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Abstract
There has recently been a rising interest in the nonlinear wave transmission behavior of phononic crystals. However, experi-
mental studies focusing on the nonlinear wave transmission behavior of phononic crystals have been predominantly performed
on 1-D granular crystals using customized impact apparatus. In this study, we explore split Hopkinson pressure bar (SHPB)
apparatus as a tool to study the nonlinear wave characteristics of a 1-D continuum viscoelastic phononic crystal. In order to
resolve experimental challenges relating to signal-to-noise ratios and input impulse magnitudes, we propose a hybrid SHPB
system composed of an aluminum input bar and a nylon output bar. For a considered viscoelastic phononic crystal, the appli-
cation of the hybrid SHPB apparatus enabled us to observe some low transmission frequency zones, which were not identified
from the linearly perturbed settings such as the analytical solution and the electrodynamic shaker tests. We further conducted a
series of additional FE simulations to ensure the appearance of impulse-dependent low transmission frequency zones of the
considered viscoelastic phononic crystal specimen. The additional sets of simulations evidently illustrate the impulse-dependent
evolution of wave transmission coefficients, and demonstrate that the impulse-dependent wave transmission behavior can be
experimentally investigated by adopting the hybrid SHPB apparatus. Thus, this study shows that the conventional SHPB
apparatus can be employed effectively to study the emerging research field of nonlinear wave characteristics of phononic crystals.

Keywords Hybrid SHPB . Impulse-dependent transmission coefficient . Impact excitation . Electrodynamic shaker . Phononic
crystals . Finite-strain viscoelasticmodel

Introduction

Phononic crystals are periodic structures designed to control
mechanical waves through Bragg scattering [1, 2]. Under har-
monic excitations with infinitesimal deformation, several
analyses have shown that they can possess intriguing wave
characteristics such as phononic band-gaps [3–6], acoustic
diodes [7–9], and acoustic waveguide [10]. Many experimen-
tal studies have been conducted to evaluate wave transmission
properties of various phononic crystals as well. Using electro-
dynamic shakers [11–13] or piezoelectric actuators [6, 14, 15],
researchers typically apply infinitesimal deformations or small

amplitude forces to investigate the wave characteristics of lin-
early perturbed phononic crystals.

Recently, there has been a rising interest in the nonlinear
wave transmission behavior of phononic crystals, and a wide
range of numerical studies have been reported. For instance,
some researchers introduced nonlinear constitutive relations
in discrete lattice models and investigated the evolution of
the dispersion relations [16, 17]. In addition, the wave disper-
sion relation of weakly nonlinear periodic structures was stud-
ied in the finite element (FE) framework [18]. The nonlinear
characteristics of wave motion in phononic crystals have also
been numerically studied by exploring solitary waves in 1-D
granular crystals [19, 20]. However, experimental studies re-
garding the nonlinear wave transmission behavior of
phononic crystals have been predominantly performed on on-
ly 1-D granular crystals [21–23]. In these experiments, cus-
tomized impact apparatus was employed to generate solitary
waves in a 1-D chain of elastic beads, whose nonlinearity
mainly originates from Hertzian contacts. Then, measured
solitary waves were analyzed to identify the impulse-
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dependent wave transmission characteristics [24] or tunable
phononic band-gaps [3].

In this study, we experimentally investigate the nonlinear
wave transmission behavior of a continuum phononic crystal.
Note that continuum phononic crystals are commonly com-
posed of metals and polymers to exploit their high impedance
mismatch which brings down the intriguing frequencies to the
acoustic frequency range [25, 26]. Due to the inherent visco-
elastic and damping properties of polymers, electrodynamic
shakers or piezoelectric actuators are not applicable to gener-
ate sufficiently large excitation to induce nonlinear wave mo-
tion in continuum phononic crystals containing polymers.
Here, we examine split Hopkinson pressure bar (SHPB) ap-
paratus as a tool to identify the nonlinear wave characteristics
of 1-D continuum viscoelastic phononic crystals. We first
present the details of a 1-D viscoelastic phononic crystal under
investigation in Sec. BConsidered Viscoelastic Phononic
Crystal and Loading Conditions^. Then, Sec. BHarmonic
Excitation Analysis and Results^ discusses the impulse-
independent wave transmission characteristics of the visco-
elastic phononic crystal by reviewing its analytical dispersions
relation and performing base excitation tests with an electro-
dynamic shaker. This analysis serves as a reference to study on
the impulse-dependentwave transmission characteristic of the
considered viscoelastic phononic crystal. In Sec. BImpact
Excitation Analysis and Results^, we introduce a new hybrid
SHPB system (i.e., metal input bar and polymeric output bar)
to resolve experimental challenges relating to low signal-to-
noise ratios and input impulse magnitudes. The effectiveness
of the hybrid SHPB in studying impulse-dependent wave
characteristics is examined by investigating a series of exper-
iments and simulations.

Considered Viscoelastic Phononic Crystal
and Loading Conditions

This section describes the details of mechanical properties of
constituents adopted for a continuum phononic crystal (i.e.,
layered composite) under investigation. In addition, it intro-
duces a brief overview of the two dynamic excitation condi-
tions that are explored in this study to experimentally identify
the wave transmission behavior of the considered layered
composite.

Material, Constitutive Model, and Specimen

We explore here the impulse-dependent wave transmission
behavior of a bilayered composite consisting of metal and
polymeric material. For metal, we selected aluminum alloy
6061 − T6, which has the mass density ρ1 = 2700 kg/m3, the
frequency-independent elastic moduli of Young’s modulus
E1 = 70.0 GPa, and Poisson’s ratio ν1 = 0.33. For polymeric

material, we chose silicone-based rubber (Elite Double 32,
Zhermack), whose mass density and Poisson’s ratio are found
to be ρ2 = 1160 kg/m3 and ν2 = 0.495 from measurements,
respectively. This silicone rubber has been adopted by several
other researchers [27, 28], and the current investigation con-
siders both the finite-deformation characteristics and visco-
elastic properties of the silicon rubber.

