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Abstract. The famous Helton-Howe trace formula was originally established for antisym-
metric sums of Toeplitz operators on the Bergman space of the unit ball. We prove the
analogue of this formula on the Drury-Arveson space.

1. Introduction

Given any bounded operators A1, . . . , Ak on a Hilbert space H, one has the antisym-
metric sum

[A1, . . . , Ak] =
∑
σ∈Sk

sgn(σ)Aσ(1) · · ·Aσ(k),

which naturally generalizes the notion of commutator. This was first introduced by Helton
and Howe in [11], and has since become an important part of operator theory and non-
commutative geometry [5,7]. As it turns out, operators on reproducing-kernel Hilbert
spaces provide some of the particularly interesting examples of antisymmetric sums.

Let B be the unit ball {z ∈ Cn : |z| < 1} in Cn. As usual, we write L2
a(B) for the

Bergman space. Given an f ∈ L∞(B), we have the familiar Toeplitz operator Tf defined
by the formula

(1.1) Tfh = P (fh), h ∈ L2
a(B),

where P : L2(B) → L2
a(B) is the orthogonal projection. We recall the following classic

result of Helton and Howe:

Theorem 1.1. [11, Theorem 7.2] Let f1, f2, . . . , f2n be C∞-functions on an open set con-
taining B. Then the antisymmetric sum [Tf1 , Tf2 , . . . , Tf2n ] is in the trace class. Moreover,

(1.2) tr[Tf1 , Tf2 , . . . , Tf2n ] =
n!

(2πi)n

∫
B

df1 ∧ df2 ∧ · · · ∧ df2n.

We further recommend to the reader the recent article [13], in which this trace formula
was re-examined from the modern perspective of non-commutative geometry and quanti-
zation. More generally, the study of the Arveson-Douglas conjecture [2,3,6] has brought
renewed interest in antisymmetric sums and their traces [10,14].

The purpose of this paper is to prove the analogue of (1.2) for the Drury-Arveson
space. It is not surprising that this has not been done before, for the Drury-Arveson space

Key words and phrases. Drury-Arveson space, trace formula.

1



is notorious for the scarcity of results. In fact, this paper is a good illustration of the
difficulties for obtaining results on the Drury-Arveson space.

Recall that the Drury-Arveson space H2
n is the Hilbert space of analytic functions on

B that has the function

Kz(ζ) =
1

1− 〈ζ, z〉

as its reproducing kernel [1,9]. Equivalently, H2
n can be described as the Hilbert space of

analytic functions on B where the inner product is given by

〈h, g〉 =
∑
α∈Zn

+

α!

|α|!
aαbα

for

h(ζ) =
∑
α∈Zn

+

aαζ
α and g(ζ) =

∑
α∈Zn

+

bαζ
α.

Throughout the paper, we follow the usual multi-index convention [12, page 3]. Further-
more, we assume that the complex dimension n is at least 2.

There are, of course, no Toeplitz operators on H2
n in general. But there are multipli-

cation operators. An analytic function f on B is said to be a multiplier of H2
n if fh ∈ H2

n

for every h ∈ H2
n. Recall that the notion multiplier was first introduced by Arveson in [1].

As usual, we write M for the collection of multipliers of H2
n. For each f ∈ M, we have

the multiplication operator

Mfh = fh, h ∈ H2
n,

on the Drury-Arveson space, which is necessarily bounded [1]. The operator norm ‖Mf‖
is called the multiplier norm of f , and is commonly denoted by ‖f‖M. For f, g ∈ M, the
operator M∗fMg is the proper analogue on H2

n of the Toeplitz operator Tf̄g.

Taking the condition in Theorem 1.1 as a guide, to obtain trace-class membership
for antisymmetric sums on H2

n, we need some smoothness for the “symbol functions”
involved. Thus we need to focus on “smooth subclasses” ofM. The following are some of
the convenient “smooth subclasses” of M.

For each s > 1, let H∞s denote the collection of analytic functions f on the open ball
B(0, s) = {z ∈ Cn : |z| < s} satisfying the condition ‖f‖s,∞ <∞, where

‖f‖s,∞ = sup{|f(z)| : z ∈ B(0, s)}.

It is easy to show that M⊃ H∞s for every s > 1. (See Proposition 2.5 below.) Thus each
H∞s , s > 1, is a smooth subclass of M.

The key to establishing the analogue of Theorem 1.1 for the Drury-Arveson space H2
n

is a bound on trace norm ‖ · ‖1, which has obvious significance in its own right:
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Theorem 1.2. Given any 1 < s < ∞, there is a 0 < C = C(s) < ∞ such that for all
f1, . . . , f2n, g1, . . . , g2n ∈ H∞s , the antisymmetric sum [M∗f1Mg1 ,M

∗
f2
Mg2 , . . . ,M

∗
f2n
Mg2n ]

on H2
n satisfies the trace-norm bound

‖[M∗f1Mg1 ,M
∗
f2Mg2 , . . . ,M

∗
f2nMg2n ]‖1 ≤ C

2n∏
j=1

‖fj‖s,∞‖gj‖s,∞.

Using Theorem 1.2, we can prove the following analogue of trace formula (1.2) for the
Drury-Arveson space:

Theorem 1.3. Let f1, . . . , f2n, g1, . . . , g2n ∈ H∞s for some s > 1. Then on the Drury-
Arveson space H2

n, we have the trace formula

(1.3) tr[M∗f1Mg1 ,M
∗
f2Mg2 , . . . ,M

∗
f2nMg2n ] =

n!

(2πi)n

∫
B

df̄1g1 ∧ df̄2g2 ∧ · · · ∧ df̄2ng2n.

The rest of the paper is devoted to the proofs of these two theorems. Due to the
nature of the Drury-Arveson space, the proofs require many steps and new ideas. Let us
briefly describe how these proofs are organized, together with some of the main ideas.

We begin with some basic preliminaries in Section 2. In Section 3, we first derive a
precise integral formula for the norm on H2

n. This formula gives us a convenient resolution
of the identity operator (3.4) for the Drury-Arveson space. Based on (3.4), we introduce
the operators T1, T2 and T = T1 + T2. The operator T is invertible on H2

n and has the
property 1− T ∈ C1, which paves the way for the next step.

In Section 4, we introduce the range space P forH2
n. The idea of range space came from

the study [8] of the geometric Arveson-Douglas conjecture, and has proven its usefulness
in [14]. In effect, we are treating H2

n as a quotient module of itself, with {0} serving as
the corresponding submodule. The introduction of P addresses a well-known difficulty in
the theory of the Drury-Arveson space: there is no L2 naturally associated with H2

n. In
contrast, there is a natural Hilbert space L that contains P. Thus L gives us a surrogate
for an “L2-space containing H2

n”. The operators T1, T2 and T then have their respective
representations T̂1, T̂2 and T̂ on L. If we write P for the orthogonal projection from L to
P, then P − T̂ is in the trace class. Since T̂ is given by an explicit formula, this gives us a
total control of the projection P : L → P. Section 4 reduces the proof of Theorem 1.2 to
the bounding of the trace norm of antisymmetric sums of the form

(1.4) [M̃∗g1M̃h1 , M̃
∗
g2M̃h2 , . . . , M̃

∗
g2nM̃h2n ]

on the range space P. Because of our control of P , (1.4) can be handled in a way similar
to how antisymmetric sums of Toeplitz operators are handled on the Bergman space or
the Hardy space. The difference is that the handling of (1.4) on P is much more tedious.

The bounding of the trace norm of (1.4) involves numerous estimates of Schatten p-
norms of commutators, double commutations, and other kinds of operators. Because of
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the nature of L, these estimates can be transformed to estimates for integral operators
on a bona fide L2-space, L2(Ω, dµ). Thus familiar techniques such as Schur test and
interpolation can be brought to bear. Section 5 takes care of the estimates on L2(Ω, dµ).

Then in Section 6, we use the results in Section 5 to derive Schatten-norm bounds for
commutators [M̂f , P ] and double commutators [M̂g, [M̂f , P ]] on L.

Although L is a surrogate for an “L2-space containing H2
n”, it is not an actual L2-

space, which causes the following problem. For a multiplication operator M̂f on L, its

adjoint, M̂∗f , is not a multiplication operator. Thus in general we have [M̂∗f , M̂g] 6= 0. We

deal with this problem in Section 7. In essence, we show that the difference M̂∗f − M̂f̄ is
small enough for our purpose.

The pair of spaces L and P and the orthogonal projection P : L → P naturally lead
to the analogue

T̃f = PM̂f

∣∣P
of Toeplitz operator on P. The main result in Section 8 is Lemma 8.10, which says
that modulo appropriate Schatten class, the f in the commutator [T̃f , T̃g] can be “locally
extracted from commutation” under the condition f ∈ H∞s for some s > 1.

Then, by combining the results from the previous sections with general techniques for
handling antisymmetric sums, we complete the proof of Theorem 1.2 in Section 9.

In Section 10 we prove Theorem 1.3, which takes two steps. For the first step, using
an old idea of Coburn [4], we show that there is a unitary operator U : L2

a(B)→ H2
n such

that if f1, . . . , f2n, g1, . . . , g2n ∈ C[ζ1, . . . , ζn], then

U∗[M∗f1Mg1 ,M
∗
f2Mg2 , . . . ,M

∗
f2nMg2n ]U = [Tf̄1g1 , Tf̄2g2 , . . . , Tf̄2ng2n ] + Y,

where Y = Yf1,...,f2n,g1,...,g2n is in the trace class with zero trace. By this identity, the
polynomial version of (1.3) follows from Theorem 1.1, i.e., the Bergman-space case. Then
Theorem 1.2 allows us to accomplish the second step in the proof of Theorem 1.3, namely,
we derive the general version of (1.3) from the polynomial version by approximation.

Acknowledgement. The author is grateful to Yi Wang for communicating a valuable
calculation, which led to the discovery of the function ψm introduced in Section 3.

2. Preliminaries

For each 1 ≤ p < ∞, let Cp denote the Schatten p-class. In other words, Cp = {A ∈
B(H) : ‖A‖p <∞}, where ‖A‖p = {tr((A∗A)p/2)}1/p. We recall the following:

Lemma 2.1. [5, Lemma 2.9] Let A ∈ Cp1 and B ∈ Cp2 , where p1, p2 ∈ [1,∞). If
p1p2/(p1 + p2) ≥ 1, then AB ∈ Cp1p2/(p1+p2) with

‖AB‖p1p2/(p1+p2) ≤ ‖A‖p1‖B‖p2 .

If p1p2/(p1 + p2) < 1, then AB ∈ C1.
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By Lemma 2.1 and an obvious induction, we have

Corollary 2.2. Let p1, . . . , pk ∈ [1,∞) be such that (1/p1) + · · ·+ (1/pk) ≥ 1. If operators
A1, . . . , Ak are such that Aj ∈ Cpj for every j ∈ {1, . . . , k}, then the product A1 · · ·Ak is in
the trace class with

‖A1 · · ·Ak‖1 ≤ ‖A1‖p1 · · · ‖Ak‖pk .

Write S for the unit sphere {ξ ∈ Cn : |ξ| = 1}. Also, we write dσ for the spherical
measure on S with the normalization σ(S) = 1. Let dv denote the volume measure on B
with the normalization v(B) = 1.

For each 0 < t < 1, define Ωt = {z ∈ B : t < |z| < 1}. We introduce the operator
R : C1(Ωt)→ C(Ωt), 0 < t < 1, as follows. For any f ∈ C1(Ωt), we define

(Rf)(rξ) = r
d

dr
f(rξ) for t < r < 1 and ξ ∈ S.

Let Hol(B) be the collection of analytic functions on B. Then it is obvious that

R = z1∂1 + · · ·+ zn∂n on Hol(B).

In other words, R coincides with the usual radial derivative on Hol(B). Equivalently, R
is a natural extension to C1(Ωt) of the usual radial derivative on Hol(B). We need the
following integral inequality:

Lemma 2.3. Let −1 < γ < ∞ and 1/2 < r < 1 be given. Then there is a constant
0 < C = C(γ, r) <∞ such that the inequality∫

Ω1/2

|f(z)|2(1− |z|2)γdv(z) ≤ C
∫

Ωr

|(Rf)(z)|2(1− |z|2)γ+2dv(z) + C

∫
Σr

|f(z)|2dv(z)

holds for every function f that is C1 on an open set containing the closure of Ω1/2, where

Σr = {z ∈ B : 1/2 < |z| < (1 + r)/2}.

Proof. Let −1 < γ <∞ and h ∈ C1
c [0,∞). By a classic inequality of Hardy, we have

∫ ∞
0

|h(x)|2xγdx ≤
(

2

γ + 1

)2 ∫ ∞
0

|xh′(x)|2xγdx.

