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Abstract. We show that certain self-adjoint Toeplitz operators on the Hardy space of the
unit sphere have purely absolutely continuous spectrum. For a subclass of these operators,
we show that the spectral multiplicity function is not locally L1.

1. Introduction

In this paper, all Hilbert spaces we consider are assumed to be separable. Suppose
that A is a bounded, self-adjoint operator on a Hilbert space H. Then it is well known
that the space H admits an orthogonal decomposition

H = Hac(A)⊕Hs(A)

such that both subspaces Hac(A) and Hs(A) are invariant under A, the spectral measure
of the restricted operator A|Hac(A) is absolutely continuous with respect to the Lebesgue
measure, and the spectral measure of A|Hs(A) is singular to the Lebesgue measure. Recall
that A|Hac(A) and A|Hs(A) are respectively called the absolutely continuous part and
the singular part of A. Accordingly, we say that A is purely absolutely continuous if
Hs(A) = {0}, and we say that A is purely singular if Hac(A) = {0}.

Among the most interesting examples of self-adjoint operators with purely absolutely
continuous spectrum, we would like to mention Toeplitz operators on the unit circle [6,11]
and various singular integral operators [1,7,8,13]. In particular, what motivates this paper
is the classic result that if f is a bounded, real-valued, non-constant function on the unit
circle T, then the corresponding Toeplitz operator Tf on the one-variable Hardy space H2

has purely absolutely continuous spectrum [6,11]. In fact, even the spectral multiplicity
function of Tf was explicitly determined in [12].

Because of the importance of absolute continuity, with the success for one-variable
Toeplitz operators, it is natural to ask, what happens if one considers Toeplitz operators
in the context of several variables? Rosenblum considered this question in the case of the
n-dimensional torus. He showed in [14] that if a non-constant symbol is the real part of a
bounded analytic function, then the corresponding Toeplitz operator is purely absolutely
continuous. Moreover, he gave an example showing that on the n-dimensional torus, n ≥ 2,
Toeplitz operator with a real-valued, non-constant symbol can have an eigenvalue.

In this paper we will examine Toeplitz operators on the unit sphere in Cn. Note that
both torus and sphere are natural generalizations of the classic case of the unit circle T,
albeit in different directions.
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Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. We write dσ for the spherical
measure on S with the normalization σ(S) = 1. The Hardy space H2(S) is defined to be
the collection of analytic functions f on the unit ball B = {z ∈ Cn : |z| < 1} satisfying
the condition ‖f‖ <∞, where the norm ‖ · ‖ is given by the formula

‖f‖ = sup
0<r<1

(∫
S

|f(rz)|2dσ(z)

)1/2

.

Each f ∈ H2(S) has the so-called K-limit f∗ σ-a.e. on S. Moreover, f∗ ∈ L2(S, dσ)
with ‖f∗‖ = ‖f‖. See [15, Section 5.6] for these facts. Naturally, we identify each f ∈
H2(S) with its boundary value f∗. This identifies H2(S) with a closed linear subspace
of L2(S, dσ). It is well known that, under this identification, H2(S) is just the closure
of C[z1, . . . , zn] in L2(S, dσ). Thus by the calculation in [15, Section 1.4], the standard
orthonormal basis {eα : α ∈ Zn+} for H2(S) is given by the formula

eα(z) =

(
(n− 1 + |α|)!

(n− 1)!α!

)1/2

zα,

α ∈ Zn+, where we follow the standard multi-index notation [15, page 3].

For f ∈ L∞(S, dσ), we define the Toeplitz operator Tf by the formula

Tfh = P (fh), h ∈ H2(S),

where P is the orthogonal projection from L2(S, dσ) onto H2(S).

In the case n ≥ 2, in sharp contrast to the classic result mentioned above, there are
plenty of real-valued, non-constant f ∈ L∞(S, dσ) for which the corresponding Toeplitz
operator Tf has purely singular spectrum. For example, if f depends only on |z1|, . . . , |zn|,
then by the rotation invariance of dσ we have

〈Tfeα, eβ〉 =

∫
S

feαēβdσ = 0 for all α 6= β in Zn+.

Thus Tf is a diagonal operator with respect to the orthonormal basis {eα : α ∈ Zn+} in
H2(S) and, therefore, has a pure point spectrum.

Despite such examples, we will show that there is a modified analogue of the classic
absolute continuity result in the case n ≥ 2. That is, we will show that there is a subclass
of real-valued, non-constant f ∈ L∞(S, dσ) for which the spectrum of the corresponding
Toeplitz operator Tf is purely absolutely continuous.

Recall that a C∞-function u on B is said to be pluriharmonic if the equation

∂j ∂̄ku = 0

holds for every pair of j, k ∈ {1, . . . , n}. We cite [15, Section 4.4] as a general reference
for pluriharmonic functions. The involvement of pluriharmonicity in this paper will be
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limited to its well-known characterization [15, Theorem 4.4.9]. That is, for a real-valued
C∞-function u on B, the following conditions are equivalent:

(1) u is pluriharmonic on B.
(2) u is the real part of an analytic function on B.
(3) For every ζ ∈ S, the function z 7→ u(zζ) is harmonic on {z ∈ C : |z| < 1}.
(4) For every ψ ∈ Aut(B), the function u ◦ ψ is harmonic on B.

Recall from [15] that for any f ∈ L1(S, dσ), its Poisson extension is the function [f ]
on B = {z ∈ Cn : |z| < 1} given by the formula

[f ](z) =

∫
(1− |z|2)n

|1− 〈z, ξ〉|2n
f(ξ)dσ(ξ), z ∈ B.

Definition 1.1. Let BPH = {f ∈ L∞(S, dσ) : [f ] is pluriharmonic on B}.

If f ∈ BPH and if f is real valued, then, as we explained above, there is an analytic
function ϕ on B such that [f ] = Re(ϕ). We will call Im(ϕ) a pluriharmonic conjugate of
f . Of course, any two pluriharmonic conjugates of f differ at most by a constant. Note
that although the membership f ∈ BPH assumes the boundedness of f , it does not imply
the boundedness of any pluriharmonic conjugate of f . Here is what we can prove in terms
of absolute continuity:

Theorem 1.2. Let f be a real-valued, non-constant function in BPH. If the pluriharmonic
conjugate of f is either bounded from above or bounded from below, then the Toeplitz
operator Tf on H2(S) is purely absolutely continuous.

Note that if n = 1, then BPH is just the L∞ on the unit circle. Therefore if one
could remove the semi-boundedness assumption in Theorem 1.2 about the pluriharmonic
conjugate of f , then it could be reasonably regarded as the right analogue for complex
dimensions n ≥ 2 of the classic absolute continuity result. But unfortunately, at the
moment we are only able to prove Theorem 1.2 under the semi-boundedness assumption.

On the other hand, we can prove the absence of point spectrum without any assump-
tion on the pluriharmonic conjugate:

Theorem 1.3. If f is a real-valued, non-constant function in BPH, then the Toeplitz
operator Tf on H2(S) has no eigenvalues.

Remark. In the case where the pluriharmonic conjugate of f is bounded, i.e., in the case
where f = Re(ϕ) for some ϕ ∈ H∞(S), Theorem 1.2 can be deduced from [14, Theorem 2].
However, our intention in Theorem 1.2 is to cover as large a class of symbol functions as
we can, which makes unbounded operators unavoidable. Consequently, a significant part
of the proof of Theorem 1.2 is the handling of unbounded pluriharmonic conjugate of f .

Next, let us consider the spectral multiplicity functions for Toeplitz operators. To do
that, we first review the definition of spectral multiplicity function.

For any Borel set ∆ in R, we write M (∆) for the operator of multiplication by the
coordinate function x on the Hilbert space L2(∆, dm), where dm is the Lebesgue measure
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on R. LetA be a self-adjoint operator on a Hilbert spaceH, and suppose thatHs(A) = {0},
i.e., A is purely absolutely continuous. Then there exists a countable family of Borel sets
{∆i : i ∈ I} in R such that A is unitarily equivalent to the operator⊕

i∈I
M (∆i).

The spectral multiplicity function of A is defined by the formula

mA(x) =
∑
i∈I

χ∆i(x), x ∈ R.

It is well known that this mA is a complete unitary invariant for A.

Let H∞(S) denote the collection of bounded analytic functions on the unit ball B =
{z ∈ Cn : |z| < 1}. Let ϕ ∈ H∞(S) and suppose that ϕ is not a constant. For f = Re(ϕ),
it follows from Theorem 1.2 that the Toeplitz operator Tf on H2(S) is purely absolutely
continuous. We have the following result about its spectral multiplicity function:

Theorem 1.4. Consider any complex dimension n ≥ 2. Let ϕ be any non-constant
function in H∞(S), and write f = Re(ϕ). Then the spectral multiplicity function mTf of
the Toeplitz operator Tf has the property∫

R

mTf (x)dx =∞.

