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Abstract. We consider the quotient module Q of the Hardy module H2(S) defined by
an analytic set M̃ satisfying certain conditions. Denote d = dimCM̃ . When d = 1, Q was
shown to be 1-essentially normal in [24]. An analogous problem for the case d ≥ 2 was
proposed in [24], which asks whether 2d-antisymmetric sums of certain module operators
are in the trace class. In this paper we solve this problem in the affirmative. In the case
d = 1, we derive a trace formula on Q, which answers another question raised in [24].

1. Introduction

This paper is a sequel to [23,24]. Naturally, we will try to keep our notations consistent
with [23,24]. Let us first review what led us here.

Denote B = {z ∈ Cn : |z| < 1} and S = {z ∈ Cn : |z| = 1} as usual. Let dσ be
the spherical measure on S with the normalization σ(S) = 1. Recall that the Hardy space
H2(S) is just the closure of the analytic polynomials C[ζ1, . . . , ζn] in L2(S, dσ) [20].

Consider an analytic subset M̃ of an open neighborhood of B with 1 ≤ d ≤ n − 1,
where d = dimCM̃ . We assume that M̃ has no singular points on S and that M̃ intersects
S transversely. Denote M = B ∩ M̃ . Then we have a submodule

R = {f ∈ H2(S) : f = 0 on M}

of H2(S). The corresponding quotient module is

Q = H2(S)	R.

Both R and Q are the focus of the Arveson-Douglas conjecture [1,2,9], which commands
intense current research interest [3,10-15,18,22]. As it was the case for [23,24], the quotient
module Q will be the focus of this paper.

Let Q : L2(S, dσ)→ Q be the orthogonal projection. For f ∈ L∞(S, dσ), we define

Qf = QMf

∣∣Q.
Obviously, Qf is the analogue of Toeplitz operator for the quotient module Q. Let us
write ζ1, . . . , ζn for the coordinate functions on Cn. Then Qζ1 , . . . , Qζn are the module
operators for the quotient module Q.

Keywords: Arveson-Douglas conjecture, quotient module, antisymmetric sum.
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In [23], the geometric Arveson-Douglas conjecture was proved for Q. More precisely,
it was shown that that for all i, j ∈ {1, . . . , n}, the commutator [Qζi , Q

∗
ζj

] is in the Schatten
class Cp for all p > d. For the special case d = 1, there is a stronger result:

Theorem 1.1. [24, Theorem 1.5] In the case d = 1, the quotient module Q is 1-essentially
normal. That is, if d = 1, then for every pair of i, j ∈ {1, . . . , n}, the commutator [Qζi , Q

∗
ζj

]
belongs to the trace class C1.

Since Theorem 1.1 is stronger than the prediction of the geometric Arveson-Douglas
conjecture for the case d = 1, it naturally leads to the question, what about the case d ≥ 2?
First of all, easy examples show that if d ≥ 2, then in general [Qζi , Q

∗
ζj

] /∈ Cd. In other
words, in the case d ≥ 2, the geometric Arveson-Douglas conjecture is sharp in terms of
the Schatten-class membership for [Qζi , Q

∗
ζj

].

The proper analogue of Theorem 1.1 for the case d ≥ 2 must be stated not in terms
of commutators, but in terms of antisymmetric sums. Given operators A1, . . . , Ak on a
Hilbert space H, one has the antisymmetric sum

[A1, . . . , Ak] =
∑
σ∈Sk

sgn(σ)Aσ(1) · · ·Aσ(k).

This was first introduced by Helton and Howe in [17], and has since become an impor-
tant part of operator theory and non-commutative geometry [7]. See [21] for the latest
development in the study of antisymmetric sums.

Inspired by Theorem 1.1 and by what is known about antisymmetric sums of Toeplitz
operators on H2(S) and on the Bergman space L2

a(B), the following was proposed in [24]:

Problem 1.2. [24, Problem 12.3] Suppose that 2 ≤ d ≤ n− 1. For analytic polynomials
p1, . . . , pd, q1, . . . , qd ∈ C[ζ1, . . . , ζn], is the antisymmetric sum

(1.1) [Qp1 , Q
∗
q1 , . . . , Qpd , Q

∗
qd

]

in the trace class? If it is in the trace class, is there a formula for its trace, say in terms
of some integral on M? In other words, is there an analogue of the Helton-Howe trace
formula [17] for the above antisymmetric sum?

We are pleased to report that we are now able to solve the first half of Problem 1.2
in the affirmative. That is, we can now show that (1.1) is indeed in the trace class, and
more. Even though we still do not have an integral formula for the trace of (1.1), proving
its membership in C1 is a significant step forward:

Theorem 1.3. Suppose that 2 ≤ d ≤ n− 1. For analytic polynomials p1, . . . , pd, q1, . . . , qd
∈ C[ζ1, . . . , ζn], the antisymmetric sum

[Qp1 , Q
∗
q1 , . . . , Qpd , Q

∗
qd

]

is in the trace class. Moreover, for all polynomials f1, f2, . . . , f2d ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n], the
antisymmetric sum

[Qf1 , Qf2 , . . . , Qf2d ]
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is in the trace class.

In the case d = 1, a question about trace formula was also raised in [24]. Recall the
following:

Theorem 1.4. [24, Theorem 11.12] When d = 1, we have

(1.2) tr[Q∗pQq, Q
∗
rQs] = tr[M∗pMq,M

∗
rMs]

for all p, q, r, s ∈ C[ζ1, . . . , ζn].

In (1.2), Mp, Mq, Mr, Ms are multiplication operators on the range space P associated
with Q [24, Section 10]. Thus Theorem 1.4 identifies a trace on the quotient module Q
with a trace in terms of multiplication operators. As was mentioned on page 46 in [24], the
hope was that the right-hand side of (1.2) was more computable, and consequently there
might be an explicit formula for (1.2) in terms of some integral involving p, q, r, s. As the
second result of the paper, we are pleased to report that the right-hand side of (1.2) can
indeed be computed. Consequently, we obtain an integral formula for (1.2) in terms of p,
q, r, s.

To present this integral formula, we begin with X = M̃ ∩ S. Under our assumption
on M̃ , X is a compact, smooth manifold of real dimension 2d− 1, which only has a finite
number of connected components. If d = 1, then the real dimension of X is 1. Thus when
d = 1, X admits a decomposition

X = Γ1 ∪ · · · ∪ Γ`

in terms of connected components, where each component Γj is diffeomorphic to the unit
circle T = {z ∈ C : |z| = 1}, 1 ≤ j ≤ `.

Theorem 1.5. Suppose that d = 1. Then there exist integers c1, . . . , c` ∈ Z such that

(1.3) tr[Q∗pQq, Q
∗
rQs] =

1

2πi

∑̀
j=1

cj

∫
Γj

p̄qdr̄s

for all analytic polynomials p, q, r, s ∈ C[ζ1, . . . , ζn].

The integrals in (1.3) are defined in the following way. For each 1 ≤ j ≤ `, we choose an
orientation for Γj as the positive direction, which determines the sign of the corresponding
integer cj . Then

∫
Γj
p̄qdr̄s is just the Riemann-Stieltjes integral of p̄q against r̄s on Γj in

the chosen positive direction.

We also have the following variant of Theorem 1.5:

Theorem 1.6. Suppose that d = 1. Then for all polynomials f, g ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n],
the commutator [Qf , Qg] is in the trace class, and we have

tr[Qf , Qg] =
1

2πi

∑̀
j=1

cj

∫
Γj

fdg,
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where the integers c1, . . . , c` ∈ Z are the same as in Theorem 1.5.

As we will see, the integers c1, . . . , c` ∈ Z in Theorems 1.5 and 1.6 are −1 times the
indices of certain explicit “Toeplitz operators” on the range space P.

We will present a family of analytic sets M̃ for which the integers c1, . . . , c` in Theo-
rems 1.5 and 1.6 can be explicitly determined.

Consider the case n = 2, i.e., the case where S = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}. Let
p ≥ 2 and q ≥ 2 be natural numbers that are relatively prime. For convenience, we assume
p < q. Define

M̃p,q = {(z, w) ∈ C2 : zp − wq = 0}.

Obviously, M̃p,q is an analytic subset of C2 with the point (0, 0) as its only singularity. It

is easy to verify that M̃p,q intersects S transversely. Define

Mp,q = {(z, w) ∈ M̃p,q : |z|2 + |w|2 < 1} and

Qp,q = H2(S)	 {f ∈ H2(S) : f = 0 on Mp,q}.

Then Qp,q is a quotient module of H2(S) to which Theorems 1.5 and 1.6 can be ap-
plied. Thus for all f, g ∈ C[ζ1, ζ̄1, ζ2, ζ̄2], the operators Qf , Qg on Qp,q have the property
[Qf , Qg] ∈ C1. For these Qf , Qg on Qp,q we have the explicit formula

(1.4) tr[Qf , Qg] =
1

2πi

∫ 2π

0

f((1− b2)1/2eiqt, beipt)dg((1− b2)1/2eiqt, beipt),

where b is the unique number in (0, 1) that satisfies the equation

1− b2 − b2q/p = 0.

To conclude the introduction, let us discuss the organization of the paper and the main
ideas involved in the proofs. First of all, Section 2 contains the necessary preliminaries
required by the proofs in the paper. We call the reader’s attention to the range space P
reviewed in Section 2, which is needed in the proofs of all the theorems in this paper.

The proof of Theorem 1.3 is based on a very simple idea. Suppose that f is analytic
on {z ∈ Cn : |z| < 1 + s} for some s > 0. By the first order Taylor expansion,

f(ζ)− f(w) = 〈(∂f)(ζ), ζ − w〉+O(|ζ − w|2).

Now if we consider a commutator of the form [Mf , T ], where T has an integral kernel
in some negative power of 1 − 〈ζ, w〉, then the O(|ζ − w|2) above results in a “small
perturbation” to the main term. But the main term has the form

∑
jM∂jf [Mζj , T ], where

f is not involved in commutation. In Section 3, we show that there is a local version of
this on M̃ near S. By choosing the right local frame, we further show that one of the
summands in the main term is itself a “small perturbation”. In other words, locally on M̃ ,
there are only d− 1 summands in the “main term” of such a commutator. Using this fact,

4



in Section 4 we show that the right antisymmetrization leads to trace-class membership.
With these preparations, the proof of Theorem 1.3 is completed in Section 5.

After that, we turn to the proofs of Theorems 1.5 and 1.6. First, in Section 6, we
revisit the Helton-Howe trace formula in [16]. Our main point is to re-examine this classic
formula from the perspective of the Carey-Pincus theory of principal functions. The result
of this re-examination is Proposition 6.3, which can be viewed as a special version of
Green’s theorem for Lipschitz curves, which allow self-intersections. In Section 7, we first
present the Fredholm theory for Toeplitz operators on the range space P. Then, using the
Carey-Pincus theory, we derive a trace formula for the commutators of these operators.
With the preparations in Sections 6 and 7, we prove Theorems 1.5 and 1.6 in Section 8.

Finally, in Section 9, we present the details of the family of examples Qp,q introduced
above, and we prove (1.4).

Acknowledgement. The author thanks the referee for carefully reading the manuscript.

2. Preliminaries

The analytic sets, submodules and quotient modules, etc, involved in this paper are
exactly the same as those in [23,24]. But in the interest of being precise, we repeat the
necessary definitions and notations below.

Definition 2.1. [6] Let Ω be a complex manifold. A set A ⊂ Ω is called a complex
analytic subset of Ω if for each point a ∈ Ω there are a neighborhood U of a and functions
f1, · · · , fN analytic in this neighborhood such that

A ∩ U = {z ∈ U : f1(z) = · · · = fN (z) = 0}.

A point a ∈ A is called regular if there is a neighborhood U of a in Ω such that A∩U is a
complex submanifold of Ω. A point a ∈ A is called a singular point of A if it is not regular.

Assumption 2.2. Let M̃ be an analytic subset in an open neighborhood of the closed
ball B. Furthermore, M̃ satisfies the following conditions:

(1) M̃ intersects ∂B transversely.
(2) M̃ has no singular points on ∂B.
(3) M̃ is of pure dimension d, where 1 ≤ d ≤ n− 1.

