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Abstract. It is well known that for multipliers f of the Drury-Arveson space H2
n, ‖f‖∞ does

not dominate the operator norm of Mf . We show that in general ‖f‖∞ does not even dominate
the essential norm of Mf . A consequence of this is that there exist multipliers f of H2

n for which
Mf fails to be essentially hyponormal, i.e., if K is any compact, self-adjoint operator, then the
inequality M∗f Mf −MfM∗f + K ≥ 0 does not hold.

1. Introduction

Let B denote the open unit ball {z : |z| < 1} in Cn. In this paper, the complex dimension
n is assumed to be greater than or equal to 2. An analogue of the classic Hardy space is the
space H2

n of analytic functions on B introduced by Drury [8] and Arveson [2]. Because of its
connection to various topics in operator theory, e.g. the von Neumann inequality for commuting
row contractions, H2

n has been the subject of intense recent studies [1-7,9,10,12].

Recall that the Drury-Arveson space H2
n is a reproducing kernel Hilbert space with

K(z, w) =
1

1− 〈z, w〉
, z, w ∈ B,

as its kernel [2, 8]. Note that K(z, w) is a multivariable-generalization of the one-variable Szegö
kernel. An orthonormal basis of H2

n is given by {(|α|!/α!)1/2ζα : α ∈ Zn
+}, where we use the

standard multi-index notation. Thus for functions f, g ∈ H2
n with Taylor expansions

f(ζ) =
∑
α∈Zn

+

cαζ
α and g(ζ) =

∑
α∈Zn

+

dαζ
α,

the inner product is given by

〈f, g〉 =
∑
α∈Zn

+

α!

|α|!
cαdα.

With the identification of each variable ζi with each multiplication operator Mζi , H
2
n is a free

Hilbert module over the polynomial ring C[ζ1, . . . , ζn]. See [2].

An analytic function f on B is said to be a multiplier of the Drury-Arveson space H2
n if fg ∈ H2

n

for every g ∈ H2
n. Throughout the paper, we denote the collection of multipliers of H2

n byM. For
each f ∈ M, the multiplication operator Mf defined by Mfg = fg is necessarily bounded on H2

n

[2], and the operator norm ‖Mf‖ is also called the multiplier norm of f .
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Multipliers are an important part of operator theory on H2
n. For example, if E is a closed linear

subspace of H2
n which is invariant under Mζ1 , . . . ,Mζn , then there exist {f1, . . . , fk, . . . } ⊂ M such

that the operator
Mf1M

∗
f1

+ · · ·+Mfk
M∗

fk
+ · · ·

is the orthogonal projection from H2
n onto E (see page 191 in [3]).

Among the recent results related to multipliers, we would like to mention the following devel-
opments. Interpolation problems for multipliers and model theory related to the Drury-Arveson
space have been intensely studied over the past decade or so [4, 5, 10, 12]. Recently, Arcozzi,
Rochberg and Sawyer gave a characterization of the multipliers in terms of Carleson measures
for H2

n [1]. In [7], Costea, Sawyer and Wick proved a corona theorem for M. More recently, we
showed in [9] that for each f ∈ M and each 1 ≤ i ≤ n, the commutator [M∗

f ,Mζi ] belongs to the
Schatten class Cp, p > 2n.

Of particular relevance to this paper is the fact that under the assumption n ≥ 2,M is strictly
smaller than H∞ [2]. Moreover, Arveson showed in [2] that, even for polynomials q, ‖q‖∞ in
general does not dominate the operator norm of Mq on H2

n. This naturally brings up the question,
what about the essential norm of Mf on H2

n for general f ∈M?

Recall that the essential norm of a bounded operator A on a Hilbert space H is

‖A‖Q = inf{‖A+K‖ : K ∈ K(H)},
where K(H) is the collection of compact operators on H. Alternately, ‖A‖Q = ‖π(A)‖, where π
denotes the quotient homomorphism from B(H) to the Calkin algebra Q = B(H)/K(H).

