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Abstract. We consider the family of Lorentz ideals C+
p , 1 ≤ p <∞. Let C+(0)

p be the ‖·‖+p -

closure of the collection of finite-rank operators in C+
p . It is well known that C+(0)

p 6= C+
p .

We show that C+(0)
p is proximinal in C+

p . We further show that a classic approximation for
Hankel operators [1, Theorem 3] does not generalize to this new context.

1. Introduction

Let X be a Banach space and let M be a closed linear subspace of X. An element
x ∈ X is said to have a best approximation in M if there is an m ∈M such that ‖x−m‖ ≤
‖x − a‖ for every a ∈ M . The subspace M is said to be proximinal in X if every x ∈ X
has a best approximation in M .

One of the most familiar and significant examples of such a pair is the case of X =
B(H) and M = K(H), where H is a Hilbert space, B(H) is the collection of bounded
operators on H, and K(H) is the collection of compact operators on H. It is well known
that K(H) is proximinal in B(H), which is a result in the influential book [11] by Gohberg
and Krien. Given any A ∈ B(H), to find its best approximation in K(H), one takes the
polar decomposition A = U |A|, where |A| = (A∗A)1/2 and U is a partial isometry. Then
from the spectral decomposition of |A| one easily finds the best compact approximation to
A. The moral of this example is that when looking for best approximations for operators
on a Hilbert space, one should take advantage of spectral decomposition, which is not
available on other Banach spaces.

The relation between B(H) and K(H) is that the latter is the closure of the collection
of finite-rank operators in the former. On a Hilbert space H, there are many pairs that
fit this description, but with different norms. In particular, the norm ideals of Robert
Schatten [16] are a good source for interesting examples of X and M .

Before getting to these examples, it is necessary to give a general introduction for norm
ideals. For this we follow the approach in [11,19], because it offers the level of generality
that is suitable for this paper.

As in [11], we write ĉ for the linear space of sequences {aj}j∈N, where aj ∈ R and for
every sequence the set {j ∈ N : aj 6= 0} is finite. A symmetric gauge function is a map

Φ : ĉ→ [0,∞)
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that has the following properties:
(a) Φ is a norm on ĉ.
(b) Φ({1, 0, . . . , 0, . . . }) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

See [11, page 71]. Each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
j≥1

Φ({s1(A), . . . , sj(A), 0, . . . , 0, . . . })

for bounded operators, where s1(A), . . . , sj(A), . . . are the singular numbers of A. On any
separable Hilbert space H, the set of operators

(1.1) CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a norm ideal [11, page 68]. That is, CΦ has the following properties:
• For any B, C ∈ B(H) and A ∈ CΦ, BAC ∈ CΦ and ‖BAC‖Φ ≤ ‖B‖‖A‖Φ‖C‖.
• If A ∈ CΦ, then A∗ ∈ CΦ and ‖A∗‖Φ = ‖A‖Φ.
• For any A ∈ CΦ, ‖A‖ ≤ ‖A‖Φ, and the equality holds when rank(A) = 1.
• CΦ is complete with respect to ‖ · ‖Φ.

Given a symmetric gauge function Φ, we define C(0)
Φ to be the closure with respect to

the norm ‖ · ‖Φ of the collection of finite-rank operators in CΦ.

Both ideals CΦ and C(0)
Φ are important in operator theory and operator algebras. For

example, if one considers the problem of diagonalization under perturbation for single self-
adjoint operators [13,14] or for commuting tuples of self-adjoint operators [2,18,19,20,21],

then the natural perturbing operators come from ideals of the form C(0)
Φ . If one studies

Toeplitz operators or Hankel operators on various reproducing-kernel Hilbert spaces, then
a natural question is the membership of these operators in ideals of the form CΦ [10,12,22].

For many symmetric gauge functions, we simply have C(0)
Φ = CΦ. For example, if we

take any 1 ≤ p <∞ and consider the symmetric gauge function

Φp({aj}) =

( ∞∑
j=1

|aj |p
)1/p

, {aj} ∈ ĉ,

then the norm ideal CΦp defined according to (1.1) is simply the familiar Schatten p-class.

It is well known and obvious that C(0)
Φp

= CΦp .

From [11] we know that there also are many symmetric gauge functions for which

C(0)
Φ 6= CΦ. The most noticeable of such examples is the symmetric gauge function

Φ∞({aj}) = sup
j∈N
|aj |, {aj} ∈ ĉ.

Obviously, the norm ‖ · ‖Φ∞ is none other than the ordinary operator norm. Therefore

(1.1) gives us CΦ∞ = B(H). It is also obvious that C(0)
Φ∞

= K(H). Thus the classic result
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that K(H) is proximinal in B(H) can be rephrased as the statement that C(0)
Φ∞

is proximinal
in CΦ∞ . Once one realizes that, it does not take too much imagination to propose

Problem 1.1. For a general symmetric gauge function Φ with the property C(0)
Φ 6= CΦ, is

C(0)
Φ proximinal in CΦ?

In such generality, Problem 1.1 does not appear to be easy, for it simply covers too
many ideals of diverse properties. It is not too hard to convince oneself that to determine

whether or not C(0)
Φ is proximinal in CΦ, one needs to know the specifics of Φ. At this

point, we do not see how to get a general answer using only properties (a)-(c) listed above

plus the condition C(0)
Φ 6= CΦ.

But we are pleased to report that there is a family of symmetric gauge functions of
common interest for which we are able to solve Problem 1.1 in the affirmative. Let us
introduce these symmetric gauge functions and the corresponding ideals.

For each 1 ≤ p <∞, let Φ+
p be the symmetric gauge function defined by the formula

Φ+
p ({aj}j∈N) = sup

j≥1

|aπ(1)|+ |aπ(2)|+ · · ·+ |aπ(j)|
1−1/p + 2−1/p + · · ·+ j−1/p

, {aj}j∈N ∈ ĉ,

where π : N → N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥ · · · , which
exists because each {aj}j∈N ∈ ĉ only has a finite number of nonzero terms. The ideal CΦ+

p
,

which is defined by (1.1) using Φ+
p , is often called a Lorentz ideal. It is well known that

CΦ+
p
6= C(0)

Φ+
p

[11]. The ideal CΦ+
1

deserves special mentioning, because it is the domain of

the Dixmier trace [4,6], which has wide-ranging connections [3,7,8,12,17].

The ideals CΦ+
p

and C(0)

Φ+
p

, 1 ≤ p < ∞, are the main interest of this paper. Since they

will appear so frequently in the sequel, let us introduce a simplified notation. From now
on we will write

(1.2) C+
p = CΦ+

p
, C+(0)

p = C(0)

Φ+
p

and ‖ · ‖+p = ‖ · ‖Φ+
p

for 1 ≤ p <∞. Here is our main result:

Theorem 1.2. For every 1 ≤ p <∞, C+(0)
p is proximinal in C+

p .

