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Sagittal Plane Waves in
Infinitely Periodic Multilayered
Composites Composed of
Alternating Viscoelastic and
Elastic Solids
In order to design phononic crystals whose band-gaps are located in low-frequency
ranges, researchers commonly adopt low stiffness polymeric materials as key constituents
and exploit the high impedance mismatch between metals and polymers. However, there
has been very little research on wave propagation at arbitrary angles in the sagittal
plane of viscoelastic-elastic multilayered composites because there exist the intricate
wave attenuation characteristics at the layer interfaces. The objective of our investigation
is to obtain analytical dispersion relation for oblique wave motion in the sagittal plane of
infinitely periodic multilayered composite composed of alternating viscoelastic and elas-
tic solids, where the attenuation of harmonic plane waves is found to occur only in the
direction perpendicular to the layers. By using this wave propagation characteristic, we
directly apply the semi-analytical approach employed in elastic multilayered composites
to calculate the dispersion relation of sagittal plane waves in alternating viscoelastic-
elastic multilayered composites. Specifically, we consider a bilayered composite
composed of alternating aluminum and polyurethane elastomer, whose complex-valued
viscoelastic moduli are experimentally determined by performing dynamic mechanical
analysis (DMA). The analysis shows that the alternating viscoelastic-elastic layered com-
posite does not possess a phononic band-gap regardless of incident angles. In addition,
wave motions at oblique angles are found to travel with a wide range of frequency con-
tents compared to wave motions perpendicular to the layers. The presented analysis dem-
onstrates that wave dispersion relation in viscoelastic-elastic layered composites is
distinctly different from the corresponding elastic counterpart, and highlights the impor-
tance of the viscoelastic modeling of polymeric materials in wave dispersion analysis.
[DOI: 10.1115/1.4039039]

1 Introduction

Elastic layered composites possess interesting wave characteris-
tics, so that they have been employed in numerous dynamic appli-
cations such as phononic band-gaps [1–8], negative effective
dynamic properties [9,10], tunable piezoelectric materials [11],
controllable thermal conductivity [12,13], acoustic rectifier
[14,15], and acoustic waveguide [16]. The intriguing applications
are mostly attributed to their particular phononic dispersion rela-
tion, which has been extensively investigated. The dispersion rela-
tions of elastic layered composites have been analytically
calculated for waves perpendicular to the layers [17–20]. For sag-
ittal plane waves at arbitrary directions, researchers have also
obtained the semi-analytical dispersion relations of elastic layered
composites [21–28]. Note that sagittal plane waves refer to the
coupled P-wave (pressure wave) and SV-wave (shear vertical
wave) [29–32], and Fig. 1 illustrates oblique angles in the sagittal
plane (i.e., x1 � x2 plane).

Elastic layered composites composed of metals show unique
wave characteristics typically at high frequency ranges (e.g., MHz
or higher), but unwanted vibrations and noises disturbing human
body are characterized by low frequency ranges (e.g., a few kHz
or lower) [33–35]. In order to bring down the available frequency

range of layered composites to practical ranges, researchers com-
monly choose polymeric materials as one constituent of compo-
sites and exploit the high impedance mismatch between metals
and polymers. Since experimental studies [36,37] showed that the
viscoelastic behavior of polymers affects the wave transmission
characteristics of layered composites, a group of researchers have
considered the viscoelasticity of polymers to study the wave char-
acteristics. However, studies investigating the comprehensive dis-
persion relation (i.e., frequency-wavenumber relation) of infinitely
periodic layered composites have been limited for wave propaga-
tion perpendicular to the layers [38–42]. For example, using
frequency-dependent complex moduli, Tanaka and Kon-No ana-
lytically studied the dispersion relations of waves perpendicular to
the layers in infinitely periodic layered composites composed of
viscoelastic and elastic solids (i.e., viscoelastic-elastic layered
composites) [38]. Similar studies have also been performed using
several numerical techniques, including finite difference method
[39], variational method [40], Fourier expansion method [41], and
plane wave expansion method [42].

It is also a noteworthy fact that another group of researchers
has intensively studied the transmission and reflection of oblique
wave motion in viscoelastic medium by addressing the intricate
wave attenuation characteristics at the viscoelastic layer interfaces
[43–52]. However, the effect of attenuation angle is studied only
for finite multilayered composites, where Bloch theorem is not
applied, so the complete dispersion relation cannot be obtained.
For instance, Borcherdt [45] has investigated mainly horizontal
wave (i.e., SH-wave) and Love surface wave in finite viscoelastic
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multilayered composites. Moreover, other researchers have stud-
ied only the transmission and reflection of waves in finite
viscoelastic-elastic layered composites [46,47,52], which have not
included the comprehensive dispersion relation.

The objective of our investigation is to obtain analytical disper-
sion relation for oblique wave motion in the sagittal plane of infin-
itely periodic multilayered composite composed of alternating
viscoelastic and elastic solids. In this study, we integrate the
above two groups’ approaches to wave motion. So, the attenuation
characteristics studied in the wave transmission and reflection at
viscoelastic interfaces are adopted to analytically study the disper-
sion relation of viscoelastic-elastic infinitely periodic multilayered
composites. The direction of wave attenuation in viscoelastic sol-
ids is generally found to be different from the direction of wave
propagation [47,53]. We first address the challenges of the sagittal
plane wave analysis in an arbitrary viscoelastic layered composite
and then focus on a class of infinitely periodic layered composites
composed of alternating viscoelastic and elastic solids (i.e., alter-
nating viscoelastic-elastic layered composites). Note that the
attenuation of harmonic plane waves occurs only in the direction
perpendicular to the layers in alternating viscoelastic-elastic mul-
tilayered composites [46,47,52]. Using this wave propagation
characteristic, we directly apply the semi-analytical approach
employed in elastic multilayered composites to find the dispersion
relation of sagittal plane waves in alternating viscoelastic-elastic
multilayered composites. Then, the dispersion relation of an alter-
nating viscoelastic-elastic layered composite is compared with its
elastic counterpart to illustrate the distinct effects of viscoelastic
properties. Furthermore, we present the transmission coefficient
and the group slowness, which efficiently illustrate the visco-
elastic effects on wave motions at various directions in the sagittal
plane. Section 2 reviews the analytical fundamentals and derives
the semi-analytical dispersion relation of the infinitely periodic
multilayered composites composed of alternating viscoelastic and
elastic solids. In Sec. 3, the derived semi-analytical solution is
adopted to calculate the dispersion relation of a specific bilayered
composite composed of alternating aluminum and polyurethane
elastomer. Discussion and conclusion are presented in Secs. 4 and
5, respectively.

