THE HELTON-HOWE TRACE FORMULA
FOR THE DRURY-ARVESON SPACE

Jingbo Xia

Abstract. The famous Helton-Howe trace formula was originally established for antisym-
metric sums of Toeplitz operators on the Bergman space of the unit ball. We prove the
analogue of this formula on the Drury-Arveson space.

1. Introduction

Given any bounded operators Ay, ..., Ax on a Hilbert space H, one has the antisym-
metric sum

[Ar, o A =) sgn(0)Agry -+ Aory,

oESk

which naturally generalizes the notion of commutator. This was first introduced by Helton
and Howe in [11], and has since become an important part of operator theory and non-
commutative geometry [5,7]. As it turns out, operators on reproducing-kernel Hilbert
spaces provide some of the particularly interesting examples of antisymmetric sums.

Let B be the unit ball {z € C" : |z] < 1} in C". As usual, we write L2(B) for the
Bergman space. Given an f € L*(B), we have the familiar Toeplitz operator Tt defined
by the formula

(1.1) Tsh = P(fh), he L2(B),

where P : L?(B) — L2(B) is the orthogonal projection. We recall the following classic
result of Helton and Howe:

Theorem 1.1. [11, Theorem 7.2] Let f1, fa, ..., fan be C°°-functions on an open set con-
taining B. Then the antisymmetric sum [Ty, ,T},, ..., Ty, ] is in the trace class. Moreover,

1.2 tr| T, T,,..., T = —
( ) 1"[ fir+ f2r ’ f2n] (27Ti)"

/df1/\dfz/\---Adf2n-
B

We further recommend to the reader the recent article [13], in which this trace formula
was re-examined from the modern perspective of non-commutative geometry and quanti-
zation. More generally, the study of the Arveson-Douglas conjecture [2,3,6] has brought
renewed interest in antisymmetric sums and their traces [10,14].

The purpose of this paper is to prove the analogue of (1.2) for the Drury-Arveson
space. It is not surprising that this has not been done before, for the Drury-Arveson space
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is notorious for the scarcity of results. In fact, this paper is a good illustration of the
difficulties for obtaining results on the Drury-Arveson space.

Recall that the Drury-Arveson space H?2 is the Hilbert space of analytic functions on

B that has the function .

B 1_<§72>

as its reproducing kernel [1,9]. Equivalently, H2 can be described as the Hilbert space of
analytic functions on B where the inner product is given by

K.(C)

for

Throughout the paper, we follow the usual multi-index convention [12, page 3]. Further-
more, we assume that the complex dimension n is at least 2.

There are, of course, no Toeplitz operators on H? in general. But there are multipli-
cation operators. An analytic function f on B is said to be a multiplier of H? if fh € H?2
for every h € H2. Recall that the notion multiplier was first introduced by Arveson in [1].
As usual, we write M for the collection of multipliers of H2. For each f € M, we have
the multiplication operator

Msh = fh, heH?,

on the Drury-Arveson space, which is necessarily bounded [1]. The operator norm ||M¢||
is called the multiplier norm of f, and is commonly denoted by || f||r¢. For f,g € M, the
operator Mg M, is the proper analogue on H2 of the Toeplitz operator Ty,

Taking the condition in Theorem 1.1 as a guide, to obtain trace-class membership
for antisymmetric sums on H2, we need some smoothness for the “symbol functions”
involved. Thus we need to focus on “smooth subclasses” of M. The following are some of
the convenient “smooth subclasses” of M.

For each s > 1, let H.° denote the collection of analytic functions f on the open ball
B(0,s) = {z € C" : |z] < s} satistying the condition ||f||s o < 00, where

I1f

s,00 = sup{|f(z)| : z € B(0,s)}.

It is easy to show that M D HS® for every s > 1. (See Proposition 2.5 below.) Thus each
H®, s > 1, is a smooth subclass of M.

The key to establishing the analogue of Theorem 1.1 for the Drury-Arveson space H?2
is a bound on trace norm | - ||, which has obvious significance in its own right:
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Theorem 1.2. Given any 1 < s < oo, there is a 0 < C = C(s) < oo such that for all
fiseoos fon, 91y, gon € HZ®, the antisymmetric sum [Mf Mg, , M7, My, , ..., M3, M ]

2n 92n
on H?2 satisfies the trace-norm bound

||[Mf1M917M}<2M92’ te ’M};nMan]”l < CH ||f]
j=1

'”s,oo-

Using Theorem 1.2, we can prove the following analogue of trace formula (1.2) for the
Drury-Arveson space:

Theorem 1.3. Let fi,..., fon,91,-..,92n, € HX® for some s > 1. Then on the Drury-
Arveson space H2, we have the trace formula

* * n' r r r
(13) tr[MflMgl,MszQQ,. . '7Mf2nM92n] = W/E;dflgl /\df292 N /\df2n92n~

The rest of the paper is devoted to the proofs of these two theorems. Due to the
nature of the Drury-Arveson space, the proofs require many steps and new ideas. Let us
briefly describe how these proofs are organized, together with some of the main ideas.

We begin with some basic preliminaries in Section 2. In Section 3, we first derive a
precise integral formula for the norm on H?2. This formula gives us a convenient resolution
of the identity operator (3.4) for the Drury-Arveson space. Based on (3.4), we introduce
the operators Ty, T and T' = 17 + T>. The operator T is invertible on H,ZL and has the
property 1 — T € Cy, which paves the way for the next step.

In Section 4, we introduce the range space P for H2. The idea of range space came from
the study [8] of the geometric Arveson-Douglas conjecture, and has proven its usefulness
in [14]. In effect, we are treating H?2 as a quotient module of itself, with {0} serving as
the corresponding submodule. The introduction of P addresses a well-known difficulty in
the theory of the Drury-Arveson space: there is no L? naturally associated with H2. In
contrast, there is a natural Hilbert space £ that contains P. Thus L gives us a surrogate
for an “L2 -space containing H2”. The operators T1, Tp and T then have their respective
representations Ty, Ty and T on ,C If we write P for the orthogonal projection from L to
P, then P — T is in the trace class. Since T is given by an explicit formula, this gives us a
total control of the projection P : L — P. Section 4 reduces the proof of Theorem 1.2 to
the bounding of the trace norm of antisymmetric sums of the form

(1.4) [M;l Mhl,M* My, ... ,M;MMM]

on the range space P. Because of our control of P, (1.4) can be handled in a way similar
to how antisymmetric sums of Toeplitz operators are handled on the Bergman space or
the Hardy space. The difference is that the handling of (1.4) on P is much more tedious.

The bounding of the trace norm of (1.4) involves numerous estimates of Schatten p-
norms of commutators, double commutations, and other kinds of operators. Because of
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the nature of L, these estimates can be transformed to estimates for integral operators
on a bona fide L2-space, L?(Q,du). Thus familiar techniques such as Schur test and
interpolation can be brought to bear. Section 5 takes care of the estimates on L?(Q, dpu).

Then in Section 6, we use the results in Section 5 to derive Schatten-norm bounds for
commutators [M, P] and double commutators [M,, [M, P]] on L.

Although £ is a surrogate for an “L2-space containing H2”, it is not an actual L2-
space, which causes the following problem. For a multiplication operator M; on L, its
adjoint, M 7, is not a multiplication operator. Thus in general we have [M = M M, #0. We
deal with this problem in Section 7. In essence, we show that the difference M — M5 7 s
small enough for our purpose.

The pair of spaces £ and P and the orthogonal projection P : £ — P naturally lead
to the analogue . R
Ty = PM;|P

of Toeplitz operator on P. The main result in Section 8 is Lemma 8.10, which says
that modulo appropriate Schatten class, the f in the commutator [Tf, T, ] can be “locally
extracted from commutation” under the condition f € HJ° for some s > 1.

Then, by combining the results from the previous sections with general techniques for
handling antisymmetric sums, we complete the proof of Theorem 1.2 in Section 9.

In Section 10 we prove Theorem 1.3, which takes two steps. For the first step, using
an old idea of Coburn [4], we show that there is a unitary operator U : L2(B) — H?2 such

that if fl,...,fgn,gl,...,ggn € C[Cl;---vC’n]? then

U*[Mfl 91"7\4}< M, ’MJT M, ]U: [Tflgl’Tf292""’Tf2n92n]+Y’

2 g2» 2n gan

where Y = Y}, . f.. 4.9, 18 in the trace class with zero trace. By this identity, the
polynomial version of (1.3) follows from Theorem 1.1, i.e., the Bergman-space case. Then
Theorem 1.2 allows us to accomplish the second step in the proof of Theorem 1.3, namely,
we derive the general version of (1.3) from the polynomial version by approximation.

Acknowledgement. The author is grateful to Yi Wang for communicating a valuable
calculation, which led to the discovery of the function 1), introduced in Section 3.
2. Preliminaries

For each 1 < p < oo, let C, denote the Schatten p-class. In other words, C, = {4 €
B(H) : ||Al|l, < oo}, where ||A]|, = {tr((A*A)P/2)}1/P. We recall the following:

Lemma 2.1. [5, Lemma 2.9] Let A € Cp, and B € Cp,, where pi,ps € [1,00). If
p1p2/(p1 +p2) > 1, then AB € Cp,\ p, /(py+ps) With

HABlepz/(pl+pz) < HA”Pl HBHP2

If pipa/(p1 + p2) < 1, then AB € C;.



By Lemma 2.1 and an obvious induction, we have

Corollary 2.2. Let py,...,px € [1,00) be such that (1/p1)+---+ (1/px) > 1. If operators
Ay, ..., Ay are such that A; € Cp, for every j € {1,...,k}, then the product Ay --- Ay, is in
the trace class with

[Ar - Aglls < [ Axllpy - 1 ARy

Write S for the unit sphere {{ € C™ : || = 1}. Also, we write do for the spherical
measure on S with the normalization ¢(S) = 1. Let dv denote the volume measure on B
with the normalization v(B) = 1.

For each 0 < t < 1, define ; = {z € B : t < |z| < 1}. We introduce the operator
R:CYHQ) — C(), 0 <t <1, as follows. For any f € C*(£2;), we define

(Rf)(rf):r%f(rg) for t<r<1 and £ €56.

Let Hol(B) be the collection of analytic functions on B. Then it is obvious that
R=2z01+" -+ 2,0, on Hol(B).