The result that K(H) is proximinal in B(H) has refinements within specific classes of
operators [1]. One such class of operators are the Hankel operators Hf : H2 → L2, where
H2 is the Hardy space on the unit circle T ⊂ C. We recall the following:

Theorem 1.3. [1, Theorem 3] For each f ∈ L∞, the best compact approximation to the
Hankel operator Hf can be realized in the form of a Hankel operator Hg.

In other words, Theorem 1.3 says that Hf has a best compact approximation that is
of the same kind, a Hankel operator. Using the method in [1], Theorem 1.3 can be easily
generalized to Hankel operators on the Hardy space on the unit sphere in Cn.
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Since Theorem 1.2 tells us that each C+(0)
p is proximinal in C+

p , we can obviously ask
a more refined question along the line of Theorem 1.3: Suppose that we have an operator

A in a natural class N , and suppose we know that A ∈ C+
p , can we find a best C+(0)

p -
approximation to A in the same class N ? In particular, what if N consists of Hankel
operators? As we will see, the answer to this last question turns out to be negative.

The rest of the paper is organized as follows. We prove Theorems 1.2 in Section 2.
Then in Section 3, we present the above-mentioned negative answer. Namely, we give an
example of a Hankel operator on the unit sphere in C2 which is in the ideal C+

4 and which

does not have any Hankel operator as its best C+(0)
4 -approximation. This example requires

some explicit calculation, which may be of independent interest.

2. Existence of best approximation

Recall that the starting domain for every symmetric gauge function Φ is the space ĉ,
which consists of real sequences whose nonzero terms are finite in number. Our first order
of business is to follow the standard practice to extend the domain of Φ to include every
sequence. That is, for any sequence ξ = {ξj} of complex numbers, we define

Φ(ξ) = sup
k≥1

Φ({|ξ1|, |ξ2|, . . . , |ξk|, 0, . . . , 0, . . . }).

It is well known that the properties of Φ imply that if |aj | ≤ |bj | for every j, then

Φ({aj}) ≤ Φ({bj}).

This fact will be used in many of our estimates below.

We will focus exclusively on the symmetric gauge functions Φ+
p , 1 ≤ p <∞. For the

rest of the paper, p will always denote a positive number in [1,∞).

Definition 2.1. (1) Write c+p for the collection of sequences ξ satisfying the condition
Φ+
p (ξ) <∞.

(2) Let c+p (0) denote the Φ+
p -closure of {a+ ib : a, b ∈ ĉ} in c+p .

(3) For each ξ ∈ c+p , denote Φ+
p,ess(ξ) = inf{Φ+

p (ξ − η) : η ∈ c+p (0)}.
(4) Write d+

p for the collection of sequences x = {xj} in c+p satisfying the conditions that
xj ≥ 0 and that xj ≥ xj+1 for every j ∈ N.

In other words, d+
p consists of the non-negative, non-increasing sequences in c+p .

Proposition 2.2. For every ξ = {ξj} ∈ c+p , we have

Φ+
p,ess(ξ) = lim

m→∞
Φ+
p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

In particular, ξ = {ξj} ∈ c+p (0) if and only if

lim
m→∞

Φ+
p ({ξm+1, ξm+2, . . . , ξm+k, . . . }) = 0.
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Proof. From the above definitions it is obvious that

Φ+
p,ess(ξ) ≤ lim

m→∞
Φ+
p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

On the other hand, for any a, b ∈ ĉ, there exist a ν ∈ N and ζ1, . . . , ζν ∈ C such that

ξ − a− ib = {ζ1, . . . , ζν , ξν+1, ξν+2, . . . , ξν+k, . . . }.

Thus for every m ≥ ν we have

Φ+
p (ξ − a− ib) ≥ Φ+

p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

Since c+p (0) is the Φ+
p -closure of {a+ ib : a, b ∈ ĉ}, it follows that

Φ+
p,ess(ξ) ≥ lim

m→∞
Φ+
p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

This completes the proof. �

Proposition 2.3. For every x = {xj} ∈ d+
p we have

(2.1) Φ+
p,ess(x) = lim sup

j→∞

x1 + x2 + · · ·+ xj
1−1/p + 2−1/p + · · ·+ j−1/p

.

Proof. For x = {xj} ∈ d+
p , (2.1) trivially holds if

∑∞
j=1 xj <∞. Suppose that

∑∞
j=1 xj =

∞. Then for every m ∈ N we have

lim
j→∞

xm+1 + · · ·+ xm+j

x1 + · · ·+ xj
= 1− lim

j→∞

x1 + · · ·+ xm
x1 + · · ·+ xj

+ lim
j→∞

x1+j + · · ·+ xm+j

x1 + · · ·+ xj
= 1.

Therefore

lim sup
j→∞

x1 + · · ·+ xj
1−1/p + · · ·+ j−1/p

≤ Φ+
p ({xm+1, xm+2, . . . , xm+k, . . . })

for every m ∈ N. By Proposition 2.2, this means

lim sup
j→∞

x1 + · · ·+ xj
1−1/p + · · ·+ j−1/p

≤ Φ+
p,ess(x).

To prove the reverse inequality, note that for each m ∈ N, there is a k(m) ∈ N such that

(2.2) Φ+
p ({xm+1, xm+2, . . . , xm+k, . . . }) ≤

xm+1 + · · ·+ xm+k(m)

1−1/p + · · ·+ {k(m)}−1/p
+

1

m
.

If there is a sequence m1 < m2 < · · · < mi < · · · in N such that k(mi) → ∞ as i → ∞,
then from Proposition 2.2 and (2.2) we obtain

Φ+
p,ess(x) ≤ lim sup

i→∞

x1 + · · ·+ xk(mi)

1−1/p + · · ·+ {k(mi)}−1/p
≤ lim sup

j→∞

x1 + · · ·+ xj
1−1/p + · · ·+ j−1/p

.
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The only other possibility is that there is an N ∈ N such that k(m) ≤ N for every m ∈ N.
Obviously, the membership x ∈ d+

p implies limj→∞ xj = 0. Thus in the case k(m) ≤ N
for every m ∈ N, from Proposition 2.2 and (2.2) we obtain

Φ+
p,ess(x) = lim

m→∞
Φ+
p ({xm+1, xm+2, . . . , xm+k, . . . }) = 0 ≤ lim sup

j→∞

x1 + · · ·+ xj
1−1/p + · · ·+ j−1/p

.