Given such an M̃ , we fix M , R, Q and Q as follows.

Notation 2.3. (a) Let M = M̃ ∩B.
(b) Denote R = {f ∈ H2(S) : f = 0 on M}.
(c) Denote Q = H2(S)	R.
(d) Let Q be the orthogonal projection from L2(S, dσ) onto Q.

By Assumption 2.2, there is an s ∈ (0, 1) such that

(2.1) M = {z ∈ M̃ : 1− s < |z| < 1 + s}

is a complex manifold of complex dimension d and of finite volume. We take the value
s ∈ (0, 1) so small that the closure of M is contained in the regular part of M̃ .
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Definition 2.4. (a) We define the measure vM on M = M̃ ∩B by the formula vM (E) =
vM(E ∩M) for Borel sets E ⊂M , where vM is the natural volume measure on M.
(b) We define the measure µ on M by the formula

dµ(w) = (1− |w|2)n−1−ddvM (w).

We further extend µ to a measure on B by setting µ(B\M) = 0.

Next we recall certain results from previous investigations. First of all, for the measure
µ in Definition 2.4(b), we have the following Forelli-Rudin estimate:

Lemma 2.5. [23, Lemma 2.10] Given any a > 0 and κ > −1, there is a 0 < C2.5 < ∞
such that ∫

M

(1− |z|2)a(1− |w|2)κ

|1− 〈w, z〉|d+1+a+κ
dvM (w) ≤ C2.5

for every z ∈M .

Moreover, it is known that if κ > −1, then∫
M

(1− |w|2)κdvM (w) <∞

[23, page 15]. This finiteness is due to the fact that we can use the function 1 − |w|2 as
one of the 2d real coordinates on M for w ∈M near S.

We have a Toeplitz operator with the measure µ in Definition 2.4(b) as its symbol.
In other words, we define

(Tµf)(z) =

∫
f(w)

(1− 〈z, w〉)n
dµ(w),

f ∈ H2(S). Alternatively, we can rewrite this operator in the form

(2.2) Tµ =

∫
Kw ⊗Kwdµ(w),

where Kw(z) = (1− 〈z, w〉)−n, the reproducing kernel for H2(S). It is easy to see that

(2.3) 〈Tµf, f〉 =

∫
|f(w)|2dµ(w)

for every f ∈ H2(S).

Theorem 2.6. [23, Theorem 3.5] There are scalars 0 < c ≤ C <∞ such that the operator
inequality

cQ ≤ Tµ ≤ CQ

holds on L2(S, dσ).
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Proposition 2.7. [23, Proposition 8.4] For any Lipschitz function f on S, the commutator
[Mf , Q] is in the Schatten class Cp for every p > 2d.

Theorem 2.8. [24, Theorem 1.1] For any Lipschitz functions f , g on S, the double
commutator [Mf , [Mg, Q]] is in the Schatten class Cp for every p > d.

The measure in Definition 2.4(b) also gives rise to L2(µ) = L2(M,dµ), the Hilbert
space of measurable functions on M that are square-integrable with respect to dµ. This
allows us to introduce the range space as in [24].

Let f ∈ Q. Since f is an analytic function on B, we define Jf to be the restriction of
this analytic function to the subset M of B. By (2.3) we have

(2.4)

∫
M

|(Jf)(w)|2dµ(w) =

∫
M

|f(w)|2dµ(w) = 〈Tµf, f〉

for every f ∈ Q. Thus, by the upper bound in Theorem 2.6, J is a bounded operator that
maps Q into L2(µ). By the lower bound in Theorem 2.6 and (2.4), we have

(2.5) ‖Jf‖2 ≥ c‖f‖2 for every f ∈ Q.

Therefore the range of J is a closed linear subspace of L2(µ).

Definition 2.9. (a) Write P for the range of the restriction operator J introduced above.
(b) Let E denote the orthogonal projection from L2(µ) onto P.

Obviously, (2.4) is equivalent to the statement that

(2.6) J∗Jf = Tµf for every f ∈ Q.

Moreover, (2.5) says that J is an invertible operator from Q to P.

If f ∈ R, then its restriction to M is the zero function. Since H2(S) = R⊕Q, we see
that the range space P is actually the collection of the restrictions of all f ∈ H2(S) to M .

Definition 2.10. For f ∈ L∞(µ), M̂f denotes the operator of multiplication by the
function f on L2(µ).

Recall that we write ζ1, . . . , ζn for the coordinate functions on Cn.

Proposition 2.11. [24, Proposition 10.5] For each j ∈ {1, . . . , n}, P is an invariant
subspace for M̂ζj .

Proposition 2.11 makes it possible for us to introduce

Definition 2.12. For each j ∈ {1, . . . , n}, let Mζj denote the restriction of the operator

M̂ζj to the invariant subspace P. More generally, for r ∈ C[ζ1, . . . , ζn], Mr denotes the

restriction of the operator M̂r to the invariant subspace P.

Proposition 2.13. [24, Corollary 10.7] We have JQζj = MζjJ for every j ∈ {1, . . . , n}.
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We define the operator T̂µ on L2(µ) by the formula

(2.7) (T̂µϕ)(ζ) =

∫
M

ϕ(w)Kw(ζ)dµ(w), ζ ∈M,

ϕ ∈ L2(µ).

Proposition 2.14. [24, Proposition 10.3] (a) T̂µ is a bounded operator on L2(µ).

(b) T̂µ maps L2(µ) into P.

(c) Let T̃µ denote the restriction of T̂µ to the subspace P. Then T̃µ = JJ∗. In particular,

T̃µ is invertible on P.

(d) With respect to the orthogonal decomposition L2(µ) = P ⊕ P⊥, we have T̂µ = T̃µ ⊕ 0.

Lemma 2.15. [24, Lemma 10.8] Let G(ζ, w) be a Borel function on M ×M . Consider the
operator on L2(µ) given by the formula

(2.8) (AGϕ)(ζ) =

∫
M

ϕ(w)G(ζ, w)Kw(ζ)dµ(w),

ϕ ∈ L2(µ). If G satisfies the condition∫∫
|G(ζ, w)|p|Kw(ζ)|2dµ(w)dµ(ζ) <∞

for some 2 ≤ p <∞, then AG belongs to the Schatten class Cp.

Proposition 2.16. If f is a Lipschitz function on M , then for every p > 2d, we have

[M̂f , T̂µ] ∈ Cp, [M̂f , T̂
1/2
µ ] ∈ Cp and [M̂f , E] ∈ Cp.

Proof. Obviously, [M̂f , T̂µ] = AG, where G(ζ, w) = f(ζ) − f(w). Since f ∈ Lip(M), we
have ∫∫

|G(ζ, w)|p|Kw(ζ)|2dµ(w)dµ(ζ) ≤ C1

∫∫
|ζ − w|p

|1− 〈ζ, w〉|2+2d
dvM (w)dvM (ζ)

≤ C2

∫∫
|1− 〈ζ, w〉|p/2

|1− 〈ζ, w〉|d+1+(d+1)
dvM (w)dvM (ζ).

The condition p > 2d leads to d+ 1− (p/2) < 1. Thus by Lemma 2.5, the above is finite.
By Lemma 2.15, this means that [M̂f , T̂µ] ∈ Cp.

It follows from Proposition 2.14, (2.6), and Theorem 2.6 that the spectrum of T̂µ is

contained in {0}∪[c, C], and that the spectral projection of T̂µ corresponding to the interval

[c, C] equals E. Therefore there are h, η ∈ C∞c (R) such that E = h(T̂µ) and T̂
1/2
µ = η(T̂µ).

By the membership [M̂f , T̂µ] ∈ Cp and the standard smooth functional calculus, we have

[M̂f , T̂
1/2
µ ] ∈ Cp and [M̂f , E] ∈ Cp. �

Proposition 2.17. Suppose that d ≥ 2.
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(a) Let G be a measurable function on M ×M for which there is a 0 < C < ∞ such that
|G(ζ, w)| ≤ C|1− 〈ζ, w〉| for all ζ, w ∈M . Then AG ∈ Cp for every p > d.
(b) Let Y be a measurable function on M ×M for which there is a 0 < C ′ <∞ such that
|Y (ζ, w)| ≤ C ′|1− 〈ζ, w〉|3/2 for all ζ, w ∈M . Then EAY ∈ Cp for every p > 2d/3.

Proof. (a) For p > d, we have∫∫
|G(ζ, w)|p|Kw(ζ)|2dµ(w)dµ(ζ) ≤ C1

∫∫
|1− 〈ζ, w〉|p

|1− 〈ζ, w〉|2+2d
dvM (w)dvM (ζ)

= C1

∫∫
1

|1− 〈ζ, w〉|d+1+a
dvM (w)dvM (ζ),

where a = d + 1 − p. The condition p > d means that a < 1. Therefore, by Lemma 2.5,
the above is finite. By Lemma 2.15, this means that AG ∈ Cp.

(b) If d ≥ 3, then 2d/3 ≥ 2, and Lemma 2.15 applies to every p > 2d/3. Thus in the
case d ≥ 3, (b) is proved in the same way (a) was proved above.

Let us consider the case d = 2. Denote ρ(ζ) = 1 − |ζ|2. Pick any p > 4. Since
p/2 > 2, we can pick an r ∈ (0, 1) such that rp/2 > 2. We first show that EM̂ρr/2 ∈ Cp.
By Proposition 2.14 and the fact that T̂µM̂ρr/2 = {M̂ρr/2 T̂µ}∗, it suffices to show that

M̂ρr/2 T̂µ ∈ Cp. In terms of (2.8), we have M̂ρr/2 T̂µ = AG with G(ζ, w) = (1 − |ζ|2)r/2.
Applying Definition 2.4(b) to the case d = 2, we have∫∫

|G(ζ, w)|p|Kw(ζ)|2dµ(w)dµ(ζ) ≤ C1

∫∫
(1− |ζ|2)rp/2

|1− 〈ζ, w〉|6
dvM (w)dvM (ζ)

≤ C2

∫∫
1

|1− 〈ζ, w〉|2+1+{3−(rp/2)} dvM (w)dvM (ζ).

Since rp/2 > 2, we have 3 − (rp/2) < 1. Thus, by Lemma 2.5, the above is finite. By
Lemma 2.15, we have M̂ρr/2 T̂µ ∈ Cp.

Next we show that M̂ρ−r/2AY ∈ C2. Indeed M̂ρ−r/2AY = AH , where

H(ζ, w) = (1− |ζ|2)−r/2Y (ζ, w).

By the assumption on Y , we have

‖AH‖22 ≤ C3

∫∫
|1− 〈ζ, w〉|3

(1− |ζ|2)r|1− 〈ζ, w〉|6
dvM (w)dvM (ζ).

Since r < 1, by Lemma 2.5, this is finite. Hence M̂ρ−r/2AY ∈ C2.

By the factorization
EAY = EM̂ρr/2 · M̂ρ−r/2AY

and the conclusions of the two paragraphs above, we have EAY ∈ Ct, where 1/t = (1/p) +
(1/2). Since p > 4 is arbitrary, this means that EAY ∈ Ct for every t > 4/3 = 2 · 2/3. �
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Proposition 2.18. Suppose that d ≥ 2. Then for Lipschitz functions f, g on M , the double

commutators [M̂g, [M̂f , T̂µ]], [M̂g, [M̂f , T̂
1/2
µ ]] and [M̂g, [M̂f , E]] all belong to the Schatten

class Cp for every p > d.

Proof. Obviously, [M̂g, [M̂f , T̂µ]] = AG, where G(ζ, w) = (g(ζ) − g(w))(f(ζ) − f(w)). By
the Lipschitz conditions for f, g, we have

|G(ζ, w)| ≤ C1|ζ − w|2 ≤ 2C1|1− 〈ζ, w〉|.

Thus it follows from Proposition 2.17(a) that [M̂g, [M̂f , T̂µ]] ∈ Cp for every p > d. To prove
the other two Schatten-class memberships, this time we use Riesz functional calculus.