See [14, page 10]. Let 1/2 < r < 1 also be given. Applying a standard argument using a
smooth cutoff function, there are 0 < C1 <∞ and 0 < C2 <∞ such that

(2.1)

∫ 1/2

0

|h(x)|2xγdx ≤ C1

∫ 1−r

0

|xh′(x)|2xγdx+ C2

∫ 1/2

(1−r)/2
|h(x)|2xγdx
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for every h ∈ C1[0, 1/2]. Let f be C1 on an open set containing the closure of Ω1/2. Then
by the radial-spherical decomposition of the volume measure dv, we have∫

Ω1/2

|f(z)|2(1− |z|2)γdv(z) = 2n

∫
S

∫ 1

1/2

|f(tu)|2(1− t2)γt2n−1dtdσ(u)

≤ C3

∫
S

∫ 1

1/2

|f(tu)|2(1− t)γdtdσ(u) = C3

∫
S

∫ 1/2

0

|f((1− x)u)|2xγdxdσ(u)

≤ C4

∫
S

∫ 1−r

0

∣∣∣∣x d

dx
f((1− x)u)

∣∣∣∣2xγdxdσ(u) + C5

∫
S

∫ 1/2

(1−r)/2
|f((1− x)u)|2xγdxdσ(u),

where for the second ≤ we apply (2.1). For 0 < x < 1 and u ∈ S, we have

d

dx
f((1− x)u) =

−1

1− x
(Rf)((1− x)u).

Substituting this in the above inequality, we obtain∫
Ω1/2

|f(z)|2(1− |z|2)γdv(z)

≤ C6

∫
S

∫ 1−r

0

|x(Rf)((1− x)u)|2xγdxdσ(u) + C5

∫
S

∫ 1/2

(1−r)/2
|f((1− x)u)|2xγdxdσ(u)

= C6

∫
S

∫ 1

r

|(Rf)(tu)|2(1− t)γ+2dtdσ(u) + C5

∫
S

∫ (1+r)/2

1/2

|f(tu)|2(1− t)γdtdσ(u).

Using the radial-spherical decomposition dv = 2nt2n−1dtdσ again, the lemma follows from
the above inequality. �

Definition 2.4. Let 0 < s <∞.
(a) We denote B(0, s) = {z ∈ Cn : |z| < s}.
(b) For any function f on B(0, s), we write ‖f‖s,∞ = sup{|f(z)| : z ∈ B(0, s)}.
(c) Let H∞s denote the collection of analytic functions f on B(0, s) satisfying the condition
‖f‖s,∞ <∞.

Proposition 2.5. Let s > 1. Then there is a 0 < C = C(s) < ∞ such that ‖f‖M ≤
C‖f‖s,∞ for every f ∈ H∞s .

Proof. Let s > 1. Given an f ∈ H∞s , we define F (ζ) = f(sζ) for ζ ∈ B = B(0, 1). Then
F ∈ H∞1 with ‖F‖1,∞ = ‖f‖s,∞. By the Cauchy integral for the unit ball, we have

(2.2) f(ζ) = F (ζ/s) =

∫
S

F (ξ)dσ(ξ)

(1− s−1〈ζ, ξ〉)n
, ζ ∈ B.

This implies that for each j ∈ Z+, there is a Cj such that ‖Rjf‖1,∞ ≤ Cj‖f‖s,∞ for every
f ∈ H∞s . For h ∈ H2

n and f ∈ H∞s , we have Rn(fh) =
∑n
j=0

n!
j!(n−j)!R

jf · Rn−jh by the

Leibniz rule. Combining these facts with another well-known fact,

(2.3) ‖g‖2 ≈ |g(0)|2 +

∫
B

|(Rng)(w)|2(1− |w|2)ndv(w) for g ∈ H2
n,
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the conclusion of the proposition follows. �

We write ζ1, . . . , ζn for the coordinate functions on Cn. For Toeplitz operators on the
Bergman space, there is the following well-known result, whose proof will be omitted:

Lemma 2.6. On the Bergman space L2
a(B), we have [Tζi , T

∗
ζj

] ∈ Cp for all p > n and

i, j ∈ {1, . . . , n}.

3. An integral formula for the norm in H2
n

For each natural number m ∈ N, we define the function

ψm(t) =
1

tn

∫
· · ·
∫
t<t1<···<tm<1

1

t1
· · · 1

tm
dt1 · · · dtm, 0 < t < 1.

This function solves the following moment problem: for every k ∈ N, we have∫ 1

0

tk+n−1ψm(t)dt =

∫ 1

0

tk−1

∫
· · ·
∫
t<t1<···<tm<1

1

t1
· · · 1

tm
dt1 · · · dtmdt

=

∫
· · ·
∫

0<t<t1<···<tm<1

tk−1 1

t1
· · · 1

tm
dt1 · · · dtmdt

=

∫ 1

0

1

tm

∫ tm

0

1

tm−1
· · ·
∫ t3

0

1

t2

∫ t2

0

1

t1

∫ t1

0

tk−1dtdt1dt2 · · · dtm−1dtm

=
1

km+1
.(3.1)

Obviously, there are a1, . . . , an−1 ∈ Z+ such that

(3.2)
(k + 1) · · · (k + n− 1)

kn−1
= 1 +

n−1∑
i=1

ai
ki

for every k ∈ N.

We now define the function

ϕ(t) =
1

n!

(
ψn(t) +

n−1∑
i=1

aiψn+i(t)

)
, 0 < t < 1.

It follows from (3.1) and (3.2) that

(3.3)

∫ 1

0

tk+n−1ϕ(t)dt =
(k + 1) · · · (k + n− 1)

n!k2n
for every k ∈ N.

Recall that for any α ∈ Zn+, the H2
n-norm of ζα is

√
α!/|α|!. Also recall that Rζα = |α|ζα.

Thus, using (3.3) and [12, Proposition 1.4.9], straightforward integration gives us a precise
formula for the norm in the Drury-Arveson space:
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Proposition 3.1. For every f ∈ H2
n, we have

‖f‖2 = |f(0)|2 +

∫
B

|(Rnf)(w)|2ϕ(|w|2)dv(w).

This should be compared with (2.3).

Let j ∈ Z+. For each w ∈ B, we define the kernel function

K(j)
w = RjKw.

If f ∈ H2
n, then

〈f,K(j)
w 〉 = 〈f,RjKw〉 = 〈Rjf,Kw〉 = (Rjf)(w),

w ∈ B. Thus K
(j)
w is the reproducing kernel for the j-th radial derivative on H2

n. Using
this kernel, we can restate Proposition 3.1 in the form of the operator identity

(3.4) 1 = E0 +

∫
B

K(n)
w ⊗K(n)

w ϕ(|w|2)dv(w)

on H2
n, where E0 is the orthogonal projection from H2

n onto the subspace C. As we will
see, this is a very convenient resolution of the identity operator on H2

n.

Definition 3.2. (a) We write Ω = {w ∈ B : 1/2 < |w| < 1}.
(b) Let dµ(w) denote the restriction of the measure ϕ(|w|2)dv(w) to Ω.
(c) Denote η(w) = χ[0,3/4](|w|), w ∈ Cn.

Definition 3.3. (a) We define the operators T1 and T2 on H2
n by the formulas

T1 =

∫
Ω

K(n)
w ⊗K(n)

w dµ(w) and T2 =
n−1∑
j=0

∫
Ω

K(j)
w ⊗K(j)

w η(w)dµ(w).

(b) Denote T = T1 + T2.

Lemma 3.4. The operators T2 and

(3.5) L =

∫
B\Ω

K(n)
w ⊗K(n)

w ϕ(|w|2)dv(w)

are in the trace class. Moreover, the operator 1− L is positive and invertible on H2
n.

Proof. From the definition of ψm it is obvious that

(3.6) ψm(t) ≤ 1

tn

∫ 1

t

1

t1
dt1 · · ·

∫ 1

t

1

tm
dtm =

1

tn

(
log

1

t

)m
, 0 < t < 1.
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We have, of course, K
(0)
w = Kw. For j ∈ N, by straightforward differentiation and an easy

induction, there are b
(j)
1 , . . . , b

(j)
j ∈ Z+ with b

(j)
j = j! such that

(3.7) K(j)
w (z) =

j∑
i=1

b
(j)
i

〈z, w〉i

(1− 〈z, w〉)i+1
.

By the definition of η, we have

tr(T2) =
n−1∑
j=0

∫
Ω

tr(K(j)
w ⊗K(j)

w )η(w)dµ(w) =
n−1∑
j=0

∫
Ω

K(2j)
w (w)η(w)dµ(w) <∞.

That is, T2 ∈ C1.

By (3.6), if we set

C =

∫
B\Ω
|w|2ϕ(|w|2)dv(w),

then C < ∞. Write eα(ζ) = (|α|!/α!)1/2ζα for α ∈ Zn+. Then {eα : α ∈ Zn+} is the
standard orthonormal basis for H2

n. To prove that L ∈ C1, we first observe that since
B\Ω is spherically symmetric, the operator L is diagonal with respect to {eα : α ∈ Zn+}.
Integrating in the radial-spherical coordinates, for α ∈ Zn+\{0} we have

(3.8) 〈Leα, eα〉 = |α|2n |α|!
α!

∫
B\Ω
|wα|2ϕ(|w|2)dv(w) ≤ C(n− 1)!|α|n+12−2(|α|−1).

For any k ∈ N, card{α ∈ Zn+ : |α| = k} = (k+n−1)!
(n−1)!k! ≤ C1k

n−1. Combining this fact with

the above inequality, we see that L ∈ C1 as promised.

The operator inequality 1− L ≥ 0 is obvious from (3.4). To prove the invertibility of
1−L on H2

n, we use the fact that 1−L is diagonal with respect to the orthonormal basis
{eα : α ∈ Zn+}. For every α ∈ Zn+ we have

〈(1− L)eα, eα〉 = |eα(0)|2 + |α|2n |α|!
α!

∫
Ω

|wα|2ϕ(|w|2)dv(w) > 0.

By (3.8), 〈Leα, eα〉 → 0 as |α| → ∞. Therefore 〈(1 − L)eα, eα〉 → 1 as |α| → ∞. Conse-
quently, 1− L is invertible on H2

n. �

Proposition 3.5. We have 1− T ∈ C1. Moreover, the operator T is invertible on H2
n.

Proof, By (3.4), (3.5) and Definition 3.3, we have 1−T = E0+L−T2. Thus the membership
1− T ∈ C1 follows from Lemma 3.4.

Obviously, there is a 0 < c ≤ 1 such that T2 ≥ cE0. We can rewrite (3.4) as 1 =
E0 + T1 + L. Thus

T = T1 + T2 = (1− c)T1 + T2 − cE0 + c(T1 + E0) = (1− c)T1 + T2 − cE0 + c(1− L).
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Lemma 3.4 tells us that the operator c(1−L) is positive and invertible on H2
n. Since both

operators (1− c)T1 and T2 − cE0 are positive, it follows that T is invertible. �

4. The range space

The idea of range space was first introduced in the study [8] of the geometric Arveson-
Douglas conjecture, with recent success in [14]. This idea turns out to be a key to the
proof of Theorem 1.2. In effect, here we are treating the Drury-Arveson space H2

n as a
quotient module of itself, with the corresponding submodule being the trivial one, {0}.

Let L0 be the collection of functions f that are C∞ on an open set containing Ω. For
f ∈ L0, we define

‖f‖# =

{∫
Ω

|(Rnf)(w)|2dµ(w) +
n−1∑
j=1

∫
Ω

|Rjf(w)|2η(w)dµ(w)

}1/2

.

Obviously, ‖ · ‖# is the norm on L0 induced by the inner product

〈f, g〉# =

∫
Ω

(Rnf)(w)(Rng)(w)dµ(w) +
n−1∑
j=1

∫
Ω

(Rjf)(w)(Rjg)(w)η(w)dµ(w),

f, g ∈ L0. Let L denote the completion of L0 with respect to the norm ‖ · ‖#. Then L is
a Hilbert space.

Definition 4.1. (a) Let P be the closure of the analytic polynomials C[ζ1, . . . , ζn] in L.
(b) Let P denote the orthogonal projection from L onto P.

Recalling Definition 3.3, if f ∈ H2
n, then

(4.1) ‖f‖2# = 〈Tf, f〉 = ‖T 1/2f‖2.

Since C[ζ1, . . . , ζn] is dense in H2
n, every f ∈ H2

n is naturally an element in P.

Definition 4.2. Let J denote the operator that takes each f ∈ H2
n to the same f in P.

Thus we can rewrite (4.1) in the form of the operator identity

(4.2) J∗J = T.

Intuitively, we think of J as restricting each f ∈ H2
n to the set Ω. We call P the range

space for the restriction operator J . By Proposition 3.5, there is an a > 0 such that

‖Jf‖# = ‖T 1/2f‖ ≥ a‖f‖ for every f ∈ H2
n.

Thus J is an invertible operator that maps H2
n onto P.
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Definition 4.3. (a) We define the operators

(T̂1f)(z) =

∫
Ω

K(n)
w (z)(Rnf)(w)dµ(w) and

(T̂2f)(z) =
n−1∑
j=1

∫
Ω

K(j)
w (z)(Rjf)(w)η(w)dµ(w),

f ∈ L0.
(b) We define T̂ = T̂1 + T̂2.

Lemma 4.4. The operators T̂1 and T̂2 are bounded on L0. Therefore T̂1 and T̂2 naturally
extend to bounded operators on L.