2 Analysis

This section starts with a brief review of wave motions in iso-
tropic viscoelastic solids. Then, we revisit the generalized elasto-
dynamic Snell’s law by considering two semi-infinite viscoelastic
solids in contact and specialize it for viscoelastic-elastic

interfaces. The outcome of the specialized case for viscoelastic-
elastic interfaces is applied to investigate sagittal plane waves in
alternating viscoelastic-elastic multilayered composites.

2.1 Waves in Isotropic Viscoelastic Solids. Due to material
damping, wave propagation characteristics in viscoelastic solids
deviate from ones in elastic solids in many aspects [54,55]. In par-
ticular, the constitutive relation for a linear viscoelastic material is
often expressed in the form of the hereditary integral [56]. In the
absence of the body force, the equations for a homogeneous iso-
tropic viscoelastic solid can be summarized as

r � r x; tð Þ ¼ q€u x; tð Þ;

e x; tð Þ ¼
1

2
ru x; tð Þ þ ru x; tð ÞT
h i

;

r x; tð Þ ¼
ð1
�1

k t� sð Þ tr _e x; sð Þ
� �

1þ 2 l t� sð Þ _e x; sð Þ
h i

ds

(1)

where u x; tð Þ is the displacement field at the position x and time t,
r is the stress tensor, e is the strain tensor, 1 is the second-order
identity tensor, r is the nabla operator, tr � denotes the trace, q
is the constant mass density, and k and l are the relaxation moduli
[57]. Note that the causality requires k t� sð Þ ¼ l t� sð Þ ¼ 0 for
s > t in Eq. (1)3.

Now, we consider a harmonic wave motion characterized by an
angular frequency x

u x; tð Þ ¼ �u xð Þeixt; r x; tð Þ ¼ �r xð Þeixt; e x; tð Þ ¼ �e xð Þeixt (2)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and the overbar �� indicates the position-
dependent amplitude. Then, the substitution of Eq. (2) into Eq. (1)
provides the governing equation for the displacement field

k̂ xð Þþ2l̂ xð Þ
h i

r r��u xð Þ½ �� l̂ xð Þr�r��u xð Þþx2q�u xð Þ¼0

(3)

where k̂ xð Þ ¼ i x
Ð1
�1 k tð Þe�ixtdt and l̂ xð Þ ¼ i x

Ð1
�1 l tð Þe�ixtdt

are the complex viscoelastic moduli [58,59]. Subsequently, Helm-
holtz’s theorem [45] can be applied to decompose the displace-
ment field into the sum of a curl-free vector field and a
divergence-free vector field using a dilatation-related scalar

potential �U xð Þ and a rotation-related vector potential �H xð Þ

Fig. 1 (a) Infinitely periodic M-layered composite that is periodic along the x2-axis. The primi-
tive lattice vector a2 defines the unit cell of the composite with a periodic length a2 5 jja2jj. (b)
Unit cell of the M-layered composite in the two-dimensional (2D) sagittal plane where wave can
propagate in any direction by making angle h with the x2-axis. The periodic length of the inclined
wave is given by (a2 cos h). (c) Reciprocal space of the M-layered composite showing the first
Brillouin zone on the j12j2 plane. The rectangle on the right represents the IBZ which is
bounded by j2‰½0;p/a2� in the j2-axis. The propagating wavevector j describes wave motion at
an angle h which has periodic length p/(a2 cos h) in the reciprocal space.
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¼ �H1
�H2

�H3½ �T, i.e., �u xð Þ ¼ r�U xð Þ þ r � �H xð Þ with r � �H xð Þ
¼ 0. Then, Eq. (3) becomes two decoupled governing equations

k̂ xð Þ þ 2 l̂ xð Þ
h i

r2 �U xð Þ þ x2q �U xð Þ ¼ 0;

l̂ xð Þr2 �H xð Þ þ x2q �H xð Þ ¼ 0
(4)

where the first equation governs the wave motion of dilatation-
related disturbance, whereas the second one governs the rotational
wave propagation in viscoelastic solids. From the above equa-
tions, the dilatational wave velocity cp and the rotational wave
velocity cs are defined by

cp xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂ xð Þ þ 2 l̂ xð Þ

q

s
; cs xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
l̂ xð Þ

q

s
(5)

where the subscripts p and s indicate the pressure (i.e., longitudi-
nal or dilatational) and the shear (i.e., transverse or rotational)
waves, respectively. These complex-valued wave velocities imply
that plane waves in viscoelastic solids are dispersive and attenuat-
ing [58,60].

Furthermore, we consider a plane wave characterized by a com-
plex wavevector j

�u xð Þ ¼ �u eij�x ¼ �u eijn�x (6)

where �u is the displacement amplitude along the wave plane, j is
the wavenumber, and n is the vector indicating the direction of the
plane wave. The condition for the plane wave to satisfy the gov-
erning equation (3) results in the following eigenvalue problem:

1

qx2
k̂ xð Þ þ 2l̂ xð Þ
h i

n� nþ l̂ xð Þ1
h i

� �u ¼ 1

j2
�u (7)

where � denotes the tensor product. In order to obtain a nontrivial
wave motion �u xð Þ, we eventually obtain two sets of complex-
valued eigenvalues j and eigenvectors �u

jp xð Þ ¼ x
cp xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2

k̂ xð Þ þ 2l̂ xð Þ

s
; js xð Þ ¼ x

cs xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
qx2

l̂ xð Þ

s

(8)

�up ¼ n; �us ¼ m with m � n ¼ 0 (9)

which implies that the particle displacement of the pressure wave
is parallel to the direction of the wave propagation, whereas the
particle displacement of the shear wave is perpendicular to the
direction of the wave propagation. Here, the eigenvalues jp xð Þ
and js xð Þ can also be viewed as viscoelastic material properties
derived from the complex viscoelastic moduli k̂ xð Þ and l̂ xð Þ.

In general, wave propagation and wave attenuation can be
described by using a complex-valued wavevector j, which is
expressed by [47,52]

j ¼ jR þ i jI ¼ ĵRnR þ i ĵInI (10)

where the quantities denoted by the superscripts R and I are real-
valued; nQ ¼ jQ=jjjQjj for Q ¼ R; I with jj�jj denoting the
Euclidean norm; and the over-hat �̂ indicates the real-valued
magnitude with respect to the corresponding wavevector. Note
that nR and nI indicate the directions of wave propagation and
wave attenuation, respectively. In addition, ĵR describes the phase
of wave propagation, while ĵI is relating to the amplitude of wave
attenuation.

2.2 Plane Waves in Two Semi-Infinite Viscoelastic Solids
in Contact. Many researchers have investigated the oblique inci-
dences of waves at viscoelastic interfaces (i.e., interface between

two viscoelastic solids) [49,51,61,62] as well as at viscoelastic-
elastic interfaces (i.e., interface shared by elastic and viscoelastic
solids) [46,47]. This subsection briefly reviews the generalized
elastodynamic Snell’s law at viscoelastic interfaces. Then, Snell’s
law is applied to viscoelastic-elastic interfaces, which are encoun-
tered in the periodic multilayered composites composed of alter-
nating viscoelastic and elastic solids, i.e., the focus of this study.