In other words, R coincides with the usual radial derivative on Hol(B). Equivalently, R
is a natural extension to C''(€);) of the usual radial derivative on Hol(B). We need the
following integral inequality:

Lemma 2.3. Let —1 < v < o0 and 1/2 < r < 1 be given. Then there is a constant
0 < C =C(y,r) < oo such that the inequality

!(Rf)(Z)IZ(l—!Z\Q)”“dv(Z)JrC/ |f(2)*dv(z)

Xy

/91/2 FEPQ = [2*)dv(z) < c/

Q,
holds for every function f that is C' on an open set containing the closure of /2, where

Y.={z€B:1/2<|z| < (1+71)/2}.

Proof. Let —1 <y < oo and h € C}[0,00). By a classic inequality of Hardy, we have

0o 2 2 00
h(z)|?zYdx < (—) / oh! (z)|?2" dz.
| m@prae< (=) [ )

See [14, page 10]. Let 1/2 < r < 1 also be given. Applying a standard argument using a
smooth cutoff function, there are 0 < €'y < oo and 0 < (5 < oo such that

1/2 1—r 1/2
(2.1) / |h(z) |22 dx < C’l/ \zh/ () |22 dx + 02/ |h(z) |22 dx
0 0 (1-7r)/2
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for every h € C'[0,1/2]. Let f be C' on an open set containing the closure of Q; /5. Then
by the radial-spherical decomposition of the volume measure dv, we have

/Q PG =) = 20 / / [ R - ey

1/2
<03// Ftu)2(1 — £) dtdo (u 03// (1 = 2)u)[2a" dwdo (u)
1/2
1/2
x%lxda —|—C5// f(1 = 2)u)|?2" dedo(u),

1—r
|
r)/2

where for the second < we apply (2.1). For 0 < z < 1 and u € S, we have

L H( =2y = T (RA( -~ 2)u)

Substituting this in the above inequality, we obtain

/ FEPA - 22 du(2)
Q12

x—f (1 —2x)u)

1—r 1/2
< C’G// z(Rf)((1 — z)u)|*2"drdo(u) +C5// (1 — 2)u)|*27 dzdo (u)
T)/2

(1+7“)/2
—06// [(Rf)(tu)] 1_t) +2dtda —I—C5// (1—t)7dtd0( ).

Using the radial-spherical decomposition dv = 2nt?"~'dtdo again, the lemma follows from
the above inequality. [

Definition 2.4. Let 0 < 5 < o0.

(a) We denote B(0,s) = {z € C" : |z] < s}.

(b) For any function f on B(0,s), we write || f||s.co = sup{|f(2)| : z € B(0,s)}.

(c) Let HS® denote the collection of analytic functions f on B(0, s) satisfying the condition

Proposition 2.5. Let s > 1. Then there is a 0 < C = C(s) < oo such that ||f|lm <
C| flls,00 for every f € H.

Proof. Let s > 1. Given an f € H®, we define F({) = f(s¢) for ¢ € B = B(0,1). Then
F € H® with ||F||1,00 = ||flls.c0- By the Cauchy integral for the unit ball, we have

(2.2) =Pl = [ 5 ff_)fffg))n,

This implies that for each j € Z, there is a C; such that ||R? f]|1, o0 < Cillfls,00 for every

f € HX>®. For h € H? and f € HZ®, we have R”(fh) > im0 piler j),RJf R"7h by the
Leibniz rule. Combining these facts with another well-known fact,

¢ € B.

(2.3) 19l ~ lg(0)” + / (R g)(w)]2(1 — |wf?)"dv(w) for g€ H2,



the conclusion of the proposition follows. [

We write (1, ..., (, for the coordinate functions on C”. For Toeplitz operators on the
Bergman space, there is the following well-known result, whose proof will be omitted:

Lemma 2.6. On the Bergman space L2(B), we have [Te, TE] € Cp for all p > n and
i, €{1,...,n}.

3. An integral formula for the norm in H?2

For each natural number m € N, we define the function

1 1 1
wm(t):—n/.../ ety - dty, 0<t<1.
t t<ty <<t <1 U1 tm

This function solves the following moment problem: for every k € N, we have

1 1 1 1
/ tk—’_n_lwm(t)dt:/ tk_l/.../ ——dtldtmdt
0 t<t1<--<tm <1 t1 tm
1
/ / ph—1 ---—dt1 dt i
0<t<ty < <tm<1

1 t t
1 31 [z
/ / / / / tF=Ldtdt dts - - - dtyy—1dtm

(3.1)

karl
Obviously, there are aq,...,a,—1 € Z4 such that
E+1)---(k -1 — a;
(3.2) (k+1) k”(—1+ n-1) =1+ Z % for every k € N.

We now define the function

p(t) = %(I/Jn(t) + i aﬂ/Jnﬂ'(t)), 0<t<l.

It follows from (3.1) and (3.2) that

1
1)--- 1
(3.3) / thtn=Lo(t)dt = (k+1) 'k(:]; +n-1) for every k € N.
0 nlk=n

Recall that for any o € Z'}, the HZ-norm of ¢* is y/a!/|a|l. Also recall that R(™ = |a|¢*.
Thus, using (3.3) and [12, Proposition 1.4.9], straightforward integration gives us a precise
formula for the norm in the Drury-Arveson space:
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Proposition 3.1. For every f € H2, we have

n?

LA = 1£ (0 +/B!(R”f)(w)|2<ﬂ(\w|2)dv(w)-

This should be compared with (2.3).

Let j € Z,. For each w € B, we define the kernel function
KY) = RK,.

If f € H2, then ‘ ‘ ‘ ‘
(f, KQ) = (f R K,) = (R f, K,,) = (R f)(w),

w € B. Thus qu}j ) is the reproducing kernel for the j-th radial derivative on H2. Using
this kernel, we can restate Proposition 3.1 in the form of the operator identity

(3.4) | = Bo+ /B KD @ K o(|w]?)dv(w)

on H?2, where Ej is the orthogonal projection from H2 onto the subspace C. As we will
see, this is a very convenient resolution of the identity operator on H2.

Definition 3.2. (a) We write Q ={w € B:1/2 < |w| < 1}.
(b) Let du(w) denote the restriction of the measure o(|w|?)dv(w) to Q.
(¢) Denote n(w) = xjo,3/4)(|w]), w € C™.

Definition 3.3. (a) We define the operators Tj and Ty on H2 by the formulas

n—1
T, :/K&”)(@K&”)du(w) and T = Z/ K9 @ KWn(w)du(w).
Q —0/Q
7=0

(b) Denote T' =T} + T.

Lemma 3.4. The operators Ty and
(35) L= [ K o K e(uP)dow)
B\

are in the trace class. Moreover, the operator 1 — L is positive and invertible on H>.

Proof. From the definition of v,, it is obvious that

1 [t | 1 1\"™
. mt) < — | =dt;--- | —dtm=—|log=) |, t<1.
36 =g [ pan [ Lan - eeg) L 0<is
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We have, of course, Kq(,?) = K. For j € N, by straightforward differentiation and an easy
induction, there are bgj), e ,bgj) € Z, with bg-]) = j! such that

() (4 (7) z,w)'
(3.7) K9 Zbl_ W)

By the definition of 7, we have

n—1
mm:Z/mw@mw Z/M% w)dp(w) < oo.
j=0 "%

That is, Th € Cy.
By (3.6), if we set
C= [ uPeluP)duw)
B\Q

then C' < oo. Write e4(¢) = (|af!/al)}/2¢™ for « € Z7. Then {e, : a € Z1} is the
standard orthonormal basis for H2. To prove that L € C;, we first observe that since
B\ is spherically symmetric, the operator L is diagonal with respect to {eq : @ € Z'} }.
Integrating in the radial-spherical coordinates, for o € Z}\{0} we have

|
(3.8) (Lea,eq) = |a|2”@/ lw® 2o(|w|?)dv(w) < C(n — 1)!a? 2721,

For any k € N, card{a € Z} : |a| = k} = ((kntz;,}c),' < C1k™ 1. Combining this fact with

the above inequality, we see that L € C; as promised.

The operator inequality 1 — L > 0 is obvious from (3.4). To prove the invertibility of
1 — L on H?2, we use the fact that 1 — L is diagonal with respect to the orthonormal basis
{ea € Z }. For every a € Z'} we have

_ — 2 QnE o2 2
(1= Dearea) = lealO) +laP" 57 [ o Poul)dvtw) > 0.

By (3.8), (Len,€n) — 0 as |a| — oo. Therefore ((1 — L)eq,eq) — 1 as |a| — co. Conse-
quently, 1 — L is invertible on H2. [

Proposition 3.5. We have 1 — T € C;. Moreover, the operator T is invertible on H?.

Proof, By (3.4), (3.5) and Definition 3.3, we have 1—T = Ey+ L—T5. Thus the membership
1 —T € C, follows from Lemma 3.4.

Obviously, there is a 0 < ¢ < 1 such that T > cEy. We can rewrite (3.4) as 1 =
EO + Tl + L. Thus

T:Tl -|-T2:(1—C)T1+T2—CEO+C(T1+E0):(1—C)T1 +T2—CEO+C(1—L>.
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Lemma 3.4 tells us that the operator ¢(1 — L) is positive and invertible on H?2. Since both
operators (1 — ¢)T7 and Ty — cEy are positive, it follows that 7" is invertible. [

4. The range space

The idea of range space was first introduced in the study [8] of the geometric Arveson-
Douglas conjecture, with recent success in [14]. This idea turns out to be a key to the
proof of Theorem 1.2. In effect, here we are treating the Drury-Arveson space H2 as a
quotient module of itself, with the corresponding submodule being the trivial one, {0}.

Let Lo be the collection of functions f that are C* on an open set containing . For
f € Ly, we define

I = { [ 1)) Pauto +Z/|RJ () (e >}”2.

Obviously, || - || is the norm on £, induced by the inner product
(fr9)% = /(R"f)(%U)(R”Q)(W)dN(W)+Z/(ij)(?U)(Rjg)(wm(w}du(w,
Q =e

f,9 € Lo. Let £ denote the completion of £y with respect to the norm || - ||x. Then L is
a Hilbert space.

Definition 4.1. (a) Let P be the closure of the analytic polynomials C[(3,...,(,] in L.
(b) Let P denote the orthogonal projection from £ onto P.

Recalling Definition 3.3, if f € H2, then

(4.1) IFI% = (TF, £) = 1T 2 £,

Since C[(1,. .., (] is dense in H2, every f € H? is naturally an element in P.
Definition 4.2. Let J denote the operator that takes each f € H2 to the same f in P.