Proof. Using (3.7) and the Schur test, the kernels K
(m)
w (z), 0 ≤ m ≤ 2n, define bounded

operators on L2(Ω, dµ). (See the proof of Lemma 5.1 below for details.) Combining this
fact with the definition of ‖ · ‖#, it is easy to see that T̂1 and T̂2 are bounded on L0. �

Lemma 4.5. With respect to the inner product 〈·, ·〉#, the operator T̂ is self-adjoint.

Proof. Let f ∈ L0. Then

〈T̂ f, f〉# =

∫
Ω

∫
Ω

K(2n)
w (z)(Rnf)(w)dµ(w)(Rnf)(z)dµ(z)

+
n−1∑
j=0

∫
Ω

∫
Ω

K(j+n)
w (z)(Rjf)(w)η(w)dµ(w)(Rnf)(z)dµ(z)

+

n−1∑
j=0

∫
Ω

∫
Ω

K(n+j)
w (z)(Rnf)(w)dµ(w)(Rjf)(z)η(z)dµ(z)

+
∑

0≤i,j≤n−1

∫
Ω

∫
Ω

K(j+i)
w (z)(Rjf)(w)η(w)dµ(w)(Rif)(z)η(z)dµ(z).(4.3)

It follows from (3.7) that K
(m)
w (z) = K

(m)
z (w), m ∈ Z+. Substituting this in (4.3), we see

that 〈T̂ f, f〉# is a real number. Therefore T̂ is self-adjoint. �

Proposition 4.6. (a) T̂ maps L into P.
(b) Let T̃ denote the restriction of T̂ to the subspace P. Then T̃ = JJ∗. In particular, T̃
is invertible on P.
(c) With respect to the orthogonal decomposition L = P ⊕ P⊥, we have T̂ = T̃ ⊕ 0.

Proof. (a) Recall that we write Ωt = {z ∈ B : t < |z| < 1} for 0 < t < 1. As we mentioned

in the proof of Lemma 4.4, the kernels K
(m)
w (z), 0 ≤ m ≤ 2n, define bounded operators on

L2(Ω, dµ). Therefore for any f ∈ L0, we have

lim
t↑1

∥∥∥∥∫
Ωt

(Rnf)(w)JK(n)
w dµ(w)

∥∥∥∥
#

= 0.
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Since we already know that JH2
n ⊂ P, we have∫

Ω\Ωt
(Rnf)(w)JK(n)

w dµ(w) ∈ P

for every 1/2 < t < 1. Therefore T̂1f ∈ P. It is obvious that T̂2f ∈ P for f ∈ L0.
Thus T̂L0 ⊂ P. Since L0 is dense in L and since Lemma 4.4 tells us that T̂ is a bounded
operator, it follows that T̂L ⊂ P.

(b) For each f ∈ H2
n, it is easy to see that T̃ Jf = JTf . Combining this with (4.2),

we have T̃ Jf = JTf = JJ∗Jf . Since JH2
n = P, this implies T̃ = JJ∗. Since J : H2

n → P
and J∗ : P → H2

n are invertible, so is T̃ .

(c) This follows from (a) and the self-adjointness of T̂ provided by Lemma 4.5. �

Definition 4.7. For each ξ ∈ Cn(Ω), M̂ξ denotes the operator of multiplication by the
function ξ on L.

Proposition 4.8. We have JMh = M̂hJ for every h ∈M.

Proof. If h ∈M and f ∈ H2
n, then JMhf = J(hf) = hf = M̂hJf . �

Corollary 4.9. If h ∈M, then P is an invariant subspace for M̂h.

Corollary 4.9 makes it possible for us to introduce

Definition 4.10. For each h ∈ M, let M̃h denote the restriction of the operator M̂h to
the invariant subspace P.

Accordingly, we can restate Proposition 4.8 as

Proposition 4.11. We have JMh = M̃hJ for every h ∈ M. Consequently, there is a
constant 0 < C <∞ such that ‖M̃h‖ ≤ C‖Mh‖ = C‖h‖M for every h ∈M.

Proposition 4.12. Given any k ∈ N, there is a constant 0 < C = C(k) <∞ such that

‖M∗g1Mh1
· · ·M∗gkMhk − J∗M̃∗g1M̃h1

· · · M̃∗gkM̃hkJ‖1 ≤ C
k∏
j=1

‖gj‖M‖hj‖M

for all g1, h1, . . . , gk, hk ∈M.

Proof. Let us denote K = E0 + L − T2. Recall from Lemma 3.4 that K ∈ C1. By (3.4),
(3.5) and Definition 3.3, we have T = 1−K. Let

J = U |J |

be the polar decomposition of J . Since J : H2
n → P is invertible, U is a unitary operator

that maps H2
n onto P. By (4.2), we have

(4.4) JJ∗ = U |J |2U∗ = UTU∗ = 1− UKU∗.

12



For any h ∈M, it follows from (4.2) and Proposition 4.11 that

Mh −KMh = TMh = J∗JMh = J∗M̃hJ.

Thus for any h, g ∈M,

M∗gMh = (J∗M̃∗g J +M∗gK)(J∗M̃hJ +KMh) = J∗M̃∗g JJ
∗M̃hJ +K1(g, h),

where K1(g, h) ∈ C1 with ‖K1(g, h)‖1 ≤ C1‖g‖M‖h‖M. Consequently, for any g1, h1, . . . ,
gk, hk ∈M, we have

M∗g1Mh1
· · ·M∗gkMhk = J∗M̃∗g1JJ

∗M̃h1
J · · · J∗M̃∗gkJJ

∗M̃hkJ(4.5)

+Kk(g1, h1, . . . , gk, hk),

where Kk(g1, h1, . . . , gk, hk) ∈ C1 with

‖Kk(g1, h1, . . . , gk, hk)‖1 ≤ Ck
k∏
j=1

‖gj‖M‖hj‖M.

Substituting (4.4) in (4.5), we obtain the desired conclusion. �

Applying Proposition 4.12 to antisymmetric sums, we immediately obtain

Corollary 4.13. There is a constant 0 < C <∞ such that

‖[M∗g1Mh1 , . . . ,M
∗
g2nMh2n ]− J∗[M̃∗g1M̃h1 , . . . , M̃

∗
g2nM̃h2n ]J‖1 ≤ C

2n∏
j=1

‖gj‖M‖hj‖M

for all g1, h1, . . . , g2n, h2n ∈M.

This tells us that, to prove Theorem 1.2, it suffices to consider antisymmetric sums of
the form [M̃∗g1M̃h1 , . . . , M̃

∗
g2nM̃h2n ] on the range space P.

Proposition 4.14. The operator P − T̂ is in the trace class.

Proof. By Proposition 4.6(c), it suffices to show that 1 − T̃ ∈ C1 on P. By Proposition
4.6(b), we have T̃ = JJ∗. Thus from (4.4) we obtain 1− T̃ = UKU∗ ∈ C1. �

5. Integral operators on L2

In this section we focus on integral operators on L2(Ω, dµ). For any m ∈ N, a review
of the definition of ψm in Section 3 gives us the inequality

ψm(t) ≥
∫
· · ·
∫
t<t1<···<tm<1

1dt1 · · · dtm

=

∫ 1

t

∫ 1

t1

· · ·
∫ 1

tm−2

∫ 1

tm−1

1dtmdtm−1 · · · dt2dt1 =
1

m!
(1− t)m,
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0 < t < 1. Combining this with (3.6), there are 0 < c < C <∞ such that

(5.1) c(1− |z|2)n ≤ ϕ(|z|2) ≤ C(1− |z|2)n for every z ∈ Ω.

That is, dµ is comparable to the weighted volume measure (1− |z|2)ndv(z) on Ω.

Lemma 5.1. If G(z, w) is a bounded Borel function on Ω× Ω, then the operator

(5.2) (AGf)(z) =

∫
Ω

G(z, w)

(1− 〈z, w〉)2n+1
f(w)dµ(w), f ∈ L2(Ω, dµ),

is bounded on L2(Ω, dµ). Moreover, there is a constant C1 such that ‖AG‖ ≤ C1‖G‖∞.

Proof. Consider the function h(w) = (1− |w|2)−1/2 on Ω. By (5.1), we have∫
Ω

h(w)

∣∣∣∣ G(z, w)

(1− 〈z, w〉)2n+1

∣∣∣∣dµ(w) ≤ C‖G‖∞
∫

Ω

(1− |w|2)n−(1/2)

|1− 〈z, w〉|n+1+n−(1/2)+(1/2)
dv(w)

≤ C1‖G‖∞h(z),

where the second ≤ follows from [12, Proposition 1.4.10]. Similarly,∫
Ω

h(z)

∣∣∣∣ G(z, w)

(1− 〈z, w〉)2n+1

∣∣∣∣dµ(z) ≤ C1‖G‖∞h(w).

Thus the Schur test gives us ‖AG‖ ≤ C1‖G‖∞. �

It is also a consequence of [12, Proposition 1.4.10] that if c > 0, then

(5.3)

∫∫
B×B

1

|1− 〈z, w〉|n+1+1−c dv(w)dv(z) <∞.

Lemma 5.2. Let G(z, w) be a Borel function on Ω× Ω. If G satisfies the condition

(5.4)

∫∫
Ω×Ω

|G(z, w)|p

|1− 〈z, w〉|4n+2
dµ(w)dµ(z) <∞

for some 2 ≤ p < ∞, then the operator AG defined by (5.2) belongs to the Schatten class
Cp. Moreover, for each 2 ≤ p <∞, there is a constant 0 < C = C(p) <∞ such that

‖AG‖pp ≤ C
∫∫

Ω×Ω

|G(z, w)|p

|1− 〈z, w〉|4n+2
dµ(w)dµ(z)

for every G satisfying (5.4).

Proof. The case p = 2 is obvious. By Lemma 5.1, we have ‖AG‖ ≤ C1‖G‖∞. Thus the
case 2 < p <∞ follows from the standard interpolation. �

Recall that we write K
(m)
w = RmKw, w ∈ B. In particular, K

(0)
w means Kw itself.
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Definition 5.3. (a) For each 0 ≤ j ≤ 2n, Xj denotes the operator on L2(Ω, dµ) defined
by the formula

(Xjf)(z) =

∫
Ω

〈z, w〉j

(1− 〈z, w〉)j+1
f(w)dµ(w), f ∈ L2(Ω, dµ).

(b) For each 0 ≤ j ≤ 2n, Yj denotes the operator on L2(Ω, dµ) defined by the formula

(Yjf)(z) =

∫
Ω

K(j)
w (z)f(w)dµ(w), f ∈ L2(Ω, dµ).

Lemma 5.4. (a) If there is a 0 < C < ∞ such that |G(z, w)| ≤ C|1 − 〈z, w〉| for all
z, w ∈ Ω, then AG ∈ Cp for every p > n.
(b) If j ≤ 2n− 1, then Xj , Yj ∈ Cp for every p > n.

Proof. By (5.1) and the assumption on G,∫∫
Ω×Ω

|G(z, w)|p

|1− 〈z, w〉|4n+2
dµ(w)dµ(z) ≤ C1

∫∫
Ω×Ω

1

|1− 〈z, w〉|n+1+1−(p−n)
dv(w)dv(z).

If p > n, then by (5.3) this is finite. Thus Lemma 5.2 provides the membership AG ∈ Cp
for p > n, proving (a). By Definition 5.3, it follows from (a) that if j ≤ 2n − 1, then
Xj ∈ Cp for every p > n. Recalling (3.7), we see that if j ≤ 2n− 1, then Yj ∈ Cp for every
p > n. �

If f is a Lipschitz function on Ω, we write L(f) for its Lipschitz constant.

Lemma 5.5. (a) For each p > 2n, there is a constant 0 < Bp <∞ such that ‖[Mf , X2n]‖p
≤ BpL(f) for every Lipschitz function f on Ω.
(b) For each p > n, there is a constant 0 < Cp < ∞ such that ‖[Mf , [Mg, X2n]]‖p ≤
CpL(f)L(g) for every pair of Lipschitz functions f , g on Ω.

Proof. (a) We have [Mf , X2n] = AG with G(z, w) = (f(z)− f(w))〈z, w〉2n. Since

|G(z, w)| ≤ L(f)|z − w| ≤
√

2L(f)|1− 〈z, w〉|1/2,

for p > 2n, the bound ‖[Mf , X2n]‖p ≤ BpL(f) follows from Lemma 5.2.