Firstly, the finite-deformation characteristics of the silicone
rubber were identified by performing quasi-static uniaxial

compression tests at the strain rate of ε̇ ¼ 1� 10−3=s, and
the loading-unloading behavior is presented by the green solid
line in Fig. 1a. Then, the equilibrium stress-strain path was
determined by taking the mid-path of stress-strain curves from
the uniaxial loading-unloading tests [29, 30]. The black dotted
line in Fig. 1a shows that the constitutive behavior of the
equilibrium path is accurately captured by a Yeoh hyperelastic
model [31], whose strain energy is:

U ¼ ∑3
j¼1 C j0 I1−3

h i j
þ 1

Dj
J−1½ �2 j

� �
ð1Þ

where C10 = 199.2 kpa, C20 = 16.43 kpa, C30 = 23.22 kpa, and
D1 = 30.0 GPa−1, D2 =D3 = 0.0. Here, J = det (F),

I1 ¼ J−
2
3 tr FT F

� �
, and F is the deformation gradient.

Secondly, the frequency-dependent viscoelastic properties of
the silicone rubber were evaluated through dynamic mechan-
ical analysis (DMA) experiments using RSA-G2 Solids
Analyzer (TA Instruments) by applying infinitesimal strain.
From the experiments, we obtained the complex-valued

Young’s modulusÊ2 ωð Þ ¼ Ê
0

2 ωð Þ þ iÊ
}

2 ωð Þ, where Ê
0

2 and

Ê
}

2 denote the storage modulus and the loss modulus, respec-
tively. Figure 1b shows the obtained frequency-dependent vis-
coelastic moduli within the sonic frequency range (here, up to
16 kHz). Note that we use the angular frequency ω = 2πf in the
text, but all the graphs are presented in the linear frequency f.
In addition, we adopted the generalized Maxwell model to
represent the time-dependent behavior of the considered sili-
con rubber, whose relaxation modulus E2(t) can be captured
by the Prony series [32]:

E2 tð Þ ¼ E2;∞ þ ∑10
j¼1E je

− t
τ j ð2Þ

where e is the Euler constant; E2, ∞ denotes the equilibrium
(quasi-static) modulus; and each viscoelastic branch j is char-
acterized by an elastic modulus Ej and a relaxation time τj. A
rheological tool kit (IRIS [33]) was adopted to identify the
elastic equilibrium modulus E2, ∞ = 1.196 MPa and the
Prony series coefficients Ej and τj (see Table 1). The black
dotted line in Fig. 1c shows the resulting relaxation modulus
E2(t) at infinitesimal strains. In the time-domain FE simula-
tions presented in Sec. B3 and 4^, we adopted the so-called
finite-strain viscoelastic model [34, 35], where the
infinitesimal-strain equilibrium modulus E2, ∞ in (2) is
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replaced by the tangent modulus determined by the Yoeh
hyperelastic model in (1). All the numerical simulations in this
study were performed using a commercial FE software
ABAQUS [36], where the finite-strain viscoelastic model is
built-in.

The considered bilayered composite specimen was com-
posed of three unit-cells of aluminum (d1 = 5mm) and silicone
rubber layers (d1 = 20 mm). The cylindrical specimen had the
diameter of 45 mm and the overall height of 80 mm (see
Fig. 2a), and the identical specimen was employed for both
shaker and SHPB tests in Sec. B3 and 4^. Note that the spec-
imen dimensions (i.e., the thickness and the number of unit-
cells) were guided by the analytical study in Sec. BHarmonic
Excitation Analysis and Results^, so that we could experi-
mentally observe multiple low-transmission zones in the sonic
frequency range, which could be achieved by an electrody-
namic shaker and SHPB apparatus in the lab.

Consideration of External Excitations

Assuming linear wave motion with infinitesimal deformation,
the dispersion relation of phononic crystals composed of dissi-
pative medium is commonly characterized by two experimen-
tal approaches: driven-wave or free-wave conditions. While
steady-state harmonic oscillations are typically adopted for
driven-wave conditions [37, 38], pulse-type loading (e.g., small
force excitation or small deformation) is exerted to phononic
crystals for free-wave conditions [39, 40]. For the conditions of
infinitesimal deformation, the dispersion relations obtained
from driven-wave and free-wave conditions are found to be
similar for phononic crystals having low damping [41].

Our interest is to investigate impulse-dependent wave
transmission behavior of viscoelastic phononic crystals. As a

�Fig. 1 Viscoelastic properties of the considered silicone rubber. a
Loading-unloading stress-strain relation, whose equilibrium path is cap-

tured by the Yeoh model. b Frequency dependent storage modulus Ê
0
ωð Þ

and loss modulus Ê
0 0
ωð Þ. c Time dependent relaxation modulus

Table 1 Prony series coefficients of the considered silicone rubber

Branch Number, j Moduli, Ej[MPa] Relaxation Times, τj[s]

1 0.477 4.99 × 10−8

2 0.328 4.83 × 10−7

3 0.221 3.55 × 10−6

4 0.157 1.72 × 10−5

5 0.113 6.04 × 10−5

6 0.127 2.28 × 10−4

7 0.114 1.33 × 10−3

8 0.077 9.07 × 10−3

9 0.059 6.42 × 10−2

10 0.043 4.89 × 10−1
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reference study, we first conducted harmonic base excitation
tests using an electrodynamic shaker, which generates a volt-
age chirp signal in the sonic frequency range. The applied
forces acting on the considered specimen were small, and
consequently the corresponding deformations were infinitesi-
mal. Section BHarmonic Excitation Analysis and Results^
presents theses harmonic base excitation test results and the
corresponding time-domain FE analysis. Subsequently, the
impulse-dependent wave transmission behavior of viscoelas-
tic phononic crystals was investigated by using SHPB appa-
ratus, which allows high impact excitation with nonlinear
wavemotion in the specimen. Under compressive impact con-
ditions, the silicone rubber layers of the specimen were not in
the linear range, showing up to the strain level of εtr = − 0.5.
Section BImpact Excitation Analysis and Results^ discusses
the experimental results from impact excitation with SHPB
and the corresponding time-domain FE simulation results.