Thus we can rewrite (4.1) in the form of the operator identity
(4.2) JJ=T.

Intuitively, we think of J as restricting each f € H2 to the set . We call P the range
space for the restriction operator J. By Proposition 3.5, there is an a > 0 such that

17l = IT"2f > all £l for every f € Hy.
Thus J is an invertible operator that maps H2 onto P.
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Definition 4.3. (a) We define the operators
T = / K (@R ) w)du(w) - and
(T2 / KB ) w)n(w)da(w),

f e L. o )
(b) We define T' =T} + T.

Lemma 4.4. The operators Tl and Tg are bounded on Ly. Therefore Tl and TQ naturally
extend to bounded operators on L.

Proof. Using (3.7) and the Schur test, the kernels K&m)(z), 0 < m < 2n, define bounded
operators on L?*(Q,dpu). (See the proof of Lemma 5.1 below for details.) Combining this
fact with the definition of || - ||4, it is easy to see that 77 and 75 are bounded on Ly. O

Lemma 4.5. With respect to the inner product (-,-)4, the operator T is self-adjoint.
Proof. Let f € Ly. Then

(Tf, fys = /Q /Q KCM (2)(R™ ) (w)dpa(w) R F) (@) dp2)

+§ /Q /Q KU+ () (RI ) (w)(w)dya(w) (R F) (2)dpa(2)

n—1 ‘ -
+Z/Q/QKl(vnﬂ)(Z)(Rnf)(w)d:“(w)(R]f)(z)n(z)dﬂ(z)

(4.3) S / / KG9 (2) (R ) (w)n(uw)dp(w) (B ) ()n(z)du2).

0<4,j<n—1

It follows from (3.7) that Kq(um)(z) = K;m)(}u), m € Z. Substituting this in (4.3), we see
that (T'f, f)# is a real number. Therefore T is self-adjoint. [

Proposition 4.6. (a) T maps L into P.

(b) Let T denote the restriction ofT to the subspace P. Then T =JJ* In particular, T
1s tnvertible on P.

(c) With respect to the orthogonal decomposition L = P @& P+, we have T=Ta0.

Proof. (a) Recall that we write Q; = {z € B:t <|z| < 1} for 0 <t < 1. As we mentioned

in the proof of Lemma 4.4, the kernels K,,(Hm)(z)7 0 < m < 2n, define bounded operators on
L?(Q,dp). Therefore for any f € Ly, we have

lim
1

/ t(R"f)(w)JK&")du(w)H# o
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Since we already know that JH?2 C P, we have
| @ p@IE duw) € P
Q\Q,

for every 1/2 < t < 1. Therefore Tlf € P. It is obvious that Tgf € P for f € Lo.
Thus TLy C P. Since Ly is dense in £ and since Lemma 4.4 tells us that 7' is a bounded
operator, it follows that TL C P.

(b) For each f € H?, it is easy to see that TJf = JTf. Combining this with (4.2),
we have TJf = JTf = JJ*Jf. Since JHEL = P, this implies T = JJ*. Since J : H> — P
and J* : P — H?2 are invertible, so is T

(c) This follows from (a) and the self-adjointness of T’ provided by Lemma 4.5. [J

Definition 4.7. For each & € C™(Q), M denotes the operator of multiplication by the
function & on L.

Proposition 4.8. We have JM; = M,J for every h € M.

Proof. It h € M and f € H2, then JMy, f = J(hf) = hf = My Jf. O

Corollary 4.9. If h € M, then P is an invariant subspace for M.
Corollary 4.9 makes it possible for us to introduce

Definition 4.10. For each h € M, let M, denote the restriction of the operator M, to
the invariant subspace P.

Accordingly, we can restate Proposition 4.8 as

Proposition 4.11. We have JM}, = MyJ for every h € M. Consequently, there is a
constant 0 < C' < 0o such that || My || < C|| Myl = C||h||m for every h € M.

Proposition 4.12. Given any k € N, there is a constant 0 < C = C(k) < oo such that
o o k
1M, My, -+ Mg, My, — J* My, My, -~ My, My, |l < C [T llgjllalllla

j=1

for all g1,h1, ..., g9k, hx € M.

Proof. Let us denote K = Ey + L — T5. Recall from Lemma 3.4 that K € C;. By (3.4),
(3.5) and Definition 3.3, we have T'=1 — K. Let

J =UlJ|

be the polar decomposition of J. Since J : H2 — P is invertible, U is a unitary operator
that maps H2 onto P. By (4.2), we have

(4.4) JJI* =U|JPU* =UTU* =1 -UKU".
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For any h € M, it follows from (4.2) and Proposition 4.11 that
My, — KMy, = TMy, = J*JM,, = J*M),J.
Thus for any h,g € M,
MMy, = (J*M}J + M;K)(J*MyJ + KMy) = J*M}JJ*M,J + Ki(g,h),

where Ki(g,h) € C; with ||[K1(g,h)|1 < Cil|g||m||h||m. Consequently, for any g1, hq, ...,
gk, hi, € M, we have

(4.5) M} My, - M} My, = J*M; JJ* My, J - J*M; JJ* My, J
+ Ki(g1, b1, Grs P

where Ky (g1,h1,...,9k, hi) € C1 with

k
1Kk (g1, b1, - i i)l < Co [T g llaallogllae

j=1
Substituting (4.4) in (4.5), we obtain the desired conclusion. [
Applying Proposition 4.12 to antisymmetric sums, we immediately obtain
Corollary 4.13. There is a constant 0 < C' < oo such that

2n
(M, Ma o Mg, My = I 1385, o N3, Wi 11 < © T g llaalls
j=1
for all g1, h1,..., 920, haop € M.

This tells us that, to prove Theorem 1.2, it suffices to consider antisymmetric sums of
the form [Mj Mp,,..., M;, My,, | on the range space P.

Proposition 4.14. The operator P — T is in the trace class.

Proof. By Proposition 4.6(c), it suffices to show that 1 —~T € C; on P. By Proposition
4.6(b), we have T'= JJ*. Thus from (4.4) we obtain 1 - T =UKU* € C;. O

5. Integral operators on L?

In this section we focus on integral operators on L?(Q, du). For any m € N, a review
of the definition of v, in Section 3 gives us the inequality

wm(t)E/---/ 1dty - - - dt,,
t<t1<-<tm<l1

1 p1 1 1 1
= / / .- / / 1dt,,dt,,—1 -+ - dtadt; = —'(1 — t)m,
t Jtq tm—2 Jtm_1 m:
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0 <t < 1. Combining this with (3.6), there are 0 < ¢ < C' < oo such that
(5.1) c(1—|zH™ < o(|2]*) < C(1 —|2]*)*  for every z € .

That is, du is comparable to the weighted volume measure (1 — |z|?)"dv(z) on .

Lemma 5.1. If G(z,w) is a bounded Borel function on Q x ), then the operator

(5.2 U)o = [ et Hwldutw), € (@)

is bounded on L*($),du). Moreover, there is a constant C1 such that ||Ag|| < C1]|G]|co-
Proof. Consider the function h(w) = (1 — |w|?)7'/2 on Q. By (5.1), we have

forol g

(1~ Juf?) =/
du( C”GHOO/ |1_ |n+1+n (1/2)+(1/2)dv(w)

< Gif|Glloo

where the second < follows from [12, Proposition 1.4.10]. Similarly,
G(z,w)

/e (0~ (2w}

Thus the Schur test gives us || Ag|| < C1||Gl|0- O

dp(z) < C1f|Glloch(w).

It is also a consequence of [12, Proposition 1.4.10] that if ¢ > 0, then

(5.3) //B STIo ‘n+1+1_ dv(w)dv(z) < oo.

Lemma 5.2. Let G(z,w) be a Borel function on Q2 x Q. If G satisfies the condition

(5.4) / /Q e ‘_G;;U)yliwd (w)dp(z) < o

for some 2 < p < oo, then the operator Ag defined by (5.2) belongs to the Schatten class
Cp. Moreover, for each 2 < p < oo, there is a constant 0 < C' = C(p) < oo such that

|G(z,w)|P
Aqll? <
[Acl[} C//QXQ - (o) |4n+2d p(w)dp(z)

for every G satisfying (5.4).

Proof. The case p = 2 is obvious. By Lemma 5.1, we have ||Ag| < C1||G||co- Thus the
case 2 < p < oo follows from the standard interpolation. [J

Recall that we write Kq(um) = R"™K,, w € B. In particular, Kq(vo) means K, itself.
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Definition 5.3. (a) For each 0 < j < 2n, X; denotes the operator on L*(£,du) defined
by the formula

(z,w)?

(XN = [ = i fw)dntw). S € L8, du).

(b) For each 0 < j < 2n, Y; denotes the operator on L?*(§, du) defined by the formula
/K(” w)dp(w), f € L*(Q,dp).

Lemma 5.4. (a) If there is a 0 < C < oo such that |G(z,w)| < C|1 — (z,w)| for all
z,w € Q, then Ag € Cp for every p > n.
(b) If j <2n —1, then X;,Y; € Cp, for every p > n.

Proof. By (5.1) and the assumption on G,

|G z,w)|P 1
//QXQ 11— (z,w) ‘4n—|—2d p(w)du(z) < Cq //QXQ 1= (2, w) [rr =G dv(w)dv(z).

If p > n, then by (5.3) this is finite. Thus Lemma 5.2 provides the membership Ag € C,
for p > n, proving (a). By Definition 5.3, it follows from (a) that if j < 2n — 1, then
X, € C, for every p > n. Recalling (3.7), we see that if j < 2n — 1, then Y; € C, for every
p>n. U

If f is a Lipschitz function on €2, we write L(f) for its Lipschitz constant.

Lemma 5.5. (a) For each p > 2n, there is a constant 0 < B, < oo such that ||[M¢, Xon]|l,
< B,L(f) for every Lipschitz function f on €.

(b) For each p > n, there is a constant 0 < C, < oo such that ||[[My, [Mg, Xon]l|l, <
C,L(f)L(g) for every pair of Lipschitz functions f, g on €.