This completes the proof. �

Proposition 2.4. Let a ξ = {ξj} ∈ c+p be given and denote

Ni = card{j ∈ N : 2−i/p < |ξj | ≤ 2−(i−1)/p}

for every i ∈ N. If

(2.3) lim
i→∞

2−iNi = 0,

then ξ ∈ c+p (0).

Proof. By (2.3), for every k ∈ N, there is a natural number i(k) > k + 3 such that

(2.4) Ni ≤ 2i−k for every i ≥ i(k).

For every i ≥ i(k), we also have

card{j ∈ N : 2i−k ≤ j < 2i+1−k} = 2i+1−k − 1− 2i−k + 1 = 2i−k.

That is,
card{j ∈ N : 2−(i−1)/p < 2−(k−2)/pj−1/p ≤ 2−(i−2)/p} = 2i−k

when i ≥ i(k). Combining this with (2.4), we see that

Φ+
p,ess(ξ) ≤ Φ+

p ({2−(k−2)/pj−1/p}j∈N) = 2−(k−2)/p.

Since this holds for every k ∈ N, we conclude that Φ+
p,ess(ξ) = 0, i.e., ξ ∈ c+p (0). �

Proposition 2.5. For each x ∈ d+
p , there is a decomposition x = y + z such that y ∈ d+

p

with
Φ+
p (y) = Φ+

p,ess(x)

and z = {zj} ∈ c+p (0), where zj ≥ 0 for every j ∈ N.

Proof. Obviously, it suffices to consider x ∈ d+
p with Φ+

p,ess(x) = 1. Write x = {xj}. By
the definition of d+

p , we have xj ≥ 0 and xj ≥ xj+1 for every j ∈ N.

We define the desired sequences y = {yj} and z = {zj} inductively, starting with
j = 1. If x1 ≤ 1, we define y1 = x1 and z1 = x1 − y1 = 0. If x1 > 1, we define y1 = 1 and
z1 = x1 − y1 = x1 − 1 > 0.
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Let ν ≥ 1 and suppose that we have defined 0 ≤ yj ≤ xj and zj = xj − yj for every
1 ≤ j ≤ ν such that the following hold true: for every 1 ≤ j ≤ ν we have

y1 + · · ·+ yj
1−1/p + · · ·+ j−1/p

≤ 1,

and for each j ∈ {1, . . . , ν} with the property yj < xj we have

y1 + · · ·+ yj
1−1/p + · · ·+ j−1/p

= 1.

Then we define yν+1 and zν+1 as follows. Suppose that

y1 + · · ·+ yν + xν+1

1−1/p + · · ·+ ν−1/p + (ν + 1)−1/p
≤ 1.

In this case, we define yν+1 = xν+1 and zν+1 = xν+1 − yν+1 = 0. Suppose that

y1 + · · ·+ yν + xν+1

1−1/p + · · ·+ ν−1/p + (ν + 1)−1/p
> 1.

Since we know that
y1 + · · ·+ yν

1−1/p + · · ·+ ν−1/p
≤ 1,

these two inequalities imply that there is a yν+1 ∈ (0, xν+1) such that

y1 + · · ·+ yν + yν+1

1−1/p + · · ·+ ν−1/p + (ν + 1)−1/p
= 1.

This defines yν+1. We then define zν+1 = xν+1−yν+1, which is greater than 0 in this case.
Thus we have inductively defined the sequences y = {yj} and z = {zj} with the properties
that yj ≥ 0, zj ≥ 0 and yj + zj = xj for every j ∈ N. That is, x = y+ z. The construction
above ensures

(2.5)
y1 + · · ·+ yj

1−1/p + · · ·+ j−1/p
≤ 1

for every j ∈ N. Moreover, the construction ensures that the equality

(2.6)
y1 + · · ·+ yj

1−1/p + · · ·+ j−1/p
= 1

holds for each j ∈ N with the property yj < xj .

Next we show that y = {yj} is a non-increasing sequence, i.e., yj ≥ yj+1 for every
j ∈ N. First, consider the case j = 1. If x1 ≤ 1, then by definition y1 = x1 ≥ x2 ≥ y2, since
x1 ≥ x2. If x1 > 1, then y1 = 1 by definition, and (2.5) gives us 1 + y2 ≤ 1−1/p + 2−1/p.
Thus in the case x1 > 1 we have y2 ≤ 2−1/p < 1 = y1.
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Now consider any j ≥ 2. If yj = xj , then we again have yj = xj ≥ xj+1 ≥ yj+1, since
x is a non-increasing sequence. If yj < xj , then (2.5) and (2.6) imply

y1 + · · ·+ yj−1 ≤ 1−1/p + · · ·+ (j − 1)−1/p,

y1 + · · ·+ yj−1 + yj = 1−1/p + · · ·+ (j − 1)−1/p + j−1/p,

y1 + · · ·+ yj−1 + yj + yj+1 ≤ 1−1/p + · · ·+ (j − 1)−1/p + j−1/p + (j + 1)−1/p,

from which we deduce
yj ≥ j−1/p > (j + 1)−1/p ≥ yj+1.

Thus y = {yj} is indeed a non-increasing sequence. Combining this fact with (2.5), we
conclude that y ∈ d+

p with Φ+
p (y) ≤ 1. What remains is to show that z ∈ c+p (0).

To prove that z ∈ c+p (0), we first consider the case where 1 < p <∞. Define

Ni = card{j ∈ N : zj ≥ 2−i/p}

for each i ∈ N. By Proposition 2.4, to prove that z ∈ c+p (0), it suffices to show that

(2.7) lim
i→∞

2−iNi = 0.

Suppose that this failed. Then there would be a δ > 0 and an increasing sequence

i1 < i2 < · · · < iν < · · ·

of natural numbers such that

(2.8) 2−iνNiν ≥ δ for every ν ∈ N.

We will show that this leads to a contradiction.

Write a = Φ+
p (x). Let ν and j be any pair of natural numbers such that zj ≥ 2−iν/p.

Since zj = xj − yj and yj ≥ 0, we have xj ≥ 2−iν/p. On the other hand, since x is a
non-increasing sequence, we have

jxj
1−1/p + · · ·+ j−1/p

≤ x1 + · · ·+ xj
1−1/p + · · ·+ j−1/p

≤ a.

Writing Cp = p/(p− 1), the above facts lead to the inequality

j2−iν/p ≤ jxj ≤ Cpaj(p−1)/p.