When a propagating plane wave encounters an interface
between two viscoelastic solids, both refracted and reflected
waves occur. It is also well known that the direction of wave
attenuation in viscoelastic solids is generally different from the
direction of wave propagation [47,53]. We consider two visco-
elastic layers, which are in contact along the plane x2 ¼ 0 as
shown in Fig. 2. Then, the propagation angle h and the attenuation
angle f for each layer can be represented by [47]

hr;j ¼ cos�1 nR
r;j � e2

� �
; fr;j ¼ cos�1 nI

r;j � nR
r;j

� �
; for r ¼ p; s

and j ¼ 1; 2

(11)

The attenuation angle f is a unique wave characteristic of a visco-
elastic solid, and it is known to be dependent on the homogeneity
of a viscoelastic solid [63]. While a homogeneous plane wave is
characterized by f¼ 0, a wave with a nonzero value of f is
referred to as an inhomogeneous plane wave. For a plane wave
encountering the considered viscoelastic layer interface, the gov-
erning equations in Eq. (4) resolve wave motion into two
decoupled parts: anti-plane shear waves (i.e., SH-wave) and sagit-
tal plane waves (i.e., P- and SV-waves, which are the main con-
cern of this study). The wave motion of sagittal plane waves for
the j-th layer (j¼ 1, 2) is governed by

r2 �Uj xð Þ þ j2
p;j xð Þ �Uj xð Þ ¼ 0;

r2 �H3;j xð Þ þ j2
s;j xð Þ �H3;j xð Þ ¼ 0;

for j ¼ 1; 2 (12)

Subsequently, the general solution can be easily obtained by

�Uj xð Þ¼ �/F;je
i ĵR

p;jn
R
p;F;jþiĵ I

p;jn
I
p;F;jð Þ�xþ �/B;je

i ĵR
p;jn

R
p;B;jþiĵ I

p;jn
I
p;B;jð Þ�x;

�H3;j xð Þ¼ �hF;je
i ĵR

s;jn
R
s;F;jþiĵ I

s;jn
I
s;F;jð Þ�xþ �hB;je

i ĵR
s;jn

R
s;B;jþiĵ I

s;jn
I
s;B;jð Þ�x;

for

j¼1;2

(13)

where �/F;j;
�/B;j; �hF;j, and �hB;j are potential amplitudes to be

determined from boundary conditions at the viscoelastic layer
interface; and

nR
r;F;j ¼

sinhr;j

�coshr;j

" #
; nI

r;F;j ¼
sin hr;jþ fr;j

� �
�cos hr;jþ fr;j

� �
" #

;

nR
r;B;j ¼

sinhr;j

coshr;j

" #
; nI

r;B;j ¼
sin hr;jþ fr;j

� �
cos hr;jþ fr;j

� �
" #

;

for r¼ p; s

(14)

By substituting the general solution for �Uj and �H3;j into Helm-
holtz’s decomposition relation for the displacement, we can obtain
the sagittal plane displacement field of the j-th layer [64,45].
Then, the continuous displacement boundary conditions at the
layer interface (i.e., x2 ¼ 0) result in the following generalized
elastodynamic Snell’s law [45,49,51]:

ĵR
p;1 sin hp;1 ¼ ĵR

s;1 sin hs;1 ¼ ĵR
p;2 sin hp;j ¼ ĵR

s;2 sin hs;2;

ĵI
p;1 sin hp;1 þ fp;1

� �
¼ ĵI

s;1 sin hs;1 þ fs;1

� �
¼ ĵI

p;2 sin hp;2 þ fp;2

� �
¼ ĵI

s;2 sin hs;2 þ fs;2

� � (15)
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where the first relation is obtained from the equality of real-
valued components, whereas the second one is from that of
imaginary-valued components.

Now, we study a special case where the first layer (j¼ 1) is
elastic, while the second layer (j¼ 2) is viscoelastic (see Fig.
3(a)). Due to the nondissipative behavior of the elastic solid (i.e.,
jI

p;1 ¼ jI
s;1 ¼ 0 and see Eq. (10)), the wavevector relating to the

first elastic layer should be real-valued, and subsequently its imag-
inary components in the displacement field should vanish as well.
Consequently, the second equation in the generalized elastody-
namic Snell’s law (15) becomes [52]

ĵI
p;2 sin hp;2 þ fp;2

� �
¼ ĵI

s;2 sin hs;2 þ fs;2

� �
¼ 0 (16)

which determines the attenuation angle in the second viscoelastic
layer

fp;2 ¼ �hp;2; fs;2 ¼ �hs;2 (17)

The above constraint (17) driven by using the elastodynamic
Snell’s law implies that wave attenuation in the viscoelastic layer
occurs only in the direction perpendicular the layers (i.e.,
nI

p;2 � e1 ¼ nI
s;2 � e1 ¼ 0) regardless of wave propagation directions

(see Fig. 3). In other words, while their j2-components remain
complex, the j1-component of all the wavevectors becomes real

jI
r;j � e1 ¼ jI

r;j;1 ¼ 0; for r ¼ p; s and j ¼ 1; 2 (18)

where jI
r;j;1 denotes the j1-component of jI

r;j. Furthermore, a simi-
lar conclusion can be obtained from the case where the second
layer is elastic, while the first layer is viscoelastic, as shown in
Fig. 3(b). In this case, an incident wave oblique to the viscoelastic
layer attenuates within the viscoelastic layer in the direction dic-
tated by the attenuation angle f. However, the reflected wave at
the viscoelastic-elastic layer interface will attenuate only in the
direction perpendicular to the layer following the elastodynamic
Snell’s law.

In summary, due to the nondissipative characteristics of the
adjacent elastic layer, the wave attenuation behavior in
viscoelastic-elastic interfaces is different from that in homogene-
ous viscoelastic solids or viscoelastic layered composites. Within
each interspersed viscoelastic layer, the wave propagation direc-
tion may have a component parallel to the layer as shown in Fig.
3. However, the existence of interspersed elastic layer prevents
the wave attenuation component parallel to the layer, and this
argument is also discussed in Refs. [46], [47], and [52]. In particu-
lar, this characteristic is noteworthy to the study of wave analysis
in alternating viscoelastic-elastic layered composites. Although
incident waves within each individual viscoelastic layer attenuate
in the direction dictated by the attenuation angle, reflected and
refracted waves (i.e., resulting propagating waves) in the layered
composites do not attenuate in the direction parallel to the layers
due to the existence of elastic layers. This compelling wave char-
acteristic of elastic-viscoelastic interfaces will be employed to
investigate the analytical dispersion relation of alternating elastic-
viscoelastic multilayered composites in Sec. 2.3.

