. Thus it follows from the above inequality that

N(Aa; s) ≤ C4(‖a‖+p /s)p

for all a ∈ `p+(N, X) and s > 0. By Lemma 6.6, this means ‖Aa‖+p ≤ 2C
1/p
4 ‖a‖+p for every

a ∈ `p+(N, X). This completes the proof. �

Proposition 7.2. Let 1 < r′ < r <∞. Suppose that A : `00(N, X)→ `r
′

+(N, X) is a linear
transformation. Furthermore, suppose that there are 0 < C(r′) < ∞ and 0 < C(r) < ∞
such that

(7.5) ‖Ax‖+r′ ≤ C(r′)‖x‖+r′ and ‖Ax‖+r ≤ C(r)‖x‖+r

for every x ∈ `00(N, X). Then for each r′ < p < r, there is a 0 < D(p) <∞ such that

‖Aa‖−p ≤ D(p)‖a‖−p

for every a ∈ `00(N, X). Consequently, A naturally and uniquely extends to a bounded
operator on `p−(N, X).

Proof. Let a = {aj} ∈ `00(N, X) and s > 0. We again decompose a in the form a =
b(s) + c(s), but this time the sequences b(s) = {bj(s)} and c(s) = {cj(s)} are defined
according to the following rules:

bj(s) =

 aj if ‖aj‖ > s

0 if ‖aj‖ ≤ s
and cj(s) =

 0 if ‖aj‖ > s

aj if ‖aj‖ ≤ s
,

j ∈ N. Writing C1 = {r′/(r′ − 1)}r′ , it follows from Lemma 6.5 and (7.5) that

N(Ab(s); s) ≤ C1(‖Ab(s)‖+r′/s)
r′ ≤ C2(‖b(s)‖+r′/s)

r′ .

Since r′ < p, we can apply Proposition 6.3 to obtain

(7.6)

∫ ∞
0

{N(Ab(s); s)}1/pds ≤ C1/p
2

∫ ∞
0

(‖b(s)‖+r′/s)
r′/pds ≤ C3‖a‖−p .

It also follows from Lemma 6.5 and (7.5) that

N(Ac(s); s) ≤ C4(‖Ac(s)‖+r /s)r ≤ C5(‖c(s)‖+r /s)r.
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Since p < r, we can apply Proposition 6.2 to obtain

(7.7)

∫ ∞
0

{N(Ac(s); s)}1/pds ≤ C1/p
5

∫ ∞
0

(‖c(s)‖+r /s)r/pds ≤ C6‖a‖−p .

The relation a = b(s) + c(s) means that N(Aa; 2s) ≤ N(Ab(s); s) + N(Ac(s); s) for every
s > 0. Hence from (7.6) and (7.7) we obtain∫ ∞

0

{N(Aa; 2s)}1/pds ≤
∫ ∞

0

({N(Ab(s); s)}1/p + {N(Ac(s); s)}1/p)ds ≤ C7‖a‖−p ,

where C7 = C3 + C6. Applying Lemma 6.1, we find that

‖Aa‖−p ≤ p
∫ ∞

0

{N(Aa; s)}1/pds = 2p

∫ ∞
0

{N(Aa; 2s)}1/pds ≤ 2pC7‖a‖−p ,

which proves the proposition. �

We recall the cubes Qα ⊂ Cn defined by (4.3), α ∈ Z2n. In addition to the spaces
L2,p
n defined in Section 4, 1 < p <∞, we now define two more families of spaces.

For each 1 < p <∞, we define L2,p,+
n to be the collection of complex-valued measur-

able functions ϕ on Cn satisfying the condition ‖ϕ‖+2,p <∞, where

(7.8) ‖ϕ‖+2,p = Φ+
p

({(∫
Qα

|ϕ(z)|2dV (z)

)1/2}
α∈Z2n

)
.

Similarly, for each 1 < p < ∞, we define L2,p,−
n to be the collection of complex-valued

measurable functions ϕ on Cn satisfying the condition ‖ϕ‖−2,p <∞, where

(7.9) ‖ϕ‖−2,p = Φ−p

({(∫
Qα

|ϕ(z)|2dV (z)

)1/2}
α∈Z2n

)
.

The main conclusion of the section is that the analogue of Proposition 4.5 holds for these
two families of spaces.

Proposition 7.3. On each L2,p,+
n , 1 < p <∞, the operators

(Tjϕ)(ζ1, . . . , ζn) = p.v.

∫
ϕ(ζ1, · · · , ζj−1, z, ζj+1, . . . , ζn)

(ζj − z)2
dA(z),

(ζ1, . . . , ζn) ∈ Cn, 1 ≤ j ≤ n, are bounded.

Proof. From (4.3) we clearly see that Qα = Q0 + α for every α ∈ Z2n. Let X = L2(Q0).
Let b : N → Z2n be a bijection. Then any function ϕ on Cn is naturally identified with
the sequence of functions {ϕj} on Q0, where

ϕj(z) = ϕ(b(j) + z), z ∈ Q0,
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j ∈ N. This naturally identifies L2,p
n with `p(N, X) and L2,p,+

n with `p+(N, X). Under this
identification, Proposition 4.5 tells us that Tj : `p(N, X)→ `p(N, X) is bounded for every
1 < p < ∞. Thus it follows from Proposition 7.1 that Tj : `p+(N, X) → `p+(N, X) is also
bounded for every 1 < p <∞. �

Proposition 7.4. On each L2,p,−
n , 1 < p <∞, the operators

(Tjϕ)(ζ1, . . . , ζn) = p.v.

∫
ϕ(ζ1, · · · , ζj−1, z, ζj+1, . . . , ζn)

(ζj − z)2
dA(z),

(ζ1, . . . , ζn) ∈ Cn, 1 ≤ j ≤ n, are bounded.

Proof. Again, if we let X = L2(Q0), then L2,p,−
n is naturally identified with `p−(N, X).

Proposition 7.3 tells us that under this identification, Tj : `p+(N, X) → `p+(N, X) is
bounded for every 1 < p < ∞. Applying Proposition 7.2, we see that Tj : `p−(N, X) →
`p−(N, X) is also bounded for every 1 < p <∞. �

8. Hankel operators in norm ideals

The purpose of this section is to derive two convenient sufficient conditions for a Hankel
operator on H2(Cn, dµ) to belong to a general ideal, and these sufficient conditions will
be applied in the proofs of Theorems 1.3 and 1.4.

Let kz denote the normalized reproducing kernel for H2(Cn, dµ). That is,

kz(ζ) = e〈ζ,z〉e−|z|
2/2, z, ζ ∈ Cn.

For each z ∈ Cn, let τz be the translation τz(ζ) = ζ+ z, ζ ∈ Cn. As in [20,3,10], we define

T (Cn) = {f ∈ L2(Cn, dµ) : f ◦ τz ∈ L2(Cn, dµ) for every z ∈ Cn}.

Obviously, f ∈ T (Cn) if and only if fkz ∈ L2(Cn, dµ) for every z ∈ Cn. Thus if f ∈
T (Cn), then the Hankel operator Hf at least has a dense domain in H2(Cn, dµ).

From now on it will be convenient to identify Z2n with the standard lattice in Cn.
That is, for j1, k1, . . . , jn, kn ∈ Z, we will identify

(j1, k1, . . . , jn, kn) with (j1 + ik1, . . . , jn + ikn).

Thus for E ⊂ Cn and u ∈ Z2n, the translation E + u makes sense.

We define the open cube

(8.1) W = {(x1 + iy1, . . . , xn + iyn) : x1, y1, . . . , xn, yn ∈ (−1, 2)}

in Cn. For f ∈ T (Cn) and u ∈ Z2n, we define the quantity

J(f ;u) =

{∫
W+u

∫
W+u

|f(z)− f(w)|2dV (w)dV (z)

}1/2

.
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We need the following result:

Theorem 8.1. [10, Theorem 1.2] Let f ∈ T (Cn) and let Φ be an arbitrary symmetric
gauge function. Then we have the simultaneous membership of Hf ∈ CΦ and Hf̄ ∈ CΦ if
and only if

(8.2) Φ({J(f ;u)}u∈Z2n) <∞.

Recall that for each α ∈ Z2n, the cube Qα was defined by (4.3). Now for f ∈ T (Cn)
and α ∈ Z2n, we define the quantities

(8.3) A(f ;α) =

{∫
Qα

|f(z)|2dV (z)

}1/2

and B(f ;α) =

{∫
W+α

|f(z)|2dV (z)

}1/2

.

We further define the set

(8.4) E = {(j1 + ik1, . . . , jn + ikn) : j1, k1, . . . jn, kn ∈ {−1, 0, 1}}.

Lemma 8.2. For any set of non-negative numbers {xα}α∈Z2n and any symmetric gauge
function Φ, we have

Φ

({∑
ε∈E

xα+ε

}
α∈Z2n

)
≤ 32nΦ({xα}α∈Z2n).

Proof. By the properties of symmetric gauge functions, we have

Φ

({∑
ε∈E

xα+ε

}
α∈Z2n

)
≤
∑
ε∈E

Φ({xα+ε}α∈Z2n)

and Φ({xα+ε}α∈Z2n) = Φ({xα}α∈Z2n) for every ε ∈ E . �

The main goal of the section is to derive Propositions 8.3 and 8.5 below.

Proposition 8.3. Let f ∈ T (Cn) ∩ C1(Cn) and let Φ be an arbitrary symmetric gauge
function. If

(8.5) Φ({A(|∇f |;u)}u∈Z2n) <∞,

then we have Hf ∈ CΦ and Hf̄ ∈ CΦ.

To prove Proposition 8.3, let us first establish the following elementary fact:

Lemma 8.4. Let ϕ be any non-negative, measurable function on W . Then

(8.6)

∫
W

∫
W

∫ 1

0

ϕ(tz + (1− t)w)dtdV (w)dV (z) ≤ 62n

∫
W

ϕ(x)dV (x).
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Proof. Observe that, by the limit theorems in Lebesgue integral, it suffices to prove (8.6) for
the simple case where ϕ is the characteristic function χE of a measurable subset E ⊂ W .
For χE , we have ∫

W

∫
W

∫ 1

0

χE(tz + (1− t)w)dtdV (w)dV (z) = I1 + I2,

where

I1 =

∫ 1

1/2

{∫
W

∫
W

χE(tz + (1− t)w)dV (w)dV (z)

}
dt and

I2 =

∫ 1/2

0

{∫
W

∫
W

χE(tz + (1− t)w)dV (w)dV (z)

}
dt.