(b) We have [Mf , [Mg, X2n]] = AH with H(z, w) = (f(z)−f(w))(g(z)−g(w))〈z, w〉2n.
Since

|H(z, w)| ≤ L(f)L(g)|z − w|2 ≤ 2L(f)L(g)|1− 〈z, w〉|,

for p > n, the bound ‖[Mf , [Mg, X2n]]‖p ≤ CpL(f)L(g) again follows from Lemma 5.2. �

Lemma 5.6. (a) For each p > 2n, there is a constant 0 < B′p <∞ such that ‖[Mf , Y2n]‖p
≤ B′pL(f) for every Lipschitz function f on Ω.
(b) For each p > n, there is a constant 0 < C ′p < ∞ such that ‖[Mf , [Mg, Y2n]]‖p ≤
C ′pL(f)L(g) for every pair of Lipschitz functions f , g on Ω.
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Proof. Applying (3.7), (a) and (b) are obtained by combining the corresponding parts in
Lemma 5.5 with Lemma 5.4. �

By the definition of the norm ‖ · ‖#, inequality (5.1) and Lemma 2.3, it is clear that
for each integer 0 ≤ j ≤ n, there is a 0 < Cj <∞ such that

(5.5)

∫
Ω

|(Rjf)(w)|2dµ(w) ≤ Cj‖f‖2#

for every f ∈ L0. This allows us to introduce

Definition 5.7. For each 0 ≤ j ≤ n, Dj denotes the operator that maps each f ∈ L0 to
the function Rjf in L2(Ω, dµ).

By (5.5), each Dj : L0 → L2(Ω, dµ) is a bounded operator, 0 ≤ j ≤ n. Consequently,
D0,D1, . . . ,Dn naturally extend to bounded operators that map L into L2(Ω, dµ). With
these operators, we can rewrite the inner product 〈·, ·〉# in the form

(5.6) 〈f, g〉# = 〈Dnf,Dng〉+
n−1∑
j=0

〈MηDjf,Djg〉,

f, g ∈ L0, where 〈·, ·〉 denotes the inner product on L2(Ω, dµ), and Mη is the operator of
multiplication by η on L2(Ω, dµ).

We now introduce the function ρ(z) = 1− |z|2 on Cn.

Lemma 5.8. (a) For every 0 ≤ j ≤ n− 1, the operator Mρ−1Dj is bounded.
(b) Let a < 1/2. Then for every 0 ≤ i ≤ n− 2, the operator Mρ−1−aDi is bounded.

Proof. This follows immediately from Lemma 2.3 and (5.1). �

Lemma 5.9. For every pair of 0 ≤ j ≤ n − 1 and p > n, there is a constant 0 < C =
C(j, p) <∞ such that

‖Y2nMξDj‖p ≤ C‖ξ‖∞

for every ξ ∈ L∞(Ω, dµ).

Proof. Since Y2nMξDj = Y2nMρ ·Mξ ·Mρ−1Dj , and since Lemma 5.8 tells us that Mρ−1Dj
is bounded if j ≤ n − 1, the lemma will follow if we can show that Y2nMρ ∈ Cp for every
p > n. By (3.7) and Lemma 5.4, it suffices to show that X2nMρ ∈ Cp for every p > n.

In terms of (5.2), X2nMρ = AG, where G(z, w) = 〈z, w〉2n(1− |w|2). We have∫∫
Ω×Ω

|G(z, w)|p

|1− 〈z, w〉|4n+2
dµ(w)dµ(z) ≤

∫∫
Ω×Ω

C1

|1− 〈z, w〉|n+1+1−(p−n)
dv(w)dv(z).

By (5.3), this is finite if p > n. Applying Lemma 5.2, we have X2nMρ ∈ Cp for p > n. �

Definition 5.10. (a) Let E denote the closure of C[z1, . . . , zn] in L2(Ω, dµ).
(b) Let E denote the orthogonal projection from L2(Ω, dµ) onto E .
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Definition 5.11. Define the integral operator Z on L2(Ω, dµ) by the formula

(Zf)(z) =

∫
Ω

1

(1− 〈z, w〉)2n+1
f(w)dµ(w), f ∈ L2(Ω, dµ).

Proposition 5.12. The operator Z is self-adjoint and positive on L2(Ω, dµ). There is
a γ > 0 such that the spectrum of Z does not intersect the interval (0, γ). Moreover, the
range of Z equals E .

Proof. It is obvious that Z is self-adjoint on L2(Ω, dµ). Since

(5.7)
1

(1− 〈z, w〉)2n+1
=

∞∑
j=0

(j + 2n)!

j!(2n)!

∑
|α|=j

j!

α!
zαwα, z, w ∈ Ω,

we see that Z is positive on L2(Ω, dµ). Obviously, the range of Z is contained in E . Thus,
to complete the proof, it suffices to find a γ > 0 such that 〈Zf, f〉 ≥ γ‖f‖2 for every
f ∈ C[z1, . . . , zn]. Since both Ω and dµ are invariant under spherical rotation, we have
both 〈zα, zβ〉 = 0 and 〈Zzα, zβ〉 = 0 for all α 6= β in Zn+. Hence it suffices to find a γ > 0
such that 〈Zzα, zα〉 ≥ γ‖zα‖2 for every α ∈ Zn+.

First of all, it is obvious that 〈Zzα, zα〉 > 0 for every α ∈ Zn+. Let α ∈ Zn+ be such
that |α| = k. Then by (5.7) and the spherical symmetry of Ω and dµ, we have

〈Zzα, zα〉 =
(k + 2n)!

α!(2n)!

(∫
Ω

|wα|2dµ(w)

)2

≥ c1
(k + 2n)!

α!(2n)!

(∫
Ω

|wα|2(1− |w|2)ndv(w)

)2

,

where the ≥ follows from (5.1). Integrating in the radial-spherical coordinates, we have

〈Zzα, zα〉 ≥ c2
(k + 2n)!

α!(2n)!

(
α!(n− 1)!

(k + n− 1)!

)2(∫ 1

1/4

tk+n−1(1− t)ndt
)2

= c3
(k + 2n)!α!

{(k + n− 1)!}2

(
(k + n− 1)!n!

(k + 2n)!
− ak

)2

,(5.8)

where

ak =

∫ 1/4

0

tk+n−1(1− t)ndt.

Also by (5.1), we have

(5.9) ‖zα‖2 ≤ C
∫

Ω

|wα|2(1− |w|2)ndv(w) ≤ C α!(n!)2

(k + 2n)!
.

Since ak ≤ 4−k, from (5.8) and (5.9) we see that there is a γ > 0 such that 〈Zzα, zα〉 ≥
γ‖zα‖2 for every α ∈ Zn+. This completes the proof. �

Lemma 5.13. (a) We have EMρ ∈ Cp for every p > n.
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(b) Let p > 2n/3. If a < 1/2 satisfies the condition p(1 + a) > n, then EMρ1+a ∈ Cp.

Proof. Let Z̃ be the restriction of Z to the subspace E . Then it follows from Proposition
5.12 that Z̃ is invertible on E . Consequently, E = (Z̃−1⊕0)Z. Therefore it suffices consider
ZMρ and ZMρ1+a instead of EMρ and EMρ1+a .

(a) In terms of (5.2), we have ZMρ = AG, where G(z, w) = 1 − |w|2. Thus by an
estimate similar to the one in the proof of Lemma 5.9, we have ZMρ ∈ Cp for every p > n.

(b) Suppose that n ≥ 3. Then 2n/3 ≥ 2, and Lemma 5.2 applies to every p > 2n/3.
We can write ZMρ1+a = AH , where H(z, w) = (1− |w|2)1+a. By the conditions p > 2n/3
and p(1 + a) > n, an estimate similar to the one in the proof of Lemma 5.9 gives us the
membership ZMρ1+a ∈ Cp.

Suppose that n = 2. If p ≥ 2, then Lemma 5.2 still applies, and the argument in the
above paragraph holds. Thus let us assume that n = 2 and that 4/3 < p < 2.

In this case, set t = 2p(2 − p)−1. Then t > 4 and 1/p = (1/t) + (1/2). Let a < 1/2
be such that p(1 + a) > 2. Then this means p(2 − p)−1 > a−1. Thus t/2 > a−1, or,
equivalently, 2a > 4/t. This allows us to pick an r such that 4/t < r < 2a.

We first show that EMρr/2 ∈ Ct. Equivalently, it suffices to show that ZMρr/2 ∈ Ct.
We have ZMρr/2 = AL with L(z, w) = (1− |w|2)r/2. Since n = 2, we have∫∫

|L(z, w)|t

|1− 〈z, w〉|10
dµ(w)dµ(z) ≤ C1

∫∫
(1− |w|2)rt/2

|1− 〈z, w〉|6
dv(w)dv(z)

≤ C2

∫∫
1

|1− 〈z, w〉|2+1+{3−(rt/2)} dv(w)dv(z).

Since 4/t < r, i.e., rt/2 > 2, we have 3 − (rt/2) < 1. Thus, by (5.3), the above is finite.
By Lemma 5.2, we have ZMρr/2 ∈ Ct.

Next we show that Mρ−r/2ZMρ1+a ∈ C2. Indeed Mρ−r/2ZMρ1+a = AQ, where

Q(z, w) = (1− |z|2)−r/2(1− |w|2)1+a.

Thus

‖AQ‖22 ≤ C3

∫∫
(1− |w|2)2+2a

(1− |z|2)r|1− 〈z, w〉|6
dv(w)dv(z) ≤ C4

∫
dv(z)

(1− |z|2)r+1−2a
,

where the second ≤ follows from [12, Proposition 1.4.10]. Since r < 2a, the above is finite.
Hence Mρ−r/2ZMρ1+a ∈ C2.

We have
ZMρ1+a = EZMρ1+a = EMρr/2 ·Mρ−r/2ZMρ1+a .

Since 1/p = (1/t) + (1/2), it follows from the last two paragraphs that ZMρ1+a ∈ Cp. �

Lemma 5.14. (a) For every pair of 0 ≤ j ≤ n− 1 and p > n, we have DjP ∈ Cp.
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(b) For every pair of 0 ≤ i ≤ n− 2 and p > 2n/3, we have DiP ∈ Cp.

Proof. (a) Note that DjP = EDjP . Therefore we have the factorization

DjP = EMρ ·Mρ−1DjP.

Thus the desired conclusion follows from Lemmas 5.8(a) and 5.13(a).

(b) Given any p > 2n/3, i.e., p(3/2) > n, we can pick an a < 1/2 such that p(1+a) > n.
This time, we take the factorization

DiP = EMρ1+a ·Mρ−1−aDiP.

Thus the desired conclusion follows from Lemmas 5.8(b) and 5.13(b). �

Lemma 5.15. For every pair of 0 ≤ j ≤ n − 1 and p > n, there is a constant 0 < C =
C(j, p) <∞ such that

‖PD∗nMξDj‖p ≤ C‖ξ‖∞
for every ξ ∈ L∞(Ω, dµ).

Proof. Since DnP = EDnP , we have PD∗n = (DnP )∗ = (EDnP )∗ = PD∗nE. Hence

PD∗nMξDj = PD∗nEMξDj = PD∗n · EMρ ·Mξ ·Mρ−1Dj .

Applying Lemmas 5.8(a) and 5.13(a), the lemma follows. �

Lemma 5.16. For every triple of 0 ≤ j ≤ n − 1, 0 ≤ k ≤ n − 1 and p > n/2, there is a
constant 0 < C = C(j, k, p) <∞ such that

‖PD∗kMξDj‖p ≤ C‖ξ‖∞

for every ξ ∈ L∞(Ω, dµ).

Proof. This time, we have

PD∗kMξDj = PD∗kE2MξDj = P (Mρ−1Dk)∗ · (EMρ)
∗EMρ ·Mξ ·Mρ−1Dj ,

and the desired conclusion again follows from Lemmas 5.8(a) and 5.13(a). �

Lemma 5.17. We have T̂2 ∈ Cp for every p > n.

Proof. Let f, g ∈ L0. By the definitions of T̂2 and 〈·, ·〉#, we have

〈T̂2f, g〉# =
n−1∑
i=0

∫
Ω

∫
Ω

K(i+n)
w (z)(Rif)(w)η(w)dµ(w)(Rng)(z)dµ(z)

+

n−1∑
j=0

n−1∑
i=0

∫
Ω

∫
Ω

K(i+j)
w (z)(Rif)(w)η(w)dµ(w)(Rjg)(z)η(z)dµ(z)

=

n−1∑
i=0

〈Yi+nMηDif,Dng〉+

n−1∑
j=0

n−1∑
i=0

〈Yi+jMηDif,MηDjg〉.
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That is,

(5.10) T̂2 =
n−1∑
i=0

D∗nYi+nMηDi +
n−1∑
j=0

n−1∑
i=0

D∗jMηYi+jMηDi.

By Lemma 5.4, we have T̂2 ∈ Cp for every p > n. �

6. Commutators and double commutators

We will now use the results in Section 5 to deal with commutators and double com-
mutators on L.

Definition 6.1. Let C∗(Ω) be the collection of the functions f ∈ C∞(Ω) satisfying the
condition ‖f‖∗ <∞, where

‖f‖∗ =
∑

0≤|α|+|β|≤n+2

sup
z∈Ω
|(∂α∂̄βf)(z)|.

Lemma 6.2. For every p > n, there is a 0 < C = C(p) <∞ such that

‖[M̂f , T̂1]−D∗n[Mf , Y2n]Dn‖p ≤ C‖f‖∗

for every f ∈ C∗(Ω).