This exhibits an aspect of the spectral theory for self-adjoint Toeplitz operators in the
case n ≥ 2 that is quite different from the spectral theory in the case n = 1. When n = 1,
if f is any non-constant, real-valued function in L∞(T), then the spectral multiplicity
function is completely known for the Toeplitz operator Tf on H2. See [12]. In particular,
by the method of determining spectral multiplicity function given in [12], there are plenty
of non-constant, real-valued f ∈ C1(T) such that the spectral multiplicity function mTf

is bounded. Thus there are plenty of non-constant, real-valued C1-functions f on the unit
circle T such that for the corresponding Toeplitz operator Tf on H2, we have∫

R

mTf (x)dx <∞.

If f is a real-valued function in C1(T), then, of course, there is a ϕ ∈ H∞ such that
f = Re(ϕ). Thus we see that Theorem 1.4 is a sharp contrast to the case n = 1.

Given Theorem 1.4, one wonders if there is more that can be said about the spectral
multiplicity function. Specifically, it seems reasonable to consider

Problem 1.5. Suppose that n ≥ 2. Let ϕ be a non-constant function in H∞(S), and let
f = Re(ϕ). Is it true that the Lebesgue measure of the set

{x ∈ R : 0 < mTf (x) <∞}
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is zero? In other words, is there a dichotomy mTf (x) ∈ {0,∞} for a.e. x ∈ R? Stated in
yet another equivalent way, is it true that∫

G

mTf (x)dx ∈ {0,∞}

for every Borel set G ⊂ R?

The main result of the paper is a local version of Theorem 1.4, which can certainly be
viewed as a strong piece of evidence in support of the above-mentioned dichotomy:

Theorem 1.6. Consider any complex dimension n ≥ 3. Let f be a real-valued, non-
constant function in BPH ∩ C1(S). Then for every open interval (a, b) satisfying the
condition

min
z∈S

f(z) ≤ a < b ≤ max
z∈S

f(z),

we have ∫ b

a

mTf (x)dx =∞.

Obviously, Theorem 1.6 leaves out a single complex dimension, namely the case n = 2.
Our proof of Theorem 1.6 does not work in the case n = 2. In fact, the case n = 2 seems
to be much more delicate than the complex dimensions n ≥ 3.

The reader will see that the proofs of the above theorems all involve an interplay
between Toeplitz operators and Hankel operators.

The rest of the paper is organized as follows. First of all, Sections 2 and 3 contain
preparations for the proofs of Theorems 1.2 and 1.3. Specifically, in Section 2 we revisit a
classic theorem of Putnam, and Section 3 collects a number of Hardy-space facts that are
needed in the proofs of Theorems 1.2 and 1.3.

After treatment of unbounded Toeplitz operators, the proofs of Theorems 1.2 and 1.3
are presented in Section 4.

We then prove Theorem 1.4 in Section 5. The proof of Theorem 1.6 is quite long,
which will be presented in Section 6.

Acknowledgement. The author thanks the referee for the valuable comments, particu-
larly for providing reference [14].

2. Putnam’s theorem revisited

In the classic case where n = 1, the absolute continuity of the spectrum of a self-
adjoint joint Toeplitz operator was obtained by an explicit diagonalization of the operator
[6,11,12]. At the very core of this classic proof is the fact that if f is a real-valued L∞-
function on the unit circle T, then for every λ < −‖f‖∞ there is an outer function hλ such
that f − λ = h̄λhλ. Consequently, for the resolvent (Tf − λ)−1 we have the factorization

(Tf − λ)−1 = Th−1
λ
Th̄−1

λ
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in terms of Toeplitz operators. This, of course, is not something that one can hope to
mimic for the case of complex dimensions n ≥ 2.

Since explicit diagonalization is not possible in the case n ≥ 2, the only other possible
approach is to use a theorem of Putnam that relates spectral absolute continuity to the
positivity of commutators. This is where the pluriharmonicity in Theorem 1.2 comes in.

Theorem 2.1. [10, Theorem 2.2.4] Suppose that A,B are bounded, self-adjoint operators
on a Hilbert space H and let C = −i[A,B]. If C ≥ 0 or C ≤ 0, then Hac(A) ⊃ L, where L
denotes the smallest subspace of H reducing both A,B and containing the range of C.

Below we present a variant of this theorem, in which the description of L is significantly
simplified for the purpose of application. This variant is based on two ideas, the first which
is a general fact:

Proposition 2.2. Suppose that A,B are bounded, self-adjoint operators on a Hilbert space
H and denote C = −i[A,B]. Let E be the spectral measure for A. That is,

A =

∫ ‖A‖
−‖A‖

λdE(λ).

If G is a Borel subset of I = [−‖A‖, ‖A‖] such that CE(G) = 0, then the subspace E(G)H
is invariant under B.

Proof. If K is a compact subset of G and L is a compact subset of I\G, then E(L)CE(K) =
E(L)CE(G)E(K) = 0. From this we deduce

[A, E(L)BE(K)] = 0.

This obviously implies that

(2.1) [f(A), E(L)BE(K)] = 0 for every f ∈ C(I).

Since K and L are disjoint compact subsets of I, there is a g ∈ C(I) such that g = 1
on L and g = 0 on K. Thus from (2.1) we see that E(L)BE(K) = 0 for all compact
subsets K ⊂ G and L ⊂ I\G. By the regularity of the spectral measure E , this implies
E(I\G)BE(G) = 0, i.e., (1 − E(G))BE(G) = 0, which means that the subspace E(G)H is
invariant under B. �

The second idea is the use of the following fact which is by now well known: If T is
a purely singular self-adjoint operator on a Hilbert space H, then there is a sequence of
finite-rank orthogonal projections {Fk} such that Fk → 1 strongly and ‖[T, Fk]‖1 → 0 as
k → ∞, where ‖ · ‖1 denotes the norm of the trace class. This fact is usually used in the
context of diagonalization modulo the trace class [2,16,17,19]. But it is an easy exercise
to produce such a sequence {Fk}. Indeed it is quite obvious what the Fk’s are if T = Mx

on some L2(dµ), where dµ has a compact support K with m(K) = 0. Then note that a
general purely singular T is unitarily equivalent to the orthogonal sum of countably many
multiplication operators of this kind.
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Theorem 2.3. Suppose that A,B are bounded, self-adjoint operators on a Hilbert space
H and let C = −i[A,B]. If either C ≥ 0 or C ≤ 0, then CHs(A) = {0} and Hs(A) is an
invariant subspace for B.

Proof. Let E be the orthogonal projection from H onto Hs(A) and write A′ = AE,
B′ = EBE, and C ′ = −i[A′, B′]. Then we have C ′ = ECE. Note that the self-adjoint
operator A′ is purely singular. Hence, as we explained above, there is a sequence of finite-
rank orthogonal projection {Fk} on H such that

s- lim
k→∞

Fk = 1 and lim
k→∞

‖[A′, Fk]‖1 = 0.

On the other hand,

tr(C ′Fk) = itr(B′A′Fk −A′B′Fk) = itr(B′FkA
′ −A′B′Fk +B′[A′, Fk]) = itr(B′[A′, Fk]).

Thus |tr(C ′Fk)| ≤ ‖B′‖‖[A′, Fk]‖1, and consequently

lim
k→∞

tr(C ′Fk) = 0.

It suffices to consider the case where C ≥ 0. Then C ′ ≥ 0. Since the sequence {Fk}
strongly converges to 1 on H and since C ′ ≥ 0, the above limit implies C ′ = 0. Hence we
have (C1/2E)∗C1/2E = EC1/2C1/2E = C ′ = 0, which implies C1/2E = 0. Thus we also
have CE = C1/2C1/2E = 0, i.e., CHs(A) = {0}.

To prove that Hs(A) is invariant under B, write E for the spectral measure for A, i.e.,

A =

∫ ‖A‖
−‖A‖

λdE(λ).

Then there is a Borel set Σ ⊂ [−‖A‖, ‖A‖] with m(Σ) = 0 such that E = E(Σ). The fact
CE = 0 proved above now translates to CE(Σ) = 0. Applying Proposition 2.2, we see that
the subspace E(Σ)H = EH = Hs(A) is invariant under B. �

3. Some facts about the Hardy space

Here we collect a few facts concerning the Hardy space that will be needed later.