For each pair of t ∈ [1/2, 1] and w ∈ W , let Et,w = {z ∈ W : tz + (1 − t)w ∈ E}. Then
we have Et,w ⊂ t−1E − t−1(1− t)w. Thus by the translation and scaling properties of the
volume measure,

V (Et,w) ≤ V (t−1E) = t−2nV (E) ≤ 22nV (E).

Consequently,

I1 =

∫ 1

1/2

∫
W

V (Et,w)dV (w)dt ≤ (1/2)V (W )22nV (E) = (1/2)62nV (E).

Similarly, for each pair of t ∈ [0, 1/2] and z ∈W , if we define Ft,z = {w ∈W : tz+(1−t)w ∈
E}, then V (Ft,z) ≤ 22nV (E). Consequently,

I2 =

∫ 1/2

0

∫
W

V (Ft,z)dV (z)dt ≤ (1/2)V (W )22nV (E) = (1/2)62nV (E).

Thus we see that (8.6) holds in the case ϕ = χE . As we explained above, this means that
(8.6) holds for all non-negative, measurable functions ϕ on W . �

Proof of Proposition 8.3. For each α ∈ Z2n, W + α ⊂ ∪ε∈EQα+ε. Hence by (8.3) and
Lemma 8.2, condition (8.5) implies

(8.7) Φ({B(|∇f |;u)}u∈Z2n) <∞.

Thus, by Theorem 8.1, to complete the proof, it suffices to show that (8.7) implies (8.2).
To show that (8.2) holds, it will be convenient to identify Cn with R2n in the natural way.
Since our f is in C1, for any u ∈ Z2n and any z, w ∈W + u, we have

f(z)− f(w) =

∫ 1

0

d

dt
f(tz + (1− t)w)dt =

∫ 1

0

〈(∇f)(tz + (1− t)w), z − w〉dt,
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where the 〈·, ·〉 is taken in the sense of the inner product on R2n. Since z, w ∈W + u, we
have |z − w| ≤ 3

√
2n. Hence the above implies

|f(z)− f(w)|2 ≤ 18n

∫ 1

0

|(∇f)(tz + (1− t)w)|2dt.

Applying Lemma 8.4, we have

J2(f ;u) ≤ 18n

∫
W+u

∫
W+u

∫ 1

0

|(∇f)(tz + (1− t)w)|2dtdV (w)dV (z)

≤ 18n62n

∫
W+u

|(∇f)(x)|2dV (x) = 18n62nB2(|∇f |;u).

Therefore (8.7) implies (8.2). This completes the proof. �

Proposition 8.5. Let f ∈ T (Cn) and let Φ be an arbitrary symmetric gauge function. If

(8.8) Φ({A(f ;u)}u∈Z2n) <∞,

then we have Hf ∈ CΦ and Hf̄ ∈ CΦ.

Proof. Again, by Lemma 8.2, (8.8) implies

Φ({B(f ;u)}u∈Z2n) <∞.

It is obvious that for any u ∈ Z2n,

J(f ;u) ≤ 2{V (W )}1/2B(f ;u) = 2 · 3nB(f ;u).

Hence (8.8) implies (8.2). Applying Theorem 8.1, we obtain the memberships Hf ∈ CΦ
and Hf̄ ∈ CΦ. �

9. Local projections

We now introduce a partition by smooth functions, which is well known in the case
of Bergman space. See [17,15,16,9]. The following is its Fock-space adaptation. Denote

Q = {(x1 + iy1, . . . , xn + iyn) : x1, . . . , xn, y1, . . . , yn ∈ [0, 1)} and

S = {(x1 + iy1, . . . , xn + iyn) : x1, . . . , xn, y1, . . . , yn ∈ (−1/2, 3/2)}.

Thus Q = Q0 (see (4.3)). Fix an η ∈ C∞(Cn) satisfying the following three conditions:
(1) 0 ≤ η ≤ 1 on Cn.
(2) η = 1 on Q.
(3) η = 0 on Cn\S.

For each z ∈ Cn, we define the function ηz(ζ) = η(ζ − z) in Cn. By (3), for ζ ∈ Cn and
u ∈ Z2n, if ηu(ζ) 6= 0, then ζ − u ∈ S, i.e., u ∈ ζ − S. This ensures that the function

ϕ =
∑
u∈Z2n

ηu
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belongs to C∞(Cn). Also, by (1)-(3), the inequality 1 ≤ ϕ ≤ 32n holds on Cn. Note that
the identity ϕ(ζ) = ϕ(ζ − u) holds for all u ∈ Z2n and ζ ∈ Cn. Now we define

γz = ϕ−1ηz

for every z ∈ Z2n. Then {γz : z ∈ Z2n} is a set of C∞-partition of the unity on Cn.
Moreover, for every z ∈ Z2n, we have γz = 0 on the set Cn\{S + z}.

Since ϕ is invariant under translations by z ∈ Z2n, we have (∂̄jγz)(ζ) = (∂̄jγ0)(ζ − z)
for all z ∈ Z2n, ζ ∈ Cn and j ∈ {1, . . . , n}. Thus if we set

C = max
1≤k≤n

‖∂̄kγ0‖∞,

then

(9.1) ‖∂̄jγz‖∞ ≤ C

for all z ∈ Z2n and j ∈ {1, . . . , n}.

If U is an open set in Cn, we write Hol(U) for the collection of analytic functions on
U . Recall that the open cube W was defined by (8.1). For f ∈ T (Cn) and z ∈ Z2n, we
define

(9.2) M(f ; z) = inf
h∈Hol(W+z)

(∫
W+z

|f(ζ)− h(ζ)|2dV (ζ)

)1/2

.

We also recall the set E defined by (8.4).

Proposition 9.1. Set C9.1 = 3n
√

2 and C ′9.1 = 2(1 + 32n)1/23nC, where C is the constant
that appears in (9.1). Then every f ∈ T (Cn) admits a decomposition

f = f (1) + f (2) with f (2) ∈ C∞(Cn)

such that for every α ∈ Z2n, we have

A(f (1);α) ≤ C9.1

∑
ε∈E

M(f ;α− ε) and(9.3)

A(∂̄jf
(2);α) ≤ C ′9.1

∑
ε∈E

M(f ;α− ε), j = 1, . . . , n.(9.4)

Proof. Let f ∈ T (Cn). For each z ∈ Z2n, there is an hf,z ∈ Hol(W + z) such that

(9.5)

∫
W+z

|f(ζ)− hf,z(ζ)|2dV (ζ) ≤ 2M2(f ; z).
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Note that this is true even if M(f ; z) = 0. We extend the definition of hf,z to the entire
Cn by setting hf,z = 0 on Cn\{W + z}. Now define the functions

(9.6) f (1) =
∑
z∈Z2n

(f − hf,z)γz and f (2) =
∑
z∈Z2n

hf,zγz.

We have f = f (1) + f (2) because {γz : z ∈ Z2n} is a partition of the unity on Cn. For
α, z ∈ Z2n, if γz is not identically zero on Qα, then Qα ∩{W + z} 6= ∅, which is equivalent
to Qα−z∩W 6= ∅. That is, if γz is not identically zero on Qα, then α−z ∈ E , i.e., z = α−ε
for some ε ∈ E . If ε ∈ E , then V (Qα\{W + α− ε}) = 0. Hence for every α ∈ Z2n,

∫
Qα

|f (1)|2dV =

∫
Qα

∣∣∣∣∣∑
ε∈E

(f − hf,α−ε)γα−ε

∣∣∣∣∣
2

dV ≤ 32n
∑
ε∈E

∫
W+α−ε

|f − hf,α−ε|2dV.

Recalling (8.3), (9.3) follows from this inequality and (9.5).

Obviously, hf,zγz ∈ C∞(Cn) for every z ∈ Z2n. Since the condition γz(ζ) 6= 0 implies
z ∈ ζ − S, it follows that f (2) ∈ C∞(Cn). Moreover, since hf,z is analytic on W + z, for
each j ∈ {1, . . . , n} we have

(9.7) ∂̄jf
(2) =

∑
z∈Z2n

hf,z∂̄jγz.

To prove (9.4), consider any α ∈ Z2n. As before, if ζ ∈ Qα, then (9.7) gives us

(∂̄jf
(2))(ζ) =

∑
ε∈E

hf,α−ε(ζ)(∂̄jγα−ε)(ζ) =
∑
ε∈E

(hf,α−ε(ζ)− hf,α(ζ))(∂̄jγα−ε)(ζ),

where the second = is due to the fact that ∂̄j
∑
z∈Z2n γz = ∂̄j1 = 0. By (9.1), we have

|(∂̄jf (2))(ζ)| ≤ C
∑
ε∈E
|hf,α−ε(ζ)− hf,α(ζ)|

for ζ ∈ Qα, α ∈ Z2n. Therefore∫
Qα

|∂̄jf (2)|2dV ≤ 32nC2
∑
ε∈E

∫
Qα

|hf,α−ε − hf,α|2dV

≤ 32nC2
∑
ε∈E

2

(∫
W+α−ε

|hf,α−ε − f |2dV +

∫
W+α

|f − hf,α|2dV
)
.

Thus for every α ∈ Z2n we have∫
Qα

|∂̄jf (2)|2dV ≤ 2(1 + 32n)32nC2
∑
ε∈E

∫
W+α−ε

|hf,α−ε − f |2dV.
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Obviously, (9.4) follows from this inequality and (9.5). �

Proposition 9.2. Let 0 < s ≤ 1. Then there is a constant 0 < C9.2 < ∞ that depends
only on s and the complex dimension n such that

Φ({Ms(f ; z)}z∈Z2n) ≤ C9.2‖|Hf |s‖Φ

for every f ∈ T (Cn) and every symmetric gauge function Φ.

Proposition 9.2 is the Fock-space analogue of [9, Proposition 6.8]. In other words,
Proposition 9.2 is essentially known. Moreover, the proof in the Fock-space case is easier
than the proof in the Bergman-space case in [9]. For these reasons the proof of Proposition
9.2 is relegated to Appendix 1.