2.3 Sagittal Plane Waves in Periodic Multilayered Compo-
sites Composed of Alternating Viscoelastic and Elastic Solids.
The analytical dispersion relation of elastic multilayered compo-
sites has been reported for sagittal plane waves at arbitrary direc-
tions [25,26,28]. Assuming harmonic wave motion, the solution
of a viscoelastic problem is known to be similar to that of the elas-
tic analog problem with elastic constants replaced by their visco-
elastic counterpart [58]. However, there has been very little
research on sagittal plane waves in viscoelastic multilayered com-
posites because one cannot directly apply the analytical approach
developed for elastic multilayered composites to the case of visco-
elastic multilayered composites due to intricate wave attenuation

characteristics at layer interfaces [45,49,51]. The challenge is
briefly described in the following.

In the case of elastic multilayered composites, the dispersion
relation of sagittal plane wave needs to be presented in a three-
dimensional (3D) x� j plot, i.e., x over the j1 � j2 plane,
where both j1 and j2 are real-valued. For instance, considering
the symmetry of multilayered composites shown in Fig. 1, the
valid range for the j1-axis is j1 2 0;1ð Þ, while j2 should range
over the first irreducible Brillouin zone (IBZ), i.e., j2 2 0;p=a2ð Þ,
where a2 is the unit-cell length [28,65]. Typically, the governing
equation can be solved to find j2 for a given real-valued set of
j1;xð Þ. Then, by sweeping j1 2 0;1½ Þ and x 2 0;1½ Þ, one can

obtain the complete picture of the dispersion relations of elastic
multilayered composites [21–26,28].

On the other hand, sagittal plane waves in viscoelastic multilay-
ered composites are described by using a complex wavevector
j ¼ j1 j2½ �T, where both j1 and j2 are complex-valued. Accord-
ingly, in the case of viscoelastic multilayered composites, the
complete dispersion relation of sagittal plane waves needs to be
presented in a plot of x over j (¼ jR þ i jI) domain, which can-
not be represented in the conventional 3D space. Thus, the analyt-
ical approach sweeping a real-valued wavenumber over a domain
cannot be applicable to the arbitrary viscoelastic multilayered
composites, where the wavevector j1 is complex-valued. How-
ever, when the viscoelastic layer is attached to an elastic layer,
Eq. (18) indicates that wave attenuation in a viscoelastic layer
occurs only in the direction perpendicular to the layers, i.e., zero
j1-component of jI . Thus, this wave propagation characteristic
(i.e., real-valued j1-component) enables us to directly apply the
analytical approach employed in elastic multilayered composites
to the dispersion relation of alternating viscoelastic-elastic multi-
layered composites. Based on our previous study on the elastic
multilayered composites [28], we present a brief procedure in the
remainder of this subsection.

As illustrated in Fig. 1(a), we consider a multilayered compos-
ite composed of alternating viscoelastic and elastic solids. The
considered composite has M layers per unit cell, and it is infinitely
periodic along the x2-axis. The sagittal plane for this composite is
given by the x1 � x2 plane, and the corresponding wavevector
domain is represented by the j1 � j2 plane, where j1 is real-val-
ued while j2 is complex-valued. The j-th layer of the composite
has thickness dj, so that the periodic unit-cell length a2 of the com-

posite is obtained by a2 ¼
PM

j¼1 dj. In addition, x2;j;n represents

the local x2-coordinate for the j-th layer. Note that a subscript j is
employed to refer the characteristics of the j-th layer (e.g.,

k̂j; l̂ j; cp;j; cs;j; jp;j; js;j).

The general solution of the potentials for the sagittal plane
wave motion in the j-th layer is presented in Eq. (13). Applying
this general solution to Helmholtz’s decomposition, we obtain the
displacement field of sagittal plane waves for the j-th layer in the
n-th unit cell of the multilayered composite

�u1;j;n x1; x2;j;nð Þ ¼
@ �Uj

@x1

þ @ �H3;j

@x2;j;n

¼ �j1

a p;j
PF;j;ne�iap;jx2;j;n þ j1

a p;j
PB;j;neiap;jx2;j;n

	
þQF;j;ne�ias;jx2;j;n þ QB;j;neias;jx2;j;n

�
eij1x1 ;

�u2;j;n x1; x2;j;nð Þ ¼
@ �Uj

@x2;j;n
� @

�H3;j

@x1

¼ PF;j;ne�iap;jx2;j;n þ PB;j;neiap;jx2;j;n þ j1

a s;j
QF;j;ne�i as;jx2;j;n

	

�j1

a s;j
QB;j;nei as;jx2;j;n



ei j1x1

(19)

where ap;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp;j xð Þ
� �2 � j2

1

q
and as;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
js;j xð Þ
� �2 � j2

1

q
are

the frequency-dependent complex coefficients relating to the
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propagation and attenuation angles; and PF;j;n ¼ �iap;j
�/F;j; PB;j;n ¼ iap;j

�/B;j; QF;j;n ¼ �ias;j
�hF;j, and PB;j;n ¼ ias;j

�hB;j are the frequency-

dependent complex amplitudes to be determined from boundary conditions. Moreover, the stress field can also be obtained for the j-th
layer of n-th unit cell

�r21;j;n x1; x2;j;nð Þ ¼ l̂j 2
@2 �Uj

@x1@x3

� @
2 �H3;j

@x2
1

þ @
2 �H3;j

@x2
2;j;n

 !

¼ l̂j 2PF;j;nj1e�iap;jx2;j;n þ 2PB;j;nj1eiap;jx2;j;n þ QF;j;n

j2
1 � a2

s;j

� �
as;j
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Here, for the j-th layer in the n-th unit-cell, we introduce a complex-valued amplitude vector Wj;n

Wj;n ¼

PF;j;n

PB;j;n

QF;j;n

QB;j;n

2
664

3
775 (21)

Then, the successive application of the continuous displacement and stress boundary conditions to all the layer interfaces in n-th unit-

cell results in the following relation between the adjacent unit-cells [28]:

W1;nþ1 ¼ TW1;n (22)

where

T ¼ T x;j1ð Þ ¼ R�1
1

YM
j¼2
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�1
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1
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(24)

Dj ¼
e�iap;jdj 0 0 0

0 eiap;jdj 0 0

0 0 e�ias;jdj 0

0 0 0 eias;jdj

2
664

3
775 (25)

where T is the transfer matrix determining the relation between the complex-valued amplitude vectors of adjacent unit-cells in the sagit-

tal plane. Note that the obtained transfer matrix for the sagittal plane of alternating viscoelastic-elastic multilayered composites is analo-

gous to its elastic counterpart derived in our previous study [28]. In addition, the Bloch periodic condition provides the second relation

between adjacent unit-cells [66]