Proof. For f ∈ C∗(Ω) and h ∈ L0, the Leibniz rule gives us Rk(fh) =
∑k
j=0 C

k
j R

jf ·Rk−jh,

where the Ckj are the binomial coefficients. Recalling Definition 4.3, we have

([M̂f , T̂1]h)(z) =

∫
Ω

(f(z)− f(w))K(n)
w (z)(Rnh)(w)dµ(w)

−
∫

Ω

K(n)
w (z)

n∑
j=1

Cnj (Rjf)(w)(Rn−jh)(w)dµ(w).(6.1)

Similar to the derivation of (5.10), a computation of 〈[M̂f , T̂1]h, g〉#, g ∈ L0, gives us

[M̂f ,T̂1] = D∗n[Mf , Y2n]Dn +
n∑
i=1

Cni D∗nMRifY2n−iDn(6.2)

+
n−1∑
s=0

D∗sMη

(
[Mf , Yn+s]Dn +

s∑
r=1

CsrMRrfYn+s−rDn
)

−
n∑
j=1

Cnj D∗nY2nMRjfDn−j −
n∑
j=1

Cnj

n−1∑
s=0

D∗sMηYn+sMRjfDn−j .
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Let p > n be given. By Lemma 5.4, the Schatten p-norm of every term in (6.2) with a
factor Yk, k ≤ 2n − 1, is dominated by C‖f‖∗. By Lemma 5.9, the Schatten p-norm of
every term in

n∑
j=1

Cnj D∗nY2nMRjfDn−j .

is also dominated by C‖f‖∗. This completes the proof. �

Proposition 6.3. For every p > 2n, there is a 0 < C = C(p) <∞ such that

‖[M̂f , P ]‖p ≤ C‖f‖∗

for every f ∈ C∗(Ω).

Proof. By Proposition 4.14 and Lemma 5.17, we have P − T̂1 ∈ Cp for every p > n. Thus

it suffices to consider commutators of the form [M̂f , T̂1]. By Lemmas 5.5(a) and 5.4, for
every p > 2n there is a 0 < C = C(p) <∞ such that

‖D∗n[Mf , Y2n]Dn‖p ≤ CL(f) ≤ C1‖f‖∗ for f ∈ C∗(Ω).

Combining this inequality with Lemma 6.2, the proposition is proved. �

Proposition 6.4. For every p > n, there is a 0 < C = C(p) <∞ such that

‖[M̂g, [M̂f , P ]]‖p ≤ C‖f‖∗‖g‖∗

for all f, g ∈ C∗(Ω).

Proof. Again, since P − T̂1 ∈ Cp for every p > n, it suffices to consider double commutators

of the form [M̂g, [M̂f , T̂1]]. Let f, g ∈ C∗(Ω) and h ∈ L0. Continuing with (6.1), we have

(6.3) ([M̂g, [M̂f , T̂1]]h)(z) = (Ah)(z)− (Bh)(z),

where

(Ah)(z) =

∫
Ω

(g(z)− g(w))(f(z)− f(w))K(n)
w (z)(Rnh)(w)dµ(w)

and

(Bh)(z) =
n∑
i=1

Cni

∫
Ω

(f(z)− f(w))K(n)
w (z)(Rig)(w)(Rn−ih)(w)dµ(w)

+
n∑
j=1

Cnj

∫
Ω

(g(z)− g(w))K(n)
w (z)(Rjf)(w)(Rn−jh)(w)dµ(w)

−
n∑
j=1

n−j∑
ν=1

Cnj C
n−j
ν

∫
Ω

K(n)
w (z)(Rjf)(w)(Rνg)(w)(Rn−j−νh)(w)dµ(w).
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A computation of 〈Bh, h′〉#, h′ ∈ L0, tells us that B is a linear combination of operators
of the form · · ·YmMξDk, where 0 ≤ m ≤ 2n and 0 ≤ k ≤ n− 1. Thus for p > n, it follows
from Lemmas 5.4 and 5.9 that

(6.4) ‖B‖p ≤ C1‖f‖∗‖g‖∗.

On the other hand, a computation of 〈Ah, h′〉#, h′ ∈ L0, tells us that

A = D∗n[Mg, [Mf , Y2n]]Dn +A′,

where A′ is a linear combination of terms of the form · · ·Yj · · · with n ≤ j ≤ 2n−1. Hence
for p > n, it follows from Lemmas 5.4 and 5.5 that

(6.5) ‖A‖p ≤ C2‖f‖∗‖g‖∗.

Combining (6.3), (6.4) and (6.5), the proposition is proved. �

7. Adjoints

Due to the nature of the inner product 〈·, ·〉#, in general M̂∗f is not a multiplication
operator on L. This causes additional difficulties for the proof of Theorem 1.2. We take
care of these additional difficulties in this section.

Lemma 7.1. For any f ∈ C∗(Ω), we have

M̂∗f − M̂f̄ =
n∑
j=1

Cnj (D∗n−jMRj f̄Dn −D∗nMRj f̄Dn−j)(7.1)

+
n−1∑
i=1

i∑
ν=1

Ciν(D∗i−νMRν f̄MηDi −D∗iMRν f̄MηDi−ν).

Proof. Let g, h ∈ L0. By (5.6) and the Leibniz rule,

〈M̂∗f g, h〉# = 〈g, M̂fh〉# = 〈Dng,Dn(fh)〉+

n−1∑
i=0

〈MηDig,Di(fh)〉

=

n∑
j=0

Cnj 〈Dng,MRjfDn−jh〉+

n−1∑
i=0

i∑
ν=0

Ciν〈MηDig,MRνfDi−νh〉.(7.2)

On the other hand,

〈M̂f̄g, h〉# = 〈Dn(f̄g),Dnh〉+
n−1∑
i=0

〈MηDi(f̄g),Dih〉

=

n∑
j=0

Cnj 〈MRj f̄Dn−jg,Dnh〉+

n−1∑
i=0

i∑
ν=0

Ciν〈MηMRν f̄Di−νg,Dih〉.(7.3)

22



Subtracting (7.3) from (7.2), we obtain (7.1). �

Lemma 7.2. For each p > n, there is a constant 0 < C = C(p) <∞ such that

‖P (M̂∗f − M̂f̄ )‖p ≤ C‖f‖∗ and ‖(M̂∗f − M̂f̄ )P‖p ≤ C‖f‖∗

for every f ∈ C∗(Ω).

Proof. This is an immediate consequence of Lemmas 7.1, 5.14(a) and 5.15. �

Definition 7.3. For each f ∈ C∗(Ω), let T̃f be the operator on P defined by the formula

T̃fh = P (fh), h ∈ P.

In other words, T̃f is the analogue of a Toeplitz operator on P. We also consider T̃f
as an operator on L, with the equivalent formula T̃f = PM̂fP .

Proposition 7.4. For each p > 2n/3, there is a constant 0 < C = C(p) <∞ such that

‖[T̃ ∗f − T̃f̄ , T̃g]‖p ≤ C‖f‖∗‖g‖∗

for all f, g ∈ C∗(Ω).

Proof. Since T̃ ∗f = PM̂∗fP , we have

[T̃ ∗f − T̃f̄ , T̃g] = [P (M̂∗f − M̂f̄ )P, PM̂gP ] = F −G+H,

where

F = P (M̂∗f − M̂f̄ )(P − 1)M̂gP,

G = PM̂g(P − 1)(M̂∗f − M̂f̄ )P and

H = P [(M̂∗f − M̂f̄ ), M̂g]P.

Obviously, F = P (M̂∗f − M̂f̄ )[P, M̂g]P . Thus it follows from Proposition 6.3 and Lemma
7.2 that for each p > 2n/3, there is a constant 0 < C1 = C1(p) <∞ such that

‖F‖p ≤ C1‖f‖∗‖g‖∗.

A similar bound holds for ‖G‖p. What remains is to bound ‖H‖p.

First, we show that for any p > 2n/3, there is a 0 < C2 = C2(p) <∞ such that

‖P [D∗kMξDn, M̂g]P‖p ≤ C2‖ξ‖∞‖g‖∗ and(7.4)

‖P [D∗nMξDk, M̂g]P‖p ≤ C2‖ξ‖∞‖g‖∗(7.5)

for 0 ≤ k ≤ n− 1 and ξ ∈ L∞(Ω, dµ).
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Let 0 ≤ k ≤ n− 1. By the Leibniz rule,

(7.6) [D∗kMξDn, M̂g] = (D∗kMg − M̂gD∗k)MξDn +
n∑
j=1

Cnj D∗kMξMRjgDn−j .

It follows from Lemma 5.14(a) that if p > n/2, then

(7.7)

∥∥∥∥P( n∑
j=1

Cnj D∗kMξMRjgDn−j
)
P

∥∥∥∥
p

≤ C3‖ξ‖∞‖g‖∗.

On the other hand,

D∗kMg − M̂gD∗k = (MḡDk −DkM̂∗g )∗ = (MḡDk −DkM̂ḡ)
∗ + {Dk(M̂ḡ − M̂∗g )}∗

= −
k∑
i=1

Cki {MRiḡDk−i}∗ + (M̂∗ḡ − M̂g)D∗k = −
k∑
i=1

Cki D∗k−iMRig + (M̂∗ḡ − M̂g)D∗k.

Consequently,

P (D∗kMg − M̂gD∗k)MξDnP = −
k∑
i=1

Cki PD∗k−iMRigMξDnP(7.8)

+ P (M̂∗ḡ − M̂g)D∗kMξDnP.

It follows from Lemma 5.14(b) that if p > 2n/3, then

(7.9)

∥∥∥∥ k∑
i=1

Cki PD∗k−iMRigMξDnP
∥∥∥∥
p

≤ C4‖ξ‖∞‖g‖∗.

For each p > n/2, we also have

‖P (M̂∗ḡ − M̂g)D∗kMξDnP‖p ≤ ‖P (M̂∗ḡ − M̂g)‖2p‖D∗kMξDnP‖2p ≤ C5‖g‖∗ · C6‖ξ‖∞,

where the second ≤ follows from Lemmas 7.2 and 5.15. Combining this with (7.8) and
(7.9), we find that

(7.10) ‖P (D∗kMg − M̂gD∗k)MξDnP‖p ≤ C7‖ξ‖∞‖g‖∗

if p > 2n/3. Inequality (7.4) now follows from (7.6), (7.7) and (7.10).

To prove (7.5), note that

(P [D∗nMξDk, M̂g]P )∗ = P [M̂∗g ,D∗kMξ̄Dn]P

= P [M̂ḡ,D∗kMξ̄Dn]P + P [M̂∗g − M̂ḡ,D∗kMξ̄Dn]P.(7.11)
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By Lemmas 7.2, 5.14(a) and 5.15, we have

‖P [M̂∗g − M̂ḡ,D∗kMξ̄Dn]P‖p ≤ C8‖ξ‖∞‖g‖∗

if p > n/2. An application of (7.4) to the term P [M̂ḡ,D∗kMξ̄Dn]P in (7.11) then completes
the proof of (7.5).

If 0 ≤ k ≤ n− 1, 0 ≤ m ≤ n− 1 and p > n/2, then it follows from Lemma 5.16 that

(7.12) ‖P [D∗kMξDm, M̂g]P‖p ≤ C9‖ξ‖∞‖g‖∗.

Since H = P [(M̂∗f − M̂f̄ ), M̂g]P , from Lemma 7.1, (7.4), (7.5) and (7.12) we obtain

‖H‖p ≤ C10‖f‖∗‖g‖∗.

when p > 2n/3. This completes the proof. �

8. Local frame

Define e1(w) = w/|w| for w ∈ Cn\{0}. Then e1 is a Cn-valued C∞ function on
Cn\{0}. Moreover,

F1(w) = 1− e1(w)⊗ e1(w)

is a projection-valued C∞ function on Cn\{0}.

Let an a ∈ Ω be given. We pick a nonzero vector v2 ∈ F1(a)Cn. Since F1(a)v2 = v2,
there is an open set N2 containing a such that F1(w)v2 6= 0 for every w ∈ N2. We define

e2(w) = F1(w)v2/|F1(w)v2|, w ∈ N2.

Then e2 is a Cn-valued C∞ function on N2. Define

F2(w) = 1− e1(w)⊗ e1(w)− e2(w)⊗ e2(w),

which is a projection-valued C∞ function on N2. If n > 2, then F2(a)Cn 6= {0}, and we
can pick a nonzero vector v3 ∈ F2(a)Cn and repeat the above process. Thus we have

Proposition 8.1. Given an a ∈ Ω, there exist a positive number 0 < δ = δ(a) < 1/2 and
vectors {e2(w), . . . , en(w)} ⊂ Cn, w ∈ B(a, δ), which have the following properties:

(1) For each 2 ≤ i ≤ n, the map w 7→ ei(w) is C∞ on B(a, δ).
(2) For every w ∈ B(a, δ), {e1(w), e2(w), . . . , en(w)} is an orthonormal basis for Cn.

Obviously, the above construction of local frame is just a smoothly parametrized
version of the Gram-Schmidt process with e1(w) = w/|w|. If f is an analytic function on
B(0, s) for some s > 1, then Proposition 8.1 provides the representation

(8.1) 〈(∂f)(w), z − w〉 =
n∑
i=1

〈z − w, ei(w)〉〈(∂f)(w), ei(w)〉
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for w ∈ B(a, δ) ∩B(0, s) and z ∈ B(0, s).

