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a b s t r a c t 

Under compression, auxetic open cell cellular solids may lose auxeticity due to instability and/or self- 

contact between the ribs. This study explores the limiting strains for preserving auxetic effects for aux- 

etic open cell materials of two different cellular structures: re-entrant honeycomb and the ‘missing-rib’

type chiral cellular solids. Experiments of the 3D printed specimens, periodicity analysis, and ellipticity

analysis showed that, under compressive loads, the auxetic effects and the limiting compressive strain

for auxeticity are mutually exclusive. In other words, the limiting compressive strain has to be reduced

if larger auxetic effect is desired, vice versa . It was found that compared with re-entrant honeycombs,

due to chirality-induced rotation, the chiral cellular solids can preserve auxetic effects under much larger

compressive strain ( > −10–30%). 

© 2018 Elsevier Ltd. All rights reserved.
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. Introduction

The auxetic open-cell cellular solids have broad engineering ap-

lications ( Lakes, 1987; Lakes and Elms, 1993; Chan and Evans,

998; Evans and Alderson, 20 0 0; Chen and Lakes, 1989; Scarpa

t al., 2003 ) due to the light weight, auxetic effects ( Dolla et al.,

007; Arruebo, 2012; Fozdar et al., 2011; Wu et al., 2015; Smith,

991; Guiducci et al., 2014 ), and superior acoustic properties ( Chen

nd Lakes, 1989; Scarpa et al., 2003; Bertoldi et al., 2010; Tee et al.,

010; Shim et al., 2013 ; Wang et al., 2014a ; Tang et al., 2015 ). As

ne of the earliest auxetic open-cell materials, re-entrant honey-

omb was developed from hexagonal honeycomb by introducing

e-entrant angles ( Lakes, 1987 ), as shown in Fig. 1 a. The major

echanism for auxeticity is that the ribs forming the re-entrant

ngle rotate in/out upon uni-axial compression/tension. 

In 1990 s, as another category of auxetic open cell materials,

hiral cellular solids were proposed ( Lakes and Elms, 1993 ), such as

 triangular lattice with central rings ( Prall and Lakes, 1997 ), and a

missing-rib’ honeycomb which was created by selectively deleting

ome of the ribs in a diamond honeycomb ( Smith et al., 20 0 0 ), as

hown in Fig. 1 b. For both category of auxetic open cell materials,

he auxetic effect is induced by the rotation of slant ribs. As shown

n Fig. 1 , the slant ribs in a re-entrant cell rotate in opposite direc-

ions due to the mirror symmetry of the structure, but the ribs

n a chiral cell rotate in the same direction. Therefore, cells with
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hiral geometry have deterministic handedness and are expected

o have more robust Poisson’s ratio performance ( Sigmund and

orquato, 1997 ; Wang et al., 2014b ; Grima et al., 2016 ). In previ-

us work ( Jiang and Li, 2017a ), the relationship between the in-

ernal rotation and the auxetic effects of the ‘missing-rib’ type of

hiral cellular solids was extensively quantified, and it was con-

luded that the auxetic effect can be amplified by elevating the

nternal rotation. By utilizing the concept of chirality-induced aux-

ticity, new chiral auxetic open cell cellular solids were designed

ith new sequential cell opening mechanisms ( Jiang and Li, 2017b

nd 2018 ). 

There is another active avenue of research on instability-

nduced auxetic effects in porous materials and lattice structures

 Babaee et al., 2013; Bertoldi and Boyce, 2008; Shim et al., 2013 ;

ang et al., 2014c ; Zhang et al., 2015; Haghpanah et al., 2014 ).

t provided an interesting concept of designing instability-induced

uxetic materials. After instability, initial symmetric structures lose

ts symmetry, leading to auxetic effects. However, the deformed

hape of the symmetric auxetic structures is not deterministic be-

ause the handedness of the first buckled unit cell is randomly

elected and determines the overall buckled shape. In contrast,

he chiral auxetic open cell materials have deterministic chirality,

nd the mechanical behavior and properties of them can be well-

ontrolled by the geometry and material composition. 

In this study, mechanical experiments on 3D printed prototypes

f the re-entrant honeycomb and the ‘missing-rib’ type chiral cells

ere performed under uni-axial compression. The nonlinear me-

hanical behaviors of both designs under large compressive loads

https://doi.org/10.1016/j.ijsolstr.2018.11.035
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Fig. 1. (a) The mechanism of re-entrant angle induced auxeticity and (b) the mech- 

anism of chirality induced auxeticity. 
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and contact between the ribs were defined. For the model ma- 
were investigated via both mechanical experiments and finite ele-

ment simulations. Through numerical stability analysis of both de-

signs with the consideration of geometric constrains, we calculated

the limiting strain for preserving auxetic effects for each of the two

different cellular configurations. 

2. The designs of the re-entrant and chiral specimens 

Specimens of a re-entrant honeycomb and a missing-rib type

of chiral cellular solids were designed in CAD software Solidworks.