Proof. (a) We have [My, X2,] = Ag with G(z,w) = (f(z) — f(w))(z,w)?". Since
(G (z,w)] < L(f)|z = w| < V2L(f)|1 = (z,w)["/,

for p > 2n, the bound ||[My¢, Xa,]|lp < BpL(f) follows from Lemma 5.2.
(b) We have [My, [My, X,]] = Ap with H(z, w) = (f(2) = f(w))(g(2) —g(w)){z, w)*".

Since

H(z,w)| < L(HL(9)|z — wl? < 2L(F)L(g)|1 — (2,w)],
for p > n, the bound ||[My, [My, Xo,]]|lp, < CpL(f)L(g) again follows from Lemma 5.2. [J

Lemma 5.6. (a) For each p > 2n, there is a constant 0 < B;, < oo such that ||[My, Yau]|,
< B,L(f) for every Lipschitz function f on (.

(b) For each p > n, there is a constant 0 < C}, < oo such that |[My,[Mgy, Ya,]l|l, <
C,L(f)L(g) for every pair of Lipschitz functions f, g on S.
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Proof. Applying (3.7), (a) and (b) are obtained by combining the corresponding parts in
Lemma 5.5 with Lemma 5.4. [J

By the definition of the norm || - ||, inequality (5.1) and Lemma 2.3, it is clear that
for each integer 0 < j < n, there is a 0 < C; < oo such that

(5.5) /Q (B F)(w)2du(w) < C;|1£I2

for every f € Ly. This allows us to introduce

Definition 5.7. For each 0 < j < n, D, denotes the operator that maps each f € Ly to
the function R’ f in L2(Q,du).

By (5.5), each D; : Lo — L?(,dp) is a bounded operator, 0 < j < n. Consequently,
Dy, D1, . .., D, naturally extend to bounded operators that map £ into L?(£2,du). With
these operators, we can rewrite the inner product (-, )4 in the form

n—1

(56) <f7 g># - <an7 Dng> + Z<M77Djf7 ng>7

§=0
fyg € Lo, where (-,-) denotes the inner product on L?*(Q, du), and M,, is the operator of
multiplication by n on L?(, du).

We now introduce the function p(z) = 1 — |2]? on C™.

Lemma 5.8. (a) For every 0 < j <n — 1, the operator M,-1D; is bounded.
(b) Let a < 1/2. Then for every 0 < i < n — 2, the operator M,-1-.D; is bounded.

Proof. This follows immediately from Lemma 2.3 and (5.1). O

Lemma 5.9. For every pair of 0 < 7 < n —1 and p > n, there is a constant 0 < C =
C(j,p) < oo such that
[Y2n MeDjllp < Cll€]l

for every & € L™ (8, dpu).

Proof. Since Yo, M¢Dj = Yo, M, - M¢ - M,-1D;, and since Lemma 5.8 tells us that M,-1D;
is bounded if j < n — 1, the lemma will follow if we can show that Y5, M, € C, for every
p > n. By (3.7) and Lemma 5.4, it suffices to show that X, M, € C, for every p > n.

In terms of (5.2), X2, M, = Ag, where G(z,w) = (z,w)?"(1 — |w|?). We have

//stz |1|_GZZ;U)|LZ+2 p(w)dp(z) < //M T <z,w>|6;1+1+1<pn> dv(w)dv(z).

By (5.3), this is finite if p > n. Applying Lemma 5.2, we have Xy, M, € C, for p > n. O

Definition 5.10. (a) Let £ denote the closure of C|z1, ..., z,] in L*(2, du).
(b) Let E denote the orthogonal projection from L2(, du) onto &.
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Definition 5.11. Define the integral operator Z on L?(,du) by the formula

ZN)) = | G w)dute). f € I(S.dn).

Proposition 5.12. The operator Z is self-adjoint and positive on L?(,du). There is
ay > 0 such that the spectrum of Z does not intersect the interval (0,7). Moreover, the
range of Z equals E.

Proof. Tt is obvious that Z is self-adjoint on L?(£2,du). Since

1 (j +2n s,
(5.7) 0= (o, w2 = Z i i Z —z w z,w € §,
’ J=0 loo|= J

we see that Z is positive on L?(Q, du). Obviously, the range of Z is contained in £. Thus,
to complete the proof, it suffices to find a v > 0 such that (Zf, f) > 7|/ f||* for every
f € C|z1,...,2,]. Since both © and du are invariant under spherical rotation, we have
both (2%, 2°) = 0 and (Zz%,2°) = 0 for all & # 3 in Z'}. Hence it suffices to find a v > 0
such that (Zz%,z%) > v||z*||* for every o € Z".

First of all, it is obvious that (Zz“,2%) > 0 for every o € Z. Let o € Z'} be such
that |a| = k. Then by (5.7) and the spherical symmetry of 2 and du, we have

(k + 2n)! (k + 2n)! 9 2
« (0% — > n
e = B o) 2 e P2 o poptrae))

where the > follows from (5.1). Integrating in the radial-spherical coordinates, we have

ool (Y[ i)

B (k + 2n)la! (k+n—1)n! 2
_63{(/<;+n—1)!}2< (k+2n) ’“)

1/4
ap = / thtn=1(1 — t)"dt.
0

Also by (5.1), we have
1(n1)2
(5.9) |27 < C/ lw*|?(1 — |w|?)"dv(w) < C’M.
Q .

Since ap < 4%, from (5.8) and (5.9) we see that there is a v > 0 such that (Zz%, 2z%) >
v||z*||? for every a € Z" . This completes the proof. I

Lemma 5.13. (a) We have EM, € C, for every p > n.
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(b) Let p > 2n/3. If a < 1/2 satisfies the condition p(1 + a) > n, then EM,1+a € Cp.

Proof. Let~Z be the restriction of Z to the subspace £. Then it follows from Proposition
5.12 that Z is invertible on £. Consequently, E = (Z~1@®0)Z. Therefore it suffices consider
ZM, and ZMj+a instead of EM, and EMj1+a .

(a) In terms of (5.2), we have ZM, = Ag, where G(z,w) = 1 — |w|?. Thus by an
estimate similar to the one in the proof of Lemma 5.9, we have ZM, € C, for every p > n.

(b) Suppose that n > 3. Then 2n/3 > 2, and Lemma 5.2 applies to every p > 2n/3.
We can write ZM,1+a = Ap, where H(z,w) = (1 — |w[*)'T®. By the conditions p > 2n/3
and p(1 4+ a) > n, an estimate similar to the one in the proof of Lemma 5.9 gives us the
membership ZM ,i+a € C,,.

Suppose that n = 2. If p > 2, then Lemma 5.2 still applies, and the argument in the
above paragraph holds. Thus let us assume that n = 2 and that 4/3 < p < 2.

In this case, set t = 2p(2 — p)~!. Then t > 4 and 1/p = (1/t) + (1/2). Let a < 1/2
be such that p(1 + a) > 2. Then this means p(2 — p)~t > a~!. Thus ¢t/2 > a7}, or,
equivalently, 2a > 4/t. This allows us to pick an r such that 4/t < r < 2a.

We first show that EM ;> € C;. Equivalently, it suffices to show that ZM,.,» € C;.
We have ZM -/ = Ar, with L(z,w) = (1 — |w|?)"/2. Since n = 2, we have

w rt/2
// 1 - |10dﬂ( whn(z) < G // 11 —‘ z| w |6 dv(w)dv(z)
<02 // |1_ 2, w |2+1+{3 (rt/Q)}d ( )dv(z)

Since 4/t < r, i.e., rt/2 > 2, we have 3 — (rt/2) < 1. Thus, by (5.3), the above is finite.
By Lemma 5.2, we have ZMpr/z € Cs.

Next we show that M,—»2ZM,1+a € C2. Indeed M,—r/2ZM1+a = Ag, where

Qz,w) = (1= [2[) 72 (1 — Jwl?) .

Thus

w|?)?+2e v(z
a3 < [f 2w <o [ e

where the second < follows from [12, Proposition 1.4.10]. Since r < 2a, the above is finite.
Hence Mpfr/2ZMp1+a € C,.

We have
ZMp1+a == EZMpl+a == EMpr/2 . Mpfr/QZMpl+a.

Since 1/p = (1/t) + (1/2), it follows from the last two paragraphs that ZM,i1+. € Cp. [
Lemma 5.14. (a) For every pair of 0 < j <n —1 and p > n, we have D;P € C,.
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(b) For every pair of 0 <i <mn —2 and p > 2n/3, we have D;P € C,.

Proof. (a) Note that D;P = ED;P. Therefore we have the factorization
D;P = EM, - M, D; P,

Thus the desired conclusion follows from Lemmas 5.8(a) and 5.13(a).

(b) Given any p > 2n/3, i.e., p(3/2) > n, we can pick an a < 1/2 such that p(1+a) > n.
This time, we take the factorization

DiP = EMi+a - M, 1-aD; P,

Thus the desired conclusion follows from Lemmas 5.8(b) and 5.13(b). O

Lemma 5.15. For every pair of 0 < 7 < n —1 and p > n, there is a constant 0 < C' =
C(j,p) < oo such that
|1PD;, MeDjp < Cll¢]loo

for every £ € L>(Q,du).

Proof. Since D,,P = ED,, P, we have PD} = (D,,P)* = (ED,P)* = PD} E. Hence
PD;M:D; = PD,,EM:D; = PD;, - EM, - M¢ - M ,-1D;.

Applying Lemmas 5.8(a) and 5.13(a), the lemma follows. [J

Lemma 5.16. For every triple of 0 < j<n—1,0<k<n-—1andp > n/2, there is a
constant 0 < C = C(j, k,p) < oo such that

| PDEMeDjllp < Cl€]oo
for every & € L>(Q,du).
Proof. This time, we have
PD;M¢D; = PD;E2M.D; = P(M,.Dy)* - (EM,)*EM, - M - M,-.D;,
and the desired conclusion again follows from Lemmas 5.8(a) and 5.13(a). O
Lemma 5.17. We have Ts € Cp for every p > n.
Proof. Let f,g € Lo. By the definitions of T3 and (-, Y4, we have

n—1
[ = 1) V(R F) (w)n(w w)(R"q)(2)du(z
(Tof, 9)% ;/Q/QKw (2) (R ) (w)n(w)dp(w)(R™g)(z)dp(z)

n—1ln—1

+ Z/Q/QKSH)(Z)(Rif)(w)n(w)d“(w)mn(z’)du(z)

§=0 i=0

[y

n— n—1ln—1

=Y (YigaMyDif, Dug) + Y > (Yig;MyDif, M, D;g).
i=0 Jj=0 =0
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That is,

n—1 n—1ln—1
(5.10) Ty =Y DiYiaMyDi+ > > DiM,Yi;M,D;.
i=0 =0 i=0

By Lemma 5.4, we have T € C, for every p > n. O

6. Commutators and double commutators

We will now use the results in Section 5 to deal with commutators and double com-
mutators on L.