Corollary 9.3. There are constants 0 < C9.3 < ∞ and 0 < C ′9.3 < ∞ such that the
following bounds hold: Given an f ∈ T (Cn), let

f = f (1) + f (2) with f (2) ∈ C∞(Cn)

be the decomposition defined by (9.6). Then for every symmetric gauge function Φ,

Φ({A(f (1);α)}α∈Z2n) ≤ C9.3‖Hf‖Φ and(9.8)

Φ({A(∂̄jf
(2);α)}α∈Z2n) ≤ C ′9.3‖Hf‖Φ, j = 1, . . . , n.(9.9)

Proof. Applying (9.4), Lemma 8.2 and Proposition 9.2, we have

Φ({A(∂̄jf
(2);α)}α∈Z2n) ≤ C ′9.1Φ

({∑
ε∈E

M(f ;α− ε)
}
α∈Z2n

)
≤ 32nC ′9.1Φ({M(f ;α)}α∈Z2n) ≤ 32nC ′9.1C9.2‖Hf‖Φ,

proving (9.9). Similarly, (9.8) follows from (9.3), Lemma 8.2 and Proposition 9.2. �

Lemma 9.4. Suppose that f ∈ L∞(Cn). Then the functions f (1), f (2) defined by (9.6)
also belong to L∞(Cn).

Proof. It suffices to consider f (2). By (9.5), there is a 0 < C1 <∞ such that∫
W+z

|hf,z(ζ)|2dV (ζ) ≤ C1‖f‖2∞

for every z ∈ Z2n. Since the closure of S is a compact subset of W and since hf,z(ζ) is
the average of hf,z on an appropriate ball centered at ζ, the above implies that there is a
0 < C2 <∞ such that

sup
ζ∈S+z

|hf,z(ζ)| ≤ C2‖f‖∞ for every z ∈ Z2n.
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Combining this with (9.6), since γz = 0 on Cn\{S + z}, we see that f (2) ∈ L∞(Cn). �

10. Proofs of Theorems 1.3 and 1.4

First, let us prove Theorem 1.3. Suppose that 1 < p < ∞. Let f ∈ L∞(Cn) be such
that Hf ∈ C+

p . We decompose f in the form

(10.1) f = f (1) + f (2) with f (2) ∈ C∞(Cn),

where f (1) and f (2) are defined by (9.6). By Lemma 9.4, we have f (1), f (2) ∈ L∞(Cn). It
suffices to show that Hf̄(1) ∈ C+

p and that Hf̄(2) ∈ C+
p . Since A(f (1);α) = A(f̄ (1);α), an

application of Corollary 9.3 gives us

Φ+
p ({A(f̄ (1);α)}α∈Z2n) = Φ+

p ({A(f (1);α)}α∈Z2n) ≤ C9.3‖Hf‖+p <∞.

Hence it follows from Proposition 8.5 that Hf̄(1) ∈ C+
p .

To prove that Hf̄(2) ∈ C+
p , we note that by Corollary 9.3 and (7.8), the membership

Hf ∈ C+
p implies ∂̄jf

(2) ∈ L2,p,+
n for j = 1, . . . , n. By Lemma 6.4, we have L2,p,+

n ⊂ L2,t
n

for p < t <∞. Since f (2) ∈ L∞(Cn), Lemma 5.1 is applicable to f (2). By Lemma 5.1,

(10.2) ∂jf
(2) = −π−1Tj(∂̄jf

(2)),

j = 1, . . . , n. It now follows from Proposition 7.3 that ∂jf
(2) ∈ L2,p,+

n for j = 1, . . . , n.
Thus we conclude that |∇f (2)| ∈ L2,p,+

n . By (7.8) and Proposition 8.3, the membership
|∇f (2)| ∈ L2,p,+

n implies Hf̄(2) ∈ C+
p . This completes the proof of Theorem 1.3.

The proof of Theorem 1.4 proceeds along a similar line, so we will be more brief. Let
f ∈ L∞(Cn) be such that Hf ∈ C−p for some 1 < p <∞. We again take the decomposition
(10.1), and we only need to show that Hf̄(1) ∈ C−p and that Hf̄(2) ∈ C−p . This time,
Corollary 9.3 gives us

Φ−p ({A(f̄ (1);α)}α∈Z2n) = Φ−p ({A(f (1);α)}α∈Z2n) ≤ C9.3‖Hf‖−p <∞.

Hence it follows from Proposition 8.5 that Hf̄(1) ∈ C−p .

By Corollary 9.3 and (7.9), the membership Hf ∈ C−p implies ∂̄jf
(2) ∈ L2,p,−

n for

j = 1, . . . , n. Since we know that f (2) ∈ L∞(Cn), by Lemma 5.1, (10.2) again holds.
This time, it follows from (10.2) and Proposition 7.4 that ∂jf

(2) ∈ L2,p,−
n for j = 1, . . . , n.

Hence |∇f (2)| ∈ L2,p,−
n . By (7.9) and Proposition 8.3, the membership |∇f (2)| ∈ L2,p,−

n

implies Hf̄(2) ∈ C−p . This completes the proof of Theorem 1.4.

11. No Berger-Coburn phenomenon for the trace class

We now prove Theorem 1.5. Recall that for ϕ ∈ L∞(C), the Toeplitz operator Tϕ is
defined by the formula

Tϕh = P (ϕh), h ∈ H2(C, dµ).
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Also recall that the standard orthonormal basis {ek : k ∈ Z+} for H2(C, dµ) is given by
the formula

ek(z) = (k!)−1/2zk,

k ≥ 0. For the function g defined by (1.3), it is easy to see that for any j, k ∈ Z+,
if 〈Tgek, ej〉 6= 0, then j = k − 1, which also forces k ≥ 1. Integrating in the polar
coordinates and making the obvious substitution, for each k ≥ 1 we have

〈Tgek, ek−1〉 =
1

(k!(k − 1)!)1/2π

∫
|z|≥1

|zk−1|2e−|z|
2

dA(z)

=
1

(k!(k − 1)!)1/2

∫ ∞
1

tk−1e−tdt =
1√
k

(1− ck),

where

(11.1) ck =
1

(k − 1)!

∫ 1

0

tk−1e−tdt.

Thus

(11.2) Tg =

∞∑
k=1

〈Tgek, ek−1〉ek−1 ⊗ ek =

∞∑
k=1

1√
k

(1− ck)ek−1 ⊗ ek.

Similarly, if 〈T|g|2ek, ej〉 6= 0, then j = k, and we have

〈T|g|2ek, ek〉 =
1

k!π

∫
|z|≥1

|zk−1|2e−|z|
2

dA(z) =
1

k
(1− ck)

when k ≥ 1. Thus

(11.3) T|g|2 =

∞∑
k=0

〈T|g|2ek, ek〉ek ⊗ ek = E0 +

∞∑
k=1

1

k
(1− ck)ek ⊗ ek,

where we denote E0 = 〈T|g|2e0, e0〉e0 ⊗ e0.

Combining (11.2) and (11.3), we have

H∗gHg = PMḡ(1− P )MgP = T|g|2 − T ∗g Tg

= E0 +
∞∑
k=1

1

k
(1− ck)ek ⊗ ek −

∞∑
k=1

1

k
(1− ck)2ek ⊗ ek

= E0 +

∞∑
k=1

1

k
ck(1− ck)ek ⊗ ek.

Consequently,

|Hg| = (H∗gHg)
1/2 = E

1/2
0 +

∞∑
k=1

1√
k
c
1/2
k (1− ck)1/2ek ⊗ ek.
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By (11.1), we have c
1/2
k ≤ {(k − 1)!}−1/2. Hence |Hg| ∈ C1. That is, the Hankel operator

Hg is in the trace class.

On the other hand, it also follows from (11.2) and (11.3) that

H∗ḡHḡ = PMg(1− P )MḡP = T|g|2 − TgT ∗g

= E0 +
∞∑
k=1

1

k
(1− ck)ek ⊗ ek −

∞∑
k=1

1

k
(1− ck)2ek−1 ⊗ ek−1

= E0 − F0 +
∞∑
k=1

1

k
(1− ck)ek ⊗ ek −

∞∑
k=1

1

k + 1
(1− ck+1)2ek ⊗ ek

= E0 − F0 +
∞∑
k=1

1

k(k + 1)

(
1− (k + 1)ck + 2kck+1 − kc2k+1

)
ek ⊗ ek,

where F0 = (1− c1)2e0 ⊗ e0. Consequently,

|Hḡ| = (H∗ḡHḡ)
1/2

= (E0 − F0)1/2 +
∞∑
k=1

1√
k(k + 1)

(
1− (k + 1)ck + 2kck+1 − kc2k+1

)1/2
ek ⊗ ek.

(11.4)

From (11.1) we see that

(11.5) lim
k→∞

(
1− (k + 1)ck + 2kck+1 − kc2k+1

)1/2
= 1.

Combining (11.4) and (11.5), we conclude that |Hḡ| /∈ C1. That is, the Hankel operator
Hḡ is not in the trace class. This completes the proof of Theorem 1.5.

12. No Berger-Coburn phenomenon for the ideal C+
1

We need a general fact about the orthogonal projection P : L2(C, dµ) → H2(C, dµ),
which may be of independent interest:

Proposition 12.1. For each f ∈ C∞(C) ∩ L2(C, dµ) we have ‖f − Pf‖ ≤ ‖∂̄f‖.

The proof of Proposition 12.1 is essentially an exercise in CCR, the canonical com-
mutation relation. In order not to distract from the main line of our construction here, we
leave the proof of Proposition 12.1 to Appendix 2 at the end of the paper.

We now turn to the proof of Theorem 1.6. The ψ promised in Theorem 1.6 will be
constructed from “modified pieces” of the function g given by (1.3). This takes quite a few
steps. We begin with a C∞-function ξ on R satisfying the following three conditions:

(1) 0 ≤ ξ ≤ 1 on R.
(2) ξ = 0 on (−∞, 1].
(3) ξ = 1 on [2,∞).

32



Now, for each j ∈ N, we define

ξj(z) = ξ(|z| − j), z ∈ C.

For each j ∈ N, we then define the function gj on C by the formula

gj(z) = ξj(z)g(z), z ∈ C,

where g is given by (1.3). Obviously, we have ξj , gj ∈ C∞(C) and ‖gj‖∞ ≤ (j + 1)−1 for
every j ∈ N.

Lemma 12.2. There is a 0 < C <∞ such that ‖Hgj‖1 ≤ C for every j ∈ N.

Proof. Applying Proposition 3.3 and Lemma 3.4 in [21], we have

‖Hgj‖1 = tr((H∗gjHgj )
1/2) =

1

π

∫
〈(H∗gjHgj )

1/2kz, kz〉dA(z) ≤ 1

π

∫
‖Hgjkz‖dA(z).