The representative volume element (RVE) of each specimen is

shown in Fig. 2 a. For the re-entrant honeycomb, the cell geometry

is determined by two non-dimensional parameters, the ratio be-

tween vertical segment and slant segment h / l and the re-entrant

angle θ ( θ is negative), as shown in Fig. 2 a (left). For the chiral

specimen, the geometry is determined by the corner angles α and

β , and the rib length a , (see Fig. 2 a (right)). The ribs in the chiral

specimen have the same length. 

The 3D geometries of the two specimens are shown in Fig. 2 b.

The geometric parameters for the reentrant honeycomb were

chosen as h / l = 2 ( h = 11.55 mm and l = 5.77 mm) and θ = 30 °;
and those of the chiral specimen were chosen as a = 3.54 mm,

α = β = 90 °. The overall dimensions for both specimens are

50 mm × 50 mm × 20 mm along directions 1, 2, and 3, respectively.

In order to keep the material volume fraction of the two specimens

the same ( ∼38%), the two specimens possess the slightly different
Fig. 2. (a) The schematic drawings of the representative volume element (RVE) of the re-

geometry of the two specimens. 
n-plane thicknesses of the ribs. As shown in Fig. 2 b, for the re-

ntrant honeycomb, the in-plane thickness of the ribs t h = 1.59 mm,

nd for the chiral specimen, the in-plane thickness of the ribs

 c = 1.50 mm. 

. Mechanical experiments on the 3D-printed specimens 

The two designs were then fabricated via a multi-material 3D

rinter (Objet Connex 260), and a digital material DM9760 (with

hear modulus ∼0.92 MPa) from the 3D printer was used as the

odel material for both specimens. To allow fully curing, the

rinted specimens were kept under room temperature for 24 h be-

ore mechanical experiments. The specimens were then placed be-

ween two compression disks which are mounted on a Zwick/Roell

aterial testing machine. Mechanical experiments under quasi-

tatic uniaxial compression were performed. The overall strain rate

as controlled as 10 − 3 per second. To track the deformation of the

pecimens, dark markers were added on the specimens ( Fig. 3 c),

nd a high resolution camera was used to track the displacement

f each marker during the experiments. 

For the re-entrant honeycomb, uniaxial compression experi-

ents were performed along in directions 1 and 2, respectively.

hile for the chiral one, the experiments were only performed in

irection 2 because the properties along directions 1 and 2 are the

ame due to the four-fold symmetry of the chiral specimen. 

Finite element simulations of the experiments on the two de-

igns were performed in ABAQUS/STANDARD V6.13. Four-node 2D

lane stress elements (CPS4) were used. In the FE models, two

ypes of boundary conditions were applied: one is that the bot-

om edge is fixed in both horizontal and vertical directions, and

 prescribed displacement in vertical direction was applied at the

op edge to represent the uni-axial compression (the solid lines in

ig. 3 a), which is to model the boundary conditions in the mechan-

cal experiment; and the other is periodic boundary condition (the

ash lines in Fig. 3 b), which is to represent the case with infinite

umbers of cells. 

In all FE models, the nonlinear geometry effect was considered
entrant honeycomb (left) specimen and the chiral specimen (right), and (b) the 3D 
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Fig. 3. (a) Engineering stress vs. engineering strain (left) and the Poisson’s ratio vs. overall engineering strain curve (right) (Symbols are experimental data; the solid lines are 

FE results with experimental boundary conditions; and the dash lines are FE results with periodic boundary conditions). (b) The undeformed and deformed configurations 

of the re-entrant honeycomb compressed in direction 1 (A), in direction 2 (B), and those of the chiral specimen (C). 
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erial DM9760, incompressible hyperelastic Mooney-Rivlin model

as used. The strain energy density function W of the Mooney-

ivlin model is W = C 10 ( I 1 − 3) + C 01 ( I 2 − 3), where I 1 and I 2 are the

rst and second invariants of left Cauchy-Green deformation ten-

or. The material parameters, C 10 and C 01 , were obtained from the

tandard experiments of both uni-axial tension and compression

f the material: C = 0.46 MPa, C = 0 MPa, (in the true strain range
01 10 
f ∼ −0.8–0.4). These material parameters were then input into

BAQUS for FE simulations. The results from experiments and FE

imulations with the two different boundary conditions are shown

n Fig. 3 . 

The mechanical response of the two specimens are quite differ-

nt. For the re-entrant honeycomb shown in Fig. 3 a, the curves in

oth directions show a linear increase up to ∼3–4% strain followed
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Table 1 

The geometric parameters of nine FE models. 

Model no. h (mm) l (mm) t (mm) θ h / l l / t ρ

A1 11.55 5.77 2.20 10 ° 2 2.62 0.38 

A2 11.55 5.77 1.59 30 ° 2 3.63 0.38 

A3 11.55 5.77 1.11 45 ° 2 5.20 0.38 

A4 8.66 5.77 1.83 10 ° 1.5 3.15 0.38 

A5 8.66 5.77 1.20 30 ° 1.5 4.81 0.38 

A6 8.66 5.77 0.90 40 ° 1.5 6.41 0.38 

A7 5.77 5.77 1.48 5 ° 1 3.90 0.39 

A8 5.77 5.77 1.33 10 ° 1 4.35 0.39 

A9 5.77 5.77 0.9833 20 ° 1 5.92 0.38 
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by a plateau with slight softening. Then hardening occurs when

the overall strain goes beyond ∼25%. In the initial linear range, the

stiffness and the peak stress of the re-entrant honeycomb com-

pressed in direction 1 is higher than that in direction 2, but the

overall strains at the peaks and the incipient of strain at the hard-

ening in the two directions are almost identical. 