As we already mentioned, the spectrum of T̂µ is contained in {0} ∪ [c, C], and the

spectral projection of T̂µ corresponding to the interval [c, C] equals E. Consider H+ =
{λ ∈ C : Re(λ) > 0}, the right half-plane. Let γ be a simple Jordan curve in H+\[c, C]
whose winding number about every x ∈ [c, C] is 1. Taking advantage of the fact that the
square-root function λ1/2 is analytic on H+, we have

T̂ 1/2
µ =

1

2πi

∫
γ

λ1/2(λ− T̂µ)−1dλ.

It is easy to see that

[M̂g, [M̂f , T̂
1/2
µ ]] =

1

2πi

∫
γ

λ1/2{A(λ) +B(λ) + C(λ)}dλ,

where

A(λ) = (λ− T̂µ)−1[M̂g, T̂µ](λ− T̂µ)−1[M̂f , T̂µ](λ− T̂µ)−1,

B(λ) = (λ− T̂µ)−1[M̂g, [M̂f , T̂µ]](λ− T̂µ)−1 and

C(λ) = (λ− T̂µ)−1[M̂f , T̂µ](λ− T̂µ)−1[M̂g, T̂µ](λ− T̂µ)−1.

Applying the preceding paragraph to B(λ) and Proposition 2.16 to A(λ) and C(λ), we

obtain the membership [M̂g, [M̂f , T̂
1/2
µ ]] ∈ Cp for p > d.

For the double commutator [M̂g, [M̂f , E]], we use the representation

E =
1

2πi

∫
γ

(λ− T̂µ)−1dλ,

and the rest of the argument is similar to the above paragraph. �

Proposition 2.19. Suppose that d ≥ 2. Then for Lipschitz functions f, g, h on M , the

operators E[M̂h, [M̂g, [M̂f , T̂µ]]] and E[M̂h, [M̂g, [M̂f , T̂
1/2
µ ]]] belong to the Schatten class

Cp for every p > 2d/3.
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Proof. Recalling (2.8), we have [M̂h, [M̂g, [M̂f , T̂µ]]] = AY , where

Y (ζ, w) = (h(ζ)− h(w))(g(ζ)− g(w))(f(ζ)− f(w)).

The Lipschitz conditions for f, g, h imply

|Y (ζ, w)| ≤ C|ζ − w|3 ≤ 23/2C|1− 〈ζ, w〉|3/2.

Thus Proposition 2.17(b) tells us that E[M̂h, [M̂g, [M̂f , T̂µ]]] = EAY ∈ Cp for p > 2d/3.

But once we have E[M̂h, [M̂g, [M̂f , T̂µ]]] ∈ Cp, the membership E[M̂h, [M̂g, [M̂f , T̂
1/2
µ ]]]

∈ Cp is obtained by using the Riesz functional calculus in the proof of Proposition 2.18. �

Let

(2.9) J∗ = U |J∗|

be the polar decomposition of the operator J∗. We know that J∗ : P → Q is invertible.
Therefore the U above is a unitary operator. Also, by Proposition 2.14(c), we have |J∗| =
(JJ∗)1/2 = T̃

1/2
µ . Combining this with Proposition 2.13, we find that

(2.10) Qζj = J−1MζjJ = UT̃−1/2
µ Mζj T̃

1/2
µ U∗ = U(Mζj + Zj)U

∗

for each j ∈ {1, . . . , n}, where

(2.11) Zj = T̃−1/2
µ [Mζj , T̃

1/2
µ ].

We alert the reader that (2.10) is a crucial identity.

The above identities suggest that we also need the operator

(2.12) T = T̃−1/2
µ ⊕ 0,

which corresponds to the space decomposition L2(µ) = P ⊕ P⊥.

Proposition 2.20. If f is a Lipschitz function on M , then [M̂f , T ] ∈ Cp for every p > 2d.

If f, g are Lipschitz functions on M , then [M̂g, [M̂f , T ]] ∈ Cp for every p > d.

Proof. This is obtained from the Schatten-class memberships provided in Propositions 2.16
and 2.18 by using the representation

T =
1

2πi

∫
γ

λ−1/2(λ− T̂µ)−1dλ,

where the contour γ is the same as in the proof of Proposition 2.18. �

Lemma 2.21. Let ϕ ∈ L∞(µ). Suppose that there is a 0 < t < 1 such that ϕ = 0 on
Nt = {ζ ∈M : t < |ζ| < 1}. Then M̂ϕE ∈ C1.
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Proof. By Proposition 2.14, E = T̂µ(T̃−1
µ ⊕0). Therefore it suffices to show that M̂ϕT̂µ ∈ C1.

For each k ∈ Z+, define the operator Ak on L2(µ) by the formula

(Akf)(ζ) = ϕ(ζ)

∫
〈ζ, w〉kf(w)dµ(w), f ∈ L2(µ).

From the conditions ϕ ∈ L∞(µ) and ϕ = 0 on Nt it is easy to deduce that ‖Ak‖ ≤ Ctk.
By elementary combinatorics, rank(Ak) ≤ {(n− 1)!k!}−1(k + n− 1)!. Hence

(2.13) ‖Ak‖1 ≤ Ctk
(k + n− 1)!

(n− 1)!k!
for every k ∈ Z+.

On the other hand, by the expansion for (1− u)−n on the unit disc, we have

(2.14) M̂ϕT̂µ =

∞∑
k=0

(k + n− 1)!

(n− 1)!k!
Ak.

Obviously, (2.13) and (2.14) together imply the membership M̂ϕT̂µ ∈ C1. �

3. Local analysis

For z ∈ Cn and r > 0, we write B(z, r) = {u ∈ Cn : |z − u| < r}, the standard
Euclidean ball in Cn. Similarly, Bd(z, r) denotes the standard Euclidean ball in Cd.

For each z ∈M, let Tz be the tangent space toM at the point z, viewed as a natural
subspace of Cn. For each z ∈M, let pz be the orthogonal projection of z on Tz. Condition
(1) in Assumption 2.2 implies that if z ∈ M̃∩S, then pz 6= 0. Thus there exist an s0 ∈ (0, s)
and a γ > 0 such that if we define

(3.1) M0 = {z ∈ M̃ : 1− s0 < |z| < 1 + s0},

then

(3.2) |pz| ≥ γ for every z ∈M0.

Since M0 is a complex manifold, for each z ∈M0, there exist an open neighborhood
Uz of z in M0, an a > 0 and a biholomorphic map

G : Bd(0, a)→ Uz with G(0) = z.

Reducing the value of a if necessary, we may assume that there are 0 < c ≤ C < ∞ such
that DG, the complex derivative of G, satisfies the matrix bound

(3.3) c ≤ (DG)∗(u)(DG)(u) ≤ C for every u ∈ Bd(0, a).
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For each u ∈ Bd(0, a), we have the polarization

(DG)(u) = V (u){(DG)∗(u)(DG)(u)}1/2.

By (3.3), V smoothly maps Bd(0, a) into Mn×d, the collection of n× d matrices. For each
u ∈ Bd(0, a), the range of V (u) is obviously the tangent space TG(u). Define

Fζ = V (G−1(ζ))V ∗(G−1(ζ))

for each ζ ∈ Uz. Then Fζ is the orthogonal projection from Cn onto the tangent space
Tζ . Moreover, the map ζ 7→ Fζ from Uz into Mn×n is smooth with respect to the smooth
structure on M0.

By (3.2), the formula
e1(ζ) = pζ/|pζ |, ζ ∈M0,

defines a global cross section of the complex tangent bundle of M0. This allows us to
further define

F
(1)
ζ = Fζ − e1(ζ)⊗ e1(ζ), ζ ∈ Uz.

Then the map ζ 7→ F
(1)
ζ is again smooth on Uz, and, for each ζ ∈ Uz, F (1)

ζ is the orthogonal
projection from Cn onto the orthogonal complement of {λe1(ζ) : λ ∈ C} in Tζ .

For d ≥ 2, Tz 	 {λe1(z) : λ ∈ C} 6= {0}. Thus there is a v2 ∈ Tz with |v2| = 1 such

that v2 ⊥ e1(z). The map ζ 7→ F
(1)
ζ v2 is smooth on Uz, and we have F

(1)
z v2 = v2. Thus

there is an open neighborhood U
(2)
z of z inM0, U

(2)
z ⊂ Uz, such that F

(1)
ζ v2 6= 0 for every

ζ ∈ U (2)
z . Define

e2(ζ) = F
(1)
ζ v2/|F (1)

ζ v2|, ζ ∈ U (2)
z .

Then e2 is a smooth cross section of the tangent bundle over U
(2)
z . Moreover, e2(ζ) ⊥ e1(ζ)

for every ζ ∈ U (2)
z . Accordingly, we define

F
(2)
ζ = Fζ − e1(ζ)⊗ e1(ζ)− e2(ζ)⊗ e2(ζ), ζ ∈ U (2)

z .

In the case d ≥ 3, we have Tz 	 span{e1(z), e2(z)} 6= {0}, and we can pick a unit vector
v3 ∈ Tz 	 span{e1(z), e2(z)} to repeat this process. Thus, inductively, we obtain a smooth
local frame for the tangent bundle near z. We summarize the result as follows:

Proposition 3.1. For each z ∈M0, there exist an open neighborhood Vz of z in M0 and
vectors {e1(ζ), . . . , ed(ζ)} ⊂ Cn, ζ ∈ Vz, which have the following properties:

(1) For each 1 ≤ i ≤ d, the map ζ 7→ ei(ζ) is smooth on Vz.
(2) For every ζ ∈ Vz, {e1(ζ), . . . , ed(ζ)} is an orthonormal basis for Tζ .
(3) We have e1(ζ) = pζ/|pζ | for every ζ ∈ Vz.

Obviously, the above construction of local frame is just a smoothly parametrized
version of the Gram-Schmidt process with a privileged e1(ζ).
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Since G(0) = z, once we have the open neighborhood Vz of z in Proposition 3.1, there
is an a1 ∈ (0, a) such that GBd(0, a1) ⊂ Vz. By the open mapping theorem, GBd(0, a1) ⊃
M0 ∩B(z, b) for some b > 0. That is, there are 0 < a1 < a and b > 0 such that

(3.4) M0 ∩B(z, b) ⊂ GBd(0, a1) ⊂ Vz ⊂M0.

Proposition 3.2. We have ζ − w − Fζ(ζ − w) = O(|ζ − w|2) for ζ, w ∈M0 ∩B(z, b).

Proof. By (3.4), there are x, y ∈ Bd(0, a1) such that ζ = G(x) and w = G(y). By the first
order Taylor expansion,

(3.5) w−ζ = G(y)−G(x) = (DG)(x)(y−x)+

∫ 1

0

{(DG)(x+t(y−x))−(DG)(x)}(y−x)dt.

Since ζ = G(x), we have (DG)(x)(y − x) ∈ Tζ . Consequently,

(3.6) Fζ(w − ζ) = (DG)(x)(y − x) +

∫ 1

0

Fζ{(DG)(x+ t(y − x))− (DG)(x)}(y − x)dt.

From (3.3) it is easy to deduce that y−x = O(|ζ−w|). Thus, subtracting (3.5) from (3.6),
the desired conclusion follows. �

Proposition 3.3. Let f be an analytic function on B(0, 1 + s) (see (2.1)). Then

f(ζ)− f(w)− 〈(∂f)(ζ), Fζ(ζ − w)〉 = O(|ζ − w|2)

for ζ, w ∈M0 ∩B(z, b).

Proof. By Proposition 3.2, it suffices to show that

(3.7) f(ζ)− f(w)− 〈(∂f)(ζ), ζ − w〉 = O(|ζ − w|2) for ζ, w ∈M0 ∩B(z, b).