By Proposition 12.1, we have ‖Hgjkz‖ ≤ ‖∂̄(gjkz)‖ = ‖kz∂̄gj‖. Thus

‖Hgj‖1 ≤
1

π

∫
‖kz∂̄gj‖dA(z) =

1

π

∫
〈|∂̄gj |2kz, kz〉1/2dA(z)

≤ C1

∑
α∈Z2

(∫
|z−α|<1

|(∂̄gj)(z)|2dA(z)

)1/2

,

where the last ≤ follows from the estimates on page 249 in [21]. Since g is analytic on
{z ∈ C : |z| > 1}, we have ∂̄gj = g∂̄ξj . Thus

(12.1) ‖Hgj‖1 ≤ C1

∑
α∈Z2

(∫
|z−α|<1

|g(z)(∂̄ξj)(z)|2dA(z)

)1/2

.

Let Ej denote the collection of α ∈ Z2 such that∫
|z−α|<1

|g(z)(∂̄ξj)(z)|2dA(z) 6= 0.

By the choice of the function ξ, we have (∂̄ξj)(z) 6= 0 only if 1 ≤ |z| − j ≤ 2, i.e., only if
j + 1 ≤ |z| ≤ j + 2. Thus α ∈ Ej only if j ≤ |α| < j + 3. Consequently, there is a constant
C2 such that card(Ej) ≤ C2j for every j ∈ N. Obviously, we have ‖∂̄ξj‖∞ ≤ ‖ξ′‖∞ for
every j ∈ N. Furthermore, the condition j + 1 ≤ |z| ≤ j + 2 implies |g(z)| ≤ (j + 1)−1.
Substituting these bounds in (12.1), we find that

‖Hgj‖1 ≤ C1card(Ej)
√
π(j + 1)−1‖ξ′‖∞ ≤ C1C2j

√
π(j + 1)−1‖ξ′‖∞ ≤ C1C2

√
π‖ξ′‖∞

for every j ∈ N. This completes the proof. �
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Lemma 12.3. Let {Yj} be a sequence of operators satisfying the following two conditions:
(a) ‖Yj‖ → 0 as j →∞.
(b) There is a 0 < C <∞ such that ‖Yj‖1 ≤ C for every j ∈ N.

Then ‖Yj‖+1 → 0 as j →∞.

Proof. For any pair of j and k, by the condition ‖Yj‖1 ≤ C, we have

s1(Yj) + · · ·+ sk(Yj)

1−1 + · · ·+ k−1
≤ min

{
k‖Yj‖,

C

1−1 + · · ·+ k−1

}
.

Given any ε > 0, we first pick a K ∈ N such that C(1−1 + · · · + K−1)−1 ≤ ε. We then
pick a J ∈ N such that K‖Yj‖ ≤ ε for all j ≥ J . By the above inequality, if j ≥ J , then
‖Yj‖+1 ≤ ε. This completes the proof. �

Lemma 12.4. (1) We have ‖gj‖∞ ≤ (j + 1)−1 for every j ∈ N.
(2) We have ‖Hgj‖+1 → 0 as j →∞.

Proof. (1) follows from the fact that ξj(z) = 0 when |z| − j ≤ 1 and (1.3). Since ‖gj‖∞ ≤
(j + 1)−1, we have ‖Hgj‖ → 0 as j →∞. Thus (2) follows Lemmas 12.2 and 12.3. �

Lemma 12.5. We have Hḡj ∈ C+
1 for every j ∈ N. Moreover, there is a positive number

c > 0 such that ‖Hḡj‖+1 ≥ c for every j ∈ N.

Proof. This is a modified version of the calculation in Section 11. Let j ∈ N be given. For
any i, k ∈ Z+, if 〈Tgjek, ei〉 6= 0, then i = k − 1, which also forces k ≥ 1. Moreover, for
each k ≥ 1 we have

〈Tgjek, ek−1〉 =
1

(k!(k − 1)!)1/2π

∫
ξ(|z| − j)|zk−1|2e−|z|

2

dA(z)

=
1

(k!(k − 1)!)1/2

∫ ∞
0

ξ(
√
t− j)tk−1e−tdt =

1√
k

(1− cj;k),

where

(12.2) cj;k =
1

(k − 1)!

∫ ∞
0

{1− ξ(
√
t− j)}tk−1e−tdt.

Thus

(12.3) Tgj =
∞∑
k=1

〈Tgjek, ek−1〉ek−1 ⊗ ek =
∞∑
k=1

1√
k

(1− cj;k)ek−1 ⊗ ek.

Similarly, if 〈T|gj |2ek, ei〉 6= 0, then i = k, and for k ≥ 1 we have

〈T|gj |2ek, ek〉 =
1

k!π

∫
ξ2(|z| − j)|zk−1|2e−|z|

2

dA(z) =
1

k
(1− c̃j;k),
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where

c̃j;k =
1

(k − 1)!

∫ ∞
0

{1− ξ2(
√
t− j)}tk−1e−tdt.

Thus

(12.4) T|gj |2 =
∞∑
k=0

〈T|gj |2ek, ek〉ek ⊗ ek = Ej +
∞∑
k=1

1

k
(1− c̃j;k)ek ⊗ ek,

where we denote Ej = 〈T|gj |2e0, e0〉e0 ⊗ e0.

Combining (12.3) and (12.4), we have

H∗ḡjHḡj = PMgj (1− P )MḡjP = T|gj |2 − TgjT
∗
gj

= Ej +
∞∑
k=1

1

k
(1− c̃j;k)ek ⊗ ek −

∞∑
k=1

1

k
(1− cj;k)2ek−1 ⊗ ek−1

= Ej − Fj +
∞∑
k=1

1

k
(1− c̃j;k)ek ⊗ ek −

∞∑
k=1

1

k + 1
(1− cj;k+1)2ek ⊗ ek

= Ej − Fj +
∞∑
k=1

1− (k + 1)c̃j;k + 2kcj;k+1 − kc2j;k+1

k(k + 1)
ek ⊗ ek,

where Fj = (1− cj;1)2e0 ⊗ e0. Consequently,

(12.5) |Hḡj | = (H∗ḡjHḡj )
1/2 = (Ej − Fj)1/2 +

∞∑
k=1

dj;k√
k(k + 1)

ek ⊗ ek,

where
dj;k = (1− (k + 1)c̃j;k + 2kcj;k+1 − kc2j;k+1)1/2.

Recall that 0 ≤ ξ(x) ≤ 1 for every x ∈ R and that ξ(x) = 1 when x ≥ 2. Applying these
facts in (12.2), we obtain

cj;k ≤
1

(k − 1)!

∫ (j+2)2

0

tk−1e−tdt ≤ (j + 2)2(k−1)

(k − 1)!

for every k ≥ 1. A similar bound holds for c̃j;k. Hence

(12.6) lim
k→∞

dj;k = 1.

This means that there is a Kj ∈ N such that dj;k ≥ 1/2 for every k ≥ Kj . Combining this
with (12.5), we see that for every m ∈ N,

s1(Hḡj ) + · · ·+ sm(Hḡj )

1−1 + · · ·+m−1
≥ 1

2
· (Kj + 1)−1 + · · ·+ (Kj +m)−1

1−1 + · · ·+m−1
.
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Taking supremum over m ∈ N, we obtain the lower bound ‖Hḡj‖+1 ≥ 1/2. Also, it is

obvious from (12.5) and (12.6) that Hḡj ∈ C+
1 . This completes the proof. �

The construction of the desired ψ involves the duality between C+
1 and the Macaev

ideal C−∞ [12]. This duality is better explained in terms of the symmetric gauge function
Φ−∞, which is defined by the formula

Φ−∞({aj}j∈N) =
∞∑
j=1

|aπ(j)|
j

, {aj}j∈N ∈ ĉ,

where π : N→ N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥ · · · . Thus

‖A‖−∞ = ‖A‖Φ−∞ and C−∞ = CΦ−∞

(see (6.1) and (6.2)). The symmetric gauge functions Φ+
1 and Φ−∞ are dual to each other

in the sense that for every {aj}j∈N ∈ ĉ, we have

Φ−∞({aj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {bj}j∈N ∈ ĉ,Φ+
1 ({bj}j∈N) ≤ 1

}
and

Φ+
1 ({aj}j∈N) = sup

{∣∣∣∣ ∞∑
j=1

ajbj

∣∣∣∣ : {bj}j∈N ∈ ĉ,Φ−∞({bj}j∈N) ≤ 1

}
.

See [12, pages 148, 149 and 125]. Thus it follows that for every T ∈ B(H),

(12.7) ‖T‖+1 = sup{|tr(TF )| : ‖F‖−∞ ≤ 1 and rank(F ) <∞}.

With the above extensive preparation, we can now accomplish the main goal of the section:

Proof of Theorem 1.6. By Lemma 12.4, we can pick a sequence of positive numbers {rj}
with the following properties:

(i) rj‖gj‖∞ ≤ 2(j + 1)−1/2 for every j ∈ N.
(ii) rj‖Hgj‖+1 → 0 as j →∞.
(iii) rj →∞ as j →∞.

Our desired function ψ will be the sum of a subsequence of the sequence {rjgj}, chosen as
follows.

We begin by choosing a j1 ∈ N such that

rj1‖gj1‖∞ ≤ 2−1 and rj1‖Hgj1
‖+1 ≤ 2−1.

Lemma 12.5 says that ‖Hḡj1
‖+1 ≥ c. Therefore, by (12.7), there is a finite-rank operator

F1 such that

‖F1‖−∞ ≤ 1 and |tr(Hḡj1
F1)| ≥ c/2.
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Let ν ≥ 1 and suppose that we have chosen j1, . . . , jν ∈ N and finite-rank operators
F1, . . . , Fν . By (i), (ii) and (iii) above, there is a natural number jν+1 > jν such that

(12.8) rjν+1
‖gjν+1

‖∞ ≤ 2−(ν+1), rjν+1
‖Hgjν+1

‖+1 ≤ 2−(ν+1),

(12.9) rjν+1
‖Hgjν+1

Fi‖1 ≤ 2−(ν+1−i)c for every 1 ≤ i ≤ ν

and

(12.10) rjν+1
c ≥ 4

ν∑
i=1

rji‖Hḡji
‖+1 .

Note that (12.10) requires the part of Lemma 12.5 which says that ‖Hḡj‖+1 <∞ for every

j. Lemma 12.5 also tells us that ‖Hḡjν+1
‖+1 ≥ c. Therefore, by (12.7), there is a finite-rank

operator Fν+1 such that

(12.11) ‖Fν+1‖−∞ ≤ 1 and |tr(Hḡjν+1
Fν+1)| ≥ c/2.