For the chiral specimen, as shown in Fig. 3 a, the stress in-

creases monotonically with the strain, and no peak/sharp turn-

ing points were observed in the stress-strain curves. The curve in-

creases almost linearly at the beginning and hardens after ∼16%

overall strain. Hardening occurs earlier and much more dramatic

for the chiral specimen than the re-entrant honeycomb. The FE re-

sults with the experimental boundary conditions (solid lines) show

that the hardening part of the stress-strain curves are indebted to

the densification of the specimen and the contact between the ribs

under large deformation. On the other hand, the FE results with

periodic boundary conditions are generally higher than those of

experiments. For the re-entrant honeycomb specimen compressed

in direction 1, the FE results with periodic boundary conditions

are much higher than the experimental data, indicating the results

are sensitive to the numbers of cells in the specimen. For the re-

entrant honeycomb specimen compressed in direction 2 (D2) and

the chiral specimen, the FE results with periodic boundary condi-

tions are only slightly higher than the experimental data. The ef-

fects of numbers of cells on the instability will be further explored

in Section 4 . 

As shown in Fig. 3 b, for the re-entrant honeycomb, the initial

Poisson’s ratio is ∼ −0.6 in direction 1 and ∼ −0.4 in direction 2.

When the over strain reaches ∼3 and 4% which is coincident with

the peaks of the stress-strain curves, the Poisson’s ratios in both

directions increase dramatically. This indicates that the peak stress

in the stress-strain curves is relating to the instability, after which

the auxetic effects are lost in both directions. On the other hand,

the Poisson’s ratio of the chiral specimen keeps as a constant ∼
−0.3 before hardening. 

The undeformed and deformed (at 10% overall strain) configu-

rations of the two specimens are shown in Fig. 3 c. When the re-

entrant honeycomb is subject to compression in direction 1, insta-

bility occurs with the entire specimen bulged out to one side. For

the re-entrant honeycomb compressed in direction 2, localized in-

stability occurs within two middle horizontal layers of cells. How-

ever, the deformation within the chiral specimen is quite uniform,

and there is no dramatic change in cell patterns during the defor-

mation. 

For re-entrant honeycomb structures subjected to compression,

these results show that instability occurs under relatively small

deformation ( ∼3 and 4%) and the auxetic effect diminishes after

instability. On the other hand, the chiral specimen preserves the

auxetic effects under much larger deformation. Under large defor-

mation, the constant auxetic effects and the significant volume re-

duction of the chiral structure lead to more dramatic and earlier

hardening of the chiral specimen than those of the re-entrant hon-

eycomb. 

4. Numerical results for the instability of re-entrant 

honeycomb 

Generally, there are two possible types of instability for peri-

odic cellular solids. Upon application of deformation, an infinitely

periodic structure can change its periodicity due to mechanical in-

stability, which could be either microscopic (i.e., with wavelengths

that are of the order of the size of the microstructure) or macro-

scopic (i.e., with much larger wavelengths than the size of the mi-

crostructure) ( Triantafyllidis and Maker, 1985; Waas et al., 1990;

Geymonat et al., 1993; Ji and Waas, 2007; Bertoldi and Boyce,

2008 ). In fact, generally, whether the microscopic/macroscopic in-
tability will occur or there is no instability depend on the material

roperties and cell geometry. 

In the present investigation, both instability analyses of the two

asic auxetic cellular solids are performed. The detailed numerical

rocedure to investigate the instability of periodic structures are

resented in the Appendix S1 (micro-instability) and S2 (macro-

nstability). FE models of unit cells of both cellular solids with

arious geometries were developed in ABAQUS/CAE. Four-node 2D

lane stress elements (CPS4) were used. To determine the critical

train and mode for instability for the re-entrant honeycombs, we

erformed FE simulations by using a unit-cell model with periodic

oundary conditions for microscopic and macroscopic instability

nalyses in both directions 1 and 2. 

The periodic boundary conditions are introduced at all four

dges of the unit cell by prescribing displacement u where u β =
 α + ( ̄F app − 1 )( X β − X α) , in which the subscripts α and β indi-

ate two nodal points periodically located at unit-cell boundaries,

 represents the second order identity tensor, and F̄ app represents

he macroscopic deformation gradient imposed on two positions

 α and X β . Virtual nodes are utilized to prescribe the macroscopic

eformation gradient F̄ app at their degrees of freedom. The FE re-

ults are presented in this section. 

.1. Instability of re-entrant honeycomb in direction 1 

To investigate the influences of geometry on the instability of

he re-entrant honeycomb, finite element models of nine differ-

nt RVEs were developed in ABAQUS by varying the two non-

imensional geometric parameters h / l and θ while keeping l as

.77 mm, as shown in Table 1 . To keep the overall volume density

s ∼38%, the rib thickness of each model varies. 