Again, let x, y ∈ Bd(0, a1) be such that ζ = G(x) and w = G(y). Denote g = f ◦G. Then

f(w)− f(ζ) = g(y)− g(x)

= 〈(∂g)(x), y − x〉+

∫ 1

0

〈(∂g)(x+ t(y − x))− (∂g)(x), y − x〉dt.(3.8)

By the chain rule of differentiation,

〈(∂g)(x), y − x〉 = 〈(∂f)(G(x)), (DG)(x)(y − x)〉 = 〈(∂f)(ζ), w − ζ〉+O(|ζ − w|2),

where the second = follows from (3.5). Substituting this in (3.8), we obtain (3.7). �

Proposition 3.4. Let f be an analytic function on B(0, 1 + s). Then

〈(∂f)(ζ), Fζ(ζ − w)〉 = 〈Fζ(ζ − w), (∂f)(ζ)〉 =
d∑
i=1

〈ζ − w, ei(ζ)〉〈(∂f)(ζ), ei(ζ)〉
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for ζ, w ∈M0 ∩B(z, b).

Proof. This follows immediately from the fact that Fζ =
∑d
i=1 ei(ζ)⊗ ei(ζ), ζ ∈ Vz. �

Proposition 3.5. For ζ, w ∈M0 ∩B(z, b) ∩B, we have 〈ζ − w, e1(ζ)〉 = O(|1− 〈ζ, w〉|).

Proof. By (3.2), it suffices to show that 〈ζ − w, pζ〉 = O(|1 − 〈ζ, w〉|). By definition,
pζ = Fζζ. Applying Proposition 3.2, we have

〈ζ − w, pζ〉 = 〈ζ − w,Fζζ〉 = 〈Fζ(ζ − w), ζ〉 = 〈ζ − w, ζ〉+O(|ζ − w|2)

= (1− 〈w, ζ〉)− (1− |ζ|2) +O(|ζ − w|2).

This completes the proof. �

We now pick a pair of 0 < δ < δ1 < b and fix the following:

Definition 3.6. (1) Let ϕz be a C∞-function on Cn satisfying the conditions 0 ≤ ϕz ≤ 1
on Cn, ϕz = 1 on B(z, δ), and ϕz = 0 on Cn\B(z, δ1).
(2) Denote Wz =M0 ∩B(z, δ).

We further introduce

Definition 3.7. (1) We extend the e1, . . . , ed in Proposition 3.1 to vector-valued functions
on the entire M̃ by setting ei = 0 on M̃\Vz, 1 ≤ i ≤ d.
(2) With the definition of e1, . . . , ed extended as in (1), we define the functions ε1, . . . , εd
on M̃ by the formula εi = ϕzei for 1 ≤ i ≤ d.

Under Definition 3.7, ε1, . . . , εd are vector-valued Lipschitz functions on M .

Definition 3.8. For any analytic function f on B(0, 1 + s), we define the functions
D1f, . . . ,Ddf on M by the formula

(Dif)(ζ) = 〈(∂f)(ζ), εi(ζ)〉

for ζ ∈M and 1 ≤ i ≤ d.

Definition 3.9. Let A be a bounded operator on L2(µ). For each 1 ≤ i ≤ d, we write

Ci(A) =
n∑
j=1

M̂ε̄i,j [M̂ζj , A],

where εi,1, . . . , εi,n are the components of the vector-valued function εi.

Proposition 3.10. Let f be an analytic function on B(0, 1 + s). Then

(3.9) M̂ϕ2
z
[M̂f , T̂µ]M̂ϕz =

d∑
i=2

M̂DifCi(T̂µ)M̂ϕz + L,

where L ∈ Cp for every p > d. Moreover, the operator L has the property that for all

h ∈ Lip(M) and t > 2d/3, E[M̂h, L] ∈ Ct.
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Proof. Obviously, M̂ϕ2
z
[M̂f , T̂µ]M̂ϕz is the operator on L2(µ) with the function

(3.10)
ϕ2
z(ζ)(f(ζ)− f(w))ϕz(w)

(1− 〈ζ, w〉)n

as its integral kernel. Similarly,
∑d
i=1 M̂DifCi(T̂µ)M̂ϕz is the operator on L2(µ) with the

function

(3.11)
d∑
i=1

(Dif)(ζ)〈ζ − w, εi(ζ)〉ϕz(w)

(1− 〈ζ, w〉)n

as its integral kernel. If we write the difference of (3.10) and (3.11) as

(3.12)
u(ζ, w)

(1− 〈ζ, w〉)n
,

then it follows from Propositions 3.4 and 3.3 that u(ζ, w) = O(|1− 〈ζ, w〉|). Denote

L1 = M̂ϕz [M̂f , T̂µ]M̂ϕz −
d∑
i=1

M̂DifCi(T̂µ)M̂ϕz .

Then (3.12) is the integral kernel for L1. By Proposition 2.17, the fact u(ζ, w) = O(|1 −
〈ζ, w〉|) implies

(a) L1 ∈ Cp for every p > d;

(b) E[M̂h, L1] ∈ Ct for all h ∈ Lip(M) and t > 2d/3.

Denote L2 = M̂D1fC1(T̂µ)M̂ϕz . Then L2 has the function

(D1f)(ζ)〈ζ − w, ε1(ζ)〉ϕz(w)

(1− 〈ζ, w〉)n

as its integral kernel. By Proposition 3.5, (D1f)(ζ)〈ζ − w, ε1(ζ)〉ϕz(w) = O(|1 − 〈ζ, w〉|).
Thus it follows from Proposition 2.17 that

(a) L2 ∈ Cp for every p > d;

(b) E[M̂h, L2] ∈ Ct for all h ∈ Lip(M) and t > 2d/3.

Since (3.9) holds for L = L1 + L2, the proposition is proved. �

Proposition 3.11. Let f be an analytic function on B(0, 1 + s). Then for every A ∈
{T̂ 1/2

µ , T , E}, we have

M̂ϕ2
z
[M̂f , A]M̂ϕz =

d∑
i=2

M̂DifCi(A)M̂ϕz + LA,
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where LA ∈ Cp for every p > d. Moreover, the operator LA has the property that for all

h ∈ Lip(M) and t > 2d/3, E[M̂h, LA] ∈ Ct.

Proof. We will work out the details for the case A = T ; the other two cases are similar.
As before, we write T in the form

T =
1

2π
√
−1

∫
γ

λ−1/2(λ− T̂µ)−1dλ,

where the contour γ is the same as in the proof of Proposition 2.18. Then

[M̂f , T ] =
1

2π
√
−1

∫
γ

λ−1/2(λ− T̂µ)−1[M̂f , T̂µ](λ− T̂µ)−1dλ.

Since ϕz ∈ Lip(M), it follows from Proposition 2.16 that

M̂ϕ2
z
[M̂f , T ]M̂ϕz =

1

2π
√
−1

∫
γ

λ−1/2(λ− T̂µ)−1M̂ϕ2
z
[M̂f , T̂µ]M̂ϕz (λ− T̂µ)−1dλ+ L1,

where L1 ∈ Cp for every p > d. Moreover, by Propositions 2.16 and 2.18, L1 has the

property that [M̂h, L1] ∈ Ct for all h ∈ Lip(M) and t > 2d/3. Applying Proposition 3.10,

M̂ϕ2
z
[M̂f , T ]M̂ϕz =

d∑
i=2

1

2π
√
−1

∫
γ

λ−1/2(λ−T̂µ)−1M̂DifCi(T̂µ)M̂ϕz (λ−T̂µ)−1dλ+L1+L2,

where

L2 =
1

2π
√
−1

∫
γ

λ−1/2(λ− T̂µ)−1L(λ− T̂µ)−1dλ.

By Propositions 3.10 and 2.16, we have L2 ∈ Cp for every p > d and E[M̂h, L2] ∈ Ct for
all h ∈ Lip(M) and t > 2d/3. Since the functions Dif , ε̄i,j and ϕz are Lipschitz on M ,

we can “move the corresponding multiplication operators to the other side of (λ− T̂µ)−1”.
That is, by Propositions 2.16 and 2.18, we have

M̂ϕ2
z
[M̂f , T ]M̂ϕz =

d∑
i=2

M̂DifCi(T )M̂ϕz + L1 + L2 + L3,

where L3 has the properties that L3 ∈ Cp for every p > d and that [M̂h, L3] ∈ Ct for all
h ∈ Lip(M) and t > 2d/3. This completes the proof. �

Proposition 3.12. Let f be an analytic function on B(0, 1 + s). Then for every Lipschitz
function g on M , we have

EM̂ϕ2
z
[M̂f , [M̂g, T̂

1/2
µ ]]M̂ϕz = E

d∑
i=2

M̂DifCi([M̂g, T̂
1/2
µ ])M̂ϕz + Λ,
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where Λ ∈ Cp for every p > 2d/3.

Proof. Note that M̂ϕ2
z
[M̂f , [M̂g, T̂

1/2
µ ]]M̂ϕz = [M̂g, M̂ϕ2

z
[M̂f , T̂

1/2
µ ]M̂ϕz ]. Thus it follows

from Proposition 3.11 that

(3.13) M̂ϕ2
z
[M̂f , [M̂g, T̂

1/2
µ ]]M̂ϕz =

d∑
i=2

[M̂g, M̂DifCi(T̂
1/2
µ )M̂ϕz ] + [M̂g, LT̂ 1/2

µ
],

where L
T̂

1/2
µ

has the property that E[M̂h, LT̂ 1/2
µ

] ∈ Ct for all h ∈ Lip(M) and t > 2d/3. In

particular, if we let Λ = E[M̂g, LT̂ 1/2
µ

], then Λ ∈ Ct for every t > 2d/3. Then note that

[M̂g, M̂DifCi(T̂
1/2
µ )M̂ϕz ] = M̂DifCi([M̂g, T̂

1/2
µ ])M̂ϕz

for every 2 ≤ i ≤ d. Substituting this in (3.13), the proof is complete. �

4. Products of commutators

For each f ∈ L∞(µ), we define

T̃f = EM̂f

∣∣P,
which can be thought of as a Toeplitz operator on P. Let us also introduce

(4.1) Af = T̃f + T̃−1/2
µ [T̃f , T̃

1/2
µ ] and Bf = T̃f − [T̃f , T̃

1/2
µ ]T̃−1/2

µ .

By (2.10) and (2.11), we have

[Qζi , Q
∗
ζj ] = U [Aζi , Bζ̄j ]U

∗

for i, j ∈ {1, . . . , n}. This suggests that it will be beneficial to expand the general commu-
tator [Af , Bg] in terms of operators defined on L2(µ). For f, g ∈ L∞(µ), we have

[Af ,Bg] = [T̃f , T̃g]− [T̃f , [T̃g, T̃
1/2
µ ]T̃−1/2

µ ] + [T̃−1/2
µ [T̃f , T̃

1/2
µ ], T̃g]

− [T̃−1/2
µ [T̃f , T̃

1/2
µ ], [T̃g, T̃

1/2
µ ]T̃−1/2

µ ]

= [M̂f , E](1− E)[M̂g, E]− [M̂g, E](1− E)[M̂f , E]

− E[M̂f , E][M̂g, T̂
1/2
µ ]T − E[M̂f , [M̂g, T̂

1/2
µ ]]T − E[M̂g, T̂

1/2
µ ][M̂f , T ]E

+ E[T , M̂g][M̂f , T̂
1/2
µ ]E + T [[M̂f , T̂

1/2
µ ], M̂g]E + T [M̂f , T̂

1/2
µ ][E, M̂g]E

− T [M̂f , T̂
1/2
µ ]E[M̂g, T̂

1/2
µ ]T + E[M̂g, T̂

1/2
µ ]T 2[M̂f , T̂

1/2
µ ]E.

We enumerate the ten terms after the second = as H1(f, g), . . . ,H10(f, g). Thus

(4.2) [Af , Bg] = H1(f, g) + · · ·+H10(f, g).

18



It follows from Propositions 2.16 and 2.18 that for all f, g ∈ Lip(M) and 1 ≤ ν ≤ 10,

(4.3) Hν(f, g) ∈ Cp for every p > d.

It follows from Propositions 2.16 and 2.18-2.20 that for all f, g, h ∈ Lip(M) and 1 ≤ ν ≤ 10,

(4.4) [M̂h, Hν(f, g)] ∈ Ct for every t > 2d/3.

Next we apply the results in Section 3 to the operators H1(f, g), . . . ,H10(f, g).