Definition 6.1. Let C.(2) be the collection of the functions f € C°°(Q) satisfying the
condition || f|/« < oo, where

Ifll= > sup[(@*9°f)(2)l.

0<|al+]8|<n+2 2

Lemma 6.2. For every p > n, there is a 0 < C' = C(p) < oo such that
[V, Ta] = D [My, Yau]Dallp < C| 1l

for every f € C.(Q).

Proof. For f € C.(Q) and h € Ly, the Leibniz rule gives us R*(fh) = Z?:o C]’?ij-Rk*jh,
where the C’j]? are the binomial coefficients. Recalling Definition 4.3, we have

([My, Th]R)(2) =/Q(f(Z)—f(w))K&”)(Z)(R"h)(w)du(w)

(6.1) - [ K@) 3D O R ) (R w)dnw),

j=1
Similar to the derivation of (5.10), a computation of ([My, Ti]h, g)%, g € Lo, gives us
(6.2) [My,Ty] = Dj[My, You|Dn + Y CPDj MpijYan D

=1

n—1 s
+ Z D:Mn ([Mfa Yn+S]Dn + Z CTS*MR’"fYn—kS—TDn)
s=0

r=1
n n n—1
N Z CiDpYonMpifPn—j — Z Cy Z DiMyYntsMRifDy—j.
Jj=1 j=1 s=0
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Let p > n be given. By Lemma 5.4, the Schatten p-norm of every term in (6.2) with a
factor Yy, k < 2n — 1, is dominated by C||f||.. By Lemma 5.9, the Schatten p-norm of
every term in

> CID; Yo Mps Do j.

j=1
is also dominated by C/||f]|«. This completes the proof. [
Proposition 6.3. For every p > 2n, there is a 0 < C = C(p) < oo such that

(825, Pl < CIIf |1

for every f € C.(Q).

Proof. By Proposition 4.14 and Lemma 5.17, we have P — Ty € C, for every p > n. Thus
it suffices to consider commutators of the form [M;,Ti]. By Lemmas 5.5(a) and 5.4, for
every p > 2n there is a 0 < C' = C(p) < oo such that

D5 [M, Yon|Dullp < CL(f) < Cillf[l« for f € Cu(9).

Combining this inequality with Lemma 6.2, the proposition is proved. [
Proposition 6.4. For every p > n, there is a 0 < C = C(p) < oo such that

~

(Mg, (M, Plllly < CI Il gl

for all f,g € C.(Q).

Proof. Again, since P—1T} € C, for every p > n, it suffices to consider double commutators

~

of the form [M,, [My,Ti]]. Let f,g € C.(Q) and h € Lo. Continuing with (6.1), we have

~

(6.3) ([My, [My, T1]]h)(2) = (Ah)(2) — (BR)(2),

where

(Ah)(2) = /Q(g(z) = g(w))(f(2) = f(w)) KV (2)(R"h) (w)dp(w)

and

(Bh)(z) = Z Ci /Q (f(2) = f(w) KL (2)(R'g) (w) (R"~*h) (w)dp(w)

+0 /Q (9(2) — g(w) K (2) (R f)(w) (R 1) (w)dps(ww)

- Z_: cyep? /ﬂ KV (2)(B? f)(w)(R”g) (w) (R~ h) (w)dp(w).

j=1lv=1
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A computation of (Bh,h')4, h' € Ly, tells us that B is a linear combination of operators
of the form - --Y,, M¢Dy,, where 0 <m < 2n and 0 < k <n — 1. Thus for p > n, it follows
from Lemmas 5.4 and 5.9 that

(6.4) 1Bllp < Cillfll<llgll+-
On the other hand, a computation of (Ah,h') 4, b’ € Ly, tells us that
A= D;:[Mg’ [va YQn”Dn + Al:

where A’ is a linear combination of terms of the form ---Yj--- withn < j <2n—1. Hence
for p > n, it follows from Lemmas 5.4 and 5.5 that

(6.5) 1Al < Coll £1]+[lgll-

Combining (6.3), (6.4) and (6.5), the proposition is proved. [J

7. Adjoints

Due to the nature of the inner product (-,-)4, in general M 7 is not a multiplication
operator on L. This causes additional difficulties for the proof of Theorem 1.2. We take
care of these additional difficulties in this section.

Lemma 7.1. For any f € C.(Q), we have

(7.1) M; — Mp=> C}Dj_;Mp;fDn — Dj;Mp; fDr—;)
j=1
n—1 1
+3 Y CUD;, My pM,D; — D} M. pM,D;_).
i=1 v=1

Proof. Let g,h € Ly. By (5.6) and the Leibniz rule,

n—1
(M7g,h)s = (g, Msh) 4 = (Dng, Dn(fh)) + Y (M, Dig, Di(fh))
=0
n n—1 1 A
(7.2) = C}Dng, MpiyDpjh) + Y > CL{M,Dig, Mpv D, h).
j=0 i=0 v=0
On the other hand,
(Mg, h) s = (Dn(fg), Duh) + > _(M,D;(fg), Dih)
=0
n n—1 1 .
(73) =Y C{MpifDn_jg.Duh) + ) >  Cy{MyMpu;Di g, Dih).
§=0 i=0 v=0
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Subtracting (7.3) from (7.2), we obtain (7.1). O
Lemma 7.2. For each p > n, there is a constant 0 < C = C(p) < oo such that

IP(Mf = Mp)ll, < CIlfll«  and ||(M} = M§)Pll, < C|If].

for every f € C.(Q).
Proof. This is an immediate consequence of Lemmas 7.1, 5.14(a) and 5.15. O

Definition 7.3. For each f € C,(Q), let T} be the operator on P defined by the formula

T¢h = P(fh), heP.

In other words, Tf is the analogue of a Toeplitz operator on P. We also consider Tf
as an operator on £, with the equivalent formula Ty = PM;P.

Proposition 7.4. For each p > 2n/3, there is a constant 0 < C' = C(p) < oo such that
ITF = T5, Tolllp < Clfll<llgl
for all f,g € C().
Proof. Since T}‘ = PM}‘P, we have
[T} — Tf,T,) = [P(M} — M§)P,PM,P] = F — G+ H,
where

F = P(Mj; — Mj)(P — 1)M,P,
G = PMy(P —1)(Mj — M;)P and
H = P[(M} — Mjy), M,]P.

Obviously, F = P(M e M P M,)P. Thus it follows from Proposition 6.3 and Lemma
7.2 that for each p > 2n/3, there is a constant 0 < C; = C1(p) < oo such that

1E]l, < Cull fll-llgll+

A similar bound holds for ||G||,. What remains is to bound || H||,.
First, we show that for any p > 2n/3, there is a 0 < Cy = C3(p) < oo such that

(7.4) |P[DE M Dy, My Pll < Col€]lc gl and
|1 P[Py, Me Dy, My] Pllp < Call]loo gl

for 0 <k <n-—1and ¢ e L>®(Q,du).
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Let 0 < k <n — 1. By the Leibniz rule,

(7.6) (D} M¢Dy, My] = (Dy My — MyDy) M Dy, + Y CFDj M Mpi gD j.
j=1
It follows from Lemma 5.14(a) that if p > n/2, then

< Csll€lloollgll+-

p

(7.7) HP(Z C;D,’;MgMRngn_j) P

j=1
On the other hand,
D; M, — M,Dj = (MyDy, — DpM})* = (MyDy, — Dy, My)* + {Dy(My — M)}*
k k
== CH{MpiyDi_i}* + (M7 — My)Dj = = > CFD;_;Mpiy + (M — My)Dj.
=1 =1
Consequently,
k

(7.8) P(DyMy — MyD;)M¢D, P = = " CFPD;_;MpiyMcD,, P

=1
+ P(M; — M,)Dy M¢D,,P.

It follows from Lemma 5.14(b) that if p > 2n/3, then

k
> CFPD}_ MpigMcD, P

=1

(7.9) < Cul€]collgll+-

p

For each p > n/2, we also have
|P(My — My)Dj M D, Pl < ||P(M — Mg)|lap|| Di M Dy Pllap < Csllgll - Coll€]loos

where the second < follows from Lemmas 7.2 and 5.15. Combining this with (7.8) and
(7.9), we find that

(7.10) |P(D My — My D) M¢Du Pl < Crllé]|c llglls

if p > 2n/3. Inequality (7.4) now follows from (7.6), (7.7) and (7.10).
To prove (7.5), note that

(P[D; M¢Dy, My]P)* = P[M;, D M¢D,] P
(7.11) = P[My, Dy MgD,|P + P[M — Mg, Dj MgD,,]P.
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By Lemmas 7.2, 5.14(a) and 5.15, we have
1P[M, — Mg, Dy MgD, Pl < Cs|€lscllglls
if p > n/2. An application of (7.4) to the term P[Mj, DiMgD,,|P in (7.11) then completes

the proof of (7.5).
fO0<k<n—-—1,0<m<n-—1andp>n/2, then it follows from Lemma 5.16 that

(7.12) |P[D} Me Dy, Myl Pl < Coll€]|oolg]]+-
Since H = P[(M} — Mj), M)P, from Lemma 7.1, (7.4), (7.5) and (7.12) we obtain

[1H1[p < Croll fll+llgll+

when p > 2n/3. This completes the proof. [

8. Local frame

Define e;(w) = w/|w| for w € C™\{0}. Then e; is a C"-valued C* function on
C™\{0}. Moreover,
Fi(w)=1-¢e1(w) ® er(w)

is a projection-valued C* function on C™\{0}.

Let an a € Q be given. We pick a nonzero vector v, € Fy(a)C". Since F}(a)vy = vo,
there is an open set Ny containing a such that Fj(w)vy # 0 for every w € Na. We define
eg(w):Fl(w)Ug/\Fl(w)vﬂ, w € No.