The unit-cell of Model A2 employed in FE simulation is shown

n Fig. 4 a. The results of microscopic instability (i.e., periodicity

nalysis, Appendix S1 ) are presented in Fig. 4 b, where the evolu-

ion of the first natural frequency of various periodicities (indicated

s the legends in Fig. 4 b.) are monitored as compressive strain in-

reases. Note that the periodicity shown as the legend in Fig. 4 b

s denoted by ( N v , N d ) or N v × N d , where N v and N d are the num-

ers of unit cells in the first lattice direction (i.e., direction a , as

hown in Fig. 4 a) and the second lattice direction (i.e., direction

 , as shown in Fig. 4 a), respectively. Fig. 4 b shows that the mi-

roscopic instability analysis suggests that (1, N d )-periodicity be-

omes critical (i.e., when the minimum strain corresponding to the

ero first natural frequency is reached) as N d increases. Fig. 4 c fur-

her confirms that the behavior of the microscopic instability (i.e.,

lim 

 d →∞ 

( 1 , N d ) ) converges to that of the macroscopic instability (i.e.,

llipticity analysis, Appendix S2 ). 

The same numerical procedure is adopted for eight other ge-

metries and their results are summarized in Table 2 . 



Y. Jiang, B. Rudra and J. Shim et al. / International Journal of Solids and Structures 162 (2019) 87–95 91 

Fig. 4. (a) Schematic figure showing unit cell for re-entrant honeycomb (Model A2) compressed in direction 1 (D1), (b) microscopic instability analysis for Model A2 showing 

smallest eigenfrequency versus applied compressive strain, and (c) the effect of N d in the periodicity (1, N d ) of the Model A2. The microscopic instability (periodicity analysis) 

converges to macroscopic instability (ellipticity analysis) results. 

Table 2 

Geometry and instability analysis results from re-entrant honeycomb compressed in direction D1. 

Model no. A1 A2 A3 A4 A5 A6 A7 A8 A9 

Critical mechanism Macroscopic instability at (1, ∞ ) (1, ∞ ) (1, ∞ ) (1, ∞ ) (1, ∞ ) (1, ∞ ) (1, ∞ ) (1, ∞ ) (1, ∞ ) 

Critical strain .035 .0425 .07 .03 .0425 .0575 .025 .02 .0275 

Table 3 

Instability analysis results from re-entrant honeycomb compressed in direction 2 ( h = 11.55 mm, l = 5.77 mm, and θ = 30 °). 

Model no. B1 B2 B3( = A2) B4 B5 B6 

t (mm) 2.00 1.75 1.59 1.50 1.25 1.00 

Critical 

mechanism 

Microscopic 

instability 

at (1, 2) 

Microscopic 

instability 

at (1, 2) 

Microscopic 

instability 

at (1, 2) 

Microscopic 

instability 

at (1, 2) 

Microscopic 

instability 

at (1, 2) 

Microscopic 

instability 

at (1, 2) 

Critical strain 0.055 0.0475 0.045 0.0425 0.0375 0.035 

Fig. 5. (a) Schematic figure showing unit cell for re-entrant honeycomb compressed in direction 2, (b) microscopic instability analysis for model B3 showing smallest 

eigenfrequency versus applied compressive strain, and (c) the effect of thickness in the critical strain relating to instability. 
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.2. Instability of re-entrant honeycomb in direction 2 

For the re-entrant honeycomb, h, l, θ are kept the same as those

n the experiment ( h = 11.55 mm, l = 5.77 mm, and θ = 30 °), while

he rib thickness varies as 2.0 mm, 1.75 mm, 1.59 mm, 1.50 mm,

.25 mm, and 1.0 mm. FE simulations with total six different rib

hicknesses were performed. The FE model dimensions and results

re summarized in Table 3 . 
a

The geometry of Model B3 shown in Fig. 5 a is the same as

odel A2 and that of the 3D printed specimen. Note that the pe-

iodicity of the re-entrant honeycomb in direction 2 is denoted by

 N h , N d ) or N h × N d , where N h and N d are number of units in the

rst lattice direction (i.e., direction a , as shown in Fig. 5 a) and the

econd lattice direction (i.e., direction b , as shown in Fig. 5 a), re-

pectively. By taking model B3 as an example, the numerical re-

ults of microscopic and macroscopic instability of in direction 2

re shown in Fig. 5 b and c. 
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Table 4 

Geometry and instability analysis results for the chiral structure. 

Model no. t (mm) α (degrees) β (degreed) a (mm) Critical mechanism Critical strain 

C1 1.0 90 ° 90 ° 5 
√ 

2 
2 

Macroscopic instability at (1, ∞ ) .085 

C2 1.5 90 ° 90 ° 5 
√ 

2 
2 

Macroscopic instability at (1, ∞ ) .085 

Fig. 6. (a) Schematic figure showing the unit cell of chiral structure, (b) microscopic instability analysis for Model C2 showing smallest eigenfrequency versus applied 

compressive strain, and (c) the effect of N v in the periodicity (1, N v ) of the Model C2. 
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Fig. 5 b shows that the critical periodicity, which is the mini-

mum number of unit cells for the lowest overall instability strain

corresponding to microscopic instability, is (1, 2); and Fig. 5 c con-

firms that the critical instability for model B3 is microscopic be-

cause the critical strain from macroscopic instability (ellipticity

analysis) is greater than that from microscopic instability. In addi-

tion, the periodic pattern of (1, 2) periodicity is consistent with the

pattern observed in the experiment. This procedure is adopted for

five other geometries and their results are summarized in Table 3 .