Lemma 4.1. Consider any ν ∈ {1, . . . , 10}. If g ∈ Lip(M) and f is an analytic function
on B(0, 1 + s), then

M̂ϕ2
z
Hν(f, g)M̂ϕz =

d∑
i=2

M̂DifHν,i(g) + L,

where L ∈ Ct for every t > 2d/3, and the operators Hν,2(g), . . . ,Hν,d(g) have the following
properties:

(1) Hν,2(g), . . . ,Hν,d(g) are independent of f .
(2) Hν,i(g) ∈ Cp for all p > d and 2 ≤ i ≤ d.

(3) If h ∈ Lip(M), then [M̂h, Hν,i(g)] ∈ Ct for all t > 2d/3 and 2 ≤ i ≤ d.

Proof. The argument is similar for all ν ∈ {1, . . . , 10}. Therefore we will present the details
only for two of the ν’s. Below, the symbols L1, L2, . . . represent operators that belong to
Ct for every t > 2d/3.

Consider, for example, the case ν = 4. Then

M̂ϕ2
z
H4(f, g)M̂ϕz = −M̂ϕ2

z
E[M̂f , [M̂g, T̂

1/2
µ ]]T M̂ϕz

= −EM̂ϕ2
z
[M̂f , [M̂g, T̂

1/2
µ ]]M̂ϕzT + L1

= −E
d∑
i=2

M̂DifCi([M̂g, T̂
1/2
µ ])M̂ϕzT + L2

= −
d∑
i=2

M̂DifECi([M̂g, T̂
1/2
µ ])M̂ϕzT + L3.

where the second and the fourth = follow from Propositions 2.16, 2.18 and 2.20, and the
third = follows from Proposition 3.12. Define

H4,i(g) = −ECi([M̂g, T̂
1/2
µ ])M̂ϕzT , 2 ≤ i ≤ d.

The fact that the operators H4,2(g), . . . ,H4,d(g) have properties (2) and (3) also follows
from Propositions 2.16, 2.18, 2.19 and 2.20.
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As a second case, consider ν = 5. Then

M̂ϕ2
z
H5(f, g)M̂ϕz = −M̂ϕ2

z
E[M̂g, T̂

1/2
µ ][M̂f , T ]EM̂ϕz

= −E[M̂g, T̂
1/2
µ ]M̂ϕ2

z
[M̂f , T ]M̂ϕzE + L4

= −E[M̂g, T̂
1/2
µ ]

d∑
i=2

M̂DifCi(T )M̂ϕzE + L5

= −
d∑
i=2

M̂DifE[M̂g, T̂
1/2
µ ]Ci(T )M̂ϕzE + L6,

where the second and the fourth = follow from Propositions 2.16, 2.18 and 2.20, and the
third = follows from Propositions 3.11 and 2.16. Define

H5,i(g) = −E[M̂g, T̂
1/2
µ ]Ci(T )M̂ϕzE, 2 ≤ i ≤ d.

The fact that the operators H5,2(g), . . . ,H5,d(g) have properties (2) and (3) also follows
from Propositions 2.16, 2.18, and 2.20. �

For operators A and B, the notation A ∼1 B means that A−B is in the trace class.

Lemma 4.2. Let f1, . . . , fd be analytic functions on B(0, 1 + s). Let z, ϕz, etc, be the
same as in Section 3. Then for all g1, . . . , gd ∈ Lip(M), the operator

M̂ϕ3d
z

∑
σ∈Sd

sgn(σ)[Afσ(1) , Bg1 ] · · · [Afσ(d) , Bgd ]

is in the trace class.

Proof. Let ν1, . . . , νd ∈ {1, . . . , 10}. Applying (4.3), (4.4) and Lemma 4.1, we have

M̂ϕ3d
z
Hν1(f1, g1) · · ·Hνd(fd, gd) ∼1 {M̂ϕ2

z
Hν1(f1, g1)M̂ϕz} · · · {M̂ϕ2

z
Hνd(fd, gd)M̂ϕz}

∼1

d∑
i1=2

· · ·
d∑

id=2

M̂Di1f1
Hν1,i1(g1) · · · M̂Didfd

Hνd,id(gd)

∼1

d∑
i1=2

· · ·
d∑

id=2

M̂Di1f1
· · · M̂Didfd

Hν1,i1(g1) · · ·Hνd,id(gd).(4.5)

For each choice of i1, . . . , id ∈ {2, . . . , d}, there are j 6= k in {1, . . . , d} such that ij = ik,
i.e., Dij = Dik . Therefore ∑

σ∈Sd

sgn(σ)Di1fσ(1) · · ·Didfσ(d) = 0.

Taking the antisymmetrization of f1, . . . , fd in (4.5), we find that

(4.6) M̂ϕ3d
z

∑
σ∈Sd

sgn(σ)Hν1(fσ(1), g1) · · ·Hνd(fσ(d), gd) ∈ C1
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for any choice of ν1, . . . , νd ∈ {1, . . . , 10}. By (4.2), we have

M̂ϕ3d
z

∑
σ∈Sd

sgn(σ)[Afσ(1) , Bg1 ] · · · [Afσ(d) , Bgd ]

=

10∑
ν1=1

· · ·
10∑
νd=1

M̂ϕ3d
z

∑
σ∈Sd

sgn(σ)Hν1(fσ(1), g1) · · ·Hνd(fσ(d), gd).(4.7)

Combining (4.7) and (4.6), the lemma is proved. �

Once Lemma 4.2 is proved, the operator M̂ϕ3d
z

can be removed by a standard argument:

Proposition 4.3. Let f1, . . . , fd be analytic functions on B(0, 1 + s). Then for all
g1, . . . , gd ∈ Lip(M), the operator∑

σ∈Sd

sgn(σ)[Afσ(1) , Bg1 ] · · · [Afσ(d) , Bgd ]

is in the trace class.

Proof. Pick an s1 ∈ (0, s0) and define N = {z ∈ M̃ : 1 − s1 ≤ |z| < 1}. Then N = {z ∈
M̃ : 1 − s1 ≤ |z| ≤ 1}, which is a compact subset of M0. For each z ∈ N , we have the
function ϕz and the open set Wz given in Definition 3.6. Since z ∈ Wz and since N is
compact, there is a finite subset F of N such that ∪z∈FWz ⊃ N .

By Lemma 4.2, we have

(4.8)
∑
z∈F

M̂ϕ3d
z

∑
σ∈Sd

sgn(σ)[Afσ(1) , Bg1 ] · · · [Afσ(d) , Bgd ] ∈ C1.

Recall from Definition 3.6 that ϕz = 1 on Wz and 0 ≤ ϕz ≤ 1 on Cn. Since ∪z∈FWz ⊃ N ,
we have

∑
z∈F ϕ

3d
z ≥ χN . Therefore (4.8) implies

M̂χN

∑
σ∈Sd

sgn(σ)[Afσ(1) , Bg1 ] · · · [Afσ(d) , Bgd ] ∈ C1.

On the other hand, since s1 > 0, it follows from Lemma 2.21 that

M̂χM\N

∑
σ∈Sd

sgn(σ)[Afσ(1) , Bg1 ] · · · [Afσ(d) , Bgd ] ∈ C1.

Obviously, the proposition follows from these two memberships. �

Lemma 4.4. Let X1, . . . , Xk be operators such that [Xi, Xj ] = 0 for all i, j ∈ {1, . . . , k}.
Then for any operators Y1, . . . , Yk,

[X1, Y1, . . . , Xk, Yk] =
∑
σ∈Sk

∑
λ∈Sk

sgn(σ)sgn(λ)[Xσ(1), Yλ(1)] · · · [Xσ(k), Yλ(k)].
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Proof. For each 1 ≤ j ≤ k, let τj be the transposition that flips the pair 2j − 1, 2j. That
is, τj(2j − 1) = 2j, τj(2j) = 2j − 1, and τj(i) = i for every i ∈ {1, . . . , 2k}\{2j − 1, 2j}.
Let T2k be the subgroup of S2k generated by τ1, . . . , τk. Then

[B1, B2] · · · [B2k−1, B2k] =
∑
τ∈T2k

sgn(τ)Bτ(1)Bτ(2) · · ·Bτ(2k−1)Bτ(2k)

for all operators B1, B2, . . . , B2k. Consequently,

(4.9)
∑
σ∈S2k

sgn(σ)[Bσ(1), Bσ(2)] · · · [Bσ(2k−1), Bσ(2k)] = 2k[B1, B2, . . . , B2k].

Define A1, . . . , A2k such that A2j−1 = Xj and A2j = Yj for every 1 ≤ j ≤ k. By the
commutation property of X1, . . . , Xk, for any σ ∈ S2k, we have

[Aσ(1), Aσ(2)] · · · [Aσ(2k−1), Aσ(2k)] = 0

unless σ has the property that for every 1 ≤ j ≤ k, the set {σ(2j − 1), σ(2j)} contains
both an odd number and an even number. For every σ that has this property, define

S2k(σ) = {σ′ ∈ S2k : {σ′(2j − 1), σ′(2j)} = {σ(2j − 1), σ(2j)} for every 1 ≤ j ≤ k}.

Then card(S2k(σ)) = 2k, and there is a unique σ∗ ∈ S2k(σ) such that σ∗(2j − 1) is odd
and σ∗(2j) is even for every 1 ≤ j ≤ k. Obviously, for every σ′ ∈ S2k(σ),

sgn(σ′)[Aσ′(1),Aσ′(2)] · · · [Aσ′(2k−1), Aσ′(2k)]

= sgn(σ∗)[Aσ∗(1), Aσ∗(2)] · · · [Aσ∗(2k−1), Aσ∗(2k)].

Therefore∑
σ∈S2k

sgn(σ)[Aσ(1),Aσ(2)] · · · [Aσ(2k−1), Aσ(2k)]

= 2k
∑

such σ∗

sgn(σ∗)[Aσ∗(1), Aσ∗(2)] · · · [Aσ∗(2k−1), Aσ∗(2k)]

= 2k
∑
ε∈Sk

∑
λ∈Sk

sgn(ε)sgn(λ)[Xε(1), Yλ(1)] · · · [Xε(k), Yλ(k)].

Combining this with (4.9), the lemma is proved. �

5. Antisymmetric sums on Q

With the preparations in the previous sections, we can now deal with antisymmetric
sums on the quotient module Q.

Lemma 5.1. Let k,m ∈ Z+ be such that k+m = 2d. Then for any i1, . . . , ik, r1, . . . , rm ∈
{1, . . . , n}, the antisymmetric sum

[Qζi1 , . . . , Qζik , Q
∗
ζr1
, . . . , Q∗ζrm ]
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is in the trace class.

Proof. By identity (4.9), this antisymmetric sum is 0 unless k = m = d. Thus it suffices
to show that for any i1, . . . , id and r1, . . . , rd in {1, . . . , n}, we have

[Qζi1 , Q
∗
ζr1
, . . . , Qζid , Q

∗
ζrd

] ∈ C1.

To prove this membership, we define

fj(ζ) = ζij and gj(ζ) = ζ̄rj

for 1 ≤ j ≤ d. It follows from (2.10), (2.11) and (4.1) that

U∗[Qζi1 , Q
∗
ζr1
, . . . , Qζid , Q

∗
ζrd

]U = [Af1 , Bg1 , . . . , Afd , Bgd ].

Since Qζij = UAfjU
∗ and Q∗ζrj

= UBgjU
∗ for every 1 ≤ j ≤ d, we have [Afj , Afk ] = 0

and [Bgj , Bgk ] = 0 for all j, k ∈ {1, . . . , d}. Applying Lemma 4.4, we have

U∗[Qζi1 , Q
∗
ζr1
, . . . , Qζid , Q

∗
ζrd

]U =
∑
λ∈Sd

sgn(λ)
∑
σ∈Sd

sgn(σ)[Afσ(1) , Bgλ(1) ] · · · [Afσ(d) , Bgλ(d) ].

Proposition 4.3 tells us that this operator is in the trace class. �

Proposition 5.2. [24, Proposition 7.2] For f, g ∈ Lip(S), we have [Qf , Qg] ∈ Cp for every
p > d.