W1;nþ1 ¼ eij2a2 W1;n (26)

Now, the substitution of the Bloch periodic condition (26)–(22) provides an eigenvalue problem

TW1;n ¼ eij2a2 W1;n (27)

where eij2a2 and W1;n are the eigenvalue and the eigenvector of the transfer matrix T, respectively. For a given set of a real-valued

wavenumber j1 2 0;1½ Þ and a real-valued angular frequency x 2 0;1½ Þ, the eigenvalue problem can be solved to obtain a nontrivial

complex-valued amplitude vector W1;n and the corresponding complex-valued wavenumber j2. By setting eij2a2 ¼ g, Cayley–Hamilton

theorem [67] provides the fourth-order characteristic polynomial of the transfer matrix T
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g4 � g3g
3 þ g2g

2 � g1gþ g0 ¼ 0 (28)

where

g3 x;j1ð Þ ¼ g1 x;j1ð Þ ¼ tr Tð Þ;

g2 x;j1ð Þ ¼
1

2
tr Tð Þð Þ2 � tr T2ð Þ

h i
;

g0 x;j1ð Þ ¼ 1

(29)

Here, the symmetry of the solutions is adopted to simplify the
polynomial coefficients g3¼ g1 and g0 ¼ 1 [28]. Consequently,
for a given real-valued set of j1;xð Þ, a complex-valued wave-
number j2 can be determined by solving the characteristic polyno-
mial (28) [28] and it is eventually determined from the following
nonlinear equation:

cos j2a2ð Þ ¼
1

4
g3 x; j1ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 x;j1ð Þ½ �2 � 4g2 x; j1ð Þ þ 8

q	 

(30)

It is again worth mentioning that the obtained dispersion relation
(30) of sagittal plane waves for alternating viscoelastic-elastic
multilayered composites is similar to its elastic counterpart
derived in our previous study [28], except that material properties
k̂ xð Þ and l̂ xð Þ are frequency-dependent and complex-valued in
this study. Interested readers may refer to our previous study [28]
on the dispersion relation of infinitely periodic multilayered elas-
tic composites.

3 Results

In this section, we consider a specific periodic bilayered com-
posite composed of alternating a metal and a viscoelastic polymer
and investigate the dispersion relation of sagittal plane waves at
four different angles: h ¼ 0 deg; 15 deg; 30 deg, and 60 deg.
Using Eq. (30), we obtain the analytical dispersion relation of the
considered layered composite. In order to illustrate the distinct
effects of viscoelastic properties, we also consider an elastic coun-
terpart of the alternating polymer-metal composite, taking only
the static, elastic properties of the polymer and neglecting its
damping properties. In addition to the complex-valued dispersion
relation, the transmission coefficient and the group slowness are
calculated.

3.1 Geometry and Materials of the Considered Composite.
To study the dispersion relation of sagittal plane waves, we con-
sider a specific bilayered composite composed of alternating alu-
minum (aluminum 6061-T6) and polyurethane elastomer
(Hapflex-560 from Hapco Inc., Hanover, MA). The subscripts 1
and 2 denote the aluminum layer and the polyurethane layer,
respectively. The unit-cell of the composite comprises an alumi-
num layer of d1 ¼ 10 mm and a polyurethane layer of
d2 ¼ 10 mm, so that the unit-cell length along the x2-axis is
a2 ¼ d1 þ d2 ¼ 20 mm.

For the material properties of aluminum, we use the mass density

of q1 ¼ 2700 kg=m3 and the frequency-independent elastic moduli
of k1 ¼ 51:1 GPa and l1 ¼ 26:3 GPa. On the other hand, the
complex-valued viscoelastic moduli of the considered polyurethane
are experimentally determined by performing dynamic mechanical
analysis (DMA) using RSA-G2 Solids Analyzer from TA Instru-
ments. Two different samples were tested, and the deviation was
very small, showing only around 1% for both storage and loss mod-
ulus of polyurethane elastomer. From the experiments, we obtain

the complex-valued tensile modulus Ê2 xð Þ ¼ Ê
0
2 xð Þ þ i Ê

00
2 xð Þ

and shear modulus l̂2 xð Þ ¼ l̂ 02 xð Þ þ i l̂002 xð Þ, where �0 and �00

denote the storage modulus and the loss modulus, respectively.

Then, k̂2 xð Þ is determined through the relation

k̂2 ¼ l̂2 Ê2 � 2l̂2

� �� �
= 3l̂2 � Ê2

� �
. The experimentally obtained

complex moduli (i.e., k̂2 xð Þ and l̂2 xð Þ) of polyurethane are pre-

sented in Fig. 4, where the linear frequency denoted by f ¼ x= 2pð Þ
is employed instead of the angular frequency x. The mass density

of the considered polyurethane is q2 ¼ 1060 kg=m3.
In order to highlight the effects of viscoelastic properties in the

dispersion analysis of sagittal plane waves, we explore two sets of
material models for the considered composite: one set with elastic
aluminum and viscoelastic polyurethane models and the other
with elastic aluminum and pseudo-elastic polyurethane models.
Here, for pseudo-elastic polyurethane model, we extract the

frequency-independent elastic moduli (i.e., k̂
pe

2 ¼ 41:5 MPa and

l̂pe
2 ¼ 6:76 MPa; see the dotted lines in Fig. 4) from its storage

Fig. 2 (a) P-wave with a wavevector jp;1 (i.e., jp;1 5 jR
p;11ijI

p;1)
incidents at the interface between viscoelastic layers 1 and 2
with a propagation angle hp;1 and an attenuation angle fp;1. (b)
Reflected and transmitted P-waves in layers 1 and 2, respec-
tively. The propagation and attenuation wavevectors are repre-

sented by jR
p;j and jI

p;j (for j 5 1, 2), respectively. (c) Reflected

and transmitted SV-waves in layers 1 and 2, respectively. The
propagation and attenuation wavevectors are represented by

jR
s;j and jI

s;j (for j 5 1, 2), respectively. Note that the angles of

propagation and attenuation waves are denoted by hr ;j and fr ;j

(for j 5 1, 2 and r 5 p; s), respectively.
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moduli at the zero frequency (f¼ 0), which can be viewed as a
long-term static behavior.