Thus, inductively, we obtain a sequence of natural numbers j1 < · · · < jν < · · · along with
a sequence of finite-rank operators {Fν} such that (12.8-11) hold for every ν ≥ 1.

With the sequences chosen above, we now define

ψ =

∞∑
ν=1

rjνgjν .

Let us verify that ψ has all the promised properties. First of all, it follows from (12.8) that

‖ψ‖∞ ≤ 1 and ‖Hψ‖+1 ≤ 1.

That is, ψ is bounded on C and Hψ ∈ C+
1 . To show that Hψ̄ /∈ C+

1 , take any ν ≥ 1. Then

tr(Hψ̄Fν+1) = A+B + C,

where

A =
ν∑
i=1

rjitr(Hḡji
Fν+1), B = rjν+1

tr(Hḡjν+1
Fν+1) and C =

∞∑
i=ν+2

rjitr(Hḡji
Fν+1).

By (12.11) and (12.10), we have

|B| ≥ rjν+1(c/2) = rjν+1(c/4) + rjν+1(c/4) ≥ rjν+1(c/4) +

ν∑
i=1

rji‖Hḡji
‖+1 .
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Since ‖Fν+1‖−∞ ≤ 1, by (12.7), this means

|B| ≥ rjν+1
(c/4) + |A|.

On the other hand, it follows from (12.9) that

|C| ≤
∞∑

i=ν+2

rji‖Hḡji
Fν+1‖1 ≤

∞∑
i=ν+2

2−(i−ν−1)c = c.

Using the fact ‖Fν+1‖−∞ ≤ 1 and (12.7) again, we now have

‖Hψ̄‖+1 ≥ |tr(Hψ̄Fν+1)| ≥ |B| − |A| − |C| ≥ rjν+1
(c/4)− c.

Since c > 0 and since rjν+1
→ ∞ as ν → ∞, this inequality implies that Hψ̄ /∈ C+

1 . This
completes the proof. �

13. No Berger-Coburn phenomenon for the Macaev ideal

The proof of Theorem 1.7 begins with an elementary lower bound:

Lemma 13.1. There is a positive number 0 < R <∞ such that the following holds true:
Let h : [0,∞) → [0, 1] be any measurable function that satisfies the conditions that h = 1
on [0, R] and that h = 0 on [R′,∞) for some R < R′ <∞. Then the function

(13.1) η(z) = h(|z|)z, z ∈ C,

has the property that ‖Hη̄‖ ≥ 1/2.

Proof. We have ‖z‖ = 1 in H2(C, dµ). Therefore

‖Hη̄‖2 ≥ 〈H∗η̄Hη̄z, z〉 = 〈M|η|2z, z〉 − ‖PMη̄z‖2 =
1

π

∫
C

h2(|z|)|z|4dµ(z)− ‖PMη̄z‖2

≥ 1

π

∫
|z|<R

|z|4dµ(z)− ‖PMη̄z‖2.

Since π−1
∫
C
|z|4dµ(z) = 2, we see that for a sufficiently large R we have

‖Hη̄‖2 ≥ (5/4)− ‖PMη̄z‖2.

Since η̄(z)z = h(|z|)|z|2, we have η̄z ⊥ zk for all k ≥ 1. Therefore

‖PMη̄z‖ = |〈η̄z, 1〉| = 1

π

∫
C

h(|z|)|z|2dµ(z) ≤ 1

π

∫
C

|z|2dµ(z) = 1.

Consequently, ‖Hη̄‖2 ≥ (5/4)− 1 = 1/4. This completes the proof. �
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For any pair of a ∈ C and r > 0, denote

D(a, r) = {z ∈ C : |a− z| < r}.

Let L denote the collection of ϕ ∈ L∞(C) for which there is some 0 < r = r(ϕ) <∞ such
that ϕ = 0 on C\D(0, r). Obviously, L is closed under complex conjugation. If ϕ ∈ L,
then the Hankel operator Hϕ is in the trace class C1; this fact is well known, but it certainly
follows from Theorem 8.1.

Our proof of Theorem 1.7 is based on the following fact, which, in view of the original
theorem of Berger and Coburn in [4], may be of independent interest:

Proposition 13.2. There does not exist any constant 0 < C <∞ such that the inequality

(13.2) ‖Hϕ̄‖ ≤ C‖Hϕ‖

holds for every ϕ ∈ L.

Proof. Let a small ε > 0 be given. We will show that there is an h : [0,∞) → [0, 1]
satisfying the two conditions in Lemma 13.1 such that the corresponding η defined by
(13.1) has the property that ‖Hη‖ ≤ ε. Combining this upper bound with the lower bound
in Lemma 13.1, we see that no 0 < C <∞ exists such that (13.2) holds for every ϕ ∈ L.

Our desired h will be a C∞ function on [0,∞). Thus the corresponding η will be a
C∞ function on C. By Proposition 12.1, for any f ∈ H2(C, dµ) we have

‖Hηf‖ = ‖ηf − P (ηf)‖ ≤ ‖∂̄(ηf)‖ = ‖f∂̄η‖.

Thus it suffices to find a C∞ function h : [0,∞)→ [0, 1] which satisfies the two conditions
in Lemma 13.1 and for which the corresponding η has the property that ‖∂̄η‖∞ ≤ ε.

By straightforward differentiation, we have

(∂̄η)(z) = zh′(|z|)∂̄|z|.

Moreover, ‖∂̄|z|‖∞ ≤ 1. Thus our task is reduced to the construction of a C∞ function
h : [0,∞)→ [0, 1] which satisfies the condition

(13.3) x|h′(x)| ≤ ε for every x ∈ [0,∞),

as well as the two conditions in Lemma 13.1.

To construct such an h, we begin with the function u on R defined by the formula

u(x) =


1

x log x if x ≥ 2

0 if x < 2
.

39



Let R be the same as in Lemma 13.1. We pick a T ≥ R+ 30 such that

1

log(T − 1)
≤ ε.

With this T , we let v be a C∞ function on R satisfying the conditions that 0 ≤ v ≤ 1 on
R, that v = 1 on [T, T 3], and that v = 0 on R\(T − 1, T 3 + 1). We further define

a(x) = v(x)u(x), x ∈ R.

Then a is a non-negative C∞ function on R, and a = 0 on R\(T − 1, T 3 + 1). Write

A =

∫ ∞
0

a(x)dx.

Then

A =

∫ T 3+1

T−1

a(x)dx ≥
∫ T 3

T

u(x)dx =

∫ T 3

T

1

x log x
dx = log 3 > 1.

Define

b(x) =

∫ x

0

a(t)dt, x ∈ [0,∞),

which is a C∞ function. Obviously, b is non-negative and non-decreasing on [0,∞). More-
over, we have b = 0 on [0, T − 1] and b = A on [T 3 + 1,∞). Finally, we define

h(x) = A−1(A− b(x)), x ∈ [0,∞).

Obviously, h is a C∞ function and satisfies the condition 0 ≤ h ≤ 1 on [0,∞). Let us
verify that this h has the other desired properties.

First of, the properties of b imply that h = 1 on [0, T − 1] and h = 0 on [T 3 + 1,∞).
Since T − 1 > R, this h satisfies the two conditions in Lemma 13.1. What remains is to
show that this h satisfies (13.3). Obviously, h′(x) = −A−1a(x) for every x ∈ [0,∞). Thus
we have x|h′(x)| = 0 for x ∈ [0,∞)\(T − 1, T 3 + 1). If x ∈ (T − 1, T 3 + 1), then

x|h′(x)| = A−1xa(x) = A−1xv(x)u(x) ≤ xu(x) =
1

log x
≤ 1

log(T − 1)
≤ ε

by the choice of T . This verifies (13.3) and completes the proof. �

Lemma 13.3. If ϕ ∈ L, then

lim
r→∞

‖MϕPMχC\D(0,r)
‖1 = 0.

Proof. We can write the orthogonal projection P : L2(C, dµ) → H2(C, dµ) in the form
P =

∑∞
k=0 ek ⊗ ek, where

ek(z) = (k!)−1/2zk, k ≥ 0.
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If ϕ ∈ L, then there is a 0 < ρ <∞ such that ϕ = 0 on C\D(0, ρ). Thus for each k ≥ 0,

‖ϕek‖2 =
1

k!π

∫
C

|ϕ(z)zk|2dµ(z) ≤ ‖ϕ‖
2
∞

k!π

∫
|z|≤ρ

|zk|2e−|z|
2

dA(z) ≤ ‖ϕ‖2∞
ρ2k

k!
.

Therefore

(13.4) ‖MϕPMχC\D(0,r)
‖1 ≤

∞∑
k=0

‖ϕek‖‖χC\D(0,r)ek‖ ≤ ‖ϕ‖∞
∞∑
k=0

ρk√
k!
‖χC\D(0,r)ek‖.

It is obvious that for each k ≥ 0, we have ‖χC\D(0,r)ek‖ ≤ 1 and

lim
r→∞

‖χC\D(0,r)ek‖ = 0.

Applying these facts in (13.4), the lemma follows. �

For any operator A and any ν ∈ N, we denote

A[ν] =

ν copies︷ ︸︸ ︷
A⊕ · · · ⊕A .

Lemma 13.4. If A ∈ C1, then ‖A[ν]‖−∞ ≤ (1 + log ν)‖A‖1 for every ν ∈ N.

Proof. It is obvious that if x and y are unit vectors, then for every ν ∈ N,

‖(x⊗ y)[ν]‖−∞ =

ν∑
j=1

1

j
≤ 1 + log ν.

If A is a trace class operator, then there are orthonormal sets {xj : j ∈ N} and {yj : j ∈ N}
such that

(13.5) A =
∞∑
j=1

sj(A)xj ⊗ yj .

Therefore for each ν ∈ N,

‖A[ν]‖−∞ ≤
∞∑
j=1

sj(A)‖(xj ⊗ yj)[ν]‖−∞ ≤
∞∑
j=1

sj(A)(1 + log ν) = (1 + log ν)‖A‖1

as promised. �

Proposition 13.5. Let A ∈ C1. Then there is a natural number m(A) ∈ N such that

‖A[ν]‖−∞ ≤ 3(1 + log ν)‖A‖ for every ν ≥ m(A).
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Proof. Given an A ∈ C1, we again write it in the form (13.5). There is an m ∈ N such that

∞∑
j=m+1

sj(A) ≤ ‖A‖.