Let Tn be the C∗-algebra generated by Mζ1 , · · · , Mζn on H2
n, which was introduced by Arveson

in [2]. In more ways than one, Tn is the analogue of the C∗-algebra generated by Toeplitz operators
with continuous symbols. Indeed Arveson showed that there is an exact sequence

{0} → K(H2
n)→ Tn

τ−→ C(S)→ {0}, (1.1)

where the homomorphism τ is an extension of the map

τ(Mζj ) = ζj,

j = 1, . . . , n, and S = {z ∈ Cn : |z| = 1}. It follows that if q is a polynomial, then

‖Mq‖Q = ‖q‖∞. (1.2)

This equality can also be understood from a slightly different point of view. Indeed by Proposition
5.3 in [2], for each polynomial q, the operator Mq is essentially normal, i.e., [M∗

q ,Mq] is compact.
On the other hand, by Proposition 2.12 in [2], if q is a polynomial, then the spectral radius of Mq

equals ‖q‖∞. Since the norm and the spectral radius of any normal element in any C∗-algebra
coincide, it follows that ‖Mq‖Q ≤ ‖q‖∞ whenever q is a polynomial. The reverse inequality,
‖Mq‖Q ≥ ‖q‖∞, is easy once M∗

q is applied to the normalized reproducing kernel of H2
n.

Equality (1.2) is particularly interesting in view of the fact that, even for polynomials, ‖q‖∞ in
general does not dominate the operator norm of Mq. The obvious question is, what happens if we
consider a general f ∈M?
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We report that (1.2) in general fails if we consider multipliers which are not polynomials.

Theorem 1.1. There exists a sequence {ψk} ⊂ M such that

inf
k≥1
‖Mψk

‖Q > 0 and lim
k→∞
‖ψk‖∞ = 0.

This has implications for other essential properties of multipliers.

Recall that an operator T is said to be hyponormal if T ∗T −TT ∗ ≥ 0. It is well known that the
norm of a hyponormal operator coincides with its spectral radius. As we mentioned earlier, by
Proposition 2.12 in [2], if q is a polynomial, then the spectral radius of Mq equals ‖q‖∞. Therefore
if q is a polynomial such that ‖Mq‖ > ‖q‖∞, then Mq is not hyponormal. Thus there are plenty
of multipliers f ∈ M for which Mf fails to be hyponormal on H2

n. This is one phenomenon that
sets the Drury-Arveson space apart from the Hardy space and the Bergman space. We will show
that this phenomenon persists under compact perturbation.

Definition. An operator T is said to be essentially hyponormal if there is a compact self-adjoint
operator K such that

T ∗T − TT ∗ +K ≥ 0.

Obviously, T is essentially hyponormal if and only if π(T ) is a hyponormal element in the Calkin
algebra Q, i.e., π(T ∗)π(T )− π(T )π(T ∗) ≥ 0.

Theorem 1.2. There exists a ψ ∈ M such that the multiplication operator Mψ on H2
n is not

essentially hyponormal.

Having introduced our results, the rest of this short paper consists of their proofs.

2. Estimates for Certain Multipliers

The proof of Theorem 1.1 involves Möbius transform. For each z ∈ B\{0}, let

ϕz(ζ) =
1

1− 〈ζ, z〉

{
z − 〈ζ, z〉

|z|2
z − (1− |z|2)1/2

(
ζ − 〈ζ, z〉

|z|2
z

)}
. (2.1)

Then ϕz is an involution, i.e., ϕz ◦ ϕz = id [13,Theorem 2.2.2]. Recall that the normalized
reproducing kernel for H2

n is given by

kz(ζ) =
(1− |z|2)1/2

1− 〈ζ, z〉
, z, ζ ∈ B. (2.2)

For each z ∈ B\{0}, define the operator Uz by the formula

(Uzg)(ζ) = g(ϕz(ζ))kz(ζ), g ∈ H2
n. (2.3)

It follows easily from Theorem 2.2.2 in [13] that if z ∈ B\{0} and x, y ∈ B, then

〈Uzkx, Uzky〉 =
(1− |x|2)1/2(1− |y|2)1/2

1− 〈y, x〉
= 〈kx, ky〉.