According to the instability analysis in this section, the re-

entrant honeycomb structures under direction-2 compression will

be dictated by microscopic instability. 

4.3. Instability of chiral cell 

In order to investigate the instability of the chiral structure, we

consider chiral cell with two different rib thickness. The dimen-

sions are summarized in Table 4 . 

A schematic pattern and the FE model of a unit-cell are shown

in Fig. 6 a for the geometry of Model C2. Note that the periodicity

of the re-entrant honeycomb in direction 2 is denoted by ( N h , N v )

or N h × N v , where N h and N v are number of units in the first lat-

tice direction (i.e., direction a , as shown in Fig. 6 a) and the second

lattice direction (i.e., direction b , as shown in Fig. 6 a), respectively.

The results of microscopic instability (periodicity) and macroscopic

instability (ellipticity) are presented in Fig. 6 b and c, respectively.

In particular, Fig. 6 c shows that critical strain to macroscopic insta-

bility is smaller than that to microscopic instability. 

From numerical instability analyses, it was found that the chiral

cells’ critical strain to macroscopic instability is smaller than that

to microscopic instability. The critical periodicity is (1, ∞ ) and the

critical strain is close to 0.085, which is about three times larger

than that of the re-entrant honeycomb. In addition, when the chi-

ral cell is subjected to the critical strain to instability, the large

part of structural surface is already in contacts exhibiting a grad-

ual progress of deformation. This infinitely periodic unit-cell sim-

ulation results are consistent with the observation from the finite-

size specimens in Section 2 , where the compressed chiral structure

does not show any drastic instability. 
. Analytical model for predicting the instability and auxetic 

ffects 

.1. Re-entrant honeycomb 

In addition, we also analytically investigate micro-instability of

he re-entrant honeycomb by following the work by Gibson and

shby ( Gibson and Ashby, 2010 ). Since direction 2 is the critical

irection for instability, based on Euler-Bernoulli beam theory, the

ritical strain for the instability within one RVE under compression

n direction 2 was derived as a function of h / l and θ : 

 

i 
cr2 = 

n 

2 π2 l 2 co s 2 θ

24 h 

2 ( h/l + sinθ ) 
, (3)

here, n is the rotational stiffness, depending on the degree

f constraint to rotation at the ends of the ribs ( Gibson and

shby, 2010 ). On the other hand, based on the kinematics con-

trains of the re-entrant honeycomb deformed under compression

n direction 2, the limiting strain for the self-contact between the

ibs can be derived as (details were provided in the Appendix S3 ):

 

c 
cr2 = 

h/l − 2 sinθ

2 h/l − 2 sinθ
. (4)

So, the limiting strain ε ∗cr2 of the honeycomb for the auxetic ef-

ects in direction 2 can be determined as: 

 

∗
cr2 = min 

(
ε c cr2 , ε 

i 
cr2 

)
. (5)

The Poisson’s ratio of re-entrant honeycomb was derived as a

unction of h / l and θ ( Gibson and Ashby, 2010 ) as, 

21 = 

(
h 
l 

− sinθ
)
( −sinθ ) 

co s 2 θ
. (6)

The FE results and the analytical predictions are compared in

ig. 7 a, in which the FE results are marked as circular symbols.

he shaded areas represent the design space for the re-entrant

oneycomb to preserve auxetic effect under compression. Gener-

lly, the FE simulations are consistent with the analytical predic-

ions. The slight differences between the FE and theoretical results

re indebted to the assumptions of Euler-Bernoulli beam theory.
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Fig. 7. (a) Comparison of the theoretical and FE results of the limiting strain vs. re-entrant angle, and (b) the comparison of the theoretical and FE results of the Poisson’s 

ratio for re-entrant honeycombs for the cases of l / t = 10. 
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lso, the FE and analytical results of the initial Poisson’s ratio are

hown in Fig. 7 b. It can be seen that when h / l increases and/or θ
ecreases, the Poisson’s ratio decreases. 

.2. Chiral cellular solids 

For chiral cells, since macroinstability is more critical than mi-

roinstability, the self-contact between the ribs can be an approx-

mate criterion for losing auxetic effects. Based on a rigid-rod-

otational spring model ( Jiang and Li, 2017a ), through kinematic

nalysis, the critical strain for self-contact of a chiral cell can be

erived as (details were provided in the Appendix S4 ), 

 

c 
cr2 = 

sin 

(
α
2 

− 3 α+ β−π
6+2 R p/a 

)
− sin 

α
2 

sin 

α
2 

, (7) 

here R p / a is the internal rotation efficiency which depends on

he ratio between the rotational stiffness of the rotational springs

 θ / K β , in which, as shown in Fig. S2 (b), K θ is the rotational stiff-

ess of the rotational spring located at the center of the chiral cell

n the rigid-rod-rotational-spring model ( Jiang and Li, 2017a ) and

 β is the rotational stiffness of the rotational springs connecting

he passive ribs. From a systematic parametric study via FE simu-

ations, we find that R p / a is usually larger than 0.45 for all different

eometries of chiral cells. Therefore, R p / a = 0.45 will be used to pre-

ict the upper bounds of the Poisson’s ratio for the chiral cellular

olids. In addition, based on the rigid-rod rotational spring model,

he Poisson’s ratio of chiral cellular solids was derived by Jiang and

i (2017a) as, 

21 = 

tan ( α/ 2 ) 

tan ( β/ 2 ) 
R p/a . (8) 