Then ey is a C™-valued C*° function on N3. Define

F(w)=1-e(w) ®@er(w) —ex(w) ® ex(w),
which is a projection-valued C*° function on Ny. If n > 2, then F5(a)C™ # {0}, and we
can pick a nonzero vector vs € F5(a)C™ and repeat the above process. Thus we have

Proposition 8.1. Given an a € Q, there exist a positive number 0 < 6 = §(a) < 1/2 and
vectors {ea(w),...,e,(w)} C C™, w € Bla,d), which have the following properties:

(1) For each 2 <1 < mn, the map w +— e;(w) is C*° on B(a,)).

(2) For every w € B(a,d), {e1(w),ea(w),...,e,(w)} is an orthonormal basis for C™.

Obviously, the above construction of local frame is just a smoothly parametrized
version of the Gram-Schmidt process with e;(w) = w/|w|. If f is an analytic function on
B(0, s) for some s > 1, then Proposition 8.1 provides the representation

n

(8.1) (0N (w),z=w) =Y (2 —w,ei(w){(f)(w), ei(w))

1=1
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for w € B(a,d) N B(0,s) and z € B(0,s).

Definition 8.2. With the number 0 < 6 = §(a) < 1/2 provided by Proposition 8.1, we
let 7, be a C*°-function on C" satisfying the conditions 0 < v, <1 on C”, 7, = 1 on
B(a,d/2), and v, = 0 on C™\B(a,2/3).

Definition 8.3. (1) We extend the es, ..., e, in Proposition 8.1 to vector-valued functions
on the entire C™ by setting e; = 0 on C"\B(a,0), 2 <i < n.

(2) With the definition of es,..., e, extended as in (1), we define the vector-valued func-
tions €1, €a,..., €, on C” by the formula €; = v,¢; for 1 <17 < n.

Definition 8.3 ensures that the vector-valued functions €1, €s,..., €, are C* on C™.

Definition 8.4. For any analytic function f on B(0,s), s > 1, we define the functions
Df,...,D,f by the formula

(Dif)(w) = ((Of)(w), e:(w))

for w € B(0,s) and 1 < i < n.
Recall that we write (1, ..., (, for the coordinate functions on C".

Definition 8.5. (1) Let A be a bounded operator on L. For each 1 < i < n, we write

n

C’L(A) = Z[MCJ ’ A]Ma,ja

J=1

where €; 1,...,€;, are the components of the vector-valued function ;.
(2) Let B be a bounded operator on L?(€, du). For each 1 <1i < n, we write

n
CZ(B) = Z[MCj ) B]Mgi,j7
j=1
where €;.1,...,€;, are the components of the vector-valued function ;.

Lemma 8.6. Given any s > s’ > 1, there is a constant 0 < C' = C(s,s’) < oo such that
if fe H® and z,w € B(0,s), then

f(2) = f(w) = (@) (w),z = w)| < C||fl]s,00]2 — w]*.

Proof. This is immediate from the first-order Taylor expansion

f(z) = f(w) = ((0f)(w), z = w) + /0 () (w +t(z — w)) = (Of)(w),z = w)d.
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Proposition 8.7. Givenp > n and s > 1, there is a 0 < C = C(s,p) < oo such that

< Cllflls 00

p

H[Mf,m]M,yg —) " Ci(Yan)Mp,y

=2

for every f € HZ®.
Proof. Obviously, [My, Ya,]M,2 is the operator on L*(€, du) with the function

(8.2) (f(2) = Fw) KZ (2)7a(w)
as its integral kernel. Similarly, > ;| C; (Y2, )Mp, s is the operator on L?(f2,du) with the
function

n

(8.3) Y (2= w,ei(w) KG™ (2)(Dif ) (w)

=1

as its integral kernel. If we write the difference of (8.2) and (8.3) as u(z, w)Kq(fn)(z), then
it follows from (8.1) that

u(z,w) = (f(2) = fw) = ((Of)(w), 2= w))vz (w).
By Lemma 8.6, |u(z,w)| < C|f|ls,c0lz — w|?. For z,w € B, |z — w|* < 2|1 — (2, w)|. Thus

it follows from Lemma 5.2 and (5.3) that if p > n, then

< Cy|If

p

(3.4) |17 Vet = 3 Cu¥a) s

=1

5,00

for every f € H®, s > 1. Since e;(w) = w/|w|, we have
[(z —w, ex(w))] < 20z —w,w)| < 2(1 = [w]*) + 21 = (2, w)|

for z,w € 2. Thus by Lemma 5.4, C1(Y2,,) € C, for every p > n. Combining this fact with
(8.4), the proposition is proved. [

Lemma 8.8. Let p > n. Then there is a 0 < C' = C(p) < oo such that
[[M g, T\ M, — Dy [My, Yan] My Dnllp < Ol f]l ]l

for all f,u € C(92).

Proof. In view of Lemma 6.2, it suffices to show that for each p > n, thereis a 0 < C' =
C(p) < oo such that

(8.5) |1D3 (M, You] Do My — Dy [My, Yan] MuDallp < Ol f[lull-
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for f,u € C.(). Applying the Leibniz rule to D, M,h, h € Lo, we have

D} [ My, Yo | DM, — D} [My, Yan) M Dy = Y C7D;[My, You )| Mps, Dy
j=1
Thus an application of Lemma 5.9 proves (8.5). O

Lemma 8.9. Given p > n and s > 1, there is a 0 < C = C(s,p) < oo such that

|ty Plit; = Y- Pt | < Ul
i=2 P
for every f € H®.

Proof. By Proposition 4.14 and Lemma 5.17, we have P — T} € C, for every p > n. Thus,
given any p > n and s > 1, it suffices to find a 0 < C' = C(s,p) < oo such that

(8.6) |ty Tiat; - Y- citsin, | < cifl.
i=2 p

for every f € HZ®. First of all, by Lemma 8.8 we have

(8.7) |[My, T1) Mz — Dy [My, You] Moz Dyl < Culf

for f € C.(Q). Since Cy(T1) = Y7, [Mc,, Ty Me, , and Cy(Yan) = 7 [Mc,, Yan| M, , it
also follows from Lemma 8.8 that

> Ci(T1)Mp,; = > D;Ci(Yan)Mp, D,

(8.8) < Cao||fll+,

p

f € HX, s > 1. Therefore (8.6) follows from (8.7), (8.8) and Proposition 8.7. [

S

Recall that the “Toeplitz operator” T 't on P was defined in Definition 7.3. Moreover,
we identify each Ty with the operator PM¢P on L.

Lemma 8.10. Given p > 2n/3 and s > 1, there is a 0 < C = C(s,p) < oo such that

< CHfHSOO”gH*

p

H [Ty, )iz — " PICH(P). [, PP Ip
1=2

for all f € HX and g € C,(Q).
Proof. Since [Mf,Mg] =0, we have

(8.9) [Ty, T,] = P[M;y, P|][M,, P\P — P[M,, P|[M;, P|P.
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Given p > 2n/3 and s > 1, the notation A ~, B in this proof means that ||A — B||, <
C| flls,c0llgll«. For f € HS® and g € C.(Q2), it follows from Propositions 6.3 and 6.4 that

[Ty, Ty M,z ~, P[My, P|M.2[M,, P]P — P[M,, P|[My, P|M.:P.
Then, by Lemma 8.9 and Propositions 6.3 and 6.4, we have
[Ty, Ty) M2 ~p > _{PCi(P)Mp,s[M,, PIP — P[My, PICi(P)Mp,;P}
=2

~p Y _ P[Ci(P),[M,, P]|PMp,;
=2

as promised. [

Lemma 8.11. Let p > n be given. Then there is a 0 < C' = C(p) < oo such that

Ty, Tollly < ClIF1lgl

for all f,g € C().
Proof. This follows immediately from (8.9) and Proposition 6.3. [J
Lemma 8.12. Let p > 2n/3 be given. Then there is a 0 < C' = C(p) < oo such that

(8.10) (T, Ty), Malllp < CllflgllslRl

for all f,g,h € Ci(Q).
Proof. Continuing with (8.9), we have

([Ty.Ty], M)
— [P, N1y 8Ly, P\[Nt,, P\P + P([Ny, P\[§L,, P), NI | P + PNy, P[5, P)[P, 11,
- [Pth][MmPHMﬁP]P_P[[MWPHMfaP]aMh]P_P[MWPHMfaPHPaMh]'

Applying Propositions 6.3 and 6.4 in this identity, we obtain (8.10). [
Lemma 8.13. Let p > 2n/3 be given. Then there is a 0 < C = C(p) < oo such that

Ty, Ty), Tidllp < ClIF gl Bl

for all f,g,h € C.(Q).

Proof. Since [[Ty,T,],Tn) = P[[Ty,T,], My P, this is an immediate consequence of Lemma
8.12. 0

Lemma 8.14. Let p > 2n/3 be given. Then there is a 0 < C' = C(p) < oo such that
T, Tol, Trllly < Clfllgllllnlls — and [Ty, Ty1, Tullly < CIlfl+llgll« IRl
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for all f,g,h € Cy(Q).
Proof. This follows immediately from Proposition 7.4 and Lemma 8.13. [J.

Lemma 8.15. For each s > 1, there is a 0 < C = C(s) < oo such that || ||« < C||fl]s.00
for every f € HS®.

Proof. This is an obvious consequence of (2.2). O

9. Antisymmetric sums on P

After the preparations in Sections 6-8, we now consider antisymmetric sums on the
range space.

Lemma 9.1. Let a € Q, 6, v,, etc, be the same as in Proposition 8.1 and Definition 8.2.
Given an s > 1, there is a 0 < C' = C(s,a) < oo such that

< Cllifills.collgalls - - [[fnlls,collgn [«

Z Sgn(a)[Tfa'(l) ? Tgl] e [chr(n) ’ Tgn]M’an
oES, 1

forall fi,...,fn € HF and g1,...,9n € Ci(Q).