Definition 8.2. With the number 0 < δ = δ(a) < 1/2 provided by Proposition 8.1, we
let γa be a C∞-function on Cn satisfying the conditions 0 ≤ γa ≤ 1 on Cn, γa = 1 on
B(a, δ/2), and γa = 0 on Cn\B(a, 2δ/3).

Definition 8.3. (1) We extend the e2, . . . , en in Proposition 8.1 to vector-valued functions
on the entire Cn by setting ei = 0 on Cn\B(a, δ), 2 ≤ i ≤ n.
(2) With the definition of e2, . . . , en extended as in (1), we define the vector-valued func-
tions ε1, ε2, . . . , εn on Cn by the formula εi = γaei for 1 ≤ i ≤ n.

Definition 8.3 ensures that the vector-valued functions ε1, ε2, . . . , εn are C∞ on Cn.

Definition 8.4. For any analytic function f on B(0, s), s > 1, we define the functions
D1f, . . . ,Dnf by the formula

(Dif)(w) = 〈(∂f)(w), εi(w)〉

for w ∈ B(0, s) and 1 ≤ i ≤ n.

Recall that we write ζ1, . . . , ζn for the coordinate functions on Cn.

Definition 8.5. (1) Let A be a bounded operator on L. For each 1 ≤ i ≤ n, we write

Ci(A) =

n∑
j=1

[M̂ζj , A]M̂ε̄i,j ,

where εi,1, . . . , εi,n are the components of the vector-valued function εi.
(2) Let B be a bounded operator on L2(Ω, dµ). For each 1 ≤ i ≤ n, we write

Ci(B) =
n∑
j=1

[Mζj , B]Mε̄i,j ,

where εi,1, . . . , εi,n are the components of the vector-valued function εi.

Lemma 8.6. Given any s > s′ > 1, there is a constant 0 < C = C(s, s′) < ∞ such that
if f ∈ H∞s and z, w ∈ B(0, s′), then

|f(z)− f(w)− 〈(∂f)(w), z − w〉| ≤ C‖f‖s,∞|z − w|2.

Proof. This is immediate from the first-order Taylor expansion

f(z)− f(w) = 〈(∂f)(w), z − w〉+

∫ 1

0

〈(∂f)(w + t(z − w))− (∂f)(w), z − w〉dt.

�
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Proposition 8.7. Given p > n and s > 1, there is a 0 < C = C(s, p) <∞ such that∥∥∥∥[Mf , Y2n]Mγ2
a
−

n∑
i=2

Ci(Y2n)MDif

∥∥∥∥
p

≤ C‖f‖s,∞

for every f ∈ H∞s .

Proof. Obviously, [Mf , Y2n]Mγ2
a

is the operator on L2(Ω, dµ) with the function

(8.2) (f(z)− f(w))K(2n)
w (z)γ2

a(w)

as its integral kernel. Similarly,
∑n
i=1 Ci(Y2n)MDif is the operator on L2(Ω, dµ) with the

function

(8.3)

n∑
i=1

〈z − w, εi(w)〉K(2n)
w (z)(Dif)(w)

as its integral kernel. If we write the difference of (8.2) and (8.3) as u(z, w)K
(2n)
w (z), then

it follows from (8.1) that

u(z, w) = (f(z)− f(w)− 〈(∂f)(w), z − w〉)γ2
a(w).

By Lemma 8.6, |u(z, w)| ≤ C‖f‖s,∞|z − w|2. For z, w ∈ B, |z − w|2 ≤ 2|1− 〈z, w〉|. Thus
it follows from Lemma 5.2 and (5.3) that if p > n, then

(8.4)

∥∥∥∥[Mf , Y2n]Mγ2
a
−

n∑
i=1

Ci(Y2n)MDif

∥∥∥∥
p

≤ C1‖f‖s,∞

for every f ∈ H∞s , s > 1. Since e1(w) = w/|w|, we have

|〈z − w, ε1(w)〉| ≤ 2|〈z − w,w〉| ≤ 2(1− |w|2) + 2|1− 〈z, w〉|

for z, w ∈ Ω. Thus by Lemma 5.4, C1(Y2n) ∈ Cp for every p > n. Combining this fact with
(8.4), the proposition is proved. �

Lemma 8.8. Let p > n. Then there is a 0 < C = C(p) <∞ such that

‖[M̂f , T̂1]M̂u −D∗n[Mf , Y2n]MuDn‖p ≤ C‖f‖∗‖u‖∗

for all f, u ∈ C∗(Ω).

Proof. In view of Lemma 6.2, it suffices to show that for each p > n, there is a 0 < C =
C(p) <∞ such that

(8.5) ‖D∗n[Mf , Y2n]DnM̂u −D∗n[Mf , Y2n]MuDn‖p ≤ C‖f‖∗‖u‖∗
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for f, u ∈ C∗(Ω). Applying the Leibniz rule to DnM̂uh, h ∈ L0, we have

D∗n[Mf , Y2n]DnM̂u −D∗n[Mf , Y2n]MuDn =
n∑
j=1

Cnj D∗n[Mf , Y2n]MRjuDn−j .

Thus an application of Lemma 5.9 proves (8.5). �

Lemma 8.9. Given p > n and s > 1, there is a 0 < C = C(s, p) <∞ such that∥∥∥∥[M̂f , P ]M̂γ2
a
−

n∑
i=2

Ci(P )M̂Dif

∥∥∥∥
p

≤ C‖f‖s,∞

for every f ∈ H∞s .

Proof. By Proposition 4.14 and Lemma 5.17, we have P − T̂1 ∈ Cp for every p > n. Thus,
given any p > n and s > 1, it suffices to find a 0 < C = C(s, p) <∞ such that

(8.6)

∥∥∥∥[M̂f , T̂1]M̂γ2
a
−

n∑
i=2

Ci(T̂1)M̂Dif

∥∥∥∥
p

≤ C‖f‖∗

for every f ∈ H∞s . First of all, by Lemma 8.8 we have

(8.7) ‖[M̂f , T̂1]M̂γ2
a
−D∗n[Mf , Y2n]Mγ2

a
Dn‖p ≤ C1‖f‖∗

for f ∈ C∗(Ω). Since Ci(T̂1) =
∑n
j=1[M̂ζj , T̂1]M̂ε̄i,j and Ci(Y2n) =

∑n
j=1[Mζj , Y2n]Mε̄i,j , it

also follows from Lemma 8.8 that

(8.8)

∥∥∥∥ n∑
i=2

Ci(T̂1)M̂Dif −
n∑
i=2

D∗nCi(Y2n)MDifDn
∥∥∥∥
p

≤ C2‖f‖∗,

f ∈ H∞s , s > 1. Therefore (8.6) follows from (8.7), (8.8) and Proposition 8.7. �

Recall that the “Toeplitz operator” T̃f on P was defined in Definition 7.3. Moreover,

we identify each T̃f with the operator PM̂fP on L.

Lemma 8.10. Given p > 2n/3 and s > 1, there is a 0 < C = C(s, p) <∞ such that∥∥∥∥[T̃f , T̃g]M̂γ2
a
−

n∑
i=2

P [Ci(P ), [M̂g, P ]]PM̂Dif

∥∥∥∥
p

≤ C‖f‖s,∞‖g‖∗

for all f ∈ H∞s and g ∈ C∗(Ω).

Proof. Since [M̂f , M̂g] = 0, we have

(8.9) [T̃f , T̃g] = P [M̂f , P ][M̂g, P ]P − P [M̂g, P ][M̂f , P ]P.
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Given p > 2n/3 and s > 1, the notation A ∼p B in this proof means that ‖A − B‖p ≤
C‖f‖s,∞‖g‖∗. For f ∈ H∞s and g ∈ C∗(Ω), it follows from Propositions 6.3 and 6.4 that

[T̃f , T̃g]M̂γ2
a
∼p P [M̂f , P ]M̂γ2

a
[M̂g, P ]P − P [M̂g, P ][M̂f , P ]M̂γ2

a
P.

Then, by Lemma 8.9 and Propositions 6.3 and 6.4, we have

[T̃f , T̃g]M̂γ2
a
∼p

n∑
i=2

{PCi(P )M̂Dif [M̂g, P ]P − P [M̂g, P ]Ci(P )M̂DifP}

∼p
n∑
i=2

P [Ci(P ), [M̂g, P ]]PM̂Dif

as promised. �

Lemma 8.11. Let p > n be given. Then there is a 0 < C = C(p) <∞ such that

‖[T̃f , T̃g]‖p ≤ C‖f‖∗‖g‖∗

for all f, g ∈ C∗(Ω).

Proof. This follows immediately from (8.9) and Proposition 6.3. �

Lemma 8.12. Let p > 2n/3 be given. Then there is a 0 < C = C(p) <∞ such that

(8.10) ‖[[T̃f , T̃g], M̂h]‖p ≤ C‖f‖∗‖g‖∗‖h‖∗

for all f, g, h ∈ C∗(Ω).

Proof. Continuing with (8.9), we have

[[T̃f ,T̃g], M̂h]

= [P, M̂h][M̂f , P ][M̂g, P ]P + P [[M̂f , P ][M̂g, P ], M̂h]P + P [M̂f , P ][M̂g, P ][P, M̂h]

− [P, M̂h][M̂g, P ][M̂f , P ]P − P [[M̂g, P ][M̂f , P ], M̂h]P − P [M̂g, P ][M̂f , P ][P, M̂h].

Applying Propositions 6.3 and 6.4 in this identity, we obtain (8.10). �

Lemma 8.13. Let p > 2n/3 be given. Then there is a 0 < C = C(p) <∞ such that

‖[[T̃f , T̃g], T̃h]‖p ≤ C‖f‖∗‖g‖∗‖h‖∗

for all f, g, h ∈ C∗(Ω).

Proof. Since [[T̃f , T̃g], T̃h] = P [[T̃f , T̃g], M̂h]P , this is an immediate consequence of Lemma
8.12. �

Lemma 8.14. Let p > 2n/3 be given. Then there is a 0 < C = C(p) <∞ such that

‖[[T̃f , T̃g], T̃ ∗h ]‖p ≤ C‖f‖∗‖g‖∗‖h‖∗ and ‖[[T̃f , T̃ ∗g ], T̃h]‖p ≤ C‖f‖∗‖g‖∗‖h‖∗
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for all f, g, h ∈ C∗(Ω).

Proof. This follows immediately from Proposition 7.4 and Lemma 8.13. �.

Lemma 8.15. For each s > 1, there is a 0 < C = C(s) < ∞ such that ‖f‖∗ ≤ C‖f‖s,∞
for every f ∈ H∞s .

Proof. This is an obvious consequence of (2.2). �

9. Antisymmetric sums on P

After the preparations in Sections 6-8, we now consider antisymmetric sums on the
range space.

Lemma 9.1. Let a ∈ Ω, δ, γa, etc, be the same as in Proposition 8.1 and Definition 8.2.
Given an s > 1, there is a 0 < C = C(s, a) <∞ such that∥∥∥∥ ∑

σ∈Sn

sgn(σ)[T̃fσ(1) , T̃g1 ] · · · [T̃fσ(n)
, T̃gn ]M̂γ2n

a

∥∥∥∥
1

≤ C‖f1‖s,∞‖g1‖∗ · · · ‖fn‖s,∞‖gn‖∗

for all f1, . . . , fn ∈ H∞s and g1, . . . , gn ∈ C∗(Ω).

Proof. For this proof, the notation A ∼1 B means

‖A−B‖1 ≤ C‖f1‖s,∞‖g1‖∗ · · · ‖fn‖s,∞‖gn‖∗.

Let f1, . . . , fn ∈ H∞s and let g1, . . . , gn ∈ C∗(Ω). Then we have

[T̃f1 , T̃g1 ] · · · [T̃fn , T̃gn ]M̂γ2n
a
∼1 [T̃f1 , T̃g1 ]M̂γ2

a
· · · [T̃fn , T̃gn ]M̂γ2

a

∼1

n∑
i1=2

· · ·
n∑

in=2

P [Ci1(P ), [M̂g1 , P ]]PM̂Di1f1
· · ·P [Cin(P ), [M̂gn , P ]]PM̂Dinfn

∼1

n∑
i1=2

· · ·
n∑

in=2

P [Ci1(P ), [M̂g1 , P ]]P · · ·P [Cin(P ), [M̂gn , P ]]PM̂Di1f1
· · · M̂Dinfn

,

(9.1)

where the first ∼1 follows from Lemmas 8.11 and 8.12, the second ∼1 follows from Lemmas
8.10, 8.11 and Proposition 6.3, and the third ∼1 follows from Propositions 6.3 and 6.4.
Writing

Ki1,...,in = P [Ci1(P ), [M̂g1 , P ]]P · · ·P [Cin(P ), [M̂gn , P ]]P

for i1, . . . , in ∈ {2, . . . , n}, from (9.1) we obtain∑
σ∈Sn

sgn(σ)[T̃fσ(1) , T̃g1 ] · · · [T̃fσ(n)
, T̃gn ]M̂γ2n

a

∼1

n∑
i1=2

· · ·
n∑

in=2

Ki1,...,in

∑
σ∈Sn

sgn(σ)M̂Di1fσ(1)
· · · M̂Dinfσ(n)

.(9.2)

30



For each choice of i1, . . . , in ∈ {2, . . . , n}, there are j 6= k in {1, . . . , n} such that ij = ik,
i.e., Dij = Dik . Therefore∑

σ∈Sn

sgn(σ)M̂Di1fσ(1)
· · · M̂Dinfσ(n)

=
∑
σ∈Sn

sgn(σ)M̂Di1fσ(1)···Dinfσ(n)
= 0.