That is, if zj ≥ 2−iν/p, then j ≤ (Cpa)p2iν . For each ν ∈ N, let jν = max{j ∈ N : zj ≥
2−iν/p}. By (2.6), the fact zjν > 0 forces

y1 + · · ·+ yjν

1−1/p + · · ·+ j
−1/p
ν

= 1.
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Thus

x1 + · · ·+ xjν

1−1/p + · · ·+ j
−1/p
ν

=
y1 + · · ·+ yjν

1−1/p + · · ·+ j
−1/p
ν

+
z1 + · · ·+ zjν

1−1/p + · · ·+ j
−1/p
ν

≥ 1 +
Niν2−iν/p

Cpj
(p−1)/p
ν

≥ 1 +
Niν2−iν/p

Cp{(Cpa)p2iν}(p−1)/p

= 1 +
Niν

Cppap−12iν
≥ 1 +

δ

Cppap−1
,

where the last ≥ follows from (2.8). Since the above inequality supposedly holds for every
ν ∈ N, by Proposition 2.3, it contradicts the condition Φ+

p,ess(x) = 1. This proves (2.7).
Applying Proposition 2.4, in the case 1 < p <∞ we have z ∈ c+p (0).

Now consider the case p = 1, which is much more complicated. To prove z ∈ c+1 (0) in
this case, pick an ε > 0. Define the sequences u = {uj} and v = {vj} by the formulas

uj =

 zj if zj > εxj

0 if zj ≤ εxj
and vj =

 0 if zj > εxj

zj if zj ≤ εxj
,

j ∈ N. We have z = u + v by design. Then note that Φ+
1 (v) ≤ εΦ+

1 (x). Since ε > 0 is
arbitrary, it suffices to show that u ∈ c+1 (0).

To prove that u ∈ c+1 (0), consider the set N = {j ∈ N : uj > 0}. If card(N) < ∞,
then we certainly have the membership u ∈ c+1 (0). Suppose that card(N) =∞. Then we
enumerate the elements in N as a sequence

j(1) < j(2) < · · · < j(k) < · · · .

Keep in mind that zj(k) > εxj(k) for every k ∈ N.

Claim 1. If k1 < k2 < · · · < kν < · · · are natural numbers such that

(2.9) log kν ≥
1

2
log j(kν)

for every ν ∈ N, then

(2.10) lim
ν→∞

xj(1) + xj(2) + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ k−1
ν

= 0.

Indeed for each ν ∈ N, since zj(kν) > 0, i.e., yj(kν) < xj(kν), we have

x1 + x2 + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ {j(kν)}−1

=
y1 + y2 + · · ·+ yj(kν)

1−1 + 2−1 + · · ·+ {j(kν)}−1
+

z1 + z2 + · · ·+ zj(kν)

1−1 + 2−1 + · · ·+ {j(kν)}−1

≥ 1 +
zj(1) + zj(2) + · · ·+ zj(kν)

1−1 + 2−1 + · · ·+ {j(kν)}−1
≥ 1 + ε

xj(1) + xj(2) + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ {j(kν)}−1

= 1 + ε · 1−1 + 2−1 + · · ·+ k−1
ν

1−1 + 2−1 + · · ·+ {j(kν)}−1
·
xj(1) + xj(2) + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ k−1
ν

.
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Combining this with (2.9), we find that for ν ≥ 3,

x1 + x2 + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ {j(kν)}−1
≥ 1 + ε · log kν

2 log j(kν)
·
xj(1) + xj(2) + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ k−1
ν

≥ 1 +
ε

4
·
xj(1) + xj(2) + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ k−1
ν

.(2.11)

It follows from the condition Φ+
1,ess(x) = 1 and Proposition 2.3 that

(2.12) lim sup
ν→∞

x1 + x2 + · · ·+ xj(kν)

1−1 + 2−1 + · · ·+ {j(kν)}−1
≤ 1.

Obviously, (2.10) follows from (2.11) and (2.12). This proves Claim 1.

Claim 2. Let E1, . . . , Es, . . . be finite subsets of N such that

(2.13) lim
s→∞

card(Es) =∞.

Suppose that

(2.14) log k <
1

2
log j(k) for every k ∈

∞⋃
s=1

Es.

Then

(2.15) lim
s→∞

∑
k∈Es

xj(k)

/ card(Es)∑
i=1

1

i
= 0.

To prove this, pick an m ∈ N and define Fs = {k ∈ Es : mk ≤ j(k)} for each s ∈ N. Note
that (2.14) implies j(k) > k2 for every k ∈ ∪∞s=1Es. Therefore card(Es\Fs) ≤ m for every
s. Thus it follows from (2.13) that

lim
s→∞

{( ∑
k∈Es

xj(k)

/ card(Es)∑
i=1

1

i

)
−
( ∑
k∈Fs

xj(k)

/ card(Fs)∑
i=1

1

i

)}
= 0.

Since m ∈ N is arbitrary, (2.15) will follow if we can show that

(2.16) lim sup
s→∞

∑
k∈Fs

xj(k)

/ card(Fs)∑
i=1

1

i
≤ Φ+

1 (x)

m
.

For each s ∈ N, since j(k) ≥ mk for every k ∈ Fs and since the sequence x is non-
increasing, we have

∑
k∈Fs

xj(k) ≤
∑
k∈Fs

xmk ≤
card(Fs)∑
i=1

xmi ≤
1

m

mcard(Fs)∑
i=1

xi ≤
1

m

(mcard(Fs)∑
i=1

1

i

)
Φ+

1 (x).
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That is,

(2.17)
∑
k∈Fs

xj(k)

/ card(Fs)∑
i=1

1

i
≤ 1

m

{mcard(Fs)∑
i=1

1

i

/ card(Fs)∑
i=1

1

i

}
Φ+

1 (x)

for every s ∈ N. Since card(Fs)→∞ as s→∞, (2.17) implies (2.16). This completes the
proof of Claim 2.

Having proved Claims 1 and 2, we are now ready to prove the membership u ∈ c+1 (0).
Recall that for every j for which uj 6= 0, we have uj = zj ≤ xj , and that the elements in
N = {j ∈ N : uj > 0} are listed as

j(1) < j(2) < · · · < j(k) < · · · .

Since x is non-increasing, by Proposition 2.3, the membership u ∈ c+1 (0) will follow if we
can show that

lim
k→∞

xj(1) + xj(2) + · · ·+ xj(k)

1−1 + 2−1 + · · ·+ k−1
= 0.

Suppose that this limit did not hold. Then there would be a sequence

n1 < n2 < · · · < ns < · · ·

of natural numbers such that

(2.18) lim
s→∞

xj(1) + xj(2) + · · ·+ xj(ns)

1−1 + 2−1 + · · ·+ n−1
s

= b

for some b > 0. Again, we will show that this leads to a contradiction.

For each s ∈ N, define As = {k ∈ {1, 2, . . . , ns} : log k ≥ (1/2) log j(k)}. If s is such
that As = ∅, we define

Gs = {1, 2, . . . , ns}.