Proof. For this proof, the notation A ~; B means

A= Bll1 < Cllfills,collgnll« - - 1 fnlls,00llgn -
Let f1,...,fn € HX and let g1,...,9n € Ci(Q2). Then we have

[ffl’Tg ][waf ]M

y2n ™1 [Tf17Tg1]M [Tfangn]M 2

~1 Z Z P 'Ll Mgl7P]]PMD7,1f1 e P[Czn (P)7 [Mgn7p]]PMDznfn

11=2 =2

9.1)

~1 Z Z P ’Ll Mglap]]P P[C (P) [Mgn7P]]PMDi1fl o ‘MDi'n-fﬂ’

11=2 1 =2

where the first ~; follows from Lemmas 8.11 and 8.12, the second ~; follows from Lemmas
8.10, 8.11 and Proposition 6.3, and the third ~; follows from Propositions 6.3 and 6.4.
Writing

Ki,, i, = P[Ci,(P),[M,,, P|P--- P[C;,(P),[M,,, P||P

for i1,...,i, €{2,...,n}, from (9.1) we obtain

Z Sgn(g)[Tfau)’Tg ] [Tfo(n)7T ]M 2n
oES,

(9.2) ~ Y Y Kiya, Y sen(o)Mp, g, - Mp, £,

i1=2 T =2 o€S,
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For each choice of i1,...,i, € {2,...,n}, there are j # k in {1,...,n} such that i; = i,
i.e., D;, = D;,. Therefore

Z Sgn(U)MDil fory °°° MDinfO'(n) = Z Sgn(U)MDil Jo)y  Dip fom) — 0.
oES, c€ES,
Thus (9.2) actually says
Z Sgn(a)[Tfa(1> Ty, [Tfa(n) ’ Tgn]Mﬁ" ~1 0,
ocESH
which proves the lemma. []

Lemma 9.2. Given an s > 1, there is a 0 < C' = C(s) < oo such that

Z Sgn(g)[Tf(ru) ) Tg1] T [Tfo'(n) ) Tgn]
oESy

< Clifills.collgalls -1 fn
1

s.00]|gn| [+

forall fi,...,fn € HF and g1,...,9n € Ci(Q).

Proof. For each a € Q, we have the function 7, and the open ball B(a,(a)/2) given in
Definition 8.2. Since a € B(a,d(a)/2) and since 2 is compact, there is a finite subset F' of
Q2 such that UyepB(a,d(a)/2) D Q.

We now apply Lemma 9.1 to each a € F. Since card(F) < oo, this gives us

(9.3)

Z sgn(o) [ngu) J Tg1] T [Tfo'(n) ) Tgn] Z M’Yﬁ”
og€eSy, aclF

s.00 |95«
1

<cIJf
j=1

for f1,...,fn € HX and ¢1,...,9, € Ci(Q2). For each a € F, v, = 1 on B(a,d(a)/2) by
Definition 8.2. If we define the function

(g

acF

~

on €, then it belongs to C, (Q). In particular, M, is bounded on £. Since Y oacF MﬁnMu =
1, the lemma follows from (9.3). O

Lemma 9.3. [15, Lemma 4.4] Let G1, ..., G} be operators such that [G;,G;] = 0 for all
i,j €{1,...,k}. Then for any operators Hy, ..., H,

[Gb H17 SRR Gk7 Hk:] = Z Z sgn(a)sgn()\)[Ga(l), Hk(l)] e [Ga(k)a Hk(k)]
ogESK AESE

Also, for all £ € N and operators By, Bs, ..., Bay, the identity

(9.4) > s80(0)[Bo(1): Boz)] - [Bo(2k—1)s Bo(ar)] = 2°[B1, Ba, ..., B

o€Ssy
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holds. See [15, (4.9)].
Proposition 9.4. Given an s > 1, there is a 0 < C = C(s) < oo such that
Tp Tors s Tpon Tyl < Cllfillssocllgnlle - 1 falls,oollgnlls

forall fi,...,fn € H and g1,...,9n € Ci(Q).

Proof. Let fi,..., fn € H°. Then for all 1 <i,5 < n we have [Tfi,ffj] = [Mfi7ij:| =0.
Thus this proposition is an immediate consequence of Lemmas 9.2 and 9.3. [

Lemma 9.5. Let p > n be given. Then there is a 0 < C'= C(p) < oo such that

Ty, Tyl < CllfNllgl

for all f,g € C().
Proof. This follows immediately from Lemma 8.11 and Proposition 7.4. [J
Proposition 9.6. Given an s > 1, there is a 0 < C = C(s) < oo such that

(9.5) T, Ty Ty Ty Ml < Cllfillsoollgnlle == [ fallso0llgnll-
forall fi,...,fn € HF® and g1,...,gn € Ci(Q).
Proof. Again, for this proof the notation A ~; B means

4~ Bl < Clfullscellgnll -~ Dl llgnle

Let fi,...,fn € H® and ¢1,...,9, € Ci(€2). Since [Tfi,ffj] =0foralll <i,5 <n,
starting with Lemma 9.3, we have

[Tf17Tg*17 .. Z Z Sgn Sgn [Tfa(l)’T;x(l)] [Tfa(7L)7Tg>:(n)]
o€S, AES,
~1 Z Z sgn(o)sgn(A [Tfou) ) Tgk(l)] T [Tfa('n) ) Tﬁx(m]
oES, AES,
= [Tflnglv SR 7Tfn7T§n]v

where the ~; follows from Proposition 7.4, Lemma 8.11 and Lemma 9.5. Applying Propo-
sition 9.4 to this last antisymmetric sum, we obtain (9.5). O

Proposition 9.7. For each s > 1, there is a 0 < C' = C(s) < oo such that

(9:6)  ||[Mf, Mgy, Mf, M, ..., Mj, My, i < Clfi

||s,oo T H

forall fi,91,..., fon,gon € H®.

Proof. For this proof, the notation A ~; B means

A= By < Cllfy

oo+
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Let f1,91,-.., fon, g2n € H° be given. For each 1 <7 < 2n, we denote

A;=Mj; M, Ay =DM, Ajo=M, Bi1=M,, and B;s= Mj.
Thus for each 1 <7 < 2n,
Ai1Aia=A;, Ai1Bixn=A;, and B;2A;2 = A;.
Applying the “product rule” for commutators, it follows from Lemmas 9.5 and 8.14 that
[A1, Aa] -+ [Agp—1, Aoy

=[A1141,2, A2 1429 - [Aop_1,1A2n-1,2, Aon,1A24,7]

~ Y [Avg Asge] s [Asnct a1 Asn o, 1By Ba gy -+ Ban o, -

Let 0 € Sa,. Then the map (ji,...,j2n) = (Jo(1),---,Jo(2n)) i injective on the product
set {1,2}2", hence surjective also. Therefore

[As),Ac2)]  [Asen—1), Ac(2n)]
2

~ Y Aoy As@)a) [Ao@n—1) gan 10 Ao (2n) o)

jla“'ﬁj2n:1

X Bo(1),j1 Bo(2),42 - * - Bo(2n),jon

2
= Z [Ao—(l)vjcr(l) ’ AU(2)7j0(2)] T [AU(2n_1)aja(2n71) ? AJ(Qn)7jc(2n)]
Jlyeens Jon=1
X Ba(l)fjo'(l)BU(Q)vjcr@) e BU(Qn)vjcr@n)
2
~ Y Ae@)deay Ae@ o] [Ao@n-1)doan—1)» Ao (@n) g ]
jl 77777 an—l

where the second ~; follows from Lemma 9.5. By (9.4), we have

[A1, Ao, ..o Agy] =277 Z sgn(0)[As1), As2)] - [Ac(zn—1)s Ao (2n)]

0ESan

2
~1 2_n Z Z Sgn(o-) [Aa(l)vja(l) ’ AG(Q),jG(Q)] e I:AU(2n_1)7ja(2n—1) ) AU(2n)>Jo(2n)]

J1s-J2n=1 oc€San

X Bij, B j, - - Ban

7j2n
2
= E [A1j15 A2 jys - - A2n oy | B1jy Bajs -+ Banja, -
jla“'ajZn:l
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Applying Proposition 9.6 to each nonzero [A; ;,, A2 .., Aap j,. ], we obtain (9.6). O

7j27'

Proof of Theorem 1.2. This follows immediately from Corollary 4.13, Proposition 2.5, and
Proposition 9.7. U

10. Proof of Theorem 1.3

Our proof of Theorem 1.3 requires two steps. First, we will show that trace formula
(1.3) holds for analytic polynomials f1, g1, ..., fan, g2n € C[C1,, ..., (2n]. This step takes up
most of this section. Once we have the polynomial version of (1.3), the trace-norm bound
in Theorem 1.2 allows us to deduce the general case of (1.3) for fi1,¢1,..., fon, gon € HS®,
s > 1, by approximation.

The proof of (1.3) for fi,g1,..., fan,g2n € C[C1,. .., (2n] is based on a fifty-year old
idea due to Coburn [4], which predated the discovery of the Drury-Arveson space in [1,9].
As we will see, this idea allows us to transfer the problem from the Drury-Arveson space
H? back to the Bergman space L?(B), so that Theorem 1.1 can be applied.

Recall that we write T for the Toeplitz operator with symbol f on L2(B).

For « € Z"} and 1 < i < n, we write «; for the i-th component of o. That is,
a = (0aq,...,ap). For each 1 < j < n, let ¢; denote the element in Z7 whose j-th
component is 1 and whose other components are 0.

Let {eq : @ € Z7'} be the standard orthonormal basis for the Drury-Arveson space
H?2. As we already mentioned in Section 3, it is well known that

ea(C) = (Ja)l/a)/2¢, o€ Z.

Therefore for any 1 < j <n and o € Z"}, we have

1/2
(10.1) Meeq = {19 m2 /1€ |2 Yeate, = o +1 Carte; -
la] +1

Let {uq : @ € Z'} be the standard orthonormal basis for LZ(B). It is well known that
ua(¢) = ((Ja] + n)l/alnl) /3¢, o € Z7.

For any 1 < j <n and o € Z/, we have

1/2
(10.2) Te e = {01+ | 22 oy /N1C 22 8y Jtanse, = (— 3T 1 / Unie, -
g a @ ! lal +1+n ?

Let U : LZ(B) — H?2 be the unitary operator such that
(10.3) Uug = eo for every o€ Z7.
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Furthermore, we define the diagonal operator D on L2(B) by the formula

n
(10.4) D=Y" -
aEZ? Vial+1(y/]al + 1+ /o] +1+n)

By (10.1), (10.2) and elementary algebra, we find that
(10.5) UM, U =T¢,(1+D)

for every 1 < j < n.

For convenience, we denote

n

(10.6) dy = . acZm.
Ve[ +1(/]al+ 1+ /o[ + 1+ n) *

For each k € N, we define

(10.7) B, = Z dotlq @ ue and I = Z dotle @ Ug.

lo| <k loa| >k

Then, of course, Ey, + F, = D, and rank(FE}) < oo.

Lemma 10.1. For each p > n, we have

Tim [Py, = 0.