Let us show that this natural number m suffices for the lemma. Indeed we decompose A
in the form A = A1 +A2, where

A1 =
m∑
j=1

sj(A)xj ⊗ yj and A2 =
∞∑

j=m+1

sj(A)xj ⊗ yj .

Since ‖A2‖1 ≤ ‖A‖, it follows from Lemma 13.4 that ‖A[ν]
2 ‖−∞ ≤ (1 + log ν)‖A‖ for every

ν ∈ N. On the other hand, since rank(A1) ≤ m and ‖A1‖ = ‖A‖, for each ν ≥ m we have

‖A[ν]
1 ‖−∞ ≤

νm∑
j=1

‖A‖
j
≤ (1 + log(νm))‖A‖ ≤ (1 + log(ν2))‖A‖

= (1 + 2 log ν)‖A‖ ≤ 2(1 + log ν)‖A‖.

Since ‖A[ν]‖−∞ ≤ ‖A
[ν]
1 ‖−∞ + ‖A[ν]

2 ‖−∞, this complets the proof. �

Lemma 13.6. There exists a sequence {fk} in L which has the properties that ‖fk‖∞ ≤ 1
for every k ∈ N and that

∞⊕
k=1

Hfk ∈ C−∞ while
∞⊕
k=1

Hf̄k /∈ C
−
∞.

Proof. Applying Proposition 13.2, for each j ∈ N there is a ϕj ∈ L such that

‖Hϕj‖ ≤ 1 while ‖Hϕ̄j‖ ≥ j.

As we already mentioned, the membership ϕj ∈ L guarantees that Hϕj ∈ C1. Thus for
each j ∈ N, there is a natural number m(Hϕj ) provided by Proposition 13.5 for Hϕj . We
pick a ν(j) ∈ N satisfying the conditions

ν(j) ≥ m(Hϕj ) + 10 and log ν(j) ≥ ‖ϕj‖∞

for each j ∈ N. It follows from Proposition 13.5 and the condition ‖Hϕj‖ ≤ 1 that

(13.6) ‖H [ν(j)]
ϕj ‖−∞ ≤ 3(1 + log ν(j)),

j ∈ N. On the other hand, the condition ‖Hϕ̄j‖ ≥ j implies that s`(H
[ν(j)]
ϕ̄j ) ≥ j for

1 ≤ ` ≤ ν(j). Therefore

(13.7) ‖H [ν(j)]
ϕ̄j ‖−∞ ≥ j

ν(j)∑
`=1

1

`
≥ j log ν(j)
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for every j ∈ N. Now consider the operators

A =
∞⊕
j=1

1

j2 log ν(j3)
H [ν(j3)]
ϕj3

and B =
∞⊕
j=1

1

j2 log ν(j3)
H

[ν(j3)]
ϕ̄j3

.

By (13.6), we have

‖A‖−∞ ≤
∞∑
j=1

1

j2 log ν(j3)
‖H [ν(j3)]

ϕj3
‖−∞ ≤ 3

∞∑
j=1

1 + log ν(j3)

j2 log ν(j3)
<∞.

That is, A ∈ C−∞. On the other hand, for each j ∈ N, it follows from (13.7) that

‖B‖−∞ ≥
1

j2 log ν(j3)
‖H [ν(j3)]

ϕ̄j3
‖−∞ ≥

j3 log ν(j3)

j2 log ν(j3)
= j.

This means that B /∈ C−∞. The choice of ν(j3) ensures that ‖ϕj3‖∞/ log ν(j3) ≤ 1. Thus if
we let {fk} be a re-enumeration of the functions

ν(j3) copies︷ ︸︸ ︷
1

j2 log ν(j3)
ϕj3 , · · · ,

1

j2 log ν(j3)
ϕj3 , j ∈ N,

then the conclusion of the lemma holds. �

For each a ∈ C, we have the translation

τa(z) = z − a, z ∈ C,

of the complex plane. It is well known that for each a ∈ C, the formula

Vaf = f ◦ τa · ka, f ∈ L2(C, dµ),

defines a unitary operator on L2(C, dµ), where ka(z) = eāze−|a|
2/2. The restriction of Va

to H2(C, dµ) is also a unitary operator that maps the Fock space onto itself.

For any f ∈ L∞(C), we will identify the Hankel operator Hf with the operator
(1 − P )MfP on the space L2(C, dµ). Thus for f, ϕ, ψ ∈ L∞(C), MϕHfMψ means the
operator Mϕ(1− P )MfPMψ on L2(C, dµ).

Proof of Theorem 1.7. Let {fk} be the sequence in L provided by Lemma 13.6. Then there
is a sequence {ρk} in (0,∞) such that fk = 0 on C\D(0, ρk) for every k ∈ N. For each
k ∈ N, Lemma 13.3 allows us to pick a ρk < rk <∞ such that

(13.8)

{ ‖Hfk −MχD(0,rk)
HfkMχD(0,rk)

‖1 ≤ 2−k and

‖Hf̄k −MχD(0,rk)
Hf̄kMχD(0,rk)

‖1 ≤ 2−k
.
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Thus the operators

∞⊕
k=1

Hfk −
∞⊕
k=1

MχD(0,rk)
HfkMχD(0,rk)

and

∞⊕
k=1

Hf̄k −
∞⊕
k=1

MχD(0,rk)
Hf̄kMχD(0,rk)

are in the trace class. Applying Lemma 13.6, we have

(13.9)
∞⊕
k=1

MχD(0,rk)
HfkMχD(0,rk)

∈ C−∞ while
∞⊕
k=1

MχD(0,rk)
Hf̄kMχD(0,rk)

/∈ C−∞.

We can inductively select a sequence {ak} in C such that D(ak, rk) ∩D(aj , rj) = ∅ for all
j 6= k. We have

VakMχD(0,rk)
HϕMχD(0,rk)

V ∗ak = MχD(ak,rk)
Hϕ◦τakMχD(ak,rk)

for every ϕ ∈ L∞(C). Combining this unitary equivalence with (13.9), we see that

∞⊕
k=1

MχD(ak,rk)
Hfk◦τakMχD(ak,rk)

∈ C−∞ while

∞⊕
k=1

MχD(ak,rk)
Hf̄k◦τak

MχD(ak,rk)
/∈ C−∞.

Since D(ak, rk) ∩ D(aj , rj) = ∅ for all j 6= k, the above implies that as operators on
L2(C, dµ), we have
(13.10)
∞∑
k=1

MχD(ak,rk)
Hfk◦τakMχD(ak,rk)

∈ C−∞ while
∞∑
k=1

MχD(ak,rk)
Hf̄k◦τak

MχD(ak,rk)
/∈ C−∞.

Using the unitary operator Vak again, from (13.8) we obtain{ ‖Hfk◦τak −MχD(ak,rk)
Hfk◦τakMχD(ak,rk)

‖1 ≤ 2−k and

‖Hf̄k◦τak
−MχD(ak,rk)

Hf̄k◦τak
MχD(ak,rk)

‖1 ≤ 2−k
,

k ∈ N. Thus the operators

∞∑
k=1

Hfk◦τak −
∞∑
k=1

MχD(ak,rk)
Hfk◦τakMχD(ak,rk)

and

∞∑
k=1

Hf̄k◦τak
−
∞∑
k=1

MχD(ak,rk)
Hf̄k◦τak

MχD(ak,rk)

are in the trace class. Combining this fact with (13.10), we see that

(13.11)
∞∑
k=1

Hfk◦τak ∈ C
−
∞ while

∞∑
k=1

Hf̄k◦τak
/∈ C−∞.
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The property that fk = 0 on C\D(0, rk) implies that fk ◦ τak = 0 on C\D(ak, rk), k ∈ N.
Since ‖fk‖∞ ≤ 1 for every k and since D(ak, rk) ∩D(aj , rj) = ∅ for j 6= k, the function

q =
∞∑
k=1

fk ◦ τak

is in L∞(C). On L2(C, dµ), we have the obvious strong convergence
∑`
k=1Mfk◦τak →Mq

as `→∞. Therefore

∞∑
k=1

Hfk◦τak = Hq and
∞∑
k=1

Hf̄k◦τak
= Hq̄.

Thus (13.11) tells us that Hq ∈ C−∞ while Hq̄ /∈ C−∞. This completes the proof. �

14. Generalization

One may observe that Theorems 1.5, 1.6 and 1.7 all deal with “endpoint” cases of one
kind or another, which may lead to the impression that it is rare for a norm ideal (in the
sense of [12]) not to have the Berger-Coburn phenomenon. But the construction in Section
13 is so general that we can use it to produce, on a wholesale basis, norm ideals which
do not have the Berger-Coburn phenomenon. In other words, with very little additional
effort, the proof of Theorem 1.7 can be generalized to cover a class of ideals. To discuss
this generalization, let us first introduce these ideals.

Let α = {αj} be a non-increasing sequence of positive numbers starting with α1 = 1.
We assume that the sequence α is binormalizing [12, page 141], i.e.,

∞∑
j=1

αj =∞ and lim
j→∞

αj = 0.

Such a sequence α gives rise to an operator ideal Cα = {A ∈ B(H) : ‖A‖α < ∞}, where
the norm ‖ · ‖α is defined by the formula

‖A‖α =
∞∑
j=1

αjsj(A).

See [12, Section III.15]. We assume that the sequence α satisfies the additional condition
that there is a constant 0 < C = C(α) <∞ such that

(14.1)
ν2∑
j=1

αj ≤ C
ν∑
j=1

αj for every ν ∈ N.

Obviously, the sequence {j−1} is binormalizing and satisfies (14.1), and the corresponding
ideal C{j−1} is just the Macaev ideal C−∞. For each 0 < t ≤ 1, the sequence{

1

j(1 + log j)t

}
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is also binormalizing, and it is easy to verify that it satisfies (14.1). Thus there are plenty
of such α. We have the following generalization of Theorem 1.7:

Theorem 14.1. Again, consider the case where n = 1. Let α = {αj} be any binormalizing
sequence that satisfies condition (14.1). Then there exists an fα ∈ L∞(C) such that Hfα ∈
Cα while Hf̄α /∈ Cα.

Proof. We will show that there is a sequence {fk} in L which has the properties that
‖fk‖∞ ≤ 1 for every k ∈ N and that

(14.2)

∞⊕
k=1

Hfk ∈ Cα while

∞⊕
k=1

Hf̄k /∈ Cα.