. Design space for preserving auxetic effects under 

ompression 

For auxetic material, the Poisson’s ratio is an important material

roperty and the value of it is critical to evaluate the mechanical

erformance. As shown in Section 2 , the auxetic effect of cellu-
ar solids will disappear after instability and contact between ribs

nder compression. Therefore, for the purpose of design, it is im-

ortant to investigate not only the auxetic effect but also the lim-

ting strain under which the auxetic effect is preserved. In this sec-

ion, the relationship between the Poisson’s ratio before the limit-

ng strain and the value of the limiting strain are evaluated, pro-

iding a useful parametric design map for both cells. 

According to Eqs. (3) –(8) , the design spaces for re-entrant hon-

ycombs and the chiral cellular solids can be determined from the

lots of the Poisson’s ratio vs. overall limiting compressive strain

or losing auxetic effects for all possible geometries. For the re-

ntrant honeycomb, according to Eqs. (3 )–( 6 ), the lower bounds of

he Poisson’s ratio and the limiting strain for all possible geome-

ries are plotted in Fig. 8 a as functions of h / l and θ . For the chiral

ellular solids, according to Eqs. (7) and (8) , the upper bounds of

he Poisson’s ratio and the limiting strain for all possible geome-

ries are plotted in Fig. 8 b as functions of α and β . 

For the re-entrant honeycombs, Fig. 8 a shows that when θ de-

reases, and/or h/l increases, the Poisson’s ratio will be reduced,

ndicating a stronger auxetic effect. For example, for the curve of

= 20 ° in Fig. 8 a (left), from A to B, h/l increases; and from B to C

nd beyond, h/l also increases. The point B corresponds to the case

f the critical strain for the instability coincides with the limiting

train of self-contact (i.e., ε c 
cr2 

= ε i 
cr2 

). For the curve of h 
l 

= 0 . 9 in

ig. 8 a (right), from A’ to B’, θ decreases; and from B’ to C’, θ also

ecreases. Similarly, the point B’ corresponds to the case of the

ritical strain for the instability coincides with the limiting strain

f self-contact (i.e., ε c 
cr2 

= ε i 
cr2 

). However, the reduction in Poisson’s

atio is accompanied by the significant reduction of the limiting

train to lose auxetic effect. 

For the chiral cellular solids, Fig. 8 b shows that when α in-

reases, and/or β decreases, the Poisson’s ratio can be reduced. Al-

hough the limiting strain to lose auxeticity will also be reduced

o some extend compared with re-entrant honeycombs, the chi-

al cellular solids can preserve auxetic effect under much large de-

ormation. For example, for the chiral cellular solids, the limiting

train for losing auxetic effects is always larger than ∼30% when α
s larger than 90 ° and β is larger than 20 °. 
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Fig. 8. The design space of Poisson’s ratio vs. limiting strain of auxetic effect for all possible geometries of (a) the re-entrant honeycombs and (b) the ‘missing-rib’ type of 

chiral cellular solids. 
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8. Conclusions 

Due to the instability and contact between the ribs, auxetic

open cell cellular solids may lose auxeticity beyond certain com-

pressive strain. We have explored the limiting strains for preserv-

ing auxetic effects for auxetic open cell materials of two types: re-

entrant honeycomb and the ‘missing-rib’ type chiral cellular solids.

Mechanical experiments of the 3D printed specimens show that

re-entrant honeycomb subjected to compression suffers instabil-

ity before hardening while the chiral specimen under compression

does not exhibit drastic instability before rib contact. A series of FE

simulations using a unit-cell model with periodic boundary condi-

tions confirm the instability behavior of the finite-size specimens

of those two type of auxetic structures 

Moreover, we have quantified the relation between the Pois-

son’s ratio and the limiting strain for losing auxetic effects for both

re-entrant honeycombs and chiral cellular solids. For both types of

lattices, the auxetic effects and the limiting compressive strain for

auxetic effects are mutually exclusive, i.e., if the goal is to achieve a

more negative Poisson’s ratio (a stronger auxetic effects), the sac-

rifice needs to be made on the limiting strain for preserving this

auxetic effects. For all the possible geometries, the re-entrant hon-

eycombs can only preserve strong auxetic effects under very small

overall compressive strain ( < ∼3 and 4%), beyond which auxetic ef-

fects will be lost. However, due to the chirality-induced rotation,

the chiral cellular solids can preserve auxetic effects under much

larger compressive strain ( > ∼10–30%). These results provide useful

f

uideline for designing auxetic materials to sustain auxetic effects

nder larger deformation. 