Proposition 5.3. [24, Proposition 7.3] Suppose that d ≥ 2. Then for f, g, h ∈ Lip(S) we
have [Qh, [Qf , Qg]] ∈ Cp for every p > 2d/3.

Proposition 5.4. For f, g ∈ Lip(S), we have Qfg −QfQg ∈ Cp for every p > d.

Proof. This follows from the identity

(5.1) Qfg −QfQg = QMf (1−Q)MgQ = [Q,Mf ](1−Q)[Mg, Q]

and Proposition 2.7. �

Proposition 5.5. Let f, g, h ∈ Lip(S). If d ≥ 2, then [Qh, Qfg − QfQg] ∈ Cp for every
p > 2d/3. If d = 1, then [Qh, Qfg −QfQg] ∈ C1.

Proof. Continuing with (5.1), we have

[Qh, Qfg−QfQg] = Q[Mh, [Q,Mf ](1−Q)[Mg, Q]]Q

= Q[Mh, [Q,Mf ]](1−Q)[Mg, Q]Q−Q[Q,Mf ][Mh, Q][Mg, Q]Q

+Q[Q,Mf ](1−Q)[Mh, [Mg, Q]]Q.

Thus the desired conclusion follows from Proposition 2.7 and Theorem 2.8. �
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Lemma 5.6. Let k ∈ N. For every pair of 1 ≤ i ≤ 2d and 1 ≤ j ≤ k, let Ai,j be an
operator in the collection {1, Qζ1 , . . . , Qζn , Q∗ζ1 , . . . , Q

∗
ζn
}. Define

Ai = Ai,1 · · ·Ai,k
for i = 1, 2, . . . , 2d. Then the antisymmetric sum [A1, A2, . . . , A2d] is in the trace class.

Proof. For every pair of 1 ≤ i ≤ 2d and 1 ≤ j ≤ k, define

Bi,j = Ai,1 · · ·Ai,j−1Ai,j+1 · · ·Ai,k.

In other words, Bi,j is obtained from Ai by replacing the factor Ai,j by 1. It follows from
the “product rule” for commutators and Propositions 5.2 and 5.3 that

[A1, A2] · · · [A2d−1, A2d]

= [A1,1 · · ·A1,k, A2,1 · · ·A2,k] · · · [A2d−1,1 · · ·A2d−1,k, A2d,1 · · ·A2d,k]

∼1

k∑
j1,...,j2d=1

[A1,j1 , A2,j2 ] · · · [A2d−1,j2d−1
, A2d,j2d ]B1,j1B2,j2 · · ·B2d,j2d .

Let σ ∈ S2d. Then the map (j1, . . . , j2d) 7→ (jσ(1), . . . , jσ(2d)) is injective on the product

set {1, . . . , k}2d, hence surjective also. Therefore

[Aσ(1),Aσ(2)] · · · [Aσ(2d−1), Aσ(2d)]

∼1

k∑
j1,...,j2d=1

[Aσ(1),j1 , Aσ(2),j2 ] · · · [Aσ(2d−1),j2d−1
, Aσ(2d),j2d ]

×Bσ(1),j1Bσ(2),j2 · · ·Bσ(2d),j2d

=
k∑

j1,...,j2d=1

[Aσ(1),jσ(1) , Aσ(2),jσ(2) ] · · · [Aσ(2d−1),jσ(2d−1)
, Aσ(2d),jσ(2d) ]

×Bσ(1),jσ(1)Bσ(2),jσ(2) · · ·Bσ(2d),jσ(2d)

∼1

k∑
j1,...,j2d=1

[Aσ(1),jσ(1) , Aσ(2),jσ(2) ] · · · [Aσ(2d−1),jσ(2d−1)
, Aσ(2d),jσ(2d) ]

×B1,j1B2,j2 · · ·B2d,j2d ,

where the second ∼1 follows from Proposition 5.2. By (4.9), we have

[A1,A2, . . . , A2d] = 2−d
∑
σ∈S2d

sgn(σ)[Aσ(1), Aσ(2)] · · · [Aσ(2d−1), Aσ(2d)]

∼1 2−d
k∑

j1,...,j2d=1

∑
σ∈S2d

sgn(σ)[Aσ(1),jσ(1) , Aσ(2),jσ(2) ] · · · [Aσ(2d−1),jσ(2d−1)
, Aσ(2d),jσ(2d) ]

×B1,j1B2,j2 · · ·B2d,j2d

=

k∑
j1,...,j2d=1

[A1,j1 , A2,j2 , . . . , A2d,j2d ]B1,j1B2,j2 · · ·B2d,j2d .
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Applying Lemma 5.1 to each [A1,j1 , A2,j2 , . . . , A2d,j2d ], we obtain the membership [A1, A2,
. . . , A2d] ∈ C1. �

Lemma 5.7. Suppose that A1, A2 and B2, . . . , B2d are finite products of operators in the
collection {Qh : h ∈ Lip(S)}. Then for every pair of f, g ∈ Lip(S), we have

[A1(Qfg −QfQg)A2, B2, . . . , B2d] ∈ C1.

Proof. Denote B1 = A1(Qfg −QfQg)A2. By (4.9),

(5.2) [B1, B2, . . . , B2d] = 2−d
∑
σ∈S2d

sgn(σ)[Bσ(1), Bσ(2)] · · · [Bσ(2d−1), Bσ(2d)].

By Propositions 5.2, 5.4 and 5.5, for each σ ∈ S2d, one of the commutators among

[Bσ(1), Bσ(2)], . . . , [Bσ(2d−1), Bσ(2d)]

is in Ct for every t > 2d/3, while every other commutator is in Cp for every p > d.
Therefore every term on the right-hand side of (5.2) is in the trace class. Consequently, so
is [B1, B2, . . . , B2d]. �

Proof of Theorem 1.3. For p1, . . . , pd, q1, . . . , qd ∈ C[ζ1, . . . , ζn], the membership

[Qp1 , Q
∗
q1 , . . . , Qpd , Q

∗
qd

] ∈ C1

is an immediate consequence of Lemma 5.6. For u1, . . . , u2d, v1, . . . , v2d ∈ C[ζ1, . . . , ζn],
Lemma 5.6 also implies that

[Qu1Q
∗
v1 , Qu2Q

∗
v2 , . . . , Qu2d

Q∗v2d ] ∈ C1.

Combining this with Lemma 5.7, we find that

[Qu1v̄1 , Qu2v̄2 , . . . , Qu2dv̄2d ] ∈ C1.

By linearity, this implies that for f1, f2, . . . , f2d ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n], we have

[Qf1 , Qf2 , . . . , Qf2d ] ∈ C1.

This completes the proof. �

6. Green’s theorem for non-simple curves

First of all, the material in this section should be considered as expository.

Denote D = {z ∈ C : |z| < 1}, the unit disc in C. Suppose that f, g ∈ C1(D̃), where
D̃ = {z ∈ C : |z| < ρ} for some ρ > 1. In [16], Helton and Howe proved the trace formula

(6.1) tr[Tf , Tg] =
1

2πi

∫
D

df ∧ dg
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for Toeplitz operators. This was what motivated Theorem 1.4, and the hope in [24] was
that there might be an analogue of (6.1) for (1.2). But for (1.2), this is certainly a tricky
proposition, because, unlike the unit disc D, M may have singularities, which would be a
problem for integration.

On the other hand, by Green’s theorem, one can rewrite (6.1) in the form

(6.2) tr[Tf , Tg] =
1

2πi

∫
T

fdg.

For the quotient module Q and the range space P, the analogue of T is X = M̃ ∩S, which
is a smooth manifold by our assumption on M̃ , and which does not present a problem for
integration. Thus it makes more sense to look for an analogue of (6.2) for (1.2), and this
was what eventually led to Theorems 1.5 and 1.6.

Let H2 be the classic Hardy space on the unit circle T = {z ∈ C : |z| = 1}. As usual,
we respectively write Tf and Hf for the Toeplitz operator and the Hankel operator with
symbol f on H2. It is well known that

(6.3) [Tf , Tg] = H∗ḡHf −H∗f̄Hg = P [Mf , P ][Mg, P ]P − P [Mg, P ][Mf , P ]P

for all f, g ∈ L∞(T), where P : L2 → H2 is the orthogonal projection.

Let us retrace the steps on [16, pages 150-151] in detail. Write z for the coordinate
function on T. From (6.3) it is easy to deduce that for all j, k ∈ Z+, the commuta-
tor [Tz̄j , Tzk ] is a finite-rank operator. Moreover, if j 6= k, then tr[Tz̄j , Tzk ] = 0, and
tr[Tz̄j , Tzj ] = j for every j ∈ Z+. Hence

(6.4) tr[Tp̄, Tp] =
m∑
j=0

j|cj |2 for polynomial p(z) =
m∑
j=0

cjz
j .

Alternatively, we can write

(6.5) tr[Tp̄, Tp] =
1

2πi

∫
T

p̄dp

for every p ∈ C[z], where the integral on the right-hand side is taken in the sense of
Riemann-Stieltjes. From (6.4) and (6.3) we deduce

(6.6) ‖Hp̄‖22 =

m∑
j=0

j|cj |2 if p(z) =

m∑
j=0

cjz
j ,

where ‖ · ‖2 denotes the Hilbert-Schmidt norm.

Now consider any C1-function f on T. We have the representation

f(z) =

∞∑
j=−∞

ajz
j .
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For each k ∈ N, define

fk(z) =

k∑
j=−k

ajz
j .

Then it follows from (6.6) that

(6.7) lim
k→∞

‖Hf̄ −Hf̄k‖2 = 0 and lim
k→∞

‖Hf −Hfk‖2 = 0.

In particular, Hf and Hf̄ are Hilbert-Schmidt operators. By (6.3), the commutator [Tf̄ , Tf ]
is in the trace class. Moreover, it follows from (6.7) and (6.3) that

lim
k→∞

‖[Tf̄ , Tf ]− [Tf̄k , Tfk ]‖1 = 0.

From (6.5) it is easy to deduce that

tr[Tf̄k , Tfk ] =
1

2πi

∫
T

f̄kdfk

for every k ∈ N. It is obvious that

lim
k→∞

1

2πi

∫
T

f̄kdfk =
1

2πi

∫
T

f̄df.

Summarizing the above, we have

Lemma 6.1. If f ∈ C1(T), then the commutator [Tf̄ , Tf ] is in the trace class with

tr[Tf̄ , Tf ] =
1

2πi

∫
T

f̄df.

By approximation, the condition f ∈ C1(T) in Lemma 6.1 can be weakened:

Proposition 6.2. Let f be a Lipschitz function on T. Then the commutator [Tf̄ , Tf ] is in
the trace class, and we have

(6.8) tr[Tf̄ , Tf ] =
1

2πi

∫
T

f̄df.

Proof. For g ∈ L1(T) and 0 ≤ r < 1, we denote

gr(e
it) =

1

2π

∫ π

−π
g(ei(t+s))

1− r2

|1− reis|2
ds.

Let f ∈ Lip(T). Then fr ∈ C1(T) for 0 < r < 1. By Lemma 6.1, we have [Tf̄r , Tfr ] ∈ C1
and

(6.9) tr[Tf̄r , Tfr ] =
1

2πi

∫
T

f̄rdfr.
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If we write L(f) and L(fr) for the Lipschitz constants of f and fr, then it is easy to see that
L(fr) ≤ L(f). Let K(eit, eiu) and Kr(e

it, eiu) be the integral kernels for the commutators
[Mf , P ] and [Mfr , P ] respectively. It is easy to see that

|K(eit, eiu)| ≤ L(f) and |Kr(e
it, eiu)| ≤ L(fr) ≤ L(f)

when eit 6= eiu. Also, when eit 6= eiu, we have Kr(e
it, eiu) → K(eit, eiu) as r ↑ 1. Thus it

follows from the dominated convergence theorem that

lim
r↑1
‖[Mf , P ]− [Mfr , P ]‖2 = 0 and, consequently, lim

r↑1
‖[Mf̄ , P ]− [Mf̄r , P ]‖2 = 0.

Combining this with (6.3), we find that

(6.10) lim
r↑1
‖[Tf̄ , Tf ]− [Tf̄r , Tfr ]‖1 = 0.