Hence each Uz is a unitary operator on H2
n. Moreover, we have

UzMfU
∗
z = Mf◦ϕz (2.4)
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for all z ∈ B\{0} and f ∈M.

For each j ∈ N, let Ej be the linear span of {ζα : |α| ≤ j} in H2
n, and let Pj : H2

n → Ej be the
orthogonal projection. Moreover, denote

Qj = 1− Pj.
Obviously, we have the strong convergence Qj → 0 as j →∞.

Lemma 2.1. For each j ∈ N, there is a constant 1 ≤ Cj <∞ such that

lim sup
|z|↑1

‖Mf◦ϕzPj‖ ≤ Cj‖Mf‖Q

for every f ∈M.

Proof. For each j ∈ N, since dim(Ej) <∞, any two norms on Ej are equivalent. Since Ej consists
of polynomials, we have ‖Mg‖ <∞ for each g ∈ Ej. Hence there is a Cj such that

‖Mg‖ ≤ Cj‖g‖ (2.5)

for every g ∈ Ej. Now let f ∈M. Using the unitary Uz, we have ‖f ◦ϕz‖ = ‖Uz(f ◦ϕz)‖ = ‖fkz‖.
Since kz → 0 weakly as |z| ↑ 1, we have

lim sup
|z|↑1

‖f ◦ ϕz‖ = lim sup
|z|↑1

‖fkz‖ ≤ lim sup
|z|↑1

‖(Mf +K)kz‖

for every compact operator K. Consequently,

lim sup
|z|↑1

‖f ◦ ϕz‖ ≤ ‖Mf‖Q. (2.6)

Now if g ∈ Ej, then, using (2.5), we have

‖Mf◦ϕzg‖ = ‖Mg(f ◦ ϕz)‖ ≤ ‖Mg‖‖f ◦ ϕz‖ ≤ Cj‖f ◦ ϕz‖‖g‖.
Hence ‖Mf◦ϕzPj‖ ≤ Cj‖f ◦ ϕz‖. Combining this with (2.6), the lemma follows. �

The next lemma is so elementary that its proof will be omitted.

Lemma 2.2. For each bounded operator A on H2
n, we have

lim sup
j→∞

‖QjA‖ ≤ ‖A‖Q and lim sup
j→∞

‖AQj‖ ≤ ‖A‖Q.

Proof of Theorem 1.1. By Theorem 3.3 in [2], there is a sequence of polynomials {pi} such that

‖Mpi
‖ = 1 (2.7)

for every i and
lim
i→∞
‖pi‖∞ = 0. (2.8)

We will find a sequence of natural numbers {i(j)}∞j=1 and a sequence {zj} ⊂ B\{0} such that the
desired multipliers {ψk} will have the form

ψk =
∞∑
j=k

pi(j) ◦ ϕzj
, (2.9)

k ∈ N. To do this, we note that (2.8) enables us to inductively select an ascending sequence of
natural numbers

`(1) < `(2) < · · · < `(m) < · · ·
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such that

Cm‖p`(m)‖∞ ≤
1

2m
(2.10)

for each m ∈ N, where Cm is the constant provided by Lemma 2.1. Since each pi is a polynomial,
by (1.2) this implies

Cm‖Mp`(m)
‖Q ≤

1

2m
. (2.11)

By (2.11) and Lemma 2.1, for each m ∈ N there is a wm ∈ B\{0} such that

‖Mp`(m)◦ϕwm
Pm‖ ≤

2

2m
. (2.12)

It follows from Lemma 2.2 that for each m ∈ N there is a natural number r(m) > m such that

‖Mp`(m)◦ϕwm
Qr(m)‖ ≤ 2‖Mp`(m)◦ϕwm

‖Q = 2‖Mp`(m)
‖Q,

where the = is a consequence of (2.4). By (2.11) and the fact that Cm ≥ 1, we have

‖Mp`(m)◦ϕwm
Qr(m)‖ ≤

2

2m
. (2.13)

By a similar argument, for each m ∈ N, there is an s(m) > m such that

‖Qs(m)Mp`(m)◦ϕwm
‖ ≤ 2

2m
. (2.14)

Note that for each m, the subspace QmH
2
n is invariant under {Mf : f ∈M}. That is,

Mfg = QmMfg if g ∈ QmH
2
n and f ∈M.