If s is such that As 6= ∅, we let ks be the largest element in As and we define

Gs = {1, 2, . . . , ns}\{1, 2, . . . , ks}.

Note that for each s, the definition of Gs guarantees that log k < (1/2) log j(k) if k ∈ Gs.
Denote Σ = {s ∈ N : As 6= ∅}. For each s ∈ Σ, define

αs =
1−1 + 2−1 + · · ·+ k−1

s

1−1 + 2−1 + · · ·+ n−1
s

and βs =

∑card(Gs)
i=1 i−1

1−1 + 2−1 + · · ·+ n−1
s

,

where βs is understood to be 0 in the case Gs = ∅. For s ∈ Σ with Gs 6= ∅, we have

xj(1) + xj(2) + · · ·+ xj(ns)

1−1 + 2−1 + · · ·+ n−1
s

=
xj(1) + xj(2) + · · ·+ xj(ks) +

∑
k∈Gs xj(k)

1−1 + 2−1 + · · ·+ n−1
s

= αs
xj(1) + xj(2) + · · ·+ xj(ks)

1−1 + 2−1 + · · ·+ k−1
s

+ βs

∑
k∈Gs xj(k)∑card(Gs)
i=1 i−1

.(2.19)
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Suppose that Σ 6= ∅. Then Σ = {s ∈ N : s ≥ `} for some ` ∈ N. Thus there is a sequence

s1 < s2 < · · · < sr < · · ·

contained in Σ such that both limits

lim
r→∞

αsr and lim
r→∞

βsr

exist. By definition, log ks ≥ (1/2) log j(ks). By Claim 1, we have

lim
r→∞

xj(1) + xj(2) + · · ·+ xj(ksr )

1−1 + 2−1 + · · ·+ k−1
sr

= 0 in the event lim
r→∞

αsr 6= 0.

Recall that if k ∈ Gs, then log k < (1/2) log j(k). By Claim 2, we have

lim
r→∞

∑
k∈Gsr

xj(k)∑card(Gsr )
i=1 i−1

= 0 in the event lim
r→∞

βsr 6= 0.

Combining these facts with (2.19), we find that

lim
r→∞

xj(1) + xj(2) + · · ·+ xj(nsr )

1−1 + 2−1 + · · ·+ n−1
sr

= 0,

which contradicts (2.18) in the case Σ 6= ∅. Suppose that Σ = ∅. Then by definition we
have Gs = {1, 2, . . . , ns} for every s ∈ N. Thus we can apply Claim 2 to conclude that

lim
s→∞

xj(1) + xj(2) + · · ·+ xj(ns)

1−1 + 2−1 + · · ·+ n−1
s

= lim
s→∞

∑
k∈Gs

xj(k)

/ card(Gs)∑
i=1

1

i
= 0.

Thus (2.18) is also contradicted in the case Σ = ∅. This completes the proof of the
proposition. �

Having only dealt with sequences so far, we now apply the above results to operators,
which are the main interest of the paper. Let H be a Hilbert space. For any u, v ∈ H, the
notation u⊗ v denotes the operator on H defined by the formula

u⊗ vf = 〈f, v〉u, f ∈ H.

It is well known that if A is a compact operator on an infinite-dimensional Hilbert space
H, then it admits the representation

A =

∞∑
j=1

sj(A)uj ⊗ vj ,

where {uj : j ∈ N} and {vj : j ∈ N} are orthonormal sets in H. See, e.g., [5,11].
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We remind the reader of our notation (1.2). For each each A ∈ C+
p , we define

‖A‖+p,ess = inf{‖A−K‖+p : K ∈ C+(0)
p }.

We think of ‖A‖+p,ess as the essential ‖ · ‖+p -norm of A, hence the notation.

Proposition 2.6. For every operator A ∈ C+
p , we have

‖A‖+p,ess = Φ+
p,ess({sj(A)}) = lim sup

j→∞

s1(A) + s2(A) + · · ·+ sj(A)

1−1/p + 2−1/p + · · ·+ j−1/p
.

Proof. For an A ∈ C+
p , there are orthonormal sets {uj : j ∈ N} and {vj : j ∈ N} such that

A =
∞∑
j=1

sj(A)uj ⊗ vj .

Therefore it is obvious that ‖A‖+p,ess ≤ Φ+
p,ess({sj(A)}). To prove the reverse inequality,

for every k ∈ N we define the orthogonal projection

Ek =
∞∑
j=k

uj ⊗ uj .

If F is a finite-rank operator, then ‖EkF‖+p → 0 as k →∞. Therefore

‖A− F‖+p ≥ lim sup
k→∞

‖Ek(A− F )‖+p = lim sup
k→∞

‖EkA‖+p

= lim
k→∞

Φ+
p ({sk(A), sk+1(A), . . . , sk+j(A), . . . }) = Φ+

p,ess({sj(A)}),

where the last = follows from Proposition 2.2. Since this inequality holds for every finite-
rank operator F , we conclude that ‖A‖+p,ess ≥ Φ+

p,ess({sj(A)}). Recalling Proposition 2.3,
the proof is complete. �

With the above preparation, we now prove Theorem 1.2 in a more explicit form:

Theorem 2.7. For each A ∈ C+
p , there is a K ∈ C+(0)

p such that

‖A−K‖+p = ‖A‖+p,ess = lim sup
j→∞

s1(A) + s2(A) + · · ·+ sj(A)

1−1/p + 2−1/p + · · ·+ j−1/p
.

Proof. Given an A ∈ C+
p , we again represent it in the form

A =

∞∑
j=1

sj(A)uj ⊗ vj ,

13



where {uj : j ∈ N} and {vj : j ∈ N} are orthonormal sets. Applying Proposition 2.5 to
the sequence {xj} = {sj(A)}, we obtain y = {yj} ∈ d+

p and z = {zj} ∈ c+p (0) such that

(2.20) sj(A) = yj + zj

for every j ∈ N and Φ+
p (y) = Φ+

p,ess({sj(A)}). Define

K =
∞∑
j=1

zjuj ⊗ vj .

The condition z ∈ c+p (0) obviously implies K ∈ C+(0)
p . From (2.20) we obtain

A−K =
∞∑
j=1

yjuj ⊗ vj .

Therefore
‖A−K‖+p = Φ+

p (y) = Φ+
p,ess({sj(A)}).

Now an application of Proposition 2.6 completes the proof. �

3. A contrast to the classic case

As we mentioned in the Introduction, the result that K(H) is proximinal in B(H)
has refinements within specific classes of operators. One such class of operators are the
Hankel operators Hf : H2 → L2, where H2 is the Hardy space on the unit circle T ⊂ C.
Specifically, [1, Theorem 3] tells us that for f ∈ L∞, the best compact approximation to
the Hankel operator Hf : H2 → L2 can be realized in the form of a Hankel operator Hg.