Then, repeating the argument in the proof of Theorem 1.7, there is a sequence {ak} in C
such that the function

fα =

∞∑
k=1

fk ◦ τak

is in L∞(C) and has the property that Hfα ∈ Cα while Hf̄α /∈ Cα.

To produce the sequence {fk} promised above, we first introduce the following nota-
tion. For each ν ∈ N, we write

σ(ν) =
ν∑
j=1

αj .

Thus (14.1) translates to

σ(ν2) ≤ Cσ(ν) for every ν ∈ N.

Repeating the argument in the proof of Proposition 13.5 and using the above inequality,
for each A ∈ C1 we obtain an m(A) ∈ N such that

(14.3) ‖A[ν]‖α ≤ (1 + C)σ(ν)‖A‖ for every ν ≥ m(A).

The rest of the proof closely resembles that of Lemma 13.6.

For each j ∈ N, we again apply Proposition 13.2 to obtain a ϕj ∈ L such that

‖Hϕj‖ ≤ 1 while ‖Hϕ̄j‖ ≥ j.

As we know, the membership ϕj ∈ L guarantees that Hϕj ∈ C1. Thus for each j ∈ N,
there is an m(Hϕj ) ∈ N for Hϕj which has the property mentioned above.

Since α is binormalizing, we have σ(ν)→∞ as ν →∞. Thus for each j ∈ N, we can
pick a ν(j) ∈ N satisfying the conditions

ν(j) ≥ m(Hϕj ) + 10 and σ(ν(j)) ≥ ‖ϕj‖∞.
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It follows from (14.3) and the condition ‖Hϕj‖ ≤ 1 that

(14.4) ‖H [ν(j)]
ϕj ‖α ≤ (1 + C)σ(ν(j)),

j ∈ N. On the other hand, the condition ‖Hϕ̄j‖ ≥ j implies that s`(H
[ν(j)]
ϕ̄j ) ≥ j for

1 ≤ ` ≤ ν(j). Therefore

(14.5) ‖H [ν(j)]
ϕ̄j ‖α ≥ jσ(ν(j))

for every j ∈ N. Now consider the operators

A =
∞⊕
j=1

1

j2σ(ν(j3))
H [ν(j3)]
ϕj3

and B =
∞⊕
j=1

1

j2σ(ν(j3))
H

[ν(j3)]
ϕ̄j3

.

By (14.4), we have

‖A‖α ≤
∞∑
j=1

1

j2σ(ν(j3))
‖H [ν(j3)]

ϕj3
‖α ≤

∞∑
j=1

(1 + C)σ(ν(j3))

j2σ(ν(j3))
<∞.

That is, A ∈ Cα. On the other hand, for each j ∈ N, it follows from (14.5) that

‖B‖α ≥
1

j2σ(ν(j3))
‖H [ν(j3)]

ϕ̄j3
‖α ≥

j3σ(ν(j3))

j2σ(ν(j3))
= j.

This means that B /∈ Cα. The choice of ν(j3) ensures that ‖ϕj3‖∞/σ(ν(j3)) ≤ 1. Thus if
we let {fk} be a re-enumeration of the functions

ν(j3) copies︷ ︸︸ ︷
1

j2σ(ν(j3))
ϕj3 , · · · ,

1

j2σ(ν(j3))
ϕj3 , j ∈ N,

then (14.2) holds. This completes the proof. �

Appendix 1

The goal of this appendix is to give a proof of Proposition 9.2. This proof requires
some preparation.

Definition A1.1. [19, Definition 4.3] For an analytic function h on Cn, we write

‖h‖∗ =

(∫
|h(ζ)|2e−(1/2)|ζ|2dV (ζ)

)1/2

.

Let H∗ be the collection of analytic functions h on Cn satisfying the condition ‖h‖∗ <∞.
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For each w ∈ Cn, define the unitary operator Uw on L2(Cn, dµ) by the formula

(Uwf)(ζ) = f(w − ζ)kw(ζ), ζ ∈ Cn,

f ∈ L2(Cn, dµ). Obviously, Uw maps H2(Cn, dµ) to itself.

Lemma A1.2. [19, Lemma 4.4] There is a constant 0 < CA1.2 <∞ such that the following
estimate holds: Let {eu : u ∈ Z2n} be any orthonormal set and let hu ∈ H∗, u ∈ Z2n, be
functions satisfying the condition supu∈Z2n ‖hu‖∗ <∞. Then∥∥∥∥∥ ∑

u∈Z2n

(Uuhu)⊗ eu

∥∥∥∥∥ ≤ CA1.2 sup
u∈Z2n

‖hu‖∗.

Lemma A1.3. [9, Lemma 3.3] LetA andB be two bounded operators. Then the inequalities

‖|AB|s‖Φ ≤ ‖B‖s‖|A|s‖Φ and ‖|BA|s‖Φ ≤ ‖B‖s‖|A|s‖Φ

hold for every symmetric gauge function Φ and every 0 < s ≤ 1.

Lemma A1.4. [18, Lemma 3.1] Suppose that A1, . . . , Am are finite-rank operators on a
Hilbert space H and let A = A1 + · · · + Am. Then for every symmetric gauge function Φ
and every 0 < s ≤ 1, we have

(A1.1) ‖|A|s‖Φ ≤ 21−s(‖|A1|s‖Φ + · · ·+ ‖|Am|s‖Φ).

Remark A1.5. As was explained in [9, Remark 3.5], (A1.1) actually holds for all bounded
operators A1, . . . , Am on any separable Hilbert space H and A = A1 + · · ·+Am.

Technically, it will be more convenient to prove a slightly stronger version of Propo-
sition 9.2. For this reason we introduce the following.

For any Borel set E in Cn, we define L2(E, dµ) to be the collection of functions
f ∈ L2(Cn, dµ) satisfying the condition f = 0 on Cn\E. We emphasize that we consider
each element in L2(E, dµ) as a function defined on the whole of the complex space Cn.

For each z ∈ Cn, let Bz be the collection of functions h in L2(W + z, dµ) that are
analytic on W + z (see (8.1)). In other words, Bz consists of functions in L2(Cn, dµ) that
are analytic on W +z and identically zero on Cn\{W +z}. Obviously, Bz is a closed linear
subspace of L2(Cn, dµ). One may think of Bz as a kind of “Bergman space”, but keep in
mind that the measure in question is the restriction of the Gaussian measure dµ to W + z,
and this choice of measure is crucial for the estimates below.

For each z ∈ Cn, let
Pz : L2(Cn, dµ)→ Bz

be the orthogonal projection. For all f ∈ T (Cn) and z ∈ Cn, we define

(A1.2) M̃(f ; z) =

(∫
W+z

|f(ζ)− k−1
z (ζ)(Pzfkz)(ζ)|2dV (ζ)

)1/2

.
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A comparison of (A1.2) and (9.2) gives us the inequality

M(f ; z) ≤ M̃(f ; z)

for z ∈ Z2n. Thus Proposition 9.2 is an immediate consequence of the following:

Proposition A1.6. Let 0 < s ≤ 1. Then there is a constant 0 < CA1.6 <∞ that depends
only on s and the complex dimension n such that

Φ({M̃s(f ; z)}z∈Z2n) ≤ CA1.6‖|Hf |s‖Φ

for every f ∈ T (Cn) and every symmetric gauge function Φ.

Proof. As we have already explained in Section 9, this is essentially an easier version of
the proof of [9, Proposition 6.8]. For any natural number R ≥ 10, define

(RZ)2n = {(j1R+ ik1R, . . . , jnR+ iknR) : j1, . . . , jn, k1, . . . , kn ∈ Z} and

ΛR = {(j1 + ik1, . . . , jn + ikn) : j1, . . . , jn, k1, . . . , kn ∈ {0, 1, 2, . . . , R− 1}}.

Let 0 < s ≤ 1 be given. Then define

(A1.3) δ(R) =
∑

x∈(RZ)2n\{0}

e−(s/4)|x|2 .

Note that for x ∈ (RZ)2n, if x 6= 0, then |x|2 ≥ R2. Hence

δ(R) ≤ e−(s/8)R2 ∑
x∈(RZ)2n\{0}

e−(s/8)|x|2 ≤ e−(s/8)R2 ∑
x∈Z2n

e−(s/8)|x|2 .

This shows that δ(R)→ 0 as R→∞. This allows us to pick an R satisfying the condition

(A1.4) 4e18snδ(R) ≤ 1/2

as well as the condition R ≥ 10. With R so fixed, we have the partition

Z2n =
⋃
λ∈ΛR

{(RZ)2n + λ}.

Fix a λ ∈ ΛR for the moment, and let Γ be any finite subset of (RZ)2n + λ.

Let {eu : u ∈ Z2n} be an orthonormal set in L2(Cn, dµ). Define the operators

Gϕ =
∑
z∈Γ

(ϕ− Pzϕ)χW+z and Fϕ =
∑
z∈Γ

〈ϕ, ez〉kz, ϕ ∈ L2(Cn, dµ).

Since R ≥ 10, we have {W + z} ∩ {W + w} = ∅ for z 6= w in Γ. Hence ‖G‖ ≤ 1. Since
kz = Uz1 for z ∈ Γ, it follows from Lemma A1.2 that ‖F‖ ≤ CA1.2‖1‖∗ = C.
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Let f ∈ T (Cn) and symmetric gauge function Φ be given. By Lemma A1.3 we have

(A1.5) ‖|GHfF |s‖Φ ≤ Cs‖|Hf |s‖Φ.

On the other hand, we have
GHfF = A+B,

where

A =
∑
z∈Γ

{(Hfkz − PzHfkz)χW+z} ⊗ ez and

B =
∑

(z,u)∈Γ×Γ
z 6=u

{(Hfku − PzHfku)χW+z} ⊗ eu.

For z 6= w in Γ we have {W + z}∩{W +w} = ∅. Thus, applying Lemma A1.4 and (A1.5),

Φ({‖(Hfkz − PzHfkz)χW+z‖s}z∈Γ) = ‖|A|s‖Φ ≤ 2‖|GHfF |s‖Φ + 2‖|B|s‖Φ
≤ 2Cs‖|Hf |s‖Φ + 2‖|B|s‖Φ.(A1.6)

On the other hand, if h ∈ H2(Cn, dµ), then obviously Pwh = hχW+w for every w ∈ Cn.
It follows that (Hfkz − PzHfkz)χW+z = (fkz − Pz(fkz))χW+z for every z ∈ Γ. Thus

‖(Hfkz − PzHfkz)χW+z‖2 =

∫
W+z

|fkz − Pz(fkz)|2dµ

=
1

πn

∫
W+z

|f(ζ)− k−1
z (ζ)(Pzfkz)(ζ)|2e−|ζ−z|

2

dV (ζ).