Thus (9.2) actually says∑
σ∈Sn

sgn(σ)[T̃fσ(1) , T̃g1 ] · · · [T̃fσ(n)
, T̃gn ]M̂γ2n

a
∼1 0,

which proves the lemma. �

Lemma 9.2. Given an s > 1, there is a 0 < C = C(s) <∞ such that∥∥∥∥ ∑
σ∈Sn

sgn(σ)[T̃fσ(1) , T̃g1 ] · · · [T̃fσ(n)
, T̃gn ]

∥∥∥∥
1

≤ C‖f1‖s,∞‖g1‖∗ · · · ‖fn‖s,∞‖gn‖∗

for all f1, . . . , fn ∈ H∞s and g1, . . . , gn ∈ C∗(Ω).

Proof. For each a ∈ Ω, we have the function γa and the open ball B(a, δ(a)/2) given in
Definition 8.2. Since a ∈ B(a, δ(a)/2) and since Ω is compact, there is a finite subset F of
Ω such that ∪a∈FB(a, δ(a)/2) ⊃ Ω.

We now apply Lemma 9.1 to each a ∈ F . Since card(F ) <∞, this gives us

(9.3)

∥∥∥∥ ∑
σ∈Sn

sgn(σ)[T̃fσ(1) , T̃g1 ] · · · [T̃fσ(n)
, T̃gn ]

∑
a∈F

M̂γ2n
a

∥∥∥∥
1

≤ C
n∏
j=1

‖fj‖s,∞‖gj‖∗

for f1, . . . , fn ∈ H∞s and g1, . . . , gn ∈ C∗(Ω). For each a ∈ F , γa = 1 on B(a, δ(a)/2) by
Definition 8.2. If we define the function

u =

(∑
a∈F

γ2n
a

)−1

on Ω, then it belongs to C∗(Ω). In particular, M̂u is bounded on L. Since
∑
a∈F M̂γ2n

a
M̂u =

1, the lemma follows from (9.3). �

Lemma 9.3. [15, Lemma 4.4] Let G1, . . . , Gk be operators such that [Gi, Gj ] = 0 for all
i, j ∈ {1, . . . , k}. Then for any operators H1, . . . ,Hk,

[G1, H1, . . . , Gk, Hk] =
∑
σ∈Sk

∑
λ∈Sk

sgn(σ)sgn(λ)[Gσ(1), Hλ(1)] · · · [Gσ(k), Hλ(k)].

Also, for all k ∈ N and operators B1, B2, . . . , B2k, the identity

(9.4)
∑
σ∈S2k

sgn(σ)[Bσ(1), Bσ(2)] · · · [Bσ(2k−1), Bσ(2k)] = 2k[B1, B2, . . . , B2k]
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holds. See [15, (4.9)].

Proposition 9.4. Given an s > 1, there is a 0 < C = C(s) <∞ such that

‖[T̃f1 , T̃g1 , . . . , T̃fn , T̃gn ]‖1 ≤ C‖f1‖s,∞‖g1‖∗ · · · ‖fn‖s,∞‖gn‖∗

for all f1, . . . , fn ∈ H∞s and g1, . . . , gn ∈ C∗(Ω).

Proof. Let f1, . . . , fn ∈ H∞s . Then for all 1 ≤ i, j ≤ n we have [T̃fi , T̃fj ] = [M̃fi , M̃fj ] = 0.
Thus this proposition is an immediate consequence of Lemmas 9.2 and 9.3. �

Lemma 9.5. Let p > n be given. Then there is a 0 < C = C(p) <∞ such that

‖[T̃f , T̃ ∗g ]‖p ≤ C‖f‖∗‖g‖∗

for all f, g ∈ C∗(Ω).

Proof. This follows immediately from Lemma 8.11 and Proposition 7.4. �

Proposition 9.6. Given an s > 1, there is a 0 < C = C(s) <∞ such that

(9.5) ‖[T̃f1 , T̃ ∗g1 , . . . , T̃fn , T̃
∗
gn ]‖1 ≤ C‖f1‖s,∞‖g1‖∗ · · · ‖fn‖s,∞‖gn‖∗

for all f1, . . . , fn ∈ H∞s and g1, . . . , gn ∈ C∗(Ω).

Proof. Again, for this proof the notation A ∼1 B means

‖A−B‖1 ≤ C‖f1‖s,∞‖g1‖∗ · · · ‖fn‖s,∞‖gn‖∗.

Let f1, . . . , fn ∈ H∞s and g1, . . . , gn ∈ C∗(Ω). Since [T̃fi , T̃fj ] = 0 for all 1 ≤ i, j ≤ n,
starting with Lemma 9.3, we have

[T̃f1 , T̃
∗
g1 , . . . , T̃fn , T̃

∗
gn ] =

∑
σ∈Sn

∑
λ∈Sn

sgn(σ)sgn(λ)[T̃fσ(1) , T̃
∗
gλ(1)

] · · · [T̃fσ(n)
, T̃ ∗gλ(n)

]

∼1

∑
σ∈Sn

∑
λ∈Sn

sgn(σ)sgn(λ)[T̃fσ(1) , T̃ḡλ(1) ] · · · [T̃fσ(n)
, T̃ḡλ(n)

]

= [T̃f1 , T̃ḡ1 , . . . , T̃fn , T̃ḡn ],

where the ∼1 follows from Proposition 7.4, Lemma 8.11 and Lemma 9.5. Applying Propo-
sition 9.4 to this last antisymmetric sum, we obtain (9.5). �

Proposition 9.7. For each s > 1, there is a 0 < C = C(s) <∞ such that

(9.6) ‖[M̃∗f1M̃g1 , M̃
∗
f2M̃g2 , . . . , M̃

∗
f2nM̃g2n ]‖1 ≤ C‖f1‖s,∞‖g1‖s,∞ · · · ‖f2n‖s,∞‖g2n‖s,∞

for all f1, g1, . . . , f2n, g2n ∈ H∞s .

Proof. For this proof, the notation A ∼1 B means

‖A−B‖1 ≤ C‖f1‖s,∞‖g1‖s,∞ · · · ‖f2n‖s,∞‖g2n‖s,∞.

32



Let f1, g1, . . . , f2n, g2n ∈ H∞s be given. For each 1 ≤ i ≤ 2n, we denote

Ai = M̃∗fiM̃gi , Ai,1 = M̃∗fi , Ai,2 = M̃gi Bi,1 = M̃gi , and Bi,2 = M̃∗fi .

Thus for each 1 ≤ i ≤ 2n,

Ai,1Ai,2 = Ai, Ai,1Bi,1 = Ai, and Bi,2Ai,2 = Ai.

Applying the “product rule” for commutators, it follows from Lemmas 9.5 and 8.14 that

[A1, A2] · · · [A2n−1, A2n]

= [A1,1A1,2, A2,1A2,2] · · · [A2n−1,1A2n−1,2, A2n,1A2d,n]

∼1

2∑
j1,...,j2n=1

[A1,j1 , A2,j2 ] · · · [A2n−1,j2n−1 , A2n,j2n ]B1,j1B2,j2 · · ·B2n,j2n .

Let σ ∈ S2n. Then the map (j1, . . . , j2n) 7→ (jσ(1), . . . , jσ(2n)) is injective on the product
set {1, 2}2n, hence surjective also. Therefore

[Aσ(1),Aσ(2)] · · · [Aσ(2n−1), Aσ(2n)]

∼1

2∑
j1,...,j2n=1

[Aσ(1),j1 , Aσ(2),j2 ] · · · [Aσ(2n−1),j2n−1
, Aσ(2n),j2n ]

×Bσ(1),j1Bσ(2),j2 · · ·Bσ(2n),j2n

=
2∑

j1,...,j2n=1

[Aσ(1),jσ(1) , Aσ(2),jσ(2) ] · · · [Aσ(2n−1),jσ(2n−1)
, Aσ(2n),jσ(2n)

]

×Bσ(1),jσ(1)Bσ(2),jσ(2) · · ·Bσ(2n),jσ(2n)

∼1

2∑
j1,...,j2n=1

[Aσ(1),jσ(1) , Aσ(2),jσ(2) ] · · · [Aσ(2n−1),jσ(2n−1)
, Aσ(2n),jσ(2n)

]

×B1,j1B2,j2 · · ·B2n,j2n ,

where the second ∼1 follows from Lemma 9.5. By (9.4), we have

[A1, A2, . . . , A2n] = 2−n
∑
σ∈S2n

sgn(σ)[Aσ(1), Aσ(2)] · · · [Aσ(2n−1), Aσ(2n)]

∼1 2−n
2∑

j1,...,j2n=1

∑
σ∈S2n

sgn(σ)[Aσ(1),jσ(1) , Aσ(2),jσ(2) ] · · · [Aσ(2n−1),jσ(2n−1)
, Aσ(2n),jσ(2n)

]

×B1,j1B2,j2 · · ·B2n,j2n

=

2∑
j1,...,j2n=1

[A1,j1 , A2,j2 , . . . , A2n,j2n ]B1,j1B2,j2 · · ·B2n,j2n .
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Applying Proposition 9.6 to each nonzero [A1,j1 , A2,j2 , . . . , A2n,j2n ], we obtain (9.6). �

Proof of Theorem 1.2. This follows immediately from Corollary 4.13, Proposition 2.5, and
Proposition 9.7. �

10. Proof of Theorem 1.3

Our proof of Theorem 1.3 requires two steps. First, we will show that trace formula
(1.3) holds for analytic polynomials f1, g1, . . . , f2n, g2n ∈ C[ζ1, , . . . , ζ2n]. This step takes up
most of this section. Once we have the polynomial version of (1.3), the trace-norm bound
in Theorem 1.2 allows us to deduce the general case of (1.3) for f1, g1, . . . , f2n, g2n ∈ H∞s ,
s > 1, by approximation.

The proof of (1.3) for f1, g1, . . . , f2n, g2n ∈ C[ζ1, . . . , ζ2n] is based on a fifty-year old
idea due to Coburn [4], which predated the discovery of the Drury-Arveson space in [1,9].
As we will see, this idea allows us to transfer the problem from the Drury-Arveson space
H2
n back to the Bergman space L2

a(B), so that Theorem 1.1 can be applied.

Recall that we write Tf for the Toeplitz operator with symbol f on L2
a(B).

For α ∈ Zn+ and 1 ≤ i ≤ n, we write αi for the i-th component of α. That is,
α = (α1, . . . , αn). For each 1 ≤ j ≤ n, let εj denote the element in Zn+ whose j-th
component is 1 and whose other components are 0.

Let {eα : α ∈ Zn+} be the standard orthonormal basis for the Drury-Arveson space
H2
n. As we already mentioned in Section 3, it is well known that

eα(ζ) = (|α|!/α!)1/2ζα, α ∈ Zn+.

Therefore for any 1 ≤ j ≤ n and α ∈ Zn+, we have

(10.1) Mζjeα = {‖ζα+εj‖H2
n
/‖ζα‖H2

n
}eα+εj =

(
αj + 1

|α|+ 1

)1/2

eα+εj .

Let {uα : α ∈ Zn+} be the standard orthonormal basis for L2
a(B). It is well known that

uα(ζ) = ((|α|+ n)!/α!n!)1/2ζα, α ∈ Zn+.

For any 1 ≤ j ≤ n and α ∈ Zn+, we have

(10.2) Tζjuα = {‖ζα+εj‖L2
a(B)/‖ζα‖L2

a(B)}uα+εj =

(
αj + 1

|α|+ 1 + n

)1/2

uα+εj .

Let U : L2
a(B)→ H2

n be the unitary operator such that

(10.3) Uuα = eα for every α ∈ Zn+.
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Furthermore, we define the diagonal operator D on L2
a(B) by the formula

(10.4) D =
∑
α∈Zn

+

n√
|α|+ 1(

√
|α|+ 1 +

√
|α|+ 1 + n)

uα ⊗ uα.

By (10.1), (10.2) and elementary algebra, we find that

(10.5) U∗MζjU = Tζj (1 +D)

for every 1 ≤ j ≤ n.

For convenience, we denote

(10.6) dα =
n√

|α|+ 1(
√
|α|+ 1 +

√
|α|+ 1 + n)

, α ∈ Zn+.

For each k ∈ N, we define

(10.7) Ek =
∑
|α|<k

dαuα ⊗ uα and Fk =
∑
|α|≥k

dαuα ⊗ uα.

Then, of course, Ek + Fk = D, and rank(Ek) <∞.

Lemma 10.1. For each p > n, we have

lim
k→∞

‖Fk‖p = 0.