Proposition 3.1. [15, Theorem 5.5.9] Let h ∈ H2(S). If σ({ξ ∈ S : h(ξ) = 0}) > 0, then
h = 0.

Recall that for f ∈ L∞(S, dσ), the Hankel operator Hf is defined by the formula

Hfh = (1− P )(fh), h ∈ H2(S).

As we will see, Hankel operators play an essential role in this paper.

Proposition 3.2. Let f be a real-valued non-constant function in L∞(S, dσ). Then the
Hankel operator Hf faithfully detects the invariant subspaces of Tf in the following sense:
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If E is the orthogonal projection from H2(S) onto an invariant subspace of Tf , then the
condition HfE = 0 implies E = 0.

Proof. Let M be an invariant subspace of Tf , and suppose that for the orthogonal projec-
tion E : H2(S) → M we have HfE = 0. Consider any h ∈ M . Since (1 − P )(fh) = 0,
we have fh = Tfh ∈ M . Combining this with a simple induction, we see that if p is any
polynomial, then p(f)h ∈M .

Suppose that the essential range of f is contained in [a, b]. Since f is not a constant,
there are a ≤ α < β ≤ b such that σ(f−1[a, α]) > 0 and σ(f−1[β, b]) > 0. There
is a continuous function ψ on [a, b] such that ψ = 0 on [a, α] and ψ = 1 on [β, b]. Since
p(f)h ∈M for every polynomial p, by the Weierstrass approximation theorem, we also have
ψ(f)h ∈ M . Note that ψ(f)h vanishes on the set f−1[a, α]. Since ψ(f)h ∈ M ⊂ H2(S)
and since σ(f−1[a, α]) > 0, by Proposition 3.1 we have ψ(f)h = 0. Since ψ(f) equals 1 on
the set f−1[β, b], the condition ψ(f)h = 0 implies that h vanishes on f−1[β, b]. Again, by
Proposition 3.1 and the fact σ(f−1[β, b]) > 0, we have h = 0. Since this is true for every
h ∈M , it follows that M = {0}, i.e., E = 0. �

For any function f ∈ L1(S, dσ), we define

(3.2) ‖f‖BMO = sup

{
1

σ(B(ζ, r))

∫
B(ζ,r)

|f − fB(ζ,r)|dσ : ζ ∈ S and r > 0

}
,

where B(ζ, r) = {x ∈ S : |1 − 〈x, ζ〉|1/2 < r}. Recall that a function f is said to have
bounded mean oscillation if ‖f‖BMO < ∞. Write BMO for the collection of functions of
bounded mean oscillation on the sphere S.

It is well known that ‖[Mf , P ]‖ ≤ C‖f‖BMO for f ∈ BMO. See [3,22].

Proposition 3.3. If f is a real-valued function in BPH, then its pluriharmonic conjugate
belongs to BMO.

Proof. Let ϕ be an analytic function on B such that Re(ϕ) = [f ]. For each 0 ≤ r < 1, we
define the functions

gr(ξ) = [f ](rξ) and hr(ξ) = ϕ(rξ),

ξ ∈ S. Clearly, the relation Re(ϕ) = [f ] on B implies hr + h̄r = 2gr on S. From this it is
easy to see that 2Pgr = P (hr + h̄r) = hr + ϕ̄(0). Since ‖gr‖∞ ≤ ‖f‖∞ for every 0 ≤ r < 1,
this implies ϕ ∈ H2(S), and consequently ‖hr − ϕ‖ → 0 as r ↑ 1.

By [21, Proposition 2.2], there is a 0 < C < ∞ such that ‖Pψ‖BMO ≤ C‖ψ‖BMO for
every ψ ∈ BMO (also see [3]). Hence for 0 ≤ r < 1, the relation 2Pgr = hr + ϕ̄(0) implies

‖hr‖BMO = 2‖Pgr‖BMO ≤ 2C‖gr‖BMO ≤ 4C‖gr‖∞ ≤ 4C‖f‖∞.

Combining this with the fact limr↑1 ‖hr−ϕ‖ = 0 and with (3.2), the definition of the BMO-
norm, we obtain ‖ϕ‖BMO ≤ 4C‖f‖∞. Therefore ‖Im(ϕ)‖BMO ≤ ‖ϕ‖BMO ≤ 4C‖f‖∞ <∞
as promised. �
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In view of Proposition 3.3, for every real-valued function f ∈ BPH, if ϕ is an analytic
function on B such that [f ] = Re(ϕ), then the Hankel operator Hϕ̄ is bounded.

4. Unbounded Toeplitz operators and self-adjointness

First of all, we cite [4, Chapter X] as a reference for the general theory of unbounded
symmetric operators and unbounded self-adjoint operators.

Suppose that g is a real-valued function in L2(S, dσ). Then obviously the formula

(4.1) Tgh = P (gh), h ∈ H∞(S),

defines a symmetric operator in H2(S) with D = H∞(S) as its initial domain. We regard
the closure of this symmetric operator as a Toeplitz operator, albeit possibly unbounded.
A natural and important question is, when is this closure a self-adjoint operator? While
we do not know the answer to this general question, below is a partial result that gives us
what we need for the purpose of this paper:

Proposition 4.1. Suppose that f is a real-valued function in BPH and that ϕ = [f ] + ig
is analytic on B, where g is real valued. Then the closure of the symmetric operator Tg
defined by (4.1) is a self-adjoint operator.

Proof. Let us show that {Tgh − ih : h ∈ H∞(S)} is dense in H2(S). Suppose that ψ ∈
H2(S) is orthogonal to {Tgh− ih : h ∈ H∞(S)}. Then we have

(4.2)

∫
gψh̄dσ = 〈ψ, Tgh〉 = 〈ψ, ih〉 = −i〈ψ, h〉 for every h ∈ H∞(S).

Since f is bounded, it follows that∫
ϕψh̄dσ = 〈Tfψ, h〉+ 〈ψ, h〉, h ∈ H∞(S).

Replacing h by the reproducing kernel Kw(ζ) = (1− 〈ζ, w〉)−n in the above, we find that

ϕ(w)ψ(w) = (Tfψ)(w) + ψ(w) for every w ∈ B.

Clearly, this tells us that ϕψ ∈ H2(S). Since f is bounded, this implies gψ ∈ L2(S, dσ).
Once this is established, from (4.2) we deduce∫

g|ψ|2dσ = −i
∫
|ψ|2dσ.

Since g is real valued, this is possible only if ψ = 0. Therefore {Tgh− ih : h ∈ H∞(S)} is
dense in H2(S). A similar argument shows that {Tgh+ ih : h ∈ H∞(S)} is also dense in
H2(S). Thus the deficiency indices of the symmetric operator Tg on H∞(S) are 0 and 0.
Therefore its closure is a self-adjoint operator (see, e.g., [4, Theorem X.2.20]). �
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Lemma 4.2. Let g be the same as in Proposition 4.1 and let D(Tg) denote the domain of
the self-adjoint operator Tg, as provided in that proposition. Then D(Tg) ⊃ Hp(S) for every
p > 2. Moreover, for every pair of b ∈ L∞(S, dσ) and h ∈ H∞(S), we have Tbh ∈ D(Tg).

Proof. Proposition 3.3 tells us that g ∈ BMO. By the well-known John-Nirenberg theorem,
BMO ⊂ Lt(S, dσ) for every 1 ≤ t < ∞. Hence g ∈ Lt(S, dσ) for every 1 ≤ t < ∞. Let
2 < p < ∞ and let h ∈ Hp(S). For each 0 ≤ r < 1, we define the function hr(ζ) = h(rζ)
on B. Then ‖h− hr‖p → 0 as r ↑ 1 [15, Theorem 5.6.6]. By Hölder’s inequality,

‖gh− ghr‖2 ≤ ‖g‖2p/(p−2)‖h− hr‖p.

Thus we have both ‖P (gh)− Tghr‖2 = ‖P (gh− ghr)‖2 → 0 and ‖h− hr‖2 → 0 as r ↑ 1.
By the definition of the closure of an operator, we have h ∈ D(Tg) with Tgh = P (gh). This
proves the assertion that D(Tg) ⊃ Hp(S) for every 2 < p <∞.

Suppose that b ∈ L∞(S, dσ) and that h ∈ H∞(S). Then bh ∈ L∞(S, dσ). Since P
maps BMO into BMO, we have Tbh ∈ BMO ∩H2(S) ⊂ Hp(S) for every 2 < p < ∞. By
what we proved above, Tbh ∈ D(Tg). �

Lemma 4.3. Suppose that f is a real-valued function in BPH and that ϕ = [f ] + ig is
analytic on B, where g is real valued. Let D(Tg) be the domain of the self-adjoint operator
Tg, as provided by Proposition 4.1. Then for every η ∈ D(Tg), we have Tfη ∈ D(Tg) and

(4.3) TfTgη − TgTfη = −2iH∗fHfη.