3.2 Complex-Valued Dispersion Relations. For the consid-
ered periodic bilayered composite composed of alternating poly-
urethane and aluminum, the analytical expression of the
dispersion relation (30) can provide the complete dispersion rela-
tion of the sagittal plane in the complex wavevector domain.
Here, due to the existence of elastic layers, plane waves attenuate

only in the direction perpendicular to the layers (i.e., jI � e1 ¼ 0

and see Fig. 3), so the propagation and the attenuation characteris-
tics of sagittal plane waves can be formally presented in the two

3D plots of x over the jR
1 � jR

2 plane and x over the jR
1 � jI

2

plane. In this study, the effects of viscoelasticity on sagittal plane
waves are investigated by considering harmonic plane waves at
four different incident angles, h ¼ 0 deg; 15 deg; 30 deg, and

60 deg, where h ¼ cos�1 jR=jjjRjj � e2

� �
(see Fig. 1). By consider-

ing the symmetricity of wave motion, we present the dispersion
relation of sagittal plane waves at the propagation angle of h in

two 2D plots: one with jR
h � f and the other with jI

2 � f , where

Fig. 3 (a-1) Incident P-wave having a wavevector jR
p;1 at an angle hp;1 from the elas-

tic medium at the interface between elastic and viscoelastic layers 1 and 2.
Reflected and transmitted (a-2) P-waves and (a-3) SV-waves having characterized by

the propagation wavevectors jR
r ;j (for j 5 1, 2 and r 5 p; s) for both layers and the

attenuation wavevectors jI
r ;2 for the viscoelastic layer. (b-1) Incident P-wave having

a wavevector jR
p;1 at an angle hp;1 from the viscoelastic medium at the interface

between elastic and viscoelastic layers 1 and 2. Reflected and transmitted (b-2) P-
waves and (b-3) SV-waves having characterized by the propagation wavevectors jR

r ;j

(for j 5 1, 2 and r 5 p; s) for both layers and the attenuation wavevectors jI
r ;2 for the

viscoelastic layer. Note that the propagation angles in the layers are denoted by hr ;j

and the attenuation angles in the viscoelastic layer are shown by fr ;2.
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jR
h ¼ jR

2= cos h. Note that jR
h denotes the wavenumber in the

direction of the wave propagation angle h, and the representation
scheme is illustrated in Fig. 5. In other words, for a given real-
valued set of (j1, x), a complex-valued wavenumber j2

(¼ jR
2 þ i jI

2) is calculated from Eq. (30). Then, the real compo-

nent jR
h is obtained from identifying the intersections of the h-

plane and the collection of the calculated jR
2 . Accordingly, the

associated imaginary component jI
2 is found and is projected on

the jI
2 � f plane. For a given frequency, we observe that more

than two wave modes can exist at arbitrary oblique angles (see
Figs. 6 and 7).

Figure 6 presents the dispersion relations of sagittal plane
waves in the alternating polyurethane-aluminum bilayered com-
posite, where polyurethane is modeled as a pseudo-elastic mate-
rial model using elastic properties extracted from a long-term
static behavior. Similarly, Fig. 7 shows the corresponding disper-
sion relations of the considered bilayered composite, where poly-
urethane is modeled as a viscoelastic material model using the
measured complex moduli shown in Fig. 4. While the left col-
umns of Figs. 6 and 7 show the wave attenuation characteristics

represented in the jI
2 � f space, the right columns present the dis-

persion relation represented in the jR
h � f space. Due to the appli-

cation of the Bloch periodic boundary condition (26), the real part

of wavenumber jR
h (i.e., propagation characteristics) is confined

within the IBZ (i.e., jR
h 2 0; p= a2 cos hð Þ

� �
) as shown in the right

columns of Figs. 6 and 7. On the other hand, the left columns

show that the imaginary part of wavenumber jI
2 is unbounded

(i.e., jI
2 2 0;1½ Þ) since wave attenuation is not restrained by the

periodicity of the composite.

3.3 Group Slowness and Transmission Coefficient. In
order to qualitatively investigate the wave transmission character-
istics in the considered composite, we further calculate the group
slowness and the transmission coefficient from the obtained dis-
persion relation. The group slowness Sg is defined as the inverse
of group velocity [68], and it measures the rate of change in wave-
number with respect to angular frequency

Sg ¼
djR

h

dx
(31)

The group slowness has been adopted to investigate wave direc-
tionality in iso-frequency surfaces [69,70], locally resonant

characteristics [71,72], and sound absorption [73,74]. Since its
definition is closely related to the density of states, the group
slowness also describes the number of wave modes per unit fre-
quency range. In other words, high group slowness values at a
specific frequency imply an abundance of wave modes in the con-
sidered media. In this study, the group slowness is calculated from
the real part of the wavenumber j2 (i.e., recall jR

h ¼ jR
2= cos h),

and it is presented in the right columns of Figs. 8 and 9 for the
pseudo-elastic material model and the viscoelastic material model,
respectively.

In addition to the group slowness which is governed by the
phase of waves, we also compute the transmission coefficient
from the imaginary part of the wavenumber j2. The transmission
coefficient is commonly used to investigate the attenuation char-
acteristics of periodic layered composites [5,20,75–80]. Recall
that the Bloch periodic condition can also be established between
n-th and nþ Nð Þ-th unit-cell amplitude vectors

Fig. 4 Viscoelastic properties of polyurethane elastomer obtained by DMA. (a) Frequency-dependent
modulus k̂(x). (b) Frequency-dependent modulus k̂(x). The storage and the loss moduli are represented
by circle- and square-marked solid lines, respectively. Note that the shaded areas denote one standard
deviation from two DMA tests. The constant modulus of pseudo-elastic approximation is shown by dot-
ted lines.

Fig. 5 A schematic view of representing the complex-valued

dispersion relation (j 5 ½j1 jR
2 �

T1i ½0 jI
2�

T and f) in the two-

dimensional plots (i.e., jR
h 2f and jI

22f ). The phase dispersion
relation is shown by a solid line in the wave propagation plane

inclined at an angle h on the j12jR
2 plane. The inclined length

of the phase dispersion plane is p/a2 cos h, 0 which is the pro-

jection length of p/a2 on the jR
2 -axis. As a demonstration, three

exemplary points of jR
h 2f are projected on the jI

22f plane,
which represents the corresponding attenuation relation.
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Fig. 6 Complete dispersion analysis results of the pseudo-elastic composite showing attenuation rela-
tions jI

22f for wave motions at (a-1) h 5 0 deg, (b-1) h 5 15 deg, (c-1) h 5 30 deg, and (d-1) h 5 60 deg. The
phase dispersion relations jR

h 2f are illustrated for wave motions at (a-2) h 5 0 deg, (b-2) h 5 15 deg, (c-2)
h 5 30 deg, and (d-2) h 5 60 deg. Note that the range of the wavevector jR

h ‰½0;p/(a2 cos h)� within the IBZ
varies with the propagation angle.
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W1;nþN ¼ eij2Na2 W1;n (32)

where Na2 denotes the distance between the two considered
unit-cells. In this study, we define the transmission coefficient

by taking the displacement amplitude ratio between an inci-
dent wave and the corresponding transmitted wave. By sub-
stituting j2 ¼ jR