Proof. Write mn for the n-dimensional Lebesgue measure on Rn. Then

‖Fk‖pp =
∑
|α|≥k

dpα ≤
∑
|α|≥k

np

(|α|+ 1)p

≤ C
∫

(x2
1+···+x2

n)1/2≥k/
√
n

dmn(x1, . . . , xn)

(x2
1 + · · ·+ x2

n)p/2
= C1

∫ ∞
k/
√
n

rn−1dr

rp
.

For p > n, the right-hand side tends to 0 as k →∞. �

Lemma 10.2. For t > n− 1 and 1 ≤ j ≤ n, we have

lim
k→∞

‖[Tζj , Fk]‖t = 0.

Proof. By (10.7), for any 1 ≤ j ≤ n we have

(10.8) [Tζj , Fk] =
∑
|α|≥k

dα[Tζj , uα ⊗ uα].
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For α ∈ Zn+, we have T ∗ζjuα = 0 if αj = 0 and T ∗ζjuα = α
1/2
j (|α| + n)−1/2uα−εj if αj ≥ 1.

Combining this fact with (10.2) and with (10.8), we find that [Tζj , Fk] = Ak −Bk, where

Ak =
∑
|α|≥k

(dα − dα+εj )

(
αj + 1

|α|+ 1 + n

)1/2

uα+εj ⊗ uα and

Bk =
∑

|α|=k−1

dα+εj

(
αj + 1

|α|+ 1 + n

)1/2

uα+εj ⊗ uα.

Given t > n− 1, it suffices to show that ‖Bk‖t → 0 and ‖Ak‖t → 0 as k →∞.

Note that

rank(Bk) = card{α ∈ Zn+ : |α| = k − 1} =
(k − 1 + n− 1)!

(k − 1)!(n− 1)!
= O(kn−1).

By (10.6), we have dα+εj = O(k−1) when |α| = k− 1. Since t > n− 1, we have ‖Bk‖t → 0
as k →∞. Also by (10.6), we have dα − dα+εj ≤ C(|α|+ 1)−2. Therefore

‖Ak‖tt ≤ C1

∑
|α|≥k

1

(|α|+ 1)2t
≤ C2

∫ ∞
k/
√
n

rn−1dr

r2t
.

Since t > n− 1 and n ≥ 2, we have 2t > 2n− 2 ≥ n. Thus ‖Ak‖t → 0 as k →∞. �

Definition 10.3. Let A denote the unital algebra generated by the operators

D, Tζ1 , . . . , Tζn , T ∗ζ1 , . . . , T
∗
ζn .

Lemma 10.4. Let t > n− 1. Then for every A ∈ A we have

(10.9) lim
k→∞

‖[A,Fk]‖t = 0.

Proof. Given t > n− 1, (10.9) is a consequence of the following three statements:
(1) limk→∞ ‖[Tζj , Fk]‖t = 0 for every 1 ≤ j ≤ n.
(2) limk→∞ ‖[T ∗ζj , Fk]‖t = 0 for every 1 ≤ j ≤ n.

(3) limk→∞ ‖[D,Fk]‖t = 0.
Obviously, (1) is provided by Lemma 10.2. Since Fk is self-adjoint, (2) follows from (1).
Since we assume n ≥ 2, we have n/2 ≤ n − 1. Note that Lemma 10.1 implies D ∈ Cp for
every p > n. Therefore it follows from Lemmas 10.1 and 2.1 that limk→∞ ‖[D,Fk]‖p/2 = 0
for every p > n. This obviously implies (3). �

Lemma 10.5. For any A,B ∈ A, we have [A,B] ∈ Cp for every n > p.

Proof, This is an obvious consequence of Lemma 2.6 and the fact that D ∈ Cp for every
p > n. �
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Lemma 10.6. Let t > n− 1 be given. Then for all A,B,C ∈ A we have

lim
k→∞

‖[A,BFkC]‖t = 0.

Proof. Applying Lemma 10.4, what remains to be shown is that

lim
k→∞

‖[A,B]Fk‖t = 0 and lim
k→∞

‖Fk[A,C]‖t = 0.

Set p = 2t. Then p > 2n− 2 ≥ n. By Lemma 2.1, we have

‖[A,B]Fk‖t ≤ ‖[A,B]‖p‖Fk‖p.

Thus it follows from Lemmas 10.1 and 10.5 that ‖[A,B]Fk‖t → 0 as k → ∞. A similar
argument shows that ‖Fk[A,C]‖t → 0 as k →∞. This completes the proof. �

Next we consider antisymmetric sums. It is obvious that if E ∈ C1, then

(10.10) tr[E,Z2, Z3, . . . , Z2n] = 0

for all operators Z2, Z3, . . . , Z2n.

Lemma 10.7. Let A,B,A2, A3, . . . , A2n ∈ A. Then the antisymmetric sum

[ADB,A2, A3, . . . , A2n]

is in the trace class with zero trace.

Proof. Since D = Ek + Fk and since Ek is a finite-rank operator, in view of (10.10), it
suffices to show that

lim
k→∞

‖[AFkB,A2, A3, . . . , A2n]‖1 = 0.

To prove this, we define A
(k)
1 = AFkB and A

(k)
j = Aj for 2 ≤ j ≤ 2n. By (9.4), we have

[AFkB,A2, A3, . . . , A2n] = [A
(k)
1 , A

(k)
2 , . . . , A

(k)
2n ]

= 2−n
∑
σ∈S2n

sgn(σ)[A
(k)
σ(1), A

(k)
σ(2)] · · · [A

(k)
σ(2n−1), A

(k)
σ(2n)].

Thus it suffices to show that for every σ ∈ S2n, we have

(10.11) lim
k→∞

‖[A(k)
σ(1), A

(k)
σ(2)] · · · [A

(k)
σ(2n−1), A

(k)
σ(2n)]‖1 = 0.

Let σ ∈ S2n be given. Then there is an i = i(σ) ∈ {1, . . . , n} such that either σ(2i−1) = 1
or σ(2i) = 1. Hence there is a ν = ν(σ) ∈ {σ(2i− 1), σ(2i)} such that

(10.12) [A
(k)
σ(2i−1), A

(k)
σ(2i)] = ±[AFkB,Aν ].

37



We obviously have

(10.13) [A
(k)
σ(2j−1), A

(k)
σ(2j)] = [Aσ(2j−1), Aσ(2j)] for j ∈ {1, . . . , n}\{i}.

Pick a t satisfying the condition n − 1 < t < n. Then there is a p > n such that
(n− 1)/p = 1− (1/t). It follows from (10.12), (10.13) and Lemma 2.1 that

(10.14) ‖[A(k)
σ(1), A

(k)
σ(2)] · · · [A

(k)
σ(2n−1), A

(k)
σ(2n)]‖1 ≤ ‖[AFkB,Aν ]‖t

∏
j 6=i

‖[Aσ(2j−1), Aσ(2j)]‖p.

By Lemma 10.5, we have ‖[Aσ(2j−1), Aσ(2j)]‖p < ∞ for every j 6= i. Therefore (10.11)
follows from (10.14) and Lemma 10.6. This completes the proof. �

Proposition 10.8. Given any f1, . . . , f2n, g1, . . . , g2n ∈ C[ζ1, . . . , ζn], there is a trace-class
operator Y with tr(Y ) = 0 such that

U∗[M∗f1Mg1 ,M
∗
f2Mg2 , . . . ,M

∗
f2nMg2n ]U = [Tf̄1g1 , Tf̄2g2 , . . . , Tf̄2ng2n ] + Y.

Proof. For any α = (α1, . . . , αn) ∈ Zn+, it follows from (10.5) that

U∗MζαU = U∗Mα1

ζ1
· · ·Mαn

ζn
U = {Tζ1(1 +D)}α1 · · · {Tζn(1 +D)}αn

= Tζα +
2|α|−1∑
ν=1

XνDYν ,

where X1, Y1, . . . , X2|α|−1, Y2|α|−1 ∈ A. Therefore, given any analytic polynomials f1, g1,
. . . , f2n, g2n ∈ C[ζ1, . . . , ζn], there exist an m ∈ N and Aj,i, Bj,i ∈ A, 1 ≤ j ≤ 2n and
1 ≤ i ≤ m, such that

U∗M∗fjMgjU = T ∗fjTgj +

m∑
i=1

Aj,iDBj,i = Tf̄jgj +

m∑
i=1

Aj,iDBj,i

for every 1 ≤ j ≤ 2n. Combining this identity with the linearity for each slot in an
antisymmetric sum, we have

U∗[M∗f1Mg1 ,M
∗
f2Mg2 , . . . ,M

∗
f2nMg2n ]U

= [Tf̄1g1 , Tf̄2g2 , . . . , Tf̄2ng2n ] +

(m+1)2n−1∑
r=1

[X1,r, X2,r, . . . , X2n,r],

where the operators Xj,r satisfy the following two conditions:
(1) Xj,r ∈ A for all 1 ≤ j ≤ 2n and 1 ≤ r ≤ (m+ 1)2n − 1.
(2) For each 1 ≤ r ≤ (m+ 1)2n − 1, there is a j(r) ∈ {1, . . . , 2n} such that
Xj(r),r = ADB with A,B ∈ A.
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By these two conditions and Lemma 10.7, for each 1 ≤ r ≤ (m+1)2n−1, the antisymmetric
sum [X1,r, X2,r, . . . , X2n,r] is in the trace class with zero trace. This completes the proof.
�

We can now prove (1.3) for analytic polynomials:

Proposition 10.9. For f1, . . . , f2n, g1, . . . , g2n ∈ C[ζ1, . . . , ζn] we have

tr[M∗f1Mg1 ,M
∗
f2Mg2 , . . . ,M

∗
f2nMg2n ] =

n!

(2πi)n

∫
B

df̄1g1 ∧ df̄2g2 ∧ · · · ∧ df̄2ng2n.

Proof. This follows immediately from Proposition 10.8 and Theorem 1.1. �

Lemma 10.10. Let 0 < r < s < ∞ and let f ∈ H∞s . Then there is a sequence {fk} of
analytic polynomials such that

lim
k→∞

‖f − fk‖r,∞ = 0.

Proof. Even though this is obvious, a proof is included here for completeness.

Given an f ∈ H∞s , define g(ζ) = f(sζ), ζ ∈ B. Then g is in the H∞ of the unit ball.
By the Cauchy formula for B, we have the expansion

g(ζ) =
∞∑
j=0

uj(ζ), ζ ∈ B,

where, for each j ∈ Z+, uj is a homogeneous polynomial of degree j. More precisely,

uj(ζ) = Cj+n−1
j

∫
S

〈ζ, ξ〉jg(ξ)dσ(ξ)

for j ∈ Z+, where Cj+n−1
j = (j+n−1)!

j!(n−1)! . In particular, there is a 0 < C <∞ such that

|uj(ζ)| ≤ CCj+n−1
j |ζ|j for all ζ ∈ Cn and j ∈ Z+.

For each k ∈ N, we define

fk(ζ) =
k∑
j=0

1

sj
uj(ζ), ζ ∈ Cn.

Note that f(ζ) = g(ζ/s) for ζ ∈ B(0, s). Thus for ζ ∈ B(0, r) and k ∈ N, we have

|f(ζ)− fk(ζ)| =
∣∣∣∣ ∞∑
j=k+1

1

sj
uj(ζ)

∣∣∣∣ ≤ C ∞∑
j=k+1

Cj+n−1
j

(r
s

)j
,
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which proves the lemma. �

Proof of Theorem 1.3. Let f1, g1, . . . , f2n, g2n ∈ H∞s for some s > 1. We pick an r such
that 1 < r < s. By Lemma 10.10, there are sequences of analytic polynomials {fj,k} and
{gj,k}, 1 ≤ j ≤ 2n, such that

(10.15) lim
k→∞

‖fj − fj,k‖r,∞ = 0 and lim
k→∞

‖gj − gj,k‖r,∞ = 0,

1 ≤ j ≤ 2n. By Theorem 1.2 and the linearity of antisymmetric sums, (10.15) implies

lim
k→∞

‖[M∗f1Mg1 , . . . ,M
∗
f2nMg2n ]− [M∗f1,kMg1,k , . . . ,M

∗
f2n,k

Mg2n,k ]‖1 = 0.

Therefore

(10.16) tr[M∗f1Mg1 , . . . ,M
∗
f2nMg2n ] = lim

k→∞
tr[M∗f1,kMg1,k , . . . ,M

∗
f2n,k

Mg2n,k ].

Since r > 1, (10.15) also implies

(10.17) lim
k→∞

n!

(2πi)n

∫
B

df̄1,kg1,k ∧ · · · ∧ df̄2n,kg2n,k =
n!

(2πi)n

∫
B

df̄1g1 ∧ · · · ∧ df̄2ng2n.

For each k ∈ N, Proposition 10.9 gives us the identity

(10.18) tr[M∗f1,kMg1,k , . . . ,M
∗
f2n,k

Mg2n,k ] =
n!

(2πi)n

∫
B

df̄1,kg1,k ∧ · · · ∧ df̄2n,kg2n,k.

Combining (10.16), (10.17) and (10.18), we obtain (1.3). This completes the proof. �
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