Proof. First consider any h ∈ H∞(S). Then Lemma 4.2 gives us Tfh ∈ D(Tg). Further-
more, since g, ϕ ∈ BMO and BMO ⊂ Lt(S, dσ), 1 ≤ t <∞, we have

TfTgh− TgTfh = PMfPMgh− PMgPMfh = −(i/2)(PMϕ̄PMϕh− PMϕPMϕ̄h)

= −(i/2)H∗ϕ̄Hϕ̄h.

On the other hand, since ϕ is analytic, Hϕ̄ = Hϕ̄+ϕ = 2Hf . Therefore

TgTfh = TfTgh+ 2iH∗fHfh, h ∈ H∞(S).

By definition, for each η ∈ D(Tg) there is a sequence {hk} ⊂ H∞(S) such that ‖η−hk‖ → 0
and ‖Tgη − Tghk‖ → 0 as k →∞. From the identity

TgTfhk = TfTghk + 2iH∗fHfhk

we see that {TgTfhk} is a Cauchy sequence in H2(S). Since {Tfhk} ⊂ D(Tg) and since
the self-adjoint operator Tg is closed, we conclude that Tfη ∈ D(Tg) and that

TgTfη = lim
k→∞

TgTfhk = lim
k→∞

(
TfTghk + 2iH∗fHfhk

)
= TfTgη + 2iH∗fHfη,

where the limit is taken in the norm topology of H2(S). This obviously implies (4.3). �
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Proposition 4.4. Suppose that f is a real-valued function in BPH and that ϕ = [f ] + ig
is analytic on B, where g is real valued. Then for every z ∈ C\R we have

(4.4) Tf (Tg − z)−1 − (Tg − z)−1Tf = 2i(Tg − z)−1H∗fHf (Tg − z)−1.

Proof. Let z ∈ C\R and h ∈ H2(S). If we set η = (Tg − z)−1h, then η ∈ D(Tg) and
(Tg − z)η = h. Applying Lemma 4.3, we have Tfη ∈ D(Tg) and

Tfh = Tf (Tg − z)η = (Tg − z)Tfη − 2iH∗fHfη.

Hence

(Tg − z)−1Tfh = Tfη − 2i(Tg − z)−1H∗fHfη

= Tf (Tg − z)−1h− 2i(Tg − z)−1H∗fHf (Tg − z)−1h.

Since this holds for every h ∈ H2(S), we obtain (4.4). �

Proof of Theorem 1.2. Let f be a real-valued non-constant function in BPH. Furthermore,
suppose that ϕ = [f ] + ig is analytic on B, where g is real valued and semi-bounded.
Obviously, it suffices to consider the case where g is bounded from below. That is, we
assume that there is an L ∈ R such that g ≥ L on S. Then the spectrum of the self-adjoint
operator Tg is obviously contained in [L,∞). Let λ ∈ (−∞, L). Now apply Proposition
4.4: if we set z = λ+ εi in (4.4) and then take the limit ε→ 0, we obtain

TfBλ −BλTf = iCλ,

where Bλ = (Tg −λ)−1 and Cλ = 2(Tg −λ)−1H∗fHf (Tg −λ)−1. Obviously, Cλ ≥ 0. Let E

be the orthogonal projection from H2(S) onto the subspace Hs(Tf ). Then it follows from
Theorem 2.3 that CλE = 0. Note that this is true for every λ ∈ (−∞, L) and that

lim
λ→−∞

λ(Tg − λ)−1 = −1

in the strong operator topology. Hence

2H∗fHfE = lim
λ→−∞

λ2CλE = 0.

This implies that HfE = 0. Since Hs(Tf ) is an invariant subspace for Tf , Proposition 3.2
tells us that E = 0. That is, Tf is purely absolutely continuous. �

We now turn to the proof of Theorem 1.3, which involves the more conventional
representation of the commutator [Tf , Tg]:

Lemma 4.5. Suppose that f is a real-valued function in BPH and that ϕ = [f ] + ig is
analytic on B, where g is real valued. Let D(Tg) be the domain of the self-adjoint operator
Tg, as provided by Proposition 4.1. Then for every η ∈ D(Tg), we have

(4.5) TfTgη − TgTfη = (H∗gHf −H∗fHg)η.

11



Proof. Since g ∈ BMO ⊂ ∩t>1L
t(S, dσ), it is easy to see that the identity

TfTgh− TgTfh = (H∗gHf −H∗fHg)h

holds for every h ∈ H∞(S). Since η ∈ D(Tg), by definition, there is a sequence {hk} ⊂
H∞(S) such that ‖η − hk‖ → 0 and ‖Tgη − Tghk‖ → 0 as k →∞. In particular,

(4.6) TfTghk − TgTfhk = (H∗gHf −H∗fHg)hk

for every k. We showed in the proof of Lemma 4.3 that {TgTfhk} is a Cauchy sequence.
Therefore, as k → ∞, the limit of the left-hand side of (4.6) equals TfTgη − TgTfη. On
the other hand, since g ∈ BMO, the Hankel operator Hg is bounded. Thus, as k → ∞,
the limit of the right-hand side of (4.6) equals (H∗gHf −H∗fHg)η. Hence (4.5) holds. �

Corollary 4.6. Suppose that f is a real-valued function in BPH and that ϕ = [f ] + ig is
analytic on B, where g is real valued. Then we have the identity

−2iH∗fHf = H∗gHf −H∗fHg.

Proof. This follows from Lemmas 4.3, 4.5 and the fact that D(Tg) is dense in H2(S). �

Proof of Theorem 1.3. Given any real number λ ∈ R, define the subspace V = {h ∈
H2(S) : Tfh = λh} of H2(S). Our goal is to show that V = {0}. To do that, consider
the orthogonal projection E : H2(S) → V. By Proposition 3.2, it suffices to show that
HfE = 0. Equivalently, it suffices to show that Hfh = 0 for every h ∈ V.

Let g be a real-valued pluriharmonic conjugate of f . For each k ≥ 1, define

gk(ζ) =


k if g(ζ) ≥ k

g(ζ) if −k < g(ζ) < k

−k if g(ζ) ≤ −k

.

That is, gk = max{−k,min{g, k}}. Thus there is a constant C such that ‖gk‖BMO ≤
C‖g‖BMO for every k. Consequently, there is a C1 < ∞ such that ‖Hgk‖ ≤ C1 for every
k. It is obvious that if ψ ∈ H∞(S), then ‖Hgkψ −Hgψ‖ → 0 as k →∞. Combining this
with the bound ‖Hgk‖ ≤ C1, we obtain the convergence

(4.7) lim
k→∞

Hgk = Hg

in the strong operator topology.

Let h ∈ V. For any k, since gk ∈ L∞(S, dσ), we have

〈(H∗gkHf −H∗fHgk)h, h〉 = 〈(TfTgk − TgkTf )h, h〉 = 〈Tgkh, Tfh〉 − 〈TgkTfh, h〉
= 〈Tgkh, λh〉 − 〈Tgkλh, h〉 = 0.
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Therefore, by (4.7),

〈(H∗gHf −H∗fHg)h, h〉 = lim
k→∞

〈(H∗gkHf −H∗fHgk)h, h〉 = 0.

Applying Corollary 4.6, we obtain

‖Hfh‖2 = 〈H∗fHfh, h〉 = (i/2)〈(H∗gHf −H∗fHg)h, h〉 = 0.

That is, Hfh = 0 for every h ∈ V. This completes the proof. �

5. Spectral multiplicity

The classic spectral multiplicity function is a complete unitary invariant for any self-
adjoint operator. But here, we are narrowly focused on self-adjoint operators that are
purely absolutely continuous, and so we will only consider the spectral multiplicity of
these operators.

Definition 5.1. Let ∆ be any Borel set in R. Then M (∆) denotes the operator of
multiplication by the coordinate function x on the Hilbert space L2(∆, dm), where dm is
the Lebesgue measure on R.

Let A be a self-adjoint operator on a Hilbert space H, and suppose that Hs(A) = {0},
i.e., A is purely absolutely continuous. Then there exists a countable family of Borel sets
{∆i : i ∈ I} in R such that A is unitarily equivalent to the operator⊕

i∈I
M (∆i).

As we recall, the spectral multiplicity function of A is defined by the formula

mA(x) =
∑
i∈I

χ∆i(x), x ∈ R.