Harmonic Excitation Analysis and Results

This section discusses the harmonic base excitation conditions
inducing only small deformation in the considered layered
composite specimen, and the results serve as a reference to
the study on impulse-dependent wave transmission character-
istics discussed in Sec. BImpact Excitation Analysis and
Results^. We firstly review the analytical dispersion relation
of waves perpendicular to the layers in infinitely periodic vis-
coelastic layered composites, whose detailed derivations can
be found in references [42–44]. Then, we describe the details
of experimental study using an electrodynamic shaker and the
corresponding time-domain FE simulations.

Analytical Dispersion Relation and Transmission
Coefficient

As described in Sec. BMaterial, Constitutive Model, and
Specimen^, we consider a bilayered composite consisting of
alternating viscoelastic and elastic solids. By solving the

governing equation of motion together with Bloch periodic
boundary conditions [45], we can simultaneously obtain two
decoupled eigenvalue problems for dilatational and distortion-
al waves. Here, we focus on dilatational wave motion since
compressive waves are mainly considered in the experiments
designed in this study. The subscript j is employed to refer the
characteristics of the j-th layer (i.e., j = 1 for the aluminum
layer and j = 2 for the silicone rubber layer). For instance,
the periodic unit-cell length a is determined by a = d1 + d2,
where dj is the j-th layer thickness. Assuming steady-state
harmonic wave motion in the composite, we can obtain the
displacement field uj;n and the normal stress field σ j;n of com-
pressive plane waves for the j-th layer in the n-th unit cell [42]:

uj;n x j;n
� � ¼ PF; j;ne

−i
ωx j;n
cp; j þ PB; j;ne

−i
ωx j;n
cp; j ;

σ j;n x j;n
� � ¼ −PF; j;nωρ jcp; je

−i
ωx j;n
cp; j þ PB; j;nωρ jcp; je

−i
ωx j;n
cp; j

ð3Þ

where xj, n represents the local x−coordinate for the j-th layer
in n-th unit cell; PF, j, n and PB, j, n are the frequency-dependent
complex displacement amplitude to be determined form

bounda ry cond i t i on s ; cp; j ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê ωð Þ 1−ν½ �

ρ 1þν½ � 1−2ν½ �

q
i s t h e

frequency-dependent dilatational wave velocity. By applying
the successive stress and displacement boundary conditions at
the interfaces, we can obtain the following relation between
the complex-valued displacements amplitude vectorW of ad-
jacent unit-cells:

W1;nþ1 ¼ TW1;n ð4Þ

where

W1;n ¼ PF; j;n

PB; j;n

� �
; W1;nþ1 ¼ PF; j;nþ1

PB; j;nþ1

� �
ð5Þ

T ¼ R−1
1 R2D2R−1

2 R1D1 ð6Þ

Rj ¼ 1 1
−ωρ jcp; j ωρ jcp; j

� �
; Dj ¼ e

−i
ωx j;n
cp; j 0

0 e
i
ωx j;n
cp; j

" #
ð7Þ

Fig. 2 a Geometry of the
considered phononic crystal
specimen. b The corresponding
axisymmetric FE model, whose
symmetric center-line is denoted
by the dotted line
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Here, T is the frequency-dependent transfer matrix for di-
latational wave motion perpendicular to the layers and deter-
mines the relation between the displacement amplitude vec-
tors of adjacent unit-cells. In addition to the continuous stress/
displacement boundary conditions (4), we have the Bloch pe-
riodic boundary conditions between adjacent unit-cells [45]:

W1;nþ1 ¼ eiκpcaW1;n ð8Þ

where κpc ¼ κR
pc þ iκI

pc is the complex-valued wavenumber

of the considered phononic crystals in the direction perpen-
dicular to the layers. While κR

pc describes the phase of wave

propagation, κI
pc is relating to the amplitude of wave attenua-

tion. The application of Bloch periodic boundary conditions
(8) to (4) provides an eigenvalue problem for dilatational
wave motion:

TW1;n ¼ eiκpcaW1;n ð9Þ

By solving the above eigenvalue problem (9), we obtain
the frequency-dependent dispersion relations of the consid-
ered viscoelastic/elastic bilayered composite for dilatational
wave motion perpendicular to the layers [42–44]:

cos κpca
� � ¼ cos

ωd1
cp;1

� �
cos

ωd2
cp;2

� �
−
1

2

ρ1cp;1
ρ2cp;2

þ ρ2cp;2
ρ1cp;1

� �
sin

ωd1
cp;1

� �
sin

ωd2
cp;2

� �

ð10Þ

For the considered viscoelastic phononic crystals, the ana-
lytical dispersion relation (10) illustrates the characteristics of

wave propagation ω−κR
pc

	 

and wave attenuation ω−κI

pc

	 

,

which are shown in Fig. 3a and b, respectively. Unlike in
elastic phononic crystals, Fig. 3b illustrates the absence of κI

pc

¼ 0 and dω=dκR
pc ¼ ∞, which indicates that waves in the

considered viscoelastic-elastic phononic crystals possesses
neither absolute band-gap nor absolute passing-band due to
the frequency-dependent dilatational wave velocity of the sil-
icon rubber cp, 2(ω). In other words, waves in viscoelastic
phononic crystals simultaneously propagate and attenuate at
all frequencies.