Proof. Write m,, for the n-dimensional Lebesgue measure on R™. Then

nP
Fy||b = db < _—
IRl = 3 &< 3 o

|| >k lo| >k

< C/ dmn(l‘l,...,xn) /00 rn=1dy
< e |
(224-+22)1/2>k//n (x% S x%)p/2 b/ v

For p > n, the right-hand side tends to 0 as k£ — oo. [

Lemma 10.2. Fort >n—1 and 1 < j < n, we have

lim ||[T¢,. Fy]]l = 0.
Jim ([Te;, Byl = 0

Proof. By (10.7), for any 1 < j < n we have

(10.8) Te Frl = > dal[Tt, o © ual.
la| >k
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For a € Z1}, we have T} uq = 0 if a; = 0 and TZ uq = a;/2(|a| +n) Y 2ug_, if oy > 1.
Combining this fact with (10.2) and with (10.8), we find that [T¢,, Fi] = A — B, where

a1 1/2
jal>k

w41 1/2
By = Z dote; (m) Uagte; @ Uq-
|la|=k—1

Given t > n — 1, it suffices to show that ||Bg|l: — 0 and [|Ax||: — 0 as k — oo.
Note that

(k—14n-—1)!
(k—1)!(n—1)!

rank(By) = card{a € Z} : |a| =k — 1} = = O(k"1).

By (10.6), we have dote, = O(k™1) when |a| = k —1. Since t > n — 1, we have || By||; — 0
as k — co. Also by (10.6), we have dq — date, < C(|a| 4+ 1)72. Therefore

1 oo pn=lgy
At < C — < )
[Akll; < Cq |Q|Z>k (lo] + D)2 — 2/14/\/5 r2t

Since t > n — 1 and n > 2, we have 2t > 2n — 2 > n. Thus ||Ak|: = 0 as k — oco. O

Definition 10.3. Let A denote the unital algebra generated by the operators

D, Tepyoo Ty, T, TE.

Lemma 10.4. Lett >n — 1. Then for every A € A we have

(10.9) lim [, Fy]]l = 0.
k—o0

Proof. Given t > n — 1, (10.9) is a consequence of the following three statements:

(1) limg o0 [|[Te,, Fi]ll¢ = O for every 1 < j <n.

(2) limp— o0 [|[T¢;, Fi][|e = 0 for every 1 < j <n.

(3) lim oo 1D, Fi][l = 0.
Obviously, (1) is provided by Lemma 10.2. Since F}; is self-adjoint, (2) follows from (1).
Since we assume n > 2, we have n/2 < n — 1. Note that Lemma 10.1 implies D € C, for
every p > n. Therefore it follows from Lemmas 10.1 and 2.1 that limy_, ||[D, Fi]||p/2 = 0
for every p > n. This obviously implies (3). O

Lemma 10.5. For any A, B € A, we have [A, B] € C, for every n > p.
Proof, This is an obvious consequence of Lemma 2.6 and the fact that D € C, for every

p>n. U
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Lemma 10.6. Lett > n — 1 be given. Then for all A, B,C € A we have

lim [|[A, BE,C]l, = 0.
k— o0

Proof. Applying Lemma 10.4, what remains to be shown is that
lim ||[A, B]Fg|t =0 and lim |Ex[A,C]|: =0.
k—o0 k—o0

Set p = 2t. Then p > 2n — 2 > n. By Lemma 2.1, we have
1A, BlFk|[e < [[[A; Bll[pl| Fellp-

Thus it follows from Lemmas 10.1 and 10.5 that ||[A, B]Fk|+ — 0 as k — oco. A similar
argument shows that ||F;[A, C]||: — 0 as k — oo. This completes the proof. [J

Next we consider antisymmetric sums. It is obvious that if £ € Cy, then
(1010) tr[E, ZQ,Zg,...,ZQn] =0

for all operators Zs, Zs, ..., Zoy,.

Lemma 10.7. Let A, B, Ay, As, ..., Ao, € A. Then the antisymmetric sum
[ADB, Ay, A3, ..., Asy]

18 in the trace class with zero trace.

Proof. Since D = Ej + F} and since Fj is a finite-rank operator, in view of (10.10), it
suffices to show that
kli)rilo H[AFkB, AQ, Ag, ceey A2n]”1 =0.

To prove this, we define Agk) = AF; B and A;k) = A; for 2 < j <2n. By (9.4), we have

[AFyB, Ay, As, ..., Agy] = [AP), A0 A
_o-n (k) (k) (k) (k)
=2 E : Sgn(a)[Aau)v AJ(Q)] o [AU(Zn—l)’AU(2n)]'

og€Sap

Thus it suffices to show that for every o € S5,,, we have

] [A(k) A%)

. k k
(10.11) lim ||[A( 3y, A% o(2n—1) a(zn)]Hl = 0.

k=00 o(1)? 7o (2)

Let o € Sy, be given. Then there is an i = i(0) € {1,...,n} such that either 0(2i —1) =1
or 0(2i) = 1. Hence there is a v = v(0) € {0(2i — 1),0(2i)} such that

(10.12) (A% Ak

o(2i—1)’ 0'(21')] = i[AFkB; Au]-
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We obviously have

k k . .
(10.13) A1 AN T = [Ao(aj—1)s Aoap)] for j € {1,... . n}\{i}.

o(2j—1)°

Pick a t satisfying the condition n — 1 < ¢t < n. Then there is a p > n such that
(n—1)/p=1-(1/t). It follows from (10.12), (10.13) and Lemma 2.1 that

(10.14) [[A™)

k k k
Oy AL 1A%, 1 AR il < IAFB, A [T Ao @i, As@p)] e

J#

By Lemma 10.5, we have ||[Ag(2;-1), Ao(2j)]llp < oo for every j # i. Therefore (10.11)
follows from (10.14) and Lemma 10.6. This completes the proof. [J

Proposition 10.8. Given any fi1,..., fon,g1,...,92n € C[C1, ..., (], there is a trace-class
operator' Y with tr(Y) = 0 such that

UM} Mg, , My, Mg,,...,Mz, Mg, U= [Tt ,,Tfg > Lh gon] T

19

Proof. For any o = (a1, ...,ay) € Z7, it follows from (10.5) that

UiM¢aU = UM - - MU = {Tg, (14 D)} - {T¢,, (14 D)}
alel 1

=T+ Y X,DY,,
v=1

where X1,Y7, ..., X5iai_1, Yoiai_1 € A. Therefore, given any analytic polynomials fi, g1,
s fon, 92n € Cl(1,. .., (], there exist an m € N and A4,;,B,; € A, 1 < j < 2n and
1 <4 < m, such that

UM} My U =T; Ty +> AjiDBj; =Ty, +> Aj;DBj;
=1 =1

for every 1 < j < 2n. Combining this identity with the linearity for each slot in an
antisymmetric sum, we have

U* [M}kl Mgl 7M}<2M92’ Ut M};nMgzn]U
(m_|_1)2n_1
= [Tf1917Tf292’"'7Tf2n92n] + Z [Xl,r:X2,Ta---7X2n,r]a

r=1

where the operators X, satisfy the following two conditions:
(1) Xj, € Aforall 1 <j<2pand 1<r<(m+1)%"—1.
(2) For each 1 <7 < (m + 1)?" — 1, there is a j(r) € {1,...,2n} such that
Xj(,ﬂ)’r = ADB with A, B € A.
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By these two conditions and Lemma 10.7, for each 1 < r < (m+1)*"—1, the antisymmetric

sum [X; ,, Xor,...,Xopn,| is in the trace class with zero trace. This completes the proof.
O

We can now prove (1.3) for analytic polynomials:

Proposition 10.9. For fi,..., fon,g1,.--,92n € C[C1, ..., (n] we have

! _ _ _
tI‘[M}klMgl,M};Mgz, . '7M;2nM92n] = ~7 / dflgl A dfggg A A dfgnggn.
B

(271)

Proof. This follows immediately from Proposition 10.8 and Theorem 1.1. [J

Lemma 10.10. Let 0 < r < s < oo and let f € H®. Then there is a sequence {fx} of
analytic polynomaials such that

klim |f— frllrco =0.
— 00

Proof. Even though this is obvious, a proof is included here for completeness.

Given an f € H2°, define ¢g(¢) = f(s¢), ¢ € B. Then g is in the H* of the unit ball.
By the Cauchy formula for B, we have the expansion

9(0) =2 (). ¢eB,

where, for each j € Z, u; is a homogeneous polynomial of degree j. More precisely,

u; () = O /5 (€€ 9(€)do(€)

for j € Z,, where C’; -l o (jj!?s:ll))!!. In particular, there is a 0 < C' < oo such that

i (Q)] < CCIF ¢ forall (€ C" and j € Zy.

For each k € N, we define
L
Q) =" =u(Q), ¢(ecCm

S
=0

Note that f(¢) = g(¢/s) for ¢ € B(0,s). Thus for ( € B(0,r) and k € N, we have

<oy o ()

j=k+1

> (0

j=k+1

1£(¢Q) = fr(O)] =

oo ‘
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which proves the lemma. []

Proof of Theorem 1.3. Let fi,q1,..., fon,gon € H° for some s > 1. We pick an 7 such
that 1 < r < s. By Lemma 10.10, there are sequences of analytic polynomials {f; ;} and
{9k}, 1 < j <2n, such that

(10.15) Jim Ifi = fikllroo =0 and Jim 195 — 9j.kllr00 =0,

1 < j < 2n. By Theorem 1.2 and the linearity of antisymmetric sums, (10.15) implies

lim [[M}, M,,,...,Mj, Mg, ]~ [M; M

g1,k
k—o0

T M};n,kMQQn,k]Hl = 0.

Therefore

(10.16) tr[My Mg, ,...,Mj;, Mg, ]= lim tr[M}‘lykMglyk,...,M};"}kMg%yk].

- k— o0
Since r > 1, (10.15) also implies

n!

n! _ _
1017) lim —-— [ 4 Ao A Ay rgon g —
( ) lim (27775)”/]3 J1.k91.k Jon k92n.k @riy

k—o0

/ dfigr A+ Adfangon.
B

For each £ € N, Proposition 10.9 gives us the identity
* * n! r r
(1018) tr[MfMMgl’k, e 7Mf2n,kM92n,k] = W /]:3’ dfl,kgl,k A A den,ngn,k-

Combining (10.16), (10.17) and (10.18), we obtain (1.3). This completes the proof. [J
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