Here are some physical insights on the observation that the

imiting strain for observing auxeticity in the re-entrant honey-

omb is lower than that in the chiral cells: for the re-entrant hon-

ycombs, there are two axes of in-plane mirror symmetry; how-

ver, for the chiral cells, there is no axis of in-plane mirror sym-

etry. For the re-entrant honeycombs, the auxetic effects is due to

he symmetry; while for the chiral cells, the auxetic effects is due

o chirality induced rotation. Physically, the nature of the instabil-

ty is to break symmetry, therefore, after instability, the re-entrant

oneycombs will lose auxetic effects. While the chiral cells have

o symmetry to break, so the auxetic effects can be preserved for

arger deformation. 
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Appendix 

S1. Microscopic instability (Periodicity analysis) 

   Microscopic (local) buckling modes may alter the initial periodicity of the solid. To explore 

microscopic instability of enlarged unit cells spanned by lattice vectors 𝑚𝑚1𝐚𝐚1 and 𝑚𝑚2𝐚𝐚2 (positive 

integer 𝑚𝑚𝑖𝑖 and primitive lattice vector 𝐚𝐚𝑖𝑖 for 𝑖𝑖 = 1,2), we consider a single primitive unit cell 

and apply Bloch-periodic conditions (Geymonat et al., 1993; Bertoldi and Boyce, 2008):  

𝐮𝐮�(𝐱𝐱 + 𝐫𝐫) = 𝐮𝐮�(𝐱𝐱) e𝑖𝑖𝐤𝐤∙𝐫𝐫                             (A1) 

where, the Bloch wavevector 𝐤𝐤 = 𝐛𝐛1/𝑚𝑚1 + 𝐛𝐛2/𝑚𝑚2, and 𝐛𝐛𝑖𝑖 (or 𝑖𝑖 = 1,2) is the primitive 

reciprocal vector. To work with the complex-valued relations of the Bloch-periodic conditions in 

ABAQUS, all fields are split into real and imaginary parts. In this way, the equilibrium equations 

are divided into two sets of uncoupled equations for the real and imaginary parts (Aberg and 

Gudmundson, 1997; Shim et al., 2015). For a given enlarged unit cell defined by 𝑚𝑚1 and 𝑚𝑚2, the 

microscopic stability is investigated by identifying the applied load at which the smallest 

eigenfrequency associated to a non-trivial eigenmode become zero (Bathe, 1996). Then, the 

onset of instability for the infinite periodic structure is defined as the minimum critical strain on 

all the considered enlarged unit cells defined by 𝑚𝑚1 and 𝑚𝑚2. Here, we typically investigate the 

stability of 25 enlarged primitive units by choosing 𝑚𝑚1 = 1, … , 5 and 𝑚𝑚2 = 1, … , 5.  

S2 Macroscopic instability (Ellipticity analysis) 

   Macroscopic instability corresponds to loss of ellipticity at the macroscopic scale (Geymonat et 

al., 1993), and it can be investigated by detecting when the homogenized mixed elasticity tensor 

𝕃𝕃� violates the positive definite conditions (Marsden and Hughes, 1983): 
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 (𝐦𝐦⨂𝐍𝐍):𝕃𝕃�: (𝐦𝐦⨂𝐍𝐍) > 0   , 𝑚𝑚𝑖𝑖𝑁𝑁𝐽𝐽𝑚𝑚𝑘𝑘𝑁𝑁𝐿𝐿ℒ𝑖𝑖𝐽𝐽𝑘𝑘𝐿𝐿 > 0   ,     (A2) 

for all 𝐦𝐦⨂𝐍𝐍 ≠ 𝟎𝟎, where 𝐦𝐦 and 𝐍𝐍 are unit vectors defined in the deformed and the undeformed 

configurations, respectively. Note that ∎�denotes homogenized quantity. In this study, a single 

primitive unit cell with the spatially periodic boundary conditions (Eq.A1) is subjected to four 

independent linear perturbations of the macroscopic deformation gradient 𝐅𝐅�. Then, the 

components of 𝕃𝕃� are identified by calculating the corresponding averaged first Piola-Kirchhoff 

stress components 𝐏𝐏� from 𝐏𝐏� = 𝕃𝕃:𝐅𝐅� (Bertoldi and Boyce, 2008, Shim et al., 2015). Eventually, 

we check the loss of ellipticity condition (Eq.A2) by changing 𝐦𝐦 and 𝐍𝐍 separately explored at 

every 𝜋𝜋/360 radian increment. 

 

S3. Self-contact strain for re-entrant honeycomb  

  The schematics of the self-contact mechanism of re-entrant honeycomb under uni-axial 

compression in direction D2 is shown in Fig.S1. 

  

Figure S1 The schematics of the self-contact mechanism of re-entrant cell under uni-axial 

(a) (b) (c)
1

2
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compression along direction 2. 