Here, we introduce a wave transmission coefficient Ct(ω)
by taking the amplitude ratio between input force spectrum
Fin(ω) and output acceleration spectrum Aout(ω):

Ct ωð Þ ¼ ‖Aout ωð Þ‖
‖Fin ωð Þ‖ ð11Þ

where ‖□‖ denotes the Euclidean norm. Then, the wave trans-
mission coefficient based on the analytical dispersion relation
reads:

Fig. 3 Pressure wave characteristics of the infinitely periodic
viscoelastic-elastic phononic crystal under consideration. a Phase disper-
sion relation, κR

pc− f . b Attenuation relation, κI
pc− f . c Transmission co-

efficient Ct obtained from (11)

b
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Ct ωð Þ ¼ ω2W1;n þ N
ωρ1cp;1W1;n

¼ ω
ρ1cp;1

e−iκpcNa ð12Þ

where the denominator signifies the force vector acting on the
aluminum layer in n-th unit-cell and the numerator represents
the acceleration vector of aluminum layer in (n +N)-th unit-
cell. The analytical transmission coefficients for three different
unit-cell spacings (N = 1, 3, 5) are shown in Fig. 3c, where the
coefficient magnitude is presented in dB, i.e., 20log10(Ct). As
shown in Fig. 3c, the magnitude of the transmission coeffi-
cient Ct is affected by N, but the frequency-zones indicating
the low transmission are hardly affected by N. In the consid-
ered sonic frequency range, we observed three low-
transmission frequency zones: first zone around 5 kHz, second
zone around 10 kHz, and third zone around 16 kHz. As
discussed in Sec. BMaterial, Constitutive Model, and
Specimen^, we chose N = 3 to design the specimens used in
this study.

Base Excitation Tests with Electrodynamic Shaker

Electrodynamic shakers are commonly employed to conduct
experiments for low amplitude dynamic excitation. By sweep-
ing frequencies (i.e., chirp signal) through shakers, many re-
searchers have investigated wave transmission characteristics
of various periodic structures [11–13]. Figure 4a shows the
harmonic excitation test set-up, where an electrodynamic
shaker (B&K vibration exciter 4809) was anchored on an
optical table. A force transducer (B&K 8230) was assembled
to the shaker, and the layered composite specimen was verti-
cally mounted on top of the force transducer. Then, an accel-
erometer (B&K 4394) was attached at top of the specimen.
Swept-frequency chirp voltage signal (up to 16 kHz for 1 s)
produced by a waveform generator (NI PXI-5412 with B&K
amplifier 2718) was sent to the electrodynamic shaker. Both
the force and acceleration time-history measurements were
collected at a sampling rate of 1 MHz by a data acquisition
system (NI PXI-5105 in NI PXI-1042Q).

The electrodynamic shaker tests were conducted for two
different maximum force levels: one with 21.0N and the other
with 53.7 N. By taking the fast Fourier transform (FFT) of the
input force acting on the specimen bottom and the output
acceleration on the specimen top, we calculated the wave
transmission coefficient Ct(ω) defined in (11). Figure 5A-1
and A-2 show the experimental transmission coefficient spec-
tra Ct(ω) for the maximum force levels of 21.0 N and 53.7 N,
respectively. Note that the force level of 53.7 N was obtained
by applying a voltage level close to the specification limit of
the electrodynamic shaker. The solid lines in Fig. 5a represent
the average of five tests for each force level, and the shaded
area along the solid line shows the corresponding standard
deviation. From Fig. 5a, we observe three low transmission
frequency zones: first zone around 2 kHz, second zone around

10 kHz, and third zone around 14 kHz. Although the electro-
dynamic shaker tests considered the finite-size layered com-
posite specimen under transient harmonic excitations, the ex-
perimentally obtained low transmission zones are found to be
in the vicinity of the analytical predictions based on infinitely
periodic phononic crystals under steady-state harmonic exci-
tations. More importantly, the comparison between Fig. 5A-1
and A-2 confirms that the experimentally-obtained transmis-
sion coefficient spectra are nearly independent of the ampli-
tude of excitation forces generated by the electrodynamic
shaker.

Time-Domain FE Simulations

For the base excitation tests with the electrodynamic shaker,
we also conducted time-domain simulations using the com-
mercial FE code ABAQUS/Standard. All the numerical sim-
ulations were performed using a 2-D axisymmetric model
with 4-node bilinear element CAX4R. A mesh refinement
study confirmed that the mesh sweeping size of 1.25 mm
(see Fig. 2b) is sufficiently small to obtain the convergence
of the FE simulation results. In order to minimize the overall
drift of the specimen displacement, we applied an equivalent
base acceleration with the baseline correction procedure [46,
47], instead of using the direct force time-history measured

Fig. 4 a Electrodynamic shaker test set-up. b SHPB test set-up
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from the experiments. The equivalent base accelerations were
obtained from the experimentally measured bottom force his-
tories divided by the specimen mass. The acceleration histo-
ries on the FE model top were collected to calculate the trans-
mission coefficient Ct(ω).

Figures 5B-1 and B-2 show the numerically-obtained
transmission coefficient spectra Ct(ω) for the maximum force
levels 21.0 N and 53.7 N, respectively. Manifesting the three
low transmission frequency zones around 2 kHz, 10 kHz, and
14 kHz, numerical simulations are in good agreement with
their experimental counterpart. From the outcomes of both
experiments and simulations, we confirm that the impulse-
independent transmission coefficient spectra of the considered
composite specimen can be obtained by applying harmonic
base excitations through a electrodynamic shaker inducing
small forces.

Impact Excitation Analysis and Results

This section investigates the impulse-dependent wave trans-
mission behavior of the considered viscoelastic phononic
crystal specimen by exerting high impact excitation through
SHPB apparatus. Typically, SHPB apparatus is known as a
standard set-up for high strain-rate tests (e.g., up to the strain-

rate of 5000/s or higher) [48], and it is composed of three bars:
striker, input bar, and output bar (Fig. 4b). A specimen is
placed between the input and output bars. By shooting the
striker using a gas gun, a stress wave is created and pass
through the bars and the specimen. The stress-strain response
of the specimen can be calculated from the travelling waves in
the bars using a simple 1-D wave propagation theory in elastic
medium [48]. Recently, the idea of using SHPB apparatus for
phononic band-structure study is introduced by Feng and Liu
[49, 50], who have reported the stress-induced band-gap tun-
ability of polymer-metal phononic crystals. In this section, we
first discuss experimental issues in regard to the application of
SHPB for viscoelastic phononic crystals, and then propose a
hybrid SHPB apparatus to overcome the issues.