2 þ i jI
2, the transmission coefficient Ct is

defined by

Fig. 7 Complete dispersion analysis results of the viscoelastic-elastic composite showing attenua-

tion relations jI
22f for wave motions at (a-1) h 5 0 deg, (b-1) h 5 15 deg, (c-1) h 5 30 deg, and (d-1)

h 5 60 deg. The phase dispersion relations jR
h 2f are illustrated for wave motions at (a-2) h 5 0 deg,

(b-2) h 5 15 deg, (c-2) h 5 30 deg, and (d-2) h 5 60 deg. Note that the range of the wavevector

jR
h ‰½0; p/(a2 cos h)� within the IBZ varies with propagation angles.
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Ct ¼
jjW1;nþN jj
jjW1;njj

¼ e�jI
2
Na2 (33)

where the Euclidean norm jj�jj is adopted for the magnitude of
the complex-valued amplitude vectors. Note that the transmission
coefficient becomes unity (i.e., Ct¼ 1) as jI

2 decreases to zero
(i.e., jI

2 ¼ 0). On the other hand, the transmission coefficient

converges to zero (i.e., Ct¼ 0) as N increases for jI
2 > 0. The

magnitude of the transmission coefficient of viscoelastic-elastic
layered composites is significantly affected by N. In this study, the
transmission coefficient is calculated by selecting N¼ 3 to high-
light the difference of the transmission coefficient profiles. The
left columns of Figs. 8 and 9 show the transmission coefficients of
the pseudo-elastic material model and the viscoelastic material
model, respectively. When it comes to the interpretation of the

Fig. 8 Transmission coefficient Ct of the pseudo-elastic composite
calculated from Eq. (33) for wave motion at (a-1) h 5 0 deg, (b-1)
h 5 15 deg, (c-1) h 5 30 deg, and (d-1) h 5 60 deg. Group slowness Sg

obtained using Eq. (31) for wave motion at (a-2) h 5 0 deg, (b-2)
h 5 15 deg, (c-2) h 5 30 deg, and (d-2) h 5 60 deg.
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attenuation characteristics of waves, a transmission coefficient
plot is more practical than the attenuation plot of jI

2 � f because
an experimentally measured transfer function can be directly com-
parable to the corresponding transmission coefficient plot.

4 Discussion

This section describes the outcome of various wave characteristic
measures obtained from the analytical dispersion relation (30)
regarding wave motion in the alternating viscoelastic-elastic

infinitely periodic multilayered composites. In addition, we demon-
strate that wave dispersion relation in viscoelastic-elastic layered
composites is distinctly different from the corresponding elastic
counterpart, and it highlights the importance of the viscoelastic
modeling of polymeric materials in wave dispersion analysis.

4.1 Wave Characteristic Measures Obtained From Ana-
lytical Dispersion Relation. At oblique incident waves, Figs. 6
and 7 show the multimodal behavior (i.e., more than two modes)

Fig. 9 Transmission coefficient Ct of periodic the viscoelastic-elastic
composite calculated from Eq. (33) for wave motion at (a-1) h 5 0 deg,
(b-1) h 5 15 deg, (c-1) h 5 30 deg, and (d-1) h 5 60 deg. Group slowness
Sg obtained using Eq. (31) for wave motion at (a-2) h 5 0 deg, (b-2)
h 5 15 deg, (c-2) h 5 30 deg, and (d-2) h 5 60 deg.
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in jR
h � f plots and spiral intersections in jI

2 � f plots. As we
describe in Sec. 3.2, this phenomenon is indebted to the two-

dimensional representation (i.e., jR
h � f and jI

2 � f ) of the

complex-valued dispersion relation (i.e., relation between j ¼
j1 jR

2

� �T þ i 0 jI
2

� �T
and f) of the considered layered composite.

As we illustrate in Fig. 5, the results shown in Figs. 6 and 7 can be
viewed as the projection of the complex-valued dispersion relation

onto the jR
h � f and jI

2 � f planes for a given frequency value.
Wave propagation perpendicular to the layers is characterized

by h¼ 0 (consequently, j1 ¼ 0; see Fig. 5), and it contains only
two uncoupled wave modes at any given frequency as shown in
Figs. 6(a-1) and 7(a-1). For wave motion at oblique angles with
h > 0, the wavenumber j1 varies within the Brillouin zone (i.e.,
0 � j1 � p=a2ð Þtan h), and Eq. (30) provides a pair of eigenval-
ues possessing coupled wave modes (see Ref. [28]). Note that the
dispersion relations in Figs. 6 and 7 are obtained by intersecting
the oblique jR

h � f plane with the continuous evolution of the
eigenvalue pair on the j1 � f plane. Thus, the identified dispersion
relation may result in more than two coupled modes on the pro-
jected jR

h � f plane at a given frequency and may engender spiral
intersections on the jI

2 � f plane (see Figs. 7(b)–7(d)). It is worth
noting that the multimodal behavior on the jR

h � f plane is accom-
panied by spiral intersections on the jI

2 � f plane. A representa-
tive example can be found near f � 9 kHz. Tamura and Wolfe
[19] have also reported a similar phenomenon for wave motion at
oblique angles in infinitely periodic elastic layered composites.

From the identified complex-valued dispersion relation from
Eq. (30) (i.e., results in Figs. 6 and 7), we also analytically calcu-
late the group slowness Sg and transmission coefficient Ct (see
Figs. 8 and 9), which are frequently adopted to evaluate qualita-
tively the wave characteristics of phononic crystals. The physical
meaning of the group slowness (see Eq. (31)) resembles that of
the density of states, which measures the number of states (or
wave modes) at each frequency. In other words, high group slow-
ness values at a specific frequency imply an abundance of wave
modes in the considered media. The high peaks in the group slow-
ness plots (Figs. 8 and 9) correspond to nearly horizontal disper-

sion relation (i.e., jR
h � f plot) in Figs. 6 and 7. On the other hand,

the zero group slowness value indicates absolutely no wave propa-
gation through the medium, and it clearly identifies the complete
phononic band-gaps for the pseudo-elastic composite at the inci-
dent angle h¼ 0 deg (see Figs. 6(a-2) and 8(a-2)). For the
viscoelastic-elastic layered composite, however, the group slow-
ness investigation shows that there is no complete phononic band-
gaps regardless of the incident angle due to the simultaneous
wave propagation and attenuation in the medium (see Fig. 8, right
column). Note that the behavior of the group slowness is highly
localized along the frequency because it is defined by the deriva-
tives of wavenumber with respect to frequency.