It is well known that this mA is a complete unitary invariant for A.

Proposition 5.2. Let A be a bounded self-adjoint operator on a Hilbert space H, and
suppose that A is purely absolutely continuous. Furthermore, suppose that B is a bounded
self-adjoint operator on H such that i[A,B] ≥ 0. Then

(5.1) ‖[A,B]‖1 ≤
1

π
‖B‖

∫
R

mA(x)dx,

where ‖ · ‖1 denotes the norm of the trace class, and for the right-hand side we adopt the
convention 0 · ∞ = 0.

Remark. In [17], inequality (5.1) was attributed to Kato. Moreover, (5.1) follows from
the combination of [17, Proposition 2.1] and [16, Theorem 4.5]. For the convenience of the
reader, a self-contained proof of (5.1) is presented below.
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Proof of Proposition 5.2. We begin with the identity

d

dt
〈eitABe−itAh, h〉 = i〈eitA[A,B]e−itAh, h〉,

h ∈ H, which is well known and obvious. Let E be any finite-rank self-adjoint operator
satisfying the condition 0 ≤ E ≤ i[A,B]. By the above identity, for any 0 < R <∞,∫ R

−R
〈eitAEe−itAh, h〉dt ≤

∫ R

−R
i〈eitA[A,B]e−itAh, h〉dt =

∫ R

−R

d

dt
〈eitABe−itAh, h〉dt

= 〈eiRABe−iRAh, h〉 − 〈e−iRABeiRAh, h〉 ≤ 2‖B‖‖h‖2.(5.2)

We can write E in the form

E =
ν∑
j=1

ϕj ⊗ ϕj ,

where ϕ1, . . . , ϕν ∈ H. As we explained above, there exist a countable family of Borel sets
{∆i : i ∈ I} in R and a unitary operator U : H → H̃ = ⊕i∈IL2(∆i, dm) such that

UAU∗ =
⊕
i∈I

M (∆i).

For each 1 ≤ j ≤ ν, we have Uϕj = (ψj,i)i∈I , where ψj,i ∈ L2(∆i, dm), i ∈ I. For each

r ∈ I, define the element ηr = (ηr,i)i∈I in H̃ by the formula

ηr,i =

χ∆r
if i = r

0 if i 6= r
.

Then it follows from (5.2) that for each r ∈ I and for any 0 < R <∞, we have

ν∑
j=1

∫ R

−R

∣∣∣∣ ∫
∆r

e−itxψj,r(x)dx

∣∣∣∣2dt =

∫ R

−R
〈eitAEe−itAU∗ηr, U∗ηr〉dt

≤ 2‖B‖‖U∗ηr‖2 = 2‖B‖‖ηr‖2 = 2‖B‖m(∆r).

Since Fourier transform preserves norm on L2(R, dm), letting R → ∞ on the left-hand
side, we obtain the inequality

2π

ν∑
j=1

‖ψj,r‖2 ≤ 2‖B‖m(∆r)

for every r ∈ I. Summing over r ∈ I, we see that

2πtr(E) = 2π

ν∑
j=1

‖ϕj‖2 = 2π

ν∑
j=1

∑
r∈I
‖ψj,r‖2 ≤ 2‖B‖

∑
r∈I

m(∆r).
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Since this holds for every finite-rank self-adjoint operator E satisfying the condition 0 ≤
E ≤ i[A,B], it follows that

2π‖[A,B]‖1 ≤ 2‖B‖
∑
r∈I

m(∆r) = 2‖B‖
∫
R

mA(x)dx.

Dividing both sides by 2π, we obtain (5.1). �

Proof of Theorem 1.4. Let ϕ be a non-constant function in H∞(S). Then ϕ = f + ig,
where f and g are non-constant, real-valued functions. Consider the self-adjoint operators

A = Tf and B = Tg.

By Theorem 1.2, A is purely absolutely continuous. Since ϕ ∈ H∞(S) and ϕ is not a
constant, we have Hϕ̄ 6= 0. Recall that we assume n ≥ 2 for Theorem 1.4. Thus we can
apply [5, Theorem 1.5], which says that the Hankel operator Hϕ̄ is not in the Schatten
class C2n. Since

[A,B] = −(i/2)(Tϕ̄Tϕ − TϕTϕ̄) = −(i/2)H∗ϕ̄Hϕ̄,

the commutator [A,B] is not in the trace class. We also have i[A,B] = (1/2)H∗ϕ̄Hϕ̄ ≥ 0.
Thus if it were true that ∫

R

mTf (x)dx <∞,

then, by Proposition 5.2, we would have the contradiction that [A,B] is in the trace class.
This completes the proof. �

There is a localized version of Proposition 5.2, which will be needed in Section 6.

Proposition 5.3. Let A be a bounded self-adjoint operator on a Hilbert space H, and
suppose that A is purely absolutely continuous. Furthermore, suppose that B is a bounded
self-adjoint operator on H such that i[A,B] ≥ 0. Then for every Borel set Λ ⊂ R, we have

(5.3) ‖E(Λ)[A,B]E(Λ)‖1 ≤
1

π
‖B‖

∫
Λ

mA(x)dx,

where E is the spectral measure for A.

Proof. Given any Borel set Λ ⊂ R, denote H ′ = E(Λ)H. Let A′ be the restriction of A
to its invariant subspace H ′, and let B′ be the compression of B to H ′. Note that A′ is
purely absolutely continuous, and that

(5.4) mA′(x) =

mA(x) if x ∈ Λ

0 if x /∈ Λ
.

Since [A′, B′] is the compression of [A,B] to H ′, we have i[A′, B′] ≥ 0. Thus by Proposition
5.2,

(5.5) ‖[A′, B′]‖1 ≤
1

π
‖B′‖

∫
R

mA′(x)dx.
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We have ∫
R

mA′(x)dx =

∫
Λ

mA(x)dx

by (5.4). Furthermore, ‖[A′, B′]‖1 = ‖E(Λ)[A,B]E(Λ)‖1 and ‖B′‖ ≤ ‖B‖. Thus (5.3)
follows from (5.5). �

Note that in the proof of Theorem 1.4, we used the fact that Hϕ̄ /∈ C2n, which is
far stronger a statement than what is needed: the operator H∗ϕ̄Hϕ̄ is not in the trace
class. This leads to the suspicion that there is a far stronger statement to be made about
the spectral multiplicity function mTf than Theorem 1.4. This suspicion was what led to
Theorem 1.6, and its proof, presented below, can be viewed as a further exploitation of
fact that Hϕ̄ /∈ C2n.

6. Spectral multiplicity in an interval

We now turn to the proof of Theorem 1.6, and most of the work in this proof is done
in the form of proving

Proposition 6.1. Consider any complex dimension n ≥ 3. Let f be a real-valued, non-
constant function in BPH ∩ C1(S). Let E denote the spectral measure for the Toeplitz
operator Tf . Then for every open interval (a, b) satisfying the condition

(6.1) min
z∈S

f(z) ≤ a < b ≤ max
z∈S

f(z),

the operator
HfE(a, b)H∗f

is not in the trace class.

The proof of Proposition 6.1 will take many steps. We begin with the obvious:

Lemma 6.2. If f is a real-valued function in BPH ∩ C1(S), then there is a ϕ ∈ H∞(S)
such that f = Re(ϕ).

Proof. By Proposition 3.3, there is a ϕ ∈ H2(S) ∩ BMO such that f = Re(ϕ). Thus

ϕ+ ϕ̄(0) = 2Pf = 2(f + [P,Mf ]1).

Since f ∈ C1(S), it is Lipschitz on S. Therefore it follows from [15, Proposition 1.4.10]
that [P,Mf ]1 is a bounded function on S. Consequently, ϕ is bounded. �

Although Proposition 6.1 assumes n ≥ 3, many of the steps below only require the
condition n ≥ 2.

Lemma 6.3. Let f be the same as in Proposition 6.1, and let a, b satisfy (6.1). There exist
x, z ∈ S and 0 ≤ r < s ≤ π/2 satisfying the following conditions:

(1) 〈x, z〉 = 0.
(2) If t ∈ [r, s], then a < f(cos tx+ sin tz) < b.
(3) The function t 7→ f(cos tx+ sin tz) is not a constant on the interval [r, s].
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Proof. We claim that there exist x, z ∈ S satisfying (1) and the conditions
(2′) a < f(x) < b.
(3′) The function t 7→ f(cos tx+ sin tz) is not a constant on the interval [0, π/2].