Considerations on SHPB Tests for Viscoelastic
Phononic Crystals

Feng and Liu [49, 50] have investigated 1-D phononic crystals
made of steel/epoxy and aluminum/epoxy using metallic
SHPB apparatus, whose input and output bars were solid steel
rods. Assuming a linearly-perturbed setting, they compared
experimentally-observed phononic band-structures with nu-
merical results obtained from elastic FE models. Note that
their specimens included a viscoelastic material, epoxy [51],

Fig. 5 Amplitude-independent
transmission characteristics. a
Transmission coefficient Ct(ω)
obtained from the base excitation
tests with electrodynamic shaker:
(A-1) 21.0 N, (A-2) 53.7 N. Note
that the shaded area denotes the
standard deviation. b The
corresponding results from the
time-domain FE simulations:
(B-1) 21.0 N, (B-2) 53.7 N
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whose Young’s modulus (i.e., Eepoxy ≈ 4 GPa) is nearly two
orders of magnitude smaller than that of the apparatus bar
material (i.e., steel having Esteel ≈ 210 GPa).

The viscoelastic property of polymeric specimens and
the impedance mismatch between polymeric specimens
and metallic apparatus bars are critical to analyze cor-
rectly the experimental results from SHPB apparatus. In
particular, several researchers have discussed solutions
to address this impedance mismatch by using either
polymeric bars [52, 53] or hollow metallic bars [54,
55]. Simply speaking, the impact energy to linearly de-
form the polymeric specimens is not sufficiently large to
provide high signal-to-noise ratios on solid metallic ap-
paratus bars. On the other hand, the impact energy
which is sufficiently large to provide the desired high
signal-to-noise ratios on solid metallic apparatus bars
induces finite viscoelastic deformations in the polymeric
specimens. Moreover, the frequency spectrum of the in-
cident wave on the input bar is typically characterized
by amplitude-drops at some frequencies, and these in-
herent amplitude-drops of the incident wave spectrum
are primarily dependent on the striker length [56, 57].
Oversight of this limitation may result in the erroneous
identification of phononic band-structure near those
amplitude-drop frequencies. Thus, when SHPB appara-
tus is adopted for viscoelastic phononic crystal study,
these critical points should be thoroughly addressed in
order to properly identify phononic band-structures, i.e.,
wave transmission behavior.

Hybrid SHPB Configuration

We explore SHPB apparatus to investigate the impulse-
dependent wave transmission behavior of viscoelastic
phononic crystals. Since high impact energy should be
applied to specimens, we could adopt metallic SHPB
apparatus producing high signal-to-noise ratios in the
incident wave. However, due to the material damping
of viscoelastic layers (silicon rubber), we found that
the transmitted wave strain signal on the output bar
was significantly weak, causing low signal-to-noise ra-
tios. On the other hand, polymeric SHPB apparatus
could be considered to improve signal-to-noise ratios,
but we also found that the force generated by the poly-
meric bars was insufficient to create finite deformation
within the specimens while maintaining apparatus bars
in their linear range to ensure 1-D elastic wave [58, 59].
In other words, in order to investigate the impulse-
dependent wave transmission behavior of viscoelastic
phononic crystals, we needed to have a SHPB configu-
ration that simultaneously allows large input force to
specimens and captures weak transmitted waves in the
output bar. In order to overcome this challenge, we

developed a hybrid SHPB system that consists of a me-
tallic input bar and a polymer output bar. We adopted
an aluminum input bar (type: 6061 − T6, length: 3 m,
diameter: 45 mm) and a nylon output bar (type: PA-
66, length: 3 m, diameter 50 mm) with aluminum
strikers of various lengths. Strain gauges (EA-13-
031CF-120/E from Vishay Measurements Group) were
placed on each apparatus bar, and the strain signals
were amplified by a signal amplifier (Vishay 2310).
Then, the amplified strain signals were recorded using
a DAQ system (NI PCI-6115) at a sampling rate of
2.5 MHz. In addition, the launching speed of striker
on impact was recorded by a photoelectric sensor (Tri-
tronics XP10). Additional details of the hybrid SHPB
apparatus are given in Table 2.

The measured strain waves on the apparatus bars need to be
transported to the specimen-bar interfaces to obtain the force
and the acceleration acting on the considered specimen. The
geometric and material properties of the apparatus bars affect
wave propagations within the bars, whose wave characteris-
tics can be captured by their dispersion relation. The complex-
valued dispersion relation, κbar ωð Þ ¼ κR

bar ωð Þ þ iκI
bar ωð Þ, can

be experimentally obtained by performing the single-bar im-
pact test [48, 58]. Note that κR

bar and κI
bar represent the

frequency-dependent propagation and attenuation characteris-
tics of waves in the bar, respectively. Here, we conducted a
series of single-bar impact tests for the considered aluminum
and nylon bars, and then experimentally obtained the phase
velocity cbar ωð Þ ¼ ω=κR

bar ωð Þ and the attenuation coefficient

κI
bar ωð Þ. The solid lines in Fig. 6 illustrate the average value of

of cbar(ω) and κI
bar ωð Þ while shade areas indictate the corre-

sponding standard deviation. Note that the red dashed lines in
Fig. 6A-1/B-1 also show the Pochhammer-Chree solution
[60] for the corresponding elastic counterpart. These
experimentally-obtained coefficients were used throughout
our study with the hybrid SHPB apparatus.