While the group slowness Sg focuses on wave modes in
medium, the transmission coefficient Ct defined in Eq. (33) is
relating to amplitude attenuation. A high transmission coefficient
indicates low wave attenuation. In the pseudo-elastic layered com-
posite, the maximum transmission coefficient value is predomi-
nantly one at oblique incident angles, indicating high wave
transmission (see Fig. 8, left column). However, the transmission
coefficient plots for the viscoelastic-elastic layered composite
show a large wave attenuation only near a low frequency range
(i.e., below 10 kHz). Furthermore, the spiral intersections
observed in the jI

2 � f plot do not necessarily induce an abnormal
wave attenuation behavior because the definition of the transmis-
sion coefficient is dependent on only the value of jI

2.

4.2 Pseudo-Elastic Layered Composite Versus Viscoelastic-
Elastic Layered Composite. In the dispersion relation of pseudo-
elastic layered composites, the wavenumber j2 can be among
pure real number, pure imaginary number, or complex conjugate
pair, which represent propagating band, attenuating band, and

anticrossing band induced from the mixed mode interaction,
respectively [19,29–32,81]. For waves perpendicular to the
layers (i.e., h ¼ 0 deg), the dispersion relation in Figs. 6(a-1) and
6(a-2) depicts several complete stop bands (e.g., around
5 kHz; 7 kHz; 12 kHz; 15 kHz), which are characterized by non-

zero jI
2 with an infinite group velocity df=djR

h . Furthermore, we
also confirm the existence of those stop bands from the transmis-
sion coefficient and the group slowness in Figs. 8(a-1) and 8(a-2).
Note that vertical lines on the right edge of the dispersion relations

jR
h � f in the right columns of Fig. 6 represent a stop band for the

considered wave mode, indicating df=djR
h ¼ 1. However, all

those complete stop bands disappear at oblique angles. In Figs.
8(b)–8(d) from the pseudo-elastic material model, we observe ver-
tical lines in the transmission coefficient (i.e., Ct¼ 1), represent-

ing propagating wave modes with jI
2 ¼ 0. In other words, the

transmission coefficient of unity in Figs. 8(b)–8(d) shows that
there exists at least one propagating wave mode within the consid-
ered frequency ranges (i.e., up to 20 kHz).

On the other hand, Fig. 7 shows the dispersion relation of sagittal
plane waves in the alternating polyurethane-aluminum bilayered
composite, where polyurethane is modeled as a viscoelastic mate-
rial using the measured complex moduli shown in Fig. 4. The
wavenumber j2 in the dispersion relation of viscoelastic-elastic
composite is always complex-valued due to the presence of inher-
ent material damping of viscoelastic layers, implying that there are
neither complete stop bands nor propagation bands without any
attenuation. In other words, the dispersion relations of Fig. 7 illus-
trate that all the modes of sagittal plane waves in viscoelastic-
elastic layered composites are simultaneously propagating and
attenuating. No complete band-gap is observed even for wave
propagation perpendicular to the layers [38,82], but Figs. 7 and 9
indicate that there exist some low wave transmission regions. For
instance, Fig. 9(a-1) shows that frequency contents above 7 kHz at
h ¼ 0 deg substantially attenuate within a distance of three unit-
cells (i.e., N¼ 3). This wave motion in viscoelastic-elastic layered
composites is distinctly different from that in the elastic counterpart
composites, whose analysis results are shown in Fig. 8(a-1). Simi-
lar trends can also be observed in the cases of different incident
angles shown in the left column of Fig. 9. However, we find that
wave motions at oblique angles can travel with a wide range of fre-
quency contents, compared to the case of the incident angle of
h¼ 0 deg. Note that the largest envelope of a transmission coeffi-

cient plot is determined by the smallest jI
2 envelope due to the defi-

nition of the transmission coefficient in Eq. (33). Thus, the left
column of Fig. 9 implies that the use of viscoelastic layers can pre-
vent high frequency wave motions (e.g., >15 kHz), but there is not
much attenuation in low frequency wave motions (e.g., <7 kHz)
regardless of wave propagation directions. Consequently, Fig. 9
clearly shows that the viscoelastic material model reveals the dis-
tinctive wave attenuation, which cannot be captured by the pseudo-
elastic material model (see Fig. 8). In addition, there is another
noteworthy feature in the overall distribution of phase dispersion

relation jR
h � f of a viscoelastic-elastic layered composite, com-

pared to that of the elastic counterpart. The right column of Fig. 7
shows that wave modes in viscoelastic-elastic layered composite
are placed in the higher frequency ranges than those in the pseudo-
elastic model, and this is due to the employment of the frequency-
dependent moduli. Note that Fig. 4 exhibits that the frequency-
dependent viscoelastic storage moduli of polyurethane is getting
stiffer as frequency increases, whereas the pseudo-elastic material
model has the frequency-independent elastic moduli.

5 Conclusion

In designing phononic crystals whose band-gaps are located in
low-frequency ranges, researchers commonly adopt low stiffness
polymeric materials as a key constituent to obtain the high imped-
ance mismatch between metals and polymers. However, the
majority of analytical and numerical studies on metal-polymer
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dispersion relation consider only the elastic behavior of polymeric
materials, ignoring their inherent viscoelastic properties. In this
study, we analytically investigate dispersion relation for oblique
wave motion in the sagittal plane of infinitely periodic multilay-
ered composite composed of alternating viscoelastic and elastic
solids, where the attenuation of harmonic plane waves is found to
occur only in the direction perpendicular to the layers. By using
this wave propagation characteristic, we directly apply the semi-
analytical approach employed in elastic multilayered composites
to find the dispersion relation of sagittal plane waves in alternating
viscoelastic-elastic multilayered composites.

Furthermore, this study shows that the presented analytical dis-
persion relation can provide various wave characteristic measures
in the alternating viscoelastic-elastic infinitely periodic multilay-
ered composites. We consider a specific bilayered composite com-
posed of alternating aluminum and polyurethane elastomer, whose
complex-valued viscoelastic moduli are experimentally deter-
mined by performing DMA. In order to illustrate the distinct
effects of its viscoelastic properties, the wave motion of the alter-
nating viscoelastic-elastic layered composite is compared with
that of its elastic counterpart, where the frequency-independent
elastic moduli of polyurethane elastomer are extracted from its
storage moduli at the zero frequency. The analysis shows that the
alternating viscoelastic-elastic layered composite does not possess
a phononic band-gap, regardless of incident angles. In addition,
wave motions at oblique angles (other than h ¼ 0 deg) are found
to travel with a wide range of frequency contents, compared to
wave motion perpendicular to the layers. Importantly, the pre-
sented analysis demonstrates that the wave dispersion relation in
viscoelastic-elastic layered composites is distinctly different from
the corresponding elastic counterpart, and highlights the impor-
tance of the viscoelastic modeling of polymeric materials in wave
dispersion analysis. Currently, we are working on experiments to
validate the analytical results presented in this study.
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