To prove this claim, we pick a ξ ∈ S such that a < f(ξ) < b, which exists by the
intermediate value theorem. Define W = {w ∈ S : 〈ξ, w〉 = 0}. Then

(6.2) S = {cos teiαξ + sin tw : w ∈W, t ∈ [0, π/2], α ∈ [0, 2π]}.

There are the following two possibilities.

(A) Suppose that the function α 7→ f(eiαξ) is a constant on [0, 2π]. Since f is
not a constant on S, by (6.2), there are τ ∈ [0, 2π] and w ∈ W such that the function
t 7→ f(cos teiτξ + sin tw) is not a constant on the interval [0, π/2]. In this case, since
f(eiτξ) = f(ξ), we can take x = eiτξ and z = w.

(B) Suppose that the function α 7→ f(eiαξ) is not a constant on [0, 2π]. Then by
the intermediate value theorem, there is a β ∈ [0, 2π] such that f(eiβξ) 6= f(ξ) and
a < f(eiβξ) < b. Take any w ∈W and define the functions

g(t) = f(cos tξ + sin tw) and h(t) = f(cos teiβξ + sin tw), 0 ≤ t ≤ π/2.

Since g(π/2) = h(π/2) while g(0) 6= h(0), the functions g and h cannot both be constants
on the interval [0, π/2]. Thus one of the pairs ξ, w and eiβξ, w is the desired pair x, z.

Hence there indeed exists a pair of x, z ∈ S satisfying conditions (1), (2′) and (3′).
Take such a pair of x, z ∈ S, and define

r = sup{ρ ∈ [0, π/2] : f(cos tx+ sin tz) = f(x) for every 0 ≤ t ≤ ρ}.

Then f(cos tx + sin tz) = f(x) for every 0 ≤ t ≤ r. By condition (3′), we have r < π/2.
Since f(cos rx + sin rz) = f(x) ∈ (a, b), by the continuity of f , there is an r < s ≤ π/2
such that f(cos tx + sin tz) ∈ (a, b) for every t ∈ [r, s], i.e., (2) holds for this pair of r, s.
Finally, the definition of r ensures that (3) also holds. This completes the proof. �

Lemma 6.4. Let f be the same as in Proposition 6.1, and let a, b satisfy (6.1). There exist
y, y⊥ ∈ S satisfying the conditions 〈y, y⊥〉 = 0, a < f(y) < b, and

(6.3)
d

dt
f(cos ty + sin ty⊥)

∣∣∣∣
t=0

6= 0.

Proof. Let x, z ∈ S and 0 ≤ r < s ≤ π/2 be the same as in Lemma 6.3. Denote L =
span{x, z}. For each t ∈ R, let Vt be the unitary transformation on Cn such thatVtx = cos tx+ sin tz

Vtz = − sin tx+ cos tz
Vt = 1 on Cn 	 L

.
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By Lemma 6.3, the function t 7→ f(Vtx) is not a constant on [r, s]. Hence there is a
θ ∈ (r, s) such that

d

dt
f(Vtx)

∣∣∣∣
t=θ

6= 0.

For all t, t′ ∈ R, we have Vt′+t = Vt′Vt. Thus the above translates to

(6.4)
d

dt
f(VθVtx)

∣∣∣∣
t=0

6= 0.

We define y = Vθx and y⊥ = Vθz. Then the condition 〈x, z〉 = 0 implies 〈y, y⊥〉 = 0. Since
y = cos θx + sin θz and θ ∈ (r, s), by Lemma 6.3, we have a < f(y) < b. Finally, (6.3)
follows from (6.4) and the obvious identity

d

dt
f(VθVtx)

∣∣∣∣
t=0

=
d

dt
f(Vθ(cos tx+ sin tz))

∣∣∣∣
t=0

=
d

dt
f(cos ty + sin ty⊥)

∣∣∣∣
t=0

.

This completes the proof. �

It is well known that the formula

d(ζ, ξ) = |1− 〈ζ, ξ〉|1/2, ζ, ξ ∈ S,

defines a metric on S [15, page 66]. For the rest of the section, we denote

B(ζ, r) = {x ∈ S : |1− 〈x, ζ〉|1/2 < r}

for ζ ∈ S and r > 0. There is a constant A0 ∈ (2−n,∞) such that

(6.5) 2−nr2n ≤ σ(B(ζ, r)) ≤ A0r
2n

for all ζ ∈ S and 0 < r ≤
√

2 [15, Proposition 5.1.4]. Note that the upper bound actually
holds when r >

√
2.

Lemma 6.5. There are positive numbers 0 < c < (b − a)/12 and 0 < ρ < 1 such that
f(u) ∈ (a+ 3c, b− 3c) for every u ∈ B(y, ρ), where y is the same as in Lemma 6.4.

Proof. By Lemma 6.4, f(y) ∈ (a, b). Thus the number

c = (1/12) min{f(y)− a, b− f(y)}

satisfies the condition 0 < c < (b − a)/12. Since f(y) ∈ (a + 3c, b − 3c), the existence of
the desired 0 < ρ < 1 follows from the continuity of f . �

Lemma 6.6. Let ρ be the same as in Lemma 6.5. There exist positive numbers δ > 0,
0 < τ < ρ/2 and 0 < ρ0 < ρ/2 such that if u ∈ B(y, ρ0) and 0 < t < τ , then

sup{|f(v)− f(u)| : v ∈ B(u, t)} ≥ δt.
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Proof. Let U denote the collection of unitary transformations U on Cn. Since f is C1, the
function

G(U) =
d

dt
f(cos tUy + sin tUy⊥)

∣∣∣∣
t=0

is continuous on U , and the convergence

1

t
(f(cos tUy + sin tUy⊥)− f(Uy))→ G(U) as t→ 0

is uniform with respect to U ∈ U . Lemma 6.4 tells us that G(1) 6= 0. Thus if we take
δ = |G(1)|/2, then there exist an open neighborhood N of the identity transformation 1
in U and a positive number 0 < τ < ρ/2 such that

(6.6) |f(cos tUy + sin tUy⊥)− f(Uy)|/|t| ≥ δ whenever U ∈ N and 0 < |t| < τ.

There is a 0 < ρ0 < ρ/2 such that {Uy : U ∈ N} ⊃ B(y, ρ0). Thus given any u ∈ B(y, ρ0),
there is a Uu ∈ N such that u = Uuy. Let 0 < t < τ also be given. Then we define
v = cos tUuy + sin tUuy

⊥. It follows from (6.6) that

|f(v)− f(u)| ≥ δt.

Since 〈v, u〉 = cos t, we have d(v, u) =
√

1− cos t < sin t < t. That is, v ∈ B(u, t). This
completes the proof. �

Recall that the normalized reproducing kernel for the Hardy space H2(S) is given by
the formula

kw(ζ) =
(1− |w|2)n/2

(1− 〈ζ, w〉)n
, w ∈ B and ζ ∈ S.

Lemma 6.7. Let τ and ρ0 be the same as in Lemma 6.6. There exists a c1 > 0 such that
if u ∈ B(y, ρ0) and 0 < t < τ , and if we set

w = (1− t2)1/2u,

then ‖Hfkw‖ ≥ c1t.

Proof. This is essentially the same as the proof of [5, Lemma 8.12]. Since f is C1, it is
Lipschitz on S. Therefore there is an L > δ, where δ is given in Lemma 6.6, such that

(6.7) |f(ζ)− f(ξ)| ≤ (L/
√

2)|ζ − ξ| ≤ Ld(ζ, ξ) for all ζ, ξ ∈ S.

Let u, t and w be given as in the statement of the lemma. By Lemma 6.6, there is a
v ∈ B(u, t) such that |f(v)− f(u)| ≥ δt/2. Combining this with (6.7), we have

|f(ζ)− f(ξ)| ≥ δt/6 if ζ ∈ B(v, δt/6L) and ξ ∈ B(u, δt/6L).
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Note that B(v, δt/6L) ⊂ B(v, t) ⊂ B(u, 2t). Thus for any γ ∈ C, we have

σ({ζ ∈ B(u, 2t) : |f(ζ)− γ| ≥ δt/12}) ≥ min{σ(B(u, δt/6L)), σ(B(v, δt/6L))}
= σ(B(u, δt/6L)).

Consequently, there is an a1 > 0 which depends only on δ, L and n such that

(6.8)
1

σ(B(u, 2t))

∫
B(u,2t)

|f − γ|2dσ ≥ σ(B(u, δt/6L))

σ(B(u, 2t))
(δt/12)2 ≥ a1t

2.