For the investigation of wave transmission behavior of
specimens using SHPB, ideal incident waves would be
sharp impulse time-signals, which resemble the dirac-
delta function containing infinite frequency contents.
Furthermore, the impulse of ideal incident waves should
be high enough to excite the impulse-dependent wave
characteristics of specimens. In practice, a sharp impulse
signal having a short impulse duration can be archived by
adopting a short striker. However, it requires very high
launching speed to produce desirable amount of impulse
due to its small mass, but the striker launching speed is
typically limited by the specification of a given SHPB
striker-launching system. On the other hand, a long striker
having a large mass can generate high impulse with low
launching speeds, but it suffers frequency amplitude-
drops in the incident wave spectrum [56, 61, 62]. An
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amplitude-drop represents the scarcity of some frequency
contents in an incident wave. Consequently, regardless of
wave characteristics of the considered specimen, the
transmitted signal may lack some frequency contents near
the amplitude-drops, entailing a distortion of transmission
coefficients. Thus, prior to the main SHPB impact tests to
be discussed in Sec. BImpact Excitation Tests with Hybrid
SHPB^, we conducted a series of impact tests by shooting
three different strikers (Lstr = 50, 150, 250 mm) to the
input bar and collected incident strain waves on the input
bar. By taking the FFT of the incident strain signals, we
analyzed the frequency amplitude-drops for each striker as
shown in Fig. 7. The longer the striker is, the earlier the
frequency amplitude-drop occurs in the frequency

domain. Thus, we identified the valid frequency limit of
each striker for the wave transmission coefficients of the
considered specimen, i.e., up to around 20 kHz, 14 kHz,
8 kHz for Lstr = 50, 150, 250 mm, respectively.

Impact Excitation Tests with Hybrid SHPB

The impact excitation tests with the SHPB apparatus were con-
ducted on the viscoelastic phononic crystal specimen under
three different striker loading conditions: (a) 50mm-long striker
with a launching speed of 12.18 m/s, (b) 150 mm-long striker
with 10.04 m/s, and (c) 250 mm-long striker with 8.42 m/s.
After taking the FFT of the incident and transmitted strain sig-
nals, we calculated the input force spectrum F(ω) acting on the

Fig. 6 Wave propagation
characteristics of SHPB apparatus
bars. a Aluminum bar: (A-1)
phase velocity cpl(ω), (A-2)
attenuation coefficient κI

al ωð Þ. b
Nylon bar: (B-1) phase velocity
cpl(ω), (B-2) attenuation
coefficient κI

ny ωð Þ. Note that the
average experimental results are
denoted by the solid lines and the
standard deviations are
represented by the shaded areas.
In addition, the dashed and the
dotted lines indicate
Pochhammer-Chree analytical
solution and the numerically-
obtained propagation coefficient
from FE simulations, respectively

Table 2 Specifications of the hybrid SHPB apparatus

Parameters Aluminum striker Aluminum input bar Nylon output bar

Length, L [m] 0.05, 0.15, 0.25 3.00 3.00

Diameter, D [mm] 45 45 50

Longitudinal wave speed, c0(ω = 0)[m/s] 5070 5070 1700

Mass density, ρ[kg/m3] 2700 2700 1140

Distance between strain gage and
specimen-bar interface, Δ[m]

– 1.5 0.30
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specimen and the output acceleration spectrum A(ω) at the the
interface between the specimen and the output [48]:

F ωð Þ ¼ salρalω
2

κal ωð Þ2 ε̂inc ωð Þeκal ωð Þ△al ; A ωð Þ ¼ −iω2

κny ωð Þ2 ε̂tra ωð Þeκny ωð Þ△al

ð13Þ
where ε̂inc ωð Þ and ε̂tra ωð Þ represent the FFT of the incident
and transmitted time signals measured on the apparatus
bars, respectively; the subscripts al and ny represent alu-
minum input bar and nylon output bar, respectively; s and
ρ denote the cross-sectional area and the density of the
apparatus bar, respectively; △ is the distance between the
location of the strain gauge on the apparatus bar and the
specimen/bar interface. Interested reader may refer to the
reference [48] on the detailed formulation of (13). Then,
using (11), we calculated the wave transmission coefficient
Ct(ω) and summarized the results in Fig. 8a. Note that the
dotted lines indicate the low-fidelity experimental results
following the discussion regarding the effect of the striker
length on incident waves in Sec. BHybrid SHPB
Configuration^. Furthermore, by taking the inverse FFT
of F(ω), we re-constructed the time-history of the input
force acting on the specimen. Then, the impulse exerted
to the specimen was determined by integrating the force
time-history over the loading duration: (a) the impulse of
5.60 N · s for the 50 mm-long striker case, (b) 13.2 N · s for
the 150 mm-long one, and (c) 18.6 N · s for the 250 mm-
long one. By focusing on the solid line in Fig. 8A-1, we
find two low transmission frequency zones around 2 kHz
and 8 kHz, which are close to the outcome of the

electrodynamic shaker tests. Due to the low signal-to-
noise ratio depicted by the large standard deviation in
Fig. 8A-1, the third low transmission frequency zone
around 14 kHz was not properly identified. Interestingly,
however, we find that high impulse produces a new low
transmission frequency zone around 5.5 kHz (vertically
shaded in Fig. 8A-2/3), which are neither predicted from
the analytical solution from Sec. BAnalytical Dispersion
Relation and Transmission Coefficient^ nor observed from
the electrodynamic shaker tests in Sec. BBase Excitation
Tests with Electrodynamic Shaker .̂

Time-Domain FE Simulations

For the impact excitation tests with the SHPB apparatus, we
also conducted the corresponding time-domain simulations
using ABAQUS/Explicit by modeling all the SHPB compo-
nents (i.e., striker, input bar, output bar) as well as the speci-
men. All the numerical simulations were performed using a 2-
D axisymmetric model with 4-node bilinear element CAX4R.
Mesh sweeping sizes of 1.25mm and 2.5mmwere adopted for
the specimen and the bars, respectively. While a linear elastic
material model was used for the aluminum input bar, a linear
viscoelastic material model was applied for the nylon output
bar. Considering the equilibrium (quasi-static) modulus Eny,

∞ = 2870 MPa of our nylon bar material, we adopted the
scaled Prony series parameters provided by Fujikawa and
Takashi [63]. After conducting an FE simulation for the single
nylon bar impact test with this linear viscoelastic model, we
confirmed that the numerically-obtained phase velocity and
attenuation coefficient (see black dotted lines in Fig. 6B-1/2)
compare well with the experimentally measured quantities.
Like in the harmonic excitation simulation in Sec. BTime-
Domain FE Simulations^, the silicon rubber is modeled using
the finite viscoelastic model described in Sec. BMaterial,
Constitutive Model, and Specimen^. In order to consider the
friction between the specimen and the bars, FE simulations
adopted the Coulomb friction model with a friction coefficient
of μal/al = 1.2 [64] and μal/ny = 0.1 [65] for aluminum/
aluminum and aluminum/nylon interfaces, respectively. Note
that the adopted friction coefficient of aluminum-aluminum
contact is greater than one and several researchers have report-
ed that aluminum-aluminum interfaces possess a friction co-
efficient greater than one, ranging 1.05 to 1.4 [64, 66–69].
Based on those relevant references, we selected μal/al = 1.2
[64] for the considered aluminum-aluminum interfaces
modeled in the FE simulations. For each test with a different
striker length (see Sec. BImpact Excitation Tests with Hybrid
SHPB^), the measured launching striker speed was applied as
the initial boundary condition.