In other words, [1, Theorem 3] says that Hf has a best compact approximation that is
of the same kind, a Hankel operator. Using the method in [1], this result of best compact
approximation can be easily generalized to Hankel operators on the Hardy space H2(S)
on the unit sphere S ⊂ Cn.

The fact that each C+(0)
p is proximinal in C+

p raises an obvious question: Suppose that
we have an operator A in a natural class N , and suppose we know that A ∈ C+

p , can we

find a best C+(0)
p -approximation to A in the same class N ? In particular, what if N is the

class of Hankel operators on H2(S)?

In this section we show that the answer to the last question is negative. This negative
answer provides a sharp contrast to the classic result [1, Theorem 3].

For the rest of the paper we assume n ≥ 2. Let S denote the unit sphere {z ∈ Cn :
|z| = 1} in Cn. Write dσ for the standard spherical measure on S with the normaliza-
tion σ(S) = 1. Recall that the Hardy space H2(S) is the norm closure of the analytic
polynomials C[z1, . . . , zn] in L2(S, dσ) [15]. Let P : L2(S, dσ)→ H2(S) be the orthogonal
projection. Then the Hankel operator Hf : H2(S)→ L2(S, dσ) is defined by the formula

Hfh = (1− P )(fh), h ∈ H2(S).

14



For these Hankel operators, let us recall the following results:

Proposition 3.1. [9, Proposition 7.2] If f is a Lipschitz function on S, then Hf ∈ C+
2n.

Proposition 3.2. When the complex dimension n is at least 2, for any f ∈ L2(S, dσ), if

Hf is bounded and if Hf 6= 0, then Hf /∈ C+(0)
2n .

Proof. We apply [9, Theorem 1.6], which tells us that for f ∈ L2(S, dσ), if Hf is bounded
and if Hf 6= 0, then there is an ε > 0 such that

s1(Hf ) + · · ·+ sk(Hf ) ≥ εk(2n−1)/2n

for every k ∈ N. Thus it follows from Proposition 2.6 that ‖Hf‖+2n,ess > 0, if ‖Hf‖+2n is

finite to begin with. In any case, we have Hf /∈ C+(0)
2n . �

As usual, we write z1, . . . , zn for the complex coordinate functions. Here is the main
technical result of the section:

Theorem 3.3. When the complex dimension n equals 2, we have ‖Hz̄1‖+4 > ‖Hz̄1‖+4,ess.

This leads to the negative answer promised above:

Example 3.4. Let the complex dimension n be equal to 2. By Theorem 2.7, Hz̄1 has a

best approximation in C+(0)
4 . On the other hand, it follows from the inequality ‖Hz̄1‖+4 >

‖Hz̄1‖+4,ess that if K ∈ C+(0)
4 is a best approximation of Hz̄1 , then K 6= 0. The membership

K ∈ C+(0)
4 implies that K is not a Hankel operator, for Proposition 3.2 tells us that C+(0)

4

does not contain any nonzero Hankel operators on H2(S) in the case S ⊂ C2. Thus for the
class of Hankel operators on the Hardy space H2(S), S ⊂ C2, the analogue of Theorem

1.3 does not hold for the pair C+
4 and C+(0)

4 , even though C+(0)
4 is proximinal in C+

4 .

Having presented the principal conclusion of the section, we now turn to the proof of
Theorem 3.3, which requires some calculation. We begin with the generality n ≥ 2, and
then specialize to the complex dimension n = 2.

We need to make one use of Toeplitz operators, whose definition we now recall. Given
an f ∈ L∞(S, dσ), the Toeplitz operator Tf is defined by the formula

Tfh = P (fh), h ∈ H2(S).

We need the following relation between Hankel operators and Toeplitz operators: We have

(3.1) H∗fHf = T|f |2 − Tf̄Tf

for every f ∈ L∞(S, dσ).

We follow the usual multi-index convention [15, page 3]. Then the standard orthonor-
mal basis {eα : α ∈ Zn+} for H2(S) is given by the formula

eα(z) =

{
(n− 1 + |α|)!

(n− 1)!α!

}1/2

zα, α ∈ Zn+.
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Consider the symbol function z̄1. Straightforward calculation using (3.1) shows that

〈H∗z̄1Hz̄1eα, eβ〉 = 0 if α 6= β

and that

(3.2) 〈H∗z̄1Hz̄1eα, eα〉 =
n− 1 + |α| − α1

(n− 1 + |α|)(n+ |α|)
for every α ∈ Zn+,

where α1 denotes the first component of α. Thus H∗z̄1Hz̄1 is a diagonal operator with
respect to the standard orthonormal basis {eα : α ∈ Zn+}, and the above are the s-numbers
of H∗z̄1Hz̄1 . Consequently, the s-numbers of Hz̄1 are a descending arrangement of{

n− 1 + |α| − α1

(n− 1 + |α|)(n+ |α|)

}1/2

, α ∈ Zn+.

Lemma 3.5. In the case where the complex dimension n equals 2, we have

‖Hz̄1‖+4,ess = 6−1/4.

Proof. For α = (α1, α2) ∈ Z2
+, note that |α| − α1 = α2 . Thus from (3.2) we obtain

(H∗z̄1Hz̄1)1/2 =
∑
α∈Z2

+

{
1 + α2

(1 + |α|)(2 + |α|)

}1/2

eα ⊗ eα.

It is also easy to see that (H∗z̄1Hz̄1)1/2 = Y + Z, where Z ∈ C+(0)
4 and

Y =
∑

α∈Z2
+
\{0}

√
α2

|α|
eα ⊗ eα.

Hence ‖Hz̄1‖+4,ess = ‖(H∗z̄1Hz̄1)1/2‖+4,ess = ‖Y ‖+4,ess, and we need to figure out the latter.

To find ‖Y ‖+4,ess, consider Q = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0}, the first quadrant in
the xy-plane. For each a > 0, define

Ea = {(x, y) ∈ Q : ay ≥ (x+ y)2}.

Solving the inequality ay ≥ (x+ y)2 in Q, we find that

Ea = {(x, y) ∈ Q : 0 ≤ y ≤ a and 0 ≤ x ≤ √ay − y}.

Let m2 denote the natural 2-dimensional Lebesgue measure on Q. Then

m2(Ea) =

∫ a

0

(
√
ay − y)dy =

a2

6
.
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For each r > 1 we define

N(r) = card{α ∈ Z2
+\{0} :

√
α2/|α| > 1/r}.

To each α ∈ Z2
+ we associate the square α + I2, where I2 = [0, 1] × [0, 1]. From this

association we see that

(3.3) N(r) = m2(Er2) + o(r4) =
1

6
r4 + o(r4).