For a real-valued h ∈ L2(S, dσ), it is well known that 2‖h−Ph‖2 ≥ ‖h−〈h, 1〉‖2. Applying
Möbius transform, we have

(6.9) 2‖Hfkw‖2 ≥ ‖(f − 〈fkw, kw〉)kw‖2.

If ζ ∈ B(u, 2t), then |1− 〈ζ, w〉| ≤ 1− |w|+ |1− 〈ζ, u〉| ≤ t2 + (2t)2 = 5t2. Thus

|kw(ζ)|2 ≥ t2n

(5t2)2n
≥ a2

σ(B(u, 2t))
for ζ ∈ B(u, 2t),

where a2 > 0 depends only on n. Combining this inequality with (6.8) and (6.9), we see
that 2‖Hfkw‖2 ≥ a2a1t

2, which proves the lemma. �

Lemma 6.8. [18, Lemma 7.1] Given any 0 < η < 1, there is a constant 0 < C6.8 < ∞
such that ∫

S

|kz(ζ)||kw(ζ)|dσ(ζ) ≤ C6.8
(1− |z|2)(n/2)−η(1− |w|2)(n/2)−η

|1− 〈z, w〉|n−2η

for all z, w ∈ B.

With the constants ρ0 and τ given in Lemma 6.6, we now proceed with the following
construction. Given a 0 < t < τ , we let Γt be a subset of B(y, ρ0) that is maximal with
respect to the property

(6.10) B(u, t1/2) ∩B(v, t1/2) = ∅ for all u 6= v in Γt.

The maximality of Γt implies that

(6.11)
⋃
u∈Γt

B(u, 2t1/2) ⊃ B(y, ρ0).

For each u ∈ Γt, define
w(u) = (1− t2)1/2u.

Let ϕ ∈ H∞(S) be such that Re(ϕ) = f , as provided by Lemma 6.3. Since Hϕ = 0,
we have Hf = (1/2)Hϕ̄. For each u ∈ Γt, 0 < t < τ , let us denote

Gu = Hfkw(u) = (1/2)Hϕ̄kw(u).
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By the reproducing property of kw(u), we have (ϕ̄− ϕ̄(w(u)))kw(u) ⊥ H2(S). Hence

(6.12) Gu = (1/2)(ϕ̄− ϕ̄(w(u)))kw(u) for every u ∈ Γt.

By Lemma 6.7, we also have

(6.13) ‖Gu‖ ≥ c1t for every u ∈ Γt.

Mimicking the practice of normalizing the reproducing kernel, we further define

(6.14) gu = Gu/‖Gu‖

for u ∈ Γt, 0 < t < τ .

Lemma 6.9. Given any ε > 0, there is a constant 0 < C6.9 = C6.9(ε) < ∞ such that if
u, v ∈ Γt, 0 < t < τ , and u 6= v, then

|〈gu, gv〉| ≤ C6.9
t2n−2−ε

{d(u, v)}2n
.

Proof. By (6.12) and Lemma 6.8, for all u 6= v in Γt, 0 < t < τ , we have

|〈Gu, Gv〉| ≤ ‖ϕ‖2∞〈|kw(u)|, |kw(v)|〉 ≤
‖ϕ‖2∞C6.8t

2n−ε

|1− 〈w(u), w(v)〉|n−(ε/2)
≤ 2n‖ϕ‖2∞C6.8t

2n−ε

|1− 〈u, v〉|n
,

where the last ≤ uses the elementary inequality given at the beginning of Section 2 in [5].
Combining the above inequality with (6.13), the lemma is proved. �

Lemma 6.10. [20, Lemma 4.1] Let X be a set and let E be a subset of X ×X. Suppose
that m is a natural number such that

card{y ∈ X : (x, y) ∈ E} ≤ m and card{y ∈ X : (y, x) ∈ E} ≤ m

for every x ∈ X. Then there exist pairwise disjoint subsets E1, E2, ..., E2m of E such that

E = E1 ∪ E2 ∪ ... ∪ E2m

and such that for each 1 ≤ j ≤ 2m, the conditions (x, y), (x′, y′) ∈ Ej and (x, y) 6= (x′, y′)
imply both x 6= x′ and y 6= y′.

For each 0 < t < τ , we define the finite-rank operator

Ft =
∑
u∈Γt

gu ⊗ gu.

Lemma 6.11. Under the condition n ≥ 3, there is a constant 0 < C6.11 < ∞ such that
‖Ft‖ ≤ C6.11 for every 0 < t < τ .
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Proof. To estimate ‖Ft‖, we pick an orthonormal set {eu : u ∈ Γt} and factor Ft in the
form Ft = A∗A, where

A =
∑
u∈Γt

eu ⊗ gu.

Since ‖A∗A‖ = ‖AA∗‖, it suffices to estimate the latter. By (6.10), we have

(6.15) AA∗ =
∑
u,v∈Γt

〈gu, gv〉ev ⊗ eu =
∑
u∈Γt

eu ⊗ eu +
∞∑
k=1

Bk,

where

Bk =
∑

u,v∈Ek

〈gu, gv〉ev ⊗ eu and

Ek = {(u, v) ∈ Γt × Γt : 2k−1t1/2 ≤ d(u, v) < 2kt1/2}

for each k ∈ N. It follows from (6.5) and (6.10) that there is an N ∈ N such that

card{v ∈ Γt : d(u, v) < 2kt1/2} ≤ N22nk

for u ∈ Γt, 0 < t < τ , and k ∈ N. By Lemma 6.10, this means that for each k ∈ N, there
is a partition

Ek = E
(1)
k ∪ E

(2)
k ∪ · · · ∪ E

(2N22nk)
k

such that for each 1 ≤ j ≤ 2N22nk, the conditions (u, v), (u′, v′) ∈ E(j)
k and (u, v) 6= (u′, v′)

imply both u 6= u′ and v 6= v′. Accordingly, we have

Bk = B
(1)
k +B

(2)
k + · · ·+B

(2N22nk)
k ,

where

B
(j)
k =

∑
u,v∈E(j)

k

〈gu, gv〉ev ⊗ eu

for each 1 ≤ j ≤ 2N22nk. For any non-empty E
(j)
k , it follows from above-mentioned

property of E
(j)
k that

‖B(j)
k ‖ = max{|〈gu, gv〉| : (u, v) ∈ E(j)

k }.

Applying Lemma 6.9 with ε = 1/2 and recalling the definition of Ek, we have

‖B(j)
k ‖ ≤ C6.9

t2n−2−(1/2)

{2k−1t1/2}2n
= C12−2nktn−2−(1/2).
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Writing C2 = 2NC1 and using the condition n ≥ 3, we now have ‖Bk‖ ≤ C2t
1/2 for every

k. Then note that Bk = 0 for every k such that Ek = ∅. Thus if k(t) is the smallest
natural number such that 2k(t)−1t1/2 > 2, then ‖Bk‖ = 0 for every k ≥ k(t). Hence

∞∑
k=1

‖Bk‖ ≤ C2t
1/2k(t) ≤ C3t

1/2{1 + log(1/t)} ≤ C4.

Recalling (6.15), we now have ‖Ft‖ = ‖AA∗‖ ≤ 1 + C4. This completes the proof. �

Let ψ ∈ Cc(R) be a function satisfying the following three conditions:
(i) 0 ≤ ψ ≤ 1 on R.
(ii) ψ = 1 on [a+ c, b− c], where c is the same as in Lemma 6.5.
(iii) ψ = 0 on R\(a, b).

Thus ψ2(x) ≤ χ(a,b)(x) for every x ∈ R. Accordingly, we have the operator inequality

(6.16) {ψ(Tf )}2 ≤ E(a, b)

on H2(S), where, as we recall, E is the spectral measure for Tf . Since f is continuous, it
is well known that

(6.17) ψ(Tf ) = Tψ◦f +K,

where the operator K is compact and self-adjoint.

For u ∈ Γt, 0 < t < τ , we write

hu = H∗f gu.

Recalling the definitions of gu and Gu, we have

(6.18) ‖hu‖ ≥ |〈hu, kw(u)〉| = |〈H∗fHfkw(u), kw(u)〉|/‖Gu‖ = ‖Hfkw(u)‖.

Lemma 6.12. There is a 0 < τ0 < τ such that if 0 < t < τ0 and u ∈ Γt, then

‖Tψ◦fhu‖ ≥ (2/3)‖hu‖.

Proof. Define the sets

A3 = {ζ ∈ S : a+ 3c ≤ f(ζ) ≤ b− 3c},
A2 = {ζ ∈ S : a+ 2c < f(ζ) < b− 2c} and

B = {ζ ∈ S : f(ζ) /∈ (a+ c, b− c)}.