Figure 8b shows the numerically obtained transmission
coefficient spectra Ct(ω) for all the corresponding impact ex-
citation tests described in Sec. BImpact Excitation Tests with

Fig. 7 Spectrum of input strain signals experimentally obtained from
different striker lengths
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Hybrid SHPB^. Note that the solid lines indicate the reliable
experimental results following the discussion regarding the
effect of the striker length on incident waves in Sec. BHybrid
SHPB Configuration^. In Fig. 8B-1, we observe three distinc-
tively low transmission frequency zones around 2 kHz, 8 kHz,
and 14 kHz. Note that the third low transmission frequency
zone around 14 kHz is in the vicinity of the analytical predic-
tion (16 kHz) based on infinitely periodic layered composites,
but is not properly identified from the experiment due to the
low signal-to-noise ratio. The numerical simulation results
presented in Fig. 8b also evidently show the emergence of a
new impulse-dependent transmission frequency zone around
5.5 kHz that are observed in the experiments (Fig. 8A-2/3). In
addition, Fig. 8B-1/2 show that there is another low transmis-
sion frequency zone around 12 kHz.

Discussion

This section first discusses the impulse-independent wave
transmission behavior obtained from the harmonic excitation
conditions. Secondly, we examine experimental and numeri-
cal results from impact excitation conditions and highlight the
impulse-dependentwave transmission behavior of the consid-
ered viscoelastic phononic crystals.

Impulse-independent Wave Transmission Behavior
from Harmonic Excitation Conditions

The analytical wave transmission coefficient spectrum in Fig.
3c was obtained by assuming steady-state harmonic wave
motions in infinitely periodic viscoelastic phononic crystals.

Fig. 8 Amplitude-dependent transmission characteristics obtained from SHPB setting. (A) Transmission coefficient Ct(ω) from the SHPB tests: (A-1)
50 mm-long striker with the impulse of 5.6 N · s, (A-2) 150 mm-long striker with the impulse of 13.2 N · s, and (A-3) 250 mm-long striker with the
impulse of 18.6 N · s. (B) The corresponding results from the time-domain FE simulations: (B-1) 50mm-long striker with the impulse of 5.5 N · s, (B-2)
150mm-long striker with the impulse of 13.6N · s, and (B-3) 250mm-long striker with the impulse of 18.5N · s. (C) The numerical results obtained from
the additional time-domain FE simulations where a 150mm-long striker is launched for all three cases: (C-1) the impulse of 5.5N · s, (C-2) the impulse of
13.6 N · s,and (C-3) the impulse of 18.7 N · s

Exp Mech (2019) 59:95–109 105



For the electrodynamic shaker tests and the corresponding FE
simulations, we considered the finite size specimen under the
swept-frequency chirp signals. Despite these differences in the
specimen and loading conditions, both the test and the simu-
lation results exhibit three low-transmission frequency zones
(i.e., one around 2 kHz, another near 10 kHz, and the last one
around 14 kHz shown in Fig. 5), which are placed in the
vicinity of the analytical predictions. The electrodynamic
shaker tests and the corresponding FE simulations show that
these three low transmission frequency zones are found to be
independent of the harmonic base excitation force levels ap-
plied by the electrodynamic shaker.

In order to understand better the results of the electrody-
namic shaker tests compared to those of the SHPB impact
tests, we also considered the energy-equivalent conversion
of a swept-frequency chirp signal into a pulse signal.
Consider a unit-amplitude swept-frequency chirp signal hav-
ing a time duration Tc, a linear frequency bandwidth Bc, a
starting frequency fc, and the linear rate of frequency change
kc = Bc/Tc. For this unit-amplitude chirp signal, Cook and
Klauder [70, 71] provide a closed-form expression for an ar-
tificial energy-equivalent pulse signal pc(t):

pc tð Þ ¼ j
ffiffiffiffiffiffiffiffiffiffiffi
iBcTc

p sin πBctð Þ
πBct

ei2π f ct−kct2=2ð Þj ð14Þ

whose central peak pulse has the amplitude of
ffiffiffiffiffiffiffiffiffiffi
BcTc

p
and the

time duration of 2/Bc. Note that the converted pulse signal in
(14) is related to an exponentially-decaying sinc function in
time domain, and the energy stored in the signal mainly re-
sides within the central peak pulse [71]. Thus, we obtained the
energy-equivalent pulse force time-signal by multiplying (14)
with the average of each swept-frequency chirp force signal,
and then calculated the impulse taking the time-integration.
Based on this procedure, we find that the base excitation force
levels of 21.0 N and 58.7 N correspond to the impulse level of
0.04 N · s and 0.12 N · s, respectively. Thus, the energy-
equivalent conversion of swept-frequency chirp signals re-
veals that the converted pulses from the electrodynamic tests
are approximately two orders of magnitude smaller than the
applied impulses in the SHPB impact tests.

Impulse-dependent Wave Transmission Behavior
from Impact Excitation Conditions

To examine the effectiveness of the hybrid SHPB apparatus
for the impulse-dependent transmission behavior study, three
different levels of impulses were explored by changing the
striker length and its launching speed as presented in Sec.
BImpact Excitation Tests with Hybrid SHPB^. At the impulse
level of 5.6 N · s, both the SHPB tests and the corresponding
FE simulation (see Fig. 8A-1/B-1) show two distinctively low
transmission frequency zones around 2 kHz and 8 kHz, which

are close to the harmonic base excitation results. However, as
the applied impulse increases, Fig. 8A/B show the appearance
of a new low transmission frequency zone around 5.5 kHz and
12 kHz, which are not observed from the harmonic base exci-
tation conditions. Recall that the reliable frequency ranges
from SHPB tests are adversely affected by the striker length.