In particular, [Tf̄ , Tf ] ∈ C1.

For any ϕ ∈ Lip(T), define

(Dϕ)(eit) = lim
δ→0

1

δ
(ϕ(ei(t+δ))− ϕ(eit))

at each eit ∈ T where the above limit exists. The condition ϕ ∈ Lip(T) implies Dϕ ∈
L∞(T). By the Poisson integral formula, the Lipschitz condition for ϕ and the domi-
nated convergence theorem, we have D(ϕr) = (Dϕ)r for every 0 < r < 1. Consequently,
‖D(ϕr)‖∞ ≤ ‖Dϕ‖∞ for every 0 < r < 1. By the properties of the Poisson integral,

lim
r↑1

(Dϕ)r = Dϕ a.e. on T.

Applying these facts to the f under consideration and using the properties of Riemann-
Stieltjes integral, we have

lim
r↑1

1

2πi

∫
T

f̄rdfr = lim
r↑1

1

2πi

∫ π

−π
fr(eit)(Dfr)(e

it)dt = lim
r↑1

1

2πi

∫ π

−π
fr(eit)(Df)r(e

it)dt

=
1

2πi

∫ π

−π
f(eit)(Df)(eit)dt =

1

2πi

∫
T

f̄df,(6.11)

where the third = follows from the dominated convergence theorem. Combining (6.9),
(6.10) and (6.11), we obtain (6.8). �

Next we review the Carey-Pincus theory of principal functions [4,5,19]. Suppose that
A, B are bounded self-adjoint operators such that the commutator [A,B] is in the trace
class. Then there exists a real-valued g ∈ L1(R2), which is called the principal function
for the pair A, B, such that

(6.12) tr[p(A,B), q(A,B)] =
−1

2πi

∫∫
{p, q}(x, y)g(y, x)dxdy
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for all polynomials p, q ∈ C[x, y], where

{p, q}(x, y) =
∂p

∂x
(x, y)

∂q

∂y
(x, y)− ∂p

∂y
(x, y)

∂q

∂x
(x, y).

It is known that g is supported on the spectrum of the operator T = A + iB. More
important, for each point (x, y) such that x+ iy is not in the essential spectrum of T ,

(6.13) g(y, x) = index(T − (x+ iy)).

See [4, Theorem 4], or [5, Theorem 8.1].

We now apply the Carey-Pincus theory to Toeplitz operators on H2. We begin with
any Lipschitz function f on T. Consider the operators

A = TRe(f), B = TIm(f) and T = A+ iB.

Then, of course, T = Tf . By Proposition 6.2, we have [A,B] = (2i)−1[Tf̄ , Tf ] ∈ C1.

Since f ∈ Lip(T), the two-dimensional Lebesgue measure of the set f(T) = {f(z) :
z ∈ T} is zero. It is well known that the essential spectrum of Tf equals f(T) [8]. Thus
the two-dimensional Lebesgue measure of the essential spectrum of Tf is zero. Let g
be the principal function for this pair A, B. By (6.13), for each (x, y) ∈ R2 such that
x+ iy /∈ f(T), we have

g(y, x) = index(Tf − (x+ iy)) = −{the winding number of f about x+ iy},

where the second = is a well-known fact about Toeplitz operators on H2 [8]. This motivates
us to define the function

(6.14) w(f ;x+ iy) =

 the winding number of f about x+ iy if x+ iy /∈ f(T)

0 if x+ iy ∈ f(T)
.

With this function, we can rewrite the above identity in the form

g(y, x) = −w(f ;x+ iy) for a.e. (x, y) ∈ R2.

Applying (6.12) to the case p(x, y) = x and q(x, y) = y, we now have

tr[Tf̄ , Tf ] = 2itr[A,B] =
−1

π

∫∫
g(y, x)dxdy =

1

π

∫∫
w(f ;x+ iy)dxdy.

Combining this with Proposition 6.2, we obtain

Proposition 6.3. Let f ∈ Lip(T). Then the function w(f ;x+ iy) defined by (6.14) is in
L1(R2), and we have the identify

(6.15)
1

2πi

∫
T

f̄df =
1

π

∫∫
w(f ;x+ iy)dxdy.
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If the function f : T → C is C1 and one-to-one, i.e, a smooth Jordan curve, then
(6.15) obviously follows from Green’s theorem. Thus one can regard Proposition 6.3 as a
specialized version of Green’s theorem for general Lipschitz curves, which can have plenty
of self-intersections.

7. A weighted Bergman space on M

For this section we assume d = 1, i.e., dimCM̃ = 1. Recall that we denote X = M̃ ∩S.
Write M for the closure of M in Cn.

Recall from Definition 2.10 that for f ∈ L∞(M), we write M̂f for the operator on

L2(µ) of multiplication by f . For such an f we also have the operator T̃fh = EM̂f

∣∣P
introduced in Section 4. We think of T̃f as a Toeplitz operator on P.

Lemma 7.1. For any f ∈ C(M), the commutator [M̂f , E] is compact.

Proof. This is an immediate consequence of Proposition 2.16. �

The following is an immediate consequence of Lemma 2.21:

Corollary 7.2. If f ∈ C(M) and if f = 0 on X, then T̃f is a compact operator.

Lemma 7.3. For each f ∈ C(M), the essential spectrum of T̃f is contained in f(X).

Proof. Let f ∈ C(M). If λ ∈ C\f(X), then there is a g ∈ C(M) such that (f − λ)g = 1
on X. Thus it follows from Lemma 7.1 and Corollary 7.2 that

(T̃f − λ)T̃g = 1 +K1 and T̃g(T̃f − λ) = 1 +K2,

whereK1 andK2 are compact operators. This means that λ is not in the essential spectrum
of T̃f . �

We write X = M̃ ∩ S as the union of its connected components:

(7.1) X = Γ1 ∪ · · · ∪ Γ`.

Under the assumption d = 1, X is a compact manifold of real dimension 1. Thus each Γj
is diffeomorphic to T, 1 ≤ j ≤ `. Obviously, each Γj has two opposite orientations. We
fix an orientation for each Γj . Thus if γ : Γj → C is any continuous function, then it has
a winding number, whose sign depends on our choice of orientation for Γj , about every
λ ∈ C\γ(Γj). Let f ∈ C(M). For every λ ∈ C\f(X) and every 1 ≤ j ≤ `, we denote

(7.2) wj(f ;λ) = the winding number of f : Γj → C about λ.

For each j ∈ {1, . . . , `}, there is a ϕj ∈ C(X) such that ϕj = 1 on Γk for every k 6= j,
|ϕj | = 1 on Γj , and wj(ϕj , 0) = 1. By the Tietze extension theorem, there is a ψj ∈ C(M)
such that ϕj = ψj

∣∣X. Denote

(7.3) cj = −index(T̃ψj ).

30



This defines the integers c1, . . . , c`.

Proposition 7.4. Let f ∈ C(M). If 0 /∈ f(X), then

index(T̃f ) = −
∑̀
j=1

cjwj(f ; 0),

where c1, . . . , c` are the integers defined by (7.3).

Proof. Let f ∈ C(M) be given, and suppose that 0 /∈ f(X). For each 1 ≤ j ≤ `, denote
νj = wj(f ; 0). For each 1 ≤ j ≤ `, we define

ηj =


ψj if νj ≥ 1

ψ̄j if νj ≤ −1

1 if νj = 0

.

By (7.3), we have

index(T̃ηj ) =


−cj if νj ≥ 1

cj if νj ≤ −1

0 if νj = 0

.

By what we know about winding numbers, there is a continuous function F : [0, 1]×X →
C\{0} such that

F (0, x) = f(x) and F (1, x) =
∏̀
j=1

{ηj(x)}|νj |

for every x ∈ X. Applying the Tietze extension theorem again, there is a continuous
G : [0, 1] ×M → C such that F is the restriction of G to the subset [0, 1] ×X. We now
define

gt(z) = G(t, z), z ∈M,

for each t ∈ [0, 1]. By Lemma 7.3, each T̃gt is a Fredholm operator. Since the map t 7→ T̃gt
is continuous with respect to the operator norm, index(T̃gt) remains constant as t varies
in [0, 1]. Note that the functions

f − g0 and g1 −
∏̀
j=1

η
|νj |
j

vanish on X. Applying Corollary 7.2 and Lemma 7.1, we have

index(T̃f ) = index(T̃g0) = index(T̃g1) = index

( ∏̀
j=1

T̃ |νj |ηj

)

=
∑̀
j=1

|νj |index(T̃ηj ) = −
∑̀
j=1

cjwj(f ; 0)
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as promised. �

The condition d = 1 entails the following Schatten-class memberships:

Proposition 7.5. [24, Proposition 11.2] For every f ∈ Lip(M), the commutators [M̂f , T̂µ]

and [M̂f , E] are in the Hilbert-Schmidt class C2.

Corollary 7.6. For all f, g ∈ Lip(M), the commutator [T̃f , T̃g] is in the trace class.

Proof. By the identity

[T̃f , T̃g] = E[M̂f , E][M̂g, E]E − E[M̂g, E][M̂f , E]E,

the membership [T̃f , T̃g] ∈ C1 follows from Proposition 7.5. �

Proposition 7.7. For every f ∈ Lip(M), we have [T̃f̄ , T̃f ] ∈ C1 and

tr[T̃f̄ , T̃f ] =
1

2πi

∑̀
j=1

cj

∫
Γj

f̄df,

where Γ1, . . . ,Γ` and c1, . . . , c` are given by (7.1) and (7.3) respectively.

Proof. For f ∈ Lip(M), Corollary 7.6 tells us that the commutator [T̃f̄ , T̃f ] is in the
trace class. To compute its trace, we again resort to the Carey-Pincus theory, which was
reviewed in Section 6. Define

A = T̃Re(f), B = T̃Im(f) and T = A+ iB = T̃f .

We have [A,B] = (2i)−1[T̃f̄ , T̃f ] ∈ C1.

Let g be the principal function for this pair A, B. By (6.12),

tr[T̃f̄ , T̃f ] = 2itr[A,B] =
−1

π

∫∫
g(y, x)dxdy.

Recall from Lemma 7.3 that the essential spectrum of T̃f is contained in f(X). Since
f ∈ Lip(M) and since dimRX = 1, the two-dimensional Lebesgue measure of the set f(X)
is 0. It follows from (6.13) and Proposition 7.4 that if x+ iy ∈ C\f(X), then

g(y, x) = index(T̃f − (x+ iy)) = −
∑̀
j=1

cjwj(f − (x+ iy); 0) = −
∑̀
j=1

cjwj(f ;x+ iy).

Therefore

(7.4) tr[T̃f̄ , T̃f ] =
∑̀
j=1

cj
π

∫∫
wj(f ;x+ iy)dxdy.
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For each 1 ≤ j ≤ `, let hj : T→ Γj be an orientation-preserving diffeomorphism. Then

wj(f ;x+ iy) = w(f ◦ hj ;x+ iy) for x+ iy ∈ C\f(X).

Thus, applying Proposition 6.3, for each 1 ≤ j ≤ ` we have

1

π

∫∫
wj(f ;x+ iy)dxdy

=
1

π

∫∫
w(f ◦ hj ;x+ iy)dxdy =

1

2πi

∫
T

f ◦ hjdf ◦ hj =
1

2πi

∫
Γj

f̄df.

Substituting this in (7.4), the proof is complete. �

Corollary 7.8. For every pair of f, g ∈ Lip(M), we have

(7.5) tr[T̃f , T̃g] =
1

2πi

∑̀
j=1

cj

∫
Γj

fdg,

where Γ1, . . . ,Γ` and c1, . . . , c` are given by (7.1) and (7.3) respectively.

Proof. If f, g ∈ Lip(M) are real valued, then (7.5) follows Proposition 7.7 by considering
the function f+ ig. But once (7.5) is established for real-valued f, g ∈ Lip(M), the general
case follows from the linearity of both sides. �

Proposition 7.9. For the integers c1, . . . , c` defined by (7.3), we have

|c1|+ · · ·+ |c`| > 0.