  The critical displacement 𝑑𝑑𝑐𝑐𝑐𝑐2𝑐𝑐  for self-contact under compression along direction 2 is shownin 

Fig.S1c and can be expressed as 

 𝑑𝑑𝑐𝑐𝑐𝑐2𝑐𝑐 = ℎ − 2𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙 . (A.3) 

The original length of the RVE along direction 2 is 

 𝑑𝑑2 = 2ℎ − 2𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙 . (A.4) 

Therefore, the critical strain for self-contact of the re-entrant cell along direction 2 can be derived 

as, 

 𝜀𝜀𝑐𝑐𝑐𝑐2𝑐𝑐 = 𝑑𝑑𝑐𝑐𝑐𝑐2𝑐𝑐

𝑑𝑑2
= ℎ−2𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙

2ℎ−2𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙
= ℎ 𝑙𝑙⁄ −2𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙

2ℎ 𝑙𝑙⁄ −2𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙
 . (A.5) 

S4. Self-contact strain for chiral cell 

  The schematics of the self-contact mechanism of a chiral cell under un-axial compression in 

shown in Fig.S2.  

 

Figure S2 The schematics of the self-contact mechanism of a chiral cell under uni-axial 

1

2

(a) (b)
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compression along direction 2. 

  The initial length of the RVE in direction 2 can be represented as, 

 𝑑𝑑20 = 4𝑎𝑎 sin(𝛼𝛼0 2⁄ ), (A.6) 

where a is the length of the ribs of the chiral cellular, 𝛼𝛼0 is the initial angle between the active 

ribs along direction 2. When self-contact occurs, the length of the RVE in direction 2 can be 

represented as, 

 𝑑𝑑2 = 4𝑎𝑎 sin(𝛼𝛼 2⁄ ), (A.7) 

where 𝛼𝛼 is the angle between the active ribs along direction 2 when self-contact occurs. 𝛼𝛼 can be 

derived as, 

 𝛼𝛼 = 𝛼𝛼0 − 2∆𝜑𝜑𝑎𝑎, (A.8) 

where ∆𝜑𝜑𝑎𝑎 is the rotation angle of the active ribs under deformation as shown in Fig. S2a. 

Therefore, the critical strain for self-contact of a chiral cell along direction 2 can be derived as, 

 
𝜀𝜀𝑐𝑐𝑐𝑐2𝑐𝑐 = 𝑑𝑑20−𝑑𝑑2

𝑑𝑑20
=

𝑙𝑙𝑖𝑖𝑙𝑙�𝛼𝛼02 −𝛥𝛥𝜑𝜑𝑎𝑎�−𝑙𝑙𝑖𝑖𝑙𝑙
𝛼𝛼0
2

𝑙𝑙𝑖𝑖𝑙𝑙𝛼𝛼02
 . (A.9) 

∆𝜑𝜑𝑎𝑎 can be found from the relation between 𝛾𝛾0 and 𝛾𝛾, which are the angles between the active 

ribs and passive ribs before deformation and after self-contact, respectively. 

From the kinematics, 𝛾𝛾0 can be expressed as, 

 𝛾𝛾0 = 𝜋𝜋
2
− 𝛼𝛼0

2
+ 𝛽𝛽0

2
 . (A.10) 

Then, 𝛾𝛾 is expressed as, 

 𝛾𝛾 = 𝛾𝛾0 + ∆𝜑𝜑𝑎𝑎 − ∆𝜑𝜑𝑝𝑝 , (A.11) 
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where ∆𝜑𝜑𝑝𝑝 is the rotation angle of the passive ribs, which can be represented as 𝑅𝑅𝑝𝑝/𝑎𝑎∆𝜑𝜑𝑎𝑎. Thus, 

Eq.A11 becomes, 

 𝛾𝛾 = 𝛾𝛾0 + �1 − 𝑅𝑅𝑝𝑝/𝑎𝑎�∆𝜑𝜑𝑎𝑎 = 𝜋𝜋
2
− 𝛼𝛼0

2
+ 𝛽𝛽0

2
+ �1 − 𝑅𝑅𝑝𝑝/𝑎𝑎�∆𝜑𝜑𝑎𝑎. (A.12) 

When self-contact occurs,  the following equation holds, as shown in Fig.S2b 

 𝛾𝛾 + 2𝛼𝛼 = 𝜋𝜋. (A.13) 

By combining Eqn.A8, A12 and A13, ∆𝜑𝜑𝑎𝑎 can be derived as: 

 ∆𝜑𝜑𝑎𝑎 = 3𝛼𝛼0+𝛽𝛽0−𝜋𝜋
6+2𝑅𝑅𝑝𝑝/𝑎𝑎

. (A.14) 

Thus, the limiting strain for the auxetic effects for the auxetic chiral cellular solid can be 

derived as: 

 𝜀𝜀𝑐𝑐𝑐𝑐2𝑐𝑐 =
𝑙𝑙𝑖𝑖𝑙𝑙�𝛼𝛼02 −𝛥𝛥𝜑𝜑𝑎𝑎�−𝑙𝑙𝑖𝑖𝑙𝑙

𝛼𝛼0
2

𝑙𝑙𝑖𝑖𝑙𝑙𝛼𝛼02
, (A15) 

where, 𝛥𝛥𝜑𝜑𝑎𝑎 = 3𝛼𝛼0+𝛽𝛽0−𝜋𝜋
6+2𝑅𝑅𝑝𝑝/𝑎𝑎

.  
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