Using this fact and the relation Pi = 1−Qi, it follows from simple algebra that

Mp`(m)◦ϕwm
= Mp`(m)◦ϕwm

Pm +Qs(m)Mp`(m)◦ϕwm
(Qm −Qr(m)) +Mp`(m)◦ϕwm

Qr(m)

+ (Ps(m) − Pm)Mp`(m)◦ϕwm
(Pr(m) − Pm).

Thus if we set

Ym = Mp`(m)◦ϕwm
Pm +Qs(m)Mp`(m)◦ϕwm

(Qm −Qr(m)) +Mp`(m)◦ϕwm
Qr(m),

then
Mp`(m)◦ϕwm

= Ym + (Ps(m) − Pm)Mp`(m)◦ϕwm
(Pr(m) − Pm), (2.15)

m ∈ N. Note that by (2.12), (2.13) and (2.14), we have

‖Ym‖ ≤
6

2m
. (2.16)

Set m1 = 5. We then inductively select a sequence of integers m1 < m2 < · · · < mj < · · · such
that the inequality

mj+1 > max {r(mj), s(mj)} (2.17)

holds for every j ≥ 1. Now set

i(j) = `(mj) and zj = wmj
(2.18)

for each j ∈ N. With this notation, from (2.15) we obtain

Mpi(j)◦ϕzj
= Ymj

+ (Ps(mj) − Pmj
)Mpi(j)◦ϕzj

(Pr(mj) − Pmj
). (2.19)

With i(j) and zj determined as above, we now define ψk by (2.9) for each k ≥ 1.
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Next we show that the sequence {ψk} has the desired properties. First we need to show that
ψk ∈M for each k. By the relations s(m) > m, r(m) > m and (2.17), we have

Ps(mj) − Pmj
⊥ Ps(mj′ ) − Pmj′ and Pr(mj) − Pmj

⊥ Pr(mj′ ) − Pmj′ (2.20)

whenever j < j′. Recall that ‖Mpi◦ϕz‖ = ‖Mpi
‖ by (2.4) and that ‖Mpi

‖ = 1 by choice. Combining
these facts with (2.20), we see that the norm of the operator

Bk =
∞∑
j=k

(Ps(mj) − Pmj
)Mpi(j)◦ϕzj

(Pr(mj) − Pmj
)

does not exceed 1. By (2.16) and the choice that m1 = 5, the norm of the operator

Ak =
∞∑
j=k

Ymj

does not exceed 1/2. By (2.9) and (2.19), Mψk
= Ak +Bk. Thus the norm of the operator Mψk

is
at most 3/2. That is, ψk ∈M for each k ∈ N. Applying (2.18) and (2.10), we have

‖ψk‖∞ ≤
∞∑
j=k

‖pi(j) ◦ ϕzj
‖∞ =

∞∑
j=k

‖pi(j)‖∞ ≤
∞∑
j=k

1

2mj
.

Hence

lim
k→∞
‖ψk‖∞ = 0.

What remains for the proof is the inequality

inf
k≥1
‖Mψk

‖Q > 0.

Since Mψk
= Ak +Bk and ‖Ak‖ ≤ 1/2, it suffices to show that

inf
k≥1
‖Bk‖Q ≥ 1.

Since ‖Mpi(j)◦ϕzj
‖ = ‖Mpi(j)

‖ = 1 and limj→∞ ‖Ymj
‖ = 0, by (2.19) we have

lim
j→∞
‖(Ps(mj) − Pmj

)Mpi(j)◦ϕzj
(Pr(mj) − Pmj

)‖ = 1.