We have∫∫
Er2

√
y

x+ y
dxdy =

∫ r2

0

√
y

(∫ r
√
y−y

0

dx

x+ y

)
dy =

∫ r2

0

√
y log

(
r
√
y

y

)
dy

= r3

∫ 1

0

√
u log

1√
u
du = 2r3

∫ 1

0

t2 log
1

t
dt =

2

9
r3 =

4

3
· 1

6
r3.

Denote Ar = {α ∈ Z2
+\{0} :

√
α2/|α| > 1/r}. Then

N(r)∑
j=1

sj(Y ) =
∑
α∈Ar

√
α2

|α|

=
∑
α∈Ar

∫∫
α+I2

√
y

x+ y
dxdy +

∑
α∈Ar

∫∫
α+I2

(√
α2

|α|
−
√
y

x+ y

)
dxdy

=

∫∫
Er2

√
y

x+ y
dxdy + o(r3) =

4

3
· 1

6
r3 + o(r3).

On the other hand, from (3.3) we obtain

N(r)∑
j=1

j−1/4 =
4

3
{N(r)}3/4 + o({N(r)}3/4) =

4

3

(
1

6

)3/4

r3 + o(r3).

Combining these two identities, we find that

lim
r→∞

∑N(r)
j=1 sj(Y )∑N(r)
j=1 j−1/4

= lim
r→∞

4
3 ·

1
6r

3 + o(r3)

4
3

(
1
6

)3/4
r3 + o(r3)

=

(
1

6

)1/4

.

Thus the proof of the lemma will be complete if we can show that

(3.4) ‖Y ‖+4,ess = lim
r→∞

∑N(r)
j=1 sj(Y )∑N(r)
j=1 j−1/4

.
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To prove (3.4), first note that by Proposition 2.6, the left-hand side is greater than or
equal to the right-hand side. Thus we only need to prove the reverse inequality. But for
the reverse inequality, note that (3.3) gives us

N(ν + 1)−N(ν) = o(ν4),

ν ∈ N. Hence
N(ν+1)∑
j=N(ν)+1

sj(Y ) ≤ 1

ν
(N(ν + 1)−N(ν)) = o(ν3).

For a large k ∈ N, there is a ν(k) ∈ N such that N(ν(k)) ≤ k < N(ν(k) + 1). Thus

s1(Y ) + · · ·+ sk(Y )

1−1/4 + · · ·+ k−1/4
≤
∑N(ν(k)+1)
j=1 sj(Y )∑N(ν(k))
j=1 j−1/4

=

∑N(ν(k))
j=1 sj(Y )∑N(ν(k))
j=1 j−1/4

+

∑N(ν(k)+1)
j=N(ν(k))+1 sj(Y )∑N(ν(k))

j=1 j−1/4

=

∑N(ν(k))
j=1 sj(Y )∑N(ν(k))
j=1 j−1/4

+
o({ν(k)}3)

(4/3){N(ν(k))}3/4 + o({N(ν(k))}3/4)
.

Using (3.3) again, we find that

lim sup
k→∞

s1(Y ) + · · ·+ sk(Y )

1−1/4 + · · ·+ k−1/4
≤ lim
r→∞

∑N(r)
j=1 sj(Y )∑N(r)
j=1 j−1/4

.

Thus, by Proposition 2.6, the left-hand side of (3.4) is less than or equal to the right-hand
side as promised. This completes the proof of the lemma. �

Proof of Theorem 3.3. Under the assumption n = 2, (3.2) gives us ‖Hz̄11‖2 = 1/2. Thus
‖Hz̄1‖+4 ≥ ‖Hz̄1‖ ≥ 2−1/2. On the other hand, Lemma 3.5 tells us that ‖Hz̄1‖+4,ess = 6−1/4.

Since 2−1/2 > 6−1/4, it follows that ‖Hz̄1‖+4 > ‖Hz̄1‖+4,ess. �

We choose to present Lemma 3.5 separately because its proof is more elementary than
the general case. But the calculation in Lemma 3.5 can be generalized to all complex
dimensions n ≥ 2, which may be of independent interest:

Proposition 3.6. In each complex dimension n ≥ 2, we have

‖Hz̄1‖+2n,ess =

(
1

n!
· n− 1

2n− 1

)1/(2n)

.

Proof. We begin with some general volume calculation. For j ≥ 1, let vj denote the (real)
j-dimensional volume measure. Let k ≥ 2 and define

∆k(t) = {(x1, . . . , xk) ∈ Rk : x1 ≥ 0, . . . , xk ≥ 0 and x1 + · · ·+ xk = t}
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for t ≥ 0. Elementary calculation shows that vk−1(∆k(1)) = {(k − 1)!}−1k1/2. Hence

(3.5) vk−1(∆k(t)) =

√
k

(k − 1)!
tk−1

for all t > 0.

Consider the “first quadrant”

Qn = {(x1, . . . , xn) ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}

in Rn. We write the elements in Qn in the form (x, y), where x ≥ 0 and y = (y1, . . . , yn−1)
with yj ≥ 0 for 1 ≤ j ≤ n− 1. For such a y, we denote

|y| = y1 + · · ·+ yn−1

in this proof. Adapting the proof of Lemma 3.5 to general n ≥ 2, we now define

Ea = {(x, y) ∈ Qn : a|y| ≥ (x+ |y|)2}

for a > 0. We claim that

(3.6) vn(Ea) =
an

n!
· n− 1

2n− 1
.

To prove this, note that the condition a|y| ≥ (x+|y|)2 implies a ≥ x+|y| and, consequently,
a ≥ x and a ≥ |y|. For each 0 ≤ t ≤ a, define

Σa(t) = ∆n(t) ∩ Ea = {(x, y) ∈ Qn : x+ |y| = t and a|y| ≥ t2}.

Obviously,
Σa(t) = {(t− ρ, y) ∈ Qn : t2/a ≤ ρ ≤ t and |y| = ρ}.

For any λ, µ ∈ [t2/a, t], the distance between the slices

{(t− λ, y) ∈ Qn : |y| = λ} and {(t− µ, y) ∈ Qn : |y| = µ}

is easily seen to be

(
{µ− λ}2 + (n− 1){(n− 1)−1λ− (n− 1)−1µ}2

)1/2
=

√
n

n− 1
|λ− µ|.