If ζ ∈W + z, then ζ − z ∈W , which implies |ζ − z|2 ≤ 18n. Hence the above implies

‖(Hfkz − PzHfkz)χW+z‖2 ≥
1

πne18n

∫
W+z

|f(ζ)− k−1
z (ζ)(Pzfkz)(ζ)|2dV (ζ)

=
1

πne18n
M̃2(f ; z).

Combining this with (A1.6), we obtain

(A1.7) Φ({M̃s(f ; z)}z∈Γ) ≤ 2πsn/2e9snCs‖|Hf |s‖Φ + 2πsn/2e9sn‖|B|s‖Φ.

Next we bound ‖|B|s‖Φ from above.

Consider any pair of z, u ∈ Γ. Because Pzh = hχW+z for every h ∈ H2(Cn, dµ), we
have (Hfku − PzHfku)χW+z = (fku − Pz(fku))χW+z. Since χW+zPz(fku) = Pz(fku) is
the orthogonal projection of fkuχW+z on Bz, we have

‖(Hfku − PzHfku)χW+z‖2 = ‖(fku − Pz(fku))χW+z‖2

≤ ‖(fku − kuk−1
z Pz(fkz))χW+z‖2

=
1

πn

∫
W+z

|f(ζ)− k−1
z (ζ)(Pzfkz)(ζ)|2e−|ζ−u|

2

dV (ζ).
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If ζ ∈W + z, then |ζ − u|2 ≥ (1/2)|z − u|2 − 18n. Thus the above implies

(A1.8) ‖(Hfku − PzHfku)χW+z‖2 ≤ e18nπ−ne−(1/2)|z−u|2M̃2(f ; z)

for every pair of z, u ∈ Γ. Note that for z, u ∈ Γ, we have z − u ∈ (RZ)2n. Thus we can
rewrite the operator B in the form

B =
∑

x∈(RZ)2n\{0}

Bx,

where
Bx =

∑
z∈Γ∩{Γ+x}

{(Hfkz−x − PzHfkz−x)χW+z} ⊗ ez−x.

Again, for z 6= w in Γ we have {W + z} ∩ {W + w} = ∅. Thus for every x ∈ (RZ)2n\{0},

‖|Bx|s‖Φ = Φ({‖(Hfkz−x − PzHfkz−x)χW+z‖s}z∈Γ∩{Γ+x}).

Applying (A1.8), for every x ∈ (RZ)2n\{0} we have

‖|Bx|s‖Φ ≤ e9snπ−sn/2e−(s/4)|x|2Φ({M̃s(f ; z)}z∈Γ).

Recalling Lemma A1.4, we obtain

(A1.9) ‖|B|s‖Φ ≤ 2
∑

x∈(RZ)2n\{0}

‖|Bx|s‖Φ ≤ 2e9snπ−sn/2δ(R)Φ({M̃s(f ; z)}z∈Γ),

where δ(R) is defined by (A1.3). Substituting (A1.9) in (A1.7), we find that

Φ({M̃s(f ; z)}z∈Γ) ≤ 2πsn/2e9snCs‖|Hf |s‖Φ + 4e18snδ(R)Φ({M̃s(f ; z)}z∈Γ).

Applying (A1.4), the above becomes

Φ({M̃s(f ; z)}z∈Γ) ≤ 2πsn/2e9snCs‖|Hf |s‖Φ + (1/2)Φ({M̃s(f ; z)}z∈Γ).

Since Γ is a finite set, the quantity Φ({M̃s(f ; z)}z∈Γ) is finite. Thus we can cancel out
(1/2)Φ({M̃s(f ; z)}z∈Γ) from both sides to obtain

Φ({M̃s(f ; z)}z∈Γ) ≤ 4πsn/2e9snCs‖|Hf |s‖Φ.

Since this holds for every finite subset Γ of (RZ)2n + λ, by (6.3) and (6.4) this means

Φ({M̃s(f ; z)}z∈(RZ)2n+λ) ≤ 4πsn/2e9snCs‖|Hf |s‖Φ.

Finally, since this holds for every λ ∈ ΛR and card(ΛR) = R2n, the property of Φ leads to

Φ({M̃s(f ; z)}z∈Z2n) ≤
∑
λ∈ΛR

Φ({M̃s(f ; z)}z∈(RZ)2n+λ) ≤ 4R2nπsn/2e9snCs‖|Hf |s‖Φ.
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This completes the proof of the proposition. �

Appendix 2

We will now prove Proposition 12.1.

Write A = ∂̄ and C = −∂ + z̄, both of which are considered as operators on the
polynomial ring C[z, z̄]. Taking inner product in L2(C, dµ), it is easy to verify that

〈Au, v〉 = 〈u,Cv〉 for all u, v ∈ C[z, z̄].

That is, C = A∗ on C[z, z̄]. Moreover, it is easy to see that [A,C] = 1. Now let H0 =
{u ∈ C[z, z̄] : Au = 0} and Hk = CkH0 for every k ∈ N. From the relation [A,C] = 1 we
deduce [A,Ck] = kCk−1 for every k ∈ N. Hence

ACv = (k + 1)v if v ∈ Hk,

k = 0, 1, 2, . . . . It follows from this and the “self-adjointness” of AC on C[z, z̄] that we
have the orthogonality Hj ⊥ Hk for every pair of j 6= k in {0, 1, 2, . . . ,m, . . . }.

Note that H0 = C[z]. We pick an orthonormal set B0 in H0 such that span(B0) = H0.
Suppose that k ≥ 0 and that we have inductively defined orthonormal sets B0, . . . ,Bk such
that span(Bj) = Hj for every 0 ≤ j ≤ k. Then we define

Bk+1 = {(k + 1)−1/2Cb : b ∈ Bk}.

Since Hk+1 = CHk, we have Bk+1 ⊂ Hk+1 and that span(Bk+1) = Hk+1. Let us verify
that Bk+1 is also an orthonormal set. Indeed for any b, b′ ∈ Bk, we have

〈(k + 1)−1/2Cb, (k + 1)−1/2Cb′〉 = (k + 1)−1〈ACb, b′〉 = (k + 1)−1(k + 1)〈b, b′〉,

which equals 1 or 0 depending on whether b equals b′ or not. Hence Bk+1 is also an orthonor-
mal set. Thus we have inductively constructed orthonormal sets B0,B1,B2, . . . ,Bm, . . . .

Since Hj ⊥ Hk for every pair of j 6= k in {0, 1, 2, . . . ,m, . . . }, we have Bj ⊥ Bk
whenever j 6= k. Therefore

B = B0 ∪ B1 ∪ B2 ∪ · · · ∪ Bk ∪ · · ·

is an orthonormal set in L2(C, dµ). For each k ≥ 1, we have Ck =
∑k
j=0

(−1)k−jk!
j!(k−j)! z̄

j∂k−j .

Also, H0 = C[z]. Thus a simple induction on the power of z̄ proves that

span{H0, H1, H2, . . . ,Hk, . . . } = C[z, z̄].

Combining this with the fact that span(Bk) = Hk for every k ≥ 0, we conclude that
B is an orthonormal basis for L2(C, dµ). Obviously, B0 is an orthonormal basis for the
one-variable Fock space H2(C, dµ).
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(1) First, suppose that f ∈ C∞c (C). We have 〈f−Pf, b〉 = 0 for b ∈ B0 and 〈Pf, b〉 = 0
if b ∈ ∪∞k=1Bk. Therefore

(A2.1) ‖f − Pf‖2 =
∑
b∈B

|〈f − Pf, b〉|2 =
∞∑
k=1

∑
bk∈Bk

|〈f, bk〉|2.

On the other hand, for every u ∈ C[z, z̄], simple integration by parts gives us

〈∂̄f, u〉 = 〈f, Cu〉.

Combining this with the fact that Bk+1 = {(k + 1)−1/2Cb : b ∈ Bk}, we have

‖∂̄f‖2 =
∑
b∈B

|〈∂̄f, b〉|2 =
∑
b∈B

|〈f, Cb〉|2 =
∞∑
k=0

∑
bk∈Bk

|〈f, Cbk〉|2

=
∞∑
k=0

(k + 1)
∑

bk+1∈Bk+1

|〈f, bk+1〉|2 ≥
∞∑
k=1

∑
bk∈Bk

|〈f, bk〉|2.

Comparing this with (A2.1), we obtain ‖f − Pf‖ ≤ ‖∂̄f‖ in the case f ∈ C∞c (C).

(2) Now we consider a general f ∈ C∞(Cn) ∩ L2(Cn, dµ). If ‖∂̄f‖ = ∞, then, of
course, we have ‖f − Pf‖ ≤ ‖∂̄f‖. Thus we may assume ‖∂̄f‖ <∞, i.e., ∂̄f ∈ L2(C, dµ).
Let ϕ be a function in C∞c (C) such that ϕ(ζ) = 1 when |ζ| ≤ 1 and ϕ(ζ) = 0 when |ζ| ≥ 2.
For each ε > 0, define the function ϕε by the formula

ϕε(ζ) = ϕ(εζ), ζ ∈ C.

Since ϕεf ∈ C∞c (Cn), by the conclusion in (1), we have

(A2.2) ‖ϕεf − P (ϕεf)‖ ≤ ‖∂̄(ϕεf)‖

for every ε > 0. From the condition ϕ(ζ) = 1 for |ζ| ≤ 1 we deduce that ‖ϕεf − f‖ → 0
as ε ↓ 0. Similarly, since ∂̄f ∈ L2(Cn, dµ), we have ‖ϕε∂̄f − ∂̄f‖ → 0 as ε ↓ 0. Also,
since ‖∂̄ϕε‖∞ = ε‖∂̄ϕ‖∞, we have ‖∂̄ϕε‖∞ → as ε ↓ 0. Since ∂̄(ϕεf) = f∂̄ϕε + ϕε∂̄f ,
we conclude that ‖∂̄(ϕεf) − ∂̄f‖ → 0 as ε ↓ 0. Thus, letting ε descend to 0 in (A2.2),
we obtain the inequality ‖f − Pf‖ ≤ ‖∂̄f‖ for general f ∈ C∞(Cn) ∩ L2(Cn, dµ). This
completes the proof of Proposition 12.1.
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