Proof. For each 1 ≤ j ≤ n, the Mζj on P is obviously a subnormal operator. Therefore
[M∗ζj ,Mζj ] ≥ 0. If it were true that |c1|+ · · ·+ |c`| = 0, then by Proposition 7.7 we would
have

tr[M∗ζj ,Mζj ] = tr[T̃ζ̄j , T̃ζj ] = 0

for every 1 ≤ j ≤ n. Since [M∗ζj ,Mζj ] ≥ 0, this means [M∗ζj ,Mζj ] = 0. Thus for all
1 ≤ j ≤ n and h ∈ P, we have

‖EM̂ζ̄jh‖
2 = ‖M∗ζjh‖

2 = 〈MζjM
∗
ζjh, h〉 = 〈M∗ζjMζjh, h〉

= ‖Mζjh‖2 = ‖M̂ζjh‖2 = ‖M̂ζ̄jh‖
2 = ‖EM̂ζ̄jh‖

2 + ‖(1− E)M̂ζ̄jh‖
2.

We conclude that (1−E)M̂ζ̄jh = 0 for all 1 ≤ j ≤ n and h ∈ P. In other words, M̂ζ̄jh ∈ P
for all 1 ≤ j ≤ n and h ∈ P. This means that P contains the closure of C[ζ1, ζ̄1, . . . , ζn, ζ̄n]
in L2(µ). That is, P = L2(µ). But this is obviously a contradiction, because P consists
of the restrictions to M of the functions in H2(S), which, for example, rules out any
real-valued functions that are not locally constant on the regular part of M . �

33



8. Proofs of Theorems 1.5 and 1.6

In this section we continue to assume d = 1.

Lemma 8.1. [17, Lemma 1.3] Suppose that X is a self-adjoint operator and C is a compact
operator. If [X,C] is in the trace class, then tr[X,C] = 0.

Lemma 8.2. For f, g, h1, . . . , hk ∈ Lip(S), the commutator [Qfg −QfQg, Qh1
· · ·Qhk ] is

in the trace class with zero trace.

Proof. Obviously, the membership

(8.1) [Qfg −QfQg, Qh1 · · ·Qhk ] ∈ C1

follows from Proposition 5.5 and the “product rule” for commutators. Similarly, we have

[Qfg −QfQg, {Qh1
· · ·Qhk}∗] = [Qfg −QfQg, Qh̄k · · ·Qh̄1

] ∈ C1.

Since Qfg −QfQg is compact, the fact tr[Qfg −QfQg, Qh1
· · ·Qhk ] = 0 now follows from

Lemma 8.1. �

We know that for all p, q, r, s ∈ C[ζ1, . . . , ζn], the commutator [Q∗pQq, Q
∗
rQs] is in the

trace class. See [24, page 45].

Lemma 8.3. Let p, q, r, s ∈ C[ζ1, . . . , ζn]. Then the commutator [Qp̄q, Qr̄s] is in the trace
class. Moreover,

(8.2) tr[Qp̄q, Qr̄s] = tr[Q∗pQq, Q
∗
rQs] = tr[M∗pMq,M

∗
rMs] = tr[T̃p̄q, T̃r̄s].

Proof. Since Q∗p = Qp̄ and Q∗r = Qr̄, we have

[Qp̄q, Qr̄s] = [Q∗pQq, Qr̄s] + [Qp̄q −Qp̄Qq, Qr̄s]
= [Q∗pQq, Q

∗
rQs] + [Qp̄Qq, Qr̄s −Qr̄Qs] + [Qp̄q −Qp̄Qq, Qr̄s].

By the fact [Q∗pQq, Q
∗
rQs] ∈ C1 and (8.1), we have the membership [Qp̄q, Qr̄s] ∈ C1. The

first = in (8.2) is obtained by applying Lemma 8.2 in the above identity. The second = in
(8.2) is provided by Theorem 1.4. Finally, the third = in (8.2) holds because M∗pMq = T̃p̄q

and M∗rMs = T̃r̄s (see Definition 2.12). This completes the proof. �

Proof of Theorem 1.5. This follows immediately from Lemma 8.3 and Corollary 7.8. �

Proof of Theorem 1.6. For f, g ∈ C[ζ1, ζ̄1, . . . , ζn, ζ̄n], there are analytic polynomials pν ,

qν , rν , sν ∈ C[ζ1, . . . , ζn], 1 ≤ ν ≤ k, such that f =
∑k
ν=1 p̄νqν and g =

∑k
ν=1 r̄νsν . Thus

[Qf , Qg] =
k∑

m=1

k∑
ν=1

[Qp̄mqm , Qr̄νsν ],
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which, according to Lemma 8.3, is in the trace class. Furthermore, it follows from Lemma
8.3 and Corollary 7.8 that

tr[Qf , Qg] =
k∑

m=1

k∑
ν=1

tr[T̃p̄mqm , T̃r̄νsν ] =
k∑

m=1

k∑
ν=1

1

2πi

∑̀
j=1

cj

∫
Γj

p̄mqmdr̄νsν

=
1

2πi

∑̀
j=1

cj

∫
Γj

fdg.

This completes the proof. �

9. A family of examples

We now apply Theorems 1.5 and 1.6 to a family of examples. In this section we assume
n = 2. That is, we only consider the case of two complex variables. Thus B = {(z, w) ∈
C2 : |z|2 + |w|2 < 1} and S = {(z, w) ∈ C2 : |z|2 + |w|2 = 1} for this section.

We begin with a pair of natural numbers p ≥ 2 and q ≥ 2 that are relatively prime.
For convenience, we assume p < q. Define

M̃p,q = {(z, w) ∈ C2 : zp − wq = 0}.

Obviously, M̃p,q is an analytic subset of C2 with the point (0, 0) as its only singularity. In
accordance with Notation 2.3, we write

Mp,q = M̃p,q ∩B and

Qp,q = H2(S)	 {f ∈ H2(S) : f = 0 on Mp,q}.(9.1)

To apply Theorems 1.5 and 1.6 to this Qp,q, we need to verify one fact:

Lemma 9.1. For any such pair of p, q, M̃p,q intersects S transversely.

Proof. Although this is totally elementary, we will work out the details anyway.

We begin with the function f(x) = x2 + x2q/p defined on (0,∞). Obviously, f is
strictly increasing and C∞ on (0,∞). Moreover, the range of f equals (0,∞). Therefore
f has an inverse function g : (0,∞) → (0,∞), which is also strictly increasing and C∞.
There is a unique b ∈ (0,∞), in fact b ∈ (0, 1), such that

(9.2) 1− b2 − b2q/p = 0.

Let ζ ∈ M̃p,q ∩ S. Then there are θ, φ ∈ R with eipθ = eiqφ such that

(9.3) ζ =
(

(1− b2)1/2eiθ, beiφ
)
.

Obviously, (9.2) means f(b) = 1. Therefore b = g(1). Since 0 < b < 1, we see that there is
an ε > 0 such that the function x− g2(x) is positive on I = (1− ε, 1 + ε). We now define

γ(x) =
(

(x− g2(x))1/2eiθ, g(x)eiφ
)
, x ∈ I.
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By the equations f(g(x)) = x and eipθ = eiqφ, the range of γ is contained in M̃p,q.

Moreover, γ(1) = ζ. Therefore γ′(1) ∈ Tζ . Since ζ is an arbitrary point in M̃p,q ∩ S, the
lemma will be proved if we can show that 〈γ′(1), ζ〉 6= 0.

To prove this assertion, note that

g′(1) =
1

f ′(g(1))
=

1

2g(1) + (2q/p){g(1)}(2q/p)−1
=

1

2b+ (2q/p)b(2q/p)−1
.

Moreover,
γ′(1) =

(
αeiθ, g′(1)eiφ

)
,

where

α =
1

2
· 1− 2g(1)g′(1)

(1− g2(1))1/2
=

1− {1 + (q/p)b(2q/p)−2}−1

2(1− b2)1/2
.

Combining these facts with (9.3), we see that 〈γ′(1), ζ〉 6= 0. This completes the proof. �

Lemma 9.2. Denote Xp,q = M̃p,q ∩ S. Then

(9.4) Xp,q = {((1− b2)1/2eiqt, beipt) : 0 ≤ t ≤ 2π},

where b ∈ (0, 1) satisfies equation (9.2). Moreover, for any 0 ≤ t < t′ < 2π, we have

(9.5) ((1− b2)1/2eiqt, beipt) 6= ((1− b2)1/2eiqt
′
, beipt

′
).

Proof. This is again elementary.

As we saw in the proof of Lemma 9.1, an arbitrary ζ ∈ Xp,q is given by (9.3), where
θ, φ ∈ R satisfy the condition eipθ = eiqφ. That is, pθ − qφ = 2mπ for some m ∈ Z.
Since p, q are relatively prime, there are j, k ∈ Z such that pj − qk = −m. Consequently,
p(θ + 2jπ)− q(φ+ 2kπ) = 0. Thus if we set t = (φ+ 2kπ)/p, then

eiqt = ei(q/p)(φ+2kπ) = ei(θ+2jπ) = eiθ and eipt = ei(φ+2kπ) = eiφ.

This obviously implies (9.4).

Note that (9.5) is equivalent to the assertion that (eiqt, eipt) 6= (1, 1) for every 0 <
t < 2π. For any 0 < t < 2π, if it were true that (eiqt, eipt) = (1, 1), then we would have
pt = 2jπ and qt = 2kπ for some j, k ∈ Z. Thus j/p = k/q, i.e., jq = kp. Since p, q
are relatively prime, this implies that j is divisible by p and k is divisible by q, which
contradicts the condition 0 < t < 2π. Hence (9.5) holds. �

Lemma 9.2 provides a diffeomorphism Φ : T→ Xp,q by the formula

Φ(τ) =
(

(1− b2)1/2τ q, bτp
)
, τ ∈ T.

We choose the orientation of Xp,q to be such that Φ is orientation preserving.
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Theorem 9.3. For any f, g ∈ C[ζ1, ζ̄1, ζ2, ζ̄2], the commutator [Qf , Qg] on the quotient
module Qp,q is in the trace class, and we have the explicit formula

tr[Qf , Qg] =
1

2πi

∫
Xp,q

fdg =
1

2πi

∫ 2π

0

f((1− b2)1/2eiqt, beipt)dg((1− b2)1/2eiqt, beipt),

where 0 < b < 1 satisfies equation (9.2).

Proof. Obviously, Xp,q has only one component. Applying Theorem 1.6, we only need to
show that c1 = 1 for the present situation. To prove this fact, we use the range space
Pp,q that corresponds to the quotient module Qp,q. Recall from Section 2 that Pp,q is the
closure of C[ζ1, ζ2] in L2(Mp,q, dµ).

Note that Φ−1 : Xp,q → T has winding number 1 about 0. By the Tietze extension
theorem, there is a ψ ∈ C(Mp,q) such that Φ−1 = ψ

∣∣Xp,q. By Corollary 7.8, we have

c1 = −index(T̃ψ).

Thus it suffices to show that index(T̃ψ) = −1. We know from Proposition 7.9 that c1 6= 0.

Therefore index(T̃ψ) 6= 0.

Consider the coordinate function ζ1 on C2. By Lemma 9.2, the winding number of ζ1
on Xp,q about 0 is q. Thus it follows from Proposition 7.4 that

(9.6) index(T̃ζ1) = q × index(T̃ψ).

Note that T̃ζ1 = Mζ1 on Pp,q. It is obvious that ker(Mζ1) = {0}. Thus index(Mζ1) ≤ 0.

Combining this with (9.6) and with the fact index(T̃ψ) 6= 0, we have index(Mζ1) ≤ −q.

On the other hand, because ζp1 − ζ
q
2 vanishes on Mp,q and because range(Mζ1) is a

closed linear subspace of Pp,q, we have

range(Mζ1) + span{1, ζ2, . . . , ζq−1
2 } = Pp,q.

This means that index(Mζ1) ≥ −q. Combining this with the conclusion of the previous

paragraph, we obtain the equality index(T̃ζ1) = index(Mζ1) = −q. Substituting this in

(9.6), we find that index(T̃ψ) = −1 as promised. This completes the proof. �
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