Combining this fact with (3.5), when n ≥ 3 we have

vn−1(Σa(t)) =

√
n

n− 1

∫ t

t2/a

vn−2({(t− ρ, y) ∈ Qn : |y| = ρ})dρ

=

√
n

n− 1

∫ t

t2/a

√
n− 1

(n− 2)!
ρn−2dρ =

√
n

(n− 1)!
{tn−1 − (t2/a)n−1}.
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When n = 2, we can omit the first two steps above and the last = trivially holds. Let u be
the unit vector (n−1/2, . . . , n−1/2) in Rn. For s, t ∈ [0,∞), if su ∈ ∆n(t), then n1/2s = t.
Since x+ |y| ≤ a for (x, y) ∈ Ea, integrating along the “u-axis” in Rn, we have

vn(Ea) =

∫ n−1/2a

0

vn−1(Σa(n1/2s))ds =
1√
n

∫ a

0

vn−1(Σa(t))dt

=
1

(n− 1)!

∫ a

0

(tn−1 − a−(n−1)t2n−2)dt =
an

(n− 1)!

(
1

n
− 1

2n− 1

)
.

Then an obvious simplification of the right-hand side proves (3.6).

Let us again write each α ∈ Zn+ in the form α = (α1, α2), but keep in mind that this

time we have α2 ∈ Zn−1
+ . Accordingly, |α| − α1 = |α2|. Thus from (3.2) we obtain

(H∗z̄1Hz̄1)1/2 =
∑
α∈Zn

+

{
n− 1 + |α2|

(n− 1 + |α|)(n+ |α|)

}1/2

eα ⊗ eα.

Again, (H∗z̄1Hz̄1)1/2 = Y + Z, where Z ∈ C+(0)
2n and

Y =
∑

α∈Zn
+
\{0}

√
|α2|
|α|

eα ⊗ eα.

Hence ‖Hz̄1‖+2n,ess = ‖(H∗z̄1Hz̄1)1/2‖+2n,ess = ‖Y ‖+2n,ess, and we need to compute ‖Y ‖+2n,ess.

For each large r > 1 we define the set

Ar = {α ∈ Zn+\{0} :
√
|α2|/|α| > 1/r}.

To each α ∈ Zn+ we associate the cube α+ In, where In = {(x1, . . . , xn) ∈ Rn : 0 ≤ xj ≤ 1
for j = 1, . . . , n}. Obviously, there is a constant 0 < C <∞ such that for any α ∈ Zn+\{0}
and any (x, y) ∈ α+ In, we have

(3.7)

∣∣∣∣
√
|α2|
|α|

−
√
|y|

x+ |y|

∣∣∣∣ ≤ C

(1 + |α2|1/2)|α|
.

Write N(r) = card(Ar). From (3.7) it is easy to deduce that N(r) = vn(Er2) + o(r2n).
Combining this fact with (3.6), we obtain

(3.8) N(r) = γnr
2n + o(r2n),

where we denote

(3.9) γn =
1

n!
· n− 1

2n− 1
.
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For convenience let us write dy = dy1 · · · dyn−1 on Rn−1. We have∫∫
Er2

√
|y|

x+ |y|
dxdy =

∫ ∞
0

vn({(x, y) ∈ Er2 :
√
|y|/(x+ |y|) > t})dt

=

∫ ∞
1/r

vn(E1/t2)dt+
1

r
vn(Er2) = γn

∫ ∞
1/r

1

t2n
dt+

1

r
γnr

2n

=
2n

2n− 1
γnr

2n−1,

where the third = follows from (3.6) and (3.9). Thus

N(r)∑
j=1

sj(Y ) =
∑
α∈Ar

√
|α2|
|α|

=
∑
α∈Ar

∫∫
α+In

√
|y|

x+ |y|
dxdy +

∑
α∈Ar

∫∫
α+In

(√
|α2|
|α|

−
√
|y|

x+ |y|

)
dxdy

=

∫∫
Er2

√
|y|

x+ |y|
dxdy + o(r2n−1) =

2n

2n− 1
γnr

2n−1 + o(r2n−1).

On the other hand, from (3.8) we obtain

N(r)∑
j=1

j−1/(2n) =
2n

2n− 1
{N(r)}(2n−1)/(2n) + o({N(r)}(2n−1)/(2n))

=
2n

2n− 1
γ(2n−1)/(2n)
n r2n−1 + o(r2n−1).

Combining these two identities, we find that

lim
r→∞

∑N(r)
j=1 sj(Y )∑N(r)
j=1 j−1/(2n)

= lim
r→∞

2n
2n−1γnr

2n−1 + o(r2n−1)

2n
2n−1γ

(2n−1)/(2n)
n r2n−1 + o(r2n−1)

= γ1/(2n)
n .

Recalling (3.9), the proof of the proposition will be complete if we can show that

(3.10) ‖Y ‖+2n,ess = lim
r→∞

∑N(r)
j=1 sj(Y )∑N(r)
j=1 j−1/(2n)

.

As in the proof of Lemma 3.5, we first note that by Proposition 2.6, the left-hand side
of (3.10) is greater than or equal to the right-hand side. Thus we only need to prove the
reverse inequality. But for the reverse inequality, note that (3.8) gives us

N(ν + 1)−N(ν) = o(ν2n),
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ν ∈ N. Hence
N(ν+1)∑
j=N(ν)+1

sj(Y ) ≤ 1

ν
(N(ν + 1)−N(ν)) = o(ν2n−1).

Once we have this, by the argument at the end of the proof of Lemma 3.5, the right-hand
side of (3.10) is greater than or equal to the left-hand side. This completes the proof. �

The point that we try to make with Proposition 3.6 is that it is not easy to come up
with functions f on S ⊂ Cn such that ‖Hf‖+2n > ‖Hf‖+2n,ess. Theorem 3.3 says that the

function z̄1 on S ⊂ C2 has this property. So what about the function z̄1 on S ⊂ C3? In
the case n = 3, Proposition 3.6 gives us

‖Hz̄1‖+6,ess =

(
1

15

)1/6

.

On the other hand, the obvious lower bound that we obtain from (3.2) in the case n = 3
is ‖Hz̄1‖+6 ≥ 3−1/2. Since 3−1/2 < 15−1/6, this is of no use to us. The difficulty here is to
obtain an estimate of ‖Hz̄1‖+2n that is close to its true value. In view of this, it is somewhat
surprising that we can actually calculate the essential norm ‖Hz̄1‖+2n,ess.

In the case n = 2, we do not know how close the lower bound ‖Hz̄1‖+4 ≥ 2−1/2 is to
the true value of ‖Hz̄1‖+4 . So it is really a matter of luck that the apparently crude lower
bound ‖Hz̄1‖+4 ≥ 2−1/2 in the case n = 2 is good enough to give us Example 3.4, which is
the main purpose of the section. As of this writing, Example 3.4 is the only example of its
kind that we are able to produce.

Data Availability. Data sharing is not applicable to this article as no data sets were
generated or analyzed during the current study.
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