It is easy to see that there is a d0 > 0 such that d(ζ, ξ) ≥ d0 if ζ ∈ A3 and ξ ∈ S\A2, and
such that d(ζ, ξ) ≥ d0 if ζ ∈ A2 and ξ ∈ B.

23



By the choice of ψ, we have ψ ◦ f = 1 on S\B. Combining this with the fact that
0 ≤ ψ ◦ f ≤ 1 on S, we have

‖Tψ◦fhu‖ = ‖hu − T1−ψ◦fhu‖ ≥ ‖hu‖ − ‖χBhu‖.

Thus it suffices to find a 0 < τ0 < τ such that

(6.19) ‖χBhu‖ ≤ (1/3)‖hu‖

when u ∈ Γt and 0 < t < τ0.

To find such a τ0, we begin with (6.12) and (6.14), which give us

hu = (2‖Gu‖)−1PMfMϕ̄−ϕ̄(w(u))kw(u),

u ∈ Γt and 0 < t < τ . Thus

(6.20) χBhu = (2‖Gu‖)−1{pu + qu},

where

pu = MχBPMχA2
M(ϕ̄−ϕ̄(w(u)))fkw(u) and

qu = MχBPMχS\A2
M(ϕ̄−ϕ̄(w(u)))fkw(u),

u ∈ Γt and 0 < t < τ . We estimate the norms of pu and qu separately.

To estimate ‖pu‖, denote X = MχBPMχA2
. Then

(Xg)(ξ) =

∫
χB(ξ)χA2

(ζ)

(1− 〈ξ, ζ〉)n
g(ζ)dσ(ζ)

for g ∈ L2(S, dσ). As we mentioned before, d(ζ, ξ) ≥ d0 if ζ ∈ A2 and ξ ∈ B. Therefore

|pu(ξ)| = |(XM(ϕ̄−ϕ̄(w(u)))fkw(u))(ξ)|

≤ 2‖ϕ‖∞‖f‖∞d−2n
0

∫
|kw(u)(ζ)|dσ(ζ) = 2‖ϕ‖∞‖f‖∞d−2n

0

∫
tn

|1− 〈ζ, w(u)〉|n
dσ(ζ)

≤ 2‖ϕ‖∞‖f‖∞d−2n
0

C1t
n

(1− |w(u)|2)1/4
= C2t

n−(1/2)

for every ξ ∈ B, where the second ≤ is an application of [15, Proposition 1.4.10]. Also,
pu = 0 on S\B. Hence ‖pu‖ ≤ C2t

n−(1/2) for u ∈ Γt, 0 < t < τ .

For qu, note that

‖qu‖ ≤ 2‖ϕ‖∞‖f‖∞‖χS\A2
kw(u)‖.
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Recall that Γt ⊂ B(y, ρ0) ⊂ B(y, ρ) for every 0 < t < τ . By Lemma 6.5, we have Γt ⊂ A3

for every 0 < t < τ . Thus if u ∈ Γt for some 0 < t < τ and ξ ∈ S\A2, then d(ξ, u) ≥ d0,
and consequently

|kw(u)(ξ)| =
tn

|1− 〈ξ, w(u)〉|n
≤ 2ntn

|1− 〈ξ, u〉|n
≤ 2nd−2n

0 tn.

Therefore if we set C3 = 2n+1‖ϕ‖∞‖f‖∞d−2n
0 , then ‖qu‖ ≤ C3t

n for u ∈ Γt, 0 < t < τ .

Combining the conclusions of the last two paragraphs with (6.20), we find that

‖χBhu‖ ≤ (2‖Gu‖)−1{C2t
n−(1/2) + C3t

n}

if u ∈ Γt and 0 < t < τ . Recalling (6.13), we now have

(6.21) ‖χBhu‖ ≤ (2c1)−1{C2t
n−(3/2) + C3t

n−1}

if u ∈ Γt and 0 < t < τ . On the other hand, it follows from (6.18) and Lemma 6.7 that

(6.22) ‖hu‖ ≥ c1t

if u ∈ Γt and 0 < t < τ . By the condition n ≥ 3, there is a 0 < τ0 < τ such that

(6.23) (2c1)−1{C2τ
n−(5/2)
0 + C3τ

n−2
0 } ≤ c1/3.

From (6.21), (6.22) and (6.23) we see that (6.19) holds when u ∈ Γt and 0 < t < τ0. This
completes the proof. �

We are now ready to prove the main technical result of the section.

Proof of Proposition 6.1. Our goal is to show that

(6.24) lim
t↓0

tr(HfE(a, b)H∗fFt) =∞.

Since Lemma 6.11 tells us that ‖Ft‖ ≤ C6.11 for every 0 < t < τ , the above limit means
that HfE(a, b)H∗f is not in the trace class.

To prove (6.24), we decompose the compact, self-adjoint operator K in (6.17) in the
form K = K1 + K2, where K1 and K2 are self-adjoint, rank(K1) < ∞, and K2 has the
property ‖K2‖ ≤ 1/3. Applying Lemma 6.12, if 0 < t < τ0, then we have

(6.25) ‖(Tψ◦f +K2)hu‖ ≥ (1/3)‖hu‖ for every u ∈ Γt.

By (6.17) and the property rank(K1) <∞, we have

{ψ(Tf )}2 = (Tψ◦f +K)2 = (Tψ◦f +K2)2 + Y,
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where Y is a finite-rank operator. Taking (6.16) into account, we have

(6.26) HfE(a, b)H∗f ≥ Hf{ψ(Tf )}2H∗f = Hf (Tψ◦f +K2)2H∗f +HfY H
∗
f .

Let us consider the two terms on the right-hand side.

For each 0 < t < τ0, we have

tr(Hf (Tψ◦f +K2)2H∗fFt) =
∑
u∈Γt

〈Hf (Tψ◦f +K2)2H∗f gu, gu〉 =
∑
u∈Γt

‖(Tψ◦f +K2)H∗f gu‖2

=
∑
u∈Γt

‖(Tψ◦f +K2)hu‖2 ≥
1

9

∑
u∈Γt

‖hu‖2,

where the ≥ follows from (6.25). Recalling (6.18) and Lemma 6.7, we now have

(6.27) tr(Hf (Tψ◦f +K2)2H∗fFt) ≥ (c1/3)2card(Γt)t
2

for 0 < t < τ0. By (6.11) and (6.5), we have

σ(B(y, ρ0)) ≤
∑
u∈Γt

σ(B(u, 2t1/2)) ≤ A0card(Γt)(2t
1/2)2n.

That is, card(Γt) ≥ 2−2nA−1
0 σ(B(y, ρ0))t−n. Substituting this in (6.27), we find that

(6.28) tr(Hf (Tψ◦f +K2)2H∗fFt) ≥ (c1/3)22−2nA−1
0 σ(B(y, ρ0))t2−n

for 0 < t < τ0.

On the other hand, by Lemma 6.11, we have

(6.29) |tr(HfY H
∗
fFt)| ≤ ‖HfY H

∗
f ‖1‖Ft‖ ≤ C6.11‖HfY H

∗
f ‖1

for every 0 < t < τ , where ‖ · ‖1 denotes the norm of the trace class. Since rank(Y ) <∞,
we have ‖HfY H

∗
f ‖1 < ∞. Thus the desired conclusion (6.24) follows from (6.26), (6.28),

(6.29) and the condition n ≥ 3. This proves Proposition 6.1. �

Proof of Theorem 1.6. Define Z = HfE(a, b). Proposition 6.1 tells us that the operator

ZZ∗ = HfE(a, b)H∗f

is not in the trace class. Since ZZ∗ and Z∗Z have identical s-numbers, the operator

Z∗Z = E(a, b)H∗fHfE(a, b)

is not in the trace class.
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By Lemma 6.2, there is a ϕ ∈ H∞(S) such that ϕ = f + ig, where g is real valued.
As in the proof of Theorem 1.4, consider the self-adjoint operators

A = Tf and B = Tg.

We know from Theorem 1.2 that A is purely absolutely continuous. Moreover,

[A,B] = −(i/2)[Tϕ̄, Tϕ] = −(i/2)H∗ϕ̄Hϕ̄ = −2iH∗fHf .

This gives us i[A,B] ≥ 0 as in the proof of Theorem 1.4. Furthermore,

E(a, b)[A,B]E(a, b) = −2iE(a, b)H∗fHfE(a, b),

which, as we showed above, is not in the trace class. Thus it follows from Proposition 5.3
that ∫ b

a

mTf (x)dx =

∫ b

a

mA(x)dx =∞.

This completes the proof of Theorem 1.6. �
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