Therefore there exists a sequence of unit vectors {gj} such that

gj ∈ (Pr(mj) − Pmj
)H2

n (2.21)

for every j and

lim
j→∞
‖(Ps(mj) − Pmj

)Mpi(j)◦ϕzj
(Pr(mj) − Pmj

)gj‖ = 1. (2.22)

By (2.21) and (2.20), gj → 0 weakly as j →∞. By this weak convergence and (2.22), we have

lim
j→∞
‖(Bk +K)gj‖ = 1

for every compact operator K. This implies ‖Bk‖Q ≥ 1, completing the proof of Theorem 1.1. �
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3. Spectral radius

To prove Theorem 1.2, we begin with a simple fact about multipliers.

Lemma 3.1. Let f ∈ M. If there is a c > 0 such that |f(z)| ≥ c for every z ∈ B, then 1/f is
also a multiplier of H2

n.

Proof. This certainly follows from the recently proved corona theorem for M [7]. But it also
follows from an earlier, much simpler result due to Chen [6]. By Theorem 2 in [6], there are
constants 0 < A ≤ B <∞ such that A‖g‖ ≤ ‖g‖# ≤ B‖g‖ for every g ∈ H2

n, where

‖g‖2# = |g(0)|2 +

∫∫
|g(z)− g(w)|2

|1− 〈z, w〉|2n+1
dv(z)dv(w). (3.1)

Let f ∈M be such that |f | ≥ c > 0 on B. Then for each g ∈ H2
n,

g(z)

f(z)
− g(w)

f(w)
=
g(z)− g(w)

f(z)
+
g(z)− g(w)

f(w)
+
f(w)g(w)− f(z)g(z)

f(z)f(w)
, (3.2)

z, w ∈ B. From (3.1) and (3.2) we see that 1/f ∈M. �

From this lemma we immediately obtain

Proposition 3.2. For each f ∈ M, the spectrum of the operator Mf on H2
n is contained in the

closure of {f(z) : z ∈ B}. Consequently the spectral radius of Mf does not exceed ‖f‖∞.

Remark 1. In the case where f has the property that there is a sequence of polynomials {pk}
such that limk→∞ ‖Mf −Mpk

‖ = 0, Proposition 3.2 was proved by Arveson. See Proposition 2.12
in [2].

Remark 2. It follows from (3.1) and (3.2) that if f ∈M and if infz∈B |f(z)| > 0, then

‖M1/f‖ ≤ C(‖1/f‖∞ + ‖1/f‖2∞‖Mf‖).
Surprisingly, Chen himself did not seem to notice this fact in [6].

Proposition 3.3. Let f ∈ M. If f has the property that ‖Mf‖Q > ‖f‖∞, then the operator Mf

on H2
n is not essentially hyponormal.

Proof. Recall that we denote the quotient map from B(H2
n) to the Calkin algebra Q by π. Let Φ

be the GNS representation of Q on a Hilbert space H. If Mf were essentially hyponormal, then
{π(Mf )}∗π(Mf ) − π(Mf ){π(Mf )}∗ ≥ 0 in Q. Consequently Φ(π(Mf )) would be a hyponormal
operator on H.

Write rad(T ) for the spectral radius of any operator T . It is well known that if T is a hyponormal
operator, then ‖T‖ = rad(T ). See Problem 205 in [11]. Thus we would have

‖Φ(π(Mf ))‖ = rad(Φ(π(Mf ))).

By Proposition 3.2,
rad(Φ(π(Mf ))) ≤ rad(Mf ) ≤ ‖f‖∞.

On the other hand, since Φ is a faithful representation, we have

‖Φ(π(Mf ))‖ = ‖π(Mf )‖ = ‖Mf‖Q.
These three displayed lines together contradict the assumption ‖Mf‖Q > ‖f‖∞. �
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Proof of Theorem 1.2. It follows immediately from Proposition 3.3 and Theorem 1.1. �
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