In order to assure the appearance of impulse-
dependent low transmission frequency zone of the con-
sidered viscoelastic phononic crystal, we further con-
ducted a set of additional FE simulations, which are
free from the limitations relating to signal-to-noise ratios
and striker launching speeds. In the additional FE sim-
ulations, we selected 150 mm-long aluminum striker,
which provides the valid frequency limit up to 14 kHz
based on the single-bar impact test discussed in Sec.
BHybrid SHPB Configuration^. In order to achieve high
impulse, we increased its launching speed, instead of
using longer strikers. Striker launching speed in the
FE simulations were determined to provide similar im-
pulse magnitudes corresponding to the cases where var-
ious striker lengths were explored in Fig. 8b. For exam-
ple, 150 mm-long striker with the launching speed of
8 m/s produces the impulse of 5.5 N · s, which is close
to 5.6 N · s generated by using 50 mm-long striker with
the launching speed of 12.18 m/s. The results of the
additional FE simulations are summarized in Fig. 8c,
where the graphs in the same row have a similar mag-
nitude of impulse acting on the specimen. By compar-
ing the graphs in Fig. 8B/C side-by-side, the location of
low transmission frequency zones in Fig. 8c are well
compared with ones in Fig. 8b within the reliable fre-
quency limits despite the striker length difference. This
good agreement suggests that impulse serves as a proper
measure to investigate the nonlinear wave transmission
behavior of the considered viscoelastic phononic crys-
tals. As the applied impulse increases, Fig. 8c clearly
shows the appearance of the impulse-dependent low
transmission frequency zones near 5.5 kHz and
12 kHz. In particular, note that a second impulse-
dependent low transmission frequency zone around
12 kHz cannot be identified from the 250 mm-long
striker.

In order to further investigate the qualitative change in
transmission spectra affected by the applied impulse, we also
performed a series of FE simulations by sweeping various
striker launching velocities. Figure 9a shows a contour plot
of transmission coefficientCt(ω) of the considered viscoelastic
phononic crystal specimen. The contour plot clearly demon-
strates the evolution of transmission coefficient with respect to
the applied impulse. At low impulse (e.g., 5 N · s), there are
two low transmission frequency zones around 2 kHz and
8 kHz (dark brown color). However, new low transmission
frequency zones near 5.5 kHz and 12 kHz emerge around the
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impulse of magnitude 15 N·s and 18 N·s, respectively.
Practically, the nonlinear wave transmission behavior can also
be evaluated by using the ratio between the input force and the
output force acting on the phononic crystals. So, we intro-

duced an additional transmission coefficient spectra ~Ct ωð Þ ¼
Fout ωð Þk k = Fin ωð Þk k, where ‖Fout(ω)‖ and ‖Fin(ω)‖ denote

the output and input force spectrum, respectively. A contour

plot of force transmission coefficient ~Ct ωð Þ for the considered
viscoelastic phononic crystal is presented in Fig. 9b. Similar to

the results shown in Fig. 9a, the contour plot of ~Ct ωð Þ in Fig.
9b also distinctively illustrates the emergence of low transmis-
sion frequency zones at 5.5 kHz and 12 kHz as the applied
impulse increases. Together with the SHPB experiments
shown in Fig. 8a, these additional sets of simulation results
demonstrate that the impulse-dependent wave transmission
behavior can be experimentally investigated by adopting the
hybrid SHPB apparatus.

Conclusions

Viscoelastic polymers are commonly employed together with
metals as a constituent of phononic crystals to exploit high im-
pedance mismatch. Recently, there has been a rising interest in
the nonlinear wave transmission characteristics of phononic crys-
tals. However, due to the inherent damping properties of visco-
elastic polymers, conventional electrodynamic shakers and pie-
zoelectric actuators are not suitable to generate sufficiently large
excitation to induce nonlinear wave motion in viscoelastic
phononic crystals. Thus, experimental studies have been pre-
dominantly limited to the 1-D chain of beads under impact
exerted in customized impact apparatus. In this study,we propose
a hybrid SHPB system and examine it as a tool to study the
impulse-dependent wave characteristics of 1-D continuum visco-
elastic phononic crystals. The proposed hybrid SHPB apparatus
comprises an aluminum input bar and a nylon output bar in order
to resolve experimental challenges related to signal-to-noise ra-
tios and input impulse magnitudes. While the aluminum input
bar allows high forces acting on the specimen, the nylon output
bar improves the signal-to-noise ratio in the transmitted signals.

Using the hybrid SHPB apparatus, we observed some low trans-
mission frequency zones, which were not identified from the
linearly perturbed settings such as the analytical solution and
the electrodynamic shaker tests. We further conducted a series
of additional FE simulations to ensure the appearance of impulse-
dependent low transmission frequency zones of the considered
viscoelastic phononic crystal specimen. The additional sets of
simulations further illustrate the impulse-dependent evolution
of transmission coefficient, and they demonstrate that the
impulse-dependent wave transmission behavior can be experi-
mentally investigated by adopting the hybrid SHPB apparatus.

SHPB apparatus is widely used as a standard set-up for high
strain-rate tests of materials, and this study proposes a novel
utilization such that it can also be properly used for nonlinear
wave propagation characterisation of viscoelastic phononic crys-
tals. In this study, we investigated the compression SHPB setup
to evaluate wave transmission characteristics, but the experimen-
tal procedure and analysis presented in this study can also be
adopted to other SHPB setups such as tension [72, 73], torsion
[74, 75], and shear [76] loading conditions. Thus, this work
opens a new avenue to the conventional SHPB apparatus, which
can be employed to study the emerging research field of nonlin-
ear wave characteristics of phononic crystals.
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